Modicon M241 Logic Controller High Speed Counting HSC Library Guide

03/2018

Schneider Gelectric

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2018 Schneider Electric. All Rights Reserved.

Table of Contents

Dert 1	Safety Information.
Chapter 1	
Chapter 1	
	Expert Functions Overview
Chapter 2	High Speed Counter Turges
Chapter 2	Choosing Your Counter
	Simple Type Overview
	Main Type Overview
	Frequency Meter Type Overview
	Period Meter Type Overview
Part II	One-shot Mode
Chapter 3	One-shot Mode Principle
•	One-shot Mode Principle Description
Chapter 4	One-shot with a Simple Type
-	Synopsis Diagram
	Configuration of the Simple Type in One-Shot Mode
	Programming the Simple Type
	Adjusting Parameters
Chapter 5	One-shot with a Main Type
	Synopsis Diagram
	Configuration of the Main Type Single Phase in One-Shot Mode
	Programming the Main Type
	Adjusting Parameters
Part III	Modulo-loop Mode
Chapter 6	Modulo-loop Principle
	Modulo-loop Mode Principle Description
Chapter 7	Modulo-loop with a Simple Type
	Synopsis Diagram
	Configuration of the Simple Type in Modulo-Loop Mode
	Programming the Simple Type
	Adjusting Parameters

Chapter 8	Modulo-loop with a Main Type	1
	Configuration of the Main Type Single Phase in Modulo-I oon Mode	2
	Configuration of the Main Type Dual Phase in Modulo-Loop Mode	л Л
	Programming the Main Type	т 5
	Adjusting Parameters.	8
Part IV	Eree-large Mode	a
Chanter 9	Free-large Mode Principle 7	1
Onapter 9	Free-large Mode Principle Construction 7	2
	Limits Management	5
Chapter 10	Free-large with a Main Type 7	7
	Svnopsis Diagram	8
	Configuration of the Main Type Dual Phase in Free-Large Mode 79	9
	Programming the Main Type	0
	Adjusting Parameters	3
Part V	Event Counting Mode	5
Chapter 11	Event Counting Principle	7
	Event Counting Mode Principle Description	7
Chapter 12	Event Counting with a Main Type	9
•	Synopsis Diagram	0
	Configuration of the Main Type Single Phase in Event Counting Mode 9	1
	Programming the Main Type	2
	Adjusting Parameters	5
Part VI	Frequency Meter Type	7
Chapter 13	Frequency Meter Principle	9
•	Description	9
Chapter 14	Frequency Meter Type 10 ⁻	1
•	Synopsis Diagram 102	2
	Configuration of the Frequency Meter Type	3
	Programming 104	4
Part VII	Period Meter Type 107	7
Chapter 15	Period Meter Type Principle 109	9
-	Description	9

Chapter 16	Period Meter Type
	Configuration of the Period Meter Type in Edge to Edge Mode
	Configuration of the Period Meter Type in Edge to Opposite Mode
	Programming
	Adjusting Parameters
Part VIII	Optional Functions
Chapter 17	Comparison Function
	Configuration of the Comparison on a Main Type
	External Event Configuration
Chapter 18	Capture Function
	Configuration of the Capture on a Main Type
Chapter 19	Preset and Enable Functions
	Free-large or Period Meter Preset Conditions
	Enable: Authorize Counting Operation
Appendices	
Appendix A	General Information
	General Information on Administrative and Motion Function Block Management
Appendix B	Data Types EXPERT_DIAG_TYPE: Type for EXPERTGetDiag Diagnostics EXPERT_ERR_TYPE: Type for Error Variable of EXPERT Function
	Block EXPERT_FREQMETER_TIMEBASE_TYPE: Type for Frequency Meter Time Base Variable.
	EXPERT_HSCMAIN_TIMEBASE_TYPE: Type for HSC Main Time
	Base Variable
	EXPERT_IMMEDIATE_ERR_TYPE: Type for Error Variable of the
	EXPERT_PARAMETER_TYPE: Type for Parameters to Get or to Set on EXPERT
	EXPERT_PERIODMETER_RESOLUTION_TYPE: Type for Period Meter Time Base Variable
	EXPERT_REF: EXPERT Reference Value

Appendix C	Function Blocks	155
	EXPERTGetCapturedValue: Read Value of Capture Registers	156
	EXPERTGetDiag: Return Detail of a Detected HSC Error	158
	EXPERTGetImmediateValue: Read Counter Value of HSC	160
	EXPERTGetParam: Returns Parameters of HSC	162
	EXPERTSetParam: Adjust Parameters of a HSC	164
	HSCMain_M241: Control a Main Type Counter for M241	166
	HSCSimple_M241: Control a Simple Type Counter for M241	170
Appendix D	Function and Function Block Representation	173
••	Differences Between a Function and a Function Block	174
	How to Use a Function or a Function Block in IL Language	175
	How to Use a Function or a Function Block in ST Language	179
Glossary		183
Index		187

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

A WARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

About the Book

At a Glance

Document Scope

This documentation will acquaint you with the High Speed Counter (HSC) functions and variables offered within the M241 logic controller.

This documentation describes the functions and variables of the M241 HSC library.

In order to use this manual, you must:

- Have a thorough understanding of the M241, including its design, functionality, and implementation within control systems.
- Be proficient in the use of the following IEC 61131-3 PLC programming languages:
 - Function Block Diagram (FBD)
 - Ladder Diagram (LD)
 - O Structured Text (ST)
 - o Instruction List (IL)
 - o Sequential Function Chart (SFC)

SoMachine software can also be used to program these controllers using CFC (Continuous Function Chart) language.

Validity Note

This document has been updated for the release of TM3TI4D Add-on for SoMachine V4.3.

Related Documents

Title of Documentation	Reference Number
SoMachine Programming Guide	<u>EIO000000067 (ENG),</u>
	<u>EIO000000069 (FRE),</u>
	<u>EIO000000068 (GER)</u> ,
	<u>EIO000000071 (SPA),</u>
	<u>EIO000000070 (ITA),</u>
	<u>EIO000000072 (CHS)</u>
Modicon M241 Logic Controller Programming Guide	<u>EIO000001432 (ENG),</u>
	<u>EIO000001433 (FRE),</u>
	<u>EIO000001434 (GER),</u>
	<u>EIO000001435 (SPA),</u>
	<u>EIO000001436 (ITA),</u>
	<u>EIO0000001437 (CHS)</u>

You can download these technical publications and other technical information from our website at https://www.schneider-electric.com/en/download

Product Related Information

WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines.¹
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Only use software approved by Schneider Electric for use with this equipment.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Part I Introduction

Overview

This part provides an overview description, available modes, functionality and performances of the different functions.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
1	Expert Function Introduction	13
2	High Speed Counter Types	21

Introduction

Chapter 1 Expert Function Introduction

Overview

This chapter provides an overview description, functionality, and performances of:

- High Speed Counter (HSC)
- Pulse Train Output (PTO)
- Pulse Width Modulation (PWM)
- Frequency Generator (FreqGen)

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Expert Functions Overview	14
Embedded Expert I/O Assignment	17

Expert Functions Overview

Introduction

The inputs and outputs available on the M241 logic controller can be connected to expert functions. The M241 logic controller supports the following expert functions:

Functions		Description		
Counters	HSC Simple	The HSC functions can execute fast counts of pulses from		
	HSC Main Single Phase	sensors, switches, etc. that are connected to the fast or regular		
	HSC Main Dual Phase	maximum frequency of 1 kHz.		
	Frequency Meter	For more information about the HSC functions, refer to High		
	Period Meter	Speed Counter types (see page 21).		
Pulse Generators	РТО	The PTO function provides 2 pulse train output channels to control 2 independent linear single-axis stepper or servo drives in open loop mode. The PTO function connected to regular transistor outputs operates at a maximum frequency of 1 kHz.		
	PWM	The PWM function generates a square wave signal on dedicated output channels with a variable duty cycle. The PWM function connected to regular transistor outputs operates at a maximum frequency of 1 kHz.		
	Frequency Generator	The frequency generator function generates a square wave signal on dedicated output channels with a fixed duty cycle (50%). The Frequency Generator function connected to regular transistor outputs operates at a maximum frequency of 1 kHz.		

As of the release of SoMachine V4.3, any regular I/O not already in use can be configured for use by any of the expert function types, in the same way as fast I/Os.

NOTE:

- When an input is used as Run/Stop, it cannot be used by an expert function.
- When an output is used as Alarm, it cannot be used by an expert function.

For more details, refer to Embedded Functions Configuration.

Maximum Number of Expert Functions

The maximum number of expert functions that can be configured depends on:

- **1.** The logic controller reference.
- 2. The expert function types and number of optional functions *(see page 119)* configured. Refer to Embedded Expert I/O Assignment *(see page 17)*.
- 3. The number of I/Os that are available.

Maximum number of expert functions by logic controller reference:

Expert Fun	ction Type	24 I/O References (TM241•24•)	40 I/O References (TM241•40•)
Total numb	er of HSC functions	14	16
HSC	Simple	14	16
	Main Single Phase	4	
	Main Dual Phase		
	Frequency Meter ⁽¹⁾		
	Period Meter		
PTO			
PWM			
FreqGen			
(1) When th	o movimum numbor io config	urad aply 12 additional USC Simp	le functione can be added

⁽¹⁾ When the maximum number is configured, only 12 additional HSC Simple functions can be added.

The maximum number of expert functions possible may be further limited by the number of I/Os used by each expert function.

Example configurations:

- 4 PTO⁽²⁾ + 14 HSC Simple on 24 I/O controller references
- 4 FreqGen⁽²⁾ + 16 HSC Simple on 40 I/O controller references
- 4 HSC Main Single Phase + 10 HSC Simple on 24 I/O controller references
- 4 HSC Main Dual Phase + 8 HSC Simple on 40 I/O controller references
- 2 PTO⁽²⁾ + 2 HSC Main Single Phase + 14 HSC Simple on 40 I/O controller references
 (2) With no optional I/O configured

The performance of the expert function is limited by the I/Os used:

- HSC with fast inputs: 100 kHz/200 kHz
- HSC with regular inputs: 1 kHz

Configuring an Expert Function

To configure an expert function, proceed as follows:

Step	Description						
1	Double-click the Counters or Pulse_Generators node in the Devices Tree. Result: The Counters or Pulse_Generators configuration window appears:						
	Counters Pulse_	Generators ×					
	+						
	Parameter	Туре	Value	Default Value	Unit	Description	
	Pulse generation function	Enumeration of WORD	None	None		Select the pulse generation application	
2	Double-click None in the	Value column and	d choo	ose the exp	ert f	function type to assign.	
	Result: The default config	guration of the exp	pert fu	nction app	ears	when you click anywhere in	the
	configuration window.						
3	Configure the expert function parameters, as described in the following chapters.						
4	To configure an additional expert function, click the + tab.						
	NOTE: If the maximum number of expert functions is already configured, a message appears at the bottom of the configuration window informing you that you can now add only HSC Simple functions.						

Regular I/O Configured as Expert Function

When regular I/Os are configured as expert functions, note the following:

- Inputs can be read through memory variables.
- An input cannot be configured as an expert function if it has already been configured as a Run/Stop input.
- An output cannot be configured in an expert function if it has already been configured as an alarm.
- Short-Circuit management applies on the outputs. Status of outputs are available.
- The I/O that are not used by expert functions can be used as any other regular I/O.
- When inputs are used in expert functions (Latch, HSC,...), integrator filter is replaced by antibounce filter. Filter value is configured in the configuration screen.

Embedded Expert I/O Assignment

I/O Assignment

The following regular or fast I/Os can be configured for use by expert functions:

	24 I/O References		40 I/O References		
	TM241•24T, TM241•24U	TM241•24R	TM241•40T, TM241•40U	TM241•40R	
Inputs	8 fast inputs (I0I7) 6 regular inputs (I8I13)		8 fast inputs (I0I7) 8 regular inputs (I8I15)		
Outputs	4 fast outputs (Q0Q3) 4 regular outputs (Q4Q7)	4 fast outputs (Q0Q3)	4 fast outputs (Q0Q3) 4 regular outputs (Q4Q7)	4 fast outputs (Q0Q3)	

When an I/O has been assigned to an expert function, it is no longer available for selection with other expert functions.

NOTE: All I/Os are by default disabled in the configuration window.

The following table shows the I/Os that can be configured for expert functions:

Expert Function	Name	Input (Fast or Regular)	Output (Fast or Regular)		
HSC Simple	Input	Μ			
HSC Main	Input A	М			
	Input B/EN	С			
	SYNC	С			
	CAP	С			
	Reflex 0		С		
	Reflex 1		С		
Frequency Meter/Period Meter	Input A	Μ			
	EN	С			
PWM/FreqGen	Output A		М		
	SYNC	С			
	EN	С			
M Mandatory					

Expert Function	Name	Input (Fast or Regular)	Output (Fast or Regular)
PTO	Output A/CW/Pulse		М
	Output B/CCW/Dir		С
	REF (Origin)	С	
	INDEX (Proximity)	С	
	PROBE	С	
M MandatoryC Optionally configurable			

Using Regular I/O with Expert Functions

Expert function I/O within regular I/O:

- Inputs can be read through standard memory variables even if configured as expert functions.
- All I/Os that are not used by expert functions can be used as regular I/Os.
- An I/O can only be used by one expert function; once configured, the I/O is no longer available for other expert functions.
- If no more fast I/Os are available, a regular I/O can be configured instead. In this case, however, the maximum frequency of the expert function is limited to 1 kHz.
- You cannot configure an input in an expert function and use it as a Run/Stop, Event, or Latch input at a same time.
- An output cannot be configured in an expert function if it has already been configured as an alarm.
- Short-circuit management still applies on all outputs. Status of outputs are available. For more information, refer to Output Management *(see Modicon M241 Logic Controller, Hardware Guide)*.
- When inputs are used in expert functions (PTO, HSC,...), the integrator filter is replaced by an anti-bounce filter (see page 142). The filter value is configured in the configuration window.

For more details, refer to Embedded Functions Configuration *(see Modicon M241 Logic Controller, Programming Guide).*

I/O Summary

The IO Summary window displays the I/Os used by the expert functions.

To display the **IO Summary** window:

Step	Action
1	In the Devices tree tab, right-click the MyController node and choose IO Summary.

Example of IO Summary window:

1	IO Summary					Σ	
r	Inputs			Outputs			٦
	Channel	Address	Utilization	Channel	Address	Utilization	
	DI - 10	%IX0.0	HscSimple_0 - A input	DQ - Q0	%QX0.0	PTO_0 - A output	
	DI - 11	%IX0.1	DI - Latch	DQ – Q1	%QX0.1	PTO_0 - B output	
	DI - 12	%IX0.2		DQ – Q2	%QX0.2	PWM_0 - A output	
	DI - 13	%IX0.3	PTO_0 – PROBE input	DQ – Q3	%QX0.3		
	DI - 14	%IX0.4		DQ – Q4	%QX0.4	DQ - Alarm Output	
	DI - 15	%IX0.5		DQ – Q5	%QX0.5		
	DI - 16	%IX0.6		DQ – Q6	%QX0.6		
	DI - 17	%IX0.7		DQ – Q7	%QX0.7		
	DI - 18	%IX1.0	PTO_0 - REF input	DQ – Q8	%QX1.0		
	DI - 19	%IX1.1	PTO_0 - INDEX input	DQ – Q9	%QX1.1		
	DI - 110	%IX1.2	DI - Filter	DQ - Q0	%QX2.0		
	DI - 111	%IX1.3	DI - Filter				
	DI - 112	%IX1.4	PWM_0 - SYNC input				
	DI - 113	%IX1.5	DI - Filter				
	DI - 10	%IX2.0	DI - Shortcut Detection				
L							J
						Close	

Chapter 2 High Speed Counter Types

Overview

This chapter provides an overview of the different types of HSC.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Choosing Your Counter	22
Simple Type Overview	26
Main Type Overview	27
Frequency Meter Type Overview	28
Period Meter Type Overview	29

Choosing Your Counter

Overview

Start the HSC configuration by choosing a counter type according to the type of sensor you are using and the application need.

