Modicon TM5/TM7
CANopen 接口
编程指南

04/2012
本文档中提供的信息包含有关此处所涉及产品之性能的一般说明和 / 或技术特性。本文档并非用于（也不代替）确定这些产品对于特定用户应用场合的适用性或可靠性。任何此类用户或集成者都有责任对相关特定应用场合或使用方面对产品执行适当且完整的风险分析、评估和测试。Schneider Electric 或其任何附属机构或子公司对于误用此处包含的信息而产生的后果概不负责。如果您有关于改进或更正此出版物的任何建议，或者从中发现错误，请通知我们。

未经 Schneider Electric 明确书面许可，不得以任何形式、通过任何电子或机械手段（包括影印）复制本文档的任何部分。

在安装和使用本产品时，必须遵守国家、地区和当地的所有相关的安全法规。出于安全方面的考虑和为了帮助确保符合归档的系统数据，只允许制造商对各个组件进行维修。

当设备用于具有技术安全要求的应用场合时，必须遵守有关的使用说明。

如果在我们的硬件产品上不正确地使用 Schneider Electric 软件或认可的软件，则可能导致人身伤害、损害或不正确的操作结果。

不遵守此信息可能导致人身伤害或设备损坏。

© 2012 Schneider Electric。保留所有权利。
目录

安全信息.................. 5
关于本书.................. 7

章 1 I/O 配置一般信息.................. 11
 一般说明.................. 11

章 2 TM5 CANopen 接口模块.................. 13
 TM5NCO1.................. 13

章 3 TM7 CANopen 接口 I/O 功能块.................. 15
 TM7NCOM08B.................. 16
 TM7NCOM16A.................. 17
 TM7NCOM16B.................. 18

章 4 使用 DTM 配置 CANopen 上的设备.................. 19
 4.1 CANopen 接口配置.................. 20
 CANopen 参数.................. 21
 CANopen 配置.................. 22
 4.2 岛接口配置.................. 23
 岛摘要.................. 24
 地址设置.................. 25
 电源资源.................. 26

术语表.................. 27

索引.................. 55
安全信息

重要信息

声明

在尝试安装、操作或维护设备之前，请仔细阅读下述说明并通过查看来熟悉设备。下述特别信息可能会在本文其他地方或设备上出现，提示用户潜在的危险，或者提醒注意有关阐明或简化某一过程的信息。

⚠️ 在“危险”标签上添加此符号表示存在触电危险。如果不遵守使用说明，会导致人身伤害。

⚠️ 这是提醒注意安全的符号。提醒用户可能存在人身伤害的危险。请遵守所有带此符号的安全注意事项，以避免可能的人身伤害甚至死亡。

⚠️ 危险

“危险”表示极可能存在危险，如果不遵守说明，可能导致严重的人身伤害甚至死亡。

⚠️ 警告

“警告”表示可能存在危险，如果不遵守说明，可能导致严重的人身伤害甚至死亡，或设备损坏。
请注意

电气设备的安装、操作、维修和维护工作仅限于合格人员执行。对于使用本资料所引发的任何后果，Schneider Electric 概不负责。

专业人员是指掌握与电气设备的制造和操作及其安装相关的技能和知识的人员，他们经过安全培训能够发现和避免相关的危险。
关于本书

概览

文档范围

本手册介绍 Modicon TM5 CANopen 接口模块和 TM7 CANopen 接口 I/O 功能块的配置。

有效性说明

本文档已经随着性能分布式 I/O 配置软件 V1.0 的发布进行了更新。

相关的文件

<table>
<thead>
<tr>
<th>文件名称</th>
<th>参考编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoMachine Device Type Manager (DTM) - 编程指南</td>
<td>EIO0000000673（英语）、 EIO0000000674（法语）、 EIO0000000675（德语）、 EIO0000000676（西班牙语）、 EIO0000000677（意大利语）、 EIO0000000678（简体中文）</td>
</tr>
<tr>
<td>Modicon TM5 扩展模块 DTM 配置编程指南</td>
<td>EIO0000000679（英语）、 EIO0000000680（法语）、 EIO0000000681（德语）、 EIO0000000682（西班牙语）、 EIO0000000683（意大利语）、 EIO0000000684（简体中文）</td>
</tr>
<tr>
<td>Modicon TM7 扩展功能块 DTM 配置编程指南</td>
<td>EIO0000000715（英语）、EIO0000000716（法语）、EIO0000000717（德语）、EIO0000000718（西班牙语）、EIO0000000719（意大利语）、EIO0000000720（简体中文）</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Modicon 灵活的 TM5 / TM7 系统 - 系统计划和安装指南</td>
<td>EIO0000000426（英语）、EIO0000000427（法语）、EIO0000000428（德语）、EIO0000000429（西班牙语）、EIO0000000430（意大利语）、EIO0000000431（简体中文）</td>
</tr>
<tr>
<td>Modicon TM5 CANopen 接口硬件指南</td>
<td>EIO0000000691（英语）、EIO0000000692（法语）、EIO0000000693（德语）、EIO0000000694（西班牙语）、EIO0000000695（意大利语）、EIO0000000696（简体中文）</td>
</tr>
<tr>
<td>Modicon TM7 CANopen 接口 I/O 功能块硬件指南</td>
<td>EIO0000000685（英语）、EIO0000000686（法语）、EIO0000000687（德语）、EIO0000000688（西班牙语）、EIO0000000689（意大利语）、EIO0000000690（简体中文）</td>
</tr>
</tbody>
</table>

您可以从我们的网站下载这些技术出版物和其它技术信息，网址是：www.schneider-electric.com。
关于产品的资讯

⚠️ 警告

失去控制

- 任何控制方案的设计者都必须考虑到控制路径可能出现故障的情况，并为某些关键控制功能提供一种方法，使其在出现路径故障时，以及出现路径故障后恢复至安全状态。紧急停止和越程停止、断电和重启都属于关键控制功能。
- 对于关键控制功能，必须提供单独或冗余的控制路径。
- 系统控制路径可包括通讯链路。必须对暗含的无法预料的传输延迟或链路失效问题加以考虑。
- 遵守所有事故预防规定和当地的安

如果不遵守这些说明，将会导致死亡、严重伤害或设备损坏。

用户意见

欢迎对本书提出意见。您可以给我们发邮件，我们的邮件地址是techcomm@schneider-electric.com。
一般说明

简介

现场总线接口的范围包括：
- TM5 CANopen 接口模块
- TM7 CANopen 接口 I/O 功能块

TM5 现场总线模块是具有内置配电功能的 CANopen 接口，并且是 TM5 分布式 I/O 岛（参见 Modicon TM5/TM7 灵活的系统，系统计划和安装指南）的第一个元件。

