Unidad de control
Masterpact MTZ Micrologic X
Guía del usuario

03/2019
La información que se ofrece en esta documentación contiene descripciones de carácter general y/o características técnicas sobre el rendimiento de los productos incluidos en ella. La presente documentación no tiene como objeto sustituir dichos productos para aplicaciones de usuario específicas, ni debe emplearse para determinar su idoneidad o fiabilidad. Los usuarios o integradores tienen la responsabilidad de llevar a cabo un análisis de riesgos adecuado y completo, así como la evaluación y las pruebas de los productos en relación con la aplicación o el uso de dichos productos en cuestión. Ni Schneider Electric ni ninguna de sus filiales o asociados asumirán responsabilidad alguna por el uso inapropiado de la información contenida en este documento. Si tiene sugerencias de mejoras o modificaciones o ha hallado errores en esta publicación, le rogamos que nos lo notifique.

Usted se compromete a no reproducir, salvo para su propio uso personal, no comercial, la totalidad o parte de este documento en ningún soporte sin el permiso de Schneider Electric, por escrito. También se compromete a no establecer ningún vínculo de hipertexto a este documento o su contenido. Schneider Electric no otorga ningún derecho o licencia para el uso personal y no comercial del documento o de su contenido, salvo para una licencia no exclusiva para consultarla "tal cual", bajo su propia responsabilidad. Todos los demás derechos están reservados.

Al instalar y utilizar este producto es necesario tener en cuenta todas las regulaciones sobre seguridad correspondientes, ya sean regionales, locales o estatales. Por razones de seguridad y para garantizar que se siguen los consejos de la documentación del sistema, las reparaciones solo podrá realizarlas el fabricante.

Cuando se utilicen dispositivos para aplicaciones con requisitos técnicos de seguridad, siga las instrucciones pertinentes.

Si con nuestros productos de hardware no se utiliza el software de Schneider Electric u otro software aprobado, pueden producirse lesiones, daños o un funcionamiento incorrecto del equipo.

Si no se tiene en cuenta esta información, se pueden causar daños personales o en el equipo.

© 2019 Schneider Electric. Reservados todos los derechos.
<table>
<thead>
<tr>
<th>Capítulo 1</th>
<th>Introducción a la unidad de control Micrologic X</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unidad de control Micrologic X: Presentación</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Unidad de control Micrologic X: Descripción</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Software EcoStruxure Power Commission</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Aplicación EcoStruxure Power Device</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Gestión de contraseñas</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Unidad de control Micrologic X: Digital Modules opcionales</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Página de inicio de Go2SE</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Unidad de control Micrologic X: compra e instalación de un Digital Module</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Unidad de control Micrologic X: Fecha y hora</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Unidad de control Micrologic X: Fuente de alimentación</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Unidad de control Micrologic X: actualización del firmware</td>
<td>37</td>
</tr>
<tr>
<td>Capítulo 2</td>
<td>Uso de la interfaz hombre-máquina Micrologic X</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Descripción de HMI de Micrologic X</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Modos de visualización de la HMI</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Modo de Vista rápida</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Modo de navegación de árbol</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Procedimiento de configuración de la protección</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Menú Medidas</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Menú Alarmas & historial</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Menú Mantenimiento</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Menú Configuración</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Menú Protección</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Mensajes de eventos emergentes</td>
<td>74</td>
</tr>
<tr>
<td>Capítulo 3</td>
<td>Funciones de protección</td>
<td>77</td>
</tr>
<tr>
<td>3.1</td>
<td>Introducción</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Configuración de la protección de acuerdo con la norma UL489SE</td>
<td>79</td>
</tr>
<tr>
<td>3.2</td>
<td>Funciones de protección estándar</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Protección contra sobrecorriente de largo retardo (L o código ANSI 49RMS/51)</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Protección contra sobrecorriente de corto retardo (S o código ANSI 50TD/51)</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Protección contra sobrecorriente instantánea (I o código ANSI 50)</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Protección de defecto a tierra (G o código ANSI 50N-TD/51N)</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Protección de diferencial (ANSI 50G-TD)</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Protección del neutro</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Config. dual</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Enclavamiento selectivo de zona (ZSI)</td>
<td>104</td>
</tr>
<tr>
<td>3.3</td>
<td>Funciones de protección opcionales</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Protección de infratensión (código ANSI 27)</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Protección de sobretensión (código ANSI 59)</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Protección contra infranormal/sobrefrecuencia (código ANSI 81)</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Protección contra potencia inversa (código ANSI 32P)</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Alarma de defecto a tierra (código ANSI 51N/51G)</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Ajuste de mantenimiento para reducción de energía (ERMS)</td>
<td>124</td>
</tr>
</tbody>
</table>
Capítulo 4 Funciones de medición

4.1 Funciones de medición estándar

- Precisión de las medidas conforme a IEC 61557-12
- Características de la medida
- Disponibilidad de medidas
- Configuración de la red
- Medidas en tiempo real
- Cálculo de valores de demanda
- Medida de las potencias
- Algoritmo de cálculo de las potencias
- Medición de energía
- Distorsión total armónica
- Medida del factor de potencia PF y del cos φ

4.2 Funciones de medición opcionales

- Energía por fase
- Análisis de armónicos individuales

Capítulo 5 Funciones de mantenimiento y diagnóstico

5.1 Funciones estándar de mantenimiento y diagnóstico

- Asistencia
- Programación del mantenimiento
- Estado funcionamiento
- Supervisión del interruptor automático
- Supervisión del circuito de disparo
- Supervisión del funcionamiento interno de la unidad de control Micrologic X
- Supervisión de la vida útil del interruptor automático
- Supervisión de la vida útil de la unidad de control Micrologic X
- Supervisión de la función de apertura/cierre
- Supervisión del estado de los contactos
- Supervisión del perfil de carga
- Supervisión del tiempo de funcionamiento
- Visión general del interruptor automático

5.2 Funciones opcionales de mantenimiento y diagnóstico

- Digital Module de asistente para el restablecimiento de la alimentación
- Módulo digital de asistente de funcionamiento del Masterpact
- Módulo digital de captura de forma de onda en evento de disparo
- Digital Module de conjunto de datos heredado de Modbus

Capítulo 6 Funciones de funcionamiento

- Modos de control
- Función de apertura
- Función de cierre

Capítulo 7 Funciones de comunicación

- Comunicación Bluetooth con bajo nivel de energía
- Comunicación NFC
- Conexión USB On-The-Go (OTG)
- Conexión USB
- Recomendaciones sobre ciberseguridad
<table>
<thead>
<tr>
<th>Capítulo 8</th>
<th>Gestión de eventos</th>
<th>247</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definición de evento</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Tipo de evento</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Notificaciones de eventos</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Visualización de eventos</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Historial de eventos</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Lista de eventos</td>
<td>257</td>
</tr>
<tr>
<td>Apéndices</td>
<td></td>
<td>269</td>
</tr>
<tr>
<td>Apéndice A</td>
<td>Apéndice A</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Información sobre la licencia</td>
<td>271</td>
</tr>
</tbody>
</table>
Información de seguridad

Información importante

AVISO

Lea atentamente estas instrucciones y observe el equipo para familiarizarse con el dispositivo antes de instalarlo, utilizarlo, revisarlo o realizar su mantenimiento. Los mensajes especiales que se ofrecen a continuación pueden aparecer a lo largo de la documentación o en el equipo para advertir de peligros potenciales, o para ofrecer información que aclara o simplifica los distintos procedimientos.

La inclusión de este icono en una etiqueta “Peligro” o “Advertencia” indica que existe un riesgo de descarga eléctrica, que puede provocar lesiones si no se siguen las instrucciones.

Éste es el icono de alerta de seguridad. Se utiliza para advertir de posibles riesgos de lesiones. Observe todos los mensajes que siguen a este icono para evitar posibles lesiones o incluso la muerte.

PELIGRO

PELIGRO indica una situación de peligro que, si no se evita, provocará lesiones graves o incluso la muerte.

ADVERTENCIA

ADVERTENCIA indica una situación de peligro que, si no se evita, podría provocar lesiones graves o incluso la muerte.

ATENCIÓN

ATENCIÓN indica una situación peligrosa que, si no se evita, podría provocar lesiones leves o moderadas.

AVISO

AVISO indica una situación potencialmente peligrosa que, si no se evita, puede provocar daños en el equipo.

TENGA EN CUENTA LO SIGUIENTE:

La instalación, el manejo, las revisiones y el mantenimiento de equipos eléctricos deberán ser realizados sólo por personal cualificado. Schneider Electric no se hace responsable de ninguna de las consecuencias del uso de este material.

Una persona cualificada es aquella que cuenta con capacidad y conocimientos relativos a la construcción, el funcionamiento y la instalación de equipos eléctricos, y que ha sido formada en materia de seguridad para reconocer y evitar los riesgos que conllevan tales equipos.
Acerca de este libro

Presentación

Objeto

El objetivo de esta guía es proporcionar a los usuarios, instaladores y personal de mantenimiento la información técnica necesaria para utilizar las unidades de control Micrologic™ X de los interruptores automáticos Masterpact™ MTZ.

Existen unidades de control Micrologic X en dos gamas:
- unidades de control para la norma IEC: Micrologic 2.0 X, 5.0 X, 6.0 X, 7.0 X
- unidades de control para la norma UL: Micrologic 3.0 X, 5.0 X, 6.0 X

Esta guía se aplica a las siguientes unidades de control Micrologic X.

Campo de aplicación

Esta guía se aplica a las siguientes unidades de control Micrologic X:
- Con versión de firmware 003.000.xxx o superior
- Con versión de hardware 001.000.xxx o superior

Información en línea

La información incluida en esta guía está sujeta a actualizaciones en cualquier momento. Schneider Electric recomienda encarecidamente tener la versión más reciente y actualizada que está disponible en www.schneider-electric.com.

Las características técnicas de los dispositivos que se describen en este documento también se encuentran online. Para acceder a esta información online:

1. Vaya a la página de inicio de Schneider Electric www.schneider-electric.com.
2. En el cuadro Search, escriba la referencia del producto o el nombre del rango de productos.
 - No incluya espacios en blanco en la referencia ni en el rango de productos.
 - Para obtener información sobre cómo agrupar módulos similares, utilice los asteriscos (*).
3. Si ha introducido una referencia, vaya a los resultados de búsqueda de Product Datasheets y haga clic en la referencia deseada.
 - Si ha introducido el nombre de un rango de productos, vaya a los resultados de búsqueda de Product Ranges y haga clic en la gama deseada.
4. Si aparece más de una referencia en los resultados de búsqueda Products, haga clic en la referencia deseada.
5. En función del tamaño de la pantalla, es posible que deba desplazar la página hacia abajo para consultar la hoja de datos.
6. Para guardar o imprimir una hoja de datos como archivo .pdf, haga clic en Download XXX product datasheet.

Las características que se indican en este documentación deben coincidir con las que figuran online. De acuerdo con nuestra política de mejoras continuas, es posible que a lo largo del tiempo revisemos el contenido con el fin de elaborar documentos más claros y precisos. En caso de que detecte alguna diferencia entre el documentación y la información online, utilice esta última para su referencia.
Documentos relacionados con los dispositivos IEC

<table>
<thead>
<tr>
<th>Título de la documentación</th>
<th>Número de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catálogo Masterpact MTZ</td>
<td>LVPED216026EN</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Interruptores automáticos y disyuntores IEC - Guía del usuario</td>
<td>DOCA0100ES</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores IEC - Guía del usuario</td>
<td>DOCA0101ES</td>
</tr>
<tr>
<td>Masterpact MTZ - Interruptores automáticos y disyuntores IEC - Guía de mantenimiento</td>
<td>DOCA0099EN</td>
</tr>
<tr>
<td>Masterpact MTZ - Guía de comunicación Modbus</td>
<td>DOCA0105EN</td>
</tr>
<tr>
<td>Masterpact MTZ - Guía de ciberseguridad</td>
<td>DOCA0123EN</td>
</tr>
<tr>
<td>Sistema ULP (estándar IEC)</td>
<td>DOCA0093EN</td>
</tr>
<tr>
<td>Enerlin'X IO - Módulo de aplicación de entrada/salida para un interruptor automático IEC - Guía del usuario</td>
<td>DOCA0055ES</td>
</tr>
<tr>
<td>Enerlin'X EIFE - Interfaz Ethernet integrada para un interruptor automático Masterpact MTZ seccionable - Guía del usuario</td>
<td>DOCA0106ES</td>
</tr>
<tr>
<td>Enerlin'X IFE - Servidor de panel Ethernet - Guía del usuario</td>
<td>DOCA0083ES</td>
</tr>
<tr>
<td>Enerlin'X IFE - Interfaz Ethernet para un interruptor automático IEC - Guía del usuario</td>
<td>DOCA0142ES</td>
</tr>
<tr>
<td>Enerlin'X FDM128 - Pantalla Ethernet para ocho dispositivos - Guía del usuario</td>
<td>DOCA0037ES</td>
</tr>
<tr>
<td>Información técnica complementaria</td>
<td>LVPED318033EN</td>
</tr>
<tr>
<td>Masterpact MTZ Micrologic X Control Unit - Firmware Release Note</td>
<td>DOCA0144EN</td>
</tr>
<tr>
<td>Micrologic Trip Units and Control Units - Firmware History</td>
<td>DOCA0155EN</td>
</tr>
</tbody>
</table>

Documentos relacionados para dispositivos UL/ANSI

<table>
<thead>
<tr>
<th>Título de la documentación</th>
<th>Número de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterpact MTZ - Interruptores automáticos y conmutadores - Catálogo</td>
<td>0614CT1701EN</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Interruptores automáticos y conmutadores con certificación ANSI y UL establecidos desde 800 hasta 1600 A - Guía del usuario</td>
<td>0614B1702EN</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Interruptores automáticos y conmutadores con certificación ANSI y UL establecidos desde 800 hasta 6000 A - Guía del usuario</td>
<td>0614B1701EN</td>
</tr>
<tr>
<td>Masterpact MTZ - Guía de comunicación Modbus</td>
<td>DOCA0105EN</td>
</tr>
<tr>
<td>Masterpact MTZ - Guía de ciberseguridad</td>
<td>DOCA0123EN</td>
</tr>
<tr>
<td>Sistema ULP (estándar UL) - Guía del usuario</td>
<td>0602B1503 (EN)</td>
</tr>
<tr>
<td>Enerlin'X IO - Módulo de aplicación de entrada/salida para un interruptor automático UL - Guía del usuario</td>
<td>0613B1317 (EN)</td>
</tr>
<tr>
<td>Enerlin'X EIFE - Interfaz Ethernet integrada para un interruptor automático Masterpact MTZ seccionable - Guía del usuario</td>
<td>DOCA0106EN</td>
</tr>
<tr>
<td>Enerlin'X IFE - Servidor de panel Ethernet - Guía del usuario</td>
<td>1040B1401 (EN)</td>
</tr>
<tr>
<td>Enerlin'X IFE - Interfaz Ethernet para un interruptor automático UL - Guía del usuario</td>
<td>0602B1601EN</td>
</tr>
<tr>
<td>Enerlin'X FDM128 - Pantalla Ethernet para ocho dispositivos - Guía del usuario</td>
<td>DOCA0037EN</td>
</tr>
<tr>
<td>Masterpact MTZ Micrologic X Control Unit - Firmware Release Note</td>
<td>DOCA0144EN</td>
</tr>
<tr>
<td>Micrologic Trip Units and Control Units - Firmware History</td>
<td>DOCA0155EN</td>
</tr>
</tbody>
</table>

Aviso de marca registrada

Todas las marcas registradas son propiedad de Schneider Electric Industries SAS o sus filiales.
Capítulo 1
Introducción a la unidad de control Micrologic X

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad de control Micrologic X: Presentación</td>
<td>12</td>
</tr>
<tr>
<td>Unidad de control Micrologic X: Descripción</td>
<td>15</td>
</tr>
<tr>
<td>Software EcoStruxure Power Commission</td>
<td>19</td>
</tr>
<tr>
<td>Aplicación EcoStruxure Power Device</td>
<td>20</td>
</tr>
<tr>
<td>Gestión de contraseñas</td>
<td>22</td>
</tr>
<tr>
<td>Unidad de control Micrologic X: Digital Modules opcionales</td>
<td>24</td>
</tr>
<tr>
<td>Página de inicio de Go2SE</td>
<td>26</td>
</tr>
<tr>
<td>Unidad de control Micrologic X: compra e instalación de un Digital Module</td>
<td>28</td>
</tr>
<tr>
<td>Unidad de control Micrologic X: Fecha y hora</td>
<td>31</td>
</tr>
<tr>
<td>Unidad de control Micrologic X: Fuente de alimentación</td>
<td>32</td>
</tr>
<tr>
<td>Unidad de control Micrologic X: actualización del firmware</td>
<td>37</td>
</tr>
</tbody>
</table>
Unidad de control Micrologic X: Presentación

Unidades de control Micrologic X para normas IEC y UL - Descripción general

Los interruptores automáticos Masterpact MTZ que incluyen unidades de control Micrologic X ofrecen funciones de protección, medición, diagnóstico, comunicación y funcionamiento a distancia. La unidad de control puede personalizarse con Módulos digitales opcionales (véase página 24).

Las unidades de control Micrologic X permiten el funcionamiento y la supervisión de interruptores automáticos Masterpact MTZ tanto de manera local como remota.

Las unidades de control Micrologic X para la norma IEC son:

- Micrologic 2.0 X
- Micrologic 5.0 X
- Micrologic 6.0 X
- Micrologic 7.0 X

Las unidades de control Micrologic X para la norma UL son:

- Micrologic 3.0 X
- Micrologic 5.0 X
- Micrologic 6.0 X

Convención

A menos que se indique específicamente a continuación, la información de esta guía es válida tanto para la norma IEC como para la UL:

- La información indicada para Micrologic 5.0 X IEC y Micrologic 6.0 X IEC sólo es válida para la norma IEC.
- La información indicada para Micrologic 5.0 X UL y Micrologic 6.0 X UL sólo es válida para la norma UL.

Para esta guía, las fases eléctricas descritas como fase 1, fase 2 y fase 3 cubren tanto la norma IEC como la norma UL, con la siguiente equivalencia:

<table>
<thead>
<tr>
<th>Norma IEC</th>
<th>Norma UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase 1</td>
<td>Fase a</td>
</tr>
<tr>
<td>Fase 2</td>
<td>Fase b</td>
</tr>
<tr>
<td>Fase 3</td>
<td>Fase c</td>
</tr>
</tbody>
</table>

Rango de unidades de control Micrologic X para la norma IEC

En la tabla siguiente se indican las funciones estándar disponibles en interruptores automáticos Masterpact MTZ con unidades de control Micrologic X para la norma IEC:

<table>
<thead>
<tr>
<th>Referencia comercial</th>
<th>Micrologic 2.0 X</th>
<th>Micrologic 5.0 X</th>
<th>Micrologic 6.0 X</th>
<th>Micrologic 7.0 X</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV847600</td>
<td>✔ ✔ ✔ ✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV847602</td>
<td>✔ ✔ ✔</td>
<td>✔ ✔ ✔ ✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV847603</td>
<td>✔ ✔ ✔ ✔</td>
<td>✔ ✔ ✔ ✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV847604</td>
<td>✔ ✔ ✔ ✔</td>
<td>✔ ✔ ✔ ✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicadores de causa de sobrecorriente y disparo

- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔

Enclavamiento selectivo de zona

- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔

Historial de disparos

- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔

Trazabilidad de modificación de ajustes

- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔

Medidor de potencia integrado de clase 1

- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔
- ✔ ✔ ✔ ✔

Diagnósticos integrados

- ✔ ✔ ✔ ✔

NOTA: La referencia comercial está impresa en la parte frontal de la unidad de control Micrologic X y también identifica la norma, IEC o UL.
Rango de unidades de control Micrologic X para la norma UL

En la tabla siguiente se indican las funciones estándar disponibles en interruptores automáticos Masterpact MTZ con unidades de control Micrologic X para la norma UL:

<table>
<thead>
<tr>
<th>Referencia comercial</th>
<th>Micrologic 3.0 X</th>
<th>Micrologic 5.0 X</th>
<th>Micrologic 6.0 X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección contra sobrecorriente de largo retardo (L)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Protección contra sobrecorriente de corto retardo (S)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Protección contra sobrecorriente instantánea (I)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Protección de defecto a tierra (G)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
</tr>
<tr>
<td>Protección de diferencial (V)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Protección del neutro</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Configuración dual</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Indicadores de causa de sobrecorriente y disparo</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Enclavamiento selectivo de zona</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Histórico de disparos</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Trazabilidad de modificación de ajustes</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Medidor de potencia integrado de clase 1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Diagnósticos integrados</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

NOTA: La referencia comercial está impresa en la parte frontal de la unidad de control Micrologic X y también identifica la norma, IEC o UL.

Comunicación

Las unidades de control Micrologic X admiten comunicación inalámbrica y con cable y permiten la comunicación local y de red.

La comunicación local incluye:

- Conexión inalámbrica a un smartphone con la Aplicación EcoStruxure Power Device (*véase página 20*) a través de:
 - Bluetooth® con bajo nivel de energía
 - NFC
- Conexión con cable por medio del puerto mini USB a:
 - Un smartphone en el que se ejecute la Aplicación EcoStruxure Power Device (*véase página 20*) a través de una conexión USB OTG.
 - Un PC que ejecute el software EcoStruxure Power Commission

La comunicación de red incluye:

- Ethernet (opcional)
- Modbus-SL (opcional)
Unidades de control Micrologic X en Smart Panels

Los interruptores automáticos Masterpact con unidades de control Micrologic X, en combinación con Enerlin'X, proporcionan un acceso sencillo y fiable a los datos de un smartphone o PC.

Las unidades de control Micrologic X se comunican mediante:
- Ethernet a través de una interfaz IFE o EIFE
- Modbus-SL a través de una interfaz IFM con referencia LV434000 (la interfaz IFM con referencia TRV00210 no es compatible con Masterpact MTZ)
- Bluetooth con bajo nivel de energía (BLE) o NFC para una conexión inalámbrica a la Aplicación EcoStruxure Power Device
- El puerto min USB para conectarse a:
 - un PC que ejecuta el software EcoStruxure Power Commission
 - un smartphone que tenga instalada la Aplicación EcoStruxure Power Device (conexión USB OTG)
- un servidor de energía Com'X y Ethernet para conectarse a Internet

En el siguiente diagrama se muestra cómo se comunican las unidades de control Micrologic X dentro de un sistema digital:

Diagrama:
- A Pantalla FDM128 Ethernet para ocho dispositivos
- B Páginas web de IFE/EIFE
- C Servidor de energía Com’X
- D Interfaz EIFE
- E Aplicación EcoStruxure Power Device a través de Bluetooth con bajo nivel de energía o comunicación inalámbrica NFC
- F Aplicación EcoStruxure Power Device a través de una conexión USB OTG
- G Software EcoStruxure Power Commission
- H Página de inicio de Go2SE
Unidad de control Micrologic X: Descripción

Introducción

La unidad de control Micrologic X incluye:
- LED de estado Micrologic X
- Una interfaz hombre-máquina local compuesta por un terminal gráfico con luz de fondo de color, botones contextuales y botones dedicados
- Indicadores LED para supervisar el estado de Micrologic X y la causa de los disparos y las alarmas

Descripción de la unidad de control

LED de estado Micrologic X

<table>
<thead>
<tr>
<th>LED</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>El indicador LED Ready parpadea lentamente cuando las funciones de protección estándar de la unidad de control están operativas.</td>
</tr>
</tbody>
</table>

El indicador LED de servicio alerta al usuario del estado funcional del interruptor automático.
- LED naranja: alarma de gravedad media detectada que requiere acción de mantenimiento no urgente.
- LED rojo: alarma de gravedad alta detectada que requiere acción de mantenimiento inmediata.

ERM: El indicador LED ERMS (Ajuste de mantenimiento para reducción de energía) tiene los siguientes estados:
- LED azul: ERMS activado
- LED apagado: ERMS desactivado

Pantalla con botones contextuales y dedicados

La pantalla y los botones de la HMI local (véase página 40) permiten realizar las siguientes acciones:
- Navegar por la estructura de menús.
- Mostrar los valores supervisados.
- Acceder y editar los ajustes de configuración.
Zona de comunicación NFC
La zona de comunicación NFC permite establecer una conexión NFC (véase página 242) entre un smartphone con Aplicación EcoStruxure Power Device y la unidad de control Micrologic X. Una vez establecida la conexión, los datos de funcionamiento del interruptor automático se cargan automáticamente en el smartphone.

Botón de activación e indicador LED de Bluetooth
El botón de activación de Bluetooth permite establecer una conexión de energía baja Bluetooth (véase página 239) entre un smartphone con Aplicación EcoStruxure Power Device instalada y la unidad de control Micrologic X. Una vez establecida la conexión, el interruptor automático ya podrá supervisarse y controlarse desde el smartphone.
Cuando el indicador LED Bluetooth parpadea, indica que la unidad de control Micrologic X se está comunicando con un dispositivo Bluetooth.

Botón de pruebas
El botón de prueba permite probar la protección de defecto a tierra para Micrologic 6.0 X (véase página 96) y la protección de diferencial para Micrologic 7.0 X (véase página 99).

Indicadores LED de sobrecarga y causa de disparo
Las indicaciones de los cuatro indicadores LED de causa de disparo dependerán del tipo de unidad de control Micrologic X.

<table>
<thead>
<tr>
<th>LED</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X: Prealarma de sobrecarga, la carga supera el 90 % y es inferior al 105 % del ajuste Ir de protección de largo retardo.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X: Alarma de sobrecarga, la carga supera el 105 % del ajuste Ir de la protección de largo retardo.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X: Disparo debido a protección largo retardo.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 2.0 X, 3.0 X: Disparo debido a protección instantánea.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 5.0 X, 6.0 X, 7.0 X: Disparo debido a la protección de corto retardo o instantánea.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X: No aplicable.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 6.0 X: Disparo debido a protección de defecto a tierra.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 7.0 X: Disparo debido a protección de diferencial.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X: Disparo debido a protecciones opcionales.</td>
</tr>
<tr>
<td></td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X: Comprobación automática de la unidad de control no válida.</td>
</tr>
</tbody>
</table>

NOTA: Si la unidad de control Micrologic X no recibe alimentación, los indicadores LED de causa de disparo se apagaran trascurridas 4 horas. Tras este periodo, pulse el botón de prueba/restablecimiento para encenderlos de nuevo.
Botón de prueba/restablecimiento

El botón de prueba/restablecimiento realiza las siguientes funciones:
- Prueba de la batería interna o comprobación del funcionamiento de los indicadores LED: mantenga pulsado el botón de prueba/restablecimiento menos de 3 segundos. Los cuatro indicadores LED de causa de disparo se apagan durante un segundo. Uno de los resultados siguientes:
 - Los cuatro indicadores LED de causa de disparo se encienden durante dos segundos: la batería está en buen estado.
 - Los cuatro indicadores LED de causa de disparo parpadean secuencialmente durante dos segundos: la batería está a punto de agotar su vida útil. Sustituya la batería.
 - Los cuatro indicadores LED de causa de disparo no se encienden: sustituya la batería.

NOTA: Esta prueba debe realizarse inmediatamente después de sustituir la batería interna para comprobar el correcto funcionamiento de la nueva batería. Posteriormente, puede realizarse en cualquier momento de la vida útil de la batería interna.
- Restablecimiento de los eventos con retención: mantenga pulsado el botón de prueba/restablecimiento durante 3 segundos para restablecer los eventos con retención. Los indicadores LED de causa de disparo y el indicador LED de servicio se apagan.

Puerto mini-USB

Retire la cubierta de goma del puerto mini-USB para conectar los siguientes dispositivos:
- Un Mobile Power Pack para suministrar alimentación a la unidad de control Micrologic X (véase página 36).
- Un smartphone que tenga instalada la Aplicación EcoStruxure Power Device a través de una conexión USB OTG (véase página 243).
- Un PC en el que se ejecuta el software EcoStruxure Power Commission (véase página 244).

NOTA: La unidad de control Micrologic X no es compatible con las memorias USB. Aunque se conecte una memoria USB utilizando un adaptador, no se transfieren datos.

Código QR

Al explorar el código QR de la parte frontal de una unidad de control Micrologic X con un smartphone que disponga de un lector de códigos QR y de conexión a Internet, se muestra la página de inicio de Go2SE (véase página 26). En la página de inicio se muestra información acerca del aparato, así como una lista de menús.

Número de identificación de la unidad de control

El número de identificación está formado por los siguientes elementos:
- El número de serie de la unidad de control Micrologic X con el formato FFFFFFAASSDLXXXX.
- La referencia comercial de la unidad de control con el formato LV8•••••.
Utilice el número de identificación para registrar la unidad de control Micrologic X por medio de mySchneider, la aplicación móvil de atención al cliente.
Al registrar la unidad de control Micrologic X se asegura de que sus registros se mantienen actualizados y, además, permite su trazabilidad.

Tipo de unidad de control

Este código indica el tipo de unidad de control Micrologic (véase página 12):
- El número (por ejemplo, 6.0) define los tipos de protección que ofrece la unidad de control en cuestión.
- La letra (X) identifica el rango de la unidad de control.

Batería interna

En ausencia de otra fuente de alimentación (véase página 36), la batería interna suministra alimentación a los indicadores LED de causa del disparo y a las principales funciones de diagnóstico.

Módulo de fuente de alimentación VPS

El módulo VPS proporciona suministro de tensión interna para la unidad de control Micrologic X (véase página 33).
El módulo VPS es opcional para Micrologic 2.0 X, 3.0 X, 5.0 X y 6.0 X. Se instala como opción estándar en Micrologic 7.0 X.
Conector del sensor

Las gamas de protección dependen de la intensidad asignada In, que se define mediante el conector del sensor que hay debajo de la unidad de control Micrologic X (véase página 79).
Software EcoStruxure Power Commission

Descripción general

EcoStruxure™ Power Commission es el nuevo nombre del software Ecoreach.

El software EcoStruxure Power Commission permite gestionar un proyecto como parte de las fases de prueba, puesta en marcha y mantenimiento del ciclo de vida del proyecto. Sus innovadoras características ofrecen un método sencillo para configurar, probar y poner en marcha dispositivos eléctricos inteligentes.

El software EcoStruxure Power Commission detecta automáticamente los dispositivos inteligentes y permite añadir dispositivos para facilitar la configuración. Podrá generar informes completos como parte de las pruebas de aceptación de la fábrica y el centro, con lo que se ahorrará una gran cantidad de trabajo manual. Asimismo, cuando los paneles están en funcionamiento, cualquier cambio que se realice en los ajustes podrá identificarse con facilidad con un marcador amarillo. Esto indica la diferencia entre los valores del proyecto y del dispositivo. De este modo, garantiza la coherencia del sistema durante las fases de funcionamiento y mantenimiento.

El software EcoStruxure Power Commission permite configurar los dispositivos Masterpact MTZ con:

- Unidad de control Micrologic X
- Módulos de interfaz de comunicación: interfaces IFE, EIFE e IFM
- Módulos de aplicación IO
- Módulo de salida M2C

Para obtener más información, consulte Ayuda en línea de EcoStruxure Power Commission.

Características clave

El software EcoStruxure Power Commission realiza las acciones siguientes para los dispositivos y módulos compatibles:

- Crear proyectos mediante la detección de dispositivos
- Guardar el proyecto en la nube de EcoStruxure Power Commission como referencia
- Cargar configuraciones en dispositivos y descargar configuraciones de dispositivos
- Comparar configuraciones entre el proyecto y el dispositivo
- Realizar acciones de control de un modo seguro
- Generar e imprimir un informe de configuración del dispositivo
- Realizar una prueba de cableado de comunicación de todo el proyecto y generar e imprimir informes de las pruebas
- Observar la arquitectura de comunicaciones existente entre los diferentes dispositivos en una representación gráfica
- Ver las mediciones, los registros y la información de mantenimiento
- Exportar captura de la forma de onda en un evento de disparo (WFC)
- Ver el estado de dispositivo y el módulo IO
- Ver los detalles de las alarmas
- Comprar, instalar, desinstalar o recuperar los Digital Modules
- Comprobar el estado de compatibilidad del firmware del sistema
- Actualizar el firmware del dispositivo a la versión más reciente
- Efectuar pruebas de forzado del disparo y de curvas de disparo automático
- Declarar los accesorios de Masterpact MTZ
Introducción a la unidad de control Micrologic X

Aplicación EcoStruxure Power Device

Presentación

Aplicación EcoStruxure™ Power Device es una aplicación móvil con la información y las prestaciones necesarias para gestionar y mantener eficientemente dispositivos en la arquitectura EcoStruxure.

La aplicación le permite conectarse a dispositivos, incluidos los siguientes:
- Interruptores automáticos Masterpact MTZ
- Interruptores automáticos de motores Tesys GV4
- Relés de protección Easergy P3

La aplicación se puede instalar en un smartphone descargándola de:
- Google Play Store para smartphones Android
- App Store para smartphones iOS

Masterpact MTZ Dispositivos en Aplicación EcoStruxure Power Device

Con Aplicación EcoStruxure Power Device, se puede utilizar un smartphone con dispositivos Masterpact MTZ como interfaz principal para el mantenimiento diario y en casos críticos. La unidad de control Micrologic X se identifica en la aplicación escaneando el código QR en el dispositivo.

Cuando se usa Aplicación EcoStruxure Power Device junto con Digital Module, hay funciones adicionales disponibles:
- Con el Asistente para el restablecimiento de la alimentación Digital Module, hay tutoriales disponibles que proporcionan información acerca de cómo restablecer la alimentación e identificar las causas de los disparos.
- El control remoto del interruptor automático está disponible con el Digital Module de asistente de funcionamiento de Masterpact.

La comunicación inalámbrica está disponible mediante la comunicación Bluetooth y NFC. Una conexión USB OTG también está disponible.

Mediante una conexión Bluetooth con bajo nivel de energía

Para establecer una conexión Bluetooth® con bajo nivel de energía, la unidad de control Micrologic X debe estar conectada.

El uso de Aplicación EcoStruxure Power Device con una conexión Bluetooth con bajo nivel de energía da acceso a los tipos de información organizados en las siguientes fichas y permite compartirlos:

- **Vista rápida**: ofrece una descripción general de los valores actuales por fase, del estado del interruptor automático y del historial de eventos recientes.
- **Medición**: muestra los valores de corriente eficaz, tensiones eficaces, red y energía en tiempo real.
- **Ajuste de protección**: muestra los ajustes seleccionados actualmente y permite modificarlos.
- **Mantenimiento y diagnóstico**: muestra recordatorios de mantenimiento, la vida útil, el desgaste de los actuadores, el desgaste de los contactos y contadores de diagnóstico.
- **Estado y control**:
 - Muestra el estado del interruptor automático.
 - Permite realizar operaciones de apertura y de cierre si el Digital Module de asistente de funcionamiento del Masterpact está instalado.

Si hay Digital Modules (véase página 24) instalados en la unidad de control Micrologic X, se ofrece información adicional.

Si desea más información, consulte el procedimiento de conexión con bajo nivel de energía Bluetooth (véase página 239).
Uso de una conexión USB OTG (en movimiento)

Si es necesario, se puede alimentar la unidad de control Micrologic X con un smartphone mediante la conexión USB OTG.

El uso de Aplicación EcoStruxure Power Device con una conexión USB OTG da acceso a los siguientes tipos de información organizados en las siguientes fichas y permite compartirlos:

- **Vista rápida**: ofrece una descripción general de los valores actuales por fase, del estado del interruptor automático y del historial de eventos recientes.
- **Medición**: muestra los valores de corriente, tensiones eficaces, red y energía en tiempo real.
- **Ajuste de protección**: muestra los ajustes seleccionados actualmente y permite modificarlos.
- **Mantenimiento y diagnóstico**: muestra recordatorios de mantenimiento, la vida útil, el desgaste de los actuadores, el desgaste de los contactos y contadores de diagnóstico.
- **Estado y control**: Muestra el estado del interruptor automático. Permite realizar operaciones de apertura y de cierre si el Digital Module de asistente de funcionamiento del Masterpact está instalado.

Si hay Digital Modules (véase página 24) instalados en la unidad de control Micrologic X, se ofrece información adicional.

Si desea más información, consulte el procedimiento de conexión USB OTG (en movimiento) (véase página 243).

Uso de una conexión NFC

Es posible conectarse a la Aplicación EcoStruxure Power Device con una conexión NFC incluso aunque la unidad de control Micrologic X no reciba alimentación. Da acceso a la siguiente información:

- Información acerca de la unidad de control Micrologic X
- Contexto del último disparo: tipo de disparo; fecha y hora del último disparo; valores actuales antes del disparo
- Ajustes de protección (sólo para visualización)
- Acceso al asistente de restauración de alimentación o a los Digital Modules (véase página 25) del asistente de funcionamiento del Masterpact

Si desea más información, consulte el procedimiento de conexión NFC (véase página 242).
Gestión de contraseñas

Descripción general

El acceso remoto a datos de las unidades de control Micrologic y los módulos ULP de la IMU está protegido por contraseña. El acceso remoto incluye:
- Aplicación EcoStruxure Power Device
- Software EcoStruxure Power Commission
- Pantalla FDM128
- La red de comunicación
- Páginas web de IFE/EIFE

Hay cuatro perfiles de usuario definidos para el acceso remoto. Cada IMU tiene una contraseña diferente para cada perfil de usuario. La contraseña predeterminada de cada IMU debe cambiarse.

La contraseña predeterminada de cada perfil de usuario es la siguiente:

<table>
<thead>
<tr>
<th>Perfil de usuario</th>
<th>Contraseña predeterminada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrador</td>
<td>‘0000’ = 0x30303030</td>
</tr>
<tr>
<td>Servicios</td>
<td>‘1111’ = 0x31313131</td>
</tr>
<tr>
<td>Ingeniero</td>
<td>‘2222’ = 0x32323232</td>
</tr>
<tr>
<td>Operador</td>
<td>‘3333’ = 0x33333333</td>
</tr>
</tbody>
</table>

En la siguiente tabla se muestran las funciones permitidas para cada perfil de usuario:

<table>
<thead>
<tr>
<th>Perfil de usuario</th>
<th>Supervisión</th>
<th>Com. e IP</th>
<th>Configuración</th>
<th>Funcionamiento</th>
<th>Reiniciar contadores</th>
<th>Prueba</th>
<th>Función de recuperación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrador</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Servicios</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Ingeniero</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
<td>✔</td>
</tr>
<tr>
<td>Operador</td>
<td>✔</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sin contraseña</td>
<td>✔</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

En la siguiente tabla se describen las funciones:

<table>
<thead>
<tr>
<th>Función</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisión</td>
<td>Leer todos los ajustes, mediciones y datos</td>
</tr>
<tr>
<td>Com. e IP</td>
<td>Cambiar ajustes de comunicación y dirección IP</td>
</tr>
<tr>
<td>Configuración</td>
<td>Cambiar todos los ajustes de la unidad de control Micrologic X (excepto los ajustes de comunicación)</td>
</tr>
<tr>
<td>Funcionamiento</td>
<td>• Abrir, cerrar y reiniciar el interruptor automático</td>
</tr>
<tr>
<td></td>
<td>• Activar y desactivar la función ERMS</td>
</tr>
<tr>
<td></td>
<td>• Seleccionar curva activa</td>
</tr>
<tr>
<td></td>
<td>• Inhibir cierre del interruptor automático</td>
</tr>
<tr>
<td>Reini. contad.</td>
<td>• Reiniciar valores mínimo y máximo</td>
</tr>
<tr>
<td></td>
<td>• Reiniciar contadores de energía y funcionamiento</td>
</tr>
<tr>
<td>Prueba</td>
<td>Enviar comandos de prueba</td>
</tr>
<tr>
<td>Función de recuperación</td>
<td>• Restablecer contraseña de administrador</td>
</tr>
<tr>
<td></td>
<td>• Forzar desbloqueo de ERMS</td>
</tr>
</tbody>
</table>
En la siguiente tabla se indican las funciones que se pueden usar a través de las diferentes rutas de acceso remoto:

<table>
<thead>
<tr>
<th>Función</th>
<th>Ruta de acceso remoto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aplicación</td>
</tr>
<tr>
<td></td>
<td>EcoStruxure</td>
</tr>
<tr>
<td>Supervisión</td>
<td>✓</td>
</tr>
<tr>
<td>Com. e IP</td>
<td>–</td>
</tr>
<tr>
<td>Configuración</td>
<td>✓</td>
</tr>
<tr>
<td>Funcionamiento</td>
<td>✓</td>
</tr>
<tr>
<td>Reini. contad.</td>
<td>✓</td>
</tr>
<tr>
<td>Prueba</td>
<td>–</td>
</tr>
<tr>
<td>Función de recuperación</td>
<td>✓</td>
</tr>
</tbody>
</table>

Cambio de contraseña

Las contraseñas se pueden cambiar con el software EcoStruxure Power Commission (véase página 19). Para cambiar la contraseña de un perfil de usuario, es necesario introducir la contraseña de ese perfil de usuario. Introducir la contraseña de administrador le permite cambiar la contraseña de cualquier perfil de usuario.

Una contraseña consta exactamente de 4 caracteres ASCII. Distingue mayúsculas y minúsculas y los caracteres permitidos son:
- Números de 0 a 9
- Letras de a a z
- Letras de A a Z

Contraseñas de IMU

La unidad de control Micrologic X y los módulos ULP de IMU deben estar protegidos por las mismas contraseñas.

Si se utiliza el software EcoStruxure Power Commission para cambiar una contraseña, esta se cambia en la unidad de control Micrologic X y los módulos ULP de IMU.

Es obligatorio asignar las contraseñas de IMU a un nuevo módulo de IMU en los siguientes casos:
- Adición de un nuevo módulo ULP a IMU.
- Sustitución de la unidad de control Micrologic X o de uno de los módulos ULP en IMU.

Utilice el software EcoStruxure Power Commission para cambiar las contraseñas de un nuevo módulo por las contraseñas de IMU.

Ejemplo:

Se añade un módulo IO a IMU formado por una unidad de control Micrologic X y una interfaz de IFE. El módulo IO tiene las contraseñas predeterminadas (por ejemplo, administrador = 0000).

La contraseña de administrador de IMU = 4321.

Use el software EcoStruxure Power Commission para cambiar la contraseña de administrador predeterminada del módulo IO (0000) por la contraseña de administrador de IMU (4321).

Modifique las demás contraseñas predeterminadas del módulo IO de la misma forma, cambiándolas por las contraseñas de IMU.

Reinicio de la contraseña

Si la contraseña de administrador de IMU se pierde o se olvida, puede restablecerse la contraseña predeterminada con el software EcoStruxure Power Commission (véase página 19) y la ayuda del centro de asistencia al cliente de Schneider Electric.
Unidad de control Micrologic X: Digital Modules opcionales

Presentación

Digital Modules son módulos opcionales que amplían las funciones disponibles a través de la gama de unidades de control Micrologic X.

Digital Modules se pueden comprar e instalar en la unidad de control Micrologic X sin cambiar el hardware ni interrumpir el funcionamiento:
- Cuando se hace el pedido inicial del interruptor automático Masterpact MTZ. Los módulos digitales están preinstalados y funcionan cuando se entrega el interruptor automático Masterpact MTZ.
- En cualquier momento tras el pedido inicial de , accediendo a la plaza de mercado de GoDigital (véase página 28).

La versión del firmware de la unidad de control Micrologic X debe ser compatible con Digital Module. Actualice la versión del firmware de la unidad de control Micrologic X si el Digital Module requerido no es compatible (véase página 37).

NOTA: Las funciones de protección estándar de una unidad de control Micrologic X no se pueden actualizar al comprar un Digital Module. Por ejemplo, no es posible convertir una unidad de control Micrologic 5.0 X en una unidad de control Micrologic 6.0 X. Este tipo de actualización requiere la sustitución de la unidad de control Micrologic X.

Para adquirir e instalar Digital Modules opcionales, proceda de la siguiente manera:
- Obtenga el número de identificación de la unidad de control y acceda a la página web de GoDigital para PC (véase página 28)
- Seleccione los Digital Modules que desee adquirir (véase página 29)
- Descargue e instale los Digital Modules (véase página 30).

Digital Modules para funciones de protección

En la tabla siguiente se presentan los Digital Modules para funciones de protección:

<table>
<thead>
<tr>
<th>Digital Module</th>
<th>Referencia comercial</th>
<th>Descripción</th>
<th>Versión del firmware de Micrologic X</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI 27/59: infraten-siones/sobretensiones</td>
<td>LV850012</td>
<td>Proporciona protección para generadores, supervisa tensiones de fase a fase o de fase a neutro y se dispara como sigue: • Cuando las tensiones están por debajo del intervalo de ajuste: protección de infratensión (véase página 109) • Cuando las tensiones están por encima del intervalo de ajuste: protección de sobretensión (véase página 112)</td>
<td>≥ 002.000.000</td>
</tr>
<tr>
<td>ANSI 81: protección contra infrafrecuen-cia/sobrefrecuencia (véase página 115)</td>
<td>LV850013</td>
<td>Proporciona protección para generadores, supervisa la frecuencia y se dispara como sigue: • Cuando la frecuencia está por debajo del intervalo de ajuste: protección contra infrafrecuencia • Cuando la frecuencia está por encima del intervalo de ajuste: protección contra sobrefrecuencia</td>
<td>≥ 003.000.000</td>
</tr>
<tr>
<td>ANSI 32P: potencia activa inversa (véase página 119)</td>
<td>LV850011</td>
<td>Proporciona protección un para generador sincrono y se dispara cuando la potencia activa es negativa y supera el umbral.</td>
<td>≥ 002.000.000</td>
</tr>
<tr>
<td>ANSI 51N/51G: alarma de defecto a tierra (véase página 122)</td>
<td>LV850007</td>
<td>• Proporciona alarma de defecto a tierra o alarma de diferencial, independientemente de las protecciones de defecto a tierra o de diferencial y con ajustes independientes. • Permite la detección temprana de defectos a tierra resistivos con corrientes de defecto que aumenten gradualmente hasta los ajustes de las funciones de protección de defecto a tierra o de diferencial.</td>
<td>≥ 002.000.000</td>
</tr>
<tr>
<td>Ajuste de mantenimiento para reducción de energía (ERMS) (véase página 124)</td>
<td>LV850009</td>
<td>Reduce el tiempo de disparo cuando se produce un arco eléctrico interno. Se utiliza durante periodos de mantenimiento o en presencia de personal cerca de equipos eléctricos energizados.</td>
<td>≥ 002.000.000</td>
</tr>
</tbody>
</table>
Módulos digitales para funciones de medición

En la tabla siguiente se presentan los Digital Modules para funciones de medición:

<table>
<thead>
<tr>
<th>Digital Module</th>
<th>Referencia comercial</th>
<th>Descripción</th>
<th>Versión del firmware de Micrologic X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía por fase</td>
<td>LV850002</td>
<td>Calcula y muestra:</td>
<td>≥ 001.000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● La energía importada y exportada en cada fase de la red, en el punto de medición.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● La energía activa, reactiva y aparente por fase.</td>
<td></td>
</tr>
<tr>
<td>Análisis de armónicos individuales</td>
<td>LV850006</td>
<td>● Calcula y muestra armónicos de tensiones y de corrientes hasta orden 40 (se calculan cada 200 ms según IEC 61000-4-30).</td>
<td>≥ 002.000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Proporciona los valores medios de armónicos calculados en un periodo de tiempo de 3 segundos.</td>
<td></td>
</tr>
</tbody>
</table>

Digital Modules para funciones de mantenimiento y diagnóstico

La tabla siguiente muestra los Digital Modules para funciones de mantenimiento y diagnóstico:

<table>
<thead>
<tr>
<th>Digital Module</th>
<th>Referencia comercial</th>
<th>Descripción</th>
<th>Versión del firmware de Micrologic X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asistente de restauración de alimentación</td>
<td>LV850004</td>
<td>Proporciona asistencia y orientación para:</td>
<td>≥ 001.000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● El procedimiento de restablecimiento de la alimentación.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Ayudar a determinar las causas potenciales de eventos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Soluciones potenciales para restablecer la alimentación.</td>
<td></td>
</tr>
<tr>
<td>Asistente de funcionamiento de Masterpact</td>
<td>LV850005</td>
<td>● Proporciona ayuda al operador de mantenimiento para volver a cerrar y abrir el interruptor automático.</td>
<td>≥ 001.000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Muestra el estado del interruptor automático.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se saca el máximo partido a este asistente cuando se usa con bobinas de diagnóstico comunicantes (MX, MN, XF).</td>
<td></td>
</tr>
<tr>
<td>Captura de la forma de onda en un evento de disparo</td>
<td>LV850003</td>
<td>● Registra automáticamente cinco ciclos de corrientes de fase y de neutro si se produce un disparo.</td>
<td>≥ 001.000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Registra el estado del interruptor automático (abierto/cerrado/disparado) y las señales ZSI</td>
<td></td>
</tr>
<tr>
<td>Conjunto de datos heredado de Modbus</td>
<td>LV850045</td>
<td>Proporciona un conjunto de datos compatible con el formato heredado, que puede ser utilizado por controladores Modbus existentes en el software de supervisión.</td>
<td>≥ 002.000.000</td>
</tr>
</tbody>
</table>
Página de inicio de Go2SE

Presentación

Al escanear el código QR de la parte frontal de una unidad de control Micrologic X con un smartphone que disponga de un lector de códigos QR y de conexión a Internet, se muestra la página de inicio de Go2SE. En la página de inicio se muestra información acerca del aparato, así como una lista de menús.

Descripción de la página de inicio

Es posible acceder a la página de inicio desde smartphones Android e iOS. Muestra la misma lista de menús con ligeras diferencias en la presentación.

En el siguiente ejemplo se muestra la página de inicio en un smartphone Android:

Características

Seleccionar este menú permite acceder a la hoja de datos del producto, donde encontrará información detallada sobre la unidad de control Micrologic X.

Descargar documentos

Seleccionar este menú permite acceder a documentación, entre la que se incluyen los siguientes documentos:

- Masterpact MTZ - Micrologic X - Unidad de control - Guía del usuario
- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Guía del usuario
- Todas las hojas de instrucciones de dispositivos Masterpact MTZ y unidades de control Micrologic X

Descargar la aplicación mySchneider

Seleccionar este menú permite acceder a la aplicación móvil Customer Care de Schneider Electric, mySchneider, que se puede descargar en smartphones Android y iOS. Para conocer la compatibilidad de los smartphones, compruébela en la tienda de aplicaciones. La aplicación de atención al cliente ofrece instrucciones de autoservicio y acceso fácil a información y ayuda experta.
Descargar la aplicación EcoStruxure Facility Expert

Seleccionar este menú permite acceder a la aplicación móvil EcoStruxure Facility Expert, que se puede descargar en smartphones Android y iOS. Para conocer la compatibilidad de los smartphones, compruébela en la tienda de aplicaciones.

EcoStruxure Facility Expert optimiza las operaciones y el mantenimiento, lo que ayuda a garantizar la continuidad del negocio, y proporciona información a los proveedores de servicio o directores de la instalación.

EcoStruxure Facility Expert es una tecnología de colaboración en tiempo real disponible en dispositivos móviles y PC, que permite a los directores y al personal de mantenimiento conectarse a instalaciones y equipos. El intercambio de información entre usuarios es sencillo y rápido.

El código QR de los dispositivos Masterpact MTZ permite a los directores y al personal de mantenimiento acceder a las siguientes descargas automáticas:
- Identificador del dispositivo Masterpact MTZ.
- Documentación técnica.
- El plan de mantenimiento del dispositivo Masterpact MTZ.

EcoStruxure Facility Expert permite a los directores y al personal de mantenimiento acceder al plan de mantenimiento de los dispositivos Masterpact MTZ.

EcoStruxure Facility Expert ayuda al personal de mantenimiento a diagnosticar los problemas de forma remota y a gestionar el mantenimiento con eficiencia mediante:
- Suministro de información pertinente sobre activos críticos.
- Envío del estado inmediato del equipo e información detallada, lo cual es útil para realizar los diagnósticos.

Repositorio seguro

Seleccionar este menú permite acceder a un servicio web en la que podrá consultar documentación relacionada con los activos, almacenarla y compartirla en un entorno de Schneider Electric. El acceso al repositorio seguro está restringido a usuarios autorizados.

El repositorio seguro ofrece acceso a la lista de materiales del interruptor automático Masterpact MTZ.

Descargar Aplicación EcoStruxure Power Device

Seleccionar este menú permite acceder a la Aplicación EcoStruxure Power Device, que se puede descargar e instalar en smartphones Android y iOS. Para conocer la compatibilidad de los smartphones, compruébela en la tienda de aplicaciones.
Unidad de control Micrologic X: compra e instalación de un Digital Module

Presentación

Un Digital Module se puede comprar en GoDigital, la plaza de mercado de Schneider Electric.

En la lista siguiente se indican los requisitos previos para comprar un Digital Module opcional:

- Creación de una cuenta de usuario en Schneider Electric con un nombre de usuario y una contraseña únicos para cada usuario.
- Creación de una cuenta de cliente en GoDigital.
- Configuración de una cuenta de usuario en GoDigital por el usuario. El usuario debe configurar los siguientes roles predefinidos. Los roles son acumulativos.
 - Admin: le permite crear perfiles de usuario y roles de atributos.
 - Comprador: le permite seleccionar Digital Modules, añadirlo a un carro y enviar el carro para que lo valore el pagador.
 - Pagador: le permite validar o rechazar un carro y pagar.
 - Gestor de cuentas: le permite acceder a activos (unidades de control) ya añadidos y añadir una nueva unidad de control como activo.
 - Finanzas: le permite gestionar facturas y datos de pago.

NOTA: Para comprar Digital Modules, son necesarias las siguientes combinaciones de roles:
- Comprador + Pagador (para unidades de control ya añadidas a GoDigital)
- Comprador + Pagador + Gestor de cuentas (para nuevas unidades de control)

Para adquirir e instalar Digital Modules opcionales, proceda de la siguiente manera:
- Obtiene el número de identificación de la unidad de control y acceda a GoDigital (véase página 28).
- Seleccione los Digital Modules para adquirirlos (véase página 29).
- Descargue e instale los Digital Modules (véase página 30).

Obtención del número de identificación de la unidad de control y acceso a GoDigital

Puede obtener el número de identificación de la unidad de control o acceder a GoDigital desde dentro y desde fuera con uno de los siguientes medios:
- Desde dentro, escaneando con un smartphone el código QR que se encuentra en la parte frontal de la unidad de control Micrologic X. El código QR identifica la unidad de control Micrologic X. Use el botón Compartir para compartir la información de la unidad de control con la persona cualificada para seleccionar y comprar Digital Modules.
- Desde dentro, a través del software EcoStruxure Power Commission con un PC conectado al puerto mini-USB de la unidad de control Micrologic X. El software EcoStruxure Power Commission obtiene el número de identificación de la unidad de control y, desde el botón Comprar de la página Módulos digitales, da acceso directo a la página web de GoDigital para el PC.
- Desde fuera, a través del software EcoStruxure Power Commission. Sólo se puede usar este acceso para una unidad de control Micrologic X que se ha registrado previamente en el proyecto correspondiente. El software EcoStruxure Power Commission obtiene el número de identificación de la unidad de control y, desde el botón Comprar de la página Módulos digitales, da acceso directo a la página web de GoDigital para el PC.
- Desde fuera, sin identificar la unidad de control Micrologic X, introduciendo el enlace https://godigital.schneider-electric.com/ en un navegador web para mostrar la página web de GoDigital para PC. Sólo se puede usar este acceso para comprar Digital Modules en un segundo pedido de una unidad de control Micrologic X identificada previamente. Los números de identificación de las unidades de control identificadas previamente aparecen en la ficha My Assets.