In the **Counters** editor, select a **Counting function** from the list that offers the following 5 types of counters (for more information, refer to the Counter Function *(see Modicon M241 Logic Controller, Programming Guide)*):

- HSC Simple
- HSC Main Single Phase
- HSC Main Dual Phase
- Frequency Meter
- Period Meter

The Frequency Meter type and the Period Meter type are based on an HSC Main type.

For each counter function block, the **Instance name** is automatically given by SoMachine. The **Instance name** is editable. However, whether the **Instance name** is software-defined or user-defined, use the same instance name as an input to the function blocks dealing with the counter, as defined in the **Counters** editor.

Type and Mode Matrix

Туре	HSC Simple	HSC Main	HSC Main Dual	Frequency	Period Meter	
Mode		Single Phase	Phase	Meter		
One-shot	х	х	-	-	-	
Modulo-loop	х	х	х	-	-	
Event Counting	-	х	-	-	-	
Free-large	-	-	х	-	-	
Edge to Edge	-	-	-	-	х	
Edge to Opposite	-	-	-	-	х	

This table presents the different types and modes available:

HSC Simple

This table presents an overview of the specifications available in **HSC Simple** type according to the mode requested:

Feature	Function	
	One-shot Mode	Modulo-loop Mode
Counting mode	Count down	Count up
Enable with an HSC physical input	No	No
Synchronization / preset with an HSC physical input	No	No
Comparison function	No	No
Capture function	No	No
Configuration tuning	Preset	Modulo

HSC Main Single Phase

This table presents an overview of the specifications available in **HSC Main Single Phase** type according to the mode requested:

Feature	Function		
	One-shot Mode	Modulo-loop Mode	Event Counting Mode
Counting mode	Count down	Count up	Pulse counting during given time base
Enable with an HSC physical input	Yes	Yes	No
Synchronization / preset with an HSC physical input	Yes	Yes	Yes
Comparison function	Yes, 4 thresholds, 2 outputs, and 4 events	Yes, 4 thresholds, 2 outputs, and 4 events	No
Capture function	Yes, 1 capture register	Yes, 1 capture register	No
Configuration tuning	Stop event	-	Time base

HSC Main Dual Phase

This table presents an overview of the specifications available in **HSC Main Dual Phase** type according to the mode requested:

Feature	Function		
	Modulo-Loop Mode	Free-Large Mode	
Counting mode	Count up / down Pulse / direction Quadrature	Count up / down Pulse / direction Quadrature	
Enable with an HSC physical input	No	No	
Synchronization / preset with an HSC physical input	Yes	Yes	
Comparison function	Yes, 4 thresholds, 2 outputs, and 4 events	Yes, 4 thresholds, 2 outputs, and 4 events	
Capture function	Yes, 1 capture register	Yes, 1 capture register	
Configuration tuning	-	Limits management	

Frequency Meter

This table presents an overview of the specifications available in Frequency Meter type:

Feature	Function
Counting mode	Pulse frequency in Hz with updated value available every time base value (10, 100, or 1000 ms).
Enable with an HSC physical input	Yes
Synchronization / preset with an HSC physical input	No
Comparison function	Νο
Capture function	No
Configuration tuning	Time base

Period Meter

This table presents an overview of the specifications available in **Period Meter** type according to the mode requested:

Feature	Function
Counting modes	Edge to edge: Measure the duration of an event. Edge to opposite: Measure the time between two events. Duration counting with configurable resolution (0.1 μ s, 1 μ s, 100 μ s, or 1000 μ s).
Enable with an HSC physical input	Yes
Synchronization / preset with an HSC physical input	No
Comparison function	No
Capture function	No
Configuration tuning	Resolution Time out

Simple Type Overview

Overview

The **Simple** type is a single input counter.

Any operation on the counter (enable, sync) and any action triggered (when count value is reached) is executed in the context of a task.

With the Simple type, you cannot trigger an event or a reflex output.

Simple Type Modes

The **Simple** type supports 2 configurable counting modes, only on single-phase pulses:

One-shot (see page 35): In this mode, the counter current value register decrements (from a userdefined value) for each pulse applied to A input, until the counter reaches 0.

Modulo-loop *(see page 55)*. In this mode, the counter repeatedly counts from 0 to a user-defined modulo value then returns to 0 and restarts counting.

Performance

The maximum frequency admissible on a fast input is 100 kHz if the bounce filter value is 0.005 ms (default value for configuration). If the bounce filter value is 0.002 ms, the maximum frequency is 200 kHz.

The maximum frequency admissible on a regular input is 1 kHz if the bounce filter value is 0.5 ms. If the bounce filter value is 1 ms, the maximum frequency is 500 Hz.

For more information about the bounce filter, refer to the Dedicated Features (see page 142).

Main Type Overview

Overview

The **Main** type is a counter that uses up to 4 fast or regular inputs and 2 reflex outputs. The M241 Logic Controller can have up to 4 **Main** type High Speed Counters.

Main Type Modes

The **Main** type supports the following counting modes on single phase (1 input) or dual-phase (2 inputs) pulses:

One-shot (see page 41): In this mode, the counter current value register decrements (from a userdefined value) for each pulse applied to A input until the counter reaches a 0.

Modulo-loop (see page 61): In this mode, the counter repeatedly counts from 0 to a user-defined modulo value then returns to 0 and restarts counting. In reverse, the counter counts down from the modulo value to 0 then presets to the modulo value and restarts counting.

Free-large (see page 77): In this mode, the counter behaves like a high range up and down counter.

Event Counting *(see page 89)*: In this mode, the counter accumulates a number of events that are received during a user-configured time base.

Optional Features

Optional features can be configured depending on the selected mode:

- hardware inputs to operate the counter (enable, preset) or capture the current counting value
- up to 4 thresholds
- up to 4 events (1 for each threshold) can be associated with external tasks
- up to 2 reflex outputs

Performance

The maximum frequency admissible on an **Expert I/O** interface is 100 kHz if the bounce filter value is 0.005 ms (default value for configuration). If the bounce filter value is 0.002 ms, the maximum frequency is 200 kHz.

If the expert function is configured with a regular I/O, the minimum period admissible is 0.4 ms.

Frequency Meter Type Overview

Overview

The **Frequency Meter** type is a counter that uses up to 2 fast or regular inputs. The M241 Logic Controller can have up to 4 **Frequency Meter** type High Speed Counters.

Frequency Meter Type Mode

The **Frequency meter** (see page 101) counter measures the frequency of events. Frequency is the number of events per second (Hz).

Performance

The maximum frequency admissible on a fast input is 100 kHz if the bounce filter value is 0.005 ms (default value for configuration). If the bounce filter value is 0.002 ms, the maximum frequency is 200 kHz.

The maximum frequency admissible on a regular input is 1 kHz if the bounce filter value is 0.5 ms. If the bounce filter value is 1 ms, the maximum frequency is 500 Hz.

For more information about the bounce filter, refer to the Dedicated Features (see page 142).

Period Meter Type Overview

Overview

The **Period Meter** type is a counter that uses up to 2 fast or regular inputs. The M241 Logic Controller can have up to 4 **Period Meter** type High Speed Counters.

Period Meter Type Mode

Use the **Period meter** counting mode to:

- Determine the duration of an event
- Measure the time between 2 events
- Set and measure the execution time for a process

Performance

The minimum period admissible on a fast input is 0.005 ms.

If the expert function is configured with a regular I/O, the minimum period admissible is 0.4 ms.

Part II One-shot Mode

Overview

This part describes the use of a HSC in **One-shot** Mode.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
3	One-shot Mode Principle	33
4	One-shot with a Simple Type	35
5	One-shot with a Main Type	41

Chapter 3 One-shot Mode Principle

One-shot Mode Principle Description

Overview

The counter is activated by a synchronization edge, and the preset value is loaded.

When counting is enabled, each pulse applied to the input decrements the current value. The counter stops when its current value reaches 0.

The counter value remains at 0 even if new pulses are applied to the input.

A new synchronization is needed to activate the counter again.

Principle Diagram

This table explains the stages from the preceding graphic:

Stage	Action
1	On the rising edge of the Sync condition, the preset value is loaded in the counter (regardless of the current value) and the counter is activated.
2	When Enable condition = 1, the current counter value decrements on each pulse on input A until it reaches 0.
3	The counter waits until the next rising edge of the Sync condition. Note: At this point, pulses on input A have no effect on the counter.

Stage	Action
4	When Enable condition = 0, the counter ignores the pulses from input A and retains its current value until the Enable condition again = 1. The counter resumes counting pulses from input A on the rising
	edge of the Enable input from the held value.

NOTE: Enable and Sync conditions depends on configuration. These are described in the Enable *(see page 137)* and Preset *(see page 134)* function.

Chapter 4 One-shot with a Simple Type

Overview

This chapter describes how to implement a High Speed Counter in **One-shot** mode using a **Simple** type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Synopsis Diagram	
Configuration of the Simple Type in One-Shot Mode	
Programming the Simple Type	
Adjusting Parameters	40

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Simple type in One-shot mode:

A is the counting input of the High Speed Counter. Simple type counting for **One-shot** mode only counts down.
Configuration of the Simple Type in One-Shot Mode

Procedure

Follow this procedure to configure a **Simple** type in **One-shot** mode:

Step	Action			
1	Double-click MyController → Counters . Result: Counters editor tab opens for HSC configuration.			
2	In the Counters editor tab, set the value of the Counting function parameter to HSC Simple . Result : Depending on the selected counter function, the configuration parameters appear in the Counters editor tab.			
3	If necessary, enter the value of the General → Instance name parameter.			
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.			
4	Set the value of the General → Counting Mode parameter to One-shot .			
5	In Counting inputs \rightarrow A input \rightarrow Location select the fast or regular input to use as the A input.			
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.			
6	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table (<i>see page 142</i>).			
7	Enter the value of the Range \rightarrow Preset parameter to set the counting initial value.			

Programming the Simple Type

Overview

A Simple type is always managed by an HSCSimple_M241 (see page 170) function block.

NOTE: At build, a detected error code is given if the HSCSimple_M241 function block is used to manage a different HSC type.

Adding a HSCSimple Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCSimple_M241 in the list, drag-and-drop the item onto the POU window.
2	Type the Simple type instance name (defined in configuration) or select the function block instance by clicking:
	Using the input assistant, the HSC instance can be selected at the following path: <mycontroller></mycontroller> \rightarrow Counters .

I/O Variables Usage

The tables below describe how the different pins of the function block are used in **One-shot** mode. This table describes the input variables:

Input	Туре	Comment
Enable	BOOL	TRUE = authorizes changes to the current counter value.
Sync	BOOL	On rising edge, presets and starts the counter
ACK_Modulo	BOOL	Not used

This table describes the output variables:

Output	Туре	Comment
HSC_REF	EXPERT_REF <i>(see page 153)</i>	Reference to the HSC. To be used as input of Administrative function blocks.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the EXPERTGetDiag <i>(see page 158)</i> function block to get more information about this detected error.
Validity	BOOL	TRUE = indicates that the output values on the function block are valid.
Run	BOOL	Set to 1 when the counter is running. Switches to 0 when CurrentValue reaches 0. A synchronization is needed to restart the counter.
Modulo_Flag	BOOL	Not relevant
CurrentValue	DWORD	Current count value of the counter.

Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the EXPERTGetParam *(see page 162)* or EXPERTSetParam *(see page 164)* function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC configuration window. Initial configuration parameters are restored on cold or warm start *(see Modicon M241 Logic Controller, Programming Guide).*

Adjustable Parameters

This table provides the list of parameters from the EXPERT_PARAMETER_TYPE (see page 151) that can be read or modified while the program is running:

Parameter	Description
EXPERT_PRESET	to get or set the Preset value of an HSC

Chapter 5 One-shot with a Main Type

Overview

This chapter describes how to implement a High Speed Counter in **One-shot** mode using a **Main** type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Synopsis Diagram	42
Configuration of the Main Type Single Phase in One-Shot Mode	
Programming the Main Type	
Adjusting Parameters	47

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in One-shot mode:

A is the counting input of the counter.

EN is the enable input of the counter.

CAP is the capture input of the counter.

SYNC is the synchronization input of the counter.

Optional Function

In addition to the One-shot mode, the Main type can provide the following functions:

- Comparison function (see page 121)
- Capture function (see page 129)
- Preset function (see page 134)
- Enable function (see page 137)

Configuration of the Main Type Single Phase in One-Shot Mode

Procedure

Follow this procedure to configure a Main type single phase in One-shot mode:

Step	Action			
1	Double-click MyController → Counters . Result : Counters editor tab opens for HSC configuration.			
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.			
2	In the Counters editor tab, set the value of the Counting function parameter to HSC Main Single Phase . Result : The configuration parameters appear in the Counters tab.			
3	If necessary, enter the value of the General → Instance name parameter.			
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.			
4	Set the value of the General → Counting Mode parameter to One-shot .			
5	In Counting Inputs -> A input -> Location select the regular or fast input to use as the A in			
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.			
6	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .			
7	Enter the value of the Range \rightarrow Preset parameter to set the initial counting value of the Preset function <i>(see page 134)</i> .			
8	Optionally, you can enable these functions: • Enable function <i>(see page 137)</i> • Capture function <i>(see page 129)</i> • Comparison function <i>(see page 121)</i>			
9	Optionally, set the value of the Events \rightarrow Stop Event parameter to Yes to enable the External Event function <i>(see page 127)</i> .			

Programming the Main Type

Overview

Main type is always managed by an HSCMain_M241 function block.

NOTE: At build, a detected error code is given if the HSCMain_M241 function block is used to manage a different HSC type.

Adding the HSCMain Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCMain_M241 in the list, drag-and-drop the item onto the POU window.
2	Type the Main type instance name (defined in configuration) or select the function block instance by clicking:
	using the input assistant, the HSC instance can be selected at the following path: <mycontroller></mycontroller> → Counters .

HscMainSinglePhase_0

I/O Variables Usage

The tables below describe how the different pins of the function block are used in **One-shot** mode. This table describes the input variables:

Input	Туре	Description
EN_Enable	BOOL	When EN input is configured: if TRUE, authorizes the counter enable via the Enable input <i>(see page 137)</i> .
EN_Preset	BOOL	When SYNC input is configured: if TRUE , authorizes the counter Preset via the Sync input <i>(see page 134)</i> .
EN_Cap	BOOL	When CAP input is configured: if $\ensuremath{\mathtt{TRUE}}$, enables the Capture input.
EN_Compare	BOOL	 TRUE = enables the comparator operation (see page 121) (using Thresholds 0, 1, 2, 3): basic comparison (TH0, TH1, TH2, TH3 output bits) reflex (Reflex0, Reflex1 output bits) events (to trigger external tasks on threshold crossing)
EN_Out0	BOOL	TRUE = enables physical output Out_R0 to echo the Reflex0 value (if configured).
EN_Out1	BOOL	TRUE = enables physical output Out_R1 to echo the Reflex1 value (if configured).
F_Enable	BOOL	TRUE = authorizes changes to the current counter value.
F_Preset	BOOL	On rising edge, presets and starts the counter.
F_Out0	BOOL	TRUE = forces Out_R0 to 1 (if Reflex0 is configured in HSC Embedded Function. Takes priority over EN_Out0.
F_Out1	BOOL	TRUE = forces Out_R1 to 1 (if Reflex1 is configured in HSC Embedded Function. Takes priority over EN_Out1.
ACK_Preset	BOOL	On rising edge, resets Preset_Flag.
ACK_Cap	BOOL	On rising edge, resets Cap_Flag.
SuspendCompare	BOOL	 TRUE = compare results are suspended: TH0, TH1, TH2, TH3, Reflex0, Reflex1, Out0, Out1 output bits of the block maintain their last value. Hardware Outputs 0, 1 maintain their last value. Events are masked. NOTE: EN_Compare, EN_Reflex0, EN_Reflex1, F_Out0, F_Out1 remain operational while SuspendCompare is set.