TM7 现场总线功能块是具有 24 Vdc 数字量可配置输入或输出（在 8 个或 16 个通道上）的 CANopen 接口。

注意：TM7 CANopen 接口 I/O 功能块需要使用电源电缆、总线电缆以及 I/O 电缆。

CANopen 接口功能

下表列出了本编程指南中所描述的 TM5 CANopen 接口模块：

<table>
<thead>
<tr>
<th>参考号</th>
<th>说明</th>
<th>通道数</th>
<th>电压 / 电流</th>
<th>接线类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM5NCO1 (参见第 13 页)</td>
<td>CANopen 接口</td>
<td>8 路输入 8 路输出</td>
<td>24 Vdc/4 mA 24 Vdc/500 mA</td>
<td>M8 连接器</td>
</tr>
</tbody>
</table>

下表列出了本编程指南中所描述的 TM7 CANopen 接口 I/O 功能块：

<table>
<thead>
<tr>
<th>参考号</th>
<th>说明</th>
<th>通道数</th>
<th>电压 / 电流</th>
<th>接线类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM7NCOM08B (参见第 18 页)</td>
<td>CANopen 接口</td>
<td>8 路输入 8 路输出</td>
<td>24 Vdc/4 mA 24 Vdc/500 mA</td>
<td>M8 连接器</td>
</tr>
<tr>
<td>TM7NCOM16A (参见第 17 页)</td>
<td>CANopen 接口</td>
<td>16 路输入 16 路输出</td>
<td>24 Vdc/4 mA 24 Vdc/500 mA</td>
<td>M8 连接器</td>
</tr>
<tr>
<td>TM7NCOM16B (参见第 18 页)</td>
<td>CANopen 接口</td>
<td>16 路输入 16 路输出</td>
<td>24 Vdc/4 mA 24 Vdc/500 mA</td>
<td>M12 连接器</td>
</tr>
</tbody>
</table>
I/O 配置一般信息

匹配硬件和软件配置

可在控制器中嵌入的 I/O 独立于采用 I/O 扩展的形式添加的 I/O。程序中的逻辑 I/O 配置应与安装的物理 I/O 配置匹配，这十分重要。如果对 I/O 扩展总线添加或删除任何物理 I/O，则必须更新应用程序配置（这也适用于安装中包含的任何现场总线设备）。否则，扩展总线或现场总线可能不再正常工作，而控制器中可能存在的嵌入式 I/O 会继续操作。

警告

意外的设备操作

每次添加或删除 I/O 扩展，或添加或删除现场总线上的任何设备时，都需更新程序配置。

如果不遵守这些说明，将会导致死亡、严重伤害或设备损坏。
TM5 CANopen 接口模块

TM5NCO1

简介

TM5NCO1 是 CANopen 接口模块。TM5SPS3 接口配电模块 (IPDM) 与 TM5NCO1 相关联。IPDM 为连接在总线接口之后的扩展模块供电。

有关硬件信息，请参阅 TM5 CANopen 接口模块 (参见 Modicon TM5, CANopen 接口, 硬件指南)。

有关如何配置的详细信息，请参阅 TM5 接口配电模块 (参见 Modicon TM5, 扩展模块 DTM 配置，编程指南)。

CANopen 配置

有关如何配置您的 TM5 CANopen 接口模块的信息，请参阅配置 CANopen 接口 (参见第 21 页)。
TM7 CANopen 接口 I/O 功能块

简介

本章介绍配置 TM7 CANopen 接口 I/O 功能块的信息。

本章包含了哪些内容？

本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM7NCOM08B</td>
<td>16</td>
</tr>
<tr>
<td>TM7NCOM16A</td>
<td>17</td>
</tr>
<tr>
<td>TM7NCOM16B</td>
<td>18</td>
</tr>
</tbody>
</table>
TM7 CANopen 接口 I/O 功能块

TM7NCOM08B

简介

TM7NCOM08B 功能块是具有 24 Vdc 数字量可配置输入或输出（在 8 个通道上）的 CANopen 接口。这些 I/O 通道在 TM7BDM8BE 中另有介绍。

有关硬件信息，请参阅 TM7NCOM08B 功能块（参见 Modicon TM7, CANopen 接口 I/O 功能块，硬件指南）。

CANopen 配置

有关如何配置您的 TM7 CANopen 接口 I/O 功能块的信息，请参阅配置 CANopen 接口（参见第 21 页）。
TM7 NCOM16A

简介

TM7NCOM16A 功能块是具有 24 Vdc 数字量可配置输入或输出（在 16 个通道上）的 CANopen 接口。这些 I/O 通道在 TM7BDM16AE 中另有介绍。

有关硬件信息，请参阅 TM7NCOM16A 功能块（参见 Modicon TM7, CANopen 接口 I/O 功能块，硬件指南）。

CANopen 配置

有关如何配置您的 TM7 CANopen 接口 I/O 功能块的信息，请参阅配置 CANopen 接口（参见第 21 页）。
TM7 CANopen 接口 I/O 功能块

TM7NCOM16B

简介

TM7NCOM16B 功能块是具有 24 Vdc 数字量可配置输入或输出（在 16 个通道上）的 CANopen 接口。这些 I/O 通道在 TM7BDM16BE 中另有介绍。

有关硬件信息，请参阅 TM7NCOM16B 功能块（参见 Modicon TM7, CANopen 接口 I/O 功能块，硬件指南）。

CANopen 配置

有关如何配置您的 TM7 CANopen 接口 I/O 功能块的信息，请参阅配置 CANopen 接口（参见第 21 页）。
使用 DTM 配置 CANopen 上的设备

简介
本章介绍如何使用 DTM 设置分布式设备以配置 SoMachine 中 CAN 总线上的设备。

本章包含哪些内容？
本章包含了以下部分：

<table>
<thead>
<tr>
<th>节</th>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>CANopen 接口配置</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>岛接口配置</td>
<td>23</td>
</tr>
</tbody>
</table>
4.1 CANopen 接口配置

本节包含了哪些内容？

本节包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANopen 参数</td>
<td>21</td>
</tr>
<tr>
<td>CANopen 配置</td>
<td>22</td>
</tr>
</tbody>
</table>
CANopen 参数