NOTA: Al usar Aplicación EcoStruxure Power Device, si no se encuentra la función requerida para una tarea, aparece el botón Conseguir esta función con un enlace a la página web de GoDigital para el PC, en la que se puede comprar Digital Module. Comparta este enlace con la persona encargada de seleccionar y comprar Digital Modules.
Selección y compra de un Digital Module en GoDigital

Después de acceder a la página web de GoDigital para el PC a través de uno de los puntos de acceso descritos en la sección anterior, se muestra la siguiente lista:

- **Ver mis activos.** Haga clic para comprar Digital Module para una unidad de control Micrologic X ya registrada. Consulte Comprar Digital Module para una unidad de control Micrologic X ya registrada (consulte la siguiente tabla).
- **Comprar para un activo.** Haga clic para comprar Digital Module para una unidad de control Micrologic X. Consulte Comprar Digital Module para una unidad de control Micrologic X (véase página 29).
- **Comprar para varios activos.** Haga clic para comprar Digital Module para más de una unidad de control Micrologic X o más de un Digital Module para un Micrologic X. Consulte Comprar Digital Module para varias unidades de control Micrologic X (véase página 30).

NOTA: Se puede guardar el carro para validarlo y realizar la compra más adelante.

Comprar Digital Module para una unidad de control Micrologic X ya registrada.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Haga clic en el botón Ver mis activos para comprar Digital Module para una unidad de control Micrologic X ya registrada en GoDigital para una compra anterior. Resultado: se muestra una lista de Micrologic X unidades de control, identificadas por el número de identificación de unidad de control y la referencia comercial.</td>
</tr>
<tr>
<td>2</td>
<td>Seleccione la unidad de control Micrologic X para la que desee comprar Digital Module haciendo clic en Comprar para este activo junto a la unidad de control Micrologic X seleccionada.</td>
</tr>
<tr>
<td>3</td>
<td>Seleccione Digital Modules para comprarlo para su unidad de control Micrologic X.</td>
</tr>
<tr>
<td>4</td>
<td>Envíe el carrito. La compra se valida y se envían por correo electrónico la factura, la confirmación del pedido y un enlace al paquete de entrega. NOTA: Sólo es posible validar la compra si se ha creado una cuenta de usuario del GoDigital (véase página 28).</td>
</tr>
<tr>
<td>5</td>
<td>Haga clic en el enlace para descargar el paquete de entrega y guardarlo en el PC con el fin de usarlo para la instalación del módulo digital.</td>
</tr>
</tbody>
</table>

Comprar Digital Module para una unidad de control Micrologic X

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Haga clic en el botón Comprar para un activo para comprar Digital Module para una unidad de control Micrologic X no registrada aún en GoDigital para una compra anterior.</td>
</tr>
<tr>
<td>2</td>
<td>Introduzca el número de serie y la referencia comercial de su unidad de control Micrologic X.</td>
</tr>
<tr>
<td>3</td>
<td>Haga clic en Enviar. Resultado: la pantalla muestra una lista de Digital Modules disponibles para su unidad de control Micrologic X.</td>
</tr>
<tr>
<td>4</td>
<td>Seleccione Digital Modules para comprarlo para su unidad de control Micrologic X.</td>
</tr>
<tr>
<td>5</td>
<td>Envíe el carrito. La compra se valida y se envían por correo electrónico la factura, la confirmación del pedido y un enlace al paquete de entrega. NOTA: Sólo es posible validar la compra si se ha creado una cuenta de usuario del GoDigital (véase página 28).</td>
</tr>
<tr>
<td>6</td>
<td>Haga clic en el enlace para descargar el paquete de entrega y guardarlo en el PC con el fin de usarlo para la instalación del módulo digital.</td>
</tr>
</tbody>
</table>
Comprar Digital Module para varias unidades de control Micrologic X

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Haga clic en el botón Comprar para varios activos si desea comprar un Digital Module para varias unidades de control Micrologic X o varios Digital Modules para una unidad de control Micrologic X.</td>
</tr>
<tr>
<td>2</td>
<td>Haga clic en Descargar una plantilla de archivo .xls o .xlsx de ejemplo.</td>
</tr>
</tbody>
</table>
| 3 | Introduzca el archivo .xls con la siguiente información sobre las unidades de control para las que realice la compra:
 ● Números de serie de las unidades de control
 ● Referencias comerciales de las unidades de control
 ● Referencias comerciales Digital Module
 NOTA: El archivo .xls admite un máximo de 20 líneas. |
| 4 | Cargue el archivo .xls en GoDigital haciendo clic en el botón Examinar.
 Resultado: GoDigital comprueba el pedido para no duplicar compras de la misma unidad de control Micrologic X. Si se detecta un duplicado, se muestra un mensaje. |
| 5 | Envíe el carrito. La compra se valida y se envían por correo electrónico la factura, la confirmación del pedido y un enlace al paquete de entrega.
 NOTA: Sólo es posible validar la compra si se ha creado una cuenta de usuario del GoDigital (véase página 28). |
| 6 | Haga clic en el enlace para descargar el paquete de entrega y guardarlo en el PC con el fin de usarlo para la instalación del módulo digital. |

Descarga e instalación de un Digital Module

Siga este procedimiento para instalar el Digital Module que ha comprado en una unidad de control Micrologic X:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conecte un PC que esté ejecutando el software EcoStruxure Power Commission directamente al puerto mini-USB situado en la parte frontal de la unidad de control Micrologic X.</td>
</tr>
<tr>
<td>2</td>
<td>Haga clic en el botón Conectar dispositivo para establecer una conexión entre el software EcoStruxure Power Commission y la unidad de control Micrologic X. El software EcoStruxure Power Commission muestra el número de identificación de la unidad de control Micrologic X en la pantalla.</td>
</tr>
<tr>
<td>3</td>
<td>Haga clic en Módulos digitales para abrir la página de Digital Module.</td>
</tr>
<tr>
<td>4</td>
<td>Compruebe que el paquete de entrega del Digital Module que se va a instalar esté presente en el PC que está usando. Si el paquete de entrega no está instalado en el PC, haga clic en Recuperar paquete para descargar el paquete de entrega.</td>
</tr>
</tbody>
</table>
| 5 | Haga clic en Instalar para seleccionar los Digital Module que se van a instalar.
 Las funciones de protección estándar de la unidad de control Micrologic X permanecen activas durante la instalación del Digital Module.
 NOTA: Sólo se pueden instalar directamente haciendo clic en Instalar los módulos que se hayan comprado previamente. |
| 6 | Cuando la instalación haya terminado y antes de desconectar el PC, desconecte el software EcoStruxure Power Commission desde el dispositivo haciendo clic en el botón Desconectar. |

Para obtener más información, consulte Ayuda en línea de EcoStruxure Power Commission.

NOTA: Para desinstalar un módulo digital, use el software EcoStruxure Power Commission.

Eventos predefinidos

Los siguientes eventos se generan cuando se ha instalado o desinstalado un Digital Module:

<table>
<thead>
<tr>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licencia módulo digital instalada</td>
<td>Configuración</td>
<td>Baja</td>
</tr>
<tr>
<td>Licencia módulo digital desinstalada</td>
<td>Configuración</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Unidad de control Micrologic X: Fecha y hora

Presentación
La fecha y la hora de Micrologic X se utilizan para marcar eventos para proporcionar un orden cronológico. La fecha y la hora de la unidad de control Micrologic X y del resto de los módulos ULP (interfaz IFE, EIFE o IFM, módulo IO) de la unidad funcional inteligente (IMU) están sincronizadas. Al configurar la fecha y la hora de un módulo se configurará la fecha y la hora de todos los módulos de la IMU.

NOTA: La fecha y la hora de Micrologic X y de otros módulos ULP se reinician automáticamente con el valor predeterminado de fecha (01 Ene 2000) cuando se extrae la batería interna de la unidad de control Micrologic X y la unidad de control no tiene ninguna otra fuente de alimentación.

Configuración manual de fecha y hora
La fecha y la hora de Micrologic X se pueden ajustar manualmente:
- En la pantalla de Micrologic X, en Inicio → Configuración → General → Fecha y hora. El primer elemento de la fecha es el día (dd) y el segundo el mes (mm).
- Con el software EcoStruxure Power Commission:
 - mediante configuración manual
 - mediante sincronización iniciada por el usuario con la fecha y hora del PC que tenga instalado el software EcoStruxure Power Commission
- Con Aplicación EcoStruxure Power Device:
 - mediante configuración manual
 - mediante sincronización iniciada por el usuario con la fecha y hora del smartphone en el que se ejecuta la aplicación
- con un navegador web conectado a la página web de IFE o de EIFE
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

Sincronización de la fecha y hora
La fecha y la hora de Micrologic X se pueden actualizar automáticamente:
- Con la interfaz Ethernet IFE o EIFE en las condiciones siguientes:
 - La interfaz Ethernet está configurada en modo SNTP.
 - La interfaz Ethernet recibe una solicitud de actualización de fecha y hora del servidor SNTP.

 NOTA: Si la unidad de control Micrologic X está conectada a una interfaz Ethernet configurada en modo SNTP, la actualización manual de la fecha y la hora de Micrologic X es posible, pero se sustituye inmediatamente por la fecha y la hora de la interfaz Ethernet.
- Con la interfaz Modbus-SL IFM recibiendo una solicitud de actualización de fecha y hora del servidor SNTP.

Eventos predefinidos
Cuando se introducen la fecha y la hora manualmente, se genera el siguiente evento:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha y hora configuradas</td>
<td>Configuración</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Unidad de control Micrologic X: Fuente de alimentación

Fuentes de alimentación internas y externas

La unidad de control Micrologic X se alimenta con la corriente que fluye por los transformadores de corriente interna (CT).

- Las funciones de protección estándar de las unidades de control Micrologic X funcionan con la fuente de corriente interna.

 NOTA: La protección de diferencial se alimenta con la tensión del sistema a través del módulo de fuente de alimentación VPS, instalado de fábrica en Micrologic 7.0 X.

- Si la corriente de carga es superior al 20 % de la corriente nominal I_n, la fuente de corriente interna suministra alimentación para el pleno funcionamiento de la unidad de control Micrologic X. Esto incluye:
 - la HMI de Micrologic X, la pantalla y los indicadores LED
 - las funciones de medición con precisiones según IEC 61557-12
 - las funciones de mantenimiento y diagnóstico
 - la comunicación a través de los módulos ULP
 - la comunicación a través de Bluetooth con bajo nivel de energía

Para suministrar una fuente de alimentación a la unidad de control Micrologic X cuando la carga es inferior al 20 % de la tensión nominal I_n, así como para mantener el pleno funcionamiento de la unidad de control Micrologic X, se pueden usar fuentes de alimentación opcionales. Las fuentes de alimentación opcionales incluyen las siguientes:

- **Fuentes de alimentación permanentes:**
 - Módulo de fuente de alimentación de tensión interna (VPS) de hasta 600 V CA.
 - Una fuente de alimentación externa de 24 V CC.

- **Fuentes de alimentación temporales conectadas al puerto mini-USB de la unidad de control Micrologic X:**
 - Mobile Power Pack externo a través de la conexión USB.
 - Smartphone Android a través de una conexión USB OTG (el smartphone debe ser compatible con USB OTG; consulte la lista de smartphones compatibles disponible en la página web de Schneider Electric).
 - PC a través de la conexión USB.

Cada fuente de alimentación Micrologic X opcional se describe más adelante.
Módulo de fuente de alimentación VPS

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

- No instale un módulo VPS en una red con una tensión superior a 600 V CA.
- Apague todas las alimentaciones eléctricas aguas arriba y aguas abajo de este equipo antes de la instalación y el desmontaje.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

ATENCIÓN

DETERIORO DEL MÓDULO VPS

Desconecte el módulo VPS tirando de él hasta la posición de desconexión antes de realizar la prueba dieléctrica en el equipo.

El incumplimiento de estas instrucciones puede causar lesiones o daño al equipo.

El módulo VPS es opcional para Micrologic 2.0 X, 3.0 X, 5.0 X y 6.0 X. Se instala como opción estándar en Micrologic 7.0 X.

El módulo VPS se instala en la parte inferior de la unidad de control Micrologic X y se puede sustituir. Un indicador LED verde en la parte frontal indica que el módulo VPS recibe alimentación con una salida de 24 V CC. Para obtener información acerca de la sustitución e instalación de piezas de recambio, consulte la hoja de instrucciones en la página web de Schneider Electric: NVE40741

La tensión de entrada del módulo VPS está limitada a 600 V CA. El módulo está conectado directamente a la tensión media interna (PTI) en el lado aguas abajo del interruptor automático.

El módulo VPS se puede recibir alimentación de una tensión externa a través de las entradas de medición de tensión PTE y los transformadores de tensión opcionales (obligatorio para tensiones superiores a 600 V CA). La tensión externa se puede obtener del lado superior o inferior del interruptor automático.

Si la fuente de alimentación y la opción PTE están conectadas en el mismo lado del interruptor automático (por ejemplo, la fuente de alimentación y la opción PTE están conectadas en el lado superior), la unidad de control Micrologic X recibe energía en cuanto se pone en marcha la fuente de alimentación, independientemente de la posición del interruptor automático (abierto o cerrado).

Si la fuente de alimentación y la opción PTE están conectadas en lados distintos del interruptor automático (por ejemplo, la fuente de alimentación está conectada en el lado superior y el PTE en el lado inferior), la unidad de control Micrologic X recibe energía solo cuando el interruptor automático está cerrado.
Introducción a la unidad de control Micrologic X

Una fuente de alimentación externa de 24 V CC
El módulo de fuente de alimentación de 24 V CC mantiene activas todas las funciones de la unidad de control Micrologic X en cualquier situación, incluso cuando el interruptor automático está abierto y no recibe energía.
La fuente de alimentación de 24 V CC mantiene las funciones de la unidad de control Micrologic X en condiciones de poca carga (por debajo del 20%).

AVISO

PÉRDIDA DE DOBLE AISLAMIENTO
● Alimente la unidad de control Micrologic X únicamente con una fuente de alimentación MBTS (muy baja tensión de seguridad) de 24 V CC, conectada a través del módulo de puerto ULP o del bornero para alimentación externa (F1- F2+). Preste atención a la polaridad.
● No conecte dispositivos que no tengan aislamiento doble a la fuente de alimentación MBTS de 24 V CC que se esté utilizando para alimentar la unidad de control Micrologic X. Por ejemplo, no utilice la misma fuente de alimentación MBTS de 24 V CC para alimentar una unidad de control Micrologic X para interruptores automáticos Masterpact MTZ y una unidad de control Micrologic A/E/P/H para interruptores automáticos Masterpact NT/NW.
Si no se siguen estas instrucciones, se obtendrá un sistema básico/aislado único.

El diseño de dispositivos Masterpact MTZ con unidades de control Micrologic X proporciona un aislamiento doble en la parte frontal y para las líneas de comunicación que salen del dispositivo. El aislamiento reforzado o doble es una de las medidas de protección contra descargas eléctricas que cumplen las normas IEC y CENELEC HD 60364-4-41 (instalaciones de baja tensión; protección contra descargas eléctricas).

AVISO

RIESGO DE DAÑOS EN EL EQUIPO
Utilice la misma fuente de alimentación MBTS de 24 V CC para alimentar la unidad de control Micrologic X y los otros módulos ULP conectados al módulo de puerto ULP.
El incumplimiento de estas instrucciones puede causar daño al equipo.

Recomendaciones para el uso de fuentes de alimentación externas MBTS de 24 V CC:
● Se puede utilizar la misma fuente de alimentación MBTS de 24 V CC para alimentar varias unidades de control Micrologic X, según los requisitos de potencia generales del sistema.
● Utilice una fuente de alimentación de 24 V CC independiente para alimentar las bobinas de disparo MN/MX/XF o el motorreductor MCH.
● Utilice la misma fuente de alimentación de 24 V CC para alimentar la unidad de control Micrologic X y los módulos ULP.
● La fuente de alimentación de 24 V CC se puede utilizar para alimentar el módulo de conmutación ESM ERMS.
Alimentaciones de 24 V CC recomendadas

Las fuentes de alimentación de 24 V CC disponibles incluyen la gama de fuentes de alimentación Phaseo ABL8 y las fuentes de alimentación AD. Para obtener más información, consulte el *Catálogo Masterpact MTZ*

<table>
<thead>
<tr>
<th>Característica</th>
<th>Alimentación Phaseo ABL8</th>
<th>Alimentación AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilustración</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Categoría de sobretensión definida por IEC 60947-1</td>
<td>Category II</td>
<td>Category IV según la norma IEC 62477-1 (modelo de V CA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category III según la norma IEC 62477-1 (modelo de V CC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category III según la norma UL 61010-1</td>
</tr>
<tr>
<td>Tensión de alimentación de entrada de CA</td>
<td>110–120 V CA</td>
<td>110–130 V CA</td>
</tr>
<tr>
<td></td>
<td>200-500 V CA</td>
<td>200-240 V CA</td>
</tr>
<tr>
<td>Tensión de alimentación de entrada de CC</td>
<td>–</td>
<td>24-30 V CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48-60 V CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-125 V CC</td>
</tr>
<tr>
<td>Resistencia dieléctrica</td>
<td>Entrada/salida: 4 kV eficaces durante 1 minuto</td>
<td>Entrada/salida: 3 kV eficaz durante 1 minuto (modelo de 110–130 V CA y de 200–240 V CA)</td>
</tr>
<tr>
<td></td>
<td>Entrada/tierra: 3 kV eficaces durante 1 minuto</td>
<td>3 kV eficaz durante 1 minuto (modelo de 110-125 V CC)</td>
</tr>
<tr>
<td></td>
<td>Salida/tierra: 0,5 kV eficaces durante 1 minuto</td>
<td>2 kV eficaz durante 1 minuto (modelo de 24–30 V CC y de 48–60 V CC)</td>
</tr>
<tr>
<td>Temperatura</td>
<td>50 °C (122 °F)</td>
<td>70 °C (158 °F)</td>
</tr>
<tr>
<td></td>
<td>60 °C (140 °F) con 80 % de carga nominal máxima</td>
<td></td>
</tr>
<tr>
<td>Corriente de salida</td>
<td>3 A, 5 A o 10 A</td>
<td>1 A</td>
</tr>
<tr>
<td>Ondulación</td>
<td>200 mV pico-pico</td>
<td>200 mV pico-pico</td>
</tr>
<tr>
<td>Configuración de la tensión de salida para compensación de pérdida en la línea</td>
<td>De 24 a 28,8 V CC</td>
<td>De 22,8 a 25,2 V CC</td>
</tr>
</tbody>
</table>

NOTA: Para aplicaciones que requieran una categoría de sobretensión superior a II, instale un supresor de sobretensiones cuando use una fuente de alimentación ABL8 de 24 V CC.

Batería de reserva de 24 V CC

Si se interrumpe la alimentación de la fuente de 24 V CC, se puede utilizar una batería de 24 V CC de reserva para mantener el funcionamiento de la unidad de control Micrologic X, incluida la comunicación inalámbrica. Se instala en serie entre la unidad de control Micrologic X y el módulo de fuente de alimentación de 24 V CC.

La batería de reserva de 24 V CC debe cumplir las siguientes características (compatible con la unidad de control Micrologic X):

- Tensión de salida: 17 V–28,8 V CC.
 - Tensión de corte: 17 V CC (la batería de reserva de 24 V CC debe tener una tensión de salida de parada en caso de un nivel de tensión bajo).
 - Histéresis > 3 V CC (para evitar el encendido antes de que la tensión alcance los 21 V CC).
- La batería de reserva de 24 V CC debe poder alimentar una corriente de irrupción de 10 A.

NOTA: Consulte la tabla de consumo de alimentación para calcular la capacidad de batería necesaria para la instalación.
Mobile Power Pack

Mobile Power Pack es una batería externa que permite el suministro temporal de alimentación a la unidad de control Micrologic X. Mobile Power Pack permite el uso de la pantalla y el teclado de Micrologic X para funciones de ajuste y visualización en el caso de que la fuente de alimentación que alimenta la unidad de control Micrologic X sufra algún tipo de interrupción. El módulo externo Mobile Power Pack puede conectarse mediante un cable USB conectado al puerto mini-USB de la unidad de control Micrologic X.

Para comprobar el nivel de carga del módulo Mobile Power Pack, mantenga pulsado el botón de prueba durante un segundo. El indicador del módulo Mobile Power Pack se ilumina para indicar el nivel de carga restante.

NOTA: USB Durante los periodos de ajuste, puesta en marcha, prueba y mantenimiento, un smartphone (con conexión OTG) o un PC conectado a través del puerto mini USB también proporciona alimentación temporal.

Batería interna

Si no existe ninguna otra fuente de alimentación que alimente la unidad de control Micrologic X, la batería interna encenderá:

- Los LED de la causa del disparo
- El indicador LED de servicio
- El reloj interno (fecha y hora)
- La función de programación del mantenimiento

Consumo de los módulos ULP

En la siguiente tabla se muestra el consumo de los módulos ULP:

<table>
<thead>
<tr>
<th>Módulo</th>
<th>Consumo típico: (24 V CC a 20 °C/68 °F)</th>
<th>Consumo máximo: (19,2 V CC a 60 °C/140 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad de control Micrologic X para el interruptor automático Masterpact MTZ con una fuente de alimentación externa de 24 V CC</td>
<td>200 mA</td>
<td>300 mA</td>
</tr>
<tr>
<td>con alimentación a través de un puerto mini USB</td>
<td>400 mA</td>
<td>500 mA</td>
</tr>
<tr>
<td>con alimentación a través de módulo de puerto ULP</td>
<td>200 mA</td>
<td>335 mA</td>
</tr>
<tr>
<td>Contactos programables M2C</td>
<td>25 mA</td>
<td>45 mA</td>
</tr>
<tr>
<td>Módulo de conmutación ESM ERMS</td>
<td>25 mA</td>
<td>45 mA</td>
</tr>
<tr>
<td>Interfaz IFE Ethernet para un interruptor automático</td>
<td>100 mA</td>
<td>140 mA</td>
</tr>
<tr>
<td>Servidor de panel IFE Ethernet</td>
<td>100 mA</td>
<td>140 mA</td>
</tr>
<tr>
<td>Interfaz EIFE Ethernet integrada para un interruptor automático seccionable Masterpact MTZ</td>
<td>115 mA</td>
<td>180 mA</td>
</tr>
<tr>
<td>Interfaz Modbus-SL IFM o un interruptor automático</td>
<td>21 mA</td>
<td>30 mA</td>
</tr>
<tr>
<td>Módulo de aplicación de entrada/salida IO para un interruptor automático</td>
<td>100 mA</td>
<td>130 mA</td>
</tr>
<tr>
<td>Módulo de puerto ULP para interruptor automático Masterpact MTZ</td>
<td>0 mA</td>
<td>0 mA</td>
</tr>
</tbody>
</table>
Unidad de control Micrologic X: actualización del firmware

Introducción

La razón principal para actualizar el firmware de una unidad de control Micrologic X es obtener las funciones de Micrologic más recientes. Si no se necesitan las funciones de Micrologic más recientes, no es obligatorio actualizar el firmware de la unidad de control Micrologic X ni de los dispositivos Enerlin’X de IMU.

Es posible que se tengan que realizar actualizaciones de firmware para obtener compatibilidad entre unidades de control Micrologic X y Digital Modules instalados en la unidad de control (véase página 24).

Las funciones de protección estándar de la unidad de control Micrologic X permanecen activas durante una actualización del firmware.

Use la versión más reciente del software EcoStruxure Power Commission (véase página 19) para todas las actualizaciones del firmware.

Si desea más información sobre actualizaciones del firmware, consulte los siguientes documentos (véase página 10):

- Masterpact MTZ Micrologic X Control Unit - Firmware Release Note
- Micrologic Trip Units and Control Units - Firmware History

Después de actualizar la versión del firmware de la unidad de control Micrologic X, use la versión más reciente del software EcoStruxure Power Commission para comprobar la compatibilidad de firmware entre los dispositivos IMU. La tabla Actualización del firmware ayuda a diagnosticar e identificar todos los problemas de discrepancia entre los dispositivos IMU. En esta tabla también se ofrecen acciones recomendadas relacionadas con las discrepancias detectadas.

Comprobación de la versión del firmware

Compruebe la versión del firmware:

- En la pantalla del Micrologic X, en Inicio → Mantenimiento → Asistencia → Versión firmware.
- Con el software EcoStruxure Power Commission.
- Con Aplicación EcoStruxure Power Device.

Actualización del firmware con el software EcoStruxure Power Commission

AVISO

PELIGRO DE DETERIORO DE LA UNIDAD DE CONTROL MICROLOGIC X

La unidad de control Micrologic X debe recibir alimentación de forma continua durante la actualización del firmware.

Sí no se siguen estas instrucciones, la unidad de control se deteriorará.

Los requisitos previos para la actualización del firmware con el software EcoStruxure Power Commission son los siguientes:

- La última versión del software EcoStruxure Power Commission se debe descargar e instalar en el PC.
- El PC debe estar conectado a una fuente de alimentación. El modo de standby se debe desactivar para evitar la posibilidad de interrupción durante la actualización.
- El PC debe conectarse con el puerto mini USB en la unidad de control Micrologic X.
- La unidad de control Micrologic X debe recibir alimentación.
 - Cuando la unidad de control no está conectada a otros módulos ULP, recibe alimentación del PC por medio del puerto mini USB.
 - Cuando la unidad de control está conectada a otros módulos ULP, debe recibir alimentación de una fuente de alimentación de 24 V CC externa.

Para iniciar la actualización del firmware, se requiere la contraseña de administrador de la unidad de control Micrologic X.

Para obtener más información, consulte Ayuda en línea de EcoStruxure Power Commission.

El software EcoStruxure Power Commission está disponible en www.schneider-electric.com

NOTA: Para las unidades de control Micrologic X con versión del firmware mayor o igual que 002.000.xxx, la actualización del firmware de los dispositivos Enerlin’X asociados también es posible con el software EcoStruxure Power Commission mientras el PC está conectado al puerto mini USB de la unidad de control Micrologic X.
Eventos predefinidos

Cuando se realiza una actualización del firmware, se pueden generar los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrepancia crítica de módulos de firmware</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Discrepancia no crítica de módulos de firmware</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Discrepancia de firmware en la unidad de control</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comprobación de diagnóstico automático: firmware</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Modo de actualización del firmware de la unidad de control</td>
<td>Configuración</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de actualización del firmware de la unidad de control</td>
<td>Configuración</td>
<td>Media</td>
</tr>
</tbody>
</table>

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (véase página 10):

- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Guía del usuario
Capítulo 2
Uso de la interfaz hombre-máquina Micrologic X

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción de HMI de Micrologic X</td>
<td>40</td>
</tr>
<tr>
<td>Modos de visualización de la HMI</td>
<td>43</td>
</tr>
<tr>
<td>Modo de Vista rápida</td>
<td>44</td>
</tr>
<tr>
<td>Modo de navegación de árbol</td>
<td>48</td>
</tr>
<tr>
<td>Procedimiento de configuración de la protección</td>
<td>55</td>
</tr>
<tr>
<td>Menú Medidas</td>
<td>57</td>
</tr>
<tr>
<td>Menú Alarmas & histórico</td>
<td>63</td>
</tr>
<tr>
<td>Menú Mantenimiento</td>
<td>64</td>
</tr>
<tr>
<td>Menú Configuración</td>
<td>66</td>
</tr>
<tr>
<td>Menú Protección</td>
<td>69</td>
</tr>
<tr>
<td>Mensajes de eventos emergentes</td>
<td>74</td>
</tr>
</tbody>
</table>
Descripción de HMI de Micrologic X

Introducción

La interfaz hombre-máquina (HMI) de la unidad de control de Micrologic X incluye lo siguiente:
- Una pantalla gráfica con luz de fondo en color.
- Botones para navegar por la estructura de menús y acceder a los parámetros supervisados y los ajustes de configuración.

Pantalla y botones

La unidad de control Micrologic X incluye la pantalla siguiente con botones contextuales y dedicados:

Tipos funcionales de botón

Use los botones que aparecen debajo de la pantalla para:
- Navegar por la estructura de menús.
- Mostrar los valores supervisados.
- Acceder a los ajustes de configuración y editarlos.

La unidad de control proporciona los siguientes tipos de botones:
- Botones contextuales: cada pantalla puede tener tres botones contextuales como máximo. La función de cada botón viene determinada por un icono ubicado en la pantalla que aparece justo encima.
- Botones dedicados que ejecutan las funciones de escape e inicio.
Botones contextuales

<table>
<thead>
<tr>
<th>Icono mostrado</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use los botones arriba y abajo para desplazarse entre:</td>
</tr>
<tr>
<td></td>
<td>● nombres de pantalla en el mismo nivel de jerarquía de menús</td>
</tr>
<tr>
<td></td>
<td>● elementos de la lista</td>
</tr>
<tr>
<td></td>
<td>Las flechas arriba y abajo no son compatibles con los bucles de retorno. En el extremo de una estructura de menús o una lista de elementos, o bien no se muestra la flecha arriba o bien no se muestra la flecha abajo (en función de si el extremo corresponde al principio o al final de la lista). El comportamiento de la navegación "arriba" y "abajo" es el mismo para todos los menús y todas las listas.</td>
</tr>
</tbody>
</table>

OK Use el botón OK: |
- Para validar una selección. |
- Para navegar desde el nivel que se muestra en la jerarquía hasta el subnivel seleccionado que aparece justo debajo. De esta forma, la navegación se puede realizar desde: |
 - El menú activo hasta el submenú inmediato. |
 - Un submenú hasta un elemento supervisado o parámetro de configuración. |
 - Un elemento supervisado hasta su valor supervisado. |
 - Un parámetro de configuración hasta su ajuste de configuración. |
- Para ver detalles y confirmar una pantalla emergente de eventos o mensaje de error. |

Y Use los botones Y (Sí) y N (No) para confirmar las acciones, por ejemplo, cuando se muestra una pantalla de confirmación. |

N Use los botones + y – para aumentar o disminuir un ajuste de configuración, ya sean valores numéricos o elementos de lista predefinidos. |

Botones dedicados

<table>
<thead>
<tr>
<th>Icono mostrado</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use el botón ESC (escape) para:</td>
</tr>
<tr>
<td></td>
<td>● Navegar desde el nivel que se muestra en la jerarquía hasta el nivel que aparece justo arriba.</td>
</tr>
<tr>
<td></td>
<td>● Guardar un cambio en un ajuste de configuración. Emerge una pantalla de configuración que se debe confirmar para poder volver al menú del nivel superior.</td>
</tr>
</tbody>
</table>

Use el botón de inicio para: |
- Volver a la pantalla inicio. |
- Guardar un cambio en un ajuste de configuración. Se muestra una pantalla de confirmación que se debe confirmar para poder volver a la pantalla de inicio. |

Luz de fondo de pantalla

El color y la intensidad de la luz de fondo dependen del estado de funcionamiento de la unidad de control, de la manera siguiente:

<table>
<thead>
<tr>
<th>Color de luz de fondo</th>
<th>Estado de funcionamiento de la unidad de control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanca(1)</td>
<td>● El desplazamiento de Vista rápida está habilitado y en ejecución.</td>
</tr>
<tr>
<td></td>
<td>● El modo de navegación de árbol está habilitado para navegar entre los menús en las pantallas.</td>
</tr>
<tr>
<td></td>
<td>● La comunicación inalámbrica Bluetooth con bajo nivel de energía está activada y se muestra el mensaje de emparejamiento de Bluetooth.</td>
</tr>
<tr>
<td>Rojo</td>
<td>Se muestra un disparo o mensaje de evento de gravedad alta.</td>
</tr>
<tr>
<td>Naranja</td>
<td>Se muestra un mensaje de alarma de gravedad media y no hay disparos ni eventos de gravedad alta activos.</td>
</tr>
<tr>
<td>Azul</td>
<td>ERMS activado.</td>
</tr>
</tbody>
</table>

(1) La luz de fondo de la pantalla Estado en Vista rápida y Mantenimiento es: |
- Roja si un evento de gravedad alta está activo. |
- Naranja si un evento de gravedad media está activo. |

NOTA: Cuando el desplazamiento de Vista rápida está desactivado, la luz de fondo cambia de alta intensidad a baja intensidad cuando está en modalidad standby. La alta intensidad se reanuda cuando se pulsa un botón.
Idioma de pantalla

Para cambiar el idioma de la pantalla, vaya a:

Inicio → Configuración → General → Idioma

Las selecciones incluyen:

- Deutsch
- English (US)
- Español
- Français
- Italiano
- Русский
- 中文
- English (UK)
- Português

El idioma predeterminado es el siguiente:

- Unidad de control Micrologic X para la norma IEC: English (UK)
- Unidad de control Micrologic X para la norma UL: English (US)

Pantalla de arranque

La pantalla de arranque se muestra cada vez que se enciende la unidad de control Micrologic X. Ninguno de los botones de la unidad de control funcionarán mientras aparezca esta pantalla. La pantalla se muestra durante el arranque de la unidad de control. Al finalizar este periodo, se mostrará la pantalla de inicio o cualquier pantalla emergente activa.

NOTA: La protección estándar funciona durante la pantalla de arranque.
Modos de visualización de la HMI

Presentación

La HMI de la unidad de control Micrologic X es compatible con los modos de visualización siguientes:

- Modo de Vista rápida para visualizar una selección de datos
- Modo de Navegación de árbol para acceder a todos los datos por medio de una estructura de menús

NOTA: Los mensajes de evento *(véase página 74)* prevalecen tanto sobre el modo de visualización de Vista rápida como sobre el de Navegación de árbol.

Modo de Vista rápida

La Vista rápida es el modo de visualización predeterminado de la HMI. Muestra una selección de pantallas de datos.

Cuando el desplazamiento de la Vista rápida está activado, las pantallas se muestran automáticamente una tras otra con un retardo de tiempo configurable.

Cuando el desplazamiento de la Vista rápida está desactivado, las pantallas de Vista rápida están disponibles en **Inicio → Vista rápida**.

Modo de Navegación de árbol

En el modo de visualización de Navegación de árbol, utilice los botones contextuales para navegar por la estructura de menús. El modo de visualización de Navegación de árbol presenta una sola red de menús, con valores de supervisión y ajustes de configuración editables.

Siempre se puede acceder a la navegación de árbol desde la pantalla de Vista rápida pulsando el botón de inicio.

Consulte la Descripción de la HMI local de Micrologic X *(véase página 41)* para obtener información sobre cómo utilizar los botones de la HMI para:

- Navegar por la estructura de menús.
- Acceder a los ajustes y editarlos.
Modo de Vista rápida

La Vista rápida presenta una secuencia de pantallas, en función del tipo de unidad de control Micrologic X. Cada pantalla muestra una instantánea de los valores de funcionamiento para la unidad de control. Los valores que se muestran en las pantallas de protección son los ajustes de protección activos utilizados actualmente por las funciones de protección.

Con el desplazamiento automático activado, las pantallas se muestran secuencialmente con un retardo de tiempo configurable. Con el desplazamiento automático desactivado, se puede navegar por las pantallas manualmente.

El desplazamiento de la Vista rápida está activado como ajuste de fábrica.

Cuando se enciende la unidad de control Micrologic X, el desplazamiento de la Vista rápida se inicia después del tiempo de espera configurado si no hay mensajes de eventos activos.

Configure el modo de visualización de Vista rápida ajustando:

- El tiempo de visualización para cada pantalla en la secuencia de desplazamiento de la Vista rápida.
- El tiempo de retardo para reanudar automáticamente el desplazamiento después de que se haya interrumpido el desplazamiento.

Si el desplazamiento está desactivado, aparecerá la pantalla de Vista rápida Corriente tras este retardo.

A continuación se ofrece un ejemplo de las pantallas de la Vista rápida para la unidad de control Micrologic 6.0 X.
Lista de pantallas de Vista rápida

Según el tipo de unidad de control Micrologic X, el modo de Vista rápida muestra las pantallas siguientes:

<table>
<thead>
<tr>
<th>Pantalla</th>
<th>Descripción</th>
<th>Tipo de Micrologic X</th>
</tr>
</thead>
</table>
| Estado(1) | Muestra el estado del interruptor automático:
- Correcto (blanco)
- Alarma de gravedad media detectada que requiere acción no urgente (naranja)
- Alarma de gravedad alta detectada que requiere acción inmediata (rojo) | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Pantalla de arranque | Recuerda al usuario que debe descargar la aplicación móvil Aplicación EcoStruxure Power Device para gestionar la unidad de control Micrologic X. | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Corriente(1) | Muestra la corriente eficaz I1, I2 y I3 en los valores de la fase 1, 2 y 3 como gráficos de barras expresados en % de Ir. El valor de corriente de fase más elevado se muestra en amperios debajo del gráfico de barras. | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Red(1) | Muestra valores en tiempo real para:
- Media de 3 tensiones eficaces entre fases
- Frecuencia
- Factor de potencia | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Alim.(1) | Muestra valores en tiempo real para:
- P tot: potencia activa total
- Q tot: potencia reactiva total
- S tot: potencia aparente total | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Energía(1) | Muestra valores en tiempo real para:
- Ep: energía activa total
- Eq: energía reactiva total
- Es: energía aparente total | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Curva disp. | Cuando ERMS está activado, muestra el mensaje ERMS activado
- Cuando ERMS está desactivado y la configuración dual está activada, muestra:
 - Config. dual act., curva A act. o bien
 - Config. dual act., curva B act.
- Cuando ERMS está desactivado y la configuración dual está desactivada, no se muestra ninguna pantalla. | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Config. LI | Muestra una selección de ajustes de protección activos:
- Umbral de protección contra sobrecorriente de largo retardo Ir
- Temporización de la protección contra sobrecorriente de largo retardo tr
- Umbral de protección contra sobrecorriente instantánea Isd | Micrologic 2.0 X |
| Config. LI | Muestra una selección de ajustes de protección activos:
- Umbral de protección contra sobrecorriente de largo retardo Ir
- Temporización de la protección contra sobrecorriente de largo retardo tr
- Umbral de protección contra sobrecorriente instantánea li | Micrologic 3.0 X |
| Config. LSI | Muestra una selección de ajustes de protección activos:
- Umbral de protección contra sobrecorriente de largo retardo Ir
- Temporización de la protección contra sobrecorriente de largo retardo tr
- Umbral de protección contra sobrecorriente de corto retardo Isd
- Temporización de la protección contra sobrecorriente de corto retardo tsd
- Umbral de protección contra sobrecorriente instantánea li | Micrologic 5.0 X, 6.0 X, 7.0 X |
| I | Muestra una selección de ajustes de protección activos:
- Umbral de protección de defecto a tierra Ig
- Temporización de la protección de defecto a tierra tg | Micrologic 6.0 X |
| I diferencial | Muestra una selección de ajustes de protección activos:
- Umbral de protección de diferencial IΔn
- Retardo de tiempo de la protección de diferencial Δt | Micrologic 7.0 X |

(1) La pantalla de datos se actualiza cada segundo.
Configuración del modo de Vista rápida

Para configurar los ajustes de Vista rápida, vaya a Inicio → Configuración → General → Vista rápida. Están disponibles los ajustes siguientes:

- **Desplazamiento**: Ajustelo a ON para activar el desplazamiento automático en la Vista rápida. (Si se selecciona OFF, se muestra la pantalla de Vista rápida Corriente después del tiempo de espera configurado).

Cuando el desplazamiento de la Vista rápida está activado, están disponibles los ajustes siguientes:

- **Flujo páginas**: El periodo de tiempo durante el cual cada pantalla de Vista rápida se muestra durante el desplazamiento.
- **Inicio autom.**: La temporización antes de que el desplazamiento de la Vista rápida se reanude tras una interrupción. Esta temporización también es el tiempo de espera de eventos, que es la temporización antes de que se vuelva a mostrar un mensaje si no se acusa recibo de la causa del evento pulsando OK.

Cuando el desplazamiento de la Vista rápida está desactivado, el ajuste siguiente está disponible:

- **T. espera**: el retardo de tiempo antes de que aparezca la pantalla de Vista rápida Corriente. Esta temporización también es el tiempo de espera de eventos, que es la temporización antes de que se vuelva a mostrar un mensaje si no se acusa recibo de la causa del evento pulsando OK.

En la tabla siguiente se muestran los ajustes configurables.

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>ON</td>
</tr>
<tr>
<td>Flujo páginas</td>
<td>segundos</td>
<td>3–60</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Inicio autom.</td>
<td>minutos</td>
<td>1–60</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>T. espera</td>
<td>minutos</td>
<td>1–60</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Inicio del desplazamiento de la Vista rápida

Cuando el desplazamiento por la Vista rápida está activado, se puede reiniciar el desplazamiento:

- Automáticamente
- Manualmente

Para iniciar el desplazamiento de la Vista rápida automáticamente, espere a que transcurra el tiempo de espera de **Inicio autom.**

Para iniciar el desplazamiento de la Vista rápida manualmente:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>En el menú Inicio, seleccione Vista rápida.</td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK para reiniciar el desplazamiento por las pantallas de Vista rápida.</td>
</tr>
</tbody>
</table>

Detención del desplazamiento de la Vista rápida

Detenga el desplazamiento de la Vista rápida tal como se indica a continuación:

- Pulse el botón ESC o el botón de inicio. La pantalla muestra el menú **Inicio**. A partir de aquí, utilice los botones arriba y abajo para desplazarse por la estructura de menús.
 NOTA: Si no se pulsa ningún botón antes de que transcurra el tiempo de espera de **Inicio autom.**, el desplazamiento de la Vista rápida se reanuda.
- Pulse uno de los tres botones contextuales. El desplazamiento de la Vista rápida se reanuda. Utilice los botones arriba y abajo para desplazarse manualmente por las pantallas de la Vista rápida.

Cuando la unidad de control Micrologic X detecta cualquiera de los eventos siguientes, el desplazamiento de la Vista rápida se interrumpe y se muestra **(véase página 74)** un mensaje emergente:

- Emparejamiento Bluetooth
- Disparo
- Alarma de gravedad alta
- Alarma de gravedad media
- ERMS activado
Desactivación del desplazamiento de la Vista rápida

Para desactivar el desplazamiento de Vista rápida:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse el botón de inicio.</td>
</tr>
<tr>
<td>2</td>
<td>Vaya a Inicio → Configuración → General → Vista rápida.</td>
</tr>
<tr>
<td>3</td>
<td>Pulse OK.</td>
</tr>
</tbody>
</table>
| 4 | Utilice los botones contextuales + o - para establecer el ajuste **Desplazamiento** en:
 - ON para seleccionar el desplazamiento automático de la Vista rápida.
 - OFF para desactivar el desplazamiento automático de la Vista rápida. |
| 5 | Pulse OK para guardar la selección. |
| 6 | Pulse ESC o el botón de inicio.
 Aparece una pantalla de confirmación. |
| 7 | Pulse una de las siguientes opciones en la pantalla de confirmación:
 - Y para confirmar el cambio de ajuste.
 - N para deshacer la edición. |
Modo de navegación de árbol

Visualización de la pantalla de estructura de árbol

El modo de navegación de árbol permite navegar manualmente por la estructura de menús de la unidad de control Micrologic X. El modo de navegación de árbol permite realizar las siguientes acciones:

- Mostrar valores de medidas de la unidad de control
- Consultar las alarmas activas y el historial de eventos
- Consultar los elementos de mantenimiento, así como un historial de registros de servicio
- Mostrar y editar los ajustes de configuración de la unidad de control
- Mostrar y editar los ajustes de protección

Cualquier selección del menú de navegación de árbol comienza con el botón de inicio:

Haga clic en el enlace de uno de los elementos siguientes del menú de nivel 2 para ver su contenido:

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Nivel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio</td>
<td>Vista rápida (véase página 44)</td>
</tr>
<tr>
<td></td>
<td>Medidas (véase página 57)</td>
</tr>
<tr>
<td></td>
<td>Alarmas & historial (véase página 63)</td>
</tr>
<tr>
<td></td>
<td>Mantenimiento (véase página 64)</td>
</tr>
<tr>
<td></td>
<td>Configuración (véase página 66)</td>
</tr>
<tr>
<td></td>
<td>Protección (véase página 69)</td>
</tr>
</tbody>
</table>

Navegación por la estructura de menús

Los botones contextuales o exclusivos de la parte frontal de la unidad de control Micrologic X permiten navegar por la estructura de menús, así como acceder a los valores mostrados y ajustes configurables.

A continuación se enumeran las operaciones que pueden realizarse, acompañadas de un ejemplo:

- Mostrar datos, como por ejemplo valores de energía
- Restablecer valores o contadores, como por ejemplo restablecer la corriente eficaz máxima
- Seleccionar opciones de una lista, como por ejemplo el idioma
- Editar un valor, como por ejemplo la tensión nominal
- Establecer los ajustes de protección, como por ejemplo la protección contra sobrecorriente de largo retardo
- Validar un mensaje emergente, como por ejemplo un mensaje de disparo emergente
Visualización de datos

En el ejemplo siguiente se muestra cómo mostrar los valores de energía:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
<th>Pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse el botón de inicio. Se abre el menú Inicio. Pulse la flecha hacia abajo para seleccionar Medidas.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK, Se abre el menú Medidas. Pulse la flecha hacia abajo para seleccionar Energía.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pulse OK, Se abre el menú Energía. Pulse la flecha hacia abajo para seleccionar E recibida.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pulse OK, Se muestra la pantalla E recibida.</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Para salir de la pantalla **E recibida,** pulse una de las siguientes opciones:
 - Pulse el botón **ESC** para regresar al menú **Energía**.
 - El botón de inicio para regresar al menú **Inicio**. | ![Imagen](image5.png) |
Restablecimiento de valores

Algunos menús incluyen valores o contadores que pueden restablecerse. En el ejemplo siguiente se muestra cómo navegar hasta la corriente eficaz máxima para restablecerla:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
<th>Pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse el botón de inicio. Se abre el menú Inicio. Pulse la flecha hacia abajo para seleccionar Medidas.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK. Se abre el menú Medidas. Seleccione Corriente.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pulse OK. Se abre el menú Corriente. Pulse la flecha hacia abajo para seleccionar Reini. MÁX.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pulse OK. Aparece la pantalla de confirmación Reini. MÁX.</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Pulse una de las siguientes opciones en la pantalla de confirmación:
 - Pulse **Y** para restablecer la corriente eficaz máxima y regresar a la pantalla **Corriente**.
 - Pulse **N** para regresar a la pantalla **Corriente** sin restablecer el valor. | ![Pantalla Reini. MÁX con opciones](image5) |
Selección de opciones de una lista

Algunos menús presentan las diferentes opciones en una lista. En el ejemplo siguiente se muestra cómo navegar hasta las opciones de idioma y seleccionar las opciones deseadas:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
<th>Pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse el botón de inicio. Se abre el menú Inicio. Pulse la flecha hacia abajo para seleccionar Configuración.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK. Se abre el menú Configuración. Seleccione General.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pulse OK. Se abre el menú General. Seleccione Idioma.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pulse OK. Se abre el menú Idioma.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pulse los botones de flecha hacia arriba y hacia abajo para seleccionar un idioma y pulse OK. Aparece una marca de confirmación junto al idioma seleccionado.</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | Para guardar la selección, pulse una de las siguientes opciones:
 - El botón **ESC** para regresar al menú **General**.
 - El botón de inicio para regresar al menú **Inicio**. | |
| 7 | Pulse una de las siguientes opciones en la pantalla de confirmación:
 - Y para confirmar el cambio de ajuste.
 - N para deshacer la edición. | ![Pantalla de confirmación de idioma con opciones](image6) |
Restauración de la configuración de idioma

Si el idioma seleccionado para la pantalla le es desconocido, en el ejemplo siguiente se muestra cómo restaurar la configuración de idioma a un idioma conocido:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
<th>Pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse el botón de inicio. Se abre el menú Inicio. Pulse la flecha hacia abajo tres veces para llegar a la tercera línea del menú. Es el menú Configuración.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK. Se abre el menú Configuración. Seleccione la primera línea. Es el menú General.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pulse OK. Se abre el menú General. Seleccione la primera línea. Es el menú Idioma.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pulse OK. Se abre el menú Idioma. Pulse los botones de flecha hacia arriba y hacia abajo para seleccionar el idioma que desee y pulse OK.</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Para guardar la selección, pulse una de las siguientes opciones:
 - El botón **ESC** para regresar al menú **General**.
 - El botón de inicio para regresar al menú **Inicio**. | ![Imagen 5](image5.png) |
| 6 | Pulse una de las siguientes opciones en la pantalla de confirmación:
 - **Y** para confirmar el cambio de ajuste.
 - **N** para deshacer la edición. | ![Imagen 6](image6.png) |
Edición y almacenamiento de ajustes de parámetros

Cuando edite el ajuste de un parámetro, utilice los botones + o – para aumentar o disminuir el ajuste en un incremento. Mantenga pulsado el botón para acelerar el proceso.

Esta función se aplica tanto a valores numéricos como a selecciones de listas.

En el ejemplo siguiente se muestra cómo editar la tensión nominal:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
<th>Pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse el botón de inicio. Se abre el menú Inicio. Pulse la flecha hacia abajo para seleccionar Configuración.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK. Se abre el menú Configuración. Pulse la flecha hacia abajo para seleccionar Red.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pulse OK. Se abre el menú Red. Seleccione Tensión nominal.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pulse OK. Se abre el menú Tensión nominal.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>En el menú Tensión nominal, seleccione Vn (V) y pulse OK para habilitar la edición del parámetro Vn (V). El parámetro se muestra en negro sobre fondo blanco para indicar que se ha habilitado la edición. En este ejemplo se muestra el valor predeterminado de fábrica 400.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pulse los botones + y – para desplazarse por los diferentes ajustes. Los valores posibles son 208, 220, 230, 240, 380, 400, 415, 440, 480, 500, 525, 550, 575, 600, 660, 690 y 1000. Pulse OK para seleccionar un ajuste. El fondo cambia a color negro.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Para guardar el cambio de ajustes, pulse uno de los siguientes botones: ● El botón ESC para regresar a la pantalla Tensión nominal ● El botón de inicio para regresar al menú Inicio</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pulse una de las siguientes opciones en la pantalla de confirmación: ● Pulse Y para confirmar y guardar el cambio de ajuste. ● N para deshacer la edición.</td>
<td></td>
</tr>
</tbody>
</table>

Si la edición no se realiza de manera correcta, aparece un mensaje de error detectado. Pulse **OK** para confirmar el mensaje. Se mostrará el menú anterior.
Configuración de ajustes de protección

El procedimiento para configurar los ajustes de protección es conforme a UL489SE. Los ajustes nuevos se envían y se aplican en pasos distintos (véase página 55).

Validación de un mensaje emergente

Con cada evento de disparo o alarma se mostrará un mensaje emergente en la pantalla. El mensaje anulará la pantalla que se esté mostrando en esos momentos.

En el ejemplo siguiente se muestra cómo manejar un mensaje de disparo emergente.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
<th>Pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aparece un mensaje de disparo emergente en la pantalla.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK para consultar los detalles del disparo.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Si aparece una flecha hacia abajo en la parte inferior de la pantalla, púlsela para ver más detalles relativos al evento de disparo.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tras tomar las medidas necesarias para resolver la causa del disparo, pulse OK para confirmar el contexto del disparo. Se muestra la pantalla Alaramas & historial.</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Para salir de la pantalla Alaramas & historial pulse una de las siguientes opciones:
 ● El botón ESC para regresar a la pantalla que se mostraba antes de que apareciese el mensaje emergente
 ● El botón de inicio para regresar al menú Inicio | -- |
Procedimiento de configuración de la protección

Sesión de configuración de la protección

El procedimiento para configurar un ajuste de protección cumple la norma UL489SE, con una sesión de edición exclusiva y un procedimiento de dos pasos para enviar y aplicar los cambios de ajustes de la protección.

Para establecer un ajuste de protección, se debe habilitar el acceso a los ajustes de protección utilizando la HMI de Micrologic X (véase página 83).