Output	Туре	Comment
HSC_REF	EXPERT_REF (see page 153)	Reference to the HSC. To be used as input of Administrative function blocks.
Validity	BOOL	TRUE = indicates that output values on the function block are valid.
Run	BOOL	TRUE = counter is running. The Run bit switches to 0 when CurrentValue reaches 0.
THO	BOOL	Set to 1 when CurrentValue > Threshold 0 <i>(see page 121)</i> .
TH1	BOOL	Set to 1 when CurrentValue > Threshold 1 <i>(see page 121)</i> .
TH2	BOOL	Set to 1 when CurrentValue > Threshold 2 <i>(see page 121)</i> .
TH3	BOOL	Set to 1 when CurrentValue > Threshold 3 <i>(see page 121)</i> .
Preset_Flag	BOOL	Set to 1 by the preset of the counter (see page 134).
Cap_Flag	BOOL	Set to 1 when a new capture value is stored in the Capture register. This flag must be reset before a new capture can occur.
Reflex0	BOOL	State of Reflex0 <i>(see page 122).</i> Only active when EN_Compare is set.
Reflex1	BOOL	State of Reflex1 <i>(see page 122).</i> Only active when EN_Compare is set.
Out0	BOOL	State of physical output Out_R0 (if Reflex0 configured).
Out1	BOOL	State of physical output Out_R1 (if Reflex1 configured).
CurrentValue	DINT	Current value of the counter.

This table describes the output variables:

Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the EXPERTGetParam *(see page 162)* or EXPERTSetParam *(see page 164)* function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC configuration window. Initial configuration parameters are restored on cold or warm start *(see Modicon M241 Logic Controller, Programming Guide).*

Adjustable Parameters

This table provides the list of parameters from the EXPERT_PARAMETER_TYPE (see page 151) which can be read or modified while the program is running:

Parameter	Description
EXPERT_PRESET	to get or set the Preset value of an HSC
EXPERT_THRESHOLD0	to get or set the Threshold 0 value of an HSC
EXPERT_THRESHOLD1	to get or set the Threshold 1 value of an HSC
EXPERT_THRESHOLD2	to get or set the Threshold 2 value of an HSC
EXPERT_THRESHOLD3	to get or set the Threshold 3 value of an HSC
EXPERT_REFLEX0	to get or set output 0 reflex mode of an EXPERT function
EXPERT_REFLEX1	to get or set output 0 reflex mode of an EXPERT function

Part III Modulo-loop Mode

Overview

This part describes the use of a HSC in Modulo-loop mode.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
6	Modulo-loop Principle	51
7	Modulo-loop with a Simple Type	55
8	Modulo-loop with a Main Type	61

Chapter 6 Modulo-loop Principle

Modulo-loop Mode Principle Description

Overview

The **Modulo-loop** mode can be used for repeated actions on a series of moving objects, such as packaging and labeling applications.

Principle

On a rising edge of the Sync condition *(see page 134)*, the counter is activated and the current value is reset to 0.

When counting is enabled (see page 137):

Incrementing direction: the counter increments until it reaches the modulo value. At the next pulse, the counter is reset to 0, a modulo flag is set to 1, and the counting continues.

Decrementing direction: the counter decrements until it reaches 0. At the next pulse, the counter is set to the modulo value, a modulo flag is set to 1, and the counting continues.

Input Modes

This table shows the 8 types of input modes available:

Input Mode	Comment
A = Up, B = Down	default mode The counter increments on A and decrements on B.
A = Impulse, B = Direction	If there is a rising edge on A and B is true, then the counter decrements. If there is a rising edge on A and B is false, then the counter increments.
Normal Quadrature X1	A physical encoder always provides 2 signals 90° shift that first allows the
Normal Quadrature X2	counter to count pulses and detect direction:
Normal Quadrature X4	 X2: 2 counts by Encoder cycle
Reverse Quadrature X1	X4: 4 counts by Encoder cycle
Reverse Quadrature X2	
Reverse Quadrature X4	

Up Down Principle Diagram

Stage	Action
1	On the rising edge of Sync condition, the current value is reset to 0 and the counter is activated.
2	When Enable condition = 1, each pulses on A increments the counter value.
3	When the counter reaches the (modulo-1) value, the counter loops to 0 at the next pulse and the counting continues. Modulo_Flag is set to 1.
4	On the rising edge of Sync condition, the current counter value is reset to 0.
5	When Enable condition = 1, each pulse on B decrements the counter.
6	When the counter reaches 0, the counter loops to (modulo-1) at the next pulse and the counting continues.
7	When Enable condition = 0, the pulses on the inputs are ignored.
8	On the rising edge of Sync condition, the current counter value is reset to 0.

NOTE: Enable and Sync conditions depends on configuration. These are described in the Enable *(see page 137)* and Preset *(see page 134)* function.

Quadrature Principle Diagram

The encoder signal is counted according to the input mode selected, as shown below:

Chapter 7 Modulo-loop with a Simple Type

Overview

This chapter describes how to implement a High Speed Counter in **Modulo-loop** mode using a **Simple** type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Synopsis Diagram	56
Configuration of the Simple Type in Modulo-Loop Mode	57
Programming the Simple Type	58
Adjusting Parameters	60

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Simple type in Modulo-loop mode:

A Simple type counting for Modulo-loop mode only counts up.

Configuration of the Simple Type in Modulo-Loop Mode

Procedure

Follow this procedure to configure a Simple type in Modulo-loop mode:

Step	Action
1	Double-click MyController → Counters . Result: Counters editor tab opens for HSC configuration.
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.
2	In the Counters editor tab, set the value of the Counting function parameter to HSC Simple . Result : The configuration parameters appear in the Counters editor tab.
3	If necessary, enter the value of the General → Instance name parameter.
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.
4	Set the value of the General → Counting Mode parameter to Modulo-loop .
5	In Counting Inputs \rightarrow A input \rightarrow Location select the regular or fast input to use as the A input.
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.
6	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table (<i>see page 142</i>).
7	Enter the value of the Range → Modulo parameter to set the counting modulo value.

Programming the Simple Type

Overview

A Simple type is always managed by an HSCSimple_M241 (see page 170) function block.

NOTE: At build, a detected error code is given if the HSCSimple_M241 function block is used to manage a different HSC type.

Adding a HSCSimple Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCSimple_M241 in the list, drag-and-drop the item onto the POU window.
2	Type the Simple type instance name (defined in configuration) or select the function block instance by clicking:
	Using the input assistant, the HSC instance can be selected at the following path: <mycontroller></mycontroller> \rightarrow Counters .

I/O Variables Usage

The tables below describe how the different pins of the function block are used in **Modulo-loop** mode.

This table describes the input variables:

Input	Туре	Comment
Enable	BOOL	TRUE = authorizes changes to the current counter value.
Sync	BOOL	On rising edge, resets and starts the counter.
ACK_Modulo	BOOL	On rising edge, resets Modulo_Flag.

This table describes the output variables:

Output	Туре	Comment
HSC_REF	EXPERT_REF <i>(see page 153)</i>	Reference to the HSC. To be used as input of the Administrative function blocks.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the EXPERTGetDiag <i>(see page 158)</i> function block to get more information about this detected error.
Validity	BOOL	TRUE = indicates that the output values on the function block are valid.
Run	BOOL	Not relevant
Modulo_Flag	BOOL	Set to 1 when the counter roll overs the modulo.
CurrentValue	DWORD	Current value of the counter.

Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the EXPERTGetParam *(see page 162)* or EXPERTSetParam *(see page 164)* function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC configuration window. Initial configuration parameters are restored on cold or warm start *(see Modicon M241 Logic Controller, Programming Guide).*

Adjustable Parameters

This table provides the list of parameters from the EXPERT_PARAMETER_TYPE (see page 151) that can be read or modified while the program is running:

Parameter	Description
EXPERT_MODULO	to get or set the modulo value of an HSC

Chapter 8 Modulo-loop with a Main Type

Overview

This chapter describes how to implement a High Speed Counter in **Modulo-loop** mode using a **Main** type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Synopsis Diagram	62
Configuration of the Main Type Single Phase in Modulo-Loop Mode	63
Configuration of the Main Type Dual Phase in Modulo-Loop Mode	
Programming the Main Type	
Adjusting Parameters	68

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Modulo-loop mode:

A and B are the counting inputs of the counter.

EN not configurable when B input is used.

CAP is the capture input of the counter.

SYNC is the synchronization input of the counter.

Optional Functions

In addition to the Modulo-loop mode, the Main type can provide the following functions:

- Comparison function (see page 121)
- Capture function (see page 129)
- Enable function (see page 137)

NOTE: The Preset value is 0 and cannot be modified.

Configuration of the Main Type Single Phase in Modulo-Loop Mode

Procedure

Follow this procedure to configure a Main type single phase in Modulo-loop mode:

Step	Action
1	Double-click MyController → Counters . Result : Counters editor tab opens for HSC configuration.
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.
2	In the Counters editor tab, set the value of the Counting function parameter to HSC Main Single Phase . Result : The configuration parameters appear in the Counters editor tab.
3	If necessary, enter the value of the General → Instance name parameter.
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.
4	Set the value of the General → Counting Mode parameter to Modulo-loop .
5	In Counting Inputs \rightarrow A input \rightarrow Location select the regular or fast input to use as the A input.
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.
6	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .
7	Enter the value of the Range → Modulo parameter to set the counting modulo value.
8	 Optionally, you can enable these functions: Enable function <i>(see page 137)</i> Capture function <i>(see page 129)</i> Comparison function <i>(see page 121)</i>

Configuration of the Main Type Dual Phase in Modulo-Loop Mode

Procedure

Follow this procedure to configure a Main type dual phase in Modulo-loop mode:

Step	Action
1	Double-click MyController → Counters . Result : Counters editor tab opens for HSC configuration.
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.
2	In the Counters editor tab, set the value of the Counting function parameter to HSC Main Dual Phase . Result : The configuration parameters appear in the Counters editor tab.
3	If necessary, enter the value of the General → Instance name parameter.
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.
4	Set the value of the General → Counting Mode parameter to Modulo-loop .
5	Set the value of the General \rightarrow Input mode parameter to select the modulo loop input mode (see page 51).
6	In Counting Inputs \rightarrow A input \rightarrow Location select the regular or fast input to use as the A input.
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.
7	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .
8	In Counting Inputs \rightarrow B input \rightarrow Location select the regular or fast input to use as the B input.
9	Set the value of the Counting inputs → B input → Bounce filter parameter.
10	Enter the value of the Range \rightarrow Modulo parameter to set the counting modulo value.
11	 Optionally, you can enable these functions: Capture function <i>(see page 129)</i> Comparison function <i>(see page 121)</i>

Programming the Main Type

Overview

Main type is always managed by an HSCMain_M241 function block.

NOTE: At build, a detected error code is given if the HSCMain_M241 function block is used to manage a different HSC type.

Adding the HSCMain Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCMain_M241 in the list, drag-and-drop the item onto the POU window.
2	Type the Main type instance name (defined in configuration) or select the function block instance by clicking:
	Using the input assistant, the HSC instance can be selected at the following path: <mycontroller></mycontroller> \rightarrow Counters .

	HSCMai	n_M241	
	EN_Enable	HSC_REF	
	EN_Preset	HSC_Err	
	EN_Cap	Validity	
	EN_Compare	Run	
	EN_Out0	TH0	
	EN_Out1	TH1	
	F_Enable	TH2	
	F_Preset	TH3	
	F_Out0	Modulo_Flag	
	F_Out1	Preset_Flag	
	ACK_Modulo	Cap_Flag	
	ACK_Preset	Reflex0	
	ACK_Cap	Reflex1	
	SuspendCompare	Out0	
		Out1	
		CurrentValue	

HscMainDualPhase 0

I/O Variables Usage

The tables below describe how the different pins of the function block are used in **Modulo-loop** mode.

This table describes the input variables:

Input	Туре	Description
EN_Enable	BOOL	When EN input is configured: if TRUE, authorizes the counter enable via the Enable input <i>(see page 137)</i> .
EN_Preset	BOOL	When SYNC input is configured: if TRUE, authorizes the counter Preset via the Sync input <i>(see page 134)</i> .
EN_Cap	BOOL	When CAP input is configured: if \mathtt{TRUE} , enables the Capture input.
EN_Compare	BOOL	<pre>TRUE = enables the comparison function (see page 121) using Threshold 0, 1, 2, 3: basic comparison (TH0, TH1, TH2, TH3 output bits) reflex (Reflex0, Reflex1 output bits) events (to trigger external tasks on threshold crossing)</pre>
EN_Out0	BOOL	TRUE = enables physical output Out_R0 to echo the Reflex0 value (if configured).
EN_Out1	BOOL	TRUE = enables physical output Out_R1 to echo the Reflex1 value (if configured).
F_Enable	BOOL	TRUE = authorizes changes to the current counter value.
F_Preset	BOOL	On rising edge, resets, and starts the counter.
F_Out0	BOOL	TRUE = forces Out_R0 to 1 (if Reflex0 is configured).
F_Out1	BOOL	TRUE = forces Out_R1 to 1 (if Reflex1 is configured).
ACK_Modulo	BOOL	On rising edge, resets Modulo_Flag.
ACK_Preset	BOOL	On rising edge, resets Preset_Flag.
ACK_Cap	BOOL	On rising edge, resets Cap_Flag.
SuspendCompare	BOOL	 TRUE = compare results are suspended: TH0, TH1, TH2, TH3, Reflex0, Reflex1, Out0, Out1 output bits of the block maintain their last value. Hardware Outputs 0, 1 maintain their last value. Events are masked. NOTE: EN_Compare, EN_Reflex0, EN_Reflex1, F_Out0, F Out1 remain operational while SuspendCompare is set.

This table describes the output variables:

Output	Туре	Comment
HSC_REF	EXPERT_REF (see page 153)	Reference to the HSC. To be used as input of Administrative function blocks.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the EXPERTGetDiag <i>(see page 158)</i> function block to get more information about this detected error.
Validity	BOOL	TRUE = indicates that output values on the function block are valid.
Run	BOOL	TRUE = counter is running. The Run bit switches to 0 when CurrentValue reaches 0. A synchronization is needed to restart the counter.
THO	BOOL	Set to 1 when CurrentValue > Threshold 0 <i>(see page 121)</i> .
TH1	BOOL	Set to 1 when CurrentValue > Threshold 1 <i>(see page 121)</i> .
TH2	BOOL	Set to 1 when CurrentValue > Threshold 2 <i>(see page 121)</i> .
TH3	BOOL	Set to 1 when CurrentValue > Threshold 3 (see page 121).
Modulo_Flag	BOOL	Set to 1 when the counter roll overs the modulo or 0.
Preset_Flag	BOOL	Set to 1 by the preset of the counter (see page 134).
Cap_Flag	BOOL	Set to 1 when a new capture value is stored in the Capture register <i>(see page 130).</i> This flag must be reset before a new capture can occur.
Reflex0	BOOL	State of Reflex0 <i>(see page 124).</i> Only active when EN_Compare is set.
Reflex1	BOOL	State of Reflex1 <i>(see page 124).</i> Only active when EN_Compare is set.
Out0	BOOL	State of physical output Out_R0 (if Reflex0 is configured).
Out1	BOOL	State of physical output Out_R1 (if Reflex1 is configured).
CurrentValue	DINT	Current value of the counter.

Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the EXPERTGetParam *(see page 162)* or EXPERTSetParam *(see page 162)* function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC configuration window. Initial configuration parameters are restored on cold or warm start *(see Modicon M241 Logic Controller, Programming Guide).*

Adjustable Parameters

This table provides the list of parameters from the EXPERT_PARAMETER_TYPE (see page 151) that can be read or modified while the program is running:

Parameter	Description
EXPERT_MODULO	to get or set the Modulo value of an HSC
EXPERT_THRESHOLD0	to get or set the Threshold 0 value of an HSC
EXPERT_THRESHOLD1	to get or set the Threshold 1 value of an HSC
EXPERT_THRESHOLD2	to get or set the Threshold 2 value of an HSC
EXPERT_THRESHOLD3	to get or set the Threshold 3 value of an HSC
EXPERT_REFLEX0	to get or set output 0 reflex mode of an EXPERT function
EXPERT_REFLEX1	to get or set output 1 reflex mode of an EXPERT function

Part IV Free-large Mode

Overview

This part describes the use of an HSC in Free-large mode.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
9	Free-large Mode Principle	71
10	Free-large with a Main Type	77

Chapter 9 Free-large Mode Principle

Overview

This chapter describes the principle of the Free-large mode.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Free-large Mode Principle Description	72
Limits Management	

Free-large Mode Principle Description

Overview

The **Free-large** mode can be used for axis monitoring or labeling in cases where the incoming position of each part has to be known.

Principle

In the Free-large mode, the module behaves like a standard up and down counter.

When counting is enabled (see page 137), the counter counts as follows in:

Incrementing direction: the counter increments.

Decrementing direction: the counter decrements.

The counter is activated by a preset edge (see page 136) which loads the preset value.

The current counter is stored in the capture register by using the Capture (see page 129) function.

If the counter reaches the counting limits, the counter will react according to the Limits Management *(see page 75)* configuration.

Input Modes

This table shows the 8 types of input modes available:

Input Mode	Comment
A = Up, B = Down	default mode
	The counter increments on A and decrements on D.
A = Impulse, B = Direction	If there is a rising edge on A and B is true, then the counter decrements. If there is a rising edge on A and B is false, then the counter
	increments.
Normal Quadrature X1	A physical encoder always provides 2 signals 90° shift that
Normal Quadrature X2	first allows the counter to count pulses and detect direction:
Normal Quadrature X4	X2: 2 counts by Encoder cycle
Reverse Quadrature X1	• X4: 4 counts by Encoder cycle
Reverse Quadrature X2	
Reverse Quadrature X4	
Up Down Principle Diagram

Stage	Action
1	On the rising edge of Preset condition, the current value is set to the preset value and the counter is activated.
2	When Enable condition = 1, each pulse on A increment the counter value.
3	On the rising edge of Preset condition, the current value is set to the preset value.
4	When Enable condition = 1, each pulse on B decrements the counter value.
5	When Enable condition = 0, the pulses on A or B are ignored.
6	On the rising edge of Preset condition, the current value is set to the preset value.
7	When Enable condition = 1, the pulses on B decrements the counter value.

Quadrature Principle Diagram

The encoder signal is counted according to the input mode selected, as shown below:

Limits Management

Overview

When the counter limit is reached, the counter can have 2 behaviors depending on configuration:

- Lock on limits
- Rollover

Lock on Limits

In the case of overflow or underflow counter: the current counter value is maintained to the limit value, the validity bit goes to 0, and the Error bit indicates that this detected error until the counter is preset again.

2M value is given as:

- +2M = 2 (exp 31) -1
- -2M = -2 (exp 31)

Rollover

In the case of overflow or underflow of the counter, the current counter value goes automatically to the opposite limit value.

Chapter 10 Free-large with a Main Type

Overview

This chapter describes how to implement a High Speed Counter in **Free-large** mode using a **Main** type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Synopsis Diagram	78
Configuration of the Main Type Dual Phase in Free-Large Mode	79
Programming the Main Type	80
Adjusting Parameters	83

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Free-large mode:

A and B are the counting inputs of the counter.

EN is the enable input of the counter.

CAP is the capture input of the counter.

SYNC is the synchronization input of the counter.

Optional Function

In addition to the Free-large mode, the Main type can provide the following functions:

- Comparison function (see page 121)
- Capture function (see page 129)
- Preset function (see page 134)
- Enable function (see page 137)

Configuration of the Main Type Dual Phase in Free-Large Mode

Procedure

Follow this procedure to configure a Main type dual phase in Free-large mode:

Step	Action		
1	Double-click MyController → Counters . Result: Counters editor tab opens for HSC configuration.		
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.		
2	In the Counters editor tab, set the value of the Counting function parameter to HSC Main Dual Phase . Result : The configuration parameters appear in the Counters editor tab.		
3	If necessary, enter the value of the General → Instance name parameter.		
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.		
4	Set the value of the General → Counting Mode parameter to Free-large .		
5	Set the value of the General \rightarrow Input mode parameter to select the modulo loop input mode (see page 51).		
6	In Counting Inputs \rightarrow A input \rightarrow Location select the regular or fast input to use as the A input.		
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.		
7	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142).</i>		
8	Set the value of the Counting inputs → B input → Bounce filter parameter.		
9	Enter the value of the Range \rightarrow Preset parameter to set the counting initial value.		
10	Enter the value of the Range → Limits for limits management.		
11	 Optionally, you can enable these functions: Preset function <i>(see page 134)</i> Capture function <i>(see page 129)</i> Comparison function <i>(see page 121)</i> 		

Programming the Main Type

Overview

Main type is always managed by an HSCMain_M241 function block.

NOTE: At build, a detected error code is given if the HSCMain_M241 function block is used to manage a different HSC type.

Adding the HSCMain Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCMain_M241 in the list, drag-and-drop the item onto the POU window.
2	Type the Main type instance name (defined in configuration) or select the function block instance by clicking:

I/O Variables Usage

The tables below describe how the different pins of the function block are used in **Free-large** mode. This table describes the input variables:

Input	Туре	Description	
EN_Enable	BOOL	When EN input is configured: if TRUE, authorizes the counter enable via the Enable input <i>(see page 137)</i> .	
EN_Preset	BOOL	When SYNC input is configured: if TRUE, authorizes the counter Preset via the Sync input <i>(see page 134)</i> .	
EN_Cap	BOOL	When CAP input is configured: if TRUE , enables the Capture input.	
EN_Compare	BOOL	 TRUE = enables the comparator operation (see page 121) (using Thresholds 0, 1, 2, 3): basic comparison (TH0, TH1, TH2, TH3 output bits) reflex (Reflex0, Reflex1 output bits) events (to trigger external tasks on threshold crossing) 	
EN_Out0	BOOL	TRUE = enables physical output Out_R0 to echo the Reflex0 value (if configured).	
EN_Out1	BOOL	TRUE = enables physical output Out_R1 to echo the Reflex1 value (if configured).	
F_Enable	BOOL	TRUE = authorizes changes to the current counter value.	
F_Preset	BOOL	On rising edge, presets and starts the counter.	
F_Out0	BOOL	TRUE = forces Out_R0 to 1 (if Reflex0 is configured in HSC Embedded Function. Takes priority over EN_Out0.	
F_Out1	BOOL	TRUE = forces Out_R1 to 1 (if Reflex1 is configured in HSC Embedded Function. Takes priority over EN_Out1.	
ACK_Modulo	BOOL	On rising edge, resets Modulo_Flag.	
ACK_Preset	BOOL	On rising edge, resets Preset_Flag.	
ACK_Cap	BOOL	On rising edge, resets Cap_Flag.	
SuspendCompare	BOOL	 TRUE = compare results are suspended: TH0, TH1, TH2, TH3, Reflex0, Reflex1, Out0, Out1 output bits of the block maintain their last value. Hardware Outputs 0, 1 maintain their last value. Events are masked. NOTE: EN_Compare, EN_Reflex0, EN_Reflex1, F_Out0, F_Out1 remain operational while SuspendCompare is set. 	

Outputs	Туре	Comment
HSC_REF	EXPERT_REF (see page 153)	Reference to the HSC. To be used as input of Administrative function blocks.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the EXPERTGetDiag <i>(see page 158)</i> function block to get more information about this detected error.
Validity	BOOL	TRUE = indicates that output values on the function block are valid.
Run	BOOL	Not relevant
THO	BOOL	Set to 1 when CurrentValue > Threshold 0 (see page 121).
TH1	BOOL	Set to 1 when CurrentValue > Threshold 1 <i>(see page 121)</i> .
TH2	BOOL	Set to 1 when CurrentValue > Threshold 2 (see page 121).
TH3	BOOL	Set to 1 when CurrentValue > Threshold 3 (see page 121).
Modulo_Flag	BOOL	Set to 1 when the counter rollovers its limits.
Preset_Flag	BOOL	Set to 1 by the preset of the counter (see page 134)
Cap_Flag	BOOL	Set to 1 when a new capture value is stored in the Capture register. This flag must be reset before a new capture can occur.
Reflex0	BOOL	State of Reflex0. Only active when EN_Compare is set.
Reflex1	BOOL	State of Reflex1. Only active when EN_Compare is set.
OutO	BOOL	State of physical outputs Out_R0 (if Reflex0 is configured in HSC Embedded Function, otherwise FALSE if not configured).
Out1	BOOL	State of physical outputs Out_R1 (if Reflex1 is configured in HSC Embedded Function, otherwise FALSE if not configured).

Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the EXPERTGetParam *(see page 162)* or EXPERTSetParam *(see page 164)* function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC configuration window. Initial configuration parameters are restored on cold or warm start *(see Modicon M241 Logic Controller, Programming Guide).*

Adjustable Parameters

This table provides the list of parameters from the EXPERT_PARAMETER_TYPE (see page 151) which can be read or modified while the program is running:

Parameter	Description
EXPERT_PRESET	to get or set the Preset value of the HSC
EXPERT_THRESHOLD0	to get or set the Threshold 0 value of an HSC
EXPERT_THRESHOLD1	to get or set the Threshold 1 value of an HSC
EXPERT_THRESHOLD2	to get or set the Threshold 2 value of an HSC
EXPERT_THRESHOLD3	to get or set the Threshold 3 value of an HSC
EXPERT_REFLEX0	to get or set output 0 reflex mode of an expert function
EXPERT_REFLEX1	to get or set output 0 reflex mode of an expert function

Part V Event Counting Mode

Overview

This part describes the use of an HSC in **Event Counting** mode.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
11	Event Counting Principle	87
12	Event Counting with a Main Type	89

Chapter 11 Event Counting Principle

Event Counting Mode Principle Description

Overview

The Event Counting mode allows you to count a sequence of events during a given period of time.

Principle

The counter assesses the number of pulses applied to the input for a predefined period of time. The counting register is updated at the end of each period with the number of events received.

The synchronization can be used over the time period. This restarts the counting event for a new predefined time period. The counting restarts at the edge Sync condition *(see page 134)*.

Principle Diagram

Stage	Action
1	When Enable condition = 1, the counter accumulates the number of events (pulses) on the physical input during a predefined period of time. If Validity = 0, the current value is not relevant.
2	Once the first period of time has elapsed, the counter value is set to the number of events counted over the period and Validity is set to 1. The counting restarts for a new period of time.

Stage	Action
3	 On the rising edge of the Sync condition: the accumulated value is reset to 0 the current value is not updated the counting restarts for a new period of time
4	Once the period of time has elapsed, the counter value is set to the number of events counted over the period. The counting restarts for a new period of time.

NOTE:

On the Main type, when the Enable condition is:

- Set to 0: the current counting is aborted and CurrentValue is maintained to the previous valid value.
- Set to 1: the accumulated value is reset to 0, the CurrentValue remains unchanged, and the counting restarts for a new period of time.

Chapter 12 Event Counting with a Main Type

Overview

This chapter describes how to implement a High Speed Counter in **Event Counting** mode using a **Main** type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Synopsis Diagram	90
Configuration of the Main Type Single Phase in Event Counting Mode	91
Programming the Main Type	92
Adjusting Parameters	95

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Event Counting mode.

A is the counting input of the counter.

SYNC is the synchronization input of the counter.

Optional Function

In addition to the Event Counting mode, the Main type provides the Preset function (see page 134).

Configuration of the Main Type Single Phase in Event Counting Mode

Procedure

Follow this procedure to configure a Main type single phase in Event Counting mode:

Step	Action
1	Double-click MyController → Counters . Result : Counters editor tab opens for HSC configuration.
2	In the Counters editor tab, set the value of the Counting function parameter to HSC Main Single Phase . Result : The configuration parameters appear in the Counters editor tab.
3	If necessary, enter the value of the General → Instance name parameter.
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.
4	Set the value of the General → Counting Mode parameter to Event Counting.
5	In Counting Inputs \rightarrow A input \rightarrow Location select the regular or fast input to use as the A input.
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.
6	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .
7	 Set the value of the Range → Time base parameter to determine the period during which the number of events is counted. Select the measurement of the update cycle time: 0.1 s 1 s (default value) 10 s 60 s
8	Optionally, set the value of the Control inputs \rightarrow SYNC input \rightarrow Location parameter to enable the Preset Function (see page 134).

Programming the Main Type

Overview

Main type is always managed by an HSCMain_M241 function block.

NOTE: At build, a detected error code is given if the HSCMain_M241 function block is used to manage a different HSC type.

Adding the HSCMain Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCMain_M241 in the list, drag-and-drop the item onto the POU window.
2	Type the Main type instance name (defined in configuration) or select the function block instance by clicking:
	path: <mycontroller> → Counters.</mycontroller>

HscMainSinglePhase_0

I/O Variables Usage

These tables describe how the different pins of the function block are used in the mode **Event**. This table describes the input variables:

Input	Туре	Description
EN_Enable	BOOL	Not used
EN_Preset	BOOL	When SYNC input is configured: if TRUE , authorizes the counter Preset via the Sync input <i>(see page 134)</i> .
EN_Cap	BOOL	Not used
EN_Compare	BOOL	Not used
EN_Out0	BOOL	Not used
EN_Out1	BOOL	Not used
F_Enable	BOOL	TRUE = authorizes changes to the current counter value.
F_Preset	BOOL	On rising edge, restarts the internal timer relative to the time base.
F_Out0	BOOL	Not used
F_Out1	BOOL	Not used
ACK_Modulo	BOOL	Not used
ACK_Preset	BOOL	On rising edge, resets Preset_Flag.
ACK_Cap	BOOL	Not used
SuspendCompare	BOOL	Not used

This table describes the output variables:

Outputs	Туре	Comment
HSC_REF	EXPERT_REF <i>(see page 153)</i>	Reference to the HSC. To be used with the EXPERT_REF_IN input pin of the Administrative function blocks.
HSC_Err	BOOL	TRUE = indicates that an error was detected. EXPERTGetDiag <i>(see page 158)</i> function block may be used to get more information about this detected error.
Validity	BOOL	TRUE = indicates that output values on the function block are valid.
Run	BOOL	Counter is running
THO	BOOL	Not relevant
TH1	BOOL	Not relevant
TH2	BOOL	Not relevant
TH3	BOOL	Not relevant
Modulo_Flag	BOOL	Not relevant

Outputs	Туре	Comment
Preset_Flag	BOOL	Set to 1 by the preset of the counter (see page 134)
Cap_Flag	BOOL	Not relevant
Reflex0	BOOL	Not relevant
Reflex1	BOOL	Not relevant
Out0	BOOL	Not relevant
Out1	BOOL	Not relevant
CurrentValue	DINT	Current value of the counter.

Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the EXPERTGetParam *(see page 162)* or EXPERTSetParam *(see page 164)* function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC configuration window. Initial configuration parameters are restored on cold or warm start *(see Modicon M241 Logic Controller, Programming Guide).*

Adjustable Parameters

This table provides the list of parameters from the EXPERT_PARAMETER_TYPE (see page 151) which can be read or modified while the program is running:

Parameter	Туре	Description
EXPERT_TIMEBASE	EXPERT_HSCMAIN_TIMEBASE_TYPE	To get or set the Timebase value
	For more information, refer to Type for HSC <i>(see page 149)</i> .	of the HSC.

Part VI Frequency Meter Type

Overview

This part describes the use of an HSC in Frequency meter type.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
13	Frequency Meter Principle	99
14	Frequency Meter Type	101

Chapter 13 Frequency Meter Principle

Description

Overview

The Frequency meter type measures an event frequency in Hz.

The **Frequency meter** type calculates the number of pulses in time intervals of 1 s. An updated value in Hz is available for each time base value (10, 100, or 1000 ms).

When there is a variation in the frequency, the value restoration time is 1 s with a value precision of 1 Hz.