这些参数表示 CANopen 接口的状态。

要配置 CANopen 接口的参数，选择 CANopen Parameters 选项卡:

下表介绍了 CANopen Parameters 的配置:

<table>
<thead>
<tr>
<th>组 / 参数</th>
<th>值</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>模拟量输入全局中断启用（CANopen 对象 6423（十六进制））</td>
<td>真</td>
<td>启用全局中断行为，而不更改中断掩码。</td>
</tr>
<tr>
<td></td>
<td>假</td>
<td>禁用全局中断行为，而不更改中断掩码。</td>
</tr>
<tr>
<td>数字量输入全局中断启用（CANopen 对象 6005（十六进制））</td>
<td>真</td>
<td>启用全局中断行为，而不更改中断掩码。</td>
</tr>
<tr>
<td></td>
<td>假</td>
<td>禁用全局中断行为，而不更改中断掩码。</td>
</tr>
<tr>
<td>如果缺少任何模块或功能块，请勿进入操作模式</td>
<td>真</td>
<td></td>
</tr>
<tr>
<td></td>
<td>假</td>
<td></td>
</tr>
<tr>
<td>如果存在任何意外模块或功能块，请勿进入操作模式</td>
<td>真</td>
<td></td>
</tr>
<tr>
<td></td>
<td>假</td>
<td></td>
</tr>
<tr>
<td>如果任何模块或功能块出现故障，请退出操作模式</td>
<td>真</td>
<td></td>
</tr>
<tr>
<td></td>
<td>假</td>
<td></td>
</tr>
</tbody>
</table>

*缺省值
CANopen 配置

此屏幕是信息屏幕。参数由 Frame Application 定义。

有关更多介绍，请参阅自动化网站 (CiA) 中的 CAN 或 SoMachine DTM 编程指南 (参见第7页)。
4.2 岛接口配置

本节包含了哪些内容?

本节包含了以下主题:

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>岛摘要</td>
<td>24</td>
</tr>
<tr>
<td>地址设置</td>
<td>25</td>
</tr>
<tr>
<td>电源资源</td>
<td>26</td>
</tr>
</tbody>
</table>
岛摘要

变量在 Assigned Names 选项卡中进行定义和命名。
Island Summary 选项卡包含以下列:

<table>
<thead>
<tr>
<th>列</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>模块/通道</td>
<td>设备的通道的名称</td>
</tr>
<tr>
<td>已分配名称</td>
<td>通道的地址</td>
</tr>
<tr>
<td>类型</td>
<td>通道的数据类型</td>
</tr>
</tbody>
</table>
地址设置

概述

地址设置提供岛上所有模块或功能块的 I/O 分配。岛接口支持最多 64 个地址。横向的数字列表定义地址单元，纵向的数字列表定义地址十位。

使用此屏幕可以可视化并修改岛摘要扩展的地址。寻址为内部总线 TM5/TM7 的地址：

模块地址

模块地址区域提供所选模块或功能块的地址设置。地址会在添加模块时自动设置。地址值取决于在树形结构中添加模块的顺序。该区域为只读。

0 地址通常由 CANopen 接口使用。
1 地址可任意用于：
- IPDM，如果是 TM5 岛
- TM7 CANopen 接口功能块中包含的嵌入式 I/O

当电子模块安装在总线基板参考 TM5ACBM15 或 TM5ACBM05R（参见 Modicon TM5/TM7 灵活的系统，系统计划和安装指南）时，模块地址由总线基板进行定义。要更改地址，请选择模块，更改新地址区域中的数值，然后按应用（参见第 13 页）按钮。

模块类型

模块类型区域提供所选模块或功能块的类型。该区域为只读。

模块标签

Module Tag 区域默认情况下提供所选模块或功能块的节点地址和类型。类型由标签所替换，以防出现模块或功能块已重命名的情况。该区域为只读。
电源资源

要检查接口的电源资源，选择电源资源选项卡：

以下信息出现在电源资源选项卡中：

<table>
<thead>
<tr>
<th>项</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>段</td>
<td>表示 TMS 端的每个段和 24 Vdc I/O 段。</td>
</tr>
<tr>
<td>第一个模块 / 功能块</td>
<td>表示在此段中的第一个模块或功能块。</td>
</tr>
<tr>
<td>最后一个模块 / 功能块</td>
<td>表示在此段中的最后一个模块或功能块。</td>
</tr>
<tr>
<td>电流消耗</td>
<td>表示计算的此段模块或功能块消耗的电流，以可用电流的百分比表示。</td>
</tr>
<tr>
<td>剩余电流</td>
<td>表示在此段中剩余的可用电流。</td>
</tr>
</tbody>
</table>

注意：电源资源功能表示的电流消耗数值基于假设值，而不是实际的电流测量值。输出的假设值基于典型负载，但可使用每个功能块的“I/O 配置”选项卡中的 24 Vdc I/O 段外部电流设置进行调整。输入信号的假设基于已知的内部负载，因此无法修改。当需要使用电源资源功能来测试电源预算时，实际完整的系统测试和试运行（参见 Modicon TMS/TM7 灵活的系统，系统计划和安装指南）是不可替代的。
术语

根据 IEC 标准，%I 表示输入位（例如，数字量输入类型的语言对象）。

根据 IEC 标准，%IW 表示输入字寄存器（例如，模拟量输入类型的语言对象）。

根据 IEC 标准，%MW 表示存储器字寄存器（例如，存储器字类型的语言对象）。

根据 IEC 标准，%Q 表示输出位（例如，数字量输出类型的语言对象）。

根据 IEC 标准，%QW 表示输出字寄存器（例如，模拟量输出类型的语言对象）。

1 相位计数器

使用一路硬件输入作为计数器输入。该计数器通常在输入中存在脉冲信号时进行加减计数。

2 相位计数器

使用两个输入计数器信号之间的相位差进行加减计数。
术语

专用 I/O

专用 I/O 是高级特性的专用模块或通道。这些功能通常内嵌于模块中，以便不使用 PLC 控制器的资源，并提供快速响应时间（依功能而定）。就功能而言，它可以算作“独立”模块，因为功能独立于控制器处理循环。它只与控制器 CPU 交换某些信息。