Configuración de ajustes de protección

En el ejemplo siguiente se muestra cómo establecer la protección contra sobrecorriente de largo retardo:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
<th>Pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse el botón de inicio. Se abre el menú Inicio. Pulse la flecha hacia abajo para seleccionar Protección.</td>
<td>![Imagen 1]</td>
</tr>
<tr>
<td>2</td>
<td>Pulse OK. Se abre el menú Protección. Seleccione I largo retardo.</td>
<td>![Imagen 2]</td>
</tr>
<tr>
<td>3</td>
<td>Pulse OK. Se abre la sesión de edición y se muestra el menú I largo retardo. En el menú I largo retardo, seleccione el parámetro Ir.</td>
<td>![Imagen 3]</td>
</tr>
<tr>
<td>4</td>
<td>Pulse OK para habilitar la edición del parámetro Ir (x ln). El parámetro se muestra en negro sobre fondo blanco para indicar que se ha habilitado la edición.</td>
<td>![Imagen 4]</td>
</tr>
<tr>
<td>5</td>
<td>Pulse los botones + y – para desplazarse por los diferentes ajustes. Pulse OK para confirmar el nuevo ajuste. El parámetro se muestra en blanco sobre fondo negro.</td>
<td>![Imagen 5]</td>
</tr>
<tr>
<td>6</td>
<td>Utilice la flecha hacia abajo y OK para seleccionar el siguiente parámetro que desee establecer y repita el paso 5.</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Para enviar los nuevos ajustes, pulse uno de los botones siguientes: • El botón ESC • El botón de inicio</td>
<td>-</td>
</tr>
</tbody>
</table>
En la tabla siguiente se indica la acción necesaria que se debe llevar a cabo si aparece un aviso emergente al editar un ajuste de protección:

<table>
<thead>
<tr>
<th>Mensaje</th>
<th>Descripción</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protecc. bloq. Para desbloquear, vaya a Configuración.</td>
<td>El acceso a los ajustes de protección está desactivado.</td>
<td>Pulse OK para confirmar el mensaje y visualizar el menú Protección. Los parámetros de protección están accesibles sólo para visualización. Acceda a Inicio → Configuración → General → Protecc. bloqueo en la pantalla Micrologic X para activar el acceso a los ajustes de protección (véase página 83).</td>
</tr>
<tr>
<td>La sesión ha caducado</td>
<td>No se ha pulsado ninguna tecla durante cinco minutos. La sesión de edición ha caducado al transcurrir el tiempo de espera (véase página 84). Los nuevos ajustes se rechazan y se mantienen los ajustes de protección existentes.</td>
<td>Pulse OK para confirmar el mensaje y volver al menú Protección. Abra una nueva sesión de edición seleccionando una función de protección en el menú.</td>
</tr>
<tr>
<td>Se ha denegado el acceso porque falta un conector del sensor. Compruebe el conector del sensor.</td>
<td>Falta el conector del sensor o está conectado de manera incorrecta.</td>
<td>Pulse OK para confirmar el mensaje y volver al menú Inicio. No es posible visualizar o establecer ajustes de protección. Póngase en contacto con el representante de servicio local (FSR) para comprobar y sustituir o volver a conectar el conector del sensor.</td>
</tr>
</tbody>
</table>
Menú Medidas

Presentación

En esta guía, las fases eléctricas se describen como fase 1, fase 2, fase 3 y cubren la norma IEC y la norma UL. La unidad de control Micrologic X muestra las fases tal como se indica a continuación:

<table>
<thead>
<tr>
<th>Unidad de control Micrologic X para norma IEC</th>
<th>Unidad de control Micrologic X para norma UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase 1</td>
<td>Fase a</td>
</tr>
<tr>
<td>Fase 2</td>
<td>Fase b</td>
</tr>
<tr>
<td>Fase 3</td>
<td>Fase c</td>
</tr>
</tbody>
</table>

Descripción

El menú Medidas contiene los siguientes submenús:

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Nivel 2</th>
<th>Nivel 3</th>
<th>Descripción de la función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio</td>
<td>Medidas</td>
<td>Corriente</td>
<td>Medidas de corriente en tiempo real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tensión</td>
<td>Medidas de tensión en tiempo real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alim.</td>
<td>Medidas de potencia en tiempo real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energía</td>
<td>Medidas de energía en tiempo real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frecuencia</td>
<td>Medidas de frecuencia en tiempo real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I harmónic.</td>
<td>Medidas de armónicos de corriente en tiempo real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V harmónic.</td>
<td>Medidas de armónicos de tensión en tiempo real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Factor de potencia</td>
<td>Medidas de factor de potencia en tiempo real</td>
</tr>
</tbody>
</table>

Pantallas de medidas con indicador de calidad

En las pantallas siguientes se muestra un indicador de calidad que ofrece una representación gráfica de la medida en comparación con el rango esperado:
- Máximo de 3 desequilibrios de corriente de fase en tiempo real, I_{unb}
- Media de 3 tensiones entre fases eficaces V_{med} VLL(V)
- Máximo de 3 desequilibrios de tensión entre fases en tiempo real D_{eseq} VLL(%)
- Frecuencia F (Hz)

En la pantalla de frecuencia, por ejemplo, los siguientes iconos indican la medida en comparación con el rango esperado:

- ☑ Medición correcta: la diferencia entre la frecuencia medida y la esperada es inferior al 1 %
- ⚠️ Medición fuera de rango: la diferencia entre la frecuencia medida y la esperada es $+1 - 4 \%$, o $-1 - (-6 \%)$
- ⚠️ Medición fuera de rango: la diferencia entre la frecuencia medida y la esperada es mayor que $+4 \%$ o menor que -6%
El menú **Corriente** muestra las medidas siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente</td>
<td>I1 (A)</td>
<td>Corriente de fase 1 eficaz</td>
</tr>
<tr>
<td></td>
<td>I2 (A)</td>
<td>Corriente de fase 2 eficaz</td>
</tr>
<tr>
<td></td>
<td>I3 (A)</td>
<td>Corriente de fase 3 eficaz</td>
</tr>
<tr>
<td></td>
<td>In (A)(^{(1)})</td>
<td>Corriente eficaz en neutro</td>
</tr>
<tr>
<td></td>
<td>Ig (A)(^{(2)})</td>
<td>Corriente eficaz en tierra</td>
</tr>
<tr>
<td></td>
<td>IΔn (A)(^{(3)})</td>
<td>Corriente eficaz en diferencial</td>
</tr>
<tr>
<td>I MAX</td>
<td>I1 (A)</td>
<td>Corriente eficaz máxima en fase 1</td>
</tr>
<tr>
<td></td>
<td>I2 (A)</td>
<td>Corriente eficaz máxima en fase 2</td>
</tr>
<tr>
<td></td>
<td>I3 (A)</td>
<td>Corriente eficaz máxima en fase 3</td>
</tr>
<tr>
<td></td>
<td>In (A)(^{(1)})</td>
<td>Corriente eficaz máxima en neutro</td>
</tr>
<tr>
<td></td>
<td>Ig (A)(^{(2)})</td>
<td>Corriente eficaz máxima en tierra</td>
</tr>
<tr>
<td></td>
<td>IΔn (A)(^{(3)})</td>
<td>Corriente eficaz máxima en diferencial</td>
</tr>
<tr>
<td>I med</td>
<td>I (1,2,3) (A)</td>
<td>Media de las corrientes eficaces de las 3 fases</td>
</tr>
<tr>
<td>I deseq.</td>
<td>I (1,2,3) (%)</td>
<td>Máximo de 3 desequilibrios de corriente de fase en tiempo real, con indicador de calidad</td>
</tr>
<tr>
<td>I deseq. MÁX</td>
<td>I (1,2,3) (%)</td>
<td>Valor máximo del máximo de 3 desequilibrios de corriente de fase</td>
</tr>
<tr>
<td>Reini. MÁX</td>
<td></td>
<td>Restablecimiento de la corriente eficaz máxima, con fecha y hora del último restablecimiento</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENCT cableado y configurado

\(^{(2)}\) Se aplica a Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X

\(^{(3)}\) Se aplica a Micrologic 7.0 X
El menú **Tensión** muestra las medidas siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión</td>
<td>V</td>
<td>V12 (V)</td>
<td>Tensión eficaz entre fases 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V23 (V)</td>
<td>Tensión eficaz entre fases 2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V31 (V)</td>
<td>Tensión eficaz entre fases 3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V1N (V)<sup>(1)</sup></td>
<td>Tensión RMS entre fase y neutro 1-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V2N (V)<sup>(1)</sup></td>
<td>Tensión RMS entre fase y neutro 2-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V3N (V)<sup>(1)</sup></td>
<td>Tensión eficaz entre fase y neutro 3-N</td>
</tr>
<tr>
<td>V MAX</td>
<td>V</td>
<td>V12 (V)</td>
<td>Tensión máxima eficaz entre fases 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V23 (V)</td>
<td>Tensión máxima eficaz entre fases 2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V31 (V)</td>
<td>Tensión máxima eficaz entre fases 3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V1N (V)<sup>(1)</sup></td>
<td>Tensión máxima RMS entre fase y neutro 1-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V2N (V)<sup>(1)</sup></td>
<td>Tensión máxima RMS entre fase y neutro 2-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V3N (V)<sup>(1)</sup></td>
<td>Tensión máxima eficaz entre fase y neutro 3-N</td>
</tr>
<tr>
<td>V MIN</td>
<td>V</td>
<td>V12 (V)</td>
<td>Tensión entre fases eficaz mínima 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V23 (V)</td>
<td>Tensión entre fases eficaz mínima 2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V31 (V)</td>
<td>Tensión entre fases eficaz mínima 3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V1N (V)<sup>(1)</sup></td>
<td>Tensión mínima RMS entre fase y neutro 1-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V2N (V)<sup>(1)</sup></td>
<td>Tensión mínima RMS entre fase y neutro 2-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V3N (V)<sup>(1)</sup></td>
<td>Tensión mínima RMS entre fase y neutro 3-N</td>
</tr>
</tbody>
</table>
| **V med** | V | VLL (V) | Media de las 3 tensiones RMS entre fase y fase
(V12+V23+V31)/3, con indicador de calidad |
| | | VLN (V)⁽¹⁾ | Media de las 3 tensiones eficaces entre fase y neutro
(V1N+V2N+V3N)/3 |
| **V deseq.** | V | VLL (%) | Máximo de 3 desequilibrios de tensión entre fase y fase en tiempo real, con indicador de calidad |
| | | VLN (%)⁽¹⁾ | Máximo de 3 desequilibrios de tensión entre fase y neutro en tiempo real |
| **V MÁX des.** | V | VLL (%) | Valor máximo del máximo de 3 desequilibrios de tensión entre fases |
| | | VLN (%)⁽¹⁾ | Valor máximo del máximo de 3 desequilibrios de tensión entre fase y neutro |
| **Reini. MÍN/MÁX** | | | Restablecimiento de la tensión eficaz mínima y máxima, con la fecha y la hora del último restablecimiento |

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
El menú **Alim.** muestra las mediciones siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alim.</td>
<td>P</td>
<td>P1 (kW)</td>
<td>Potencia activa en fase 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2 (kW)</td>
<td>Potencia activa en fase 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P3 (kW)</td>
<td>Potencia activa en fase 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ptot (kW)</td>
<td>Potencia activa total</td>
</tr>
<tr>
<td></td>
<td>P MAX</td>
<td>Ptot (kW)</td>
<td>Potencia activa total máxima</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>Q1 (kVAR)</td>
<td>Potencia reactiva fundamental en fase 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q2 (kVAR)</td>
<td>Potencia reactiva fundamental en fase 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q3 (kVAR)</td>
<td>Potencia reactiva fundamental en fase 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qtot (kVAR)</td>
<td>Potencia reactiva total</td>
</tr>
<tr>
<td></td>
<td>Q MAX</td>
<td>Qtot (kVAR)</td>
<td>Potencia reactiva total máxima</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S1 (kVA)</td>
<td>Potencia aparente en fase 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2 (kVA)</td>
<td>Potencia aparente en fase 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3 (kVA)</td>
<td>Potencia aparente en fase 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stot (kVA)</td>
<td>Potencia aparente total</td>
</tr>
<tr>
<td></td>
<td>S MAX</td>
<td>Stot (kVA)</td>
<td>Potencia aparente total máxima</td>
</tr>
<tr>
<td></td>
<td>Reini. MÁX</td>
<td></td>
<td>Reinicio de potencia máxima, con fecha y hora del último reinicio</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

El menú **Energía** muestra las medidas siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía</td>
<td>E total</td>
<td>Ep (kWh)</td>
<td>Valores de energía activa total:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eq (kVArh)</td>
<td>Valores de energía reactiva total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Es (kVAh)</td>
<td>Energía aparente total</td>
</tr>
<tr>
<td></td>
<td>E entregada</td>
<td>Ep (kWh)</td>
<td>Energía activa total entregada (en la carga, contada positivamente)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eq (kVArh)</td>
<td>Energía reactiva total entregada (en la carga, contada positivamente)</td>
</tr>
<tr>
<td></td>
<td>E recibida</td>
<td>Ep (kWh)</td>
<td>Energía activa total recibida (fuera de la carga, contada negativamente)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eq (kVArh)</td>
<td>Energía reactiva total recibida (fuera de la carga, contada negativamente)</td>
</tr>
<tr>
<td></td>
<td>Reini. contad.</td>
<td></td>
<td>Restablecimiento de la energía acumulada, con la fecha y la hora del último reinicio</td>
</tr>
</tbody>
</table>

El menú **Frecuencia** muestra las mediciones siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>F</td>
<td>F (Hz)</td>
<td>Frecuencia con indicador de calidad</td>
</tr>
<tr>
<td></td>
<td>F MAX</td>
<td>F (Hz)</td>
<td>Frecuencia máxima</td>
</tr>
<tr>
<td></td>
<td>F MIN</td>
<td>F (Hz)</td>
<td>Frecuencia mínima</td>
</tr>
<tr>
<td></td>
<td>Reini. MÍN/MÁX</td>
<td></td>
<td>Reinicio de la frecuencia mínima y máxima, con la fecha y la hora del último reinicio</td>
</tr>
</tbody>
</table>
I harmónico.

El menú **I harmónico** muestra las medidas siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I harmónico</td>
<td>I THD</td>
<td>I1 (%)</td>
<td>Distorsión armónica total (THD) de la corriente en la fase 1 con respecto a la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I2 (%)</td>
<td>Distorsión armónica total (THD) de la corriente en la fase 2 con respecto a la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I3 (%)</td>
<td>Distorsión armónica total (THD) de la corriente en la fase 3 con respecto a la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN (%)</td>
<td>Distorsión armónica total (THD) de la corriente en el neutro en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td>I THD IN MÁX</td>
<td>IN (%)</td>
<td>Máximo de distorsión armónica total (THD) de la corriente en el neutro en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td>I THD med</td>
<td>I (1, 2, 3) (%)</td>
<td>Media de las distorsiones armónicas totales (THD) de corriente de las 3 fases con respecto a la fundamental</td>
</tr>
<tr>
<td></td>
<td>I THD med MÁX</td>
<td>I (1, 2, 3) (%)</td>
<td>Media máxima de las distorsiones armónicas totales (THD) de corriente de las 3 fases con respecto a la fundamental, con la fecha y la hora en que se ha producido</td>
</tr>
<tr>
<td></td>
<td>Reini. MÁX</td>
<td></td>
<td>Reinicio de la frecuencia de THD mínima y máxima, con la fecha y la hora del último reinicio</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

V harmónico.

El menú **V harmónico** muestra las medidas siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión</td>
<td>V THD</td>
<td>V12 (%)</td>
<td>Distorsión armónica total (THD) de la tensión entre fases 1-2 en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V23 (%)</td>
<td>Distorsión armónica total (THD) de la tensión entre fases 2-3 en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V31 (%)</td>
<td>Distorsión armónica total (THD) de la tensión entre fases 3-1 en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V1N (%)</td>
<td>Distorsión armónica total (THD) de la tensión entre fase y neutro 1-N en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V2N (%)</td>
<td>Distorsión armónica total (THD) de la tensión entre fase y neutro 2-N en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V3N (%)</td>
<td>Distorsión armónica total (THD) de la tensión entre fase y neutro 3-N en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td>V THD med</td>
<td>VLL (%)</td>
<td>Media de las distorsiones armónicas totales (THD) de las 3 tensiones entre fases comparada con la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLN (%)</td>
<td>Media de las distorsiones armónicas totales (THD) de las 3 tensiones entre fase y neutro en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td>V THD med MÁX</td>
<td>VLL (%)</td>
<td>Valor máximo desde el último restablecimiento de la media de las distorsiones armónicas totales (THD) de las 3 tensiones entre fases en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLN (%)</td>
<td>Valor máximo desde el último restablecimiento de la media de las distorsiones armónicas totales (THD) de las 3 tensiones entre fase y neutro en comparación con la fundamental</td>
</tr>
<tr>
<td></td>
<td>Reini. MÁX</td>
<td></td>
<td>Restablecimiento de todas las tensiones máximas y mínimas</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
El menú **Factor potencia** muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor potencia</td>
<td>PF</td>
<td>Factor de potencia total</td>
</tr>
<tr>
<td>Cos φ</td>
<td></td>
<td>Factor de potencia fundamental total</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>Los parámetros que se muestran dependen de la convención de signo para el factor de potencia y cos φ que se haya seleccionado.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Si se selecciona IEEE (ajuste de fábrica), el parámetro que se muestra es:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Capacitivo en el caso del capacitivo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Inductivo en el caso del inductivo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Si se selecciona IEC, el parámetro que se muestra es:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Capacitivo en caso de adelanto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Inductivo en caso de atraso</td>
</tr>
</tbody>
</table>
Menú Alarmas & histórico

Descripción

El menú Alarmas & histórico contiene los siguientes submenús:

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Nivel 2</th>
<th>Nivel 3</th>
<th>Descripción de la función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio</td>
<td>Alarmas & histórico</td>
<td>Alarmas n</td>
<td>Muestra eventos de gravedad media y alta de tipo Entrada/Salida después de que se produzca la alarma y antes de la finalización. El número n indica el número de alarmas activas o mantenidas. Los disparos no se muestran.</td>
</tr>
<tr>
<td></td>
<td>Hist. disparos</td>
<td></td>
<td>Muestra el historial de disparos, con la fecha y la hora en que se produjo el disparo.</td>
</tr>
</tbody>
</table>
| | Hist. alarmas | | Muestra el historial de eventos de gravedad media y alta, con la fecha y la hora para el siguiente tipo de eventos:
 ● Eventos de tipo impulso con la fecha y la hora en que aparecieron
 ● Eventos de tipo entrada/salida con la fecha y la hora en las que se completaron
Los disparos no se muestran en este historial. |

NOTA: Los eventos de historial de disparos e historial de alarmas se enumeran en orden cronológico, con el evento más reciente en primer lugar.

Pantalla de alarmas

Una pantalla de alarma para una alarma activa contiene la siguiente información:

<table>
<thead>
<tr>
<th>Título de la pantalla: Alarma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: hasta tres líneas de texto con descripción de la naturaleza de la alarma (evento de gravedad media o alta).</td>
</tr>
<tr>
<td>Código de evento</td>
</tr>
<tr>
<td>Estado del evento: aparición</td>
</tr>
<tr>
<td>La fecha y hora en que se produjo la alarma.</td>
</tr>
</tbody>
</table>

Utilice las flechas hacia arriba y hacia abajo en la parte inferior de la pantalla para navegar entre las pantallas de la alarma activa.

Pantallas de historial de disparos

Una pantalla de historial de disparos contiene la siguiente información:

<table>
<thead>
<tr>
<th>Título de la pantalla: Hist. disparos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: hasta tres líneas de texto con descripción de la naturaleza del disparo (evento de gravedad alta).</td>
</tr>
<tr>
<td>Código de evento</td>
</tr>
<tr>
<td>Estado del evento: aparición</td>
</tr>
<tr>
<td>La fecha y hora en que se produjo el evento.</td>
</tr>
</tbody>
</table>

Utilice las flechas hacia arriba y hacia abajo en la parte inferior de la pantalla para navegar entre las pantallas de historial de disparos.

Pantallas de historial de alarmas

Una pantalla de historial de alarmas contiene la siguiente información:

<table>
<thead>
<tr>
<th>Título de la pantalla: Hist. alarmas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: hasta tres líneas de texto con descripción de la naturaleza de la alarma (evento de gravedad media o alta).</td>
</tr>
<tr>
<td>Código de evento</td>
</tr>
</tbody>
</table>
| Estado del suceso:
 ● Completado: para eventos de tipo Entrada/Salida.
 ● Aparición: para eventos de tipo impulso. |
| La fecha y hora en que finalizó o se produjo el evento. |

Utilice las flechas hacia arriba y hacia abajo en la parte inferior de la pantalla para navegar entre las pantallas de historial de alarmas.
Menú Mantenimiento

Descripción

El menú Mantenimiento contiene los siguientes submenús:

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Nivel 2</th>
<th>Nivel 3</th>
<th>Descripción de la función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio</td>
<td>Mantenimiento</td>
<td>Cambiar a otro modo (1)</td>
<td>Configuración dual (véase página 102)</td>
</tr>
<tr>
<td>Asistencia</td>
<td></td>
<td></td>
<td>Presenta información sobre la programación del mantenimiento y la versión del firmware de la unidad de control Micrologic X. (véase página 199)</td>
</tr>
<tr>
<td>Estado</td>
<td></td>
<td></td>
<td>Describe el estado del interruptor automático. (véase página 199)</td>
</tr>
<tr>
<td>Vis. gen. CB</td>
<td></td>
<td></td>
<td>Muestra información acerca del interruptor automático (véase página 213).</td>
</tr>
</tbody>
</table>

(1) Se muestra sólo cuando el parámetro Config. dual se ha establecido en Activada y el parámetro Modo conmutador se ha establecido en HMI local.

Cambiar a otro modo

El menú Cambiar a otro juego se muestra sólo cuando el parámetro Config. dual se ha establecido en Activada y el parámetro Modo conmutador se ha establecido en HMI local. Muestra los siguientes datos:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambiar a otro modo</td>
<td>Cambiar a juego B</td>
<td>Permite la selección del grupo de ajustes A o B cuando la función de configuración dual está habilitada.</td>
</tr>
</tbody>
</table>

Asistencia

El menú Asistencia muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
</table>
| Asistencia | Prog. mantenim. | Siguiente mantenim. | Muestra:
• Siguiente programación del mantenimiento que se realizará
• Número de meses que faltan para que finalice el plazo de la programación o número de meses transcurridos desde que finalizó dicho plazo |
| Último mantenim. | | | Muestra:
• Última programación del mantenimiento realizada y fecha
• Nombre del proveedor de mantenimiento
• Nombre del personal de mantenimiento que realizó la programación |
| Versión firmware | Versión µLogic | | Muestra la versión de firmware de Micrologic X en el formato xxx.xxx.xxx. |
| Versión M&P | | | Muestra:
• Versión de firmware de M&P y versión de firmware de TCI que se utilizan para comprobar la conformidad con UL 489SE
• Código CRC32 de las versiones de firmware |
| Versión TCI | | | Muestra la versión de firmware ASCII. |
| Versión Medida | | | Muestra:
• La versión de firmware del algoritmo de medición, que se utiliza para comprobar la conformidad con IEC 61557-12
• Código CRC32 de la versión de firmware |
El menú **Estado** muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado</td>
<td>Interruptor automático</td>
<td>Muestra la vida útil restante del bloque de corte como porcentaje</td>
</tr>
<tr>
<td></td>
<td>Micrologic</td>
<td>Muestra la vida útil restante de la unidad de control Micrologic X como porcentaje</td>
</tr>
</tbody>
</table>
| **Desgaste de los actuadores** | | Muestra como porcentaje el desgaste de los siguientes auxiliares:
| | | ● Motorreductor MCH
| | | ● Bobina de cierre XF
| | | ● Bobina de disparo por falta de tensión MN
| | | ● Bobina de apertura MX1
| | | ● Bobina de apertura MX2 |
| **Desgaste de los contactos** | | Muestra el desgaste de los contactos como porcentaje |

El menú **Vis. gen. CB** muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
</table>
| **Vis. gen. CB** | Bloque CB | Gama de interruptores automáticos: Masterpact
| | | Tamaño del dispositivo: MTZ1, MTZ2 o MTZ3
| | | Intensidad asignada × 100 A (por ejemplo: 08 corresponde a una intensidad asignada In de 800 A)
| | | Nivel de rendimiento: N1, H1, H2, H3 o L1
| | | Sistema de alimentación: 3P o 4P
| | | Norma: IEC, UL o ANSI |
Menú Configuración

Descripción

El menú **Configuración** contiene los siguientes submenús:

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Nivel 2</th>
<th>Nivel 3</th>
<th>Descripción de la función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio</td>
<td>Configuración</td>
<td>General</td>
<td>Configuración de la visualización HMI y control de acceso a la configuración de protección.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Configuración de tensión y frecuencia nominales, señal de potencia y relación VT (véase página 67).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medidas</td>
<td>Configuración de cálculo de medidas (véase página 67).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comunicación</td>
<td>Configuración que habilita el acceso inalámbrico y el modo de control (véase página 68).</td>
</tr>
</tbody>
</table>

General

El menú **General** muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>General</td>
<td>idioma (véase página 42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecha y hora (véase página 31)</td>
<td>dd/mm/aaaa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hh:mm:ss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vista rápida (véase página 46)</td>
<td>Desplazamiento</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inicio autom. (mín)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flujo páginas (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. espera (mín)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protecc. bloqueo (véase página 83)</td>
<td>Teciado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acceso externo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Red

El menú **Red** muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frecuencia nominal</td>
<td>Hz</td>
<td>Frecuencia nominal: 50 Hz (ajuste de fábrica), 60 Hz</td>
</tr>
</tbody>
</table>
| | Señal poten. (véase página 173) | – | Ajuste de señal de flujo de potencia:
 - P+ = la potencia activa fluye de aguas arriba (superior) a aguas abajo (inferior) (ajuste de fábrica).
 - P− = la potencia activa fluye de aguas abajo (inferior) a aguas arriba (superior). |
| | Relación VT | VT ent. | Tensión primaria de VT. Valores de 100 a 1,250, en incrementos de 1. |
| | | VT sal. | Tensión secundaria de VT. Valores de 100 a 690, en incrementos de 1. |

Medidas

El menú **Medidas** muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
</table>
| Medidas | PF/Var (véase página 184) | Convención de signo para cos φ, factor de potencia de PF y potencia reactiva:
 - IEC
 - IEEE (ajuste de fábrica) |
| Tipo sistema (véase página 167) | N.º polos | 3P o 4P, sólo para visualización. |
| | ENVT | Toma externa de tensión de neutro. Los valores de configuración incluyen:
 - Si 4P: NO (sólo para visualización)
 - Si 3P: NO o SÍ (ajuste de fábrica) |
| | ENCT | Transformador externo de corriente neutra. Los valores de configuración incluyen:
 - Si 4P: NO (sólo para visualización)
 - Si 3P: NO (ajuste de fábrica) o SÍ |
| | Cálc. P tot. (véase página 172) | Método de cálculo de potencia total:
 - Vector
 - Arithmetic (ajuste de fábrica) |
| | Cálc. E (véase página 177) | Modo de acumulación de energía. Valores de energía que se usarán en los cálculos de energía:
 - Absoluto (ajuste de fábrica)
 - Con signo |
Comunicación

El menú **Comunicación** muestra los datos siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación</td>
<td>Bluetooth
 (véase página 238)</td>
<td>ON</td>
<td>Habilita el control de Bluetooth.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF (ajuste de fábrica)</td>
<td>Deshabilita el control de Bluetooth.</td>
</tr>
<tr>
<td></td>
<td>Temporiz. (mín)</td>
<td></td>
<td>La temporización antes de que Bluetooth se desactive automáticamente:
● Si no hay ninguna conexión establecida.
● Si no se detecta actividad.
De 5 a 60 minutos. Ajuste de fábrica = 15 minutos</td>
</tr>
<tr>
<td>Modo control
 (véase página 224)</td>
<td>Modo</td>
<td></td>
<td>Define el medio para controlar las funciones de apertura y cierre:
● Manual: (Sólo comando BP), sólo se aceptan comandos de pulsador
● Automático:
☑ (Control local)
☑ (Control remoto) (ajuste de fábrica)</td>
</tr>
</tbody>
</table>
Menú Protección

Descripción

El menú Protección contiene los siguientes submenús:

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Nivel 2</th>
<th>Nivel 3</th>
<th>Descripción de la función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio</td>
<td>Protección</td>
<td>I largo retardo</td>
<td>Protección contra sobrecorriente de largo retardo (véase página 86), L o código ANSI 49RMS/51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I corto retardo(1)</td>
<td>Protección contra sobrecorriente de corto retardo (véase página 89), S o código ANSI 50TD/51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I instantánea</td>
<td>Protección contra sobrecorriente instantánea (véase página 91), I o código ANSI 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I defecto a tierra(2)</td>
<td>Protección de defecto a tierra (véase página 94), G o código ANSI 50N-TD/51N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I diferencial(3)</td>
<td>Protección de diferencial (véase página 98), código ANSI 50G-TD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I neutro</td>
<td>Protección del neutro (véase página 100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config. dual</td>
<td>Config. dual (véase página 102)</td>
</tr>
</tbody>
</table>

(1) Se aplica a Micrologic 5.0 X, 6.0 X para las normas IEC y UL, y Micrologic 7.0 X para la norma IEC
(2) Se aplica a Micrologic 6.0 X para las normas IEC y UL
(3) Se aplica a Micrologic 7.0 X para la norma IEC

I largo retardo

El menú I largo retardo muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I largo retardo</td>
<td>Ir (x In)</td>
<td>Umbral de protección contra sobrecorriente de largo retardo Ir expresado en función de la intensidad asignada In de la unidad de control. Para configuración rápida se usa: 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 0,95, 0,98, 1 x In.</td>
</tr>
<tr>
<td></td>
<td>Ir (A)</td>
<td>Umbral de protección contra sobrecorriente de largo retardo Ir en amperios. Se usa para configuración con una resolución de 1 A.</td>
</tr>
<tr>
<td></td>
<td>tr@6Ir (s)</td>
<td>Temporización de protección contra sobrecorriente de largo retardo tr.</td>
</tr>
</tbody>
</table>

I corto retardo

El menú I corto retardo para Micrologic 5.0 X, 6.0 X para las normas IEC y UL, y Micrologic 7.0 X para la norma IEC muestra los siguientes datos y ajustes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I corto retardo</td>
<td>Ir (A)</td>
<td>Umbral de protección contra sobrecorriente de largo retardo Ir expresado en función de la intensidad asignada In de la unidad de control, sólo para visualización.</td>
</tr>
<tr>
<td></td>
<td>lsd (x Ir)</td>
<td>Umbral de protección contra sobrecorriente de corto retardo lsd expresado en función del umbral de protección contra sobrecorriente de largo retardo Ir. Incremento = 0,5 x Ir. Rango = 0,5–10 x Ir</td>
</tr>
<tr>
<td></td>
<td>lsd (A)</td>
<td>Umbral de protección contra sobrecorriente de corto retardo lsd expresado en amperios, sólo para visualización.</td>
</tr>
<tr>
<td></td>
<td>tsd (s)</td>
<td>Temporización de protección contra sobrecorriente de corto retardo tsd.</td>
</tr>
<tr>
<td></td>
<td>Pt (tsd)</td>
<td>Habilita la función de curva de tiempo inverso: ON u OFF.</td>
</tr>
</tbody>
</table>
I instantánea

El menú **instantáneo** para Micrologic 2.0 X para la norma IEC muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I instantánea</td>
<td>Ir (A)</td>
<td>Umbral de protección contra sobrecorriente de largo retardo (I_r) expresado en amperios, sólo para visualización.</td>
</tr>
<tr>
<td></td>
<td>Isd ((x I_r))</td>
<td>Umbral de protección contra sobrecorriente instantánea (Isd) expresado en función del umbral de protección contra sobrecorriente de largo retardo (I_r). Incremento = 0,5 (x I_r). Rango = 0,5–10 (x I_r)</td>
</tr>
<tr>
<td></td>
<td>Isd (A)</td>
<td>Umbral de protección contra sobrecorriente instantánea (Isd) expresado en amperios, sólo para visualización.</td>
</tr>
</tbody>
</table>

El menú **instantáneo** para Micrologic 3.0 X para la norma UL muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I instantánea</td>
<td>II ((x In))</td>
<td>Umbral de protección contra sobrecorriente instantánea (II) expresado en función de la intensidad asignada (In) de la unidad de control.</td>
</tr>
<tr>
<td></td>
<td>II (A)</td>
<td>Umbral de protección contra sobrecorriente instantánea (II) expresado en amperios, sólo para visualización.</td>
</tr>
<tr>
<td></td>
<td>II modo de disparo</td>
<td>Modo de temporización de protección contra sobrecorriente instantánea: Estándar o Rápido.</td>
</tr>
</tbody>
</table>

El menú **instantánea** para Micrologic 5.0 X, 6.0 X para las normas IEC y UL, y Micrologic 7.0 X para la norma IEC muestra los siguientes datos y ajustes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
</table>
| I instantánea | Protección | Habilita el modo de protección contra sobrecorriente instantánea:
- **OFF**: no se muestran los siguientes menús.
- **ON**: se muestran los siguientes menús. |
| | II \((x In)\) | Umbral de protección contra sobrecorriente instantánea \(II\) expresado en función de la intensidad asignada \(In\) de la unidad de control. Incremento = 0,5 \(x In\). Rango = 0,2–15 \(x In\) |
| | II (A) | Umbral de protección contra sobrecorriente instantánea \(II\) expresado en amperios, sólo para visualización. |
| | II modo de disparo | Modo de retardo de tiempo de protección contra sobrecorriente instantánea: **Estándar** o **Rápido**. |
I defecto a tierra para la norma IEC

ADVERTENCIA

RIESGO DE DAÑOS EN EL EQUIPO
Con unidad de control Micrologic X para estándar IEC, al utilizar Source Ground Return (SGR) con el módulo MDGF:
- No está permitido el ajuste del modo Ig en la posición ABIERTO.
- La configuración de umbral Ig debe ser ≤1.200 A.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

NOTA: La protección de defecto a tierra también se denomina protección de fallo a tierra.

El menú **I defecto a tierra** para Micrologic 6.0 X para la norma IEC muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
</table>
| I defecto a tierra | | Protección | Habilita el modo de protección contra sobrecorriente de defecto a tierra:
- OFF: no se muestran los siguientes menús.
- ON: se muestran los siguientes menús. |
| Ig (x In) | | Umbral de protección de defecto a tierra Ig expresado en función de la intensidad asignada de la unidad de control In. Para configuración rápida se usa: 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 1 x In. |
| Ig (A) | | Umbral de protección de defecto a tierra Ig expresado en amperios. Para configuraciones con:
- 1 Una resolución de In ≤ 1.000 A
- 10 Una resolución de In > 1.000 A |
| tg (s) | | Temporización de la protección de defecto a tierra tg. Configuración: 0; 0,1; 0,2; 0,3; 0,4 s |
| I²t (tg) | | Habilita la función de curva de protección de defecto a tierra: ON u OFF. |

I defecto a tierra para la norma UL

El menú **I defecto a tierra** para Micrologic 6.0 X para la norma UL muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I defecto a tierra</td>
<td></td>
<td>Ig (x In)</td>
<td>Umbral de protección de defecto a tierra Ig expresado en función de la intensidad asignada de la unidad de control In. Para configuración rápida se usa: 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 1 x In.</td>
</tr>
</tbody>
</table>
| Ig (A) | | Umbral de protección de defecto a tierra Ig expresado en amperios. Para configuraciones con:
- 1 Una resolución de In ≤ 1.000 A
- 10 Una resolución de In > 1.000 A |
| tg (s) | | Temporización de la protección de defecto a tierra tg. Configuración: 0; 0,1; 0,2; 0,3; 0,4 s |
| I²t (tg) | | Habilita la función de curva de protección de defecto a tierra: ON u OFF. |
I diferencial

El menú **I diferencial** para Micrologic 7.0 X para la norma IEC muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I diferencial</td>
<td>IΔn (A)</td>
<td>Umbral de protección de diferencial expresado en amperios. Paso = 0,1 A Rango = 0,5 – 30 A</td>
</tr>
<tr>
<td></td>
<td>Δt (s)</td>
<td>Temporización de la protección de diferencial. Configuración: 0,06; 0,15; 0,23; 0,35; 0,80 s</td>
</tr>
</tbody>
</table>

I neutro

El menú **I neutro** muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>I neutro(^{(1)})</td>
<td>N.º polos</td>
<td>Número de polos 3P o 4P, sólo para visualización.</td>
</tr>
<tr>
<td></td>
<td>Ir (A)</td>
<td>Umbral de protección contra sobrecorriente de largo retardo Ir expresado en amperios, sólo para visualización.</td>
</tr>
<tr>
<td>Protección</td>
<td></td>
<td>Estable protección del neutro:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- N/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sobredim. N</td>
</tr>
<tr>
<td></td>
<td>In (A)</td>
<td>Corriente RMS neutra, sólo para visualización.</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Se aplica a los interruptores automáticos tetrapolares e interruptores automáticos tripolares con la opción ENCT.

Config. dual

El menú **Config. dual** muestra los datos y la configuración siguientes:

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config. dual</td>
<td>Config. dual</td>
<td>Habilita la configuración dual:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- NO (ajuste de fábrica): la configuración dual está deshabilitada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SI: la configuración dual está habilitada</td>
</tr>
<tr>
<td>Configuración</td>
<td></td>
<td>Muestra la configuración activa A o B si la opción Config. dual está activada.</td>
</tr>
<tr>
<td>Modo conmutador(^{(1)})</td>
<td></td>
<td>Muestra el modo configuración para cambiar del grupo de ajustes A al grupo de ajustes B, y viceversa:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- HMI local</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Remoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IO - 1 cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IO - 2 cables</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Se muestra si la opción **Config. dual** está activada. Configurable mediante el software EcoStruxure Power Commission.
Si el menú **Config. dual** está habilitado, se muestra el menú **Configuración B** con los datos y los ajustes siguientes, que se pueden configurar:

<table>
<thead>
<tr>
<th>Nivel 5</th>
<th>Nivel 6</th>
<th>Nombre del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir (x In)</td>
<td>Umbral de protección contra sobrecorriente de largo retardo Ir expresado en función de la intensidad asignada In de la unidad de control. Para configuración rápida se usa: 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 0,95, 0,98, 1 x In</td>
<td></td>
</tr>
<tr>
<td>Ir (A)</td>
<td>Umbral de protección contra sobrecorriente de largo retardo Ir en amperios. Se usa para configuración con una resolución de 1 A.</td>
<td></td>
</tr>
<tr>
<td>tr@6Ir (s)</td>
<td>Temporización de protección contra sobrecorriente de largo retardo tr.</td>
<td></td>
</tr>
<tr>
<td>Isd (x Ir)</td>
<td>Umbral de protección contra sobrecorriente de corto retardo Isd expresado en función del umbral de protección contra sobrecorriente de largo retardo Ir. Incremento = 0,5 x Ir; Rango = 0,5–10 x Ir.</td>
<td></td>
</tr>
<tr>
<td>Isd (A)</td>
<td>Umbral de protección contra sobrecorriente de corto retardo Isd expresado en amperios, sólo para visualización.</td>
<td></td>
</tr>
<tr>
<td>tsd (s)</td>
<td>Temporización de protección contra sobrecorriente de corto retardo tsd.</td>
<td></td>
</tr>
<tr>
<td>I instantánea</td>
<td>Protección</td>
<td>Habilita el modo de protección contra sobrecorriente instantánea: • OFF: no se muestran los siguientes menús. • ON: se muestran los siguientes menús.</td>
</tr>
<tr>
<td>Ii (x In)</td>
<td>Umbral de protección contra sobrecorriente instantánea ii expresado en función de la intensidad asignada In de la unidad de control. Incremento = 0,5 x In; Rango = 0,2–15 x In.</td>
<td></td>
</tr>
<tr>
<td>Ii (A)</td>
<td>Umbral de protección contra sobrecorriente instantánea ii expresado en amperios, sólo para visualización.</td>
<td></td>
</tr>
<tr>
<td>Ii modo de disparo</td>
<td>Modo de temporización de protección contra sobrecorriente instantánea: Estándar o Rápido.</td>
<td></td>
</tr>
<tr>
<td>Ig (x ln)</td>
<td>Umbral de protección de defecto a tierra Ig expresado en función de la intensidad asignada In de la unidad de control. Para configuración rápida se usa: 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 1 x ln.</td>
<td></td>
</tr>
<tr>
<td>Ig (A)</td>
<td>Umbral de protección de defecto a tierra Ig expresado en amperios. Para configuraciones con: • 1 Una resolución de In de ≤1000 A • 10 Una resolución de In de > 1000 A</td>
<td></td>
</tr>
<tr>
<td>Ig (s)</td>
<td>Temporización de la protección de defecto a tierra ig.</td>
<td></td>
</tr>
<tr>
<td>j2t (tg)</td>
<td>Habilita la función de curva de protección de defecto a tierra: ON u OFF.</td>
<td></td>
</tr>
</tbody>
</table>

(1) Si la opción Config. dual está habilitada, B se muestra en el lado superior izquierdo de estas pantallas.
(2) Se aplica a Micrologic 2.0 X para la norma IEC.
(3) Se aplica a Micrologic 5.0 X, 6.0 X, 7.0 X para la norma IEC y Micrologic 5.0 X, 6.0 X para la norma UL.
(4) Se aplica a Micrologic 5.0 X, 6.0 X, 7.0 X para la norma IEC y Micrologic 3.0 X, 5.0 X, 6.0 X para la norma UL.
Mensajes de eventos emergentes

Tipos de mensajes de eventos y prioridades
Cuando la unidad de control Micrologic X detecta cualquiera de los siguientes eventos, aparece un mensaje emergente en el siguiente orden de prioridad:
- Emparejamiento Bluetooth
- Disparo
- Alarma de gravedad alta
- Alarma de gravedad media
- ERMS activado
- Error

Un mensaje de evento anulará cualquier otro mensaje de evento de menor prioridad.

El mensaje de evento anulará la visualización de los modos de desplazamiento de la Vista rápida y de navegación por árbol.

Visualización de emparejamiento Bluetooth

El mensaje de emparejamiento Bluetooth se muestra durante el procedimiento de emparejamiento Bluetooth (véase página 238).

El mensaje de emparejamiento Bluetooth cuenta con la máxima prioridad, por lo que anulará cualquier otro mensaje.

La pantalla de emparejamiento Bluetooth se cerrará:
- Al confirmar el emparejamiento en el smartphone
- Al pulsar el botón Bluetooth en la unidad de control Micrologic X
- Se pulsa el botón Cancelar de la parte inferior de la pantalla de Micrologic X
- Al caducar el tiempo de espera de emparejamiento Bluetooth

Si se muestra un mensaje de evento antes o durante del emparejamiento Bluetooth, este se mostrará una vez que se cierre el mensaje de emparejamiento Bluetooth. De lo contrario se mostrará la pantalla Inicio.

Visualización de mensajes de disparo y alarma emergentes

<table>
<thead>
<tr>
<th>Tipo de mensaje</th>
<th>Descripción</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo</td>
<td>Cuando se produce un disparo, el mensaje correspondiente se muestra con retroiluminación roja.</td>
<td></td>
</tr>
<tr>
<td>Alarma de gravedad alta</td>
<td>Cuando se produce una alarma de gravedad alta, el mensaje correspondiente se muestra con retroiluminación roja.</td>
<td></td>
</tr>
<tr>
<td>Alarma de gravedad media</td>
<td>Cuando se produce una alarma de gravedad media, el mensaje correspondiente se muestra con retroiluminación naranja.</td>
<td></td>
</tr>
</tbody>
</table>
Manejo de mensajes de disparo y alarma emergentes

Un mensaje de disparo o alarma indica que se ha producido un evento de funcionamiento potencialmente grave. Para solucionar el evento, siga los pasos que se indican a continuación:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cuando se muestre el mensaje de evento de disparo o alarma, pulse OK. En la pantalla se mostrará un mensaje en el que se explicará el contexto del disparo o se proporcionará información sobre el evento de alarma. El color de la retroiluminación cambiará a blanco.</td>
</tr>
<tr>
<td>2</td>
<td>Tras leer el mensaje explicativo, tome las medidas correctivas necesarias para solucionar la situación que provoca el disparo o la alarma.</td>
</tr>
<tr>
<td>3</td>
<td>Una vez resuelta la causa del evento, pulse OK para confirmar el mensaje. El mensaje explicativo se cierra y se muestra la pantalla del menú Alarms & historical. NOTA: Para regresar a la pantalla Inicio, pulse ESC o el botón de inicio cuando se muestre una pantalla emergente o una pantalla de contexto de disparo o alarma.</td>
</tr>
</tbody>
</table>

NOTA: Si el mensaje no se confirma pulsando OK antes de que caduque el tiempo de espera del evento, se mostrará nuevamente en la pantalla el mensaje de disparo o alarma con el color de retroiluminación correspondiente.

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (véase página 10):
- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Guía del usuario

Para obtener información acerca de cómo las unidades de control Micrologic X manejan los eventos, consulte Gestión de eventos (véase página 248).

Tiempo de espera de eventos

El tiempo de espera de eventos puede configurarse mediante Configuración → General → Vista rápida.

Si está activado el desplazamiento de Vista rápida, el tiempo de espera de eventos será idéntico al tiempo de Inicio autom., para Vista rápida.

Si está desactivado el desplazamiento de Vista rápida, el tiempo de espera de eventos se mostrará como T. espera.

Para obtener más información acerca de la configuración de tiempo de espera de eventos, consulte Configuración del modo de Vista rápida (véase página 46).

Pantalla de ERMS activado

Cuando la función ERMS se activa mediante el selector externo o con Aplicación EcoStruxure Power Device, aparece el mensaje ERMS activado con retroiluminación azul.

La pantalla indica el medio utilizado para activar la función ERMS. La pantalla muestra uno de los dos elementos siguientes, o ambos:
- Interruptor (ERMS)
- Smartphone

Todas las pantallas, excepto los mensajes emergentes, se muestran con retroiluminación azul mientras la función ERMS está activada.

Se puede utilizar el modo de navegación de árbol pulsando ESC o el botón de inicio con la función ERMS activada.

Para obtener más información, consulte la descripción de la función ERMS (véase página 124).
Mensajes de error

Cuando la unidad de control Micrologic X detecta un error interno, se muestra un mensaje de error. Para obtener más información, consulte las siguientes guías (véase página 10):

- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Guía del usuario
Capítulo 3
Funciones de protección

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introducción</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Funciones de protección estándar</td>
<td>85</td>
</tr>
<tr>
<td>3.3</td>
<td>Funciones de protección opcionales</td>
<td>108</td>
</tr>
<tr>
<td>3.4</td>
<td>Ajuste de directrices</td>
<td>129</td>
</tr>
</tbody>
</table>
Sección 3.1
Introducción

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección de la distribución eléctrica</td>
<td>79</td>
</tr>
<tr>
<td>Configuración de la protección de acuerdo con la norma UL489SE</td>
<td>83</td>
</tr>
</tbody>
</table>
Protección de la distribución eléctrica

Presentación

Las unidades de control Micrologic X están diseñadas para proporcionar protección contra sobrecorrientes y corrientes de defecto a tierra.

Descripción

Al elegir las características de protección, tenga en cuenta lo siguiente:
- Sobrecorrientes (sobrecargas y cortocircuitos) y corrientes de defecto a tierra potenciales
- Conductores que necesitan protección
- Coordinación y selectividad entre los dispositivos
- La presencia de corrientes armónicas

Las características de protección se pueden representar en una curva de disparo que muestra el tiempo de disparo del interruptor automático como función de la corriente medida y los ajustes de protección. Los ajustes de protección se indexan en la intensidad asignada In de la unidad de control Micrologic X.

Intensidad asignada In

Los rangos de ajuste de protección dependen de la intensidad asignada In, que se define mediante el conector del sensor insertado en la unidad de control Micrologic X.

El conector del sensor se puede sustituir o modificar. La codificación mecánica evita la instalación de un conector del sensor que no sea compatible con el bastidor del interruptor automático.

Para interruptores automáticos para la norma IEC, la gama de conectores del sensor disponibles se muestra en la tabla siguiente.

<table>
<thead>
<tr>
<th>In</th>
<th>Referencia comercial</th>
<th>Intensidad asignada del bastidor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MTZ1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06</td>
</tr>
<tr>
<td>400 A</td>
<td>LV847053</td>
<td>✓</td>
</tr>
<tr>
<td>630 A</td>
<td>LV833091</td>
<td>✓</td>
</tr>
<tr>
<td>800 A</td>
<td>LV833092</td>
<td></td>
</tr>
<tr>
<td>1.000 A</td>
<td>LV833093</td>
<td></td>
</tr>
<tr>
<td>1.250 A</td>
<td>LV833094</td>
<td></td>
</tr>
<tr>
<td>1.600 A</td>
<td>LV833095</td>
<td></td>
</tr>
<tr>
<td>2.000 A</td>
<td>LV833096</td>
<td></td>
</tr>
<tr>
<td>2.500 A</td>
<td>LV833097</td>
<td></td>
</tr>
<tr>
<td>3.200 A</td>
<td>LV833098</td>
<td></td>
</tr>
<tr>
<td>3.600 A</td>
<td>LV833099</td>
<td></td>
</tr>
<tr>
<td>4.000 A</td>
<td>LV833100</td>
<td></td>
</tr>
<tr>
<td>4.000 A</td>
<td>LV833101</td>
<td></td>
</tr>
<tr>
<td>5.000 A</td>
<td>LV833102</td>
<td></td>
</tr>
<tr>
<td>6.300 A</td>
<td>LV833103</td>
<td></td>
</tr>
</tbody>
</table>
Para interruptores automáticos para la norma UL, la gama de conectores del sensor disponibles se muestra en la tabla siguiente.

<table>
<thead>
<tr>
<th>In</th>
<th>Referencia comercial</th>
<th>Intensidad asignada del bastidor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MTZ1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08</td>
</tr>
<tr>
<td>400 A</td>
<td>LV847053</td>
<td>✔</td>
</tr>
<tr>
<td>600 A</td>
<td>LV848823</td>
<td>✔</td>
</tr>
<tr>
<td>800 A</td>
<td>LV833092</td>
<td>–</td>
</tr>
<tr>
<td>1.000 A</td>
<td>LV833093</td>
<td>–</td>
</tr>
<tr>
<td>1.200 A</td>
<td>LV848824</td>
<td>–</td>
</tr>
<tr>
<td>1.800 A</td>
<td>LV833095</td>
<td>–</td>
</tr>
<tr>
<td>2.000 A</td>
<td>LV833982</td>
<td>–</td>
</tr>
<tr>
<td>2.500 A</td>
<td>LV833983</td>
<td>–</td>
</tr>
<tr>
<td>3.000 A</td>
<td>LV848825</td>
<td>–</td>
</tr>
<tr>
<td>2.000 A</td>
<td>LV847821</td>
<td>–</td>
</tr>
<tr>
<td>2.500 A</td>
<td>LV847822</td>
<td>–</td>
</tr>
<tr>
<td>3.000 A</td>
<td>LV848826</td>
<td>–</td>
</tr>
<tr>
<td>3.200 A</td>
<td>LV847823</td>
<td>–</td>
</tr>
<tr>
<td>3.600 A</td>
<td>LV836391</td>
<td>–</td>
</tr>
<tr>
<td>4.000 A</td>
<td>LV847824</td>
<td>–</td>
</tr>
<tr>
<td>5.000 A</td>
<td>LV847825</td>
<td>–</td>
</tr>
<tr>
<td>6.000 A</td>
<td>LV848827</td>
<td>–</td>
</tr>
</tbody>
</table>

Para interruptores automáticos para la norma ANSI, la gama de conectores del sensor disponibles se muestra en la tabla siguiente.

<table>
<thead>
<tr>
<th>In</th>
<th>Referencia comercial</th>
<th>Intensidad asignada del bastidor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MTZ1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08</td>
</tr>
<tr>
<td>400 A</td>
<td>LV847053</td>
<td>✔</td>
</tr>
<tr>
<td>600 A</td>
<td>LV848823</td>
<td>✔</td>
</tr>
<tr>
<td>800 A</td>
<td>LV833092</td>
<td>–</td>
</tr>
<tr>
<td>1.000 A</td>
<td>LV833093</td>
<td>–</td>
</tr>
<tr>
<td>1.200 A</td>
<td>LV848824</td>
<td>–</td>
</tr>
<tr>
<td>1.800 A</td>
<td>LV833095</td>
<td>–</td>
</tr>
<tr>
<td>2.000 A</td>
<td>LV833982</td>
<td>–</td>
</tr>
<tr>
<td>2.500 A</td>
<td>LV833983</td>
<td>–</td>
</tr>
<tr>
<td>3.000 A</td>
<td>LV848826</td>
<td>–</td>
</tr>
<tr>
<td>3.200 A</td>
<td>LV847823</td>
<td>–</td>
</tr>
<tr>
<td>3.600 A</td>
<td>LV836391</td>
<td>–</td>
</tr>
<tr>
<td>4.000 A</td>
<td>LV847824</td>
<td>–</td>
</tr>
<tr>
<td>5.000 A</td>
<td>LV847825</td>
<td>–</td>
</tr>
<tr>
<td>6.000 A</td>
<td>LV848827</td>
<td>–</td>
</tr>
</tbody>
</table>
Las unidades de control Micrologic 2.0 X para la norma IEC proporcionan:
- Protección contra sobrecorriente de largo retardo (Ir)
- Protección contra sobrecorriente instantánea (Isd)
Las funciones de protección de las unidades de control Micrologic 2.0 X funcionan sin fuente de alimentación auxiliar. La unidad de control se alimenta con la corriente que fluye a través del interruptor automático.

Las unidades de control Micrologic 3.0 X para la norma UL proporcionan:
- Protección contra sobrecorriente de largo retardo (Ir)
- Protección contra sobrecorriente instantánea (Ii)
Las funciones de protección de las unidades de control Micrologic 3.0 X funcionan sin fuente de alimentación auxiliar. La unidad de control se alimenta con la corriente que fluye a través del interruptor automático.

Las unidades de control Micrologic 5.0 X para las normas IEC y UL proporcionan:
- Protección contra sobrecorriente de largo retardo (Ir)
- Protección contra sobrecorriente de corto retardo(Isd)
- Protección contra sobrecorriente instantánea (Ii)
Las funciones de protección de las unidades de control Micrologic 5.0 X funcionan sin fuente de alimentación auxiliar. La unidad de control se alimenta con la corriente que fluye a través del interruptor automático.
Las unidades de control Micrologic 6.0 X para las normas IEC y UL proporcionan:
- Protección contra sobrecorriente de largo retardo (Ir)
- Protección contra sobrecorriente de corto retardo (Isd)
- Protección contra sobrecorriente instantánea (Ii)
- Protección de defecto a tierra (Ig)

Las funciones de protección de las unidades de control Micrologic 6.0 X funcionan sin fuente de alimentación auxiliar. La unidad de control se alimenta con la corriente que fluye a través del interruptor automático.

Las unidades de control Micrologic 7.0 X para la norma IEC proporcionan:
- Protección contra sobrecorriente de largo retardo (Ir)
- Protección contra sobrecorriente de corto retardo (Isd)
- Protección contra sobrecorriente instantánea (Ii)
- Protección de diferencial (IΔn)

Las funciones de protección de las unidades de control Micrologic 7.0 X funcionan sin fuente de alimentación auxiliar externa. La unidad de control Micrologic X se alimenta con la corriente que fluye a través del interruptor automático. Además, es necesario un módulo de fuente de alimentación VPS para garantizar el funcionamiento de la protección de diferencial en caso de fallo con muy poca corriente.

Las protecciones instantáneas DIN / DINF y SELLIM son protecciones internas que se utilizan cuando la corriente de cortocircuito alcanza el límite admisible del interruptor automático. Estas protecciones no se pueden ajustar y es poco probable que se disparen en condiciones de funcionamiento normales.

Las protecciones instantáneas DIN / DINF y SELLIM pueden generar los eventos predefinidos siguientes.

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo autoprotección def. (SELLIM)</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Disparo autoprotección def. (DIN / DINF)</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Funcionamiento autoprotección definitiva (SELLIM)</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Funcionamiento autoprotección definitiva (DIN / DINF)</td>
<td>Protección</td>
<td>Media</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (*véase página 247*).
Configuración de la protección de acuerdo con la norma UL489SE

Presentación

El procedimiento para configurar un ajuste de protección es conforme a la norma UL489SE. Está protegido por una sesión de edición exclusiva y un procedimiento de dos pasos para enviar y aplicar cambios de ajustes.

La sesión de edición exclusiva significa que sólo se puede acceder con una interfaz a la vez y establecer ajustes de protección. El acceso desde otras interfaces está bloqueado cuando hay una sesión de edición abierta.

Durante la sesión de edición, la protección activa proporcionada por la unidad de control Micrologic X no se ve afectada hasta que se aplican los nuevos ajustes. Si los nuevos ajustes se cancelan o transcurre el tiempo de espera antes de que se apliquen, se mantienen los ajustes activos.