Operation Limits

The maximum frequency that the module can measure on the A input is 200 kHz. Beyond 200 kHz, the counting register value may decrease until it reaches 0.

If the expert function is configured with a regular I/O, the minimum period admissible is 0.4 ms.

The maximum duty cycle at 200 kHz is 60%.

Synopsis Diagram

This diagram provides an overview of the Frequency meter principle:

Chapter 14 Frequency Meter Type

Overview

This chapter describes how to implement a High Speed Counter in Frequency meter type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	
Synopsis Diagram	102
Configuration of the Frequency Meter Type	
Programming	

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Frequency meter type:

A is the counting input of the counter.

EN is the enable input of the counter.

Optional Function

In addition to the Frequency meter type, the Main type can provide the following function:

• Enable function (see page 137)

Configuration of the Frequency Meter Type

Procedure

Follow this procedure to configure a **Frequency Meter** type:

Step	Action
1	Double-click MyController → Counters . Result : Counters editor tab opens for HSC configuration.
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.
2	In the Counters editor tab, set the value of the Counting function parameter to Frequency Meter . Result : The configuration parameters appear in the Counters editor tab.
3	If necessary, enter the value of the General → Instance name parameter.
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.
4	In Counting Inputs \rightarrow A input \rightarrow Location select the regular or fast input to use as the A input.
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.
5	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .
6	 Set the value of the Range → Time base parameter to determine the period during which the number of events is counted. Select the measurement of the update cycle time: 10 ms 100 ms 1000 ms (default value)
7	Optionally, set the value of the Control inputs \rightarrow EN input \rightarrow Location parameter to enable the Enable Function (see page 137).

Programming

Overview

Main type is always managed by an HSCMain_M241 function block.

NOTE: At build, a detected error code is given if the HSCMain_M241 function block is used to manage a different HSC type.

Adding the HSCMain Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCMain_M241 in the list, drag-and-drop the item onto the POU window.
2	Type the Main type instance name (defined in configuration) or select the function block instance by clicking:
	path: MyController> \rightarrow Counters .

I/O Variables Usage

The tables below describe how the different pins of the function block are used in **Frequency meter** type.

This table describes the input variables:

Input	Туре	Description
EN_Enable	BOOL	When EN input is configured: if TRUE , authorizes the counter enable via the Enable input <i>(see page 137)</i> .
EN_Preset	BOOL	Not used
EN_Cap	BOOL	Not used
EN_Compare	BOOL	Not used
EN_Out0	BOOL	Not used
EN_Out1	BOOL	Not used
F_Enable	BOOL	TRUE = authorizes changes to the current counter value.
F_Preset	BOOL	On rising edge, restarts the internal timer relative to the time base.
F_Out0	BOOL	Not used
F_Out1	BOOL	Not used
ACK_Modulo	BOOL	Not used
ACK_Preset	BOOL	On rising edge, resets .
ACK_Cap	BOOL	Not used
SuspendCompare	BOOL	Not used

This table describes the output variables:

Outputs	Туре	Comment
HSC_REF	EXPERT_REF <i>(see page 153)</i>	Reference to the HSC. To be used with the EXPERT_REF_IN input pin of the Administrative function blocks.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the EXPERTGetDiag <i>(see page 158)</i> function block to get more information about this detected error.
Validity	BOOL	TRUE = indicates that output values on the function block are valid.
Run	BOOL	Counter is running
THO	BOOL	Not relevant
TH1	BOOL	Not relevant
TH2	BOOL	Not relevant
ТНЗ	BOOL	Not relevant

Outputs	Туре	Comment
Modulo_Flag	BOOL	Not relevant
Preset_Flag	BOOL	Set to 1 by the preset of the counter (see page 134)
Cap_Flag	BOOL	Not relevant
Reflex0	BOOL	Not relevant
Reflex1	BOOL	Not relevant
Out0	BOOL	Not relevant
Out1	BOOL	Not relevant
CurrentValue	DINT	Current counter value of the counter.

Part VII Period Meter Type

Overview

This part describes the use of an HSC in **Period meter** type.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
15	Period Meter Type Principle	109
16	Period Meter Type	111
Chapter 15 Period Meter Type Principle

Description

Overview

Use the Period meter type to:

- Determine the duration of an event
- Determine the time between two events
- Set and measure the execution time for a process

The Period meter can be used in two ways:

- Edge to opposite: Allows measurement of the duration of an event.
- Edge to edge: Allows measurement of the time between two events.

A timeout value can be specified in the configuration screen. Measurement is stopped if this timeout value is exceeded. In this case, the counting register is not valid until the next complete measurement.

The measurement is expressed in the units defined by the **Resolution** parameter (0.1 μ s, 1 μ s, 100 μ s, 1000 μ s).

For example, if CurrentValue = 100 and the Resolution parameter is:

0.0001 (0.1 µs) measurement = 0.01 ms

0.001 (1 µs) measurement = 0.1 ms

0.1 (100 µs) measurement = 10 ms

1 (1000 µs) measurement = 100 ms

Edge to Opposite Mode

When the Enable condition = 1, the measurement is taken between the rising edge and the falling edge of the A input. The counting register is updated as soon as the falling edge is detected.

Input A (Pulse)			
	Duration A	Duration B ◀	
Value	X	A	В

Edge to Edge Mode

When the Enable condition = 1, the measurement is taken between two rising edges of the A input. The counting register is updated as soon as the second rising edge is detected.

Enable Condition Interruption Behavior

The trend diagram below describes the behavior of the counting register when the Enable condition is interrupted:

Operating Limits

The module can perform a maximum of one measurement every 5 ms.

The shortest pulse that can be measured is 100 $\mu s,$ even if the unit defined in the configuration is 1 $\mu s.$

The maximum duration that can be measured is 1,073,741,823 units.

Chapter 16 Period Meter Type

Overview

This chapter describes how to implement a High Speed Counter in Period meter type.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Synopsis Diagram	112
Configuration of the Period Meter Type in Edge to Edge Mode	113
Configuration of the Period Meter Type in Edge to Opposite Mode	
Programming	115
Adjusting Parameters	

Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Period meter type:

A is the counting input of the counter.

EN is the enable input of the counter.

Optional Function

In addition to the **Period meter** type, the **Main** type can provide the following function:

• Enable function (see page 137)

Configuration of the Period Meter Type in Edge to Edge Mode

Procedure

Follow this procedure to configure a **Period Meter** type in **Edge to Edge** mode:

Step	Action
1	Double-click MyController → Counters . Result: Counters editor tab opens for HSC configuration.
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.
2	In the Counters editor tab, set the value of the Counting function parameter to Period Meter . Result : The configuration parameters appear in the Counters editor tab.
3	If necessary, enter the value of the General → Instance name parameter.
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.
4	Set the value of the General → PeriodMeter Mode parameter to Edge to Edge .
5	In Counting Inputs \rightarrow A input \rightarrow Location , select the regular or fast input to use as the A input.
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.
6	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the inputs. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .
7	 Set the value of the Range → Resolution parameter. Select the unit of measurement: 0.1 μs 1 μs (default value) 100 μs 1000 μs
8	Enter the value of the Range \rightarrow Timeout parameter to set the time value that a measured period shall not exceed.
9	Optionally, set the value of the Control inputs \rightarrow EN input \rightarrow Location parameter to enable the Enable Function (see page 137).

Configuration of the Period Meter Type in Edge to Opposite Mode

Procedure

Follow this procedure to configure a Period Meter type in Edge to Opposite mode:

Step	Action
1	Double-click MyController → Counters . Result: Counters editor tab opens for HSC configuration.
	NOTE: A message appears at the bottom of the configuration screen if the maximum number of HSC Main functions has already been configured. Consider using an HSC Simple function instead.
2	In the Counters editor tab, set the value of the Counting function parameter to Period Meter . Result : The configuration parameters appear in the Counters editor tab.
3	If necessary, enter the value of the General → Instance name parameter.
	NOTE: Instance name is automatically given by the software and can be used as it is for the counter function block.
4	Set the value of the General → PeriodMeterMode parameter to Edge to Opposite .
5	In Counting Inputs \rightarrow A input \rightarrow Location , select the regular or fast input to use as the A input.
	NOTE: A message is displayed at the bottom of the configuration window if no more I/Os are available for configuration. Free up one or more I/Os before continuing configuration of this function.
6	Set the value of the Counting inputs \rightarrow A input \rightarrow Bounce filter parameter to reduce the bounce effect on the inputs. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table (<i>see page 142</i>).
7	 Set the value of the Range → Resolution parameter. Select the unit of measurement: 0.1 μs 1 μs (default value) 100 μs 1000 μs
8	Enter the value of the Range \rightarrow Timeout parameter to set the time value that a measured period shall not exceed.
9	Optionally, set the value of the Control inputs \rightarrow EN input \rightarrow Location parameter to enable the Enable Function (see page 137).

Programming

Overview

Main type is always managed by an HSCMain_M241 function block.

NOTE: At build, a detected error code is given if the HSCMain_M241 function block is used to manage a different HSC type.

Adding the HSCMain Function Block

Description
Select the Libraries tab in the Software Catalog and click Libraries . Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow HSC \rightarrow HSCMain_M241 in the list, drag-and-drop the item onto the POU window.
Type the Main type instance name (defined in configuration) or select the function block instance by clicking:
•

I/O Variables Usage

The tables below describe how the different pins of the function block are used in **Period meter** type.

This table describes the input variables:

Input	Туре	Description
EN_Enable	BOOL	When EN input is configured: if TRUE , authorizes the counter enable via the Enable input <i>(see page 137)</i> .
EN_Preset	BOOL	Not used
EN_Cap	BOOL	Not used
EN_Compare	BOOL	Not used
EN_Out0	BOOL	Not used
EN_Out1	BOOL	Not used
F_Enable	BOOL	TRUE = authorizes changes to the current counter value.
F_Preset	BOOL	Not used
F_Out0	BOOL	Not used
F_Out1	BOOL	Not used
ACK_Modulo	BOOL	Not used
ACK_Preset	BOOL	Not used
ACK_Cap	BOOL	Not used
SuspendCompare	BOOL	Not used

This table describes the output variables:

Outputs	Туре	Comment
HSC_REF	EXPERT_REF <i>(see page 153)</i>	Reference to the HSC. To be used with the EXPERT_REF_IN input pin of the Administrative function blocks.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the EXPERTGetDiag <i>(see page 158)</i> function block used to get more information about this detected error.
Validity	BOOL	TRUE = indicates that output values on the function block are valid. If the time-out value is exceeded, Validity = FALSE.
Run	BOOL	TRUE = Counter is running.
THO	BOOL	Not relevant
TH1	BOOL	Not relevant
TH2	BOOL	Not relevant

Outputs	Туре	Comment
TH3	BOOL	Not relevant
Modulo_Flag	BOOL	Not relevant
Preset_Flag	BOOL	Not relevant
Cap_Flag	BOOL	Not relevant
Reflex0	BOOL	Not relevant
Reflex1	BOOL	Not relevant
Out0	BOOL	Not relevant
Out1	BOOL	Not relevant
CurrentValue	DINT	Current value of the counter.

Adjusting Parameters

Overview

The list of parameters described in the table below can be read or modified by using the EXPERTGetParam *(see page 162)* or EXPERTSetParam *(see page 164)* function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC configuration window. Initial configuration parameters are restored on cold or warm start *(see Modicon M241 Logic Controller, Programming Guide).*

Adjustable Parameters

This table provides the list of parameters from the EXPERT_PARAMETER_TYPE (see page 151) which can be read or modified while the program is running:

Parameter	Description
EXPERT_TIMEBASE	To get or set the Resolution value of the HSC.
EXPERT_PERIODMETER_ RESOLUTION_TYPE	To dynamically read or modify the time base. For more information, refer to Type for period meter <i>(see page 152)</i> .

Part VIII Optional Functions

Overview

This part provides information on optional functions for HSC.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
17	Comparison Function	121
18	Capture Function	129
19	Preset and Enable Functions	

Chapter 17 Comparison Function

Overview

This chapter provides information on the comparison function for the HSC.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Comparison Principle with a Main type	122
Configuration of the Comparison on a Main Type	
External Event Configuration	

Comparison Principle with a Main type

Overview

The compare block with the **Main** type manages thresholds, reflex outputs and events in the following modes:

- One-shot (see page 35)
- Modulo-loop (see page 49)
- Free-Large *(see page 69)*

Comparison is configured in the Configuration screen *(see page 126)* by activating at least one threshold.

Comparison can be used to trigger:

- a programming action on thresholds (see page 123)
- an event on a threshold associated with an external task (see page 123)
- reflex outputs (see page 124)

Principle of a Comparison

The Main type can manage up to four thresholds.

A threshold is a configured value that is compared to the current counting value. Thresholds are used to define up to five zones or to react to a value crossing the threshold value.

Threshold values are defined in the configuration window and can also be adjusted in the application program by using the EXPERTSetParam *(see page 164)* function block.

If Thresholdx (x= 0, 1, 2, 3) is configured and comparison is enabled (EN_Compare = 1), output pin THx of the HSCMain M241 function block is:

- set when counter value >= Thresholdx
- reset when counter value < Thresholdx

NOTE: When EN_Compare is set to 0 on HSCMain_M241 function block, comparison functions are disabled, including external tasks triggered by a threshold event and Reflex outputs.

The following example for two thresholds shows comparison in the HSCMain M241 function block:

Threshold Behavior

Using thresholds comparison status available in the task context (THO to TH2 output pins of the function block) is suitable for an application with a low time constant.

It can be used, for example, to monitor the liquid level in a tank.

Configuring Event Triggering

Configuring an event on threshold crossing allows to trigger an external task *(see page 127)*. You can choose to trigger an event when a configured threshold is crossed as follows:

- Upward Cross. The event is triggered when the threshold value goes above the threshold value.
- **Downward Cross**. The event is triggered when the threshold value goes below the threshold value.
- Both Cross. The event is triggered when the threshold value goes above the threshold value and when the threshold value goes below the threshold value.

Reflex Output Behavior

Configuring reflex outputs allows to trigger physical reflex outputs.

These outputs are not controlled in the task context, reducing the reaction time to a minimum. This is convenient for operations that need fast execution.

Outputs used by the High Speed Counter can only be accessed through the function block. They cannot be read or written directly within the application.

The performance is directly linked with the type of output used: fast or regular. For more information, refer to Embedded Expert I/O Assignment *(see page 17)*.

Example of the reflex outputs triggered by threshold:

Changing the Threshold Values

Care must be exercised when threshold compares are active to avoid unintended or unexpected results from the outputs or from sudden Event task execution. If the compare function is disabled, threshold values can be modified freely. However, if the compare function is enabled, suspend at least the threshold compare function while modifying the threshold values.

WARNING

UNINTENDED EQUIPMENT OPERATION

- Do not change the Threshold values without using the SuspendCompare input if EN Compare is equal to 1.
- Verify that THO is less than TH1, that TH1 is less than TH2, and that TH2 is less than TH3 before reactivating the threshold compare function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

While EN_Compare = 1, the comparison is active, and it is necessary to follow this procedure to apply changes to threshold values:

Step	Action
1	 Set SuspendCompare to 1. The comparison is frozen at the current value: TH0, TH1, Reflex0, Reflex1, Out0, Out1 output bits of the block maintain their last value. Physical Outputs 0, 1 maintain their last value Events are masked
	NOTE: EN_Compare, EN_Out0, EN_Out1, F_Out0, F_Out1 remain operational while SuspendCompare is set.
2	Modify the Threshold values as needed using the EXPERTSetParam (see page 162) function block. NOTE: Follow this rule to configure the threshold values: TH0 < TH1 < TH2 < TH3.
3	Set SuspendCompare to 0. The new Threshold values are applied and the comparison is resumed.