串扰

串扰是两个通道之间由电容、电感或电导耦合导致的不需要的信号。

主站 / 从站

在实施了主站 / 从站模型的网络中，控制方向只有一个，即从主站设备或过程到一个或多个从站设备。

以太网

以太网是一种用于 LAN 的物理和数据链路层技术，也称为 IEEE 802.3。

任务

一组段和子程序，循环或周期性执行 MAST 任务，或周期性执行 FAST 任务。任务具有优先级，并且链接到控制器的输入和输出。这些 I/O 将随之被刷新。一个控制器可以有多个任务。

保留数据

保留数据值，用于下一次电源接通或热启动。即使在控制器意外关闭或正常关闭控制器后，该值也仍然保留。

净重

表示在使用除皮装置之后放在仪器上的负载的重量。

净重 = 毛重 - 皮重

减载

减载描述运行规格的降低。对于设备而言，一般是指适当降低标称功率，以利于设备在环境条件较高（如较高的温度或较高的海拔高度）的情况下正常运行。
术语

分配的变量
如果可以获知变量在控制器存储器中的位置，则该变量为“分配的变量”。例如，我们可以说 Water_pressure 变量通过其与存储器位置 %MN102.Water_pressure 的关联进行分配。

功能

功能
- 是返回 1 个直接结果的 POU
- 直接通过其名称（而不是通过实例）调用
- 不具备从一个调用到下一个调用的持久状态
- 可以用作表达式中的操作数
示例：布尔 (AND) 操作符、计算、转换 (BYTE_TO_INT)

功能块 (FB)
请参见 FB。

功能块图 (FBD)
请参见 FBD。

协议

协议是一种惯例或标准，用于控制和启用两个计算端点之间的连接、通讯和数据传输。

即时寻址
直接对编程指令中被用作操作数和参数的存储器对象（包括物理输入和输出）进行寻址，其方法是使用这些对象的直接地址（例如 %Iwx 或 %QWx）。

在程序中使用即时寻址虽然可以避免为这些对象创建符号，但也存在缺点。例如，如果通过添加或删除设备、I/O 模块或片段来更改程序配置，则用作编程指令操作数和/或参数的即时地址不会自己更新，而必须进行手动更正，这可能需要进行大量程序修改并导致不正确的编程指令。（请参见 符号寻址。）

反射输出
在计数模式下，高速计数器的当前值以其配置值为基础测得，以此确定这些专用输出的状态。
术语

后配置
后配置文件包含与机器无关的参数，包括：
- 机器名
- 设备名或 IP 地址
- Modbus 串行线路地址
- 路由表

周期执行
主任务是循环执行的。在周期模式下，您可以定义必须执行主任务的特定时间（周期）。如果执行时间短于这个时间，则在下一个周期之前将生成等待时间。如果执行时间超过这个时间，则控制系统将指示溢出。如果溢出过高，控制器将停止。

固件
固件表示控制器上的操作系统。

子站电缆
子站电缆是用于将 TAP 连接到设备的无端接支线。

定位变量
定位变量具有地址。（请参见非定位变量。）

实时时钟 (RTC)
请参见 RTC

常开
常开触点，是一个触点对，在执行器不活动（未通电）时打开，在执行器活动（通电）时关闭。

干线电缆
干线电缆是主站电缆，两个物理末端均带有限端接电阻器。

应用程序源
应用程序源文件可以上载到 PC，以重新打开 SoMachine 项目。此源文件可以支持完整的 SoMachine 项目（例如，包含 HMI 应用程序的项目）。
术语

引导应用程序
一些包含与机器相关的参数的文件:
- 机器名
- 设备名或 IP 地址
- Modbus 串行线路地址
- 路由表

循环任务
循环扫描时间具有用户指定的固定持续时间（间隔）。如果当前的扫描时间比循环扫描时间短，则控制器会等到该循环扫描时间过去之后再启动新扫描。

快速 I/O
快速 I/O 是具有某些电子特性（例如，响应时间）的特定 I/O，但对这些通道的处理由控制器 CPU 完成。

总线基板
总线基板是一种安装设备，用于将电子模块固定在 DIN 导轨上，并将其连接到 M258 和 LMC058 控制器的 TM5 总线。各个基板总线可扩展 TM5 数据并延伸到电源总线和 24 Vdc I/O 电源段。通过将电子模块插入基板总线可向 TM5 系统添加这些模块。基板总线还为端子块提供关键。

托盘
托盘是一种便携式平板，用来存放或转移货物。

扩展 I/O 模块
扩展输入或输出模块，是将其他 I/O 添加到本体控制器的数字量或模拟量模块。

扩展总线
扩展总线是扩展模块和 CPU 之间的电子通讯总线。

扫描
控制器扫描程序执行 3 个基本功能:[1] 读取输入并将这些值放入存储器中；[2] 每次执行应用程序中的 1 个指令并将结果存储在存储器中；[3] 使用这些结果更新输出。
持久性数据
下一次应用程序更改或冷启动时使用的持久性数据的值。仅在重新启动控制器时复位为初始时重新初始化。需要特别指出的是，这些数据下载后它们的值保持不变。

指令列表语言 (IL)
请参见 IL。

控制器
控制器 (或称为“可编程逻辑控制器”，或“可编程控制器”) 用于工业流程的自动化。

控制器状态输出
控制器状态输出是一种特殊功能，用在位于控制器外部负责控制输出设备电源或控制器电源的电路中。

数字量 I/O
数字量输入或输出。它在电子模块上有一个独立的电路连接，与储存该 I/O 电路上的信号值的数据表位直接对应。它可以对 I/O 值进行控制逻辑数字访问。

数据日志
控制器在数据日志中记录与用户应用程序相关的事件。

最大重量
最大测量能力，不考虑增加的皮重。

最小重量
低于该重量的负载值测量结果可能由于检测到太大的相对误差而失去意义。

最短 I/O 更新时间
最短 I/O 更新时间是指总线循环关闭的最短时间，以便在每次循环时强制更新 I/O。

机器
机器包含若干个功能和/或设备，正是这些功能或设备构成了机器。

标度分格
采用质量单位的值，表示一个数字指示的两个连续指示间的差异。
术语

校准
给一件测量仪器标刻度。

梯形图语言
请参见 LD。

模拟量输入
模拟量输入模块包含的电路将模拟量 DC 输入信号转换为可由处理器操作的数字值。言外之意是，模拟量输入通常为直接输入。这表示数据表值将直接反映模拟量信号值。

模拟量输出
模拟量输出模块包含的电路将与数字值输入成比例的模拟量 DC 信号从处理器传输到模块。言外之意是，模拟量输出通常为直接输出。这表示数据表值将直接反映模拟量信号值。