Los ajustes para las funciones de protección estándar se pueden establecer desde las interfaces siguientes:

- en la pantalla de Micrologic X, en **Inicio → Protección**
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de comandos de ajuste a través de la red de comunicación (protegido con contraseña)

Los ajustes para las funciones de protección estándar, incluida la función ERMS, se pueden establecer desde las interfaces siguientes:

- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)

Para obtener más información sobre la gestión de contraseñas, consulte la descripción de contraseñas (véase página 22).

Los ajustes de protección que se muestran en la Vista rápida son los ajustes de protección activos aplicados durante la instalación.

Para establecer un ajuste de protección, se debe habilitar el acceso a los ajustes de protección en la HMI de Micrologic X.

Habilitación y deshabilitación del acceso a los ajustes de protección

Puede habilitar o deshabilitar el acceso a los ajustes de protección utilizando la pantalla de Micrologic X en **Inicio → Configuración → General → Protecc. bloqueo** (véase página 55).

En la pantalla **Protecc. bloqueo** de la unidad de control Micrologic X, puede permitir los cambios de los ajustes de protección desde las siguientes interfaces:

- **Teclado**: el propio teclado de la pantalla de Micrologic X
- **Acceso externo**: software EcoStruxure Power Commission, Aplicación EcoStruxure Power Device y red de comunicación

Para cada interfaz:

- **Establezca Permitido** (ajuste de fábrica) para permitir la realización de cambios.
- **Establezca No permitido** para impedir los cambios.

Al habilitar el acceso a los ajustes de protección se generan dos eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio de protección de EHI activado</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Cambio protección remota activado</td>
<td>Protección</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Funciones de protección

Sesión de edición para seleccionar y cambiar ajustes de protección

Una sesión de edición tiene las siguientes características:

- Sólo puede haber una sesión de edición abierta a la vez. El acceso a los ajustes de protección desde otras interfaces está bloqueado cuando se abre una sesión de edición. Si ya hay una sesión abierta (véase página 56), aparece un aviso emergente.
- Hay un tiempo de espera de cinco minutos para enviar y aplicar los nuevos ajustes. El tiempo de espera de la sesión finaliza tal como se indica a continuación:
 - Cinco minutos después de abrir la sesión, si no se envían los nuevos ajustes.
 - Cinco minutos después de enviar los nuevos ajustes, si no se aplican.

NOTA: Al configurar la protección en el teclado de la pantalla de Micrologic X, si el tiempo de espera de la Vista rápida está configurado en menos de cinco minutos, el tiempo de espera de la sesión de edición finaliza al transcurrir el tiempo de espera establecido para la Vista rápida.

- Después de aplicar los nuevos ajustes, cierre la sesión de edición.
- Al cambiar los ajustes de protección en el teclado de la pantalla de Micrologic X, sólo se puede configurar una función de protección por sesión de edición. Abra una nueva sesión de edición para realizar cambios en una segunda función de protección.
- Al cambiar los ajustes de protección en Aplicación EcoStruxure Power Device o por medio de la comunicación, se pueden configurar varias funciones de protección en una sola sesión de edición, con un paso de envío después de realizar cambios en cada función y un paso de aplicación para aplicar todos los nuevos ajustes de un determinado grupo de ajustes (A, B o ERMS). Los ajustes activos se mantienen hasta que se ejecuta el paso de aplicación.

Procedimiento de dos pasos para enviar y aplicar los ajustes de protección

El procedimiento para cambiar ajustes de protección requiere el envío y la aplicación de los nuevos ajustes en dos pasos consecutivos:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enviar los nuevos ajustes</td>
</tr>
<tr>
<td>2</td>
<td>Aplicar los nuevos ajustes</td>
</tr>
</tbody>
</table>

Selezione los nuevos ajustes necesarios y envíelos. Los nuevos ajustes se muestran para que pueda comprobar que son correctos antes de aplicarlos. Reviselos para confirmar que sean correctos.

Aplique los nuevos ajustes. Los ajustes de protección activos existentes se sustituyen por los nuevos.

Para obtener más información sobre el procedimiento para cambiar ajustes de protección en la pantalla de Micrologic X, consulte Procedimiento de configuración de la protección (véase página 55).

Trazabilidad de modificación de ajustes

Al cambiar los ajustes de protección genera uno de los eventos siguientes, en función de la interfaz utilizada para cambiar los ajustes:

<table>
<thead>
<tr>
<th>Eventos</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección cambiada por pantalla</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Protección cambiada por comunicación Bluetooth/USB/IFE</td>
<td>Protección</td>
<td>Media</td>
</tr>
</tbody>
</table>

Además de los eventos generados, los siguientes datos están disponibles con Aplicación EcoStruxure Power Device a través de Bluetooth o USB OTG:

- Fecha y hora del cambio del ajuste
- Ajustes anteriores
Sección 3.2
Funciones de protección estándar

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección contra sobrecorriente de largo retardo (L o código ANSI 49RMS/51)</td>
<td>86</td>
</tr>
<tr>
<td>Protección contra sobrecorriente de corto retardo (S o código ANSI 50TD/51)</td>
<td>89</td>
</tr>
<tr>
<td>Protección contra sobrecorriente instantánea (I o código ANSI 50)</td>
<td>91</td>
</tr>
<tr>
<td>Protección de defecto a tierra (G o código ANSI 50N-TD/51N)</td>
<td>94</td>
</tr>
<tr>
<td>Protección de diferencial (ANSI 50G-TD)</td>
<td>98</td>
</tr>
<tr>
<td>Protección del neutro</td>
<td>100</td>
</tr>
<tr>
<td>Config. dual</td>
<td>102</td>
</tr>
<tr>
<td>Enclavamiento selectivo de zona (ZSI)</td>
<td>104</td>
</tr>
</tbody>
</table>
Protección contra sobrecorriente de largo retardo (L o código ANSI 49RMS/51)

Presentación
La protección contra sobrecorriente de largo retardo protege los cables, barras colectoras y embarrados ante posibles sobrecargas basándose en la corriente RMS verdadera. Se implementa de manera independiente para cada fase y para el neutro.
Esta función consiste en una protección contra sobrecorriente dependiente del tiempo con memoria térmica. Funciona como una imagen térmica, usando el modelo de calefacción y refrigeración de un conductor. Tras el disparo, la protección continúa incluyendo la refrigeración del conductor.
Esta función de protección puede emplearse también para proteger transformadores o generadores gracias a la amplia variedad de ajustes que ofrece.

Disponibilidad
La protección contra sobrecorriente de largo retardo está disponible en los siguientes dispositivos:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- interruptores automáticos tripolares y tetrapolares
La protección contra sobrecorriente de largo retardo se alimenta con la corriente que fluye a través de los transformadores de corriente interna del interruptor automático, por lo que no requiere de ninguna fuente de alimentación externa adicional.

Principio de funcionamiento
La protección contra sobrecorriente de largo retardo se basa en la corriente RMS verdadera de las fases y del neutro, hasta el armónico 15.
La protección contra sobrecorriente de largo retardo se implementa de manera independiente para cada fase y para el neutro, siempre que esté presente (véase página 100).
Imagen térmica

La unidad de control utiliza el cálculo de una imagen térmica para evaluar el calentamiento del conductor y supervisar minuciosamente el estado térmico de los conductores.

Ejemplo:
Comparación del cálculo del calentamiento sin imagen térmica (esquema A) y con imagen térmica (esquema B):

0 Corriente instantánea (cíclica) en la carga
1 Temperatura del conductor
2 Estado térmico calculado sin imagen térmica (esquema A) y con imagen térmica (esquema B)
3 Umbral de protección contra sobrecorriente de largo retardo

- Unidad de control sin imagen térmica: en cada intervalo de corriente, la unidad de control sólo tiene en cuenta el efecto térmico en el intervalo en cuestión. No hay disparo a pesar del cúmulo del calentamiento del conductor.
- Unidad de control con imagen térmica: la unidad de control añade el efecto térmico de los intervalos de corriente sucesivos. El disparo se produce en función del estado térmico real del conductor.

La función de imagen térmica protege los cables y barras colectoras de un posible sobrecalentamiento en el caso de que se produzcan fallos repetitivos de poca amplitud. Este tipo de fallo puede ser debido a arranques repetidos del motor, a una carga fluctuante, a defectos a tierra intermitentes o a un cierre a consecuencia de un fallo eléctrico.

La protección electrónica tradicional no protege ante los fallos repetitivos, ya que la duración de cada sobrecarga detectada por encima del umbral ajustado es demasiado corta como para desencadenar un disparo efectivo. Sin embargo, cada sobrecarga implica un aumento de temperatura en la instalación. El efecto acumulativo de sobrecargas sucesivas puede sobrecalentar el sistema.

Gracias a su memoria térmica, la función de imagen térmica recuerda e integra el calentamiento provocado por cada sobrecarga detectada por encima del umbral ajustado:
- Antes del disparo, el valor de calentamiento integrado reduce la temporización asociada. La reacción de la unidad de control es más próxima al calentamiento real del sistema de red de alimentación.
- Tras el disparo, la función térmica reduce la temporización al cerrar el interruptor automático ante una sobrecarga.

La memoria térmica funciona con cualquier valor de corriente. Ofrece una imagen precisa del estado térmico del cable o de la barra colectora. La constante de tiempo es idéntica tanto para calentamiento como para refrigeración.

En el caso de una unidad de control que no reciba alimentación, la memoria térmica la ejecuta un condensador, lo que implica una constante fija de tiempo de enfriamiento. La constante de tiempo es equivalente a un ajuste de tr de 12 segundos.

Ajuste de las protecciones
Los ajustes de protección contra sobrecorriente de largo retardo son:
- Ir: umbral de protección contra sobrecorriente de largo retardo
- Tr: temporización de protección contra sobrecorriente de largo retardo

Pueden establecerse de la siguiente manera:
- en la pantalla de Micrologic X, en Inicio → Protección → I largo retardo
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

La protección contra sobrecorriente de largo retardo puede duplicarse si se activa la configuración dual (véase página 102).

NOTA: Para obtener el equivalente del ajuste de desactivación del conector de cálculo de largo retardo (disponible en unidades de control Micrologic para dispositivos Masterpact NT/NW), configure los ajustes de protección de largo retardo como se indica a continuación: Ir = 1; tr = 24 s.
Funciones de protección

Configuración de la protección

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir</td>
<td>A</td>
<td>0,4-1 x In</td>
<td>1 A</td>
<td>1 x In</td>
</tr>
<tr>
<td>tr</td>
<td>s</td>
<td>0,5-24</td>
<td>0,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

La temporización de la protección contra sobrecorriente de largo retardo tr se produce en condiciones de estado frío para una corriente de fase o neutro igual a 6 x Ir.
Cuando la corriente es superior a Isd o Ii, sólo estarán operativas la protección contra sobrecorriente de corto retardo y la protección instantánea.

Tiempo de disparo en función de la temporización de tr

El tiempo de disparo en función de la temporización de tr se produce en condiciones de estado frío.

<table>
<thead>
<tr>
<th>Ajuste de tr (tiempo de disparo a 6 x Ir)</th>
<th>0,5 s</th>
<th>1 s</th>
<th>2 s</th>
<th>4 s</th>
<th>8 s</th>
<th>12 s</th>
<th>16 s</th>
<th>20 s</th>
<th>24 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de disparo resultante a 1,5 x Ir</td>
<td>12,5 s</td>
<td>25 s</td>
<td>50 s</td>
<td>100 s</td>
<td>200 s</td>
<td>300 s</td>
<td>400 s</td>
<td>500 s</td>
<td>600 s</td>
</tr>
<tr>
<td>Tiempo de disparo resultante a 7,2 x Ir</td>
<td>0,34 s</td>
<td>0,69 s</td>
<td>1,38 s</td>
<td>2,7 s</td>
<td>5,5 s</td>
<td>8,3 s</td>
<td>11 s</td>
<td>13,8 s</td>
<td>16,6 s</td>
</tr>
</tbody>
</table>

Características de la protección

La precisión de la temporización de tr es:
- Del -20 % al 0 % si tr > 2 s
- Del -25 % al 0 % si tr = 2 s
- Del -30 % al 0 % si tr < 2 s

Características de Ir:
- I < 1,05 x Ir: sin disparo
- I > 1,2 x Ir: disparo

Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo Ir</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Funcionamiento de Ir</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Prealarma de Ir (I > 90 %Ir)</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Inicio de Ir (I > 105 % Ir)</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Orden de restablecimiento de memoria térmica</td>
<td>Protección</td>
<td>Baja</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:
- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
Protección contra sobrecorriente de corto retardo (S o código ANSI 50TD/51)

Presentación
La protección contra sobrecorriente de corto retardo protege el equipo ante posibles cortocircuitos de fase a fase, fase a neutro o fase a tierra con selectividad total. Incluye dos características, tiempo definido y tiempo inverso, que dependen del estado del ajuste I²t.

Disponibilidad
La protección contra sobrecorriente de corto retardo está disponible en los siguientes dispositivos:
- unidades de control Micrologic 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 5.0 X y 6.0 X para la norma UL
- interruptores automáticos tripolares y tetrapolares

La protección contra sobrecorriente de corto retardo se alimenta con la corriente que fluye a través de los transformadores de corriente interna del interruptor automático, por lo que no requiere de ninguna fuente de alimentación externa adicional.

Principio de funcionamiento
El umbral de sobrecorriente de corto retardo Isd establece el nivel de corriente de cortocircuito con la que se disparará el interruptor automático cuando se alcance la temporización de sobrecorriente de corto retardo.

La temporización de sobrecorriente de corto retardo tsd establece el tiempo durante el cual el interruptor automático efectúa un cortocircuito dentro del rango de umbral de sobrecorriente de corto retardo.

La temporización de sobrecorriente de corto retardo puede ajustarse en:
- Cuatro valores de ajuste con I²t ON.
 - Hasta 10 Ir, la curva de disparo es una curva de tiempo inverso. La temporización disminuye a medida que aumenta la corriente.
 - Por encima de 10 Ir, la curva de disparo es una curva de tiempo definido con un tiempo de disparo constante.
- Cinco valores de ajuste con I²t OFF. La curva de disparo es una curva de tiempo definido con un tiempo de disparo constante.

La protección contra sobrecorriente de corto retardo se basa en la corriente eficaz verdadera de las fases y del neutro, hasta el armónico 15.

Para el disparo en caso de fallo intermitente, la unidad de control acumula las corrientes intermitentes en el rango de disparo de corto retardo que no duren lo suficiente como para desencadenar un disparo. Esta acumulación puede originar tiempos de disparo más cortos que los ajustados.

Ajuste de las protecciones
Los ajustes de protección contra sobrecorriente de corto retardo son:
- Isd: umbral de protección contra sobrecorriente de corto retardo
- tsd: temporización de protección contra sobrecorriente de corto retardo
- I²t (tsd): curva de protección contra sobrecorriente de corto retardo (I²t ON o I²t OFF)

Pueden establecerse de la siguiente manera:
- en la pantalla de Micrologic X, en Inicio → Protección → I corto retardo
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

La protección contra sobrecorriente de corto retardo puede duplicarse si se activa la configuración dual (véase página 102).
Configuración de la protección

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isd</td>
<td>A</td>
<td>De 1,5 a 10 x Ir</td>
<td>0,5 × Ir(1)</td>
<td>1,5 × Ir</td>
<td>+/-10%</td>
</tr>
<tr>
<td>tsd con I^2t ON</td>
<td>s</td>
<td>0,1-0,4</td>
<td>0,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tsd con I^2t OFF</td>
<td>s</td>
<td>0-0,4</td>
<td>0,1</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) El software EcoStruxure Power Commission y Aplicación EcoStruxure Power Device ofrecen ajustes de resolución más detallados

Tiempo de funcionamiento a 10 × Ir
Los tiempos de funcionamiento de la protección de corto retardo dependen de la temporización de tsd. Son válidos para I^2t ON o OFF.

<table>
<thead>
<tr>
<th>Temporización tsd.</th>
<th>0 s</th>
<th>0,1 s</th>
<th>0,2 s</th>
<th>0,3 s</th>
<th>0,4 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo sin disparo</td>
<td>> 0,02 s</td>
<td>> 0,08 s</td>
<td>> 0,14 s</td>
<td>> 0,23 s</td>
<td>> 0,35 s</td>
</tr>
<tr>
<td>Tiempo máximo de corte</td>
<td>< 0,08 s</td>
<td>< 0,14 s</td>
<td>< 0,20 s</td>
<td>< 0,32 s</td>
<td>< 0,50 s</td>
</tr>
</tbody>
</table>

Enclavamiento selectivo de zona (ZSI)
Las características de ZSI y el cableado externo de la función de enclavamiento selectivo de zona se describen de manera específica (véase página 104).

Si ZSI IN no se establece en 1 (circuitio abierto entre los terminales Z3 y Z4), el tiempo máximo de corte será de 0,08 s con independencia del valor de ajuste de tsd.

Si ZSI IN se establece en 1 y se conecta a la toma ZSI OUT de un dispositivo aguas abajo (o si no se utiliza la función ZSI y existe un puente entre los terminales Z3 y Z4), se utilizará la temporización tsd.

El umbral Isd activa ZSI OUT (terminales Z1 y Z2).

NOTA: Los interruptores automáticos Masterpact MTZ se suministran con un puente instalado entre Z3 y Z4.

Eventos predefinidos
La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo Isd</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Funcionamiento de Isd</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Inicio de Isd (I > Isd)</td>
<td>Protección</td>
<td>Media</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:

- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
Protección contra sobrecorriente instantánea (I o código ANSI 50)

Presentación
La protección instantánea protege el equipo contra cortocircuitos de fase a fase, fase a neutro y fase a tierra. La protección funciona con una característica de tiempo definido. Se dispara sin temporización adicional en el momento en que se supera la corriente ajustada.

La protección ofrece dos modos de disparo, con diferentes tiempos de corte:
- Estándar: tiempo de corte de 50 ms, que se emplea para aplicaciones que requieren selectividad. Puede suministrarse selectividad completa con cualquier interruptor automático Compact NSX o PowerPact H-, J-, L-frame instalado abajo de un interruptor automático Masterpact MTZ (consulte las tablas de selectividad para obtener información detallada sobre Ue ≤ 440 V CA).
- Rápido: tiempo de corte de 30 ms, que se emplea generalmente para aplicaciones en las que es necesario limitar las restricciones térmicas del equipo y no se requiere selectividad. Para obtener más información, consulte Información técnica complementaria (véase página 10)

NOTA: En Micrologic 2.0 X, la protección de instantáneo es una protección de corto retardo sin temporizador con tiempo de corte estándar de 80 ms.

Disponibilidad
La protección contra sobrecorriente instantánea está disponible en los siguientes dispositivos:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- interruptores automáticos tripolares y tetrapolares

Se alimenta con la corriente que fluye a través de los transformadores de corriente interna del interruptor automático, por lo que no requiere de ninguna fuente de alimentación externa adicional.

Principio de funcionamiento
El umbral de protección contra sobrecorriente instantánea establece el nivel de corriente de cortocircuito con la que se disparará el interruptor automático sin retardos intencionados.

El caso de las unidades de control Micrologic 5.0 X, 6.0 X, 7.0 X para las normas IEC y UL, es posible deshabilitar la protección contra sobrecorriente instantánea.

En el caso de las unidades de control Micrologic 2.0 X para la norma IEC y las unidades de control Micrologic 3.0 X para la norma UL, la protección contra sobrecorriente instantánea no se puede deshabilitar.

La protección contra sobrecorriente instantánea anulará la protección contra sobrecorriente de corto retardo si el umbral de sobrecorriente instantánea está ajustado en un valor igual o inferior al umbral de sobrecorriente de corto retardo.

Ajuste de la protección para Micrologic 2.0 X

El ajuste de protección contra sobrecorriente instantánea para Micrologic 2.0 X es:
- Isd: umbral de protección contra sobrecorriente instantánea (corresponde a un umbral de protección contra sobrecorriente de corto retardo sin temporizador)

Puede establecerse de la siguiente manera:
- En la pantalla de Micrologic X, en Inicio → Protección → I instantánea.
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

La protección contra sobrecorriente instantánea puede duplicarse si se activa la configuración dual (véase página 102).

Ajustes de protección para Micrologic 2.0 X

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isd</td>
<td>A</td>
<td>1,5-10 x Ir</td>
<td>0,5 × Ir(1)</td>
<td>1,5 × Ir</td>
</tr>
</tbody>
</table>

(1) El software EcoStruxure Power Commission y Aplicación EcoStruxure Power Device ofrecen ajustes de resolución más detallados.
Características de la protección para Micrologic 2.0 X

<table>
<thead>
<tr>
<th>Característica</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbral de tiempo de corte a 2 × Isd ms</td>
<td>ms</td>
<td>≤ 80</td>
</tr>
<tr>
<td>Tiempo sin disparo ms</td>
<td>ms</td>
<td>> 20</td>
</tr>
<tr>
<td>Precisión del umbral %</td>
<td>%</td>
<td>+/- 10</td>
</tr>
</tbody>
</table>

Ajuste de la protección para Micrologic 3.0 X

El ajuste de protección contra sobrecorriente instantánea para Micrologic 3.0 X es:
- Ii: umbral de protección contra sobrecorriente instantánea

Puede establecerse de la siguiente manera:
- En la pantalla de Micrologic X, en Inicio → Protección → I instantánea.
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

La protección contra sobrecorriente instantánea puede duplicarse si se activa la configuración dual (véase página 102).

Ajustes de protección para Micrologic 3.0 X

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo de disparo li</td>
<td>–</td>
<td>Estándar/rápido</td>
<td>–</td>
<td>Estándar</td>
</tr>
<tr>
<td>li</td>
<td>A</td>
<td>1,5-12 × In</td>
<td>0,5 × In(1)</td>
<td>1,5 × In</td>
</tr>
</tbody>
</table>

(1) El software EcoStruxure Power Commission y Aplicación EcoStruxure Power Device ofrecen ajustes de resolución más detallados.

Características de la protección para Micrologic 3.0 X

<table>
<thead>
<tr>
<th>Característica</th>
<th>Unidad</th>
<th>El modo de disparo Ii está definido como estándar</th>
<th>El modo de disparo Ii está definido como rápido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbral de tiempo de corte a 2 x ms</td>
<td>ms</td>
<td>≤50</td>
<td>≤30</td>
</tr>
<tr>
<td>Tiempo sin disparo ms</td>
<td>ms</td>
<td>> 20</td>
<td>0</td>
</tr>
<tr>
<td>Precisión del umbral %</td>
<td>%</td>
<td>+/-10</td>
<td>+/-10</td>
</tr>
</tbody>
</table>

Ajuste de la protección para Micrologic 5.0 X, 6.0 X, 7.0 X

Los ajustes de protección contra sobrecorriente instantánea son:
- Modo li: activa (ON) o desactiva (OFF) la protección contra sobrecorriente instantánea
- Modo de disparo li: define el tiempo de disparo como estándar o rápido
- li: umbral de protección contra sobrecorriente instantánea

Pueden establecerse de la siguiente manera:
- En la pantalla de Micrologic X, en Inicio → Protección → I instantánea.
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

La protección contra sobrecorriente instantánea puede duplicarse si se activa la configuración dual (véase página 102).

Ajustes de protección para Micrologic 5.0 X, 6.0 X, 7.0 X

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo li</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>ON</td>
</tr>
<tr>
<td>Modo de disparo li</td>
<td>–</td>
<td>Estándar/rápido</td>
<td>–</td>
<td>Estándar</td>
</tr>
<tr>
<td>li</td>
<td>A</td>
<td>2,0-15 x ln</td>
<td>0,5 x ln(1)</td>
<td>2,0 × ln</td>
</tr>
</tbody>
</table>
Funciones de protección

Características de la protección para Micrologic 5.0 X, 6.0 X, 7.0 X

<table>
<thead>
<tr>
<th>Característica</th>
<th>Unidad</th>
<th>El modo de disparo Ii está definido como estándar</th>
<th>El modo de disparo Ii está definido como rápido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbral de tiempo de corte a 2 x</td>
<td>ms</td>
<td>≤50</td>
<td>≤30</td>
</tr>
<tr>
<td>Tiempo sin disparo</td>
<td>ms</td>
<td>> 20</td>
<td>0</td>
</tr>
<tr>
<td>Precisión del umbral</td>
<td>%</td>
<td>+/-10</td>
<td>+/-10</td>
</tr>
</tbody>
</table>

Eventos predefinidos para Micrologic 2.0 X

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo Isd</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Funcionamiento de Isd</td>
<td>Protección</td>
<td>Media</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:
- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).

Eventos predefinidos para Micrologic 3.0 X, 5.0 X, 6.0 X, 7.0 X

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo Ii</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Funcionamiento de Ii</td>
<td>Protección</td>
<td>Media</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:
- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
Protección de defecto a tierra (G o código ANSI 50N-TD/51N)

Presentación

La protección de defecto a tierra suministra protección contra defectos de fase a tierra, más sensible que la protección basada únicamente en la corriente de fase. Suele utilizarse en los sistemas TN-S, pero también puede utilizarse en otros sistemas de puesta a tierra.

NOTA: La protección de defecto a tierra también se denomina protección de fallo a tierra.

La protección de defecto a tierra se basa en la suma de la corriente en las fases y el neutro o en la señal proporcionada por un transformador de corriente de sensor externo para protección de tierra Source Ground Return (SGR) por medio del módulo MDGF.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIESGO DE DAÑOS EN EL EQUIPO</td>
</tr>
<tr>
<td>Con unidad de control Micrologic X para estándar IEC, al utilizar Source Ground Return (SGR) con el módulo MDGF:</td>
</tr>
<tr>
<td>● No está permitido el ajuste del modo Ig en la posición ABIERTO.</td>
</tr>
<tr>
<td>● La configuración de umbral Ig debe ser ≤1.200 A.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Disponibilidad

La protección de defecto a tierra está disponible en:

● unidades de control Micrologic 6.0 X para la norma IEC
● unidades de control Micrologic 6.0 X para la norma UL
● interruptores automáticos tripolares y tetrapolares

Se pueden utilizar sensores externos:

● Transformador externo de corriente de neutro (ENCT): medición de la corriente en el neutro. Para obtener información acerca de la instalación del ENCT, consulte la hoja de instrucciones en el sitio web de Schneider Electric: NHA14388.
● Protección de tierra Source Ground Return (SGR): incluye protección de defecto a tierra y un sensor SGR instalado alrededor de la conexión del neutro del transformador a tierra.

La protección de defecto a tierra se alimenta con la corriente que fluye a través de los transformadores de corriente interna del interruptor automático, por lo que no requiere de ninguna fuente de alimentación externa adicional.
Principio de funcionamiento

La corriente de defecto a tierra se calcula o se mide según la configuración del interruptor automático, tal como se muestra en la tabla siguiente.

<table>
<thead>
<tr>
<th>Configuración del interruptor automático</th>
<th>Corriente de defecto a tierra I_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>3P</td>
<td>$I_g = I_1 + I_2 + I_3$</td>
</tr>
<tr>
<td>4P</td>
<td>$I_g = I_1 + I_2 + I_3 + I_N$</td>
</tr>
<tr>
<td>3P + ENCT</td>
<td>$I_g = I_1 + I_2 + I_3 + I_N (ENCT)$</td>
</tr>
<tr>
<td>3P o 4P + SGR</td>
<td>$I_g = ISGR$</td>
</tr>
</tbody>
</table>

El umbral de protección de defecto a tierra I_g establece el nivel de corriente de defecto a tierra a la que se dispara el interruptor automático cuando se alcance la temporización de protección de defecto a tierra t_g.

La temporización t_g establece el tiempo durante el cual el interruptor automático tiene un defecto a tierra dentro del rango I_g de umbral de protección de defecto a tierra.

La temporización t_g puede ajustarse en:

- Cuatro valores de ajuste con I^2t ON. En este caso, la curva de disparo es una curva de tiempo inverso hasta $2 \times I_r$, lo que significa que la temporización se reduce a medida que la corriente aumenta. Por encima de $2 \times I_r$, la curva de disparo es una curva de tiempo definida con un tiempo de disparo constante.
- Cinco valores de ajuste con I^2t OFF. En este caso, la curva de disparo es una curva de tiempo definida con un tiempo de disparo constante.

La protección de defecto a tierra se basa en la corriente eficaz verdadera de las fases y del neutro, hasta el armónico 15.

Para el disparo en caso de fallo eléctrico intermitente, la unidad de control acumula las corrientes intermitentes en el rango de disparo de defecto a tierra que no duren lo suficiente como para desencadenar un disparo. Esta acumulación origina tiempos de disparo más cortos que los establecidos.

Ajuste de las protecciones

La protección de defecto a tierra se puede activar o desactivar.

Los ajustes de protección de defecto a tierra son:
- Modo Ig: activa (ON) o desactiva (OFF) la protección de defecto a tierra
- Ig: umbral de protección de defecto a tierra
- t_g: temporización de la protección de defecto a tierra
- I^2t (tg): curva de protección de defecto a tierra (I^2t ON o I^2t OFF)

Pueden establecerse de la siguiente manera:
- En la pantalla de Micrologic X, en **Inicio → Protección → I def. tierra**.
- Con el software EcoStruxure Power Commission. (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

La protección de defecto a tierra puede duplicarse si se activa la configuración dual (véase página 102).
Funciones de protección

Configuración de la protección

Configuración de Ig para Micrologic 6.0 X norma IEC

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo Ig</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>ON</td>
<td>–</td>
</tr>
<tr>
<td>Ig(1)</td>
<td>A</td>
<td>0,2-1 x In</td>
<td>10 A</td>
<td>0,2 x In</td>
<td>+/-10 %</td>
</tr>
</tbody>
</table>

(1) Para In ≤ 400 A, el intervalo de ajuste Ig es 0,3-1 x In (ajuste de fábrica: 0,3 x In)

Configuración de Ig para Micrologic 6.0 X norma UL

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo Ig</td>
<td>–</td>
<td>ON (siempre activado)</td>
<td>–</td>
<td>ON</td>
<td>–</td>
</tr>
<tr>
<td>Ig(1) para In ≤ 1200 A</td>
<td>A</td>
<td>0,2-1 x In</td>
<td>10 A</td>
<td>0,2 x In</td>
<td>+/-10 %</td>
</tr>
<tr>
<td>Ig para In > 1200 A</td>
<td>A</td>
<td>500-1200 A</td>
<td>10 A</td>
<td></td>
<td>+/-10 %</td>
</tr>
</tbody>
</table>

(1) Para In ≤ 400 A, el intervalo de ajuste Ig es 0,3-1 x In (ajuste de fábrica: 0,3 x In)

Configuración de tg para Micrologic 6.0 X normas IEC y UL

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Valor de ajuste</th>
</tr>
</thead>
<tbody>
<tr>
<td>tg con I²t OFF</td>
<td>s</td>
<td>0,1</td>
</tr>
<tr>
<td>tg con I²t ON</td>
<td>s</td>
<td>–</td>
</tr>
<tr>
<td>Tiempo sin disparo</td>
<td>s</td>
<td>>0,02</td>
</tr>
<tr>
<td>Tiempo máximo de corte</td>
<td>s</td>
<td><0,08</td>
</tr>
</tbody>
</table>

El valor de ajuste por defecto de la temporización tg es 0 s con I²t OFF.

NOTA: Cuando tg se ajusta a 0 s y I²t se cambia a ON, la temporización tg se ajusta automáticamente a 0,1.

Prueba de la protección

Pruebe el funcionamiento de la protección de defecto a tierra tal como se indica a continuación:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compruebe que el interruptor automático esté cerrado y que la unidad de control reciba alimentación (el LED Ready parpadea).</td>
</tr>
<tr>
<td>2</td>
<td>Utilice un destornillador fino para pulsar brevemente (< 1 s) el botón de prueba (T) en la parte frontal de la unidad de control Micrologic X. Esta acción se registra como un evento.</td>
</tr>
<tr>
<td>3</td>
<td>El interruptor automático se dispara. Se genera un evento.</td>
</tr>
<tr>
<td>4</td>
<td>Si el interruptor automático no se dispara, se genera un evento. Póngase en contacto con el representante de servicio local.</td>
</tr>
</tbody>
</table>

Enclavamiento selectivo de zona (ZSI)

Las características de ZSI y el cableado externo de la función de enclavamiento selectivo de zona se describen de manera específica (véase página 104).

Si ZSI IN no se establece en 1 (cicuito abierto entre los terminales Z3 y Z4), el tiempo máximo de corte será de 0,08 s con independencia del valor de ajuste de tg.

Si ZSI IN se establece en 1 y se conecta a la toma ZSI OUT de un dispositivo aguas abajo (o si no se utiliza la función ZSI y existe un puente entre los terminales Z3 y Z4), se utilizará la temporización tg.

El umbral Ig activa ZSI OUT (terminales Z1 y Z2).

NOTA: Los interruptores automáticos Masterpact MTZ se suministran con un puente instalado entre Z3 y Z4.
Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Histórico</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo Ig</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Disparo de prueba $I_{\Delta n}/I_{g}$</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Inicio de Ig</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Funcionamiento de Ig</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Botón de prueba $I_{\Delta n}/I_{g}$ pulsado</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Prueba $I_{\Delta n}/I_{g}$: sin disparo</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Protección Ig configurada en modo desactivado</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos *(véase página 247)*.

Los eventos de protección se generan de la manera siguiente:

- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
Funciones de protección

Protección de diferencial (ANSI 50G-TD)

Presentación
La protección de diferencial es una protección de defecto a tierra con muchísima sensibilidad. Suele utilizarse en sistemas de puesta a tierra TT o IT, pero también podría utilizarse en sistemas de puesta a tierra TN en algunas circunstancias. La protección de diferencial es una protección de corriente residual basada en una corriente medida por un trafo rectangular que engloba las tres fases o las tres fases y el neutro. La protección de diferencial Micrologic 7.0 X con el módulo VPS cumple la norma IEC 60947-2, Anexo B. Es un dispositivo de corriente residual (RCD) de tipo A.

Disponibilidad

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIESGO DE PÉRDIDA DE LA PROTECCIÓN DIFERENCIAL</td>
</tr>
<tr>
<td>● No utilice Masterpact MTZ con la unidad de control Micrologic 7.0 X incorporada sin el trafo rectangular conectado para la protección de diferencial.</td>
</tr>
<tr>
<td>● Utilice únicamente sensores de protección de diferencial LV833573SP LV833574SP o Schneider Electric con Masterpact MTZ con la unidad de control Micrologic 7.0 X incorporada.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

La protección de diferencial está disponible en:
● unidades de control Micrologic 7.0 X para la norma IEC conectadas a un sensor rectangular externo
● interruptores automáticos tripolares y tetrapolares
El trafo rectangular externo es necesario para medir la corriente residual. Para obtener información acerca de la instalación del trafo rectangular, consulte la hoja de instrucciones en el sitio web de Schneider Electric: NVE35468.

El módulo de fuente de alimentación VPS se suministra con las unidades de control Micrologic 7.0 X para alimentar la unidad de control si se produce un fallo eléctrico de bajo nivel y sin carga, en el que la alimentación eléctrica basada en la corriente que fluye a través del interruptor automático no es suficientemente intensa.

El módulo VPS es obligatorio para cumplir la norma IEC 60947-2, Anexo B.

Principio de funcionamiento

La protección de diferencial es de tiempo independiente. El umbral de protección de diferencial IΔn establece el nivel de fuga a tierra al que se disparará el interruptor automático cuando se alcance la temporización de protección de diferencial Δt.

Ajuste de las protecciones

Los ajustes de protección de diferencial son:
● IΔn: umbral de protección de diferencial
● Δt: retardo de tiempo de la protección de diferencial
Pueden establecerse de la siguiente manera:
● En la pantalla de Micrologic X, en Inicio → Protección → I diferencial.
● con el software EcoStruxure Power Commission (protector con contraseña)
● con Aplicación EcoStruxure Power Device (protector con contraseña)
● mediante el envío de un comando de ajuste a través de la red de comunicación (protector con contraseña)
Configuración de la protección

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{\Delta n}$</td>
<td>A</td>
<td>0,5 – 30</td>
<td>0,1</td>
<td>0,5</td>
<td>Cumple con IEC 60947-2 Anexo B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Valor de ajuste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt</td>
<td>s</td>
<td>0,06 0,15 0,23 0,35 0,80</td>
</tr>
<tr>
<td>Tiempo sin disparo</td>
<td>s</td>
<td>> 0,06 > 0,15 > 0,23 > 0,35 > 0,80</td>
</tr>
<tr>
<td>Tiempo máximo de corte</td>
<td>s</td>
<td><0,14 < 0,23 < 0,35 < 0,80 <1,00</td>
</tr>
</tbody>
</table>

Prueba de la protección

Pruebe el funcionamiento de la protección de diferencial tal como se indica a continuación:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compruebe que el interruptor automático esté cerrado y que la unidad de control reciba alimentación (el LED Ready parpadea).</td>
</tr>
<tr>
<td>2</td>
<td>Utilice un destornillador fino para pulsar brevemente (< 1 s) el botón de prueba (T) en la parte frontal de la unidad de control Micrologic X. Esta acción se registra como un evento.</td>
</tr>
<tr>
<td>3</td>
<td>El interruptor automático se dispara. Se genera un evento.</td>
</tr>
<tr>
<td>4</td>
<td>Si el interruptor automático no se dispara, se genera un evento. Póngase en contacto con el representante de servicio local.</td>
</tr>
</tbody>
</table>

Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo $I_{\Delta n}$</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Disparo de prueba $I_{\Delta n}/I_g$</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Inicio de $I_{\Delta n}$</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Funcionamiento de $I_{\Delta n}$</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Botón de prueba $I_{\Delta n}/I_g$ pulsado</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Prueba$I_{\Delta n}/I_g$: sin disparo</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:
- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
Protección del neutro

Presentación

La función de protección contra sobrecorriente de largo retardo tiene como misión la protección del neutro.

Disponibilidad

La protección del neutro está disponible en:

- Unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- Unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Interruptores automáticos tripolares con la opción ENCT (External Neutral Current Transformer, transformador externo de corriente neutra) para medir la corriente del neutro
- Interruptores automáticos tetrapolares

Descripción

En los puntos en los que la sección transversal del conductor neutro sea al menos equivalente a la del conductor de fase y, además, la corriente del neutro no se espera que supere el valor del conductor de fase, no será necesario suministrar protección contra sobrecorriente para el conductor neutro.

El conductor neutro deberá contar con protección contra sobrecorriente si:

- La sección transversal del conductor neutro es inferior a la de los conductores de fase.
- Se han instalado cargas no lineales que generan armónicos de rango 3 o múltiplos de 3.

El corte del neutro puede ser necesario por razones funcionales (esquema multifuente) o de seguridad (trabajo sin tensión).

En resumen, el conductor neutro puede ser:

- No distribuido (interruptor automático tripolar)
- Distribuido, no cortado y no protegido (interruptor automático tripolar)
- Distribuido, no cortado pero protegido (interruptor automático tripolar con opción ENCT)
- Distribuido, cortado y protegido (interruptor automático tetrapolar)

Las unidades de control Micrologic X son adecuadas para cualquier tipo de protección. Incorporan la función OSN (del inglés Oversized Neutral, neutro sobredimensionado), que gestiona la protección del conductor neutro ante la presencia de corrientes armónicas de tercer orden (y múltiplos de estas).

<table>
<thead>
<tr>
<th>Interruptor automático</th>
<th>Posibilidades</th>
<th>Protección del neutro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruptor automático tripolar</td>
<td>3P, 3D</td>
<td>Desconectado</td>
</tr>
<tr>
<td>Interruptor automático tripolar con opción ENCT</td>
<td>3P, 3D</td>
<td>Desconectado</td>
</tr>
<tr>
<td></td>
<td>3P, 3D + N/2</td>
<td>Neutro mitad</td>
</tr>
<tr>
<td></td>
<td>3P, 3D + N</td>
<td>Neutro completo</td>
</tr>
<tr>
<td></td>
<td>3P, 3D + OSN</td>
<td>Neutro sobredimensionado</td>
</tr>
<tr>
<td>Interruptor automático tetrapolar</td>
<td>4P, 3D</td>
<td>Desconectado</td>
</tr>
<tr>
<td></td>
<td>4P, 3D + N/2</td>
<td>Neutro mitad</td>
</tr>
<tr>
<td></td>
<td>4P, 4D</td>
<td>Neutro completo</td>
</tr>
<tr>
<td></td>
<td>4P, 4D + OSN</td>
<td>Neutro sobredimensionado</td>
</tr>
</tbody>
</table>

P: polo, D: unidad de control, N: protección del neutro
Principio de funcionamiento

Funciones de protección

La protección del neutro tiene características idénticas a la protección de las fases:

- Su umbral es proporcional al umbral de protección de largo retardo Ir.
- Presenta los mismos valores de temporización tr que la protección de largo retardo.
- Sus protecciones de corto retardo e instantáneo son idénticas.

Declaración del transformador externo de corriente neutra (ENCT) en interruptores automáticos tripolares

En los interruptores automáticos 3P, la opción ENCT debe declararse de una de las siguientes maneras:

- en la pantalla de Micrologic X, en Inicio → Configuración → Medidas → Tipo sistema → ENCT
- con el software EcoStruxure Power Commission
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

Ajuste de la protección del neutro para interruptores automáticos tripolares y tetrapolares

Defina el tipo de protección del neutro de una de las siguientes maneras:

- en la pantalla de Micrologic X, en Inicio → Protección → Neutro.
- con el software EcoStruxure Power Commission (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

En la tabla siguiente se muestran los valores de ajuste de la protección de largo retardo del neutro, así como el umbral correspondiente al tipo de protección del neutro seleccionada:

<table>
<thead>
<tr>
<th>Tipo de protección del neutro</th>
<th>Valor de umbral de largo retardo del neutro</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Sin protección de largo retardo para el neutro</td>
</tr>
<tr>
<td>N/2</td>
<td>Ir/2</td>
</tr>
<tr>
<td>N</td>
<td>Ir</td>
</tr>
<tr>
<td>Sobredim. N</td>
<td>Tripolar (ENCT)</td>
</tr>
<tr>
<td></td>
<td>1,6 x Ir</td>
</tr>
<tr>
<td></td>
<td>Tetrapolar</td>
</tr>
<tr>
<td></td>
<td>1,6 x Ir limitedo a In</td>
</tr>
</tbody>
</table>
Config. dual

Presentación
La función de configuración dual consta de dos juegos de parámetros para las funciones de protección siguientes, de acuerdo con el tipo de unidad de control Micrologic X:
- Protección contra sobrecorriente de largo retardo
- Protección contra sobrecorriente de corto retardo
- Protección contra sobrecorriente instantánea
- Protección de defecto a tierra
Se puede pasar de un juego a otro en ciertas condiciones de funcionamiento.
Una aplicación típica consiste en ajustar la protección contra cortocircuitos cuando el interruptor automático se puede alimentar de dos fuentes con corrientes de cortocircuito muy diferentes. Por ejemplo, el interruptor automático recibe alimentación de la red o de un generador.

Disponibilidad
La función de configuración dual está disponible en:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL

Principio de funcionamiento
De forma predeterminada, la función de configuración dual está desactivada.
La función de configuración dual está disponible se activa y se desactiva de una de las maneras siguientes:
- Con el software EcoStruxure Power Commission.
- En la pantalla de Micrologic X, en Inicio → Protección → Config. dual → Config. dual
Cuando la función de configuración dual esté activada, use el software EcoStruxure Power Commission para configurar el modo de conmutación utilizado para cambiar entre la configuración del grupo A y la configuración del grupo B. Están disponibles los siguientes modos de conmutación:
- HMI local: pantalla de Micrologic X
- Remoto: red de comunicación
- Módulo IO - 1 cable: sólo está disponible si hay un selector conectado a una entrada digital de un módulo IO
- Módulo IO - 2 cables: sólo está disponible si hay un selector conectado a entradas digitales de un módulo IO
El modo de conmutación configurado se muestra en la pantalla de Micrologic X en Inicio → Protección → Config. dual → Modo conmutador.
Cuando la función de configuración dual está activada, hay dos juegos de parámetros de protección disponibles:
- El juego A corresponde a los ajustes seleccionados actualmente.
- El juego B es un segundo juego de parámetros de protección, que se puede ajustar tal como se describe en Ajuste de las protecciones (véase página 103).
La conmutación entre el juego A y el juego B depende del modo de conmutación definido en el software EcoStruxure Power Commission. Cambie entre juegos tal como se indica a continuación:
- Módulo IO de 1 cable o 2 cables: utilizando el selector conectado a las entradas digitales del módulo IO
- Local: en la pantalla de Micrologic X, en Inicio → Mantenimiento → Cambiar a otro modo → Camb. a modo B.
- Remoto: mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)
Sin un comando externo, los ajustes de Ir, tr, Isd, li, Ig y tg son los del juego A.
Cuando se envía el comando externo Activar Configuración B, los ajustes Ir, tr, Isd, li, Ig y tg cambian a los del juego B.
Cuando la función Config. dual está activada, los ajustes de la pantalla se marcan como _A o _B.
Ajuste de los parámetros de protección

Los parámetros de protección del juego A se ajustan del modo siguiente:
- en la pantalla de Micrologic X, en Inicio → Protección
- con el software EcoStruxure Power Commission
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

Los parámetros de protección del juego B se ajustan del modo siguiente:
- en la pantalla de Micrologic X, en Inicio → Protección → Config. dual → Configuración
- Con el software EcoStruxure Power Commission.
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

Ajustes de la función

<table>
<thead>
<tr>
<th>Función</th>
<th>Configuración</th>
<th>Configuración de fábrica</th>
<th>Intervalo de ajuste</th>
<th>Tipo de Micrologic X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuración dual</td>
<td>Activado</td>
<td>NO</td>
<td>SI/NO</td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X</td>
</tr>
</tbody>
</table>
| Modo conmutador | HMI local | • HMI local
• Remoto
• IO - 1 cable
• IO - 2 cables | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| Largo retardo en conjunto B | Ir | 1 x In | Igual que el conjunto A | Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X |
| | tr | 0.5 s | Igual que el conjunto A | |
| Corto retardo en conjunto B | Isd | 1,5 x Ir | Igual que el conjunto A | Micrologic 5.0 X, 6.0 X, 7.0 X |
| | tsd | 0 | Igual que el conjunto A | |
| Instantáneo en conjunto B | li | 1,5 x In | Igual que el conjunto A | Micrologic 2.0 X |
| Instantáneo en conjunto B | Modo li | ON | Igual que el conjunto A | Micrologic 5.0 X, 6.0 X, 7.0 X |
| | Modo de disparo li | Estándar | Igual que el conjunto A | |
| | li | 2,0 x In | Igual que el conjunto A | |
| Defecto a tierra en conjunto B | Modo Ig | ON | Igual que el conjunto A | Micrologic 6.0 X norma UL |
| | Ig | 0,2 x In(1) | Igual que el conjunto A | |
| | tg | 0 | Igual que el conjunto A | |
| Defecto a tierra en conjunto B | Ig para ln ≤ 1200 A | 0,2 x In(1) | Igual que el conjunto A | Micrologic 6.0 X norma UL |
| | Ig para ln > 1200 A | 500 A | Igual que el conjunto A | |
| | tg | 0 | Igual que el conjunto A | |

(1) Para In ≤ 400 A, el ajuste de fábrica Ig es 0,3 x In.

Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curva B activa</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de configuración IO/CU: configuración dual o inhibición de cierre.</td>
<td>Configuración</td>
<td>Media</td>
</tr>
</tbody>
</table>
Enclavamiento selectivo de zona (ZSI)

Presentación

El enclavamiento selectivo de zona (Zone-selective interlocking, ZSI), también llamado restricción de zona, es un sistema diseñado para reducir la tensión de equipos de distribución eléctrica en situaciones de cortocircuito o defecto a tierra.

ZSI funciona con un sistema de distribución precoordinado que limita la tensión en el sistema mediante la reducción del tiempo necesario para solucionar el fallo eléctrico, a la vez que mantiene la coordinación del sistema entre los dispositivos de protección contra sobrecorriente y de defecto a tierra.

ZSI permite a las unidades de control Micrologic X comunicarse entre sí para que los cortocircuitos o defectos a tierra pueda aislarlos y solucionarlos el interruptor automático más próximo aguas arriba sin que existan retardos intencionados. Los dispositivos de las demás zonas del sistema (incluidos los situados aguas arriba) permanecen cerrados para mantener el servicio a las cargas que no han quedado afectadas.

Sin ZSI, el sistema coordinado funciona de manera que el interruptor automático más próximo al fallo eléctrico es el que se encarga de solucionar dicho fallo, aunque por lo general con algún retardo intencionado. Con ZSI, en cambio, el dispositivo más próximo al fallo eléctrico ignora los retardos de corta duración y de defecto a tierra preajustados y soluciona el fallo eléctrico sin ningún retardo intencionado.

El enclavamiento selectivo de zona elimina el retardo intencionado sin que por ello se vea afectada la coordinación, lo que se traduce en tiempos de disparo más rápidos. De este modo se limita la tensión en el sistema, ya que se reduce la cantidad de energía de paso a la que se ve expuesta el sistema durante una sobrecorriente.

Es necesario coordinar el sistema correctamente para que el enclavamiento selectivo de zona funcione.

Disponibilidad

El enclavamiento selectivo de zona está disponible para:
- unidades de control Micrologic 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 5.0 X y 6.0 X para la norma UL

Para compatibilidad del enclavamiento selectivo de zona con otras gamas de interruptores automáticos, consulte la hoja de instrucciones del módulo de interfaz ZSI en la página web de Schneider Electric: NHA12883

Los interruptores automáticos Masterpact MTZ con funcionalidad ZSI se suministran con puentes de contención instalados. Los puentes de contención deberán estar correctamente colocados a menos que esté activado el enclavamiento selectivo de zona. Si se retiran los puentes y no está activado el enclavamiento selectivo de zona, el interruptor automático ignorará su retardo programado y se disparará sin retardo intencionado.
Principio de funcionamiento

Un hilo de control permite interconectar una serie de interruptores automáticos equipados con unidades de control Micrologic X, tal como se ilustra en el siguiente diagrama.

La unidad de control que detecta el fallo eléctrico envía una señal arriba y comprueba que llegue una señal procedente de aguas abajo. Si se recibe una señal procedente de aguas abajo, el interruptor automático permanecerá cerrado durante todo el tiempo que dure la temporización de disparo. Si no se recibe señal alguna de aguas abajo, el interruptor automático se abrirá inmediatamente con independencia del ajuste de temporización de disparo.

Fallo eléctrico 1: sólo el interruptor automático A detecta el fallo eléctrico. Dado que no recibe señal alguna de aguas abajo, se abre inmediatamente, con independencia de su temporización de disparo ajustada en 0,3.

Fallo eléctrico 2: los interruptores automáticos A y B detectan el fallo eléctrico. El interruptor automático A recibe una señal procedente del interruptor automático B y permanece cerrado durante todo el tiempo que dura la temporización de disparo, ajustada en 0,3. El interruptor automático B, por su parte, no recibe señal de aguas abajo y se abre inmediatamente, a pesar de tener ajustada una temporización de disparo de 0,2.

NOTA: En el dispositivo A, las temporizaciones de disparo tsd y tg no deben ajustarse a cero, puesto que ello impediría la selectividad.

Ajuste de la función

Es posible asignar los siguientes ajustes a la entrada ZSI:
- Protección contra sobrecorriente de corto retardo
- Protección de defecto a tierra (Micrologic 6.0 X)
- Ambas protecciones (Micrologic 6.0 X)

Los ajustes pueden modificarse de la siguiente manera:
- con el software EcoStruxure Power Commission
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)
Principios de conexión

En la siguiente figura se explica cómo el hilo de señal está conectado a la unidad de control Micrologic X:

- **Q1** Interruptor automático aguas arriba
- **Q2** Interruptor automático que se va a cablear
- **Q3** Interruptor automático aguas abajo
- **Z1** Fuente ZSI-OUT
- **Z2** ZSI-OUT
- **Z3** Fuente ZSI-IN
- **Z4** ZSI-IN

NOTA: Si no se utiliza ZSI aguas abajo, cortocircuite las entradas Z3 y Z4. El ajuste de las temporizaciones de protección de corto retardo y defecto a tierra puede inhibirse si no se aplica este principio.

Distribución multifuente

Si se instalan varios interruptores automáticos aguas arriba (distribución multifuente), se aplican los mismos principios.

NOTA: La gestión de esta configuración no requiere ningún relé adicional para el control de ZSI para las fuentes en cuestión.
Características del hilo de conexión

En la tabla siguiente se indican las características del hilo de señal entre dispositivos:

<table>
<thead>
<tr>
<th>Características</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedancia</td>
<td>2,7 Ω por 300 m (1000 ft)</td>
</tr>
<tr>
<td>Longitud máxima</td>
<td>300 m (1000 ft)</td>
</tr>
<tr>
<td>Tipo de cable</td>
<td>Par trenzado</td>
</tr>
<tr>
<td>Sección de los conductores admisibles</td>
<td>0,4-2,5 mm² (20-14 AWG)</td>
</tr>
<tr>
<td>Límite de interconexión de entradas Z3 y Z4 (hacia dispositivos aguas abajo)</td>
<td>15 dispositivos</td>
</tr>
<tr>
<td>Límite de interconexión de salidas Z1 y Z2 (hacia equipos aguas arriba)</td>
<td>5 o 15 dispositivos, según el dispositivo aguas arriba</td>
</tr>
</tbody>
</table>

Eventos predefinidos

La función genera el siguiente evento predefinido:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba ZSI</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Sección 3.3
Funciones de protección opcionales

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección de infratensión (código ANSI 27)</td>
<td>109</td>
</tr>
<tr>
<td>Protección de sobretensión (código ANSI 50)</td>
<td>112</td>
</tr>
<tr>
<td>Protección contra infrafrecuencia/sobrefrecuencia (código ANSI 81)</td>
<td>115</td>
</tr>
<tr>
<td>Protección contra potencia inversa (código ANSI 32P)</td>
<td>119</td>
</tr>
<tr>
<td>Alarma de defecto a tierra (código ANSI 51N/51G)</td>
<td>122</td>
</tr>
<tr>
<td>Ajuste de mantenimiento para reducción de energía (ERMS)</td>
<td>124</td>
</tr>
</tbody>
</table>
Presentación

La protección de infratensión (código ANSI 27) supervisa constantemente la tensión del sistema. Si el nivel de tensión de una instalación sale de sus límites aceptables, la información proporcionada por la protección de infratensión se puede utilizar para iniciar una acción apropiada para restaurar las condiciones de funcionamiento adecuadas en la instalación.

La información proporcionada por la protección de infratensión se utiliza para generar alarmas y el disparo del interruptor automático cuando sea necesario. Además, la supervisión constante de las tensiones de fase a fase o de fase a neutro permite iniciar medidas apropiadas para salvaguardar el funcionamiento de la instalación durante situaciones anormales o críticas (por ejemplo, deslastre de cargas, cambio de fuente y arranque del generador de emergencia).

Requisitos previos

La protección de infratensión está disponible cuando se compra el módulo digital ANSI 27/59 - Protección contra infratensiones/sobretensiones y se instala en una unidad de controlMicrologic X (véase página 28).