Configuration of the Comparison on a Main Type

Configuration Procedure

Follow this procedure to configure the comparison function on a Main type:

Step	Action
1	In the Devices tree , double-click MyController → Counters .
2	Set the value of the Counting function parameter to HSC Main Single Phase or HSC Main Dual Phase .
3	In the Number of thresholds parameter, select the number of thresholds to use.
4	Set the value of each threshold.
	NOTE: Follow this rule to configure the threshold values: TH0 < TH1 < TH2 < TH3
5	 Optionally, define event conditions for the thresholds: 1. Configure external events <i>(see page 127)</i> associated with tasks. 2. In Events → Threshold x, set a trigger type (Upward Cross, Downward Cross, Both Cross) 3. In HSC Main Id, select the group of external events (HSC0HSC3) containing the external event.
	Result: External events in the selected group (HSCx_TH0, HSCx_TH1, HSCx_TH2, HSCx_TH3, HSCx_STOP) appear below Threshold x External Event .

External Event Configuration

Procedure

The following procedure describes how to configure an external event *(see Modicon M241 Logic Controller, Programming Guide)* to activate a task:

Step	Action
1	In the Applications tree tab, add a task.
2	Double-click the task node to associate it with to an external event.
3	In the Type dropdown menu, select External .
4	In the External event dropdown menu, select the event to associate to the task (see the list below).

External Events

This table provides a description of the possible external events to associate to a task:

Event Name	Description
10	Task is activated when the input I0 is set to 1.
11	Task is activated when the input I1 is set to 1.
12	Task is activated when the input I2 is set to 1.
13	Task is activated when the input I3 is set to 1.
14	Task is activated when the input I4 is set to 1.
15	Task is activated when the input I5 is set to 1.
16	Task is activated when the input I6 is set to 1.
17	Task is activated when the input I7 is set to 1.
HSC0_TH0	Task is activated when the threshold TH0 of the HSC0 is set to 1.
HSC0_TH1	Task is activated when the threshold TH1 of the HSC0 is set to 1.
HSC0_TH2	Task is activated when the threshold TH2 of the HSC0 is set to 1.
HSC0_TH3	Task is activated when the threshold TH3 of the HSC0 is set to 1.
HSC0_STOP	Task is activated when the HSC0.Value is set to 0.
HSC1_TH0	Task is activated when the threshold TH0 of the HSC1 is set to 1.
HSC1_TH1	Task is activated when the threshold TH1 of the HSC1 is set to 1.
HSC1_TH2	Task is activated when the threshold TH2 of the HSC1 is set to 1.
HSC1_TH3	Task is activated when the threshold TH3 of the HSC1 is set to 1.
HSC1_STOP	Task is activated when the HSC1.Value is set to 0.
HSC2_TH0	Task is activated when the threshold TH0 of the HSC2 is set to 1.
HSC2_TH1	Task is activated when the threshold TH1 of the HSC2 is set to 1.

Event Name	Description
HSC2_TH2	Task is activated when the threshold TH2 of the HSC2 is set to 1.
HSC2_TH3	Task is activated when the threshold TH3 of the HSC2 is set to 1.
HSC2_STOP	Task is activated when the HSC2.Value is set to 0.
HSC3_TH0	Task is activated when the threshold TH0 of the HSC3 is set to 1.
HSC3_TH1	Task is activated when the threshold TH1 of the HSC3 is set to 1.
HSC3_TH2	Task is activated when the threshold TH2 of the HSC3 is set to 1.
HSC3_TH3	Task is activated when the threshold TH3 of the HSC3 is set to 1.
HSC3_STOP	Task is activated when the HSC3.Value is set to 0.

NOTE: The Stop event is only available on HSC Main Single Phase, One-shot mode.

Chapter 18 Capture Function

Overview

This chapter provides information on capture function for HSC.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Capture Principle with a Main Type	130
Configuration of the Capture on a Main Type	132

Capture Principle with a Main Type

Overview

The capture function stores the current counter value upon an external input signal.

The capture function is available in **Main** type with the following modes:

- One-shot (see page 41)
- Modulo-loop *(see page 61)*
- Free-large (see page 77)

Using this function requires to:

- configure the optional Capture input: CAP
- use EXPERTGetCapturedValue (see page 156) function block to retrieve the captured value in your application.

Principle of a Capture

This graphic illustrates how the capture works in Modulo-loop mode:

Stage	Action
1	When EN_Cap = 0, the function is not operational.
2	When $EN_Cap = 1$, the edge on CAP captures the current counter value and puts it into the Capture register, and triggers the rising edge of Cap_Flag .
3	Get the stored value using EXPERTGetCapturedValue (see page 156).

Stage	Action
4	While Cap_Flag = 1, any new edge on the physical input CAP is ignored.
5	The rising edge of HSCMain_M241 <i>(see page 166)</i> function block input ACK_Cap triggers the
	falling edge Cap_Flag output.
	A new capture is authorized.

Configuration of the Capture on a Main Type

Configuration Procedure

Follow this procedure to configure the capture function on a Main type:

Step	Action
1	In the Devices tree , double-click MyController → Counters .
2	Set the value of the Counting function parameter to HSC Main Single Phase or HSC Main Dual Phase .
3	Select a value for the Capture → CAP input → Location .
4	Select a value for the Capture \rightarrow CAP input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .
5	 Select a triggering mode for the Capture → Mode parameter: Preset (see page 134) (default value) CAP Rising CAP Falling CAP Both

Chapter 19 Preset and Enable Functions

Overview

This chapter provides information on preset and enable functions for a HSC.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Preset Function	134
Free-large or Period Meter Preset Conditions	
Enable: Authorize Counting Operation	137

Preset Function

Overview

The preset function is used to set/reset the counter operation.

The preset function authorizes counting function, synchronization, and start in the following counting modes:

- One shot counter: preset and start the counter
- Modulo-loop counter: reset and start the counter
- Event counting: restart the internal time base at the beginning

NOTE: Sync condition for a Simple HSC type corresponds to the function block input Sync.

Description

This function is used to synchronize the counter depending on the status and the configuration of the optional SYNC physical input and the function block inputs F Preset and EN Preset.

This diagram illustrates the Sync conditions of the HSC:

EN_Preset input of the HSC function block **F_Preset** input of the HSC function block **SYNC** physical input SYNC

The function block output Preset Flag is set 1 when the Sync Condition is reached.

Either of the following events trigger the capturing of the Sync Condition:

- Rising edge of the F_Preset input
- Rising edge, falling edge, or rising and falling edge, of the SYNC physical input (if the SYNC input is configured, and the EN Preset input is TRUE).

Configuration

This procedure describes how to configure a preset function:

Step	Action
1	In the Devices tree , double-click MyController → Counters .
2	Set the value of the Counting function parameter to HSC Main Single Phase or HSC Main Dual Phase .
3	Select the value of the Control inputs → SYNC input → Location parameter.
4	Select the value of the Control inputs → SYNC input → Bounce filter parameter.
5	 Select the value of the Control inputs → SYNC input → Preset condition parameter to specify the transition type of the SYNC physical input: SYNC Rising. Rising edge of the SYNC input SYNC Falling. Falling edge of the SYNC input SYNC Both. Both edges of the SYNC input

Free-large or Period Meter Preset Conditions

Overview

In Free-large mode, the Preset condition is created by using one physical input:

• SYNC

Preset condition available:

• At the edge of the input SYNC (rising)

At the Edge of the Input SYNC (Rising)

The counter synchronizes upon the encoder reference point.

Enable: Authorize Counting Operation

Overview

The enable function is used to authorize the counting operation.

The enable function is available in the following HSC modes:

- HSC Main Single Phase (One-shot)
- HSC Main Single Phase (Modulo Loop)
- Frequency Meter
- Period Meter

Description

This function is used to authorize changes to the current counter value depending on the status of the optional EN physical input and the function block inputs F Enable and EN Enable.

The following diagram illustrates the enable conditions:

EN_Enable input of the HSC function block **F_Enable** input of the HSC function block **EN** physical input Enable

As long as the function is not enabled, the counting pulses are ignored.

NOTE: Enable condition for a Simple type corresponds to the function block input Enable.

Configuration

This procedure describes how to configure an Enable function:

Step	Action
1	In the Devices tree , double-click MyController → Counters .
2	Select the Counters tab.
3	 Select a Counting function that supports the Enable function: HSC Main Single Phase (One-shot or Modulo-loop) Frequency Meter Period Meter
4	Set the value of the Control inputs → EN input → Location parameter.
5	Select the value of the Control inputs \rightarrow EN input \rightarrow Bounce filter parameter to reduce the bounce effect on the input. The filtering value determines the counter maximum frequency as shown in the Bounce Filter table <i>(see page 142)</i> .

Appendices

Overview

This appendix extracts parts of the programming guide for technical understanding of the library documentation.

What Is in This Appendix?

The appendix contains the following chapters:

Chapter	Chapter Name	Page
A	General Information	141
В	Data Types	145
С	Function Blocks	155
D	Function and Function Block Representation	173

Appendix A General Information

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Dedicated Features	142
General Information on Administrative and Motion Function Block Management	143

Dedicated Features

Bounce Filter

This table shows the maximum counter frequencies determined by the filtering values used to reduce the bounce effect on the input:

Input	Bounce Filter Value (ms)	Maximum Counter Frequency Expert	Maximum Counter Frequency Regular
A B	0.000	200 kHz	1 kHz
	0.001	200 kHz	1 kHz
	0.002	200 kHz	1 kHz
	0.005	100 kHz	1 kHz
	0.010	50 kHz	1 kHz
	0.05	25 kHz	1 kHz
	0.1	5 kHz	1 kHz
	0.5	1 kHz	1 kHz
	1	500 Hz	500 Hz
	5	100 Hz	100 Hz
A is the counting input of the counter. B is the counting input of the dual phase counter.			

Dedicated Outputs

Outputs used by the high speed expert functions can only be accessed through the function block. They cannot be read or written directly within the application.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Do not use the same function block instance in different program tasks.
- Do not modify or otherwise change the function block reference (AXIS) while the function block is executing.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

General Information on Administrative and Motion Function Block Management

Management of Input Variables

At the Execute input rising edge, the function block starts.

Any further modifications of the input variables are not taken into account.

Following the IEC 61131-3 standards, if any variable input to a function block is missing, that is, left open or unconnected, then the value from the previous invocation of the instance of the function block will be used. In the first invocation, the initial, configured value is applied in this case. Therefore, it is best that a function block always has known values attributed to its inputs to help avoid difficulties in debugging your program. For HSC and PTO function blocks, it is best to use the instance only once, and preferably the instance be in the main task.

Management of Output Variables

The Done, InVelocity, or InFrequency output is mutually exclusive with Busy, CommandAborted, and Error outputs: only one of them can be TRUE on one function block. If the Execute input is TRUE, one of these outputs is TRUE.

At the rising edge of the Execute input, the Busy output is set. This Busy output remains set during the function block execution, and is reset at the rising edge of one of the other outputs (Done, InVelocity, InFrequency, CommandAborted, and Error).

The Done, InVelocity, or InFrequency output is set when the function block execution has been completed successfully.

When a function block execution is interrupted by another one, the <code>CommandAborted</code> output is set instead.

When a function block execution ends due to a detected error, the Error output is set and the detected error number is given through the ErrId output.

The Done, InVelocity, InFrequency, Error, ErrID, and CommandAborted outputs are reset with the falling edge of Execute. If Execute input is reset before the execution is finished, then the outputs are set for one task cycle at the execution ending.

When an instance of a function block receives a new Execute before it is finished, the function block does not return any feedback, such as Done, for the previous action.

Handling a Detected Error

All blocks have 2 outputs that can report a detected error during the execution of the function block:

- Error = TRUE when an error is detected.
- ErrID When Error = TRUE, returns the detected error ID.
Appendix B Data Types

Overview

This chapter describes the data types of the HSC Library.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
EXPERT_DIAG_TYPE: Type for EXPERTGetDiag Diagnostics	146
EXPERT_ERR_TYPE: Type for Error Variable of EXPERT Function Block	147
EXPERT_FREQMETER_TIMEBASE_TYPE: Type for Frequency Meter Time Base Variable	148
EXPERT_HSCMAIN_TIMEBASE_TYPE: Type for HSC Main Time Base Variable	149
EXPERT_IMMEDIATE_ERR_TYPE: Type for Error Variable of the GetImmediateValue	150
Function Block	
EXPERT_PARAMETER_TYPE: Type for Parameters to Get or to Set on EXPERT	151
EXPERT_PERIODMETER_RESOLUTION_TYPE: Type for Period Meter Time Base Variable	152
EXPERT_REF: EXPERT Reference Value	153

EXPERT_DIAG_TYPE: Type for EXPERTGetDiag Diagnostics

Enumerated Type Description

This enumeration describes the different counter errors that can be read by the EXPERTGetDiag function block:

Name	Value	Comment
EXPERT_NO_ERROR	0	No error has occurred.
EXPERT_PERIODMETER_TIMEOUT_REACHED	1	Timeout on period measure is reached.
EXPERT_SHORTCUT_DETECTED	4	Shortcut detected on HSC Main reflex output
EXPERT_CONFIGURATION_FAULT	128	Counter is incorrectly configured.

EXPERT_ERR_TYPE: Type for Error Variable of EXPERT Function Block

Enumerated Type Description

The enumeration data type ENUM contains the different types of detected error with the following values:

Enumerator	Value	Description
EXPERT_NO_ERROR	00 hex	No error detected.
EXPERT_UNKNOWN	01 hex	The reference EXPERT is incorrect or not configured.
EXPERT_UNKNOWN_PARAMETER	02 hex	The parameter reference is incorrect. See PARAMETER_TYPE section for valid parameters <i>(see page 151)</i> .
EXPERT_INVALID_PARAMETER	03 hex	The value of the parameter is incorrect. For example, Preset Value is <th1 <th0.<="" or="" td=""></th1>
EXPERT_COM_ERROR	04 hex	Communication error was detected with the EXPERT module.
EXPERT_CAPTURE_NOT_CONFIGURED	05 hex	Capture is not configured. It is impossible to get a captured value.

EXPERT_FREQMETER_TIMEBASE_TYPE: Type for Frequency Meter Time Base Variable

Enumerated Type Description

The enumeration data type ENUM contains the different time base values allowed for use with an EXPERT function block:

Name	Value
EXPERT_FREQMETER_10ms	10
EXPERT_FREQMETER_100ms	100
EXPERT_FREQMETER_1000ms	1000

EXPERT_HSCMAIN_TIMEBASE_TYPE: Type for HSC Main Time Base Variable

Enumerated Type Description

The enumeration data type ENUM contains the different time base values allowed for use with an EXPERT Main function block:

Name	Value
EXPERT_HSCMAIN_100ms	00 hex
EXPERT_HSCMAIN_1s	01 hex
EXPERT_HSCMAIN_10s	02 hex
EXPERT_HSCMAIN_60s	03 hex

EXPERT_IMMEDIATE_ERR_TYPE: Type for Error Variable of the GetImmediateValue Function Block

Enumerated Type Description

The enumeration data type ENUM contains the different types of detected error with the following values:

Enumerator	Value	Description
EXPERT_IMMEDIATE_FUNC_NO_ERROR	00 hex	No error detected
EXPERT_IMMEDIATE_FUNC_UNKNOWN	01 hex	The reference of IMMEDIATE function is incorrect or not configured
EXPERT_IMMEDIATE_FUNC_UNKNOWN_ PARAMETER	02 hex	A parameter reference is incorrect

EXPERT_PARAMETER_TYPE: Type for Parameters to Get or to Set on EXPERT

Enumerated Type Description

The enumeration data type ENUM contains the following values:

Enumerator	Value	Description
EXPERT_PRESET	00 hex	To get or set the Preset value of an EXPERT function.
EXPERT_MODULO	01 hex	To get or set the Modulo value of an EXPERT function.
EXPERT_TIMEBASE	03 hex	To get or set the Timebase value <i>(see page 149)</i> of an EXPERT function.
EXPERT_THRESHOLD0	06 hex	To get or set the Threshold 0 value of an EXPERT function.
EXPERT_THRESHOLD1	07 hex	To get or set the Threshold 1 value of an EXPERT function.
EXPERT_THRESHOLD2	08 hex	To get or set the Threshold 2 value of an EXPERT function.
EXPERT_THRESHOLD3	09 hex	To get or set the Threshold 3 value of an EXPERT function.
EXPERT_REFLEX0	0A hex	To get or set output 0 reflex mode of an EXPERT function
EXPERT_REFLEX1	0B hex	To get or set output 1 reflex mode of an EXPERT function

EXPERT_PERIODMETER_RESOLUTION_TYPE: Type for Period Meter Time Base Variable

Enumerated Type Description

The enumeration data type ENUM contains the different time base values allowed for use with an EXPERT function block:

Name	Value
EXPERT_PERIODMETER_100ns	FFFFFFF hex (-1 decimal)
EXPERT_PERIODMETER_1µs	00 hex (0 decimal)
EXPERT_PERIODMETER_100µs	01 hex (1 decimal)
EXPERT_PERIODMETER_1000µs	02 hex (2 decimal)

EXPERT_REF: EXPERT Reference Value

Data Type Description

The EXPERT_REF is a byte used to identify the EXPERT function associated with the administrative block.