毛重
表示在未使用除皮装置或皮重预定义装置的情况下负载在仪器上的重量。

源极输出
源极输出，是一种接线布局，在这种布局中，输出电子模块向设备提供电流。
+24 Vdc 是源极输出的参考。

漏极输入
漏极输入是一种接线布局，在这种布局中，设备向输入电子模块提供电流。
0 Vdc 是漏极输入的参考。

热插拔
热插拔是在系统保持运行的情况下用相同类型的组件进行组件更换。更换组件安装好之后，便会自动开始运行。

电子模块
在可编程控制器系统中，大多数电子模块直接与机器/过程的传感器、执行器和外部设备交互。此类电子模块是安装在总线基板中的组件，用于在控制器和现场设备之间提供电气连接。提供具有多种信号电平和功能的电子模块。（某些电子模块不是 I/O 接口，包括配电模块和发射器/接收器模块。）
术语

电源端子
电源连接到这些端子来为控制器供电。

皮重
与产品一起放在负载接收器上等待称重的负载。

皮重值
负载的重量值，由皮重全桥应变计电子模块确定。

皮重预定义装置
能用毛重值减去预定义的皮重值并显示计算结果的装置。负载范围相应地减小。

端子块
端子块是在电子模块中安装的组件，用于在控制器和现场设备之间提供电气连接。

符号
符号是字母数字字符（最多32个）组成的字符串，其中第一个字符为字母。它使您可以个性化控制器对象，以促进应用程序的可维护性。

符号寻址
间接对编程指令中被用作操作数和参数的存储器对象（包括物理输入和输出）进行寻址，其具体实现方法是首先使用与编程指令关联的符号为这些对象定义符号。

与即时寻址相比，建议使用此方法，因为如果程序配置更改，则符号会使用其新的即时地址关联自动更新，而用作操作数或参数的即时地址却不会更新。（请参见即时寻址。）

系统变量
系统变量结构提供控制器数据和诊断信息，并可以使用它向控制器发送命令。

系统时间
内部时钟，为设备提供系统时间。

结构化文本
以结构化文本（ST）语言编写的程序，包括复杂的语句和嵌套指令（例如：迭代循环、条件执行或功能）。ST 符合 IEC 61131-3。
术语

编码器
编码器是用来测量长度或角度的设备 (线性或旋转编码器)。

网络
网络包含共享一个公用数据路径和通讯协议的各种互联设备。

节点
节点是通讯网络上的可寻址设备。

设备
设备是机器的组成部分。

负载接收器装置
用于接收负载的仪器的一部分。

输入滤波器
输入滤波器是消除输入噪声的特殊功能。此功能可用于消除限位开关中的输入噪声和抖动。所有输入都使用硬件提供一层输入过滤。使用软件的其他滤波器也可通过编程或者配置软件加以配置。

输入端子
输入端子位于扩展 I/O 模块前部，用于连接来自输入设备（如传感器、按钮和限位开关）的输入信号。对于某些模块而言，输入端子接受漏极和源极 DC 输入信号。

输出端子
输出端子将输出信号连接到输出设备（如机电继电器和电磁阀）。

配置
配置包括系统内硬件组件的布局和互连以及硬件和软件的选择，这些方面可决定系统的运行特性。

锁定输入
锁定输入模块与采用短脉冲传输消息的设备交互。捕捉和记录输入脉冲，用于应用程序以后进行检查。
术语

闪存
闪存是可覆盖的非易失性存储器。它存储在一个特殊的可擦除、可重编程的 EEPROM 上。

阈值输出
阈值输出由 HSC 根据配置过程中确定的设置直接控制。

除皮
当负载放在负载接收器上时，能够使仪表指示移到零位的操作。

除皮装置
当负载放在负载接收器上时，能够使仪表指示移到零位的装置。

非定位变量
非定位变量没有地址。 (请参见定位变量。)

顺序功能图
请参见 SFC。

ADC
模拟量 / 数字量转换器

AFB
应用程序功能块

AMOA
安装在驱动器上的应用程序选件板的 modbus 地址。

ARP
地址解析协议，它是将 IP 地址映射到 MAC（硬件）地址的以太网 IP 网络层协议。
ARRAY

ARRAY 是包含单一类型元素的表。语法如下：ARRAY \[\text{limits}\] OF <Type>

示例 1: ARRAY \[1..2\] OF BOOL 是由 2 个 BOOL 类型的元素组成的一维表。
示例 2: ARRAY \[1..10, 1..20\] OF INT 是由 10x20 个 INT 类型的元素组成的二维表。

ARW

反复位发条

ASCII

美国信息交换标准码是用于表示字母数字字符（字母、数字以及某些图形和控制字符）的通讯协议。

ATC

模拟张力控制

ATV

ATV 是 Altivar 驱动器的型号前缀。（例如，“ATV312”指 Altivar 312 变速驱动器。）

AWG

美国接线规格标准，规定了北美地区的接线规格。

A 编码

这些连接器在凸型连接器上有一个凸起的键，在凹型连接器上有一个匹配插槽。这是用于传感器和分线盒应用的标准编码：

![连接器编码示意图](image)

BCD

二进制编码的十进制格式，利用一个 4 位组（nybble/nibble，也称为半字节）表示 0 到 9 之间的十进制数。在此格式中，用于编码十进制数字的四个位具有部分未使用的组合。例如，数字 2,450 编码为 0010 0100 0101 0000
BOOL
布尔类型，用于计算的基本数据类型。BOOL变量可为以下值之一：0（FALSE），1（TRUE）。从字中抽取的位为BOOL类型，例如：%MW10.4是编号为10的存储器字的第五个位。

BOOTP
引导程序协议，是一种UDP网络协议，可由网络客户端用于从服务器自动获取IP地址（可能还包括其他数据）。客户端使用客户端MAC地址向服务器标识自己。服务器会维护预先配置的客户端设备MAC地址及关联IP地址表，从而向客户端发送其预先配置的IP地址。BOOTP最初用于使无盘主机能够通过网络远程启动。BOOTP进程分配一个无限租期的IP地址。BOOTP服务使用UDP端口67和68。

bps
每秒位数，传输速率的定义，有时也与千位（kbps）和兆（mbps）一起使用。

BSH
BSH是Schneider Electric的Lexium伺服电机。

BYTE
8位组合在一起称为一个BYTE。可以按二进制或八进制模式输入一个BYTE。BYTE类型以八位的格式编码，其范围为16#00到16#FF（以十六进制表示）。