La protección de infratensión requiere una fuente de alimentación externa de 24 V CC.

La protección de infratensión es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 002.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).

Principio de funcionamiento

La protección de infratensión supervisa tres tensiones entre fases (V12, V23, V31) o tres tensiones de fase a neutro (V1N, V2N, V3N).

La protección de infratensión es de dos tipos:
- Código ANSI 27-1: cada tensión se supervisa de manera independiente. La protección detecta cuándo una de las tres tensiones supervisadas alcanza el umbral Vmin1.
- Código ANSI 27-2: las tres tensiones se supervisan a la vez. La protección detecta cuándo las tres tensiones supervisadas alcanzan el umbral Vmin2.

Cada tipo de protección de infratensión, código ANSI 27-1 y código ANSI 27-2, se puede desactivar.

Los dos tipos de protección de infratensión funcionan de acuerdo con un retardo de tiempo ajustable:
- Código ANSI 27-1: el retardo de tiempo tVmin1 se inicia en cuanto la protección detecta el umbral.
- Código ANSI 27-2: el retardo de tiempo tVmin2 se inicia en cuanto la protección detecta el umbral.

La protección de infratensión funciona con una característica de tiempo definido. **NOTA:** La selección de tensiones que se deben supervisar (entre fases o fase a neutro) se aplica tanto a las protecciones de infratensión como de sobretensión. No es posible seleccionar ajustes diferentes para cada tipo de protección. La selección se realiza para los cuatro tipos de protección: ANSI 27-1, ANSI 27-2, ANSI 59-1 y ANSI 59-2.

Protección de inhibición

Para inhibir la protección de infratensión (ANSI 27-1 o ANSI 27-2), se deben cumplir las dos condiciones siguientes:
- La inhibición se activa en una protección específica (ANSI 27-1 o ANSI 27-2) estableciendo el parámetro Inhibición en ON.
- La inhibición de protecciones opcionales se activa mediante una entrada del módulo IO. La función Inhibir protección opcional se debe asignar a una entrada del módulo IO.

Si desea obtener más información sobre la inhibición de protecciones opcionales, consulte Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario (véase página 10).

NOTA: Las protecciones de infratensión (ANSI 27-1 o ANSI 27-2) se pueden inhibir por separado, o conjuntamente.
Medición de tensión
Para la protección de infratensión establecida en modo de disparo, se debe medir la tensión en la parte de la fuente de alimentación para permitir el cierre del interruptor automático. De serie, la tensión de entrada de Micrologic X se conecta directamente a la tensión de detección interna (PTI) en la parte inferior del interruptor automático. Por lo tanto:
- Si el interruptor automático recibe alimentación por la parte inferior, la tensión de disparo interna (PTI) resulta adecuada para la protección de infratensión y el cierre del interruptor automático.
- Si el interruptor automático recibe alimentación por la parte superior, se requiere una entrada de tensión externa. Se debe usar la opción Forzar apagado si el IA está abierto.

Configuración para todas las protecciones de infratensión/sobretensión
Seleccione el tipo de tensiones que se deben supervisar antes de realizar otras configuraciones:
- selección de tensión entre fases VLL (ajuste de fábrica)
- selección de tensión de fase a neutro VLN (este ajuste se debe seleccionar solamente con interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT conectado y configurado)
Puede establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)

Configuración del parámetro de comportamiento en infratensión para el código ANSI 27-1 y el código ANSI 27-2
Para un interruptor automático de alimentación superior sin la opción PTE, si la protección de infratensión dispara el interruptor automático, puede resultar difícil volver a cerrarlo. Esto se debe a que la protección detecta la ausencia de tensión y se dispara inmediatamente. Para permitir el cierre del interruptor automático, se puede establecer el parámetro de comportamiento en infratensión a Forzar apagado si el IA está abierto.
El parámetro de comportamiento en infratensión (comportamiento de Vmin) tiene dos ajustes:
- Normal: la protección funciona de la manera normal
- Forzar apagado si el IA está abierto: la protección de infratensión se desactiva cuando se alcanza el umbral y el interruptor automático está en posición abierta

Configuración de la protección para el código ANSI 27-1
Los ajustes para la protección de infratensión en una fase (código ANSI 27-1) son los siguientes:
- Modo Vmin1: activa (ON) o desactiva (OFF) la protección de infratensión en una fase
- Acción Vmin1: establece el resultado de la activación de la protección de infratensión como disparo o alarma.
 - Disparo: el interruptor automático se dispara y se generan tres eventos (inicio, funcionamiento y disparo).
 - Alarma: se generan dos eventos (inicio y funcionamiento).
- Inhib. Vmin1: activa (ON) la opción de que el módulo IO inhiba la protección
- Vmin1: umbral de protección de infratensión en una fase
- tVmin1: temporización de protección de infratensión en una fase.
Pueden establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)

Configuración de la protección para el código ANSI 27-2
Los ajustes para la protección de infratensión en todas las fases (código ANSI 27-2) son los siguientes:
- Modo Vmin2: activa (ON) o desactiva (OFF) la protección de infratensión en todas las fases
- Acción Vmin2: establece el resultado de la activación de la protección de infratensión como disparo o alarma.
 - Disparo: el interruptor automático se dispara y se generan tres eventos (inicio, funcionamiento y disparo).
 - Alarma: se generan dos eventos (inicio y funcionamiento).
- Inhib. Vmin2: activa (ON) la opción de que el módulo IO inhiba la protección
- Vmin2: umbral de protección de infratensión en todas las fases.
- tVmin2: temporización de protección de infratensión en todas las fases.
Pueden establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
Configuración de la protección

Los ajustes para el código ANSI 27-1 y el código ANSI 27-2 son los siguientes:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Configuración</th>
<th>Unidad</th>
<th>Intervalo de ajuste</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI 27</td>
<td>Selección de tensión</td>
<td>–</td>
<td>VLL entre fases/VLN fase a neutro</td>
<td>–</td>
<td>VLL entre fases</td>
<td>–</td>
</tr>
<tr>
<td>ANSI 59</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSI 27-1</td>
<td>Comportamiento Vmin</td>
<td>–</td>
<td>Normal/Forzar apagado si el IA está abierto</td>
<td>–</td>
<td>Normal</td>
<td>–</td>
</tr>
<tr>
<td>ANSI 27-2</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSI 27-1</td>
<td>Modo Vmin1</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Acción Vmin1</td>
<td>–</td>
<td>Alarma/Disparo</td>
<td>–</td>
<td>Alarma</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Inhib. Vmin1</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Vmin1</td>
<td>V</td>
<td>20-1200</td>
<td>1</td>
<td>20</td>
<td>± 2%</td>
</tr>
<tr>
<td></td>
<td>tVmin1</td>
<td>s</td>
<td>0-300</td>
<td>0,01</td>
<td>10,00</td>
<td>± 2 %, ± 20 ms</td>
</tr>
<tr>
<td>ANSI 27-2</td>
<td>Modo Vmin2</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Acción Vmin2</td>
<td>–</td>
<td>Alarma/Disparo</td>
<td>–</td>
<td>Alarma</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Inhib. Vmin2</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Vmin2</td>
<td>V</td>
<td>20-1200</td>
<td>1</td>
<td>20</td>
<td>± 2%</td>
</tr>
<tr>
<td></td>
<td>tVmin2</td>
<td>s</td>
<td>0-300</td>
<td>0,01</td>
<td>10,00</td>
<td>± 2 %, ± 20 ms</td>
</tr>
</tbody>
</table>

Características de la protección

Características de la protección de infratensión:
- Temporización definida
- Tiempo de reinicio instantáneo
- Histéresis: fija 98%
- Tiempo mínimo de corte 50 ms
- Tiempo máximo de corte 140 ms con temporización establecida en 0 s

Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Histórial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo por infratensión de una fase</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Inicio por infratensión en 1 fase</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Operación por infratensión de 1 fase</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Disparo por infratensión en las 3 fases</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Inicio por infratensión en las 3 fases</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Operación por infratensión de las 3 fases</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Protecciones opcionales inhibidas por IO</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de configuración IO/CU: inhibición de proteccion opcional</td>
<td>Configuración</td>
<td>Media</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:
- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de funcionamiento no se genera cuando se inhibe la protección opcional.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
 - El evento de disparo no se genera cuando:
 - La protección opcional se establece en modo de alarma.
 - Se inhibe la protección opcional.
Protección de sobretensión (código ANSI 59)

Presentación
La protección de sobretensión (código ANSI 59) supervisa constantemente el nivel de tensión de las fuentes de alimentación. Si el nivel de tensión de una instalación sale de sus límites aceptables, la información proporcionada por la protección de sobretensión se puede utilizar para iniciar una acción apropiada para restaurar las condiciones de funcionamiento adecuadas en la instalación.

La información proporcionada por la protección de sobretensión se utiliza para generar alarmas y el disparo del interruptor automático cuando sea necesario. Además, la supervisión constante de las tensiones de fase a fase o de fase a neutro permite iniciar medidas apropiadas para salvaguardar el funcionamiento de la instalación durante situaciones anormales o críticas (por ejemplo, deslaztre de cargas, cambio de fuente y arranque del generador de emergencia).

Requisitos previos
La protección de sobretensión está disponible cuando se compra el módulo digital ANSI 27/59 - Protección contra infratensiones/sobretensiones y se instala en una unidad de control (véase página 28) Micrologic X.

La protección de sobretensión requiere una fuente de alimentación externa de 24 V CC.

La protección de sobretensión es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 002.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).

Principio de funcionamiento

La protección de sobretensión supervisa tres tensiones entre fases (V12, V23, V31) o tres tensiones de fase a neutro (V1N, V2N, V3N).

La protección de sobretensión es de dos tipos:
- Código ANSI 59-1: cada fase se supervisa de manera independiente. La protección detecta cuándo una de las tres tensiones supervisadas alcanza el umbral Vmax1.
- Código ANSI 59-2: las tres fases se supervisan a la vez. La protección detecta cuándo las tres tensiones supervisadas alcanzan el umbral Vmax2.

Cada tipo de protección de sobretensión, código ANSI 59-1 y código ANSI 59-2, se puede desactivar.

Los dos tipos de protección de sobretensión funcionan de acuerdo con un retardo de tiempo configurable:
- Código ANSI 59-1: el retardo de tiempo tVmax1 se inicia en cuanto se alcanza el umbral de protección.
- Código ANSI 59-2: el retardo de tiempo tVmax2 se inicia en cuanto se alcanza el umbral de protección.

La protección de sobretensión funciona con una característica de tiempo definida.

NOTA: La selección de tensiones que se deben supervisar (entre fases o fase a neutro) se aplica tanto a las protecciones de infratensión como de sobretensión. No es posible seleccionar ajustes diferentes para cada tipo de protección. La selección se realiza para los cuatro tipos de protección: ANSI 27-1, ANSI 27-2, ANSI 59-1 y ANSI 59-2.
Funciones de protección

Protección de inhibición
Para inhibir la protección de sobretensión (ANSI 59-1 o ANSI 59-2), se deben cumplir las dos condiciones siguientes:
- La inhibición se activa en una protección específica (ANSI 59-1 o ANSI 59-2) estableciendo el parámetro Inhibición en ON.
- La inhibición de protecciones opcionales se activa mediante una entrada del módulo IO. La función Inhibir protección opcional se debe asignar a una entrada del módulo IO.

Si desea obtener más información sobre la inhibición de protecciones opcionales, consulte Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario (véase página 10).

NOTA: Las protecciones de sobretensión (ANSI 59-1 o ANSI 59-2) se pueden inhibir por separado o conjuntamente.

Configuración para todas las protecciones de infratensión/sobretensión
Selecione el tipo de tensiones que se deben supervisar antes de realizar otras configuraciones:
- selección de tensión entre fases VLL (ajuste de fábrica)
- selección de tensión de fase a neutro VLN (este ajuste se debe seleccionar solamente con interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT conectado y configurado)

Puede establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)

Configuración de la protección para el código ANSI 59-1
Los ajustes para la protección de sobretensión en una fase (código ANSI 59-1) son los siguientes:
- Modo Vmax1: activa (ON) o desactiva (OFF) la protección
- Acción Vmax1: establece el resultado de la acción de protección de sobretensión como disparo o alarma.
 - Disparo: el interruptor automático se dispara y se generan tres eventos (inicio, funcionamiento y disparo).
 - Alarma: se generan dos eventos (inicio y funcionamiento).
- Inhib. Vmin1: activa (ON) la opción de que el módulo IO inhiba la protección
- Vmax1: umbral de protección de sobretensión en una fase.
- tVmax1: temporización de protección de sobretensión en una fase.

Pueden establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)

Configuración de la protección para el código ANSI 59-2
Los ajustes para la protección de sobretensión en todas las fases (código ANSI 59-2) son los siguientes:
- Modo Vmax2: activa (ON) o desactiva (OFF) la protección
- Acción Vmax2: establece el resultado de la acción de protección de sobretensión como disparo o alarma.
 - Disparo: el interruptor automático se dispara y se generan tres eventos (inicio, funcionamiento y disparo).
 - Alarma: se generan dos eventos (inicio y funcionamiento).
- Inhib. Vmin2: activa (ON) la opción de que el módulo IO inhiba la protección
- Vmax2: umbral de protección de sobretensión en todas las fases (código ANSI 59-2)
- tVmax2: retardo de tiempo de protección de sobretensión en todas las fases (código ANSI 59-2)

Pueden establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
Funciones de protección

Configuración de la protección

Los ajustes para el código ANSI 59-1 y el código ANSI 59-2 son los siguientes:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Configuración</th>
<th>Unidad</th>
<th>Intervalo de ajuste</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI 27 ANSI 59</td>
<td>Selección de tensión</td>
<td>–</td>
<td>VLL entre fases/VLN fase a neutro</td>
<td>–</td>
<td>VLL entre fases</td>
<td>–</td>
</tr>
<tr>
<td>ANSI 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSI 59-1</td>
<td>Modo Vmax1</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Acción Vmax1</td>
<td>–</td>
<td>Alarma/Disparo</td>
<td>–</td>
<td>Alarma</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Inhib. Vmax1</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Vmax1</td>
<td>V</td>
<td>20-1200</td>
<td>1</td>
<td>20</td>
<td>± 2%</td>
</tr>
<tr>
<td></td>
<td>tVmax1</td>
<td>s</td>
<td>0(1)-300</td>
<td>0.01</td>
<td>10.00</td>
<td>± 2 %, ± 20 ms</td>
</tr>
<tr>
<td>ANSI 59-2</td>
<td>Modo Vmax2</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Acción Vmax2</td>
<td>–</td>
<td>Alarma/Disparo</td>
<td>–</td>
<td>Alarma</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Inhib. Vmax2</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Vmax2</td>
<td>V</td>
<td>20-1200</td>
<td>1</td>
<td>20</td>
<td>± 2%</td>
</tr>
<tr>
<td></td>
<td>tVmax2</td>
<td>s</td>
<td>0(1)-300</td>
<td>0.01</td>
<td>10.00</td>
<td>± 2 %, ± 20 ms</td>
</tr>
</tbody>
</table>

(1) Cuando la temporización se establece por debajo de 50 ms, la protección de sobretensión puede dispararse en caso de fenómenos transitorios, como sobretensiones producidas por distorsiones atmosféricas.

Características de la protección

Características de la protección de sobretensión:
- Temporización definida
- Tiempo de reinicio instantáneo
- Histéresis: fija 98 %
- Tiempo mínimo de corte 50 ms
- Tiempo máximo de corte 140 ms con temporización establecida en 0 s

Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo por sobretensión de una fase</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Inicio por sobretensión en 1 fase</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Operación por sobretensión de 1 fase</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Disparo por sobretensión en las 3 fases</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Inicio por sobretensión en las 3 fases</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Operación por sobretensión de las 3 fases</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Protección opcional inhibida por el módulo IO</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de configuración IO/CU: inhibición de protección opcional</td>
<td>Configuración</td>
<td>Media</td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (*véase página 247*).

Los eventos de protección se generan de la manera siguiente:
- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de funcionamiento no se genera cuando se inhibe la protección opcional.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
 - El evento de disparo no se genera cuando:
 - La protección opcional se establece en modo de alarma.
 - Se inhibe la protección opcional.
Protección contra infrafrecuencia/sobrefrecuencia (código ANSI 81)

Presentación

La frecuencia de las instalaciones eléctricas debe mantenerse dentro de los niveles operativos aceptados para reducir al mínimo el riesgo de que se dañen las cargas del motor y los equipos electrónicos sensibles y para garantizar un funcionamiento y un rendimiento correctos de todas las cargas.

Existen dos protecciones independientes:
- Infrafrecuencia (código ANSI 81U)
- Sobrefrecuencia (código ANSI 81O)

La protección de infrafrecuencia/sobrefrecuencia supervisa constantemente la frecuencia. Si la frecuencia de una instalación supera sus límites aceptables, la información proporcionada por la protección de infrafrecuencia/sobrefrecuencia se puede utilizar para iniciar una acción apropiada para restaurar las condiciones de funcionamiento adecuadas en la instalación. La protección de infrafrecuencia/sobrefrecuencia se usa para generar una alarma o un disparo cuando es necesario.

La protección de infrafrecuencia/sobrefrecuencia es adecuada para el uso del generador. La supervisión continua de la frecuencia permite iniciar acciones apropiadas para salvaguardar el funcionamiento de la instalación durante situaciones anómalas o críticas (por ejemplo, deslazaste de cargas, cambio de fuente y arranque del generador de emergencia).

Requisitos previos

La protección de infrafrecuencia/sobrefrecuencia está disponible cuando se compra ANSI 81: infrafrecuencia/sobrefrecuenciaDigital Module y se instala en una unidad de control Micrologic X (véase página 28).

La protección de infrafrecuencia/sobrefrecuencia requiere una fuente de alimentación externa de 24 V CC.

Es compatible con:
- Unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- Unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 003.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).

Principio de funcionamiento de la protección de infrafrecuencia (código ANSI 81U)

La protección de infrafrecuencia supervisa la frecuencia. Cuando la frecuencia del sistema alcanza el umbral F_{min}, la protección lo detecta y se inicia el retardo de tiempo $t_{F_{min}}$.

La frecuencia se calcula a partir de la tensión de fase a fase V_{12}.

La protección de infrafrecuencia tiene las siguientes características:
- Se inhibe cuando V_{12} es menor que 20 V CA.
- Funciona con una característica temporal definida.
- Se puede desactivar.

La protección se dispara si se cumplen las dos condiciones siguientes:
- La frecuencia es menor que F_{min}.
- El retardo de tiempo $t_{F_{min}}$ ya ha transcurrido.

Principio de funcionamiento de la protección de sobrefrecuencia (código ANSI 81O)

La protección de sobrefrecuencia supervisa la frecuencia. Cuando la frecuencia del sistema alcanza el umbral F_{max}, la protección lo detecta y se inicia el retardo de tiempo $t_{F_{max}}$.

La frecuencia se calcula a partir de la tensión de fase a fase V_{12}.

La protección de sobrefrecuencia tiene las siguientes características:
- Se inhibe cuando V_{12} es menor que 20 V CA.
- Funciona con una característica temporal definida.
- Se puede desactivar.

La protección se dispara si se cumplen las dos condiciones siguientes:
- La frecuencia es mayor que F_{max}.
- El retardo de tiempo $t_{F_{max}}$ ya ha transcurrido.
Funciones de protección

Protección de inhibición
Para inhibir las protecciones de infrafrecuencia (ANSI 81U o sobrefrecuencia (ANSI 81O), se deben cumplir las dos condiciones siguientes:
- La inhibición se activa en una protección específica (ANSI 81U o ANSI 81O) estableciendo el parámetro Inhibición en ON.
- La inhibición de protecciones opcionales se activa mediante una entrada del módulo IO. La función Inhibir protección opcional se debe asignar a una entrada del módulo IO.
Si desea obtener más información sobre la inhibición de protecciones opcionales, consulte Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario (véase página 10).

NOTA: Las protecciones de infrafrecuencia (ANSI 81U) y sobrefrecuencia (ANSI 81O) se pueden inhibir por separado o juntas.

Configuración de la protección de infrafrecuencia

Los ajustes de la protección de infrafrecuencia son:
- Modo Fmin: activa (ON) o desactiva (OFF) la protección de infrafrecuencia
- Acción Fmin: establece el resultado de la activación de la protección de infrafrecuencia como disparo o alarma
 - Disparo: el interruptor automático se dispara y se generan tres eventos (inicio, funcionamiento y disparo).
 - Alarma: se generan dos eventos (inicio y funcionamiento).
- Inhib. Fmin: activa (ON) la opción de que el módulo IO inhiba la protección
- Fmin: umbral de protección de infrafrecuencia
- tFmin: retardo de tiempo de la protección de infrafrecuencia

Pueden establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)

Configuración de la protección de infrafrecuencia

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Unidad</th>
<th>Intervalo de ajuste</th>
<th>Paso</th>
<th>Configuración de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo Fmin</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Acción Fmin</td>
<td>–</td>
<td>Alarma/Disparo</td>
<td>–</td>
<td>Alarma</td>
<td>–</td>
</tr>
<tr>
<td>Inhib. Fmin</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Fmin</td>
<td>Hz</td>
<td>40–65</td>
<td>0,1</td>
<td>48</td>
<td>±0,01 Hz para V12 > 100 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0,05 Hz para V12 < 100 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±2%, ±20 ms</td>
</tr>
<tr>
<td>tFmin</td>
<td>s</td>
<td>0-300</td>
<td>0,05</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(1) Estabilidad en caso de cambio repentino de tensión (cambio de fase y magnitud) de acuerdo con IEC 60255-181

NOTA: Las protecciones de frecuencia se inhiben cuando V12 es menor que 20 V CA.

Características de la protección de infrafrecuencia

- Temporización definida
- Tiempo de reinicio instantáneo
- Histéresis: ±1,002
- Tiempo mínimo de corte: 50 ms
- Tiempo máximo de corte (con retardo de tiempo establecido en 0 s):
 - 140 ms para rampas de frecuencia de 0,5 Hz/s a 5 Hz/s de acuerdo con IEC 60255-181
 - 140 ms en caso de cambio repentino de frecuencia de acuerdo con IEC 60255-181 para ajustes entre 48 y 52 para aplicaciones de 50 Hz y entre 58 y 62 para aplicaciones de 60 Hz
 - 200 ms en caso de cambio repentino de frecuencia de acuerdo con IEC 60255-181 para ajustes entre 48 y 55 para aplicaciones de 50 Hz y entre 55 y 65 para aplicaciones de 60 Hz
Configuración de la protección de sobrefrecuencia

Los ajustes de la protección de sobrefrecuencia son:
- **Modo Fmax**: activa (ON) o desactiva (OFF) la protección de sobrefrecuencia en una fase
- **Acción Fmax**: establece el resultado de la activación de la protección de sobrefrecuencia como disparo o alarma
 - Disparo: el interruptor automático se dispara y se generan tres eventos (inicial, funcionamiento y disparo).
 - Alarma: se generan dos eventos (inicial y funcionamiento).
- **Inhib. Fmax**: activa (ON) la opción de que el módulo IO inhiba la protección
- **Fmax Hz**: umbral de protección de sobrefrecuencia
- **tFmax s**: retardo de tiempo de protección de sobrefrecuencia

Pueden establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)

Configuración de protección de sobrefrecuencia

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Unidad</th>
<th>Intervalo de ajuste</th>
<th>Paso</th>
<th>Configuración de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo Fmax</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Acción Fmax</td>
<td>–</td>
<td>Alarma/Disparo</td>
<td>–</td>
<td>Alarma</td>
<td>–</td>
</tr>
<tr>
<td>Inhib. Fmax</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Fmax Hz</td>
<td>Hz</td>
<td>45-70</td>
<td>0,1</td>
<td>62</td>
<td>±0,01 Hz para V12 > 100 V ±0,05 Hz para 20 V<V12<100 V(1)</td>
</tr>
<tr>
<td>tFmax s</td>
<td>s</td>
<td>0-300</td>
<td>0,05</td>
<td>1</td>
<td>±2%, ±20 ms</td>
</tr>
</tbody>
</table>

(1) Estabilidad en caso de cambio repentino de tensión (cambio de fase y magnitud) de acuerdo con IEC 60255-181
Estabilidad en caso de tensión con armónicos (con cruce por cero con perturbaciones) de acuerdo con IEC 60255-181

NOTA: Las protecciones de frecuencia se inhiben cuando VLL es menor que 20 V CA.

Características de la protección de sobrefrecuencia

- Temporización definida
- Tiempo de reinicio instantáneo
- Histéresis: fija 0,9998
- Tiempo mínimo de corte: 50 ms
- Tiempo máximo de corte (con retardo de tiempo establecido en 0 s):
 - 140 ms para rampas de frecuencia de 0,5 Hz/s a 5 Hz/s de acuerdo con IEC 60255-181
 - 140 ms en caso de cambio repentino de frecuencia de acuerdo con IEC 60255-181 para ajustes entre 48 y 52 para aplicaciones de 50 Hz y entre 58 y 62 para aplicaciones de 60 Hz
 - 200 ms en caso de cambio repentino de frecuencia de acuerdo con IEC 60255-181 para ajustes entre 45 y 55 para aplicaciones de 50 Hz y entre 55 y 65 para aplicaciones de 60 Hz
Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo a infrafrecuencia</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Disparo a sobrefrecuencia</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Arranque a infrafrecuencia</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Arranque a sobrefrecuencia</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Operación a infrafrecuencia</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Operación a sobrefrecuencia</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Protección opcional inhibida por el módulo IO</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de configuración IO/CU: inhibición de</td>
<td>Configuración</td>
<td>Media</td>
</tr>
<tr>
<td>protección opcional</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:

- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de funcionamiento no se genera cuando se inhibe la protección opcional.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).
 - El evento de disparo no se genera cuando:
 - La protección opcional se establece en modo de alarma.
 - Se inhibe la protección opcional.
Protección contra potencia inversa (código ANSI 32P)

Presentación
La protección contra potencia inversa (código ANSI 32P) detecta cuando un generador de energía síncrono conectado a una red externa o que funciona en paralelo con otros generadores funciona como un motor síncrono, y dispara el interruptor automático. También se puede utilizar para supervisar la cantidad de potencia activa intercambiada entre dos partes de una red eléctrica, con alarmas asociadas, descarga o disparo en cuanto el flujo de potencia activa en la dirección seleccionada supera el valor establecido.

Requisitos previos
La protección contra potencia inversa está disponible cuando el Digital Module ANSI 32P: Protección contra potencia inversa se compra e instala en una unidad de control (véase página 28) Micrologic X. La protección contra potencia inversa requiere una fuente de alimentación externa de 24 V CC.

La protección contra potencia inversa es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 002.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).

Principio de funcionamiento
La protección contra potencia inversa calcula la potencia activa con los valores eficaces de las tensiones y las corrientes. Hay un temporizador asociado con la protección. El signo positivo de la potencia activa se define mediante el ajuste de señal de potencia (véase página 173). El mismo signo se utiliza para la medición de la potencia activa.

De forma predeterminada, la unidad de control Micrologic X asigna el signo + a la potencia activa cuando el tránsito de la potencia activa fluye de aguas arriba (parte superior) a aguas abajo (parte inferior) del interruptor automático. El signo – se asigna cuando el tránsito circula de aguas abajo (parte inferior) a aguas arriba (parte superior) del interruptor automático. Aquí se supone que la fuente de alimentación que suministra alimentación a la instalación está conectada a la parte superior del interruptor automático (interruptor automático alimentado por la parte superior).

NOTA: Cuando la fuente de alimentación está conectada a la parte inferior del interruptor automático (interruptor automático alimentado por la parte inferior), el ajuste de signo de potencia asignado de manera predeterminada debe cambiarse (véase página 173).

La protección se dispara cuando se cumplen todas las condiciones siguientes:
- La potencia activa es negativa.
- El valor de la potencia activa supera el ajuste.
- Transcurre el tiempo del temporizador.

Característica de curva de disparo
Para evitar disparos imprevistos, la protección no se dispara con un factor de potencia muy bajo, correspondiente a |Q/P| > 32 (87,2° < φ < 92,8° o 267,2° < φ < 272,8°)

En la siguiente imagen se muestran tres ejemplos con Rp = 100 kW, Rp = 500 kW y Rp = 1000 kW.

![Imágenes de curva de disparo](attachment:curva_disparo.png)

T Disparo
NT Sin disparo
Protección de inhibición

Para inhibir la potencia activa inversa, se deben cumplir las dos condiciones siguientes:

- La inhibición se activa en la protección contra potencia inversa estableciendo el parámetro Inhibición en ON.
- La inhibición de proteccionesoptionales se activa mediante una entrada del módulo IO. La función **Inhibir protección opcional** se debe asignar a una entrada del módulo IO.

Si desea obtener más información sobre la inhibición de proteccionesoptionales, consulte *Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario* (véase página 10).

Ajuste de las protecciones

Los ajustes de protección contra potencia inversa son los siguientes:

- Modo Rp: activa (ON) o desactiva (OFF) la protección
- Acción Rp: establece el resultado de la protección contra potencia inversa como disparo o alarma
- Inhib. Rp: activa (ON) la opción de que el módulo IO inhiba la protección
- Rp: umbral de potencia activa total
- tRp: temporizador

Pueden establecerse de la siguiente manera:

- con el software EcoStruxure Power Commission (protector con contraseña)
- con Aplicación EcoStruxure Power Device (protector con contraseña)

Configuración de la protección

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Intervalo de ajuste</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo Rp</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Acción Rp</td>
<td>–</td>
<td>Alarma/Disparo</td>
<td>–</td>
<td>Alarma</td>
<td>–</td>
</tr>
<tr>
<td>Inhib. Rp</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Rp kW</td>
<td>–</td>
<td>50-5000</td>
<td>10</td>
<td>500</td>
<td>±2 %</td>
</tr>
<tr>
<td>tRp s</td>
<td>–</td>
<td>0-300</td>
<td>0,05</td>
<td>10</td>
<td>±2 %</td>
</tr>
</tbody>
</table>

Los siguientes ajustes de protección contra potencia inversa se recomiendan para la protección de redes alimentadas por turbinas o motores diésel:

<table>
<thead>
<tr>
<th>Función</th>
<th>Ajuste recomendado para Rp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbinas</td>
<td>2-6 % potencia nominal (Pn)</td>
</tr>
<tr>
<td>Motores diésel</td>
<td>8-15 % potencia nominal (Pn)</td>
</tr>
</tbody>
</table>

Características de la protección

Características de la protección contra potencia inversa:

- Temporización definida
- Tiempo de reinicio instantáneo
- Histéresis: fija 98 %
- Tiempo mínimo de corte 50 ms
- Tiempo máximo de corte 140 ms con temporización establecida en 0 s
Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo por potencia inversa</td>
<td>Disparo</td>
<td>Alta</td>
</tr>
<tr>
<td>Inicio por potencia inversa</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Operación por potencia inversa</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>Protección opcional inhibida por el módulo IO</td>
<td>Protección</td>
<td>Baja</td>
</tr>
</tbody>
</table>

El evento de disparo no se genera cuando:
- La protección opcional se establece en modo de alarma.
- Se inhibe la protección opcional.

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).

Los eventos de protección se generan de la manera siguiente:
- El evento de inicio se genera cuando la protección se dispara.
- El evento de funcionamiento se genera cuando transcurre la temporización de la protección.
- El evento de disparo no se genera cuando se inhibe la protección opcional.
- El evento de disparo se genera cuando se activa la bobina de disparo del interruptor automático (MITOP).

El evento de disparo no se genera cuando:
- La protección opcional se establece en modo de alarma.
- Se inhibe la protección opcional.
Funciones de protección

Alarma de defecto a tierra (código ANSI 51N/51G)

Presentación

Las funciones de alarma de defecto a tierra y alarma de diferencial funcionan como protecciones de defecto a tierra y de diferencial, utilizando los mismos sensores. Son independientes de estas protecciones y tienen sus propios ajustes.

La alarma de defecto a tierra se basa en la suma de la corriente en las fases y el neutro o en la señal proporcionada por un transformador de corriente de sensor externo para protección de tierra Source Ground Return (SGR) por medio del módulo MDGF.

La alarma de diferencial es una alarma de corriente residual basada en la corriente medida por un trafo rectangular que engloba las tres fases o las tres fases y el neutro.

Requisitos previos

La función de alarma de defecto a tierra está disponible cuando el módulo digital de alarma de defecto a tierra ANSI 51N/51G se adquiere y se instala en la unidad de control (véase página 28) Micrologic.

La función de alarma de defecto a tierra se alimenta con la corriente que fluye a través de los transformadores de corriente interna del interruptor automático, por lo que no requiere de ninguna fuente de alimentación externa adicional.

La función de alarma de defecto a tierra es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 Y y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 002.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).
- interruptores automáticos tripolares y tetrapolares

NOTA: Cuando se instala en una unidad de control Micrologic 7.0 X, el módulo digital de alarma de defecto a tierra ANSI 51N/51G activa la alarma de diferencial.

Se pueden utilizar sensores externos:
- Transformador externo de corriente de neutro (ENCT): medición de la corriente en el neutro. Para obtener información acerca de la instalación del ENCT, consulte la hoja de instrucciones en el sitio web de Schneider Electric: NHA14388.
- Protección de tierra Source Ground Return (SGR): incluye protección de defecto a tierra y un sensor SGR instalado alrededor de la conexión del neutro del transformador a tierra. Para obtener información acerca de la instalación del sensor SGR, consulte la hoja de instrucciones en el sitio web de Schneider Electric: NHA92405.
- Trafo rectangular externo: medición de la corriente residual. Para obtener información acerca de la instalación del trafo rectangular externo, consulte la hoja de instrucciones en el sitio web de Schneider Electric: NVE35468.

Principio de funcionamiento

La alarma de defecto a tierra funciona de la misma manera que la protección de defecto a tierra, con la excepción de que se genera una alarma en lugar de un disparo (véase página 94).

Ajuste de la función

Los ajustes de la alarma de defecto a tierra para Micrologic 2.0 X, 3.0 X, 5.0 X y 6.0 X son los siguientes:
- Modo de alarma Ig: activa o desactiva la alarma de defecto a tierra
- Alarma Ig: umbral de alarma de defecto a tierra
- Alarma Ig: temporización de alarma de defecto a tierra.

Los ajustes de alarma de diferencial para Micrologic 7.0 X para la norma IEC son los siguientes:
- Modo de alarma IΔn: activa o desactiva la alarma de diferencial
- Alarma IΔn: umbral de alarma de diferencial
- Alarma Δt: retardo de tiempo de alarma de diferencial

Pueden establecerse de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
Ajustes de protección

Ajustes de alarma de defecto a tierra en Micrologic 2.0 X, 5.0 X y 6.0 X para la norma IEC:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo de alarma Ig</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Alarma Ig</td>
<td>A</td>
<td>0,2-1 x In</td>
<td>1</td>
<td>0,2 x In</td>
<td>±10 %</td>
</tr>
<tr>
<td>Alarma tg</td>
<td>s</td>
<td>1-10</td>
<td>0,1</td>
<td>1</td>
<td>±500 ms</td>
</tr>
</tbody>
</table>

Ajustes de alarma de defecto a tierra en Micrologic 3.0 X, 5.0 X y 6.0 X UL standard:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo de alarma Ig</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Alarma Ig</td>
<td>A</td>
<td>120-1200</td>
<td>1</td>
<td>120</td>
<td>±10 %</td>
</tr>
<tr>
<td>Alarma tg</td>
<td>s</td>
<td>1-10</td>
<td>0,1</td>
<td>1</td>
<td>±500 ms</td>
</tr>
</tbody>
</table>

Ajustes de alarma diferencial en Micrologic 7.0 X para la norma IEC

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo de alarma IΔn</td>
<td>–</td>
<td>ON/OFF</td>
<td>–</td>
<td>OFF</td>
<td>–</td>
</tr>
<tr>
<td>Alarma IΔn</td>
<td>A</td>
<td>0,5-22</td>
<td>0,1</td>
<td>0,5</td>
<td>Cumple con IEC 60947-2 Anexo B</td>
</tr>
<tr>
<td>Alarma Δt</td>
<td>s</td>
<td>1-10</td>
<td>0,1</td>
<td>1</td>
<td>±2 %</td>
</tr>
</tbody>
</table>

NOTA: Para diferenciar entre la alarma de diferencial y la protección de diferencial, se recomienda establecer el umbral de alarma de diferencial por debajo del 75 % del umbral de fallo por diferencial.

Eventos predefinidos

La función genera el siguiente evento predefinido para las unidades de control Micrologic 2.0 X, 3.0 X, 5.0 X y 6.0 X:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarma Ig</td>
<td>Protección</td>
<td>Media</td>
</tr>
</tbody>
</table>

El evento de alarma Ig no se genera cuando el modo de alarma Ig es OFF.

La función genera el siguiente evento predefinido para las unidades de control Micrologic 7.0 X:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarma IΔn</td>
<td>Protección</td>
<td>Media</td>
</tr>
</tbody>
</table>

El evento de alarma IΔn no se genera cuando el modo de alarma IΔn es OFF.

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (véase página 247).
Ajuste de mantenimiento para reducción de energía (ERMS)

Presentación

Se utiliza la función ERMS para reducir los ajustes de protección para que el interruptor automático se dispare lo más pronto posible cuando se produzca una resistencia al arco. La minimización del tiempo entre el fallo y el disparo ayuda a reducir el riesgo de lesiones cuando hay personal eléctrico cualificado cerca de equipos bajo tensión.

La activación de la función ERMS modifica los ajustes de protección de las siguientes funciones de protección:
- Protección contra sobrecorriente de largo retardo
- Protección contra sobrecorriente de corto retardo
- Protección contra sobrecorriente instantánea
- Protección de defecto a tierra

Requisitos previos

La función ERMS está disponible cuando el Digital Module de Ajuste de mantenimiento para reducción de energía se adquiere y se instala en una unidad de control (véase página 28) Micrologic X.

Para utilizar la función ERMS con un selector externo:
- El módulo de conmutación ESM ERMS debe estar instalado y conectado a la unidad de control Micrologic X.
- La unidad de control Micrologic X debe estar conectada a una fuente de alimentación de 24 V CC.

La función ERMS es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 002.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).

Principio de funcionamiento

El gráfico siguiente muestra ejemplos de las curvas de disparo de las funciones de protección estándar con y sin ERMS activado:

Mientras la función ERMS está activada:
- Hay un LED de ERMS (A) encendido en la parte frontal de la unidad de control Micrologic X.
- El desplazamiento de Vista rápida se interrumpe y se muestra el mensaje ERMS activado con retroiluminación azul.
- Todas las pantallas, a excepción de los mensajes emergentes (véase página 74) de alarma y disparo, se muestran con retroiluminación azul.
Ejemplos de casos de uso

Las condiciones operativas de las instalaciones eléctricas las especifican las normativas nacionales (por ejemplo, NPFA70E para los Estados Unidos, EN 50110 para Europa). Estas normativas exigen una evaluación del riesgo eléctrico para poder realizar cualquier operación. La evaluación debe especificar cuándo implementar y activar la función ERMS.

Siempre que sea posible, la instalación eléctrica debe apagarse. Cuando se trabaje cerca de partes electrificadas sin todas las puertas o todos los paneles del panel de conmutación cerrados y asegurados, puede activarse la función ERMS para reducir las consecuencias de una resistencia al arco. Debe realizarse una evaluación de riesgo específica para cada situación, aunque se use la función ERMS.

En la siguiente tabla se dan ejemplos de casos de uso dentro de un panel de conmutación o cerca de él, donde se recomienda activar la función ERMS. Las recomendaciones se basan en los siguientes supuestos:

- La función ERMS está incorporada en el dispositivo aguas arriba, en el lado de suministro del panel de conmutación en cuestión
- El panel de conmutación solo tiene un suministro.

<table>
<thead>
<tr>
<th>Funcionamiento</th>
<th>Localización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adición de dispositivo en la ranura sobrante del panel de conmutación</td>
<td>Dentro del panel de conmutación</td>
</tr>
<tr>
<td>Inspección térmica</td>
<td>Dentro del panel de conmutación</td>
</tr>
<tr>
<td>Lectura de medición dentro del panel de conmutación, que requiere abrir puertas o paneles</td>
<td>Dentro del panel de conmutación</td>
</tr>
<tr>
<td>Medición con equipo portátil (por ejemplo, presencia de tensión, rotación de fase, calidad de la alimentación)</td>
<td>Dentro del panel de conmutación</td>
</tr>
<tr>
<td>Primer encendido o nuevo encendido del equipo</td>
<td>En la sala eléctrica, a menos de 0,3 m (12 in) del panel de conmutación</td>
</tr>
<tr>
<td>Desbloqueo de dispositivo con candado o llave</td>
<td>En la sala eléctrica, a menos de 0,3 m (12 in) del panel de conmutación</td>
</tr>
<tr>
<td>Cierre de dispositivo</td>
<td>En la sala eléctrica, a menos de 0,3 m (12 in) del panel de conmutación</td>
</tr>
</tbody>
</table>

Activación de la función ERMS

AVISO

RIESGO DE PÉRDIDA DE POTENCIA
Asegúrese de que los ajustes de protección de ERMS estén bien configurados antes de la activación.

Si no se siguen estas instrucciones, se puede producir una pérdida de servicio por una interrupción de la alimentación.

La función ERMS puede activarse tal como se indica a continuación:

- Con la Aplicación EcoStruxure Power Device (protegida por contraseña).
 Hay un bloqueo digital (véase página 126) entre un smartphone en el que se ejecuta la Aplicación EcoStruxure Power Device y la unidad de control Micrologic X.
- Utilizando un selector externo conectado al módulo de conmutación ESM ERMS opcional.
 El módulo ESM se instala en el interruptor automático y se conecta a un selector externo, que se puede bloquear con un candado. La función ERMS se activa girando el selector externo.
Desactivación de la función ERMS

<table>
<thead>
<tr>
<th>PELIGRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO</td>
</tr>
</tbody>
</table>

Antes de desactivar ERMS:
- Inspeccione detenidamente su zona de trabajo y retire cualquier herramienta u objeto del interior de la instalación.
- Asegúrese de que todo el personal esté alejado del equipo y de que todos los dispositivos, puertas y tapas estén colocados en su lugar.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

La función ERMS debe desactivarla la interfaz que la ha activado:
- Si se activa en un smartphone, debe desactivarla el mismo smartphone.
- Si la ha activado el selector ERMS externo conectado al módulo ESM, debe desactivarla el selector ERMS.
- Si se ha activado tanto mediante un smartphone como mediante un selector ERMS, se debe desactivar mediante el smartphone y el selector ERMS.

Módulo de conmutación ESM ERMS

El módulo de conmutación ESM ERMS es un módulo de hardware opcional. Se utiliza con un selector externo bloqueable para activar o desactivar la función ERMS. Está equipado con:
- Una entrada dedicada al selector ERMS, con las siguientes características:
 - Cuando la entrada está energizada, la función ERMS se desactiva.
 - Cuando la entrada no está energizada, la función ERMS se activa.
- Una salida para activar una luz piloto externa cuando la función ERMS está activada.

Función de bloqueo digital para ERMS

La función de bloqueo digital establece un bloqueo digital entre un smartphone en el que se ejecuta Aplicación EcoStruxure Power Device y la unidad de control Micrologic X cuando el smartphone activa la función ERMS. La función de bloqueo digital garantiza que, cuando un smartphone activa la función ERMS, la debe desactivar el mismo smartphone, y no puede desactivarla otro smartphone.
Forzar desbloqueo de función ERMS

Si el smartphone que se usó para activar la función ERMS no está disponible o no funciona, es posible enviar un comando de forzar desbloqueo para desactivar la función ERMS activada por el smartphone.

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

Antes de forzar el desbloqueo de ERMS:
- Inspeccione detenidamente su zona de trabajo y retire cualquier herramienta u objeto del interior de la instalación.
- Asegúrese de que todo el personal esté alejado del equipo y de que todos los dispositivos, puertas y tapas estén colocados en su lugar.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Para forzar el bloqueo digital, se necesitan el smartphone con Aplicación EcoStruxure Power Device y acceso a la unidad de control Micrologic X.

Si la función ERMS la activa un selector externo, la función ERMS permanece activada después de enviar el comando de forzar desbloqueo. Al desbloquear el bloqueo digital, solo se desactiva la función ERMS activada por el smartphone.

Para forzar el desbloqueo del bloqueo digital existente entre el smartphone y la unidad de control Micrologic X, siga este procedimiento.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>En un smartphone con Aplicación EcoStruxure Power Device, acceda al menú Protección para ejecutar el comando de forzar desbloqueo.</td>
</tr>
<tr>
<td>2</td>
<td>Seleccione ERMS: forzar desbloqueo.</td>
</tr>
<tr>
<td>3</td>
<td>Seleccione Sí para confirmar que desea forzar el desbloqueo de la activación de ERMS.</td>
</tr>
<tr>
<td>4</td>
<td>Introduzca la contraseña de administrador del dispositivo y pulse OK para ejecutar el comando.</td>
</tr>
<tr>
<td>5</td>
<td>Introduzca el motivo de forzar el desbloqueo y pulse Enviar.</td>
</tr>
<tr>
<td>6</td>
<td>Lea el mensaje informativo del smartphone en el que se explica el potencial riesgo de desactivar la función ERMS forzando el desbloqueo del bloqueo digital.</td>
</tr>
<tr>
<td>7</td>
<td>Para aceptar, pulse Comprendo.</td>
</tr>
</tbody>
</table>
| 8 | Deslice el dedo en forma de L en la pantalla que se muestra en el smartphone para enviar el comando de forzar desbloqueo.
Resultado: la unidad de control Micrologic X comprueba la contraseña de administrador y almacena la información facilitada. Se muestra un mensaje en el que le se solicita que confirme la acción en la pantalla de la unidad de control Micrologic X. |
| 9 | En un plazo de dos minutos, en la unidad de control Micrologic X, pulse Y para confirmar el comando de forzar desbloqueo mostrado en la pantalla.
NOTA: Si no pulsa Y en un plazo de dos minutos o pulsa N, se cancelará el comando de forzar desbloqueo, se cancelará el mensaje de la pantalla y la información facilitada no se almacenará. |
| 10 | La unidad de control inicia una cuenta atrás de 15 segundos, que se muestra en la pantalla de la unidad de control. Al final de la cuenta atrás, la unidad de control desbloquea el bloqueo digital. Si el selector externo no activa la función ERMS, ERMS se desactiva. Cuando el comando de forzar se ejecuta correctamente, se genera el evento Solicitud para desbloquear ERMS con el smartphone. El evento se registra en el historial de protección con la información asociada facilitada. |
| 11 | Se muestra un mensaje en el smartphone que informa al usuario de que la función ERMS está desactivada.
NOTA: Si la función ERMS también se activa con el selector, el bloqueo digital se desbloquea, pero la función permanece activada. |
Configuración de los ajustes de ERMS

Los ajustes de ERMS pueden configurarse tal como se indica a continuación:

- Con el software EcoStruxure Power Commission a través de una conexión USB (protegida por contraseña)
- Con la Aplicación EcoStruxure Power Device (protegida por contraseña)

Están disponibles los siguientes ajustes de ERMS:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Intervalo de ajuste</th>
<th>Ajuste de fábrica</th>
<th>Tipo de Micrologic X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir</td>
<td>A</td>
<td>0,4-1 x In</td>
<td>1 x In</td>
<td>Micrologic 2.0 X, 3.0 X, 5.0 X, 6.0 X, 7.0 X</td>
</tr>
<tr>
<td>tr</td>
<td>s</td>
<td>0,5-24</td>
<td>0,5 s</td>
<td></td>
</tr>
<tr>
<td>Isd</td>
<td>A</td>
<td>1,5-10 x Ir</td>
<td>1,5 x Ir</td>
<td>Micrologic 5.0 X, 6.0 X, 7.0 X</td>
</tr>
<tr>
<td>tsd</td>
<td>s</td>
<td>0-0,4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Isd</td>
<td>A</td>
<td>1,5-10 x Ir</td>
<td>1,5 x Ir</td>
<td>Micrologic 2.0 X</td>
</tr>
<tr>
<td>li</td>
<td>A</td>
<td>1,5-12 x In</td>
<td>1,5 x In</td>
<td>Micrologic 3.0 X</td>
</tr>
<tr>
<td>Modo de disparo li</td>
<td>–</td>
<td>Estándar/rápido</td>
<td>Rápido</td>
<td></td>
</tr>
<tr>
<td>li mirroring</td>
<td>–</td>
<td>ON/OFF</td>
<td>ON</td>
<td>Micrologic 5.0 X, 6.0 X, 7.0 X</td>
</tr>
<tr>
<td>Modo de disparo li</td>
<td>–</td>
<td>Estándar/rápido</td>
<td>Rápido</td>
<td></td>
</tr>
<tr>
<td>li</td>
<td>A</td>
<td>2,0-15 x In</td>
<td>2,0 x In</td>
<td>Micrologic 6.0 X norma IEC</td>
</tr>
<tr>
<td>Ig mirroring</td>
<td>–</td>
<td>ON/OFF</td>
<td>ON</td>
<td>Micrologic 6.0 X norma UL</td>
</tr>
<tr>
<td>Ig(1)</td>
<td>A</td>
<td>0,2-1 x In</td>
<td>0,2 x In</td>
<td></td>
</tr>
<tr>
<td>Ig</td>
<td>s</td>
<td>0-0,4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ig para In ≤ 1200 A(1)</td>
<td>A</td>
<td>0,2-1 x In</td>
<td>0,2 x In</td>
<td></td>
</tr>
<tr>
<td>Ig para In > 1200 A</td>
<td>A</td>
<td>500-1200</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>tg</td>
<td>s</td>
<td>0-0,4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(1) Para In ≤ 400 A, el intervalo de ajuste Ig es 0,3-1 x In (ajuste de fábrica: 0,3 x In)

Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERMS activado</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>ERMS activado durante más de 24 horas</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>Alarma de diagnóstico automático ESM (módulo de</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>comutación ERMS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicación perdida con ESM (módulo de</td>
<td>Protección</td>
<td>Media</td>
</tr>
<tr>
<td>comutación ERMS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solicitud para desbloquear ERMS con el</td>
<td>Protección</td>
<td>Baja</td>
</tr>
<tr>
<td>smartphone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los eventos predefinidos no pueden ser modificados por el usuario. Para obtener información general acerca de los eventos, consulte Gestión de eventos (**véase página 247**).

ERMS activado durante más de 24 horas

Una operación de mantenimiento que requiere que los ajustes de protección estén en modo ERMS suele durar horas. Si la función ERMS está activada durante más de 24 horas sin desactivarse, se genera un evento para recordar al usuario que debe desactivarla.
Sección 3.4
Ajuste de directrices

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directrices de ajuste de la protección</td>
<td>130</td>
</tr>
<tr>
<td>Ajuste de la protección contra sobrecorriente de largo retardo (L o código ANSI 49RMS)</td>
<td>132</td>
</tr>
<tr>
<td>Ajuste de la protección contra sobrecorriente de corto retardo (S o código ANSI 51)</td>
<td>135</td>
</tr>
<tr>
<td>Ajuste de la protección contra sobrecorriente instantánea (I o código ANSI 50)</td>
<td>137</td>
</tr>
<tr>
<td>Selectividad</td>
<td>138</td>
</tr>
</tbody>
</table>
Directrices de ajuste de la protección

Presentación

El ajuste de la protección contra sobrecorriente se basa en cálculos de cortocircuitos y fallos eléctricos de la instalación. Las directrices de ajuste no pueden sustituir estos cálculos.

Los interruptores automáticos Masterpact MTZ con unidades de control Micrologic X ofrecen flexibilidad de ajuste para establecer la protección contra sobrecorriente adecuada y mantener a la vez la selectividad y la estabilidad sobre fenómenos transitorios (por ejemplo, la corriente de irrupción de transformadores o motores) cuando sea necesario.

Para cada circuito, el diseñador de la instalación debe proporcionar lo siguiente:

- **Iz**: capacidad de corriente continua del circuito según IEC 60364-5-52 o las normas de cableado nacionales. La capacidad de carga de corriente se denomina corriente nominal en el US National Electrical Code (NFPA 70).
- **Ifault min**: corriente eléctrica de defecto mínima en el extremo del circuito en función del sistema de puesta a tierra
- **Tmax short-circuit**: tiempo máximo para la corriente de cortocircuito máxima

Se proporcionan directrices para los ajustes siguientes:

- **Ir**: umbral de protección contra sobrecorriente de largo retardo
- **tr**: temporización de protección contra sobrecorriente de largo retardo
- **Isd**: umbral de protección contra sobrecorriente de corto retardo
- **Ii**: umbral de protección contra sobrecorriente instantánea

Directrices de ajuste de la protección por aplicación

La tabla siguiente proporciona las directrices para el ajuste de protección contra sobrecorriente por aplicación:

<table>
<thead>
<tr>
<th>Aplicación de</th>
<th>Micrologic 2.0 X</th>
<th>Micrologic 3.0 X</th>
<th>Micrologic 5.0 X, 6.0 X, 7.0 X(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lado secundario del</td>
<td>Ir = Iz</td>
<td>Ir = Iz</td>
<td>Ir = Iz</td>
</tr>
<tr>
<td>transformador MV/LV</td>
<td>tr ≤ 24 s</td>
<td>tr ≤ 24 s</td>
<td>tr ≤ 24 s</td>
</tr>
<tr>
<td>(acometida principal del</td>
<td>Isd ≤ mín. Ifault</td>
<td>li ≤ mín. Ifault</td>
<td>Isd ≤ mín. Ifault</td>
</tr>
<tr>
<td>panel de conmutación) con</td>
<td>Selectividad</td>
<td>Selectividad</td>
<td>tsd = 0</td>
</tr>
<tr>
<td>otro interruptor automático</td>
<td>posible sólo</td>
<td>posible sólo</td>
<td>Modo de disparo Ii:</td>
</tr>
<tr>
<td>Masterpact, Compact NS o</td>
<td>con alimentadores</td>
<td>con alimentadores</td>
<td>estándar</td>
</tr>
<tr>
<td>aguas abajo como alimentador</td>
<td>Compact NSX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lado secundario del</td>
<td>Ir = Iz</td>
<td>Ir = Iz</td>
<td>Ir = Iz</td>
</tr>
<tr>
<td>transformador MV/LV</td>
<td>tr ≤ 24 s</td>
<td>tr ≤ 24 s</td>
<td>tr ≤ 24 s</td>
</tr>
<tr>
<td>(acometida principal del</td>
<td>Isd ≤ mín. Ifault</td>
<td>li ≤ mín. Ifault</td>
<td>Isd ≤ mín. Ifault</td>
</tr>
<tr>
<td>panel de conmutación) sin</td>
<td>Selectividad</td>
<td>Selectividad</td>
<td>tsd = 0</td>
</tr>
<tr>
<td>otro interruptor automático</td>
<td>posible sólo</td>
<td>posible sólo</td>
<td>Modo de disparo Ii:</td>
</tr>
<tr>
<td>Masterpact, Compact NS o</td>
<td>con alimentadores</td>
<td>con alimentadores</td>
<td>estándar</td>
</tr>
<tr>
<td>aguas abajo como alimentador</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) La protección de defecto a tierra y la protección de diferencial dependen del sistema de puesta a tierra y de las normativas locales. Como norma, la sensibilidad de protección de defecto a tierra y de protección de diferencial debe ser tan baja como sea posible sin sufrir perturbaciones de corriente de fuga permanente o transitoria. La temporización de defecto a tierra y de diferencial permite la selectividad con dispositivos aguas abajo.

