XUK9TAH2MM12 (50 x $23 \times 50)$

@ 2022 schneider Electric. "All Rights Reserved.

A WARNING	A CAUTION
TENDED EQUIPMENT	ZARD OF LASE
- Commpl with the evining and configuration instrutions.	- Do not stare into the beam.
- Check the coonnecitions and fixings during maintenance	- Follow ali operating instructio
e to follow the	
dipment damage.	result in in ijury or equipment damag

CLASS 1 LASER PRROUCT (IECC 60825-1: 2014)
 result in injury o or equipipment damamege.

UK Representative: UK Representative : Schneider Electric
Stafford Park 5 .
Telford TF3 3 BL Telford TF3 3 BL
United Kingdom

 aкс: +77 (727) 3572439

1.Step: First position IN $1=$ High >3 sec

2.Step: Second position deactivatio
IN $1=H$ High $>32 \mathrm{~ms}$ and deactivatio
Set points NEAR and FAR are stored permanently even if you return from "Tandem Mode" in "Anti-Collision Mode",
Teach-in of the distance is done at the falling edge of the signal.
To set new distances for $N E A R$ and $F A R$ a new complet teach
To set new distances
During teach, $\mathrm{Q1}$ and Q 2 are in slow mode condition $(Q 1=1, Q 2=0)$

Time out to go back to operation mode between 1st step and 2 nd step should be 30 minutes

Feedback of teach-in and wire brake check

If low signal function activated
Response to check wires not cut and teach is completed via external wire:
$Q 1=Q 2=3$ pulses 100 ms high $/ 100 \mathrm{~ms} 10 \mathrm{w}(600 \mathrm{~ms})$
CIINa

Onee

(1) If the distance between cranes is big enough, the speed of each crane can be high ($20 \ldots . .60 \mathrm{~m} / \mathrm{min}$)
(2) If the distance is reduced ($3 . .6 \mathrm{~m}$), the speed of each crane must be limited to $10 \mathrm{w}(5 \ldots 15 \mathrm{~m} / \mathrm{min})$.
(3) If the distance is really too short ($1 \ldots 1,5 \mathrm{~m}$), then risk of collision so the 2 cranes must be stopped.

Setting

on
Flashing Push

Teach-in Anti-Collision Mode by Push button
1.Step: First position
Press button Q for >

Press button Q for >3 sec and release. Feedback of status indicator
2.Step: Second position Press button Q and release
Feedback of status indicators
The nearest of the two positions is taken as NEAR, the other is taken as FAR.
Set points NEAR and FAR are stored permanenty
Set points NEAR and FAR are stored permanently even if y yu return from "Tandem Mode" in "AAti-Collision Mode".
Teach-in of the distance is done when releasing the teac-in button.
During teach, Q1 and Q 2 are in slow mode condition $(Q 1=1, \mathrm{Q} 2=0)$.
Time out to go back to operation mode between 1 st step and 2 nd step should be 5 minutes,
If NEAR and FAR are two close together. previous setting is kept.
IF NEAR and FAR are two close together: previous setting is kep.

Feedback of teach-in via button
Teach Feedback:

- Feedback teach success: Synchronous blinking of LEDs for 3 s
.odack NEAR and FAR are too close together: Fast asynchronous blinking of LEDs for 3 s .

Output during anti-collision mode

$\mathrm{Q}=$ High $/ \mathrm{Q2}=$ High \rightarrow High speed
$\mathrm{Q} 1=$ High $/ \mathrm{Q2}=$ Low \rightarrow Slow
$\mathrm{Q} 1=\mathrm{High} / \mathrm{Q2}=\mathrm{Low} \rightarrow$ Slow
$\mathrm{Q} 1=\mathrm{Low} / \mathrm{Q2}=$ Low \rightarrow Stop
If low signal function is activated
$Q 1=$ Low $/ Q 2=$ High \rightarrow to less signa
$\mathrm{Q1}=$ Low / Q2 $=$ High \rightarrow to lesss signal, reflector outside range or no reflector signal (${ }^{*}$).
If low signal function is disabled
Q1 $=$ high $/ \mathrm{Q}=$ High \rightarrow to less signal, reflector outside range or no reflector signal.
${ }^{(*)}$) See Chapter B (page 3).