B编码
这些连接器在凹型连接器上有一个凸起的键，在凸型连接器上有一个匹配插槽。这些连接器（也称为反向键型）用于现场总线应用。

CAN
控制器局域网络协议（ISO 11898），用于串行总线网络，旨在实现智能系统中智能设备（来自多家制造商）之间的互连，以处理实时的工业应用。CAN最初为汽车行业而开发，现在已应用于多种工业自动控制环境中。
CANmotion

CANmotion 是基于 CANopen 的运动总线，带有可实现 Motion Controller 和驱动器之间同步的其他机制。

CANopen

CANopen 是一种开放工业标准通讯协议和设备配置文件规范。

CFC

连续功能图 (IEC61131-3 标准的扩展)，是一种图形化编程语言，工作方式与流程图类似。通过添加简单的逻辑块（AND、OR 等等），即可使用此图形式化表示程序中的每个功能或功能块。每个功能块的输入位于左侧，输出位于右侧。功能块输出可链接到其他功能块的输入，从而创建复合表达式。

CiA

CAN in automation，是一个非赢利的制造商和用户组织，致力于开发和支持基于 CAN 的高层协议。

CIP

在网络应用层实施 公共工业协议后，该协议可以与其他基于 CIP 的网络进行无缝通讯，而无需考虑协议。例如，如果在以太网 TCP/IP 网络的应用层执行 CIP，可创建 EtherNet/IP 环境。同样，如果在 CAN 网络的应用层执行 CIP，可创建 DeviceNet 环境。在这种情况下，EtherNet/IP 网络上的设备可以通过 CIP 桥接器或路由器与 DeviceNet 网络上的设备进行通讯。

CMU

电流测量单位，用于将 TeSys 提供的相对电流值 (%) 转换成真实 ISO 值 (A)。

CPDM

控制器配电模块

CRC

网络消息的循环冗余校验字段，它包含产生校验和的少量位。此处的消息由发射器根据消息的内容进行计算，接收节点后，再次计算该字段。一旦两个 CRC 字段存在差异，则说明传输的消息与接收的消息不同。
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA</td>
<td>加拿大标准协会，定义和维护危险环境中工业电子设备的标准。</td>
</tr>
<tr>
<td>CTS</td>
<td>清除发送，是一种数据传输信号，用于确认来自传输站的 RDS 信号。</td>
</tr>
<tr>
<td>DCE</td>
<td>数据通讯设备，介绍启动、停止和维持网络会话的设备（通常是指调制解调器）。</td>
</tr>
<tr>
<td>DHCP</td>
<td>动态主机配置协议，它是 BOOTP 的高级扩展。DHCP 虽然较为高级，但是 DHCP 和 BOOTP 可以通用。 (DHCP 可以处理 BOOTP 客户端请求。)</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung，是一家制定工程和维度标准的德国机构。</td>
</tr>
<tr>
<td>DINT</td>
<td>双精度整数类型，以 32 位格式编码。</td>
</tr>
<tr>
<td>DNS</td>
<td>域名系统，是为连接 LAN 或因特网的计算机和设备进行命名的系统。</td>
</tr>
<tr>
<td>DSR</td>
<td>数据设置就绪，是一种数据传输信号。</td>
</tr>
<tr>
<td>DTM</td>
<td>设备类型管理器，能够显示 SoMachine 中的现场设备，使用它可以透 SoMachine、控制器和现场总线与每个现场设备进行直接通讯，省却了进行独立电缆连接的麻烦。</td>
</tr>
<tr>
<td>DWORD</td>
<td>双字类型，以 32 位格式编码。</td>
</tr>
<tr>
<td>EDS</td>
<td>电子数据表，包含诸如设备属性这样的信息，例如驱动器的参数和设置。</td>
</tr>
</tbody>
</table>
术语

EEPROM
电可擦除可编程只读存储器，是一种非易失性存储器，用于存储切断电源时必须保存的数据。

EIA
电子工业联盟，是美国的一个贸易组织，负责制定电气/电子和数据通讯标准（包括 RS-232 和 RS-485）。

EIA 机架
电子工业联盟机架，是一种标准化（EIA 310-D、IEC 60297 和 DIN 41494 SC48D）系统，用于在 19 英寸（482.6 毫米）宽的栈或机架中安装各种电子模块。

EN
EN 表示由 CEN（欧洲标准化委员会）、CENELEC（欧洲电工标准化委员会）或 ETSI（欧洲电信标准协会）维护的许多欧洲标准中的某一个标准。

ERC
偏心滚轮传送带

ESD
静电释放

EtherNet/IP
以太网工业协议，是适用于工业系统中自动化解决方案中的开放式通讯协议。EtherNet/IP 是在其上层执行公共工业协议的网络家族成员。支持组织 (ODVA) 指定 EtherNet/IP 是为了实现全球适应性和介质独立性。

FAST 任务
FAST 任务是持续时间较短的高优先级周期性任务，通过其编程软件在处理器上运行。此任务运行速度快，不会影响低优先级主 (MAST) 任务的执行。当需要对离散量输入的快速周期性变化进行监控时，FAST 任务就会非常有用。

FB
功能块，执行特定的自动化功能，如速度控制、间隔控制或计数。功能块由配置数据和一组操作参数组成。
术语

FBD
功能块图，是面向图形的编程语言，与 IEC 61131-3 兼容，可用于一系列网络，其中每个网络包含一个框和连接线路的图形结构，该图形结构表示逻辑或算术表达式、功能块的调用、跳转或返回指令。

FDT
现场设备工具，用于现场设备和 SoMachine 之间的标准化通讯。

FE
功能性接地，是指必须进行接地的系统或设备上的接地点，这样有助于防止设备损坏。

FG
频率发生器

FTP
文件传输协议，是一种标准网络协议（以客户端-服务器架构为构建基础），用于通过基于 TCP/IP 的网络交换和操作文件。

FWD
前进

GVL
全局变量列表，用于管理每个应用程序 POU 中可用的全局变量。

HE10
用于频率低于 3MHz 的电子信号的矩形连接器，符合 IEC60807-2。

HMI
人机界面，是工业设备采用的一种操作员界面（通常为图形界面）。

HSC
高速计数器
HVAC

加热通风和空气调节应用程序，用于监控和控制室内环境。

I/O

输入/输出

I/O 扫描

输入/输出扫描，持续轮询 I/O 模块，以收集数据位和状态、错误及诊断信息。这一过程用于监控输入和控制输出。

I/O 端子

输入/输出端子，位于扩展 I/O 模块前部，用于连接输入和输出信号。

ICMP

因特网控制消息协议，报告错误并提供有关数据报处理有关的信息。

IEC

国际电工委员会，是一个非盈利性和非政府性的国际标准组织，负责为所有电器、电子和相关技术制定和发布国际标准。

IEC 61131-3

IEC 61131-3 是工业自动化设备（如控制器）采用的国际电工委员会标准。IEC 61131-3 针对控制器编程语言，并定义了两个图形编程语言和两个文本编程语言标准：
- 图形：梯形图、功能块图
- 文本：结构化文本、指令列表