Appendix C Function Blocks

Overview

This chapter describes the functions and the function blocks of the HSC Library.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
EXPERTGetCapturedValue: Read Value of Capture Registers	156
EXPERTGetDiag: Return Detail of a Detected HSC Error	158
EXPERTGetImmediateValue: Read Counter Value of HSC	160
EXPERTGetParam: Returns Parameters of HSC	162
EXPERTSetParam: Adjust Parameters of a HSC	164
HSCMain_M241: Control a Main Type Counter for M241	166
HSCSimple_M241: Control a Simple Type Counter for M241	170

EXPERTGetCapturedValue: Read Value of Capture Registers

Function Block Description

This administrative function block returns the content of a capture register.

Graphical Representation

	EXPERTGetCapturedValue					
_	EXPERT_REF_IN	EXPERT_REF	EXPERT_REF	EXPERT_REF	OUT	-
_	Execute BOOL			800L	Done	-
_	CaptureNumber	BYTE		BOOL	Busy	-
				BOOL	Error	-
			EXPER	T_ERR_TYPE	ErrID	-
			1	DINT Capture	eValue	-

IL and ST Representation

To see the general representation in IL or ST language, refer to *Function and Function Block Representation (see page 173).*

I/O Variables Description

This table describes the input variables:

Inputs	Туре	Comment
EXPERT_REF_IN	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block. Must not be changed during block execution.
Execute	BOOL	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
CaptureNumber	BYTE	Index of the capture register: 0

This table describes the output variables:

Outputs	Туре	Comment
EXPERT_REF_OUT	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block.
Done	BOOL	TRUE = indicates that CaptureValue is valid. Function block execution is finished.
Busy	BOOL	TRUE = indicates that the function block execution is in progress.
Error	BOOL	TRUE = indicates that an error was detected. Function block execution is finished.

Outputs	Туре	Comment
ErrID	EXPERT_ERR_TYPE <i>(see page 147)</i>	When Error is TRUE: type of the detected error.
CaptureValue	DINT	When Done is TRUE: Capture register value is valid.

NOTE: In case of detected error, variables take the last value captured.

NOTE: For more information about Done, Busy and Execution pins, refer to General Information on Function Block Management *(see page 143)*.

Adding the EXPERTGetCapturedValue Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow Administrative \rightarrow EXPERTGetCapturedValue in the list, drag-and-drop the item onto the POU window.
2	Link the EXPERT_REF_IN input to the HSC_REF output of the HSC.

EXPERTGetDiag: Return Detail of a Detected HSC Error

Function Block Description

This administrative function block returns the details of a detected HSC error.

Graphical Representation

		EXPERTO	GetDiag			
_	EXPERT_REF_IN	EXPERT_REF	EXPERT_REF	EXPERT_REF	OUT	_
-	Execute BOOL			800L	Done	_
				BOOL	Busy	_
				BOOL	Error	_
			EXPER	T_ERR_TYPE	ErrID	_
			£	WORD Expe	rtDiag	_

IL and ST Representation

To see the general representation in IL or ST language, refer to *Function and Function Block Representation (see page 173).*

I/O Variables Description

This table describes the input variables:

Inputs	Туре	Comment
EXPERT_REF_IN	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block. Must not be changed during block execution.
Execute	BOOL	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.

This table describes the output variables:

Outputs	Туре	Comment
EXPERT_REF_OUT	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block.
Done	BOOL	TRUE = indicates that HSCDiag is valid. Function block execution is finished.
Busy	BOOL	TRUE = indicates that the function block execution is in progress.
Error	BOOL	TRUE = indicates that an error was detected. Function block execution is finished.

Outputs	Туре	Comment
ErrID	EXPERT_ERR_TYPE <i>(see page 147)</i>	When Error is TRUE: type of the detected error.
EXPERTDiag	DWORD	When Done is TRUE: diagnostic value is valid, refer to the table below.

NOTE: For more information about Done, Busy and Execution pins, refer to General Information on Function Block Management *(see page 143)*.

This table indicates the diagnostic values:

Bit	BASE (HSCMain or HSCSimple)	Description
0	-	No error detected
1	-	Timeout reached on period meter
2	-	Shortcut detected on HSC Main expert output
7	-	Error detected in the configuration of the counter

Adding the EXPERTGetDiag Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow Administrative \rightarrow EXPERTGetDiag in the list, drag-and-drop the item onto the POU window.
2	Link the EXPERT_REF_IN input to the HSC_REF output of the HSC.

EXPERTGetImmediateValue: Read Counter Value of HSC

Function Block Description

This administrative function block permits to read the counter value of an HSC bypassing the controller cycle.

Graphical Representation

		EXPERTGet	Immediate¥alue
-	EXPERT_REF_IN	EXPERT_REF	EXPERT_REF EXPERT_REF_OUT -
-	Execute BOOL		BOOL Done -
			BOOL Error
			EXPERT_IMMEDIATE_ERR_TYPE ErrID
			DINT ImmediateValue

IL and ST Representation

To see the general representation in IL or ST language, refer to *Function and Function Block Representation (see page 173).*

I/O Variables Description

This table describes the input variables:

Inputs	Туре	Comment
EXPERT_REF_IN	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block.
Execute	BOOL	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.

This table describes the output variables:

Outputs	Туре	Comment
EXPERT_REF_OUT	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block.
Done	BOOL	TRUE = indicates that ExpertDiag is valid. Function block execution is finished.
Error	BOOL	TRUE = indicates that an error was detected.
ErrID	IMMEDIATE_FUNC_ERR_ TYPE <i>(see page 150)</i>	When Error is TRUE: type of the detected error.
ImmediateValue	DINT	Contains the counter value.

Adding the EXPERTGetImmediateValue Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow Administrative \rightarrow EXPERTGetImmediateValue in the list, drag-and-drop the item onto the POU window.
2	Link the EXPERT_REF_IN input to the HSC_REF output of the HSC.

EXPERTGetParam: Returns Parameters of HSC

Function Block Description

This administrative function block returns a parameter value of an HSC.

Graphical Representation

	EXPERTGetParam		
_	EXPERT_REF_IN EXPERT_REF	EXPERT_REF EXPERT_REF_OUT	-
-	Execute 8001	8001 Done	-
_	Param EXPERT_PARAMETER_TYPE	BOOL Busy	-
		BOOL Error	-
		EXPERT_ERR_TYPE ErrID	-
		DINT ParamValue	⊢

IL and ST Representation

To see the general representation in IL or ST language, refer to *Function and Function Block Representation (see page 173).*

I/O Variables Description

This table describes the input variables:

Inputs	Туре	Comment
EXPERT_REF_IN	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block. Must not be changed during block execution.
Execute	BOOL	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Param	EXPERT_PARAMETER_T YPE <i>(see page 151)</i>	Parameter to read.

This table describes the output variables:

Outputs	Туре	Comment
EXPERT_REF_OUT	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block.
Done	BOOL	TRUE = indicates that ParamValue is valid. Function block execution is finished.
Busy	BOOL	TRUE = indicates that the function block execution is in progress.
Error	BOOL	TRUE = indicates that an error was detected. Function block execution is finished.
ErrID	EXPERT_ERR_TYPE <i>(see page 147)</i>	When Error is TRUE: type of the detected error.
ParamValue	DINT	Value of the parameter that has been read.

NOTE: For more information about Done, Busy and Execution pins, refer to General Information on Function Block Management *(see page 143)*.

Adding the EXPERTGetParam Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow Administrative \rightarrow EXPERTGetParam in the list, drag-and-drop the item onto the POU window.
2	Link the EXPERT_REF_IN input to the HSC_REF output of the HSC.

EXPERTSetParam: Adjust Parameters of a HSC

Function Block Description

This administrative function block modifies the value of a parameter of an HSC.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to *Function and Function Block Representation (see page 173)*.

I/O Variables Description

This table describes the input variables:

Inputs	Туре	Comment
EXPERT_REF_IN	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block. Must not be changed during block execution.
Execute	BOOL	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Param	EXPERT_PARAMETER_TYPE (see page 151)	Parameter to read.
ParamValue	DINT	Parameter value to write.

This table describes the output variables:

Outputs	Туре	Comment
EXPERT_REF_OUT	EXPERT_REF <i>(see page 153)</i>	Reference to the EXPERT function block.
Done	BOOL	TRUE = indicates that the parameter was successfully written. Function block execution is finished.
Busy	BOOL	TRUE = indicates that the function block execution is in progress.
Error	BOOL	TRUE = indicates that an error was detected. Function block execution is finished.
ErrID	EXPERT_ERR_TYPE <i>(see page 147)</i>	When Error is TRUE: type of the detected error.

NOTE: For more information about Done, Busy, and Execution pins, refer to General Information on Function Block Management *(see page 143)*.

Adding the EXPERTSetParam Function Block

Step	Description
1	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller \rightarrow M241 \rightarrow M241 HSC \rightarrow Administrative \rightarrow EXPERTSetParam in the list, drag-and-drop the item onto the POU window.
2	Link the EXPERT_REF_IN input to the HSC_REF output of the HSC.

HSCMain_M241: Control a Main Type Counter for M241

Function Block Description

This function block controls a Main type counter with the following functions:

- up/down counting
- frequency meter
- thresholds
- events
- period meter
- dual phase

The HSC Main function block is mandatory when using **Main** counter.

The function block instance name must match the name defined by configuration. Hardware related information managed by this function block is synchronized with the MAST task cycle.

A WARNING

UNINTENDED OUTPUT VALUES

- Only use the Function Block instance in the MAST task.
- Do not use the same Function Block instance in a different task.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Forcing the logical output values of the FB is allowed by SoMachine but it will have no impact on hardware related outputs if the function is active (executing).

Graphical Representation

HSCMain	_M241
-EN_Enable BOOL	EXPERT_REF HSC_REF
-EN_Preset BOOL	BOOL HSC_Err
—EN_Cap BOOL	BOOL Validity —
-EN_Compare BOOL	BOOL Run-
-EN_Out0 BOOL	BOOL THO
-EN_Out1 BOOL	BOOL TH1
-F_Enable BOOL	BOOL TH2
-F_Preset BOOL	BOOL TH3
	BOOL Modulo_Flag
	BOOL Preset_Flag —
-ACK_Modulo BOOL	BOOL Cap_Flag
-ACK_Preset BOOL	BOOL Reflex0
— ACK_Cap <i>BOOL</i>	BOOL Reflex1
-SuspendCompare BOOL	BOOL Out0
	BOOL Out1
	DINT CurrentValue

IL and ST Representation

To see the general representation in IL or ST language, refer to *Function and Function Block Representation (see page 173).*

I/O Variables Description

This table describes the input variables:

Input	Туре	Description
EN_Enable	BOOL	TRUE = enables the counter.
EN_Preset	BOOL	TRUE = authorizes the counter synchronization and start via the Sync input.
EN_Cap	BOOL	TRUE = enables the Capture input (if configured in One shot , Modulo loop , Free large modes).
EN_Compare	BOOL	 TRUE = enables the comparator operation (using Thresholds 0, 1, 2, 3): basic comparison (TH0, TH1, TH2, TH3 output bits) reflex (Reflex0, Reflex1 output bits) events (to trigger external tasks on threshold crossing)
EN_Out0	BOOL	TRUE = enables Output0 to echo the Reflex0 value (if configured in One shot , Modulo loop , Free large modes).
EN_Out1	BOOL	TRUE = enables Output1 to echo the Reflex1 value (if configured in One shot , Modulo loop , Free large modes).

Input	Туре	Description
F_Enable	BOOL	TRUE = authorizes changes to the current counter value.
F_Preset	BOOL	On rising edge, authorizes counting function synchronization and start in the following counting modes: One-shot counter: to preset and start the counter Modulo loop counter: to reset and start the counter Free large counter: to preset and start the counter Event counter: to restart the internal time base at the beginning Frequency meter: to restart the internal time base at the beginning
F_Out0	BOOL	TRUE = forces Output0 to 1 (if configured in One-shot , Modulo loop , Free large modes).
F_Out1	BOOL	TRUE = forces Output1 to TRUE (if configured in One-shot , Modulo loop , Free large modes).
ACK_Modulo	BOOL	On rising edge, resets Modulo_Flag (Modulo loop and Free large modes).
ACK_Preset	BOOL	On rising edge, resets Preset_Flag.
ACK_Cap	BOOL	On rising edge, resets the Cap_Flag (One-shot, Modulo loop, Free large modes).
SuspendCompare	BOOL	 TRUE = compare results are suspended: TH0, TH1, TH2, TH3, Reflex0, Reflex1, Out0, Out1 output bits of the block maintain their last value. Physical outputs Output0 and Output1 maintain their last value. Events are masked. NOTE: EN_Compare, EN_Out0, EN_Out1, F_Out0, F_Out1 remain operational while SuspendCompare is Set.

This table describes the output variables:

Outputs	Туре	Comment
HSC_REF	EXPERT_R EF <i>(see page 153)</i>	Reference to the HSC.
Validity	BOOL	TRUE = indicates that output values on the function block are valid. In the Period Meter Type, if the time-out value is exceeded, Validity = FALSE. In One-Shot mode, Validity is set to TRUE when a rising edge of Preset is detected.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the HSCGetDiag <i>(see page 158)</i> function block to get more information about this detected error.

Outputs	Туре	Comment
Run	BOOL	TRUE = counter is running. In One-shot mode, the Run bit switches to 0 when CurrentValue reaches 0.
ТНО	BOOL	TRUE = current counter value > Threshold 0 (if configured in One shot, Modulo loop, Free large modes). Only active when EN_Compare is set.
TH1	BOOL	TRUE = current counter value > Threshold 1 (if configured in One shot, Modulo loop, Free large modes). Only active when EN_Compare is set.
TH2	BOOL	TRUE = current counter value > Threshold 2 (if configured in One- shot, Modulo loop, Free large modes). Only active when EN_Compare is set.
ТНЗ	BOOL	TRUE = current counter value > Threshold 3 (if configured in One- shot, Modulo loop, Free large modes). Only active when EN_Compare is set.
Modulo_Flag	BOOL	 Set to TRUE by the rolls over of: Modulo loop counter: when the counter rolls over to the modulo or 0 Free large counter: when the counter roll overs its limits
Preset_Flag	BOOL	 Set to TRUE by the synchronization of: One-shot counter: when the counter presets and starts Modulo loop counter: when the counter resets Free large counter: when the counter presets Event counter: when the internal timer relative to the time base restarts Frequency meter: when the internal timer relative to the time base restarts
Cap_Flag	BOOL	TRUE = indicates that a value has been latched in the capture register. This flag must be reset before a new capture can occur.
Reflex0	BOOL	State of Reflex0 (if configured in One shot, Modulo loop, Free large modes). Only active when EN_Compare is set.
Reflex1	BOOL	State of Reflex1 (if configured in One shot, Modulo loop, Free large modes). Only active when EN_Compare is set.
Out0	BOOL	Indicates the state of Output0.
Out1	BOOL	Indicates the state of Output1.
CurrentValue	DINT	Current counter value of the counter.