(2) Cuando tsd > 0, en los EE. UU. se requiere un sistema de reducción de tiempo de eliminación de fallos, como ZSI o ERMS, de acuerdo con el Código de electricidad nacional NFPA 70 (240.87) (edición de 2011). Consulte las directrices para conocer la configuración de ERMS.
<table>
<thead>
<tr>
<th>Aplicación de</th>
<th>Micrologic 2.0 X</th>
<th>Micrologic 3.0 X</th>
<th>Micrologic 5.0 X, 6.0 X, 7.0 X(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salida del generador con otro interruptor automático Masterpact, Compact NS o PowerPact P- and R-frame aguas abajo como alimentador</td>
<td>(I_r = I_z) (tr \leq 1) s (Isd \leq \text{mín. Ifault}) Selectividad posible sólo con alimentadores Compact NSXm y Compact NSX.</td>
<td>(I_r = I_z) (tr \leq 1) s (li \leq \text{mín. Ifault}) Modo de disparo li: estándar Selectividad posible sólo con alimentadores PowerPact B-, H-, J-, and L-frame.</td>
<td>(I_r = I_z) (tr \leq 1) s (Isd \leq \text{mín. Ifault}) Modo de disparo li: OFF</td>
</tr>
<tr>
<td>Salida del generador sin otro interruptor automático Masterpact, Compact NS o PowerPact P- and R-frame aguas abajo como alimentador</td>
<td>(I_r = I_z) (tr \leq 1) s (Isd \leq \text{mín. Ifault})</td>
<td>(I_r = I_z) (tr \leq 1) s (li \leq \text{mín. Ifault}) Modo de disparo li: estándar</td>
<td>(I_r = I_z) (tr \leq 1) s (Isd \leq \text{mín. Ifault}) tsd = 0 Modo li: ON Modo de disparo li: estándar li = Isd</td>
</tr>
<tr>
<td>Alimentador con otro interruptor automático Masterpact, Compact NS o PowerPact P- and R-frame aguas abajo</td>
<td>(I_r = I_z) (tr \leq 16) s (Isd \leq \text{mín. Ifault}) Selectividad posible sólo con alimentadores Compact NSXm y Compact NSX.</td>
<td>(I_r = I_z) (tr \leq 16) s (li \leq \text{mín. Ifault}) Modo de disparo li: estándar Selectividad posible sólo con alimentadores PowerPact B-, H-, J-, and L-frame.</td>
<td>(I_r = I_z) (tr \leq 16) s (Isd \leq \text{mín. Ifault}) tsd > tsd de interruptor automático aguas abajo(2) Modo li: OFF</td>
</tr>
<tr>
<td>Alimentador sin otro interruptor automático Masterpact, Compact NS o PowerPact P- and R-frame aguas abajo como alimentador</td>
<td>(I_r = I_z) (tr \leq 16) s (Isd \leq \text{mín. Ifault})</td>
<td>(I_r = I_z) (tr \leq 16) s (li \leq \text{mín. Ifault}) Modo de disparo li: estándar</td>
<td>(I_r = I_z) (tr \leq 16) s (Isd \leq \text{mín. Ifault}) tsd = 0 Modo li: ON Modo de disparo li: estándar li = Isd</td>
</tr>
<tr>
<td>Sistema electrónico de potencia (por ejemplo, sistemas de alimentación ininterrumpida, variadores, convertidores fotovoltaicos) sin ningún otro interruptor automático aguas abajo</td>
<td>(I_r = I_z) (tr \leq 8) s (Isd = 1,5-2 \times In \leq \text{Ifault min})</td>
<td>(I_r = I_z) (tr \leq 8) s (li = 2-3 \times In) Ifault min Modo de disparo li: rápido</td>
<td>(I_r = I_z) (tr \leq 16) s (Isd = 1,5-2 \times In) Ifault min tsd = 0 Modo li: ON Modo de disparo li: rápido li = 2-3 × ln</td>
</tr>
<tr>
<td>Configuración de ERMS sólo con ERMS Digital Module</td>
<td>(I_r, \text{ERMS} = I_z) (tr, \text{ERMS} \leq 1) s (Isd, \text{ERMS} \leq 1,5 \times I_r)</td>
<td>(I_r, \text{ERMS} = I_z) (tr, \text{ERMS} \leq 1) s (li, \text{ERMS} = 1,5 \times I_n) Modo de disparo li,ERMS: rápido</td>
<td>(I_r, \text{ERMS} = I_z) (tr, \text{ERMS} \leq 1) s (Isd, \text{ERMS} = 1,5 \times I_r) tsd,ERMS = 0 (li, \text{ERMS} = 2 \times I_n) Modo de disparo li,ERMS: rápido</td>
</tr>
</tbody>
</table>

(1) La protección de defecto a tierra y la protección de diferencial dependen del sistema de puesta a tierra y de las normativas locales. Como norma, la sensibilidad de protección de defecto a tierra y de protección de diferencial debe ser tan baja como sea posible sin sufrir perturbaciones de corriente de fuga permanente o transitoria. La temporización de defecto a tierra y de diferencial permite la selectividad con dispositivos aguas abajo.
(2) Cuando tsd > 0, en los EE. UU. se requiere un sistema de reducción de tiempo de eliminación de fallos, como ZSI o ERMS, de acuerdo con el Código de electricidad nacional NFPA 70 (240.87) (edición de 2011). Consulte las directrices para conocer la configuración de ERMS.
Ajuste de la protección contra sobrecorriente de largo retardo (L o código ANSI 49RMS)

Directrices de ajuste para \(I_r \)

El ajuste \(I_r \) depende del flujo de corriente máximo esperado a través del interruptor y de la corriente máxima que el equipo protegido puede soportar (por ejemplo, cables, barras, generadores y transformadores).

Las normas de instalación, como la norma CEI 60364 capítulo 4.43 o normas nacionales similares, exigen que los conductores se protejan contra sobrecargas de la siguiente manera:

\[
I_b = \text{Corriente de carga máxima} \\
I_r = \text{Ajuste de la protección de largo retardo} \\
I_z = \text{Capacidad de carga de corriente continua del circuito} \\
I_2 = \text{Corriente de funcionamiento convencional del interruptor automático} = 1.2 \times I_r \text{ para la unidad de control electrónica}
\]

Memoria térmica: tal y como se describe en la sección sobre protección contra sobrecorriente de largo retardo (véase página 87), esta función de protección es una protección contra sobrecorriente con memoria térmica que depende del tiempo. Funciona como una imagen térmica, usando el modelo de calefacción y refrigeración de un conductor. Se puede considerar un modelo térmico de primer orden con una constante de tiempo de calefacción.

En la siguiente tabla se muestra la relación entre el ajuste \(I_r \) y la constante de tiempo térmica del modelo térmico de primer orden:

<table>
<thead>
<tr>
<th>Ajustes (I_r)</th>
<th>Unidad</th>
<th>0,5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante de tiempo equivalente para calefacción y refrigeración cuando la unidad de control está encendida</td>
<td>segundos</td>
<td>14</td>
<td>28</td>
<td>56</td>
<td>112</td>
<td>224</td>
<td>335</td>
<td>447</td>
<td>559</td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>minutos</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3,5</td>
<td>5,6</td>
<td>7,5</td>
<td>9,3</td>
<td>11,2</td>
</tr>
<tr>
<td>Constante de tiempo para refrigeración cuando la unidad de control no está encendida</td>
<td>minutos</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Directrices de ajuste para \(I_r \)

El ajuste \(I_r \) depende de la duración máxima a través a la corriente máxima y la corriente máxima que el equipo protegido puede soportar (por ejemplo, cables, barras, generadores y transformadores).

Memoria térmica: tal y como se describe en la sección sobre protección contra sobrecorriente de largo retardo (véase página 87), esta función de protección es una protección contra sobrecorriente con memoria térmica que depende del tiempo. Funciona como una imagen térmica, usando el modelo de calefacción y refrigeración de un conductor. Se puede considerar un modelo térmico de primer orden con una constante de tiempo de calefacción.
Resumen de las directrices del ajuste \(tr \) por aplicación

En la tabla siguiente se muestran las directrices del ajuste \(tr \) por aplicación:

<table>
<thead>
<tr>
<th>Aplicación de</th>
<th>Principio</th>
<th>Valor habitual</th>
</tr>
</thead>
</table>
| Lado secundario del transformador MV/LV (acometida principal del panel de conmutación) Interruptor automático de transferencia entre dos paneles de conmutación | Tiempo de disparo conforme a la resistencia térmica del circuito en las barras, canalización de barras, cable > 240 mm\(^2\) (500 MCM):
- Constante de tiempo > 11 min
- \(tr = 24 \) s
Si se usan cables más pequeños en paralelo, es preciso usar un ajuste más bajo. | \(tr \leq 24 \) s |
| Generadores | \(tr \leq 1 \) s para conseguir un tiempo de disparo < 30 s para 1,5 \(x \) \(tr \) (CEI 60034-1 cláusula 9.3.2). | \(tr \leq 1 \) s |
| Alimentador (protección de la canalización de las barras o del cable) | Tiempo de disparo conforme a la resistencia térmica del circuito en las barras, canalización de barras, cable > 240 mm\(^2\) (500 MCM):
- Constante de tiempo > 11 min
- \(tr = 24 \) s
Para conseguir la selectividad con la acometida, es útil reducir \(tr \). | \(tr \leq 24 \) s para la canalización de las barras o del cable \(\geq 240 \) mm\(^2\) (500 MCM)
\(tr \leq 16 \) s para cables con secciones transversales inferiores |
| Lado primario del transformador LV/LV | Según la carga de la canalización de las barras o del cable (la carga del transformador es normalmente mayor). Para conseguir la selectividad con la acometida, es útil reducir \(tr \). | \(tr \leq 24 \) s para la canalización de las barras o del cable \(\geq 240 \) mm\(^2\) (500 MCM)
\(tr \leq 16 \) s para cables con secciones transversales inferiores |
| Equipos electrónicos de alimentación (por ejemplo, sistemas de alimentación ininterrumpida, variadores de velocidad, convertidores fotovoltaicos) | Según los equipos electrónicos de alimentación de la canalización de las barras o del cable. | \(tr \leq 24 \) s para la canalización de las barras o del cable \(\geq 240 \) mm\(^2\) (500 MCM)
\(tr \leq 16 \) s para cables con secciones transversales inferiores |
| Motores | Si el motor está protegido contra sobrecargas por un relé independiente, el ajuste de largo retardo se realiza conforme a la resistencia térmica del circuito.
Si la unidad de control Micrologic también se usa para la sobrecarga térmica del motor, es necesario tener en cuenta la clase de motor. | \(tr = 12 \) s para un alimentador
\(tr \geq 8 \) s para un motor de clase 10
\(tr \geq 12 \) s para un motor de clase 20
\(tr \geq 16 \) s para un motor de clase 30 |

Ejemplo de ajuste \(tr \) según la aplicación:

![Diagrama de ejemplo de ajuste](image)

- **A**: Límite térmico del generador
- **B**: Límite térmico del cable
- **C**: Ajuste de protección del generador \(l_{LT} \) (ranura mínima)
- **D**: Cable de protección del generador \(l_{LT} \) (ranura máxima)
Directrices de ajuste de la protección del neutro

A continuación se detallan algunas indicaciones para ajustar la protección del neutro. Para más información, consulte la sección protección del neutro *(véase página 100)*.

En la siguiente tabla se indican los ajustes de protección de largo retardo conforme a la sección transversal del cable neutro:

<table>
<thead>
<tr>
<th>Sección transversal del conductor neutro</th>
<th>Armónicos esperados</th>
<th>Ajuste de protección del neutro</th>
<th>Protección de largo retardo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor que la sección transversal de los conductores de fase</td>
<td>No</td>
<td>N/2</td>
<td>Ir se ajusta conforme al valor Iz del cable, Ir aplicado al neutro se divide entre 2.</td>
</tr>
<tr>
<td>Igual a la sección transversal de los conductores de fase</td>
<td>No</td>
<td>OFF</td>
<td>No se esperan armónicos: no es necesario proteger el neutro</td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>N</td>
<td>Se esperan armónicos: es necesario proteger el neutro con la protección de largo retardo, configurada igual que para la protección de las fases</td>
</tr>
<tr>
<td>Mayor que la sección transversal de los conductores de fase</td>
<td>No</td>
<td>OFF</td>
<td>No se esperan armónicos: no es necesario proteger el neutro</td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>Sobredim. N</td>
<td>Se esperan armónicos: es necesario proteger el neutro con la protección de largo retardo, configurada igual que la protección de las fases multiplicada por 1.6 (Neutro sobredimensionado).</td>
</tr>
</tbody>
</table>

NOTA: En interruptores automáticos tripolares, es necesario declarar la opción ENCT.

NOTA: En sistemas de TI, es necesario proteger un conductor neutro distribuido. Ajuste la protección del neutro a N/2, N o Sobredim. N.
Ajuste de la protección contra sobrecorriente de corto retardo (S o código ANSI 51)

Ajuste de directrices

Los ajustes Isd y tsd ayudan a asegurar que no se supere la corriente de corto retardo que el equipo protegido puede soportar.

Cuando la protección contra sobrecorriente de corto retardo desconecta automáticamente el suministro eléctrico de acuerdo con IEC 60364-4-41, el ajuste Isd debe tener en cuenta la impedancia de bucle de fallo del circuito protegido. Si desea más información, consulte IEC 60364-4-41 2017 cláusula 411.4.4 o las reglas nacionales de instalación de baja tensión.

Esta función también se puede obtener con protección de diferencial o defecto a tierra.

Directrices de ajuste para Isd

<table>
<thead>
<tr>
<th>Aplicación de</th>
<th>Principio</th>
<th>Valor habitual de Isd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lado secundario del transformador MV/LV (acometida principal del panel de conmutación o interruptor automático de transferencia entre dos paneles de conmutación)</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra al final del circuito protegido. Selectividad con interruptores automáticos aguas abajo</td>
<td>10 x Ir</td>
</tr>
<tr>
<td>Generadores</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra mínima proporcionada por el generador. Selectividad con interruptores automáticos aguas abajo</td>
<td>2–3 x Ir</td>
</tr>
<tr>
<td>Alimentador con otro interruptor automático Masterpact, Compact NS o PowerPact P- y R-frame aguas abajo</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra al final del circuito protegido. Selectividad con interruptores automáticos aguas abajo</td>
<td>10 x Ir</td>
</tr>
<tr>
<td>Alimentador con otro interruptor automático Masterpact, Compact NS o PowerPact P- y R-frame aguas abajo</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra al final del circuito protegido. Selectividad con interruptores automáticos aguas abajo</td>
<td>10 x Ir</td>
</tr>
<tr>
<td>Lado primario del transformador LV/LV</td>
<td>Inferior a la corriente de cortocircuito secundaria mínima.</td>
<td>10 x Ir</td>
</tr>
<tr>
<td>Equipos electrónicos de alimentación (por ejemplo, sistemas de alimentación ininterrumpida, variadores de velocidad, convertidores fotovoltaicos)</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra al final del circuito protegido. El ajuste inferior es posible porque no se espera ninguna selectividad ni corriente transitoria.</td>
<td>1,5–2 x Ir</td>
</tr>
<tr>
<td>Motores</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra al final del circuito protegido. El ajuste inferior es posible por encima de la corriente de arranque.</td>
<td>10 x Ir</td>
</tr>
</tbody>
</table>

Cuando los transformadores LV/LV están encendidos, se producen corrientes de irrupción muy altas que deben tenerse en cuenta a la hora de seleccionar los dispositivos de protección contra sobrecorriente. El valor pico de la primera onda de corriente a menudo alcanza de 10 a 15 veces la intensidad asignada RMS del transformador y puede llegar a alcanzar valores de 20 a 25 veces la intensidad asignada, incluso con transformadores cuya intensidad asignada es inferior a 50 kVA.

Ejemplo de corriente de irrupción: si el transformador está encendido:

![Diagrama de irrupción](image)

A Primer pico de 10 a 25 x In
Funciones de protección

Ejemplo de corriente de irrupción del motor en línea directo al arrancar:

Directrices de ajuste para tsd

tsd está configurado conforme a la selectividad.

La selectividad basada en tiempo se realiza entre dos interruptores automáticos cuando el relé de corto retardo del interruptor automático del lado de la alimentación está al menos un paso más arriba que el relé de corto retardo del lado de carga.

Cuando los interruptores automáticos aguas abajo con interruptores automáticos Compact NSX, PowerPact H-, J- o L-frame, la selectividad siempre se proporciona con interruptores automáticos Masterpact MTZ con unidades de control Micrologic X, para todos los valores de tsd.

El tiempo de disparo de corto retardo puede ser de tipo definido (el tiempo de disparo no depende del nivel actual) o dependiente del tiempo con \(I^2t \) = curva constante. Esta función permite suavizar la curva de sobrecorriente de bajo nivel, lo que proporciona un disparo rápido en corrientes elevadas. Esta función es la recomendada para selectividad con fusibles.

<table>
<thead>
<tr>
<th>Aplicación de</th>
<th>Principio</th>
<th>Valor habitual de tsd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lado secundario del transformador MV/LV (acometida principal del panel de conmutación o interruptor automático de transferencia entre dos paneles de conmutación)</td>
<td>Selectividad con interruptores automáticos aguas abajo</td>
<td>tsd > tsd del interruptor automático de alimentación aguas abajo (tsd = 0,2 s si la instalación incluye tres niveles de interruptores automáticos de alimentación).</td>
</tr>
<tr>
<td>Alimentador con selectividad con otros interruptores automáticos Masterpact MTZ, Compact NS o PowerPact P- y R-frame aguas abajo</td>
<td>Selectividad con interruptores automáticos aguas abajo</td>
<td>tsd > tsd del interruptor automático de alimentación aguas abajo (tsd = 0,1 s si la instalación incluye tres niveles de interruptores automáticos de alimentación).</td>
</tr>
<tr>
<td>Alimentador sin selectividad con otros interruptores automáticos Masterpact MTZ, Compact NS o PowerPact P- y R-frame aguas abajo</td>
<td>No es necesaria la protección retardada de corto retardo</td>
<td>tsd = 0 s</td>
</tr>
<tr>
<td>Lado primario del transformador LV/LV</td>
<td>Estabilidad durante la irrupción. Selectividad con interruptores automáticos aguas abajo</td>
<td>tsd = 0,1 s o tsd > tsd del interruptor automático de alimentación, si existe.</td>
</tr>
<tr>
<td>Equipos electrónicos de alimentación (sistemas de alimentación ininterrumpida, variadores de velocidad, convertidores fotovoltaicos, etc.)</td>
<td>No es necesaria la protección retardada de corto retardo</td>
<td>tsd = 0 s</td>
</tr>
<tr>
<td>Motores</td>
<td>Estabilidad durante la irrupción</td>
<td>tsd = 0 s o 0,1 s</td>
</tr>
</tbody>
</table>
Ajuste de la protección contra sobrecorriente instantánea (I o código ANSI 50)

Directrices de ajuste

Las normas para Isd también se aplican al umbral li.

<table>
<thead>
<tr>
<th>Aplicación de</th>
<th>Principio</th>
<th>Valor habitual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lado secundario del transformador MV/LV (acometida principal del panel de conmutación)</td>
<td>Selectividad con interruptores automáticos aguas abajo</td>
<td>Modo li: OFF si hay otro interruptor automático Masterpact aguas abajo li = 15 x In si el interruptor automático Compact NSXm, Compact NSX o PowerPact B-, H-, J-, L-frame está solo aguas abajo</td>
</tr>
<tr>
<td>Alimentador con selectividad con otros interruptores automáticos Masterpact, Compact NS, PowerPact P- y R-frame aguas abajo</td>
<td>La misma norma que para Isd</td>
<td>Modo li: OFF</td>
</tr>
<tr>
<td>Alimentador sin selectividad con otros interruptores automáticos Masterpact, Compact NS, PowerPact P- o R-frame aguas abajo</td>
<td>–</td>
<td>li mirroring: ON Modo de disparo li: estándar li = 10-15 x In</td>
</tr>
<tr>
<td>Lado primario del transformador LV/LV</td>
<td>–</td>
<td>li mirroring: OFF</td>
</tr>
<tr>
<td>Generadores</td>
<td>–</td>
<td>li mirroring: OFF</td>
</tr>
<tr>
<td>Equipos electrónicos de alimentación (por ejemplo, sistemas de alimentación ininterrumpida, variadores de velocidad, convertidores fotovoltaicos)</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra al final del circuito protegido. El ajuste inferior es posible porque no se espera ninguna selectividad ni corriente transitoria.</td>
<td>Modo li: ON Modo de disparo li: rápido li = 2 x ln</td>
</tr>
<tr>
<td>Motor</td>
<td>Inferior a la corriente mínima de cortocircuito o de defecto a tierra al final del cable. El ajuste inferior es posible por encima de la corriente de arranque.</td>
<td>Modo li: ON Modo de disparo li: rápido li ≥ 13 x Corriente del motor a plena carga</td>
</tr>
</tbody>
</table>

El ajuste li permite una corriente de irrupción de sobrecorriente transitoria normal para los transformadores:

A Primer pico de 10 a 25 x In

Corriente de arranque en línea directa del motor:

NOTA: Los interruptores automáticos Masterpact MTZ1 L1 están equipados con un ajuste de disparo instantáneo adicional a 10 x ln.

- Si se usa para la protección del lado de la alimentación de un transformador, es necesario tener en cuenta el riesgo de disparo durante el accionamiento.
- Para aplicaciones de motor, selecciónelo según las tablas de coordinación del arrancador del motor.
Selectividad

Coordinación entre dispositivos

La coordinación entre los dispositivos aguas arriba y aguas abajo, en particular la selectividad, es indispensable para optimizar la continuidad del servicio. El gran número de opciones disponibles para configurar las funciones de protección en las unidades de control Micrologic X mejora la coordinación natural entre los interruptores automáticos.

Se pueden usar tres técnicas de selectividad:
- Selectividad de corriente, que corresponde a la secuenciación del umbral de protección de sobrecorriente de largo retardo.
- Selectividad de tiempo, que corresponde a la secuenciación del umbral de protección de sobrecorriente de corto retardo.
- Selectividad energética, que corresponde a la secuenciación de los niveles de energía del interruptor automático: esto es así para las corrientes de cortocircuito de intensidad alta.

Reglas de selectividad

Las reglas de selectividad dependen:
- Del tipo de unidad de control en los interruptores automáticos instalados aguas arriba y aguas abajo: electrónica o magnetotérmica.
- De la precisión de los ajustes.

Selectividad de la protección contra sobrecorriente

Para la protección contra sobrecorriente, las reglas de selectividad entre las unidades de control electrónicas son las siguientes:
- Selectividad de corriente y de tiempo:
 - Una relación de I_{Q1}/I_{Q2} mayor o igual a 1,3 es suficiente entre el umbral I_{r} para la protección de largo retardo de la unidad de control en el interruptor automático aguas arriba Q_{1} y en el de la unidad de control en el dispositivo aguas abajo Q_{2}.
 - El temporizador t_{r} para la protección de largo retardo de la unidad de control en el interruptor automático aguas arriba Q_{1} es idéntico o mayor que la de la unidad de control en el dispositivo aguas abajo Q_{2}.
 - Una relación de 1,5 es suficiente entre el umbral I_{sd} para la protección de corto retardo de la unidad de control en el interruptor automático aguas arriba Q_{1} y en el de la unidad de control en el dispositivo aguas abajo Q_{2}.
 - El temporizador t_{sd} para la protección de corto retardo de la unidad de control en el interruptor automático aguas arriba Q_{1} es mayor que la de la unidad de control en el dispositivo aguas abajo Q_{2}.
 - Si el interruptor automático aguas arriba se encuentra en la posición I_{2t} off, los interruptores automáticos aguas abajo no deben encontrarse en la posición I_{2t} on.
- La selectividad energética está asegurada por las características de concepción y de construcción de los interruptores automáticos. El límite de selectividad sólo lo puede especificar el fabricante.
Selectividad de la protección de defecto a tierra

Para la protección de defecto a tierra, sólo se aplicarán las reglas de selectividad de tiempo para el umbral de protección Ig y para el temporizador tg:

- Una relación de 1,3 es suficiente entre el umbral Ig para la protección de defecto a tierra de la unidad de control en el interruptor automático aguas arriba Q1 y en el de la unidad de control en el dispositivo aguas abajo Q2.
- El temporizador tg para la protección de defecto a tierra de la unidad de control en el interruptor automático aguas arriba Q1 es mayor que la de la unidad de control en el dispositivo aguas abajo Q2.
- Si el interruptor automático aguas arriba se encuentra en la posición I₄₉ off, los interruptores automáticos aguas abajo no deben encontrarse en la posición I₄₉ on.

Límite de selectividad

En función de la secuenciación de los valores nominales del interruptor automático y la configuración de los parámetros de protección, la selectividad puede ser:

- Limitada (selectividad parcial) hasta un valor inferior a la corriente de cortocircuito máxima esperada.
- Total (selectividad total), que se realiza sea cual sea el valor de la corriente de cortocircuito.

Tabla de selectividad

Schneider Electric proporciona tablas de selectividad en las que se muestra el tipo de selectividad (parcial o total) entre cada interruptor automático para su gama completa de interruptores automáticos. Para obtener más información, consulte Información técnica complementaria (véase página 10).

Función I₄₉ ON/OFF

Utilice la función de curva de tiempo inverso I₄₉ para mejorar la coordinación del interruptor automático. Úsela cuando un dispositivo de protección que utilice sólo tiempo inverso se instale aguas arriba o aguas abajo; por ejemplo, un dispositivo de protección mediante fusible.
Capítulo 4
Funciones de medición

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Funciones de medición estándar</td>
<td>142</td>
</tr>
<tr>
<td>4.2</td>
<td>Funciones de medición opcionales</td>
<td>185</td>
</tr>
</tbody>
</table>
Sección 4.1
Funciones de medición estándar

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precisión de las medidas conforme a IEC 61557-12</td>
<td>143</td>
</tr>
<tr>
<td>Características de la medida</td>
<td>148</td>
</tr>
<tr>
<td>Disponibilidad de medidas</td>
<td>155</td>
</tr>
<tr>
<td>Configuración de la red</td>
<td>166</td>
</tr>
<tr>
<td>Medidas en tiempo real</td>
<td>167</td>
</tr>
<tr>
<td>Cálculo de valores de demanda</td>
<td>170</td>
</tr>
<tr>
<td>Medida de las potencias</td>
<td>172</td>
</tr>
<tr>
<td>Algoritmo de cálculo de las potencias</td>
<td>174</td>
</tr>
<tr>
<td>Medición de energia</td>
<td>176</td>
</tr>
<tr>
<td>Distorsión total armónica</td>
<td>178</td>
</tr>
<tr>
<td>Medida del factor de potencia PF y del cos φ</td>
<td>181</td>
</tr>
</tbody>
</table>
Precisión de las medidas conforme a IEC 61557-12

Medidas y parámetros eléctricos disponibles en la unidad de control Micrologic X

En función de la medida de las corrientes de línea, corriente del neutro, tensiones entre fases y tensiones entre fase y neutro, la unidad de control Micrologic X muestra los parámetros siguientes:
- Valores eficaces de las corrientes y las tensiones
- Potencias activas, reactivas y aparentes
- Energías activas, reactivas y aparentes
- Factor de potencia
- Frecuencia
- Desequilibrio, THD y THD-R de tensiones y corrientes

Los valores medios se calculan para los parámetros eléctricos básicos principales.

Los valores máximos y mínimos obtienen una marca de tiempo y se registran en la memoria no volátil de Micrologic X. Pueden restablecerse de la siguiente manera:
- En la pantalla de Micrologic X.
- Con el software EcoStruxure Power Commission.
- En la pantalla de FDM128.
- Mediante un controlador remoto a través de la red de comunicación.
- En las páginas web de IFE/EIFE.

Los parámetros eléctricos se actualizan cada segundo. Pueden mostrarse de la siguiente manera:
- en la pantalla de Micrologic X, en Inicio → Medidas (*véase página 57*)
- Con la Aplicación EcoStruxure Power Device.
- Con el software EcoStruxure Power Commission.
- En la pantalla de FDM128.
- Mediante un controlador remoto a través de la red de comunicación.
- En las páginas web de IFE/EIFE.

La disponibilidad de parámetros depende del tipo de interfaz utilizado para mostrar datos: No todos los parámetros se muestran en todas las interfaces (*véase página 155*).

Se requiere un módulo VPS o un módulo de alimentación de 24 V CC externo opcional para medir y visualizar los parámetros, incluidos los contadores de energía para corrientes inferiores al 20 % de la intensidad asignada In.

El tiempo de arranque es el tiempo que transcurre entre el momento en el que se suministra la alimentación a la unidad de control y el momento en el que se obtiene la primera medida. El tiempo de arranque es inferior o igual a 45 segundos.

Precisión de las medidas

La precisión de las medidas de potencia y energía en los interruptores automáticos Masterpact MTZ con la unidad de control Micrologic X se clasifica como Clase 1, conforme a IEC 61557-12. Este estándar especifica los requisitos de rendimiento de los dispositivos de medición y supervisión que miden y supervisan los parámetros eléctricos en los sistemas de distribución eléctrica. Agrupa los dispositivos de medición de rendimiento con sensores externos (PMD-S), como los transformadores de corriente o tensión (por ejemplo, los medidores de potencia autónomos), además de los dispositivos de medición de rendimiento con sensores incorporados (PMD-D), como los interruptores automáticos.

El interruptor automático Masterpact MTZ, con unidad de control de Micrologic X y sensores incorporados, es un dispositivo PMD-DD con precisión de Clase 1, conforme a IEC 61557-12 para la medición de potencia y energía. Cumple los requisitos de clase de temperatura K70 y las condiciones de funcionamiento con humedad y altitud "estándar", conforme a las tablas 6 y 7 de IEC 61557-12.

El estándar IEC 61557-12 define los tres niveles siguientes de incertidumbre que se deben comprobar para establecer la clase de precisión:
- Incertidumbre intrínseca (*véase página 145*)
- Incertidumbre de funcionamiento (*véase página 146*)
- Incertidumbre general del sistema (*véase página 147*)

El dispositivo PMD-DD impide que se produzca la incertidumbre y la variación generales del sistema gracias a su cableado y sensores incorporados.
Incertidumbre de parámetros eléctricos medidos

La incertidumbre es el porcentaje calculado en el que un parámetro eléctrico medido puede diferir con relación al parámetro eléctrico real. En el contexto de este estándar, la incertidumbre total de un parámetro eléctrico medido depende del instrumento, del entorno y del resto de los elementos que se deben tener en cuenta.

En el gráfico siguiente se muestra la incertidumbre total de un parámetro eléctrico medido a partir de:

- Un dispositivo PMD-D, con sensores incorporados
- Un dispositivo PMD-S, con sensores externos

Un dispositivo **PMD-D**, con sensores incorporados **Un dispositivo PMD-S**, con sensores externos

A Incertidumbre en condiciones de referencia: Incertidumbre intrínseca conforme a IEC 61557-12
B Variaciones generadas por la magnitud de la influencia: Incertidumbre de funcionamiento conforme a IEC 61557-1; incertidumbre de medida conforme a IEC 61000-4-30
C Incertidumbre general del sistema conforme a IEC 61557-12
Incertidumbre intrínseca: definición de IEC 61557-12

La incertidumbre intrínseca es la incertidumbre de un instrumento de medición cuando se utiliza en condiciones de referencia. En el contexto de este estándar, se trata de un porcentaje del parámetro eléctrico medido que se ha definido en el rango nominal del instrumento de medición.

Para interruptores automáticos Masterpact MTZ con unidad de control de Micrologic X, los valores principales son el factor de corriente y de potencia.

En la tabla siguiente se indican los valores de corriente que garantizan una incertidumbre inferior o igual al 1 % para diferentes interruptores automáticos Masterpact MTZ:

Valores de corriente para potencia activa con una incertidumbre del 1 % (en A)	Masterpact			
Descripción de valor de corriente	**Valor de corriente**	**MTZ1**	**MTZ2**	**MTZ3**
Valor mínimo que el interruptor automático necesita para empezar a registrar y seguir registrando.	Ist = 0,04 % Ib	1.6 A	1.6 A	3.2 A
Valor mínimo de la corriente para una precisión inferior o igual al 1,5 % para potencia y energía activas.	5 % Ib	20 A	20 A	40 A
Valor mínimo de la corriente para una precisión inferior o igual al 1 % para potencia y energía activas con PF = 1.	10 % Ib	40 A	40 A	80 A
Valor mínimo de la corriente para una precisión inferior o igual al 1 % para potencia y energía activas con PF = de 0,5 inductiva a 0,8 capacitiva.	20 % Ib	80 A	80 A	160 A
Valor de corriente a partir del cual se fija el rendimiento relevante de un PMD conectado directamente (PMD Dx).	Ib	400 A	400 A	800 A
Valor máximo de corriente a partir del cual el interruptor automático Masterpact MTZ cumple los requisitos de incertidumbre de este estándar.	Imáx	1.600 A x 1,2	4.000 A x 1,2	6.300 A x 1,2

El gráfico siguiente ofrece un ejemplo de la incertidumbre intrínseca de la potencia y energía activas en contraposición a la corriente del interruptor automático Masterpact MTZ2. Muestra que el rendimiento del interruptor automático Masterpact MTZ2 es igual o mejor que el estándar IEC 61557-12.
Funciones de medición

Incertidumbre de funcionamiento

El estándar IEC 61557-12 define la incertidumbre de funcionamiento como la incertidumbre que se genera en las condiciones nominales de funcionamiento.

El estándar IEC 61557-12 especifica las pruebas y la variación máxima de la incertidumbre según las magnitudes de la influencia siguientes:

- temperatura ambiente (T°)
- frecuencia, desequilibrio, armónicos, EMC

Para interruptores automáticos Masterpact MTZ con unidad de control Micrologic X, la principal magnitud de influencia es la temperatura. Los interruptores automáticos Masterpact MTZ se han diseñado para soportar altas corrientes que inducen autocalentamiento. La medida se ha diseñado para ofrecer una gran estabilidad en un amplio rango de temperaturas.

Efecto de la temperatura sobre el sistema de medida de Masterpact MTZ

La variación de temperatura que se experimenta en el transformador de corriente interna y la unidad de control Micrologic X, entre la carga de corriente mínima y la carga de corriente nominal, puede llegar hasta 90 K. El efecto de la temperatura en la precisión de las medidas se ha gestionado con cuidado en un rango de temperatura ambiente de funcionamiento de entre −25 °C (−13 °F) y 70 °C (158 °F).
Efecto de compatibilidad electromagnética: (EMC) y otras magnitudes de la influencia en el rendimiento de las medidas de Masterpact MTZ

Los interruptores automáticos Masterpact MTZ con unidad de control Micrologic X ofrecen una gran inmunidad frente a las magnitudes de la influencia, con una incertidumbre de funcionamiento baja para la potencia activa, tal como se especifica en la Clase 1, en un amplio rango de condiciones de funcionamiento.

En la siguiente tabla se resume el rendimiento de Masterpact MTZ y los requisitos estándar respecto a las magnitudes de la influencia para la potencia activa:

<table>
<thead>
<tr>
<th>Magnitud de la influencia</th>
<th>Tabla 9 IEC 61557-12 PMD DD Cl 1</th>
<th>Incertidumbre adicional de Masterpact MTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiente</td>
<td>PF 1: 80%/120% Vn</td>
<td>0,7 %</td>
</tr>
<tr>
<td></td>
<td>PF 0,5 Ind: 80%/120% Vn</td>
<td>1 %</td>
</tr>
<tr>
<td>Fuente de alimentación auxiliar</td>
<td>0,1%</td>
<td>0%</td>
</tr>
<tr>
<td>Tensión</td>
<td>PF 1: 49–51 Hz / 59–61 Hz</td>
<td>0,5 %</td>
</tr>
<tr>
<td></td>
<td>PF 0,5: 49–51 Hz / 59–61 Hz</td>
<td>0,7 %</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>1,5 %</td>
<td>0%</td>
</tr>
<tr>
<td>Secuencia de fases invertida</td>
<td>Ent 0 y 10 %</td>
<td>2 %</td>
</tr>
<tr>
<td>Desequilibrio de tensión</td>
<td>Falta 1 o 2 fases</td>
<td>2 %</td>
</tr>
<tr>
<td>Falta fase</td>
<td>10 % Vn 5.ª</td>
<td>0,8 %</td>
</tr>
<tr>
<td>Armónicos en corriente y tensión</td>
<td>20 % Imax 5.º</td>
<td>0,8 %</td>
</tr>
<tr>
<td></td>
<td>Armónico impar en corriente</td>
<td>3 %</td>
</tr>
<tr>
<td></td>
<td>Subarmónico impar en corriente</td>
<td>3 %</td>
</tr>
<tr>
<td>Rechazo de tensión de modalidad común</td>
<td>0-690 V CA/tierra</td>
<td>0,5 %</td>
</tr>
<tr>
<td>Inducción magnética CA permanente</td>
<td>IEC 61326</td>
<td>2 %</td>
</tr>
<tr>
<td>Campos de RF electromagnéticos</td>
<td>IEC 61326</td>
<td>2 %</td>
</tr>
<tr>
<td>Perturbaciones conducidas inducidas por campos de RF</td>
<td>IEC 61326</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Incertidumbre general del sistema

El estándar IEC 61557-12 define la incertidumbre general del sistema, incluida la incertidumbre instrumental de varios instrumentos independientes (por ejemplo, sensores, cables, instrumentos de medición) en las condiciones nominales de funcionamiento.

En el caso de los interruptores automáticos Masterpact MTZ, los sensores están incorporados en el dispositivo para aplicaciones de hasta 690 V CA entre fases y la incertidumbre general es igual a la incertidumbre de funcionamiento.
Funciones de medición

Características de la medida

Presentación

En las siguientes tablas se indican las medidas disponibles y para cada medida:

- Unidad
- Rango de medición
- Precisión
- Rango de precisión

Corriente

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de las corrientes de fase en tiempo real I1, I2, I3</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valores máximos de las corrientes de fase I1 MÁX, I2 MÁX, I3 MÁX</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor máximo de la corriente eficaz de las fases I1, I2, I3, IN</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valores máximos del máximo de corriente de fase</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valores mínimos de las corrientes de fase I1 MÍN, I2 MÍN, I3 MÍN</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valores mínimos del mínimo de corriente de fase</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor de la corriente neutra en tiempo real IN(2)</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-1 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor máximo de la corriente del neutró IN MÁX (2)</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor mínimo de la corriente del neutró IN MÍN (2)</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor de la corriente media en tiempo real Imed</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor máximo de la corriente media Imed MÁX</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor mínimo de la corriente media Imed MÍN</td>
<td>A</td>
<td>0(1)-20 In</td>
<td>+/-0,5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor de la corriente de defecto a tierra en tiempo real</td>
<td>A</td>
<td>0–20 In</td>
<td>5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor máximo de la corriente de defecto de tierra</td>
<td>A</td>
<td>0–20 In</td>
<td>5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor mínimo de la corriente de defecto de tierra</td>
<td>A</td>
<td>0–20 In</td>
<td>5 %</td>
<td>MTZ1: 40–(1.600 x 1,2) MTZ2: 40–(4.000 x 1,2) MTZ3: 80–(6.300 x 1,2)</td>
</tr>
<tr>
<td>Valor de la corriente de diferencial en tiempo real (3)</td>
<td>A</td>
<td>0–30 A</td>
<td>10%</td>
<td>0,1–30 A</td>
</tr>
<tr>
<td>Valor máximo de la corriente diferencial (3)</td>
<td>A</td>
<td>0–30 A</td>
<td>10%</td>
<td>0,1–30 A</td>
</tr>
</tbody>
</table>

(1) Por debajo de la corriente medible más baja (4 A para MTZ1, 10 A para MTZ2/3), el valor es 0 A.
(2) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENCT cableado y configurado.
(3) Se aplica a la unidad de control Micrologic 7.0 X .

Desequilibrio de corriente

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de los desequilibrios de corriente de fase en tiempo real I1 deseq, I2 deseq, I3 deseq</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-5</td>
<td>0–100 %</td>
</tr>
<tr>
<td>Valores máximos de 3 desequilibrios de corriente de I1 deseq MÁX, I2 deseq MÁX, I3 deseq MÁX</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-5</td>
<td>0–100 %</td>
</tr>
<tr>
<td>Valor máximo de 3 desequilibrios de corriente de fase</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-5</td>
<td>0–100 %</td>
</tr>
<tr>
<td>Valor máximo del máximo de 3 desequilibrios de corriente de fase</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-5</td>
<td>0–100 %</td>
</tr>
</tbody>
</table>

NOTA: El rango de precisión es para el rango actual: 0,2–1,2 In.
Funciones de medición

Tensión

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de las tensiones entre fases en tiempo real V12, V23, V31</td>
<td>V</td>
<td>0(1)-1.150 V</td>
<td>+/-0,5 %</td>
<td>208–690 x 1,2 V</td>
</tr>
<tr>
<td>Valores máximos de las tensiones entre fases V12 MÁX, V23 MÁX, V31 MÁX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valores mínimos de las tensiones entre fases V12 MÍN, V23 MÍN, V31 MÍN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tensiones entre fase y neutro en tiempo real V1N, V2N, V3N	V	0(1)-660 V	+/-0,5 %	120–400 x 1,2 V
Valores máximos de tensiones entre fase y neutro V1N MÁX, V2N MÁX, V3N MÁX (2)				
Valores mínimos de tensiones entre fase y neutro V1N MÍN, V2N MÍN, V3N MÍN(2)				

Tensión media entre fases en tiempo real Vmed LL	V	0(1)-1.150 V	+/-0,5 %	208–690 x 1,2 V
Tensión máxima media entre fases Vmed LL MÁX				
Tensión mínima media entre fases Vmed LL MÍN				

Tensión media entre fase y neutro en tiempo real Vmed LN	V	0(1)-600 V	+/-0,5 %	120–400 x 1,2 V
Tensión máxima media entre fase y neutro Vmed LN MÁX				
Tensión mínima media entre fase y neutro Vmed LN MÍN				

(1) Por debajo de la tensión medible más baja (10 V) el valor es 0 V.
(2) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

Desequilibrio de tensión

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desequilibrios de tensión entre fases en tiempo real V12deseq, V23deseq, V31deseq</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-0,5</td>
<td>0-10%</td>
</tr>
<tr>
<td>Valores máximos de 3 desequilibrios de tensión entre fases V12deseq MÁX, V23deseq MÁX, V31deseq MÁX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo de 3 desequilibrios de tensión entre fases en tiempo real</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor máximo del máximo de 3 desequilibrios de tensión entre fases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Desequilibrios de tensión entre fase y neutro en tiempo real V1Ndeseq, V2Ndeseq, V3Ndeseq(1)	%	0–100 %	+/-0,5	0-10%
Valores máximos de 3 desequilibrios de tensión entre fase y neutro V1Ndeseq MÁX, V2Ndeseq MÁX, V3Ndeseq MÁX(1)				
Máximo de 3 desequilibrios de tensión entre fase y neutro en tiempo real(1)				
Valor máximo del máximo de 3 desequilibrios de tensión entre fase y neutro(1)				

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

NOTA: El rango de precisión es para el rango de tensión: 208–690 x 1,2 V CA.
Alim.

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Potencia activa en tiempo real para cada fase P1, P2, P3, (1)</td>
<td>kW</td>
<td>-16.000–+16.000 kW</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>● Valores máximos de la potencia activa para cada fase P1 MÁX, P2 MÁX, P3 MÁX(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Valores mínimos de la potencia activa para cada fase P1 MÍN, P2 MÍN, P3 MÍN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Potencia activa total en tiempo real Prtot</td>
<td>kW</td>
<td>-16.000–+16.000 kW</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>● Valor máximo de la potencia activa total Ptrot MÁX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Valor mínimo de la potencia activa total Ptrot MÍN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Potencia reactiva en tiempo real para cada fase Q1, Q2, Q3(1)</td>
<td>kVAR</td>
<td>-16.000–+16.000 kW</td>
<td>+/-2%</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>● Valores máximos de la potencia reactiva para cada fase Q1 MÁX, Q2 MÁX, Q3 MÁX(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Valores mínimos de la potencia reactiva para cada fase Q1 MÍN, Q2 MÍN, Q3 MÍN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Potencia reactiva total Qrot</td>
<td>kVAR</td>
<td>-16.000–+16.000 kW</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>● Valor máximo de la potencia reactiva total Qrot MÁX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Valor mínimo de la potencia reactiva total Qrot MÍN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Potencia aparente en tiempo real para cada fase S1, S2, S3(1)</td>
<td>kVA</td>
<td>-16.000–+16.000 kW</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>● Valores máximos de las potencias aparentes por fase S1 MÁX, S2 MÁX, S3 MÁX(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Valores mínimos de las potencias aparentes por fase S1 MÍN, S2 MÍN, S3 MÍN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Potencia aparente total en tiempo real Stot</td>
<td>kVA</td>
<td>-16.000–+16.000 kW</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>● Valor máximo de la potencia aparente total Stot MÁX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Valor mínimo de la potencia aparente total Stot MÍN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

NOTA: La precisión del rango de medición de potencia conforme a IEC 61557-12 se define mediante valores de rango de corriente, tensión y factor de potencia.

Indicadores de funcionamiento

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuadrante de funcionamiento</td>
<td>–</td>
<td>1, 2, 3, 4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rotación de fase</td>
<td>–</td>
<td>123 o bien 132</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tipo de carga</td>
<td>–</td>
<td>capacitativa o inductiva</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Factor de potencia PF y cos φ

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Factor de potencia total en tiempo real PF</td>
<td></td>
<td>-1,00→+1,00</td>
<td>+/-0,02</td>
<td>0,5 (i) - 0,8 (c)</td>
</tr>
<tr>
<td>● Valor máximo del factor de potencia PF MÁX total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Valor mínimo del factor de potencia PF MÍN total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Factores de potencia en tiempo real para cada fase PF1, PF2, PF3(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Factor de potencia máxima para cada fase PF1 MÁX, PF2 MÁX, PF3 MÁX(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Factor de potencia mínimo para cada fase PF1 MÍN, PF2 MÍN, PF3 MÍN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● cos φ total en tiempo real</td>
<td></td>
<td>-1,00→+1,00</td>
<td>+/-0,02</td>
<td>0,5 (i) - 0,8 (c)</td>
</tr>
<tr>
<td>● MÁX cos φ máximo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● MÍN cos φ mínimo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● cos φ en tiempo real para cada fase cos φ 1, cos φ 2, cos φ 3(1)</td>
<td></td>
<td>-1,00→+1,00</td>
<td>+/-0,02</td>
<td>0,5 (i) - 0,8 (c)</td>
</tr>
<tr>
<td>● cos φ máximo para cada fase cos φ 1 MÁX, cos φ 2 MÁX, cos φ 3MÁX(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● cos φ mínimo para cada fase cos φ 1 MÍN, cos φ 2 MÍN, cos φ 3 MÍN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

NOTA: La precisión del rango de medición del factor de potencia conforme a IEC 61557-12 se define mediante valores de rango de corriente y tensión.
Distorsión armónica total comparada con el (THD) fundamental de las corrientes y las tensiones

Las distorsiones armónicas totales se calculan con armónicos hasta el rango 15.

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distorsión armónica total en tiempo real (THD) de la corriente para cada fase THD (I1), THD(I2), THD(I3)</td>
<td>%</td>
<td>0–1.000%</td>
<td>+/-1,5</td>
<td>0–100 % cuando I > 80 A</td>
</tr>
<tr>
<td>Distorsión armónica total en tiempo real (THD) de la corriente neutra THD(IN)(1)</td>
<td>%</td>
<td>0–1.000%</td>
<td>+/-1,5 × THD/100</td>
<td>100-200 %</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total (THD) de la corriente neutra THD(IN) MÁX(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total (THD) de la corriente neutra THD(IN) MÍN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distorsión armónica total en tiempo real (THD) de la tensión entre fases THD(V12), THD(V23), THD(V31)</td>
<td>%</td>
<td>0–1.000%</td>
<td>+/-0,6</td>
<td>0–20 % cuando V > 208 V</td>
</tr>
<tr>
<td>Distorsión armónica total en tiempo real (THD) de la tensión entre fase y neutro THD(V1N), THD(V2N), THD(V3N)(1)</td>
<td>%</td>
<td>0–1.000%</td>
<td>+/-0,6</td>
<td>0–20 % cuando V > 120 V</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total media (THD) de las 3 corrientes de fase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total media (THD) de las 3 corrientes de fase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distorsión armónica total media en tiempo real (THD) de las 3 tensiones entre fases</td>
<td>%</td>
<td>0–1.000%</td>
<td>+/-1,5</td>
<td>0–100 % cuando I > 80 A</td>
</tr>
<tr>
<td>Distorsión armónica total media en tiempo real (THD) de las 3 tensiones entre fase y neutro(1)</td>
<td>%</td>
<td>0–1.000%</td>
<td>+/-0,6</td>
<td>0–20 % cuando V > 208 V</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total media (THD) de las 3 tensiones entre fase y neutro(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total media (THD) de las 3 tensiones entre fase y neutro(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
Distorsión armónica total comparada con el valor eficaz (THD-R) de las corrientes y las tensiones

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Distorsión armónica total en tiempo real (THD-R) de la corriente para cada fase</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-1,5 × THD/100</td>
<td>0–100 %</td>
</tr>
<tr>
<td>• Distorsión armónica total en tiempo real (THD-R) de la corriente neutra</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-0,6</td>
<td>0–20 % cuando V > 208 V</td>
</tr>
<tr>
<td>• Valor máximo de la distorsión armónica total (THD-R) de la corriente neutra</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-0,6</td>
<td>0–20 % cuando V > 120 V</td>
</tr>
<tr>
<td>• Valor mínimo de la distorsión armónica total (THD-R) de la corriente neutra</td>
<td>%</td>
<td>0–100 %</td>
<td>+/-0,6</td>
<td>0–20 % cuando V > 120 V</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

Frecuencia

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Frecuencia</td>
<td>Hz</td>
<td>40–70 Hz</td>
<td>+/-0,2 %</td>
<td>45–65 Hz</td>
</tr>
<tr>
<td>• Frecuencia máxima</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Frecuencia mínima</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valores pico y demanda de corriente

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Valores de demanda de corriente de fase (I1, I2, I3, Iavg)</td>
<td>A</td>
<td>0–20 ln</td>
<td>+/-1 %</td>
<td>0.2–1.2 ln</td>
</tr>
<tr>
<td>• Valores de demanda de corriente pico de fase (I1, I2, I3, Iavg)</td>
<td>A</td>
<td>0–20 ln</td>
<td>+/-1 %</td>
<td>0.2–1.2 ln</td>
</tr>
<tr>
<td>• Valor de demanda de corriente en el neutro (IN)(1)</td>
<td>A</td>
<td>0–20 ln</td>
<td>+/-1 %</td>
<td>0.2–1.2 ln</td>
</tr>
<tr>
<td>• Valor de demanda de corriente pico en el neutro (IN)(1)</td>
<td>A</td>
<td>0–20 ln</td>
<td>+/-1 %</td>
<td>0.2–1.2 ln</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENCT cableado y configurado.
Valores pico y demanda de potencia

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de demanda (P dmd) de la potencia activa total (Ptot)</td>
<td>kW</td>
<td>De –16.000 a +16.000 kW</td>
<td>+/-1 %</td>
<td>De –10.000 a – 2 kW, de 2 a 10.000 kW</td>
</tr>
<tr>
<td>Valor de demanda pico (P dmd máx) de la potencia activa total (Ptot)</td>
<td>kW</td>
<td>De –16.000 a +16.000 kW</td>
<td>+/-1 %</td>
<td>De –10.000 a – 2 kW, de 2 a 10.000 kW</td>
</tr>
<tr>
<td>Valor de demanda (Q dmd) de la potencia reactiva total (Qtot)</td>
<td>kVAR</td>
<td>De –16.000 a +16.000 kVAR</td>
<td>+/-1 %</td>
<td>De –10.000 a – 2 kVAR, de 2 a 10.000 kVAR</td>
</tr>
<tr>
<td>Valor de demanda pico (Q dmd máx) de la potencia reactiva total (Qtot)</td>
<td>kVAR</td>
<td>De –16.000 a +16.000 kVAR</td>
<td>+/-1 %</td>
<td>De –10.000 a – 2 kVAR, de 2 a 10.000 kVAR</td>
</tr>
<tr>
<td>Valor de demanda (S dmd) de la potencia aparente total (Stot)</td>
<td>kVA</td>
<td>0–16,000 kVA</td>
<td>+/-1 %</td>
<td>2–10,000 kVA</td>
</tr>
</tbody>
</table>

NOTA: La precisión es para:
- Rango de corriente: 0,1–1,2 In
- Intervalo de tensión: 165–830 V CA
- Intervalo de cos φ: –1 a –0,5 y 0,5 a 1

Medidores de energía reiniciables

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de la energía activa total Ep</td>
<td>kWh</td>
<td>De –10.000.000 a +10.000.000 kWh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Valores de energía activa total Epentregada y Eprecibida</td>
<td>kWh</td>
<td>De –10.000.000 a +10.000.000 kWh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Valor de energía reactiva total Eq</td>
<td>kVARh</td>
<td>De –10.000.000 a +10.000.000 kVARh</td>
<td>+/-2%</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Valores de energía reactiva total Eqentregada y Eprecibida</td>
<td>kVARh</td>
<td>De –10.000.000 a +10.000.000 kVARh</td>
<td>+/-2%</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Energía aparente Es</td>
<td>kVAh</td>
<td>De –10.000.000 a +10.000.000 kVAh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
</tbody>
</table>

NOTA: La precisión del rango de medición de energía conforme a IEC 61557-12 se define mediante valores de rango de corriente, tensión y factor de potencia.