IEEE

电子与电气工程师协会，是一个非盈利性的国际标准和遵从性评估组织，旨在促进电工技术的各个领域的发展。

IEEE 802.3

IEEE 802.3 是 IEEE 标准的一个集合，定义了有线以太网的物理层以及数据链路层的介质访问控制 (MAC) 子层。
术语

IL

以指令列表语言编写的程序，包括由控制器按顺序执行的一系列指令。每个指令包括一个行号、一个指令代码和一个操作数。（IL 符合 IEC 61131-3。）

INT

单精度整数，以 16 位格式编码。

IP

因特网协议，是 TCP/IP 协议系列中的一部分，用于跟踪设备的因特网地址、对传出消息进行路由并识别传入消息。

IP 20

依据 IEC 60529 制定的入口防护等级，具备 IP20 防护等级的模块可防止进入或接触大于 12.5 毫米的物质。但这类模块不防水。

IP 67

依据 IEC 60529 制定的入口防护等级，具备 IP67 防护等级的模块可全面防止进入和接触尘埃。即使将机体浸入水下 1 米，仍可防止污水的进入。

Kd

微分增益

Ki

积分增益

Kp

比例增益

LAN

局域网，是在家庭、办公室或机构环境中实施的一种短距离通讯网络。
术语

LCD
液晶显示屏

LD
以梯形图编写的程序，它包括一个控制器程序指令图形表示，其中包含控制器按顺序执行的一系列梯级中的触点、线圈和块符号。符合 IEC 61131-3。

LED
发光二极管，是在通电时发亮的指示灯。

LINT
长整数，是 64 位变量（INT 的四倍或 DINT 的两倍）。

LMC
lexium 运动控制

LRC
纵向冗余校验

LREAL
长实型，是 64 位变量。

LSB
最低有效位（也叫最低有效字节），在传统的十六进制或二进制表示法中，它是数字、地址或字段的一部分，作为最右侧的单值写入。

LWORD
长字类型，以 64 位格式编码。

MAC 地址
介质访问控制地址，是与特定硬件设备关联的唯一的 48 位编号。在生产网卡或设备过程中，需要为每个网卡或设备编入一个 MAC 地址。

Magelis
Magelis 是 Schneider Electric 的 HMI 终端系列的商用名称。
术语

MAST

主 (MAST) 任务是一种处理器任务，通过其编程软件运行。MAST 任务有两段：
- **IN**: 在 MAST 任务执行之前，将输入复制到 IN 段。
- **OUT**: 在 MAST 任务执行完后，将输出复制到 OUT 段。

MIB

管理信息库，是一种对象数据库，由类似 SNMP 的网络管理系统监控。SNMP 用于监控由设备的 MIB 所定义的设备。Schneider 已获得了一个专用 MIB: groupeschneider (3833)。

Modbus

Modbus 通信协议允许在连接到同一网络的多个设备之间进行通讯。

Modbus SL

Modbus 串行线路

MSB

最高有效位（也叫最高有效字节），在传统的十六进制或二进制表示法中，是数字、地址或字段的一部分，作为最左侧的单值写入。

NAK

负确认

NC

常闭触点是当执行器处于非激活状态时（未通电）关闭，处于激活状态时（通电）开启的触点对。

NEC

美国国家电器规程规定电气接线和设备的安全安装。

NEMA

美国国家电气制造商协会，负责发布各种类型的电气机箱的性能标准。NEMA 标准涉及防腐蚀、防雨淋和防淹没等性能。对于 IEC 成员国家，IEC 60529 标准还对机箱的入口防护等级进行了分类。
Nibble

Nibble is a nibble (4 bits representing a byte).

NMT

Network Management, providing network initialization, error control, and device status control services.

NMT State Machine

Network Management state machine defines the communication behavior of CANopen devices. CANopen NMT state machine consists of an initial state, pre-operational state, operational state, and stop state. After powering on or reset, the device enters the initial state. When the device initialization is complete, it automatically enters the pre-operational state and sends a启消息 to indicate this status change. After sending this message, the device can begin work. In the pre-operational state, the device can start and transmit synchronization, time tagging, or heartbeat messages. In this state, the device cannot communicate through PDO, but must communicate through SDO. In the operational state, the device can use all supported communication objects.

ODVA

Open DeviceNet Vendor Association, providing support for series of network technologies based on CIP (EtherNet/IP, DeviceNet, and CompoNet).

OS

Operating system, can be used to upload/download firmware.

OSI

Open Systems Interconnection Reference Model, a 7-layer model used to describe network communications. Each abstract layer relies on the lower layer to provide services and offers services to the upper layer.

OTB

Optimized Terminal Block, used in Advantys I/O distributed module environments.

PCI

Peripheral Component Interconnect, a standard industry bus used for connecting peripherals.