HSCSimple_M241: Control a Simple Type Counter for M241

Function Block Description

This function block controls a Simple type counter with the following reduced functions:

- one-channel counting
- no threshold
- no event
- no capture
- no reflex

The HSCSimple function block is mandatory when using a Simple counter type.

The function block instance name must match the name defined by configuration. Hardware related information managed by this function block is synchronized with the MAST task cycle.

WARNING

UNINTENDED OUTPUT VALUES

- Only use the Function Block instance in the MAST task.
- Do not use the same Function Block instance in a different task.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Forcing the logical output values of the FB is allowed by SoMachine but it will have no impact on hardware related outputs if the function is active (executing).

Graphical Representation

HSCSimple	_M241
-Enable BOOL	EXPERT_REF_HSC_REF
-Sync BOOL	BOOL HSC_Err -
-ACK_Modulo BOOL	BOOL Validity -
	BOOL Run-
	BOOL Modulo_Flag
	DWORD CurrentValue

IL and ST Representation

To see the general representation in IL or ST language, refer to *Function and Function Block Representation (see page 173).*

I/O Variables Description

This table describes the input variables:

Inputs	Туре	Comment
Enable	BOOL	TRUE = authorizes changes to the current counter
		value.
Sync	BOOL	On rising edge, presets and starts the counter.
ACK_Modulo	BOOL	On rising edge, resets the modulo flag Modulo_Flag
		(in Modulo loop mode).

This table describes the output variables:

Outputs	Туре	Comment
HSC_REF	EXPERT_REF <i>(see page 153)</i>	Reference to the HSC.
HSC_Err	BOOL	TRUE = indicates that an error was detected. Use the EXPERTGetDiag <i>(see page 158)</i> function block used to get more information about this detected error.
Validity	BOOL	TRUE = indicates that the output values on the function block are valid.
Run	BOOL	TRUE = counter is running. In One-shot mode, switches to 0 when CurrentValue reaches 0. A rising edge on Sync is needed to restart the counter.
Modulo_Flag	BOOL	Set to 1 by the rolls over of a Modulo loop counter when the counter rolls overs the modulo.
CurrentValue	DWORD	Current count value of the counter.

Appendix D Function and Function Block Representation

Overview

Each function can be represented in the following languages:

- IL: Instruction List
- ST: Structured Text
- LD: Ladder Diagram
- FBD: Function Block Diagram
- CFC: Continuous Function Chart

This chapter provides functions and function blocks representation examples and explains how to use them for IL and ST languages.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Differences Between a Function and a Function Block	
How to Use a Function or a Function Block in IL Language	
How to Use a Function or a Function Block in ST Language	

Differences Between a Function and a Function Block

Function

A function:

- is a POU (Program Organization Unit) that returns one immediate result.
- is directly called with its name (not through an instance).
- has no persistent state from one call to the other.
- can be used as an operand in other expressions.

Examples: boolean operators (AND), calculations, conversion (BYTE_TO_INT)

Function Block

A function block:

- is a POU (Program Organization Unit) that returns one or more outputs.
- needs to be called by an instance (function block copy with dedicated name and variables).
- each instance has a persistent state (outputs and internal variables) from one call to the other from a function block or a program.

Examples: timers, counters

In the example, Timer ON is an instance of the function block TON:

1	PROGRAM MyProgram_ST
2	VAR
З	Timer_ON: TON; // Function Block Instance
4	Timer_RunCd: BOOL;
5	Timer_PresetValue: TIME := T#5S;
6	Timer_Output: BOOL;
7	Timer_ElapsedTime: TIME;
8	END_VAR

1	Timer	ON (

- IN:=Timer RunCd,
- 3 PT:=Timer_PresetValue,
- 4 Q=>Timer Output,
- 5 ET=>Timer ElapsedTime);

How to Use a Function or a Function Block in IL Language

General Information

This part explains how to implement a function and a function block in IL language.

Functions IsFirstMastCycle and SetRTCDrift and Function Block TON are used as examples to show implementations.

Using a Function in IL Language

This procedure describes how to insert a function in IL language:

Step	Action
1	Open or create a new POU in Instruction List language.
	NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding and Calling POUs <i>(see SoMachine, Programming Guide)</i> .
2	Create the variables that the function requires.
3	If the function has 1 or more inputs, start loading the first input using LD instruction.
4	 Insert a new line below and: type the name of the function in the operator column (left field), or use the Input Assistant to select the function (select Insert Box in the context menu).
5	If the function has more than 1 input and when Input Assistant is used, the necessary number of lines is automatically created with ??? in the fields on the right. Replace the ??? with the appropriate value or variable that corresponds to the order of inputs.
6	Insert a new line to store the result of the function into the appropriate variable: type ST instruction in the operator column (left field) and the variable name in the field on the right.

To illustrate the procedure, consider the Functions IsFirstMastCycle (without input parameter) and SetRTCDrift (with input parameters) graphically presented below:

Function	Graphical Representation
without input parameter: IsFirstMastCycle	IsFirstMastCycle FirstCycle 1
with input parameters: SetRTCDrift	SetRTCDrift myDrift RtcDrift myDiag myDay Day myHour Hour myMinute Minute

In IL language, the function name is used directly in the operator column:

Function	Representation in POU IL E	ditor	
IL example of a function without input parameter: IsFirstMastCycle	PROGRAM MyProg 2 VAR 3 FirstCycle 4 END_VAR 5	ram_IL : BOOL;	
	1 IsFirstMastCy ST	ycle FirstCycle	
IL example of a function with input parameters: SetRTCDrift	PROGRAM MyProg VAR myDrift: S myDay: DAY myHour: H0 myMinute: myDiag: RT END_VAR	TRAT (-2929) := 5; '_OF_WEEK := SUNDAY; UR := 12; MINUTE; 'CSETDRIFT_ERROR;	
	LD SetRTCDrift ST	myDrift myDay myHour myMinute myDiag	

Using a Function Block in IL Language

This procedure describes how to insert a function block in IL language:

Step	Action
1	Open or create a new POU in Instruction List language.
	NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding and Calling POUs <i>(see SoMachine, Programming Guide)</i> .
2	Create the variables that the function block requires, including the instance name.
3	 Function Blocks are called using a CAL instruction: Use the Input Assistant to select the FB (right-click and select Insert Box in the context menu). Automatically, the CAL instruction and the necessary I/O are created.
	 Each parameter (I/O) is an instruction: Values to inputs are set by ":=". Values to outputs are set by "=>".
4	In the CAL right-side field, replace ??? with the instance name.
5	Replace other ??? with an appropriate variable or immediate value.

To illustrate the procedure, consider this example with the TON Function Block graphically presented below:

Function Block	Graphical Representation
TON	Timer_RunCd IN Q Timer_Output 1 Timer_PresetValue PT ET Timer_ElapsedTime 2

Function Block	Representation in POU IL Editor	
TON	<pre>1 PROGRAM MyProgram_IL 2 VAR 3 Timer_ON: TON; // Function Block instance declaration 4 Timer_RunCd: BOOL; 5 Timer_PresetValue: TIME := T#5S; 6 Timer_Output: BOOL; 7 Timer_ElapsedTime: TIME; 8 END_VAR 9 </pre>	
	CAL Timer_ON(IN: = Timer_RunCd, PT: = Timer_PresetValue, Q=> Timer_Output, ET=> Timer_ElapsedTime)	

In IL language, the function block name is used directly in the operator column:

How to Use a Function or a Function Block in ST Language

General Information

This part explains how to implement a Function and a Function Block in ST language.

Function SetRTCDrift and Function Block TON are used as examples to show implementations.

Using a Function in ST Language

This procedure describes how to insert a function in ST language:

Step	Action
1	Open or create a new POU in Structured Text language.
	NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding and Calling POUs <i>(see SoMachine, Programming Guide)</i> .
2	Create the variables that the function requires.
3	Use the general syntax in the POU ST Editor for the ST language of a function. The general syntax is: FunctionResult:= FunctionName(VarInput1, VarInput2, VarInputx);

To illustrate the procedure, consider the function <code>SetRTCDrift</code> graphically presented below:

Function	Graphical Representation
SetRTCDrift	SetRTCDrift myDrift RtcDrift SetRTCDrift myDay Day myHour Hour myMinute Minute

The ST language of this function is the following:

Function	Representation in POU ST Editor
SetRTCDrift	<pre>PROGRAM MyProgram_ST VAR myDrift: SINT(-2929) := 5; myDay: DAY_OF_WEEK := SUNDAY; myHour: HOUR := 12; myMinute: MINUTE; myRTCAdjust: RTCDRIFT_ERROR; END VAR</pre>
	<pre>myRTCAdjust:= SetRTCDrift(myDrift, myDay, myHour, myMinute);</pre>

Using a Function Block in ST Language

This procedure describes how to insert a function block in ST language:

Step	Action
1	Open or create a new POU in Structured Text language.
	NOTE: The procedure to create a POU is not detailed here. For more information on adding, declaring and calling POUs, refer to the related documentation <i>(see SoMachine, Programming Guide).</i>
2	 Create the input and output variables and the instance required for the function block: Input variables are the input parameters required by the function block Output variables receive the value returned by the function block
3	Use the general syntax in the POU ST Editor for the ST language of a Function Block. The general syntax is: FunctionBlock_InstanceName(Input1:=VarInput1, Input2:=VarInput2, Ouput1=>VarOutput1, Ouput2=>VarOutput2,);

To illustrate the procedure, consider this example with the ${\tt TON}$ function block graphically presented below:

Function Block	Representation in POU ST Editor	
TON	1	PROGRAM MyProgram_ST
	2	VAR
	З	Timer_ON: TON; // Function Block Instance
	4	Timer_RunCd: BOOL;
	-5	<pre>Timer_PresetValue: TIME := T#5S;</pre>
	6	Timer_Output: BOOL;
	7	Timer_ElapsedTime: TIME ;
	8	END_VAR
	1	Timer_ON(
	2	IN:=Timer_RunCd,
	з	<pre>PT:=Timer_PresetValue,</pre>
	4	Q=>Timer_Output,
	-5	ET=>Timer_ElapsedTime);

This table shows examples of a function block call in ST language:

Glossary

Α

application

A program including configuration data, symbols, and documentation.

В

byte

A type that is encoded in an 8-bit format, ranging from 00 hex to FF hex.

С

CFC

(*continuous function chart*) A graphical programming language (an extension of the IEC 61131-3 standard) based on the function block diagram language that works like a flowchart. However, no networks are used and free positioning of graphic elements is possible, which allows feedback loops. For each block, the inputs are on the left and the outputs on the right. You can link the block outputs to the inputs of other blocks to create complex expressions.

controller

Automates industrial processes (also known as programmable logic controller or programmable controller).

F

FΒ

(*function block*) A convenient programming mechanism that consolidates a group of programming instructions to perform a specific and normalized action, such as speed control, interval control, or counting. A function block may comprise configuration data, a set of internal or external operating parameters and usually 1 or more data inputs and outputs.

function block diagram

One of the 5 languages for logic or control supported by the standard IEC 61131-3 for control systems. Function block diagram is a graphically oriented programming language. It works with a list of networks where each network contains a graphical structure of boxes and connection lines representing either a logical or arithmetic expression, the call of a function block, a jump, or a return instruction.

L

ID

(identifier/identification)

IEC 61131-3

Part 3 of a 3-part IEC standard for industrial automation equipment. IEC 61131-3 is concerned with controller programming languages and defines 2 graphical and 2 textual programming language standards. The graphical programming languages are ladder diagram and function block diagram. The textual programming languages include structured text and instruction list.

IL

(*instruction list*) A program written in the language that is composed of a series of text-based instructions executed sequentially by the controller. Each instruction includes a line number, an instruction code, and an operand (refer to IEC 61131-3).

INT

(integer) A whole number encoded in 16 bits.

L

LD

(*ladder diagram*) A graphical representation of the instructions of a controller program with symbols for contacts, coils, and blocks in a series of rungs executed sequentially by a controller (refer to IEC 61131-3).

Ν

node

An addressable device on a communication network.

Ρ

POU

(*program organization unit*) A variable declaration in source code and a corresponding instruction set. POUs facilitate the modular re-use of software programs, functions, and function blocks. Once declared, POUs are available to one another.

program

The component of an application that consists of compiled source code capable of being installed in the memory of a logic controller.

PTO

(*pulse train outputs*) A fast output that oscillates between off and on in a fixed 50-50 duty cycle, producing a square wave form. PTO is especially well suited for applications such as stepper motors, frequency converters, and servo motor control, among others.

S

ST

(*structured text*) A language that includes complex statements and nested instructions (such as iteration loops, conditional executions, or functions). ST is compliant with IEC 61131-3.

V

variable

A memory unit that is addressed and modified by a program.

Index

В

Busy management of status variables, 143

С

Capture HSCMain, *130* capture register of HSC EXPERTGetCapturedValue, *156* CommandAborted management of status variables, *143* Comparison HSCMain, *122*

D

data types EXPERT_DIAG_TYPE, *146* EXPERT_ERR_TYPE, *147* EXPERT_FREQMETER_TIMEBASE_-TYPE, *148* EXPERT_HSCMAIN_TIMEBASE_TYPE, *149* EXPERT_IMMEDIATE_ERR_TYPE, *150* EXPERT_PARAMETER_TYPE, *151* EXPERT_PERIODMETER_RESOLU-TION_TYPE, *152* HSC_REF, *153* dedicated features, *142* Done management of status variables, *143*

Ε

Enable authorize counting operation, *137* ErrID handling a detected error, *143* management of status variables, *143* Frror handling a detected error, 143 management of status variables, 143 Event Counting HSC Modes of Embedded HSC, 87 Execute management of status variables, 143 EXPERT_DIAG_TYPE data types. 146 EXPERT_ERR_TYPE, 147 EXPERT_FREQMETER_TIMEBASE_TYPE data types. 148 EXPERT_HSCMAIN_TIMEBASE_TYPE data types, 149 EXPERT IMMEDIATE ERR TYPE, 150 EXPERT_PARAMETER_TYPE, 151 EXPERT_PERIODMETER_RESOLUTION_-TYPE data types, 152 EXPERTGetCapturedValue getting a capture register value, 156 EXPERTGetDiag getting the detected error on EXPERT I/O function. 158 **EXPERTGetImmediateValue** getting the counter value of an HSC, 160 EXPERTGetParam getting parameters values of an HSC, 162 EXPERTSetParam setting parameters values of an HSC, 164

F

Free-large HSC Modes of Embedded HSC, *72* frequency meter description, *99* programming, *104* synopsis, *102* functions differences between a function and a function block, *174* Enable, *137* how to use a function or a function block in IL language, *175* how to use a function or a function block in ST language, *179*

Η

handling a detected error ErrID, 143 Error, 143 high speed counter EXPERTGetDiag, 158 EXPERTGetImmediateValue, 160 EXPERTGetParam. 162 EXPERTSetParam, 164 HSCMain M241, 166 HSCSimple M241. 170 HSC EXPERTGetDiag, 158 EXPERTGetImmediateValue. 160 EXPERTGetParam, 162 EXPERTSetParam, 164 HSCMain_M241, 166 HSCSimple M241, 170 HSC Modes of Embedded HSC Event Counting, 87 Free-large, 72 Modulo-loop, 51 HSC_REF, 153 HSCMain Capture, 130 Comparison, 122 HSCMain M241 controlling a main type high speed counter (M241). 166 HSCSimple M241 controlling a simple type high speed counter (M241), 170

Μ

M241 HSC EXPERTGetCapturedValue, 156 EXPERTGetDiag, 158 EXPERTGetImmediateValue, 160 EXPERTGetParam. 162 EXPERTSetParam, 164 HSCMain_M241, 166 HSCSimple_M241, 170 management of status variables Busy, 143 CommandAborted, 143 Done, 143 ErrID, 143 Error, 143 Execute, 143 Modulo-loop HSC Modes of Embedded HSC, 51

Ρ

period meter description, parameters, programming, synopsis,