Medidores de energía no reiniciables

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de la energía activa total Ep</td>
<td>kWh</td>
<td>De –10.000.000 a +10.000.000 kWh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Valores de energía activa total Epentregada y Eprecibida</td>
<td>kWh</td>
<td>De –10.000.000 a +10.000.000 kWh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Valor de energía reactiva total Eq</td>
<td>kVARh</td>
<td>De –10.000.000 a +10.000.000 kVARh</td>
<td>+/-2%</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Valores de energía reactiva total Eqentregada y Eprecibida</td>
<td>kVARh</td>
<td>De –10.000.000 a +10.000.000 kVARh</td>
<td>+/-2%</td>
<td>Consulte la NOTA siguiente</td>
</tr>
<tr>
<td>Energía aparente Es</td>
<td>kVAh</td>
<td>De –10.000.000 a +10.000.000 kVAh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA siguiente</td>
</tr>
</tbody>
</table>

NOTA: La precisión del rango de medición de energía conforme a IEC 61557-12 se define mediante valores de rango de corriente, tensión y factor de potencia.
Disponibilidad de medidas

Presentación

Las medidas se pueden mostrar en las interfaces siguientes:
- En la pantalla de Micrologic X.
- Con la Aplicación EcoStruxure Power Device a través de Bluetooth. o conexión USB OTG.
- Con el software EcoStruxure Power Commission.
- En la pantalla de FDM128.
- Mediante un controlador remoto a través de la red de comunicación.
- En las páginas web de IFE/EIFE.

En las tablas siguientes se indican cuáles son las medidas que se mostrarán en cada interfaz.

Corriente

La disponibilidad de parámetros depende del tipo de interfaz utilizado para mostrar datos: No todos los parámetros se muestran en todas las interfaces.

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de las corrientes de fase en tiempo real I1, I2, I3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores máximos de las corrientes de fase I1 MAX, I2 MAX, I3 MAX</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor máximo de la corriente eficaz de las fases I1, I2, I3, IN</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valores máximos del máximo de corriente de fase</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valores mínimos de las corrientes de fase I1 MIN, I2 MIN, I3 MIN</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores mínimos del mínimo de corriente de fase</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de la corriente neutra en tiempo real IN(1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor máximo de la corriente del neutro IN MAX (1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor mínimo de la corriente del neutro IN MIN (1)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de la corriente media en tiempo real Imed</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor máximo de la corriente media Imed MAX</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor mínimo de la corriente media Imed MIN</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de la corriente de defecto a tierra en tiempo real</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor máximo de la corriente de defecto de tierra</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor mínimo de la corriente de defecto de tierra</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de la corriente de diferencial en tiempo real (2)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor máximo de la corriente diferencial(2)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENCT cableado y configurado.
(2) Se aplica a la unidad de control Micrologic 7.0 X. No hay disponibles valores de corriente relacionados con la corriente de defecto a tierra Ig.
Funciones de medición

Desequilibrio de corriente

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de los desequilibrios de corriente de fase en tiempo real l1 deseq, l2 deseq, l3 deseq</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valores máximos de 3 desequilibrios de corriente de l1 deseq MÁX, l2 deseq MÁX, l3 deseq MÁX</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo de 3 desequilibrios de corriente de fase</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo del máximo de 3 desequilibrios de corriente de fase</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>

Tensión

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de las tensiones entre fases en tiempo real V12, V23, V31</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores máximos de las tensiones entre fases V12 MÁX, V23 MÁX, V31 MÁX</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores mínimos de las tensiones entre fases V12 MÍN, V23 MÍN, V31 MÍN</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tensiones entre fase y neutro en tiempo real V1N, V2N, V3N(1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores máximos de tensiones entre fase y neutro V1N MÁX, V2N MÁX, V3N MÁX(1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores mínimos de tensiones entre fase y neutro V1N MÍN, V2N MÍN, V3N MÍN(1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tensión media entre fases en tiempo real Vmed LL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tensión máxima media entre fases Vmed MÁX LL</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tensión mínima media entre fases Vmed MÍN LL</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tensión media entre fase y neutro en tiempo real Vmed LN(1)</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tensión máxima media entre fase y neutro Vmed LN MÁX(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tensión mínima media entre fase y neutro Vmed LN MÍN(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
Desequilibrio de tensión

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desequilibrios de tensión entre fases en tiempo real V12deseq, V23deseq, V31deseq</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Valores máximos de 3 desequilibrios de tensión entre fases V12deseq MAX, V23deseq MAX, V31deseq MAX</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Máximo de 3 desequilibrios de tensión entre fases en tiempo real</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Valor máximo del máximo de 3 desequilibrios de tensión entre fases</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Desequilibrios de tensión entre fase y neutro en tiempo real V1Ndeseq, V2Ndeseq, V3Ndeseq(1)</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Valores máximos de 3 desequilibrios de tensión entre fase y neutro V1Ndeseq MAX, V2Ndeseq MAX, V3Ndeseq MAX(1)</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Máximo de 3 desequilibrios de tensión entre fase y neutro en tiempo real(1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Valor máximo del máximo de 3 desequilibrios de tensión entre fase y neutro(1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia activa en tiempo real para cada fase P1, P2, P3, (1)</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valores máximos de la potencia activa para cada fase P1 MÁX, P2 MÁX, P3 MÁX (1)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Valores mínimos de la potencia activa para cada fase P1 MÍN, P2 MÍN, P3 MÍN (1)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Potencia activa total en tiempo real Ptot</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valor máximo de la potencia activa total Ptot MAX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valor mínimo de la potencia activa total Ptot MÍN</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Potencia reactiva en tiempo real para cada fase Q1, Q2, Q3 (1)</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valores máximos de las potencias reactivas por fase Q1 MÁX, Q2 MÁX, Q3 MÁX (1)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Valores mínimos de las potencias reactivas por fase Q1 MÍN, Q2 MÍN, Q3 MÍN (1)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Potencia reactiva total Qtot</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valor máximo de la potencia reactiva total Qtot MAX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valor mínimo de la potencia reactiva total Qtot MÍN</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Potencia aparente en tiempo real para cada fase S1, S2, S3 (1)</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valores máximos de las potencias aparentes por fase S1 MÁX, S2 MÁX, S3 MÁX (1)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Valores mínimos de las potencias aparentes por fase S1 MÍN, S2 MÍN, S3 MÍN (1)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Potencia aparente total en tiempo real Stot</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valor máximo de la potencia aparente total Stot MÁX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Valor mínimo de la potencia aparente total Stot MÍN</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
Indicadores de funcionamiento

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuadrante de funcionamiento</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Rotación de fase</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Tipo de carga</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>

Factor de potencia PF y cos φ

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de potencia total en tiempo real PF</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo del factor de potencia PF MÁX total</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor mínimo del factor de potencia PF MÍN total</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Factores de potencia en tiempo real para cada fase PF1, PF2, PF3(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Factor de potencia máxima para cada fase PF1 MÁX, PF2 MÁX, PF3 MÁX(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Factor de potencia mínimo para cada fase PF1 MÍN, PF2 MÍN, PF3 MÍN(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>cos φ total en tiempo real</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo del cos φ MÁX</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor mínimo del cos φ MÍN</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>cos φ en tiempo real para cada fase cos φ 1, cos φ 2, cos φ 3(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>cos φ máximo para cada fase cos φ 1 MÁX, cos φ 2 MÁX, cos φ 3 MÁX(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>cos φ mínimo para cada fase cos φ 1 MÍN, cos φ 2 MÍN, cos φ 3 MÍN(1)</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
Distorsión armónica total con respecto a la fundamental (THD) de las corrientes

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distorsión armónica total en tiempo real (THD) de la corriente para cada fase THD (I1), THD(I2), THD(I3)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>
| Distorsión armónica total en tiempo real (THD) de la corriente neutra THD(IN)
(1) | ✔ | ✔ | ✔ | ✔ | ✔ | – |
| Valor máximo de la distorsión armónica total (THD) de la corriente neutra THD(IN) MAX
(1) | ✔ | ✔ | ✔ | ✔ | ✔ | – |
| Valor mínimo de la distorsión armónica total (THD) de la corriente neutra THD(IN) MIN
(1) | – | ✔ | ✔ | ✔ | ✔ | – |
| Distorsión armónica total media en tiempo real (THD) de las 3 corrientes de fase | ✔ | ✔ | – | ✔ | ✔ | – |
| Valor máximo de la distorsión armónica total media (THD) de las 3 corrientes de fase | ✔ | ✔ | – | ✔ | ✔ | – |
| Valor mínimo de la distorsión armónica total media (THD) de las 3 corrientes de fase | – | ✔ | – | ✔ | ✔ | – |

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
Distorsión armónica total con respecto a la fundamental (THD) de las tensiones

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distorsión armónica total en tiempo real (THD) de la tensión entre fases THD(V12), THD(V23), THD(V31)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Distorsión armónica total en tiempo real (THD) de la tensión entre fase y neutro THD(V1N), THD(V2N), THD(V3N)(^{(1)})</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Distorsión armónica total media en tiempo real (THD) de las 3 tensiones entre fases</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total media (THD) de las 3 tensiones entre fases</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total media (THD) de las 3 tensiones entre fases</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Distorsión armónica total media en tiempo real (THD) de las 3 tensiones entre fase y neutro(^{(1)})</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total media (THD) de las 3 tensiones entre fase y neutro(^{(1)})</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total media (THD) de las 3 tensiones entre fase y neutro(^{(1)})</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.
Distorsión armónica total con respecto al valor eficaz (THD-R) de las corrientes

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distorsión armónica total en tiempo real (THD-R) de la corriente para cada fase THD-R (I1), THD-R(I2), THD-R(I3)</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Distorsión armónica total en tiempo real (THD-R) de la corriente neutra THD-R(IN) (1)</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total (THD-R) de la corriente neutra THD-R(IN) MAX (1)</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total (THD-R) de la corriente neutra THD-R(IN) MIN (1)</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Distorsión armónica total media en tiempo real (THD-R) de las 3 corrientes de fase</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total media (THD-R) de las 3 corrientes de fase</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total media (THD-R) de las 3 corrientes de fase</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENV'T cableado y configurado.
Funciones de medición

Distorsión armónica total con respecto al valor eficaz (THD-R) de las tensiones

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distorsión armónica total (THD-R) en tiempo real de la tensión entre fases THD-R(V12), THD-R(V23), THD-R(V31)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distorsión armónica total (THD-R) en tiempo real de la tensión entre fase y neutro THD-R(V1N), THD-R(V2N), THD-R(V3N) (1)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distorsión armónica total media en tiempo real (THD-R) de las 3 tensiones entre fases</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total media (THD-R) de las 3 tensiones entre fases</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total media (THD-R) de las 3 tensiones entre fases</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distorsión armónica total media en tiempo real (THD-R) de las 3 tensiones entre fase y neutro (1)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Valor máximo de la distorsión armónica total media (THD-R) de las 3 tensiones entre fase y neutro (1)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Valor mínimo de la distorsión armónica total media (THD-R) de las 3 tensiones entre fase y neutro (1)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

Frecuencia

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Frecuencia máxima</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Frecuencia mínima</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Valores pico y demanda de corriente

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de demanda de corriente en fase (I₁, I₂, I₃)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores de demanda de corriente pico en fase (I₁, I₂, I₃)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de demanda de corriente en el neutro (IN) (1)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de demanda de corriente pico en el neutro (IN)(1)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de demanda de corriente media (Iavg)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de demanda de corriente pico media (Iavg)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Se aplica a interruptores automáticos tetrapolares o interruptores automáticos tripolares con ENVT cableado y configurado.

Valores pico y demanda de potencia

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de demanda (P dmd) de la potencia activa total (Ptot)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de demanda pico (P dmd máx) de la potencia activa total (Ptot)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de demanda (Q dmd) de la potencia reactiva total (Qtot)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de demanda pico (Q dmd máx) de la potencia reactiva total (Qtot)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de demanda (S dmd) de la potencia aparente total (Stot)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de demanda pico (S dmd máx) de la potencia aparente total (Stot)</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>
Funciones de medición

Medidores de energía reiniciables

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de la energía activa total Ep</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores de energía activa total: Epentregada y Eprecibida</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de energía reactiva total Eq</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valores de energía reactiva total: Eqentregada y Eprecibida</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valor de energía aparente total Es</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Medidores de energía no reiniciables

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web IFE/EIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de la energía activa total Ep</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valores de energía activa total: Epentregada y Eprecibida</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de energía reactiva total Eq</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valores de energía reactiva total: Eqentregada y Eprecibida</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de energía aparente total Es</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>
Configuración de la red

Presentación
Los siguientes ajustes están relacionados con las características de la red local. Estos ajustes los utilizan las funciones de medición de la unidad de control Micrologic X. Estos ajustes no tienen ningún impacto en las protecciones.

Tensión nominal entre fases
Valor predeterminado = 400 V.
La tensión nominal se puede definir de la siguiente manera:
- En la pantalla de Micrologic X, en Inicio → Configuración → Red → Tensión nominal.
- Con el software EcoStruxure Power Commission.

Frecuencia nominal
Los ajustes disponibles son:
- 50 Hz
- 60 Hz
La frecuencia nominal se puede definir de la siguiente manera:
- En la pantalla de Micrologic X, en Inicio → Configuración → Red → Frecuencia nominal.
- Con el software EcoStruxure Power Commission.

Relación VT
La relación VT es la relación existente entre la tensión nominal primaria y la secundaria medidas por un transformador de tensión (VT).
El rango de valores para la tensión primaria (VT ent.) es de 100 a 1,250 en incrementos de 1 (ajuste de fábrica: 690).
El rango de valores para la tensión secundaria (VT sal.) es de 100 a 690 en incrementos de 1 (ajuste de fábrica: 690).
Las tensiones primaria y secundaria pueden definirse de la siguiente manera:
- En la pantalla de Micrologic X, en Inicio → Configuración → Red → Relación VT.
- Con el software EcoStruxure Power Commission.
Medidas en tiempo real

Presentación

Las unidades de control Micrologic X realizan las siguientes tareas en tiempo real:

- Miden las corrientes siguientes en tiempo real y como valor eficaz:
 - corriente para cada fase y el neutro (si está presente)
 - corriente de defecto a tierra
 - corriente de fuga a tierra (Micrologic 7.0 X)
- Calculan en tiempo real la corriente media.
- Determinan los valores máximos y mínimos de esas magnitudes eléctricas.
- Miden en tiempo real y como valor eficaz las tensiones fase/fase y fase/neutro (si existen).
- Calculan en tiempo real las magnitudes eléctricas asociadas a partir de los valores eficaces de las corrientes y de las tensiones:
 - la tensión media fase/fase y la tensión media fase/neutro (si está presente)
 - los desequilibrios en corriente
 - los desequilibrios en tensión fase/fase y fase/neutro (si está presente)
- Calculan las magnitudes eléctricas asociadas a partir de las muestras de corriente y tensión:
 - potencias (véase página 172)
 - indicadores de calidad: frecuencia, THD(I), THD(V), THD-R(I), and THD-R(V) (véase página 178), así como factor de potencia PF y medición de cos φ (véase página 181)
- Muestran indicadores de funcionamiento: cuadrantes y tipo de carga.
- Determinan los valores máximos y mínimos de esas magnitudes eléctricas.
- Aumentan en tiempo real tres medidores de energía (activa, reactiva, aparente) utilizando los valores en tiempo real de potencia total (véase página 172)

El método de muestreo utiliza los valores de las corrientes armónicas y las tensiones hasta el decimoquinto orden. El proceso de muestreo realiza un seguimiento de la frecuencia fundamental y proporciona 40 muestras por ciclo fundamental.

Los valores de las magnitudes eléctricas, medidas o calculadas en tiempo real, se actualizan cada segundo a la frecuencia nominal.

Ajuste de tipo de sistema

En los interruptores automáticos tripolares, el ajuste del tipo de sistema permite la activación de:

- el ENCT (transformador externo de corriente neutra)
- la ENVT (toma externa de tensión de neutro)

El tipo de sistema se puede definir de la siguiente manera:

- en la pantalla de Micrologic X, en Inicio → Configuración → Medidas → Tipo sistema
- con el software EcoStruxure Power Commission (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

Medida de la corriente del neutro

Los interruptores automáticos tetrapolares o tripolares con el ENCT cableado y configurado miden la corriente del neutro:

- Para un interruptor automático tripolar, la corriente del neutro se mide añadiendo un transformador de corriente neutra en el conductor neutro para obtener información sobre el transformador. Para obtener más información, consulte Catálogo Masterpact MTZ.
- En el caso de un interruptor automático tetrapolar, la medición de la corriente del neutro es sistemática.

La medición de la corriente del neutro se realiza de manera idéntica a la de las corrientes de fase.

Medida de la corriente de defecto a tierra

La corriente de defecto a tierra se calcula o se mide del mismo modo que las corrientes fase, de acuerdo con la configuración del interruptor automático, tal como se muestra en la tabla siguiente.

<table>
<thead>
<tr>
<th>Configuración del interruptor automático</th>
<th>Corriente de defecto a tierra Ig</th>
</tr>
</thead>
<tbody>
<tr>
<td>3P</td>
<td>Ig = I1 + I2 + I3</td>
</tr>
<tr>
<td>4P</td>
<td>Ig = I1 + I2 + I3 + IN</td>
</tr>
<tr>
<td>3P + ENCT</td>
<td>Ig = I1 + I2 + I3 + IN (ENCT)</td>
</tr>
<tr>
<td>3P o 4P + SGR</td>
<td>Ig = ISGR</td>
</tr>
</tbody>
</table>
Medida de corriente de fuga a tierra (Micrologic 7.0 X)

La corriente de fuga a tierra se mide mediante un trafo rectangular que engloba las tres fases o las tres fases y el neutro.

Medida de las tensiones fase/neutro

Los interruptores automáticos tetrapolares o tripolares con ENVT conectado y configurado miden las tensiones fase/neutro (o tensiones simples) V1N, V2N y V3N:
- En el caso de un interruptor automático tripolar, es necesario:
 - Conectar el cable del ENVT al conductor neutro.
 - Declarar el ENVT en el ajuste de tipo de sistema.
- En el caso de los interruptores automáticos tetrapolares, la medición de las tensiones fase/neutro es sistemática.

La medición de las tensiones fase/neutro es idéntica a la de las tensiones fase/fase.

Cálculo de la corriente media y de la tensión media

Las unidades de control Micrologic X calculan:
- La corriente media I_{med}, media aritmética de las corrientes trifásicas:
 $I_{med} = (I_1 + I_2 + I_3) / 3$
- Las tensiones medias:
 - fase/fase V_{avg}, media aritmética de las tres tensiones fase/fase:
 $V_{med} = (V_{12} + V_{23} + V_{31}) / 3$
 - fase/neutro V_{avg}, media aritmética de las tres tensiones fase/neutro (interruptores automáticos tetrapolares o tripolares cableados y conectados con la ENVT):
 $V_{med} = (V_{1N} + V_{2N} + V_{3N}) / 3$

Medida de los desequilibrios de fase en corriente y en tensión

Las unidades de control Micrologic X calculan el desequilibrio de corriente de cada fase (3 valores) y el desequilibrio de corriente máximo.

El desequilibrio de corriente es un porcentaje de la corriente media:

Desequilibrio de I_k (%) = $\left| \frac{I_k - I_{med}}{I_{med}} \right| \times 100$ donde $k = 1, 2, 3$

Las unidades de control Micrologic X calculan:
- Los desequilibrios de tensión fase/fase para cada fase (3 valores) y el valor máximo de 3 desequilibrios de tensión entre fases.
- El desequilibrio de tensión entre fase y neutro (si lo hay) para cada fase (3 valores) y el valor máximo de 3 desequilibrios de tensión entre fase y neutro.

El desequilibrio de tensión se expresa en forma de porcentaje en relación con el valor medio de la magnitud eléctrica (V_{avg}):

Desequilibrio de V_{jk} (%) = $\left| \frac{V_{jk} - V_{med}}{V_{med}} \right| \times 100$ donde $jk = 12, 23, 31 o 1N, 2N, 3N$

Valores máximos/mínimos

La unidad de control Micrologic X determina el valor máximo (MÁX) y mínimo (MÍN) alcanzado por las siguientes magnitudes eléctricas durante el periodo que va del último reinicio al momento actual:
- Corriente: corrientes de fase y del neutro, corrientes medias y desequilibrios de corriente
- Tensión: tensiones fase/fase y fase/neutro, tensiones medias y desequilibrios de tensión
- Alimentación: alimentación total y alimentación de fase (activa, reactiva y aparente)
- Distorsión armónica total: distorsión armónica total THD y THD-R en corriente y en tensión
- Frecuencia
- El valor máximo del máximo de todas las corrientes de fase
- El valor mínimo del mínimo de todas las corrientes de fase
- El valor máximo del máximo de 3 desequilibrios de corriente de fase
- El valor máximo del máximo de 3 desequilibrios de tensión entre fases
- El valor máximo del máximo de 3 desequilibrios de tensión entre fase y neutro
Reset de los valores máximos/mínimos

Los valores máximo y mínimo se pueden restablecer tal como se indica a continuación:

- En la pantalla Micrologic X, en:
 - **Inicio → Medidas → Corriente**
 - **Inicio → Medidas → Tensión**
 - **Inicio → Medidas → Alim.**
 - **Inicio → Medidas → Frecuencia**
 - **Inicio → Medidas → I harmónico.**
 - **Inicio → Medidas → V harmónico.**

- con el software EcoStruxure Power Commission
- con la Aplicación EcoStruxure Power Device
- mediante el envío de un comando a través de la red de comunicación (protegido con contraseña)
- En las páginas web de IFE/EIFE.

NOTA: Los factores de potencia máximo y mínimo y cos φ solo se pueden restablecer:

- con el software EcoStruxure Power Commission
- mediante el envío de un comando a través de la red de comunicación (protegido con contraseña)
- En las páginas web de IFE/EIFE.

Todos los valores máximos y mínimos para el grupo de magnitud eléctrica se restablecen.

Al restablecer los valores máximo y mínimo se generan los siguientes eventos:

<table>
<thead>
<tr>
<th>Mensaje de usuario</th>
<th>Histórico</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restablecer corrientes MÍN/MÁX</td>
<td>Medición</td>
<td>Baja</td>
</tr>
<tr>
<td>Restablecer tensiones MÍN/MÁX</td>
<td>Medición</td>
<td>Baja</td>
</tr>
<tr>
<td>Restablecer potencia MÍN/MÁX</td>
<td>Medición</td>
<td>Baja</td>
</tr>
<tr>
<td>Reiniciar frecuencia MÍN/MÁX</td>
<td>Medición</td>
<td>Baja</td>
</tr>
<tr>
<td>Restablecer armónicos MÍN/MÁX</td>
<td>Medición</td>
<td>Baja</td>
</tr>
<tr>
<td>Restablecer factor potencia MÍN/MÁX</td>
<td>Medición</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Cálculo de valores de demanda

Presentación
La unidad de control calcula:
- Los valores de demanda de las corrientes de fase, neutra y media
- Los valores de demanda de las potencias (activa, reactiva y aparente)
Cada valor de demanda máxima (pico) se almacena en la memoria.

Definición
El valor de demanda es el valor medio de una cantidad durante un periodo de tiempo (intervalo) específico.

Cálculo del valor de demanda de corriente
La demanda de corriente se calcula utilizando el método térmico. La demanda de corriente térmica calcula la demanda en función de una respuesta térmica que simula los medidores de demanda térmica, tal como se muestra en la ilustración siguiente:

Los ajustes de constante de tiempo de integración (intervalo de cálculo de la demanda de corriente) son los siguientes:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de cálculo de la demanda de corriente</td>
<td>minuto</td>
<td>1–60</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

El intervalo se puede definir de la siguiente manera:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)
Cálculo del valor de demanda de potencia

El valor de demanda de potencia se calcula por medio de la integración aritmética de valores eficaces de potencia a lo largo de un periodo de tiempo, divididos entre la duración del periodo. El resultado es equivalente a la energía acumulada durante el periodo de tiempo dividida entre la duración del periodo. En la unidad de control Micrologic X, la demanda de potencia se mide a lo largo de un plazo fijo y se actualiza con la contribución de los últimos minutos.

Los ajustes del intervalo de cálculo de demanda de potencia son los siguientes:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Unidad</th>
<th>Rango</th>
<th>Incremento</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de cálculo de la demanda de potencia</td>
<td>minuto</td>
<td>1–60</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Al final del intervalo de cálculo de demanda de potencia, y cada décima parte del intervalo a partir de entonces. Por ejemplo, en el caso de un intervalo de 15 minutos, cada 1 minuto y 30 segundos:
- El valor de demanda a lo largo del intervalo se calcula y se actualiza.
- El cálculo de un nuevo valor de demanda se inicializa en un intervalo nuevo:
 - Eliminando la aportación de la primera décima parte del intervalo anterior
 - Sumando la aportación de la última décima parte

El intervalo de cálculo de la demanda de potencia se puede establecer de la manera siguiente:
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

Valores pico de demanda

La unidad de control Micrologic X determina los siguientes valores pico máximos de demanda para el periodo desde el último restablecimiento hasta la hora actual:
- Demanda de corriente pico
- Demanda de potencia pico

Restablecimiento de valores de demanda pico

Los valores de demanda de corriente pico se restablecen con los valores de corriente mínimo y máximo. Los valores de demanda de potencia pico se restablecen con los valores de potencia mínimo y máximo. Los valores de demanda pico pueden restablecerse:
- En la pantalla Micrologic X, en:
 - Inicio → Medidas → Corriente
 - Inicio → Medidas → Alim.
- con el software EcoStruxure Power Commission (protegido con contraseña)
- con Aplicación EcoStruxure Power Device (protegido con contraseña)
- escribiendo un comando de reinicio mediante la red de comunicación (protegido con contraseña)

Al restablecer los valores pico de demanda se generan los eventos siguientes:

<table>
<thead>
<tr>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restablecer demanda de corriente Mín/Máx</td>
<td>Medición</td>
<td>Baja</td>
</tr>
<tr>
<td>Restablecer demanda de potencia Mín/Máx</td>
<td>Medición</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Medida de las potencias

Presentación
La unidad de control calcula las magnitudes eléctricas requeridas en la gestión de las potencias:
- Los valores en tiempo real de:
 - potencias activas (P_{tot} total y por fase) en kW
 - potencias reactivas (Q_{tot} total y por fase) en kVAR
 - potencias aparentes (S_{tot} total y por fase) en kVA
- Los valores máximos y mínimos para cada una de esas potencias
- Los indicadores de cos φ y del factor de potencia (PF) (total y por fase)
- El cuadrante de funcionamiento y la naturaleza de la carga (capacitiva o inductiva)

Todas estas magnitudes eléctricas se calculan continuamente y su valor se actualiza cada segundo a la frecuencia nominal.

Principio de la medida de las potencias
La unidad de control calcula los valores de potencia a partir de las muestras de corriente y tensión.
El principio del cálculo se basa en los siguientes elementos:
- La definición de las potencias
- Algoritmos para el método de cálculo de 3 vatímetros (véase página 174)
- El valor definido de la señal de potencia (interruptor automático alimentado aguas arriba (superior) o aguas abajo (inferior)).

Los cálculos emplean hasta el armónico decimoquinto.

Método de cálculo de potencia total
La potencia aparente y reactiva total puede calcularse con uno de los dos siguientes métodos:
- Vector
- Aritmético (ajuste de fábrica)

El método de cálculo se puede definir de la siguiente manera:
- En la pantalla de Micrologic X, en Inicio → Configuración → Medidas → Cálc. P tot.
- Con el software EcoStruxure Power Commission.

Interruptor automático tripolar, interruptor automático tetrapolar
El algoritmo de cálculo se basa en el método de 3 vatímetros:

Si existe medida de tensión en el neutro (interruptor automático tetrapolar o tripolar con ENVT conectado y configurado), la unidad de control mide la potencia mediante 3 cargas monofásicas aguas abajo.

Si no existe medida de tensión alguna en el neutro (interruptor automático tripolar en sistema de alimentación sin neutro), se utiliza una referencia flotante de tensión interna para medir la potencia.

Interruptor automático tripolar, neutro distribuido
Declare el ENVT en el ajuste de tipo de sistema (véase página 167).

NOTA: La declaración del ENVT únicamente no permite el cálculo correcto de las potencias. Es imprescindible conectar el hilo del ENVT al conductor neutro.
Señal de potencia y cuadrante de funcionamiento

Por definición, las potencias activas tienen:
- Signo + cuando las recibe el usuario, es decir, cuando el dispositivo actúa como receptor.
- Signo - cuando las suministra el usuario, es decir, cuando el dispositivo actúa como generador.

Por definición, las potencias reactivas tienen:
- El mismo signo que las energías y potencias activas cuando la corriente se sitúa por detrás de la tensión, es decir, cuando el dispositivo es inductivo.
- El signo opuesto al de las energías y potencias activas cuando la corriente se sitúa por delante de la tensión, es decir, cuando el dispositivo es capacitivo.

Estas definiciones determinan, por tanto, 4 cuadrantes de funcionamiento (Q1, Q2, Q3 y Q4):

Convención de señal de potencia

La señal de la potencia que atraviesa el interruptor automático dependerá del tipo de conexión:
- Los interruptores automáticos con la potencia activa que fluye de aguas arriba (parte superior) a aguas abajo (parte inferior) deberán definirse con la señal de potencia P+.
- Los interruptores automáticos con la potencia activa que fluye de aguas abajo (parte inferior) a aguas arriba (parte superior) deberán definirse con la señal de potencia P-.

Para definir la convención de la señal de potencia, proceda de la siguiente manera:
- en la pantalla de Micrologic X, en las pantallas Inicio → Configuración → Red → Señal poten.
- con el software EcoStruxure Power Commission
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)
Algoritmo de cálculo de las potencias

Presentación
Los algoritmos se proporcionan para el método de cálculo de 3 vatímetros. Las definiciones y el cálculo de las potencias están indicados para una red con armónicos.
Se muestran las cantidades calculadas:
- En la pantalla de Micrologic X, en Inicio → Medidas → Alim. (sólo la potencia total).
- Con el software EcoStruxure Power Commission.
- Con la Aplicación EcoStruxure Power Device (sólo la potencia total).
- En un controlador remoto a través de la red de comunicación.

Potencias activas
La potencia activa para cada fase se calcula de la manera siguiente:
\[P_p = \frac{1}{T} \int_1^T V_p(t)I_p(t)dt \] donde \(p = 1, 2, 3 \) (fase)
La potencia activa total se calcula de la manera siguiente:
\[P_{tot} = P1 + P2 + P3 \]

Potencia reactiva
La potencia reactiva con armónicos para cada fase se calcula de la manera siguiente:
\[Q_p = \pm \sqrt{S_p^2 - P_p^2} \] donde \(p = 1, 2, 3 \) (fase)
La potencia reactiva total se calcula de la manera siguiente:
- Con el método vectorial:
 \[Q_{tot V} = Q1 + Q2 + Q3 \]
- Con el método aritmético:
 \[Q_{tot A} = \pm \sqrt{S_{tot A}^2 - P_{tot}^2} \]

Potencia aparente
La potencia aparente para cada fase y la potencia aparente total se calculan de la manera siguiente:
\[S_p = (V_p \times I_p) \] donde \(p = 1, 2, 3 \) (fase)
La potencia aparente para cada fase y la potencia aparente total se calculan de la manera siguiente:
- Con el método vectorial:
 \[S_{tot V} = \sqrt{P_{tot}^2 + Q_{tot V}^2} \]
- Con el método aritmético:
 \[S_{tot A} = S1 + S2 + S3 \]
Cableado y configuración de ENVT en un interruptor automático tripolar

Cuando se instala en un sistema con neutro distribuido, es necesario que el cableado y la configuración de ENVT sean correctos para calcular y visualizar valores correctos por fase (véase página 167).

Cuando se instala en un sistema sin neutro distribuido, si ENVT está configurado como Sí, los valores de potencia por fase son irrelevantes.

En la tabla siguiente se indican los valores visualizados y calculados para cada configuración:

<table>
<thead>
<tr>
<th>Sistema de alimentación</th>
<th>MTZ</th>
<th>ENVT cableado</th>
<th>ENVT configurado</th>
<th>Ptot</th>
<th>Pp</th>
<th>Qtot</th>
<th>Qp</th>
<th>Stot</th>
<th>PFtot</th>
<th>PFp</th>
<th>VLL</th>
<th>Vavg LL</th>
<th>VLN</th>
<th>Vavg LN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifásico con neutro</td>
<td>4P</td>
<td>NA</td>
<td>NA</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>3P</td>
<td>Sí</td>
<td>Sí</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>3P</td>
<td>Sí</td>
<td>No</td>
<td>✔</td>
<td>NR</td>
<td>✔</td>
<td>NR</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>NR</td>
<td>NR</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>3P</td>
<td>No</td>
<td>Sí</td>
<td>✔</td>
<td>NM</td>
<td>✔</td>
<td>NM</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>NM</td>
<td>NM</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>3P</td>
<td>No</td>
<td>No</td>
<td>✔</td>
<td>NM</td>
<td>✔</td>
<td>NM</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>NM</td>
<td>NM</td>
<td>✔</td>
</tr>
<tr>
<td>Trifásico</td>
<td>3P</td>
<td>Sí</td>
<td>NA</td>
<td>✔</td>
<td>NR</td>
<td>✔</td>
<td>NR</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>NR</td>
<td>NR</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>3P</td>
<td>No</td>
<td>NA</td>
<td>✔</td>
<td>NM</td>
<td>✔</td>
<td>NM</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>NM</td>
<td>NM</td>
<td>✔</td>
</tr>
</tbody>
</table>

✔ El valor se calcula y se muestra
NA No aplicable
NR El valor visualizado es irrelevante
NM No se muestra el valor
Medición de energía

Presentación
La unidad de control calcula los diferentes tipos de energía mediante medidores de energía y proporciona los valores de:
- La energía activa total E_p, la energía activa entregada (en la carga) E_p y la energía activa recibida (fuera de la carga) E_p.
- La energía reactiva total E_q, la energía reactiva entregada (en la carga) E_q y la energía reactiva recibida (fuera de la carga) E_q.
- La energía aparente total E_s

Los valores de energía se calculan cada segundo y se muestran en forma de consumo horario. Los valores se almacenan en memoria no volátil cada segundo.

Hay disponibles dos tipos de contador para cada medidor de energía: uno que se puede restablecer y otro que no.

NOTA: Para realizar una medición fiable de la energía con el rango actual, la unidad de control debe alimentarse con un módulo VPS o una fuente de alimentación externa de 24 V CC (véase página 32).

NOTA: Las energías por fase están disponibles como opción (véase página 186). Se calculan mediante los mismos principios que las energías totales.

Principio del cálculo de las energías
La energía, por definición, es la integración de la potencia en tiempo real durante un periodo T. El periodo de integración T dura varios ciclos que equivalen a la frecuencia nominal.

\[E = \int G(t) \, dt \quad \text{donde} \ G = P, Q \ o \ S \]

Medidores de energía parcial
Un medidor de energía parcial recibida y otro de energía parcial entregada calculan la energía acumulada para cada tipo de energía, ya sea activa o reactiva, con incrementos a cada segundo:
- $E_{entregada}(t) = E_{entregada}(t - 1) + (G_{entregada}(t)) / 3600$, donde $G_{entregada} = P_{tot}$ o $Q_{tot} > 0$
- La energía recibida siempre se cuenta negativamente.
 \[E_{recibida}(t) = E_{recibida}(t - 1) + (|G_{recibida}(t)|) / 3600 \], donde $G_{recibida} = P_{tot}$ o $Q_{tot} < 0$

Hay disponibles dos tipos de contador para cada medidor de energía total y parcial: uno que se puede restablecer y otro que no.

Medidores de energía
A partir de los medidores de energía parcial y para cada tipo de energía, ya sea activa o reactiva, un medidor de energía proporciona una de las siguientes medidas a cada segundo:
- La energía absoluta, mediante la suma de la energía recibida y la entregada. El modo de acumulación de energía es absoluto.
 \[E(t)_{absoluta} = E_{entregada}(t) + E_{recibida}(t) \]
- La energía con signo, mediante la distinción entre energía recibida y reiniciada. El modo de acumulación de energía es con signo.
 \[E(t)_{asignada} = E_{entregada}(t) - E_{recibida}(t) \]

La energía aparente E_s siempre se cuenta como positiva.
Selección del cálculo de energía

La información que se busca es la que determina el cálculo que se seleccionará:

- El valor absoluto de la energía que ha cruzado los polos de un interruptor automático o los cables de un equipo eléctrico son relevantes de cara al mantenimiento de la instalación.
- Los valores con signo de la energía entregada y recibida son necesarios para calcular el coste económico de un equipo.

De forma predeterminada se configura el modo de acumulación de energía absoluta.

Selezione el modo de cálculo de la energía mediante uno de los siguientes métodos:

- en la pantalla de Micrologic X, en las pantallas Inicio → Configuración → Medidas → Cálc. E
- con el software EcoStruxure Power Commission
- mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

Restablecimiento de medidores de energía

Los medidores de energía pueden restablecerse de la siguiente manera:

- en la pantalla de Micrologic X, en las pantallas Inicio → Medidas → Energía → Reini. contad.
- con el software EcoStruxure Power Commission
- con la Aplicación EcoStruxure Power Device
- escribiendo un comando de reinicio mediante la red de comunicación (protegido con contraseña)
- En las páginas web de IFE/EIFE

Todos los medidores de energía reiniciables se han restablecido.

Al restablecer los medidores se genera el siguiente evento:

<table>
<thead>
<tr>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restablecer contadores energía</td>
<td>Medición</td>
<td>Baja</td>
</tr>
</tbody>
</table>

Preajuste de medidores de energía

Con el software EcoStruxure Power Commission (protegido con contraseña) se pueden predefinir por separado todos los contadores de energía reiniciables.
Distorsión total armónica

Presentación
La unidad de control calcula la distorsión armónica total relacionada con el valor fundamental THD, así como la distorsión armónica total relacionada con los valores eficaces THD-R de las tensiones y las corrientes.

Visualización de la distorsión armónica total
La distorsión armónica total relacionada con el valor fundamental THD se puede mostrar de la siguiente manera:
- En la pantalla de Micrologic X:
 - THD(I) en Inicio → Medidas → I harmónico.
 - THD(V) en Inicio → Medidas → V harmónico.
- con el software EcoStruxure Power Commission
- con la Aplicación EcoStruxure Power Device
- En la pantalla de FDM128.
- A través de la red de comunicación.

La distorsión armónica total relacionada con los valores eficaces THD-R se puede mostrar de la siguiente manera:
- Con el software EcoStruxure Power Commission.
- A través de la red de comunicación.

Corriente THD
La corriente THD es un porcentaje del valor eficaz de corrientes armónicas de rangos superiores a 1 en relación con el valor eficaz de la corriente fundamental (primer orden). La unidad de control calcula la distorsión de la corriente armónica total THD hasta el decimoquinto armónico:

$$\text{THD}(I) = 100 \sqrt{\sum_{n=2}^{15} (I_{n\text{rms}})^2 / I_{1\text{rms}}}$$

El porcentaje de THD en corriente puede ser superior al 100 %.
La distorsión armónica total THD(I) permite evaluar la distorsión de la onda de corriente con un solo número. En la tabla siguiente se muestran los valores límite de THD.

<table>
<thead>
<tr>
<th>Valor de THD(I)</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD(I) <10 %</td>
<td>Corrientes armónicas débiles: poco riesgo de sufrir perturbaciones.</td>
</tr>
<tr>
<td>10 % <THD(I) <50 %</td>
<td>Corrientes armónicas significativas: riesgo de calentamiento, sobredimensionado de las fuentes.</td>
</tr>
<tr>
<td>50 % <THD(I)</td>
<td>Corrientes armónicas muy importantes: riesgo casi seguro de sufrir perturbaciones, degradación y calentamientos a menos que la instalación se haya calculado y dimensionado teniendo en cuenta este tipo de restricciones.</td>
</tr>
</tbody>
</table>

La distorsión de la onda de corriente creada por un dispositivo no lineal con un THD(I) elevado puede provocar distorsión en la onda de tensión, en función del nivel de distorsión y la impedancia de la fuente. Esta distorsión de la onda de tensión afecta a todos los dispositivos que reciben alimentación de la fuente. Los dispositivos más sensibles del sistema pueden quedar por lo tanto afectados. Puede que los dispositivos con un THD(I) elevado no queden directamente afectados, aunque sí podrían ocasionar perturbaciones en otros dispositivos más sensibles del sistema.

NOTA: La medición de THD(I) es un método efectivo de detección de los posibles problemas que pueden tener los dispositivos que forman parte de redes eléctricas.
La tensión THD es un porcentaje del valor eficaz de tensiones armónicas de rangos superiores a 1 en relación con el valor eficaz de la tensión fundamental (primer orden). La unidad de control calcula la THD en la tensión hasta el decimoquinto armónico:

\[\text{THD}(V) = \sqrt{\sum_{n=2}^{15} \frac{V_{n \text{rms}}^2}{V_{1 \text{rms}}}} \]

Este porcentaje puede teóricamente ser superior al 100 % pero, en la práctica, raramente supera el 15 %.

La distorsión armónica total THD(V) permite evaluar la distorsión de la onda de tensión con un solo número. Los valores límite siguientes son los que suelen evaluar los distribuidores de energía:

<table>
<thead>
<tr>
<th>Valor de THD(V)</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD(V) <5 %</td>
<td>Distorsión insignificante de la onda de tensión: poco riesgo de perturbaciones.</td>
</tr>
<tr>
<td>5 % <THD(V) <8 %</td>
<td>Distorsión significativa de la onda de tensión: riesgo de calentamiento y de sufrir perturbaciones.</td>
</tr>
<tr>
<td>8 % <THD(V)</td>
<td>Distorsión significativa de la onda de tensión: existe un riesgo elevado de sufrir perturbaciones a menos que la instalación ya se haya calculado y dimensionado teniendo en cuenta este nivel de distorsión.</td>
</tr>
</tbody>
</table>

La distorsión de la onda de tensión afecta a todos los dispositivos que reciben alimentación de la fuente. NOTA: La indicación de THD(V) permite evaluar el riesgo de que los dispositivos más sensibles que reciben alimentación sufran interferencias.

La corriente THD-R es un porcentaje del valor eficaz de corrientes armónicas de rangos superiores a 1 en relación con el valor eficaz de la corriente fundamental más la armónica. La unidad de control calcula la distorsión de la corriente armónica total THD-R hasta el decimoquinto armónico y utiliza para ello la siguiente ecuación:

\[\text{THD}(I) = \frac{100}{1 \text{rms}} \sqrt{\sum_{n=5}^{15} I_{n \text{rms}}^2} \]

El porcentaje de THD-R en corriente no debe ser superior al 100 %.

La distorsión armónica total THD-R(I) permite evaluar la distorsión de la onda de corriente con un solo número. En la tabla siguiente se muestran los valores límite de THD-R.

<table>
<thead>
<tr>
<th>Valor de THD-R(I)</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD-R(I) <10 %</td>
<td>Corrientes armónicas débiles: poco riesgo de sufrir perturbaciones.</td>
</tr>
<tr>
<td>10 % <THD-R(I) <50 %</td>
<td>Corrientes armónicas significativas: riesgo de calentamiento, sobredimensionado de las fuentes.</td>
</tr>
<tr>
<td>50 % <THD-R(I)</td>
<td>Corrientes armónicas muy importantes: riesgo casi seguro de sufrir perturbaciones, degradación y calentamientos a menos que la instalación se haya calculado y dimensionado teniendo en cuenta este tipo de restricciones.</td>
</tr>
</tbody>
</table>

La distorsión de la onda de corriente creada por un dispositivo no lineal con un THD-R(I) elevado puede provocar distorsión en la onda de tensión, en función del nivel de distorsión y la impedancia de la fuente. Esta distorsión de la onda de tensión afecta a todos los dispositivos que reciben alimentación de la fuente. Los dispositivos más sensibles del sistema pueden quedar por lo tanto afectados. Puede que los dispositivos con un THD-R(I) elevado no queden directamente afectados, aunque sí podrían ocasionar perturbaciones en otros dispositivos más sensibles del sistema. NOTA: La medición de THD-R(I) es un método efectivo de detección de los posibles problemas que pueden tener los dispositivos que forman parte de redes eléctricas.
Tensión THD-R

La tensión THD-R es el porcentaje del valor eficaz de tensiones armónicas superiores a 1 en relación con el valor eficaz de la tensión fundamental más la armónica. La unidad de control calcula la distorsión de la tensión armónica total THD-R hasta el decimoquinto armónico y utiliza para ello la siguiente ecuación:

$$THD(V) = \sqrt{\sum_{n=2}^{15} \frac{V_{n\text{rms}}^2}{V_{\text{rms}}}}$$

La distorsión armónica total THD-R(V) permite evaluar la distorsión de la onda de tensión con un solo número. Los valores límite siguientes son los que suelen evaluar los distribuidores de energía:

<table>
<thead>
<tr>
<th>Valor de THD-R(V)</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD-R(V) <5 %</td>
<td>Distorsión insignificante de la onda de tensión: poco riesgo de perturbaciones.</td>
</tr>
<tr>
<td>5 % <THD-R(V) <8 %</td>
<td>Distorsión significativa de la onda de tensión: riesgo de calentamiento y de sufrir perturbaciones.</td>
</tr>
<tr>
<td>8 % <THD-R(V)</td>
<td>Distorsión significativa de la onda de tensión: existe un riesgo elevado de sufrir perturbaciones a menos que la instalación ya se haya calculado y dimensionado teniendo en cuenta este nivel de distorsión.</td>
</tr>
</tbody>
</table>

La distorsión de la onda de tensión afecta a todos los dispositivos que reciben alimentación de la fuente.

NOTA: La indicación de THD-R(V) permite evaluar el riesgo de que los dispositivos más sensibles que reciben alimentación sufran interferencias.
Medida del factor de potencia PF y del cos φ

Factor de potencia PF

La unidad de control calcula:
- El factor de potencia de cada fase PF1, PF2, PF3 a partir de la potencia aparente y activa de las fases.
- El factor de potencia total PF a partir de la potencia activa total Ptot y la potencia aparente total Stot:

\[PF = \frac{P_{tot}}{S_{tot}} \]

NOTA: Stot es la potencia aparente total vectorial o aritmética, en función del ajuste seleccionado (véase página 174).

Este indicador califica:
- El sobredimensionado necesario para la fuente de alimentación de la instalación ante la presencia de corrientes armónicas.
- La presencia de corrientes armónicas por comparación con el valor del cos φ (véase más adelante).

cos φ

La unidad de control calcula:
- El cos φ por fase a partir de las potencias activa y aparente fundamentales de la fase.
- El cos φ a partir de la potencia activa fundamental total Pfundtot y la potencia aparente fundamental total Sfundtot:

\[\cos \phi = \frac{P_{fundtot}}{S_{fundtot}} \]

Este indicador califica el consumo de la energía fundamental y define el cuadrante de funcionamiento. El cos φ también recibe el nombre de factor de potencia de desplazamiento (Displacement Power Factor, DPF).

Factor de potencia PF y cos φ ante la presencia de corrientes armónicas

Si la tensión de alimentación no está excesivamente deformada, el factor de potencia PF se expresará como una función del cos φ y THD(I) mediante:

\[PF \approx \frac{\cos \phi}{\sqrt{1 + THD(I)^2}} \]

El gráfico siguiente precisa el valor de PF/cos φ como una función de THD(I):

La comparación de los 2 valores permite calcular el nivel de deformación armónica de la alimentación.
Signo del factor de potencia PF y del cos φ

Para estos indicadores se pueden aplicar dos convenciones de signo:

- Convención IEC: el signo de estos indicadores cumple estrictamente con los cálculos con signo de las potencias (es decir, Ptot, Stot, Pfundtot y Sfuntot).
- Convención IEEE: los indicadores se calculan según la siguiente fórmula:

 \[PF = \frac{P_{tot}}{S_{tot}} \times (-\text{signo}(Q)) \quad \text{y} \quad \cos \varphi = \frac{P_{fundo_{tot}}}{S_{fundo_{tot}}} \times (-\text{signo}(Q)) \]

En las siguientes figuras se define el signo del factor de potencia PF y el cos φ por cuadrante (Q1, Q2, Q3 y Q4) para ambas convenciones:

NOTA: Para un dispositivo, una parte de la instalación que es únicamente receptora (o generadora), la ventaja de la convención IEEE es que añade el tipo de componente reactivo a los indicadores PF y cos φ:

- Capacitivo: signo positivo de los indicadores PF y cos φ.
- Inductivo: signo negativo de los indicadores PF y cos φ.
Gestión del factor de potencia PF y cos φ: valores mínimo y máximo

La gestión de los indicadores PF y cos φ consiste en:
- definir las situaciones críticas.
- llevar a cabo la supervisión de los indicadores de acuerdo con la definición de las situaciones críticas.

Las situaciones se consideran críticas cuando los valores de los indicadores se sitúan alrededor de 0. Para estas situaciones se definen los valores mínimo y máximo de los indicadores.

En la siguiente figura se muestran las variaciones del indicador cos φ (con la definición del cos φ MÍN/MÁX) y su valor según la convención IEEE para una aplicación del receptor:

1. Flechas que indican el rango de variación del cos φ de la carga en servicio
2. Zona crítica + 0 para los equipos fuertemente capacitivos (rayado verde)
3. Zona crítica - 0 para los equipos fuertemente inductivos (rayado rojo)
4. Posición mínima del cos φ de la carga (inductiva): flecha roja
5. Rango de variación del valor del cos φ de la carga (inductiva): rojo
6. Posición máxima del cos φ de la carga (capacitiva): flecha verde
7. Rango de variación del valor del cos φ de la carga (capacitiva): verde

PF MÁX (o cos φ MÁX) se obtiene para el valor positivo mínimo del indicador PF (o cos φ).
PF MÍN (o cos φ MÍN) se obtiene para el valor negativo máximo del indicador PF (o cos φ).

NOTA: Los valores mínimo y máximo de los indicadores PF y cos φ no tienen significado físico; constituyen marcas que determinan la zona óptima de funcionamiento para la carga.

Supervisión de los indicadores cos φ y de factor de potencia PF

En la convención IEEE, las situaciones críticas en funcionamiento receptor en carga capacitiva o inductiva se detectan y diferencian (dos valores).

En la siguiente tabla se indica el sentido de variación de los indicadores y su valor en funcionamiento receptor:

<table>
<thead>
<tr>
<th>Convención IEEE</th>
<th>Cuadrante de funcionamiento</th>
<th>Q1</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentido de variación de los cos φ (o PF) en el rango de funcionamiento</td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>Valor de los cos φ (o PF) en el rango de funcionamiento</td>
<td>0...-0,3...-0,8...-1</td>
<td>+1...+0,8...+0,4...0</td>
<td></td>
</tr>
</tbody>
</table>

Los indicadores de calidad MÁX y MÍN indican ambas situaciones críticas.

En la convención IEC, las situaciones críticas en funcionamiento receptor en carga capacitiva o inductiva se detectan pero no se diferencian (un valor).

En la siguiente tabla se indica el sentido de variación de los indicadores y su valor en funcionamiento receptor:

<table>
<thead>
<tr>
<th>Convención IEC</th>
<th>Cuadrante de funcionamiento</th>
<th>Q1</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentido de variación de los cos φ (o PF) en el rango de funcionamiento</td>
<td>MAX</td>
<td>MIN</td>
<td>MIN</td>
</tr>
<tr>
<td>Valor de los cos φ (o PF) en el rango de funcionamiento</td>
<td>0...+0,3...+0,8...+1</td>
<td>+1...+0,8...+0,4...0</td>
<td></td>
</tr>
</tbody>
</table>

El indicador de calidad MÁX indica ambas situaciones críticas.
Elección de la convención de signo del cos φ y del factor de potencia PF

La convención de signo para los indicadores cos φ y PF se define de la siguiente manera:

- En la pantalla de Micrologic X, en Inicio → Configuración → Medidas → PF/VAR Convención.
- Con el software EcoStruxure Power Commission.
- Mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña)

El ajuste de fábrica de la convención de signo es IEEE.
Sección 4.2
Funciones de medición opcionales

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía por fase</td>
<td>186</td>
</tr>
<tr>
<td>Análisis de armónicos individuales</td>
<td>188</td>
</tr>
</tbody>
</table>
Energía por fase

Presentación

El Digital Module de energía por fase activa el análisis de consumo de energía por fase. Es especialmente recomendable para las instalaciones de baja tensión que tienen una gran cantidad de cargas excéntricas. En el punto de la medición, permite y muestra el cálculo de la energía recibida y suministrada en cada fase de la red. Calcula y muestra la energía activa, reactiva y aparente por fase.

La energía por fase se calcula utilizando el método descrito para calcular la energía (véase página 176).

La energía por fase Digital Module se puede instalar:
- En un interruptor automático Masterpact MTZ tetrapolar.
- En un interruptor automático Masterpact MTZ tripolar con el neutro conectado al borne VN y con ENV cableado y configurado.

Requisitos previos

Energía por fase está disponible cuando el Digital Module de Energía por fase se ha adquirido y se ha instalado en una unidad de control Micrologic X (véase página 28).

El Digital Module de Energía por fase es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 001.000.xxx

Características del medidor de energía

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía activa total por fase</td>
<td>kWh</td>
<td>De –10.000.000 a 10.000.000 kWh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA</td>
</tr>
<tr>
<td>Epentregada (1, 2, 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eprecibida (1,2,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía activa total por fase</td>
<td>kWh</td>
<td>De –10.000.000 a 10.000.000 kWh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA</td>
</tr>
<tr>
<td>Epentregada (1, 2, 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eprecibida (1,2,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía reactiva total por fase</td>
<td>kVARh</td>
<td>De –10.000.000 a 10.000.000 kVARh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA</td>
</tr>
<tr>
<td>Eqentregada (1,2,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eqrecibida (1,2,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía aparente total por fase</td>
<td>kVARh</td>
<td>De 0 a 10.000.000 kVARh</td>
<td>+/-1 %</td>
<td>Consulte la NOTA</td>
</tr>
<tr>
<td>Es (1,2,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA: La precisión del rango de medición de energía conforme a IEC 61557-12 se define mediante valores de rango de corriente, tensión y factor de potencia.

Disponibilidad de los medidores de energía reiniciales

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación</th>
<th>Páginas web de IFE/IFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía activa total por fase</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Epentregada (1, 2, 3) y Eprecibida (1, 2, 3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Energía reactiva total por fase</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Eqentregada (1, 2, 3) y Eqrecibida (1, 2, 3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Energía aparente total por fase</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Es (1, 2, 3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Funciones de medición

Disponibilidad de los medidores de energía no reiniciables

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación TCP/IP</th>
<th>Páginas web de IFE/IFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de la energía activa total Ep</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valores de energía activa total: Epentregada y Eprecebida</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de energía reactiva total Eq</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valores de energía reactiva total: Eqentregada y Eprecibida</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Valor de energía aparente total Es</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
<td>–</td>
</tr>
</tbody>
</table>

Restablecimiento de la energía por fase

Los medidores de energía reiniciables se pueden reiniciar como cualquier otro medidor de energía *(véase página 177).*
Análisis de armónicos individuales

Presentación

El análisis de armónicos individuales Digital Module proporciona supervisión en tiempo real de armónicos de tensiones y corrientes hasta el rango 40. Si la contaminación armónica alcanza niveles inaceptables, ayuda a seleccionar una acción correctiva apropiada.

La unidad de control Micrologic X THD(I), THD(V), THD-R(I) y THD-R(V) calcula de manera estándar las (véase página 178) distorsiones armónicas totales.