PDM

Power Distribution Module, distributes AC or DC field power to I/O module clusters.
术语

PDO
过程数据对象。无需确认的广播消息传输，或在基于 CAN 的网络中从生产者设备发送到消费者设备。来自生产者设备的传输 PDO 具有特定标识符，该标识符与消费者设备的接收 PDO 对应。

PDU
协议数据单元

PE
保护性接地是总线上的一种回路，针对控制系统中的传感器或执行器设备生成的故障电流。

PI
比例 - 积分

PID
比例 - 积分 - 微分控制

PLC
可编程逻辑控制器，是工业制造过程的“大脑”。它可以让过程自动化，而不是使用继电器控制系统。PLC 是适合在条件苛刻的工业环境中使用的计算机。

PLCopen
PLCopen 标准通过对工具、库以及模块化软件编程方法进行标准化，为自动化和控制行业带来了效率、灵活性和制造商独立性。

PLI
脉冲锁存输入

POU
程序组织单元，包括源代码变量声明和相应的指令集。POU 有助于简化软件程序、功能和功能块的模块化重用。经过声明后，POU 便可相互使用。SoMachine 编程需要使用 POU。
POU FB

程序组织单元功能块类型，是可以由用户以 ST、IL、LD 或 FBD 语言定义的用户程序。可在应用程序中使用 POU FB 类型实现以下目的：

- 简化程序的设计和输入
- 使程序更便于阅读
- 简化调试
- 减少生成的代码量

Profibus DP

Profibus 分散外设

一种开放式总线系统，可使用基于屏蔽 2 线线路的电子网络或基于光缆的光纤网络。DP 传输可在控制器 CPU 和分布式 I/O 设置之间实现高速、循环式的数据交换。

Pt100/Pt1000

Platinum 热电阻的特性取决于其在 0°C 温度时的标称电阻 R0。

- Pt100 （R0 = 100 欧姆）
- Pt1000 （R0 = 1 千欧姆）

PTO

脉冲串输出，用于控制，例如，开放回路中的步进器电机。

PWM

脉冲宽度调制，用于调整脉冲信号长度的调节过程（例如，用于温度控制的执行器）。对于此类信号，要使用晶体管输出。

RAM

随机存取存储器

REAL

REAL 是数值数据类型。REAL 类型以 32 位格式编码。

RFID

射频识别，是一种自动识别方法，此方法的基础是使用 RFID 标签或转发器存储数据并按数据进行远程检索。
术语

RJ-45
此标准插座是一种模块化连接器，通常用于通讯网络。

RPDO
接收 PDO，在基于 CAN 的网络中向设备发送数据。

RPM
每分钟转数

RPS
每秒钟转数

RS-232
RS-232（也称为 EIA RS-232C 或 V.24）是基于三条电线的串行通讯总线的标准类型。

RS-485
RS-485（也称为 EIA RS-485）是基于两条电线的串行通讯总线的标准类型。

RTC
实时时钟选件，在控制器断电后，该选件可以确保一定时间长度内的计时。

RTS
请求发送，是一种数据传输信号，由来自目标节点的 CTS 信号确认。

RTU
远程终端设备，是实际环境中的对象与分布式控制系统或 SCADA 系统之间的交互设备，用来将遥测数据传输到系统和 / 或根据从系统收到的控制消息修改所连接对象的状态。

RxD
接收数据（数据传输信号）

SCADA
监控和数据采集系统，用来监控、管理和控制工业应用程序或过程。
术语

SDO
在基于 CAN 的网络中，**服务数据对象**消息由现场总线主站用于访问（读/写）网络节点的对象目录。**SDO 类型**包括服务 SDO (SSDO) 和客户端 SDO (CSDO)。

SEL-V
安全超低电压，符合 IEC 61140 安全超低电压指令的系统将采用以下方式保护自己：任何 2 个可访问部件之间（或者 1 个可访问部件和 1 类设备的 PE 终端之间）的电压不超过正常情况或单个故障情况下的指定值。

SERCOS
SErial Realtime COmmunications System 是与以下对象互连的数字控制总线：
- 运动控制，
- 驱动器，
- I/O。
- 传感器和执行器（用于数字控制机器和系统）。
这是标准化且开放的控制器到智能数字设备接口，旨在用于标准化闭环回路实时数据的高速串行通讯。

SERCOS III
基于 SERCOS 实现的工业以太网。

SFC
以顺序功能图语言编写的程序，可用于能被拆分为数个步骤的过程。SFC 包括具有关联操作的步骤、具有相关联逻辑条件的转换，以及步骤和转换之间的定向链接。
（SFC 标准在 IEC 848 中定义。符合 IEC 61131-3。）

SINT
有符号整数，是 16 位值。

SL
串行线路

SMS
短消息服务，是一种用于电话（或其他设备）的标准通讯服务。它通过移动通讯系统发送简短文本消息。
术语

SNMP
简单网络管理协议，可以通过轮询设备状态、执行安全测试以及查看与数据传输相关的信息来远程控制网络。它还可用于远程管理软件和数据库。该协议还允许执行活动的管理任务，如修改和应用新配置。

SSI
串行同步接口，是用于相对和绝对测量系统（如编码器）的通用接口。

ST
请参见结构化文本。

STN
扫描扭曲向列（也称为被动矩阵）

STRING
STRING 变量是一系列 ASCII 字符。

TAP
端子访问点，是连接到干线电缆的接线盒，可以插入子站电缆。

TCP
传输控制协议是基于连接的传输层协议，可提供可靠的同步双向数据传输。TCP 是 TCP/IP 协议套件的一部分。

TFT
薄膜传输（也称为主动矩阵）

TP
触模探测器是由快速输入信号（快速传感器）触发的位置捕捉。在触模探测器输入的上升沿，捕捉编码器的位置。示例：这用于包装机器以捕捉薄膜上的打印标记位置，从而始终在相同位置上进行切割。

TPDO
传输 PDO 在基于 CAN 的系统中从设备读取数据。
TVDA

经过测试、验证和归档的架构

TxD

TxD 表示传输信号。

UDINT

无符号双精度整数，以 32 位编码。

UDP

用户数据报协议，是无连接模式协议（由 IETF RFC 768 定义），在该协议下，消息在数据报（数据电报）中传递到 IP 网络上的目标计算机。UDP 协议通常与因特网协议捆绑在一起。UDP/IP 消息不要求获得响应，因此非常适合那些对于丢弃的数据包不需要重新传输（如流视频和需要实时性能的网络）的应用。

UINT

无符号整数，以 16 位编码。

UL

Underwriters Laboratories，美国的一家进行产品测试和安全认证的组织。

UTC

世界协调时间

VSD

变速驱动器

WORD

WORD 类型以 16 位格式编码。
术语
索引

CANopen 参数, 21
CANopen 接口
 一般说明, 11
CANopen 配置, 22
TM5, 11
TM5 CANopen 接口, 11
TM5 CANopen 接口
 TM5NCOM1, 13
TM5NCO1, 11
TM7, 11
TM7 CANopen 接口, 11
TM7 CANopen 接口
 TM7NCOM08B, 16
 TM7NCOM16A, 17
 TM7NCOM16B, 18
TM7NCOM08B, 11
TM7NCOM16A, 11
TM7NCOM16B, 11
地址设置, 25
岛接口配置, 23
岛摘要, 24
电源资源, 26
配置
 CANopen 接口, 20