Anti-Collision Diagram

If low signal function is activated

Adjustment: Dark operation (N.O.)

XUK9TAH2MM12 (50 x $23 \times 50)$
Teach-in and activation of tandem mode through external wire
$\mathbb{N} 2=$ High
The sensoct teaches the distance of the tandem when activating 1 N 2 for at least 32 ms
The sensor puts a window around the taught-in distance.
After deacativating IN I for ar t east 32 ms, the sensor goes back to anti-collision mode.
The distance of the tandem mode is not stored permanently.

Feedback of teach-in and wire brake check

If low signal function activated
Response that tandem mode is ac
If tandem teach is successfu
Q1 $=\mathrm{Q} 2=$ permanent pulses 100 ms high $/ 100 \mathrm{~ms}$ low (600 ms)
Q $=\mathrm{Q} 2=6$ pulses 100 ms high $/ 100 \mathrm{~ms}$ low (1220 ms) $)$
If 1 N 2 i s deactivated during feedgack, the feedback is stopped immediately
If low signal function is disabled
If low signal function is disabled
No feed back on Q1 and Q2 for successful teach and not successful teach.

Tandem Mode

Setting

$1=$ High $/$ Q2 $=$ Low \rightarrow outside the window and farer than the farest position of the window.
If low signal function \boldsymbol{n}^{*}) is activated
Q1 $=$ Low $Q 2=$ High \rightarrow outside range
(*) * This state can be disabled by pressing Q button for $>16 \mathrm{~s} \mathrm{See}$ (D).

Tandem Diagram

Adjustment: Dark operation (N.O.)

B Low signal disable in case of contactors use (otherwise the use is PLC)

- Press $Q>16 s$ until green and yellow LED flash flash alternatively

- Press the teach button for 1 s ; the low signal function is inactive .

Every consecutive push/release will toggle the function, indicated by green or yellow LED.
To summarize:
If the low signal is

- no feed back on Q1, Q2 after anticollision external teach or tandem teach.
\bullet Q1 and Q2 are modified, see "anticolision diagram" and "tandem diagram

O Beam offemention

Activation:

N $3=$ Low \rightarrow Run (tandem or anti-collision)
IN $3=$ High \rightarrow Diagnostic function, Laser off
Response if \rightarrow N3 switches to high: ${ }^{*}$ *)

- If Q1 is s high \rightarrow low (or low \rightarrow high $)$
- AA must keep its values.

Before beam-off, the cranes should be in Stop Condition
(*). The
(D) Switching NPN/ / NP

- Press $\mathrm{Q} 10 \mathrm{~s} . .1 \mathrm{~s}$ s until green and yellow LED flash alternatively. . As long as the e evlow and green LEEs are flashing, press the teach button for 1 s to invert the output. The green LED shows the output status (PNP).
- Press the teach button for 1 s to invert the output. The yellow LED shows the output status (NPN).Every consecutive push/release will toggle the function, indicated by green or yellow LED.

(E) Switching N.O./N.C

Press 013 s 16 s until green and yellow LED flash at the same time.

- As long as the yellow and green LEDs are flashing, press the teach button for 1 s to invert the output. The yellow LED shows the output status (N.O.)
- When OK, do onot unst the butto for 10 s . Setting is saved. Sensor is ready to operate.
- Press the teach button for 1 s to invert the output. The green LED shows the output status
- Press the teach button for 1 s to invert the output. The green LED shows the output status (N.C.). Every consecutive push/release will toggle the function, indicated by green or yellow LED.

The sensor can be set back to the default setting.
The sensor must not be in tandem mode.
The sensor must not
P ower supply FF
Press button Q or

- Pooser rutuply or
- Keep button pressed for 10 s until LeDs blink three times synchronously