La unidad de control Micrologic X calcula los armónicos individuales de acuerdo con los métodos de medición especificados en IEC 61000-4-30 (técnicas de pruebas y medición - métodos de medición de calidad de potencia). El cálculo de los armónicos individuales se realiza cada 200 ms. La unidad de control Micrologic X proporciona los valores agregados de los armónicos individuales calculados durante un periodo de tiempo de 3 s.

Requisitos previos

El análisis de armónicos individuales está disponible cuando el Análisis de armónicos individuales Digital Module se adquiere y se instala en una unidad de control Micrologic X (véase página 28).

El Análisis de armónicos individuales Digital Module es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 002.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).

Características

<table>
<thead>
<tr>
<th>Medición</th>
<th>Unidad</th>
<th>Rango</th>
<th>Precisión</th>
<th>Rango de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armónicos de corrientes en fase 1 de rango 1 a 40 (40 valores)</td>
<td>A</td>
<td>0-20 × In</td>
<td>5 %</td>
<td>MTZ1: 40–(1.600 x 1.2) MTZ2: 40–(4.000 x 1.2) MTZ3: 80–(6.300 x 1.2)</td>
</tr>
<tr>
<td>Armónicos de corrientes en fase 2 de rango 1 a 40 (40 valores)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armónicos de corrientes en fase 3 de rango 1 a 40 (40 valores)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armónicos de corrientes en neutro de rango 1 a 40 (40 valores)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armónicos de tensión de entre fases V12 de rango 1 a 40 (40 valores)</td>
<td>V</td>
<td>0-1.150</td>
<td>5 %</td>
<td>208-690 × 1,2</td>
</tr>
<tr>
<td>Armónicos de tensión de entre fases V23 de rango 1 a 40 (40 valores)</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armónicos de tensión de entre fases V31 de rango 1 a 40 (40 valores)</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armónicos de tensión de fase a neutro V1N de rango 1 a 40 (40 valores)</td>
<td>V</td>
<td>0-660</td>
<td>5 %</td>
<td>120-400 × 1,2</td>
</tr>
<tr>
<td>Armónicos de tensión de fase a neutro V2N de rango 1 a 40 (40 valores)</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armónicos de tensión de fase a neutro V3N de rango 1 a 40 (40 valores)</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Disponibilidad de los datos

<table>
<thead>
<tr>
<th>Medición</th>
<th>HMI de Micrologic X</th>
<th>Aplicación EcoStruxure Power Device</th>
<th>Software EcoStruxure Power Commission</th>
<th>FDM128</th>
<th>Comunicación TCP/IP</th>
<th>Páginas web de IFE/IFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitud de armónico n de fase actual x (fundamental)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Magnitud de armónico n de corriente neutra (fundamental)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Magnitud de armónico n de tensión entre fases Vxy (fundamental)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
<tr>
<td>Magnitud de armónico n de tensión de fase a neutro VxN (fundamental)</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
</tr>
</tbody>
</table>

El espectro armónico se muestra en la Aplicación EcoStruxure Power Device por medio de una conexión Bluetooth o USB OTG.

El espectro armónico se puede exportar en un archivo en formato JSON utilizando la Aplicación EcoStruxure Power Device.

Origen y efectos de los armónicos

La presencia de varias cargas no lineales en una red eléctrica crea corrientes armónicas en la red eléctrica.

Las corrientes armónicas distorsionan las ondas de corriente y de tensión y degradan la calidad de la energía distribuida.

Si con considerables, las distorsiones pueden provocar:
- Perturbaciones e incluso funcionamiento degradado de los equipos alimentados
- Calentamiento intempestivo de los dispositivos y los conductores
- Sobreconsumo

Todos estos efectos aumentan el tiempo de instalación del sistema y, por consiguiente, los costes de explotación. Por lo tanto, es necesario supervisar la calidad de la energía.
Definición de un armónico

Una señal periódica es una superposición de:
- La señal sinusoidal de origen en la frecuencia fundamental (por ejemplo, 50 Hz o 60 Hz).
- Señales sinusoidales cuyas frecuencias son múltiplos de la frecuencia fundamental llamados armónicos.
- Un eventual componente continuo.

Esta señal periódica se descompone según una suma de términos:

\[y(t) = y_0 + \sum_{n=1}^{\infty} y_n \left(\sqrt{2} \times \sin(n \omega t - \varphi_n) \right) \]

en la que:
- \(y_0 \): valor del componente continuo
- \(y_n \): valor eficaz del armónico de rango \(n \)
- \(\omega \): pulsación de la frecuencia fundamental
- \(\varphi_n \): desfase del componente armónico \(n \)

NOTA: El primer armónico se denomina el armónico fundamental.

Ejemplo de una onda de corriente deformada por un componente armónico:

1. \(I_{\text{rms}} \): valor eficaz de la forma de onda armónica
2. \(I_1 \): corriente fundamental
3. \(I_3 \): corriente armónica de rango 3
4. \(I_5 \): corriente armónica de rango 5
Ejemplo de pantalla

En la pantalla siguiente se ofrece un ejemplo de la información disponible en la Aplicación EcoStruxure Power Device.
Capítulo 5
Funciones de mantenimiento y diagnóstico

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Funciones estándar de mantenimiento y diagnóstico</td>
<td>194</td>
</tr>
<tr>
<td>5.2</td>
<td>Funciones opcionales de mantenimiento y diagnóstico</td>
<td>214</td>
</tr>
</tbody>
</table>
Sección 5.1
Funciones estándar de mantenimiento y diagnóstico

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asistencia</td>
<td>195</td>
</tr>
<tr>
<td>Programación del mantenimiento</td>
<td>196</td>
</tr>
<tr>
<td>Estado funcionam.</td>
<td>199</td>
</tr>
<tr>
<td>Supervisión del interruptor automático</td>
<td>200</td>
</tr>
<tr>
<td>Supervisión del circuito de disparo</td>
<td>201</td>
</tr>
<tr>
<td>Supervisión del funcionamiento interno de la unidad de control Micrologic X</td>
<td>203</td>
</tr>
<tr>
<td>Supervisión de la vida útil del interruptor automático</td>
<td>206</td>
</tr>
<tr>
<td>Supervisión de la vida útil de la unidad de control Micrologic X</td>
<td>207</td>
</tr>
<tr>
<td>Supervisión de la función de apertura/cierre</td>
<td>208</td>
</tr>
<tr>
<td>Supervisión del estado de los contactos</td>
<td>210</td>
</tr>
<tr>
<td>Supervisión del perfil de carga</td>
<td>211</td>
</tr>
<tr>
<td>Supervisión del tiempo de funcionamiento</td>
<td>212</td>
</tr>
<tr>
<td>Visión general del interruptor automático</td>
<td>213</td>
</tr>
</tbody>
</table>
Asistencia

Presentación

Encontrará ayuda en la aplicación mySchneider, que se puede descargar como sigue:

- Escaneando el código QR de la cara frontal de la unidad de control Micrologic X para acceder a una página de inicio. Haga clic en el enlace para ir a la tienda de aplicaciones, desde donde se podrá descargar la aplicación móvil (véase página 26).
- En la Google Play Store para smartphones Android.
- En la App Store para smartphones iOS.

El menú de ayuda de la pantalla de Micrologic X ofrece información sobre lo siguiente:

- Programación del mantenimiento (véase página 196)
- Versión del firmware: la pantalla proporciona información acerca de la versión del firmware de los microprocesadores instalados en la unidad de control Micrologic X. Las actualizaciones del firmware se gestionan a través del software EcoStruxure Power Commission.

Disponibilidad de los datos

La versión del firmware está disponible como sigue:

- En la pantalla de Micrologic X, en Inicio → Mantenimiento → Asistencia → Versión del firmware.
- Con el software EcoStruxure Power Commission.
- Con Aplicación EcoStruxure Power Device.
- En un controlador remoto a través de la red de comunicación.
Programación del mantenimiento

Presentación

La unidad de control Micrologic X proporciona información para ayudar a programar las operaciones de mantenimiento preventivo.

Supervisa los programas de mantenimiento realizados y genera eventos para indicar que debe llevarse a cabo el mantenimiento.

Si desea más información sobre programas de mantenimiento y frecuencia de mantenimiento, consulte Masterpact MTZ - Interruptores automáticos y disyuntores - Guía de mantenimiento (véase página 10).

Principio de funcionamiento

La unidad de control Micrologic X genera eventos para informar al usuario de que debe planificarse el mantenimiento.

Un evento de programación del mantenimiento se completa cuando se declara la fecha del programa de mantenimiento ejecutado mediante EcoStruxure Power Commission.

La programación de las operaciones de mantenimiento depende de lo siguiente:

- Las condiciones de entorno y funcionamiento del interruptor automático Masterpact MTZ.
- El nivel crítico de la aplicación de usuario.
- La fecha del último programa de mantenimiento realizado y declarado utilizando el software EcoStruxure Power Commission.

Los eventos de la programación del mantenimiento básico y estándar del usuario final y los eventos de mantenimiento del fabricante se calculan de este modo:

- Para el primer evento:
 - A partir de la fecha de puesta en servicio del interruptor automático, si esta fecha se declara con el software EcoStruxure Power Commission.
 - De lo contrario, a partir de la fecha de montaje del interruptor automático.

- Para eventos posteriores, a partir de la fecha del programa de mantenimiento anterior realizado (básico, estándar o del fabricante), si la fecha se declara con el software EcoStruxure Power Commission.

 NOTA: Los eventos de la programación del mantenimiento del fabricante posteriores se calculan a partir del programa de mantenimiento del fabricante anterior realizado y declarado con el software EcoStruxure Power Commission.

Si la fecha del programa de mantenimiento realizado no se declara con el software EcoStruxure Power Commission, la unidad de control Micrologic X sigue utilizando la fecha de puesta en servicio o la fecha de montaje para calcular los eventos de la programación del mantenimiento.

Programas de mantenimiento

En la siguiente tabla se resumen las operaciones de mantenimiento de los tres programas de mantenimiento preventivo:

<table>
<thead>
<tr>
<th>Programa de mantenimiento</th>
<th>Descripción del mantenimiento</th>
<th>Realizado por</th>
</tr>
</thead>
</table>
| mantenimiento básico del usuario | Inspección visual y tests funcionales, sustitución de los accesorios defectuosos. | • Personal del usuario final formado y cualificado
• Personal del proveedor de servicios de mantenimiento formado y cualificado
• Representante de servicio local de Schneider Electric. |
| mantenimiento estándar del usuario | Mantenimiento básico del usuario, junto con reparaciones de funcionamiento y pruebas de subconjuntos. | • Personal del proveedor de servicios de mantenimiento formado y cualificado
• Representante de servicio local de Schneider Electric. |
| Mantenimiento del fabricante | Mantenimiento estándar del usuario, además de diagnósticos y sustitución de piezas por parte de Schneider Electric Services. | Representante de servicio local de Schneider Electric. |
Frecuencia de mantenimiento

La frecuencia del mantenimiento se determina a partir de los parámetros registrados y de la configuración declarada siguientes.

La unidad de control Micrologic X registra los siguientes parámetros para las condiciones del entorno:
- Temperatura
- Porcentaje de carga
- Armónicos
- Humedad relativa
- Vibraciones

Los ajustes siguientes para las condiciones ambientales y el nivel crítico de la aplicación de usuario se declaran con el software EcoStruxure Power Commission (protegido con contraseña).

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Valor</th>
<th>Ajuste de fábrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condiciones ambientales</td>
<td>Atmósfera corrosiva</td>
<td>3C2</td>
</tr>
<tr>
<td></td>
<td>● 3C1 (zona rural)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● 3C2 (zona urbana)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● 3C3 (cercanía inmediata de contaminación industrial)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● 3C4 (dentro de instalaciones industriales contaminantes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entorno salino</td>
<td>Ninguna</td>
</tr>
<tr>
<td></td>
<td>● Ninguno (sin niebla salina)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Moderado (niebla salina < 10 km de la costa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Significativo (niebla salina < 1 km de la costa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polvo</td>
<td>Nivel bajo</td>
</tr>
<tr>
<td></td>
<td>● Nivel bajo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Nivel moderado</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Nivel alto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel crítico de aplicación de usuario</td>
<td>Bajo</td>
</tr>
<tr>
<td></td>
<td>● Bajo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Moderado</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Alto</td>
<td></td>
</tr>
</tbody>
</table>

Registro de datos de programas de mantenimiento ejecutados

AVISO

CALENDARIO DE MANTENIMIENTO INCORRECTO

La fecha del programa de mantenimiento efectuado se debe declarar con el software EcoStruxure Power Commission.

Si no se siguen estas instrucciones, el calendario de mantenimiento no será válido.

Después de ejecutar un programa de mantenimiento preventivo, el personal de mantenimiento debe declarar los siguientes datos con el software EcoStruxure Power Commission:
- Programa de mantenimiento ejecutado: básico, estándar, del fabricante
- Fecha de la operación de mantenimiento
- Nombre del proveedor de servicio
- Nombre del personal de mantenimiento
Disponibilidad de los datos

Los datos de la programación del mantenimiento son:

- Datos del último programa de mantenimiento realizado, si los datos se declaran con el software EcoStruxure Power Commission:
 - Programa realizado: básico, estándar o del fabricante
 - Fecha de la operación de mantenimiento
 - Nombre del proveedor de servicio
 - Nombre del personal de mantenimiento

- Datos del siguiente programa de mantenimiento que se debe realizar:
 - Programa que se debe realizar: básico, estándar o del fabricante
 - Número de meses antes de la fecha de ejecución del programa o número de meses de retraso

Los datos de la programación del mantenimiento están disponibles de este modo:

- En la pantalla de Micrologic X, en: Inicio → Mantenimiento → Asistencia → Prog. mantenim.
- con el software EcoStruxure Power Commission
- con Aplicación EcoStruxure Power Device a través de Bluetooth o conexión USB OTG
- en un controlador remoto a través de la red de comunicación

Eventos predefinidos

La función de programación del mantenimiento genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programar mantenimiento básico en el plazo de un mes</td>
<td>Diagnóstico</td>
<td>Media(1)</td>
</tr>
<tr>
<td>Programar mantenimiento estándar en el plazo de un mes</td>
<td>Diagnóstico</td>
<td>Media(2)</td>
</tr>
<tr>
<td>Programar mantenimiento del fabricante en el plazo de tres meses</td>
<td>Diagnóstico</td>
<td>Media(2)</td>
</tr>
</tbody>
</table>

(1) Desactivado de forma predeterminada. Se puede personalizar con el software EcoStruxure Power Commission.
(2) Activado de forma predeterminada, con mensajes emergentes.

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (véase página 10):

- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Manual del usuario
Estado funcionam.

Presentación

El estado del interruptor automático lo determinan las siguientes funciones:

- Programación del mantenimiento (véase página 196)
- Supervisión del interruptor automático (véase página 200)
- Supervisión de la vida útil del interruptor automático (véase página 206)
- Supervisión de la vida útil de la unidad de control Micrologic X (véase página 207)
- Supervisión del desgaste de los actuadores (véase página 208)
- Supervisión del desgaste de los contactos (véase página 210)

El estado del interruptor automático se representa mediante uno de los siguientes iconos:

- ☑ Correcto (blanco).
- ☠ Alarma de gravedad media detectada que requiere acción no urgente (naranja).
- ☠ Alarma de gravedad alta detectada que requiere acción correctiva inmediata (rojo).

Si desea más información, consulte la lista de eventos (véase página 257).

Indicador LED de servicio

El indicador LED de servicio alerta al usuario del estado funcional del interruptor automático:

- LED naranja: alarma de gravedad media detectada que requiere acción de mantenimiento no urgente
- LED rojo: alarma de gravedad alta detectada que requiere acción de mantenimiento inmediata

Disponibilidad de los datos

Es posible acceder al indicador de estado con información adicional del estado del interruptor automático tal como se indica a continuación:

- En la pantalla de Micrologic X, en: Inicio → Vista rápida → Estado
- con el software EcoStruxure Power Commission
- con Aplicación EcoStruxure Power Device a través de Bluetooth o conexión USB OTG
- en un controlador remoto a través de la red de comunicación

NOTA: La Vista rápida de la pantalla de Micrologic X muestra el estado con el icono OK ☑ cuando no se detecta ningún evento de gravedad media o alta. Cuando se detecta un evento de gravedad media o alta, se muestra una pantalla emergente (véase página 74). Si se acusa recibo de la pantalla emergente pulsando OK, el icono naranja o rojo se vuelve a mostrar en el desplazamiento de Vista rápida y está disponible en Inicio → Vista rápida → Estado si el desplazamiento está desactivado.
Supervisión del interruptor automático

Presentación
La supervisión del interruptor automático consiste en supervisar su capacidad para establecer o interrumpir un circuito y para protegerlo contra fallos eléctricos. Por tanto, la unidad de control Micrologic X supervisa:
- El circuito de disparo (véase página 201)
- Desgaste de los actuadores (véase página 208)
- El funcionamiento interno de la unidad de control Micrologic X (véase página 203)

Si la unidad de control Micrologic X detecta una incidencia en una de las funciones de supervisión enumeradas, se genera un evento con una pantalla emergente naranja o roja y el mensaje de evento correspondiente.

Disponibilidad de los datos
Es posible acceder a los datos de supervisión del estado del interruptor automático tal como se muestra a continuación:
- con el software EcoStruxure Power Commission
- con la Aplicación EcoStruxure Power Device a través de Bluetooth o conexión USB OTG
- en un controlador remoto a través de la red de comunicación
Supervisión del circuito de disparo

Presentación

Al activar la unidad de control Micrologic X, se proporciona una supervisión constante de los siguientes dispositivos:

- El circuito de disparo interno
- La conexión de los sensores internos (transformadores de corriente interna, conector del sensor, conector del configurador)
- La conexión de la bobina de disparo del interruptor automático (MITOP) a la unidad de control Micrologic X
- La conexión al ENCT (del inglés External Neutral Current Transformer, transformador externo de corriente neutra)
- La conexión del sensor de diferencial (Vigi)

NOTA: El mecanismo no se supervisa. Se recomienda realizar un mantenimiento preventivo, como indica Schneider Electric. Para obtener más información, consulte *Masterpact MTZ - Interruptores automáticos y disyuntores - Guía de mantenimiento* (véase página 10).

Principio de funcionamiento: LED Ready

El resultado de la supervisión se indica por el LED Ready de la cara frontal de la unidad de control Micrologic X, como se muestra a continuación:

- El LED Ready verde parpadea: el circuito de disparo interno del interruptor automático funciona correctamente.
- El LED Ready está apagado:
 - La unidad de control Micrologic X no está activada. Suministre alimentación la unidad de control con un Mobile Power Pack. Si el LED Ready sigue apagado, consulte el registro de eventos activos en Inicio → Alarms & historical → Alarms para obtener un diagnóstico de la situación.
 - O se ha detectado una incidencia en el circuito de disparo. Consulte el registro de eventos activos en Inicio → Alarms & historical → Alarms para obtener un diagnóstico de la situación.

Estado del interruptor automático

Tras la detección de una incidencia en el circuito de disparo, puede que el interruptor automático se haya disparado, en función del tipo de incidencia detectada.

Datos de disparo y disponibilidad

La unidad de control del Micrologic X registra los siguientes datos sobre la función de disparo:

- Número total de disparos.
- Nombre y fecha del disparo más reciente.

Es posible acceder a los datos de disparo tal como se muestra a continuación:

- Con el software EcoStruxure Power Commission.
- en un controlador remoto a través de la red de comunicación
Eventos predefinidos

La supervisión del circuito de disparo genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo de diagnóstico automático</td>
<td>Disparo</td>
<td>Alta con disparo</td>
</tr>
<tr>
<td>Fallo grave de autoverificación de la unidad de control 1</td>
<td>Diagnóstico</td>
<td>Alta, con disparo en función del fallo detectado</td>
</tr>
<tr>
<td>Fallo grave de autoverificación de la unidad de control 2</td>
<td>Diagnóstico</td>
<td>Alta, con disparo en función del fallo detectado</td>
</tr>
<tr>
<td>Fallo grave de autoverificación de la unidad de control 3</td>
<td>Diagnóstico</td>
<td>Alta, con disparo en función del fallo detectado</td>
</tr>
<tr>
<td>Fallo grave de autoverificación de la unidad de control 4</td>
<td>Diagnóstico</td>
<td>Alta, con disparo en función del fallo detectado</td>
</tr>
<tr>
<td>Fallo grave de autoverificación de la unidad de control 5</td>
<td>Diagnóstico</td>
<td>Alta, con disparo en función del fallo detectado</td>
</tr>
<tr>
<td>Sensor de corriente interna desconectado</td>
<td>Diagnóstico</td>
<td>Alta con disparo</td>
</tr>
<tr>
<td>Sensor de corriente neutra externa desconectado</td>
<td>Diagnóstico</td>
<td>Alta con disparo</td>
</tr>
<tr>
<td>Configuración de la protección restablecida a los valores de fábrica</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>No se puede leer el conector del sensor</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Sensor de diferencial (Vigi) desconectado</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (*véase página 10*):

- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Manual del usuario
Funciones de mantenimiento y diagnóstico

Supervisión del funcionamiento interno de la unidad de control Micrologic X

Presentación

La unidad de control Micrologic X realiza una serie de comprobaciones automáticas para supervisar:

- El funcionamiento interno correcto
- Comunicación inalámbrica
- Los módulos ULP:
 - Módulos IO
 - Interfaz IFE Ethernet
- La presencia y el estado de la batería interna
- La presencia de la fuente de alimentación de 24 V CC

Principio de funcionamiento

El LED Ready, el LED de servicio y los LED de causa de disparo proporcionan información visual sobre el estado de la unidad de control Micrologic X. La detección de un resultado no válido en las comprobaciones automáticas genera un evento (registrado en el historial de diagnóstico) que se puede clasificar como de gravedad alta, media o baja:

- El evento de gravedad baja indica la detección de un resultado no válido que no tiene impacto operativo. Las funciones de protección estándar (LSI G/V) no se ven afectadas.
- El evento de gravedad media indica la detección de un resultado no válido que tiene un impacto operativo menor. Las funciones de protección estándar (LSI G/V) no se ven afectadas. Se debe realizar una comprobación en el siguiente mantenimiento.
 - El LED Ready parpadea.
 - El LED de servicio se enciende en color naranja. si el evento requiere mantenimiento no urgente
 - Se apagan todos los indicadores LED de causa de disparo
 - Aparece una pantalla emergente naranja
- El evento de gravedad alta indica la detección de un resultado no válido que tiene un impacto operativo grave. Las funciones de protección estándar (LSI G/V) pueden verse afectadas. La unidad de control debe sustituirse sin demora.
 - El LED Ready está apagado
 - El LED de servicio se enciende en color rojo. si el evento requiere mantenimiento inmediato
 - Se encienden todos los LED de causa de disparo
 - Aparece una pantalla emergente roja

Cuando la supervisión del funcionamiento interno de la unidad de control Micrologic X detecta un resultado no válido de gravedad media o alta, se genera un evento con una pantalla emergente naranja o roja y el mensaje de evento correspondiente.

Disponibilidad de los datos

Se puede acceder a los datos de supervisión tal como se muestra a continuación:

- Con el software EcoStruxure Power Commission para todas las gravedades
- Con la Aplicación EcoStruxure Power Device a través de una conexión Bluetooth o USB OTG para las gravedades media y alta.

Reinicio de la unidad de control Micrologic X

Si la pantalla de la unidad de control Micrologic X ya no muestra menús para las pantallas de protección, alarmas o mediciones, se recomienda reiniciar la unidad de control Micrologic X. El reinicio se realiza con el software EcoStruxure Power Commission. No es necesario interrumpir el suministro de energía de la unidad de control Micrologic X durante el reinicio. Los ajustes de la unidad de control Micrologic X no se ven afectados por el reinicio. Las funciones de protección estándar permanecen activas durante el reinicio.
Eventos predefinidos

La función genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>La última modificación de los ajustes de protección no se ha aplicado por completo</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Configuración de protección no accesible 1</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Configuración de protección no accesible 2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Configuración de protección no accesible 3</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Configuración de protección no accesible 4</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Configuración de protección no accesible 5</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comprobación automática de la unidad de control 1</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Comprobación automática de la unidad de control 2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comprobación automática de la unidad de control 3</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comprobación automática de la unidad de control 4</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comprobación automática de la unidad de control 5</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Medición y protección opcional no válidas 1</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Medición y protección opcional no válidas 2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Medición y protección opcional no válidas 3</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comprobación automática de protección opcional no válida</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Pantalla o comunicación inalámbrica no válida 1</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Pantalla o comunicación inalámbrica no válida 2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Pantalla o comunicación inalámbrica no válida 3</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Reinicio de alarma de la unidad de control</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Discrepancia crítica de módulos de hardware</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Discrepancia crítica de módulos de firmware</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Discrepancia no crítica de módulos de hardware</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Discrepancia no crítica de módulos de firmware</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Conflicto de direcciones entre módulos</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Discrepancia de firmware en la unidad de control</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comunicación NFC no válida #1</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comunicación NFC no válida #2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comunicación NFC no válida #3</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comunicación Bluetooth no válida</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Sustituir batería</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Batería no detectada</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Configuración de fábrica de la unidad de control no válida #1</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Configuración de fábrica de la unidad de control no válida #2</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Presencia de una fuente de alimentación externa de 24 V</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Comunicación perdida con el módulo IO 1</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comunicación perdida con el módulo IO 2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comunicación perdida con el módulo EIFE o IFE</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comunicación perdida con el módulo IFM</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Conflicto de direcciones entre módulos</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
</tbody>
</table>

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (véase página 10):
- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Manual del usuario

Sustitución de la pantalla

Es posible sustituir la pantalla. Para obtener información acerca de la instalación de piezas de recambio, consulte la hoja de instrucciones en la página web de Schneider Electric: [NHA49910](#)
Sustitución de la batería interna

La batería interna de la unidad de control Micrologic X puede sustituirse in situ cuando esté completamente descargada. La sustitución se puede llevar a cabo con el interruptor automático en posición abierta o cerrada y la unidad de control con alimentación. Esta prueba de la batería interna (véase página 17) debe realizarse inmediatamente después de sustituir la batería interna para comprobar el correcto funcionamiento de la nueva batería.

Para obtener información acerca de la sustitución e instalación de piezas de recambio, consulte la hoja de instrucciones en la página web de Schneider Electric: NHA57283
Supervisión de la vida útil del interruptor automático

Presentación
El indicador de vida útil ayuda a prever la sustitución del bloque de interrupción antes de una avería mecánica o eléctrica. La vida útil del interruptor automático depende de la cantidad diaria de ciclos de funcionamiento con o sin corriente. Para obtener más información sobre la vida útil y el número máximo de ciclos de funcionamiento, consulte *Catálogo Masterpact MTZ*.

Principio de funcionamiento
Cada vez que el interruptor automático funciona (realiza un ciclo de apertura y cierre con o sin corriente), los contadores de funcionamiento mecánicos o eléctricos correspondientes se incrementan. En función de estos contadores, la unidad de control Micrologic X calcula dos relaciones de vida útil como un porcentaje del número máximo de operaciones mecánicas y eléctricas. La relación más alta se tiene en cuenta para indicar el porcentaje de vida útil restante del interruptor automático.

Cuando el algoritmo de vida útil de la unidad de control Micrologic X se encuentra por debajo de uno de los umbrales predeterminados (20 % y 0 %), se genera un evento con una pantalla emergente naranja o roja y el mensaje de evento correspondiente.

Disponibilidad de los datos
Se puede acceder a los datos de supervisión de la vida útil tal como se muestra a continuación:
- En la pantalla de Micrologic X, en Inicio → Mantenimiento → Estado → Interruptor automático
- con el software EcoStruxure Power Commission
- con Aplicación EcoStruxure Power Device a través de Bluetooth o conexión USB OTG
- En la pantalla de FDM128
- en un controlador remoto a través de la red de comunicación

Eventos predefinidos
La supervisión de la vida útil genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>La vida útil restante del interruptor automático está por debajo del umbral de alarma</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>El interruptor automático ha alcanzado el número máximo de operaciones</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (*véase página 10*):
- *Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario*
- *Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Manual del usuario*
Supervisión de la vida útil de la unidad de control Micrologic X

Presentación

El indicador de vida útil de la unidad de control Micrologic X ayuda a prever la sustitución de la unidad de control antes de que se averíe. La vida útil de la unidad de control se mide en tiempo desde la puesta en servicio del interruptor automático Masterpact MTZ.

Si desea más información sobre la vida útil de la unidad de control Micrologic X, consulte el catálogo de Masterpact MTZ.

Princípio de funcionamiento

La unidad de control Micrologic X mide el tiempo transcurrido desde la primera puesta en servicio de la unidad de control. Cuando el algoritmo de vida útil de la unidad de control Micrologic X se encuentra por debajo de uno de los umbrales predeterminados (20 % y 0 %), se genera un evento con una pantalla emergente naranja o roja y el mensaje de evento correspondiente.

Disponibilidad de los datos

Se puede acceder a los datos de supervisión de la vida útil de la unidad de control tal como se muestra a continuación:

- En la pantalla de Micrologic X, en Inicio → Mantenimiento → Estado → Micrologic
- con el software EcoStruxure Power Commission
- con la Aplicación EcoStruxure Power Device a través de Bluetooth, o conexión USB OTG
- en un controlador remoto a través de la red de comunicación

Eventos predefinidos

La supervisión de la vida útil de la unidad de control Micrologic X genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>La vida útil restante de Micrologic está por debajo del umbral de alarma</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>La unidad de control Micrologic ha alcanzado el máximo de la vida útil</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (véase página 10):

- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Manual del usuario
Supervisión de la función de apertura/cierre

Presentación

La supervisión de la función de apertura/cierre por parte de la unidad de control Micrologic X consiste en:
- Supervisión de las bobinas comunicantes:
 - La bobina de disparo MN de diagnóstico (diagnóstico MN).
 - La bobina de apertura MX de diagnóstico y comunicante (diagnóstico y comunicante MX).
 - La bobina de cierre XF de diagnóstico y comunicante (diagnóstico y comunicante XF).
- Supervisar el estado del motorreductor MCH.

NOTA: La unidad de control Micrologic X no supervisa las bobinas de disparo estándar.

Supervisión de las bobinas comunicantes

La unidad de control Micrologic X:
- Comprueba la presencia de la bobina
- Cuenta el número de operaciones realizadas por la bobina
- Genera un evento cuando:
 - La bobina alcanza el 80% del número máximo de operaciones recomendado
 - La bobina alcanza el 100% del número máximo de operaciones recomendado
- Supervisa el estado del circuito interno de la bobina

Si desea más información sobre el número de operaciones recomendado, consulte *Masterpact MTZ - Interruptores automáticos y disyuntores - Guía de mantenimiento* (véase página 10).

Supervisión del estado del motorreductor MCH

La unidad de control Micrologic X:
- Cuenta el número de secuencias de carga realizadas para restablecer el mecanismo de cierre después de cada cierre del interruptor automático.
- Mide y registra el último tiempo de carga del motorreductor MCH para restablecer el mecanismo de cierre.
- Genera un evento cuando:
 - El motorreductor MCH alcanza el 80% del número máximo de operaciones de carga recomendado
 - El motorreductor MCH alcanza el 100% del número máximo de operaciones de carga recomendado

Si desea más información sobre el número de operaciones recomendado, consulte *Masterpact MTZ - Interruptores automáticos y disyuntores - Guía de mantenimiento* (véase página 10).

Disponibilidad de los datos

Los datos del motorreductor MCH están disponibles como sigue:
- En la pantalla de Micrologic X, en **Inicio → Mantenimiento → Estado → Desgaste de los actuadores**
- en un controlador remoto a través de la red de comunicación
Eventos predefinidos

La supervisión de la función de apertura/cierre genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprobación automática no válida: bobina MX1</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>No se ha detectado la bobina MX1</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>El contador de funcionamiento de la bobina MX1 está por encima del umbral de alarma</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>La bobina MX1 ha alcanzado el número máximo de operaciones</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Comprobación automática no válida: bobina MX2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>No se ha detectado la bobina MX2</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>El contador de funcionamiento de la bobina MX2 está por encima del umbral de alarma</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>La bobina MX2 ha alcanzado el número máximo de operaciones</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Comprobación automática no válida: bobina de disparo por falta de tensión MN</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Bobina de disparo por falta de tensión MN no detectada</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>El contador de funcionamiento de la bobina de disparo MN está por encima del umbral de alarma</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>La bobina de disparo MN ha alcanzado el número máximo de operaciones</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Caída de tensión en bobina de disparo por falta de tensión MN</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Pérdida de comunicación en bobina de disparo por falta de tensión MN</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Comprobación automática no válida: bobina XF</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>No se ha detectado la bobina XF</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>El contador de funcionamiento de la bobina XF está por encima del umbral de alarma</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>La bobina XF ha alcanzado el número máximo de operaciones</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Las operaciones de carga de MCH superan el umbral</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>MCH ha alcanzado el número máximo de operaciones</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
<tr>
<td>Se ha perdido la tensión principal y el interruptor automático está cerrado</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
</tbody>
</table>

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (véase página 10):
- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Manual del usuario
Supervisión del estado de los contactos

Presentación
Los contactos de los polos sufren desgaste debido al número de ciclos de funcionamiento con corriente y corriente interrumpida durante cortocircuitos. Se recomienda revisarlos periódicamente para decidir si los contactos se deben cambiar o no. Para evitar la inspección periódica de los contactos y la cámara de corte, la estimación del desgaste de los contactos ayuda a planificar la inspección visual según el desgaste estimado (del 0% [contacto nuevo] al 100% [contacto totalmente desgastado]).

El desgaste de los contactos aumenta cada vez que el interruptor automático interrumpe el circuito, con o sin corriente.

Cuando el algoritmo de desgaste de los contactos de la unidad de control Micrologic X se encuentra por encima de uno de los umbrales predeterminados (60 %, 95 % y 100 %) se genera un evento con una pantalla emergente naranja o roja y el mensaje de evento correspondiente.

Disponibilidad de los datos
Se puede acceder a los datos de supervisión del desgaste de los contactos tal como se muestra a continuación:
- En la pantalla de Micrologic X, en Inicio → Mantenimiento → Estado → Desgaste de los contactos
- con el software EcoStruxure Power Commission
- con la Aplicación EcoStruxure Power Device a través de Bluetooth o conexión USB OTG
- En la pantalla de FDM128
- en un controlador remoto a través de la red de comunicación

Eventos predefinidos
La función genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>El desgaste de los contactos es superior al 60 %. Compruebe los contactos</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>El desgaste de los contactos es superior al 95 %. Prevea una sustitución</td>
<td>Diagnóstico</td>
<td>Media</td>
</tr>
<tr>
<td>Los contactos están completamente desgastados. Es necesario sustituir el interruptor automático</td>
<td>Diagnóstico</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Para obtener información acerca de la acción recomendada ante eventos, consulte el documento correspondiente (véase página 10):
- Masterpact MTZ1 - Interruptores automáticos y disyuntores - Guía del usuario
- Masterpact MTZ2/MTZ3 - Interruptores automáticos y disyuntores - Manual del usuario
Supervisión del perfil de carga

Presentación

Cuatro contadores de perfiles de carga informan del número de horas durante las cuales la unidad de control Micrologic X ha medido la corriente que fluye a través del interruptor automático, en las siguientes relaciones de rango In:

- Número de horas con corriente medida entre el 0 y el 49 % de la intensidad asignada In
- Número de horas con corriente medida entre el 50 y el 79 % de la intensidad asignada In
- Número de horas con corriente medida entre el 80 y el 89 % de la intensidad asignada In
- Número de horas con corriente medida al 90 % de la intensidad asignada In o más

Disponibilidad de los datos

Se puede acceder a los datos de supervisión del perfil de carga tal como se muestra a continuación:

- con el software EcoStruxure Power Commission
- con la Aplicación EcoStruxure Power Device a través de Bluetooth, o conexión USB OTG
- En la pantalla de FDM128
- En un controlador remoto a través de la red de comunicación.
Supervisión del tiempo de funcionamiento

Presentación
La unidad de control Micrologic X mide dos tiempos de funcionamiento:
- Tiempo de funcionamiento con carga: tiempo total desde que se activa la unidad de control con la corriente que fluye a través del interruptor automático.
- Tiempo de funcionamiento: tiempo total con la unidad de control activada mediante uno de los métodos siguientes:
 - La corriente que fluye a través del interruptor automático
 - Una fuente de alimentación externa de 24 V CC
 - Una fuente de alimentación externa conectada a través del puerto mini-USB que se encuentra en la parte frontal de la unidad de control Micrologic X

Disponibilidad de los datos
Los datos están disponibles en un control remoto mediante la red de comunicación.
Visión general del interruptor automático

Presentación
La función de visión general del interruptor automático muestra una descripción del bloque del interruptor automático, que incluye:
- Gama de interruptores automáticos
- Tamaño del dispositivo
- Intensidad asignada
- Nivel de rendimiento
- Sistema de alimentación
- Estándar

Disponibilidad de los datos
Se puede acceder a los datos de la visión general del interruptor automático tal como se indica a continuación:
- En la pantalla de Micrologic X, en Inicio → Mantenimiento → Vis. gen. IA.
- Con el software EcoStruxure Power Commission
- En un controlador remoto a través de la red de comunicación
Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Module de asistente para el restablecimiento de la alimentación</td>
<td>215</td>
</tr>
<tr>
<td>Módulo digital de asistente de funcionamiento del Masterpact</td>
<td>217</td>
</tr>
<tr>
<td>Módulo digital de captura de forma de onda en evento de disparo</td>
<td>219</td>
</tr>
<tr>
<td>Digital Module de conjunto de datos heredado de Modbus</td>
<td>221</td>
</tr>
</tbody>
</table>
Digital Module de asistente para el restablecimiento de la alimentación

Presentación

El Digital Module de asistente de restauración de la alimentación amplía y mejora las funciones de la Aplicación EcoStruxure Power Device.

El Digital Module de asistente de restauración de la alimentación proporciona al operador de mantenimiento la siguiente ayuda en el procedimiento de restauración de la alimentación:
- Muestra información acerca del estado de los eventos y del interruptor automático.
- Ayuda a determinar la causa de los eventos, como una apertura, un disparo o una pérdida de alimentación eléctrica.
- Proporciona ayuda para posibles soluciones para restaurar la alimentación.

El Digital Module de asistente de restauración de alimentación ayuda a reducir el tiempo de inactividad del suministro eléctrico durante las cargas críticas (tiempo medio para reparación, MTTR) tras un disparo, una apertura o una pérdida de alimentación aguas arriba.

Requisitos previos

El Digital Module de asistente de restauración de alimentación es un Digital Module opcional, que se puede adquirir e instalar en una unidad de control Micrologic X (véase página 28).

Los requisitos previos son:
- La Aplicación EcoStruxure Power Device debe estar instalada en un smartphone
- El smartphone se debe conectar a la unidad de control Micrologic X a través de:
 - Bluetooth: la unidad de control debe recibir alimentación
 - NFC: no es necesario que la unidad de control reciba alimentación
 - USB OTG: no es necesario que la unidad de control reciba alimentación
- La fecha y la hora de Micrologic X deben estar actualizadas

El Digital Module del asistente de restauración de alimentación es compatible con:
- Unidades de control Micrologic 2.0X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- Unidades de control Micrologic 3.0X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 001.000.xxx.

Disponibilidad de la asistencia

La disponibilidad de las funciones varía en función del tipo de conexión al Digital Module:
- A través de una conexión Bluetooth o USB OTG: todas las funciones están disponibles.
- A través de NFC (se puede realizar la conexión con la unidad de control apagada): se proporciona información básica del interruptor automático. También proporciona ayuda paso a paso, al pedir al usuario que facilite el estado del interruptor automático y al ofrecerle ayuda para restaurar la alimentación.
Ejemplos de pantallas

Select LED which is activated on Micrologic X

Is Circuit Breaker tripped?
Position of mechanical indicator is

OUT
IN
Módulo digital de asistente de funcionamiento del Masterpact

Presentación

El Digital Module del asistente de funcionamiento de Masterpact amplía y mejora las funciones del Aplicación EcoStruxure Power Device.

El Digital Module del asistente de funcionamiento de Masterpact ayuda al operador a manipular el interruptor automático mediante instrucciones para realizar las acciones.

Muestra el estado del interruptor automático, como:
- Estado Listo para cerrar
- Estado del muelle resorte
- Estado de las bobinas (con bobinas comunicantes y de diagnóstico)

Al usar las bobinas comunicantes y de diagnóstico, permite abrir o cerrar el interruptor automático desde unos cuantos metros de distancia.

Requisitos previos

El Digital Module de asistente de funcionamiento del Masterpact es un Digital Module que se puede adquirir e instalar en una unidad de control Micrologic X (véase página 28).

Los requisitos previos son:
- La Aplicación EcoStruxure Power Device debe estar instalada en un smartphone.
- El smartphone se debe conectar a la unidad de control Micrologic X a través de:
 - Bluetooth: la unidad de control debe recibir alimentación.
 - NFC: no es necesario que la unidad de control reciba alimentación.
 - USB OTG: la unidad de control puede recibir alimentación del smartphone.
- La fecha y la hora de Micrologic X deben estar actualizadas.
- Las bobinas de disparo de diagnóstico y comunicación (MX, MN, XF) deben estar instaladas en el interruptor automático Masterpact MTZ.

El Digital Module de asistente de funcionamiento de Masterpact es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 001.000.xxx.

Disponibilidad de la asistencia

La disponibilidad de las funciones varía en función del tipo de conexión al Digital Module:
- A través de Bluetooth, USB OTG y de las bobinas de disparo comunicantes y de diagnóstico: todas las funciones están disponibles.
- A través de NFC (la conexión se puede realizar cuando la unidad de control no reciba alimentación): se proporciona información básica sobre el interruptor automático y sobre el contexto del último disparo. También proporciona ayuda paso a paso, al pedir al usuario que facilite el estado del interruptor automático y al ofrecerle ayuda para el funcionamiento manual del interruptor automático.

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

- No use el interruptor automático sin confirmar que no creará una situación de peligro.
- No permita realizar ningún trabajo en la red eléctrica sin validar físicamente el funcionamiento correcto de las acciones de software locales o a distancia para:
 - Abrir el interruptor automático o apagar el circuito eléctrico.
 - Cerrar el interruptor automático o encender el circuito eléctrico.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

ADVERTENCIA

RIESGO DE CIERRE POR DEFECTO ELÉCTRICO

No vuelva a cerrar el interruptor automático sin haber verificado y, si es necesario, reparado la instalación eléctrica aguas abajo.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Ejemplos de pantallas

Check Circuit breaker state
Please check the actual state of the breaker click on the corresponding illustration

ON
Charged
OK

OFF
Charged

OFF
Discharged

OFF
Discharged

ON
Charged

Select LED which is activated on Micrologic X

Ia Ird Ig Op.
Módulo digital de captura de forma de onda en evento de disparo

Presentación

La captura de la forma de onda en un evento de disparo Digital Module proporciona captura de la forma de onda corta y captura de la forma de onda larga.

Captura de forma de onda corta

La función de captura de forma de onda corta registra cinco ciclos de corrientes de fase y de neutro después de producirse un disparo en todas las funciones de protección estándar y funciones de protección opcional. El periodo de muestreo es de 512 μs. La función de captura de forma de onda corta registra cuatro ciclos antes y uno después del evento de disparo.

La función de captura de forma de onda corta registra el estado digital de los siguientes elementos:
- Evento de DISPARO: activación de la bobina de disparo del interruptor automático (MITOP)
- SDE: contacto de señalización de defecto eléctrico
- OPEN: interruptor automático en posición abierta
- ZSI OUT y ZSI IN: señales ZSI

Sólo se puede realizar una captura de forma de onda corta por evento de disparo a la vez. Al generar una nueva captura de forma de onda corta se sustituye la anterior.

En el momento de la entrega, no hay ninguna captura de forma de onda corta disponible. Hay disponible una captura de forma de onda corta en evento de disparo después de que el interruptor automático se haya disparado a causa de cualquier función de protección estándar u opcional. Los disparos debido a pruebas realizadas con el software EcoStruxure Power Commission no se registran.

La captura de forma de onda corta se almacena en memoria no volátil sin requerir una fuente de alimentación de 24 V CC externa.

La captura de forma de onda corta es un archivo COMTRADE (formato común para el intercambio de datos transitorios). Consulte la norma IEEE C37.111 o la norma IEC 60255-24 para obtener más información acerca del formato de archivo COMTRADE.

Captura de forma de onda larga

La función de captura de forma de onda larga registra 50 ciclos de corrientes de fase, corrientes del neutro y tensión de fase a neutro después de producirse un disparo debido a cualquier función de protección estándar u opcional. El periodo de muestreo es de 625 μs. La función de captura de forma de onda larga registra 35 ciclos antes y 15 ciclos después del evento de disparo.

La captura de forma de onda larga registra el estado digital del evento de FUNCIONAMIENTO cuando transcurre la temporización asociada.

Hay tres capturas de forma de onda larga en eventos de disparo disponibles a la vez. Al generar una nueva captura de forma de onda larga se sustituye la más antigua.

En el momento de la entrega, no hay ninguna captura de forma de onda larga disponible. Hay disponible una captura de forma de onda larga en evento de disparo después de que el interruptor automático se haya disparado a causa de cualquier función de protección estándar u opcional. Los disparos debido a pruebas realizadas con el software EcoStruxure Power Commission no se registran.

La función de captura de forma de onda larga requiere una fuente de alimentación de 24 V CC externa para almacenar la captura de forma de onda en memoria no volátil.

La captura de forma de onda larga es un archivo COMTRADE (formato común para el intercambio de datos transitorios). Consulte la norma IEEE C37.111 o la norma IEC 60255-24 para obtener más información acerca del formato de archivo COMTRADE.

NOTA: La captura de la forma de onda larga está disponible con unidades de control Micrologic X con una versión de firmware mayor o igual que 002.000.xxx.
Funciones de mantenimiento y diagnóstico

Requisitos previos

El Digital Module de captura de forma de onda en evento de disparo es un Digital Module opcional, que se puede adquirir e instalar en una unidad de control Micrologic X (véase página 28).

Los requisitos previos son:
- La Aplicación EcoStruxure Power Device debe estar instalada en un smartphone.
- El smartphone se debe conectar a la unidad de control Micrologic X a través de Bluetooth o USB OTG.
- La fecha y la hora de Micrologic X deben estar actualizadas.

El Digital Module de captura de forma de onda en evento de disparo es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 001.000.xxx.

La captura de la forma de onda corta está disponible con unidades de control Micrologic X con una versión de firmware mayor o igual que 001.000.xxx.

La captura de la forma de onda larga está disponible con unidades de control Micrologic X con una versión de firmware mayor o igual que 002.000.xxx.

Disponibilidad de los datos

La captura de forma de onda se muestra de las siguientes maneras:
- en Aplicación EcoStruxure Power Device a través de Bluetooth o bien USB OTG
- en el software EcoStruxure Power Commission

La captura de forma de onda se puede exportar como archivo en formato COMTRADE mediante la Aplicación EcoStruxure Power Device o el software EcoStruxure Power Commission, para usarla con el software Wavewin-SE de Schneider Electric.

Los nombres de archivo para las capturas de forma de onda tienen los formatos siguientes:
- Captura de forma de onda corta: wfctxxxx_MM_DD_AAAA_HH_MM_SS
- Captura de forma de onda larga: long_wfctxxxx_MM_DD_AAAA_HH_MM_SS

Ejemplos de pantallas

En las siguientes pantallas se muestran algunos ejemplos del tipo de información disponible en la Aplicación EcoStruxure Power Device gracias al Digital Module de captura de forma de onda en evento de disparo:
Digital Module de conjunto de datos heredado de Modbus

Presentación

El Digital Module de conjunto de datos heredado de Modbus proporciona un conjunto de datos para interruptores automáticos Masterpact MTZ compatibles con formatos heredados.

El Digital Module de conjunto de datos heredado de Modbus convierte datos de los registros de formato estándar empezando por 32000 a los registros de formato heredado empezando por 12000.

NOTA: El conjunto de datos heredado sigue estando disponible tras la conversión.

El Digital Module de conjunto de datos heredado de Modbus recopila la siguiente información:
- Estado del interruptor automático
- Motivos del disparo
- Valores en tiempo real de corrientes, tensiones, potencia y energía.

Para obtener más información, consulte Masterpact MTZ - Guía de comunicación Modbus (véase página 10).

Requisitos previos

El Digital Module de conjunto de datos heredados de Modbus es un Digital Module opcional, que se puede adquirir e instalar en una unidad de control Micrologic X (véase página 28).

El conjunto de datos heredado de Modbus es compatible con:
- unidades de control Micrologic 2.0 X, 5.0 X, 6.0 X y 7.0 X para la norma IEC
- unidades de control Micrologic 3.0 X, 5.0 X y 6.0 X para la norma UL
- Unidades de control Micrologic X con versión de firmware mayor o igual que 002.000.xxx. Las versiones anteriores de firmware deben actualizarse (véase página 37).

Disponibilidad de los datos

El conjunto de datos heredado de Modbus está disponible en un controlador remoto utilizando la red de comunicación a través de las siguientes interfaces de comunicación:
- Interfaz Ethernet IFE
- Interfaz Ethernet EIFE
- Servidor IFE
- Interfaz Modbus-SL IFM

La tabla siguiente muestra los números de referencia y las versiones de firmware necesarias para acceder al conjunto de datos heredado de Modbus a través de las interfaces de comunicación:

<table>
<thead>
<tr>
<th>Interfaz de comunicación</th>
<th>Número de referencia</th>
<th>Versión de firmware mínima necesaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaz Ethernet IFE</td>
<td>LV434010</td>
<td>003.007.xxx</td>
</tr>
<tr>
<td></td>
<td>LV434001</td>
<td>004.000.xxx</td>
</tr>
<tr>
<td>Interfaz Ethernet EIFE</td>
<td>–</td>
<td>004.000.xxx</td>
</tr>
<tr>
<td>Servidor IFE</td>
<td>LV434002</td>
<td>003.007.xxx</td>
</tr>
<tr>
<td></td>
<td>LV434011</td>
<td>004.000.xxx</td>
</tr>
<tr>
<td>Interfaz Modbus-SL IFM</td>
<td>LV434000</td>
<td>003.001.xxx</td>
</tr>
</tbody>
</table>
Capítulo 6
Funciones de funcionamiento

Contenido de este capítulo

Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modos de control</td>
<td>224</td>
</tr>
<tr>
<td>Función de apertura</td>
<td>229</td>
</tr>
<tr>
<td>Función de cierre</td>
<td>232</td>
</tr>
</tbody>
</table>
Modos de control

Presentación

El modo de control es un ajuste de Micrologic X que define los medios para controlar las funciones de apertura y cierre del interruptor automático.

El modo Manual sólo acepta órdenes realizadas mediante uno de los siguientes métodos:
- Los botones mecánicos de la parte frontal del interruptor automático.
- El botón pulsador externo conectado a las bobinas de disparo MN/MX/XF.
- El botón pulsador de cierre eléctrico BPFE.

El modo automático tiene dos ajustes: Local o Remoto. Todas las órdenes aceptadas en el modo manual se aceptan en el modo automático, así como las órdenes de comunicación local o remotas, tal como se muestra a continuación:
- Auto: Local: el operador se tiene que encontrar cerca del interruptor automático para establecer la comunicación y sólo se aceptan las órdenes enviadas desde una fuente local mediante comunicación:
 - Con el software EcoStruxure Power Commission a través de una conexión USB.
 - Aplicación EcoStruxure Power Device con Digital Module de Asistente de funcionamiento de Masterpact por medio de conexión Bluetooth o USB OTG.
- Auto Remoto: no es necesario que el operador esté junto al interruptor automático para establecer comunicación y sólo se aceptan los comandos enviados desde una fuente remota a través de la red de comunicación.

NOTA: El software EcoStruxure Power Commission conectado a través de la red de comunicación se puede utilizar para enviar comandos de control al interruptor automático.

La configuración de fábrica del modo de control es Auto Remoto.

Funcionamiento de acuerdo con el modo de control configurado

La tabla siguiente resume las operaciones de apertura y cierre disponibles, según el modo de control configurado:

<table>
<thead>
<tr>
<th>Modo control</th>
<th>Tipo de orden y método de emisión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mecánico</td>
</tr>
<tr>
<td></td>
<td>Botón pulsador</td>
</tr>
<tr>
<td>Manual</td>
<td>✔</td>
</tr>
<tr>
<td>Auto: Local</td>
<td>✔</td>
</tr>
<tr>
<td>Auto: Remoto</td>
<td>✔</td>
</tr>
</tbody>
</table>

(1) A través de USB
(2) A través de Bluetooth o USB OTG
(3) Según el ajuste del modo de entrada de IO
Funcionamiento en modo Manual

Operaciones de apertura y cierre disponibles en modo Manual:
- 0: botón pulsador de apertura mecánica
- 1: botón pulsador de cierre mecánico
- BPFE: botón pulsador de cierre eléctrico
- Botones pulsadores externos conectados por el cliente a:
 - XF: bobina de cierre comunicante y de diagnóstico o estándar
 - MX: bobina de apertura comunicante y de diagnóstico o estándar
 - MN: bobina de disparo estándar o de diagnóstico
Funciones de funcionamiento

Funcionamiento en modo Auto: Local

- **A** Unidad de control Micrologic X
- **B** Módulo de puerto ULP
- **C** Interfaz Ethernet integrada EIFE
- **D** Mecanismo del interruptor automático
- **E** Módulo de aplicación de entrada/salida IO

Operaciones de apertura y cierre disponibles en modo Auto: Local

- 0: botón pulsador de apertura mecánica
- 1: botón pulsador de cierre mecánico
- BPFE: botón pulsador de cierre eléctrico
- Botones pulsadores externos conectados por el cliente a:
 - XF: bobina de cierre comunicante y de diagnóstico
 - MX: bobina de apertura comunicante y de diagnóstico
 - MN: bobina de disparo estándar o de diagnóstico
- IO: con la aplicación predefinida de funcionamiento del interruptor del módulo IO configurada en modo de control local
- software EcoStruxure Power Commission: comando enviado a través de la conexión USB
- Aplicación EcoStruxure Power Device con el Digital Module de asistente de funcionamiento del Masterpact:
 - a través de comunicación inalámbrica Bluetooth con bajo nivel de energía
 - a través de una conexión USB OTG
Funciones de funcionamiento

Funcionamiento en modo Auto: Remoto

![Diagrama de funcionamiento en modo Auto: Remoto]

- **A**: Unidad de control Micrologic X
- **B**: Módulo de puerto ULP
- **C**: Interfaz Ethernet integrada EIFE
- **D**: Mecanismo del interruptor automático
- **E**: Módulo de aplicación de entrada/salida IO

Operaciones de apertura y cierre disponibles en modo Auto: Remoto

- 0: botón pulsador de apertura mecánica
- 1: botón pulsador de cierre mecánico
- BPFE: botón pulsador de cierre eléctrico
- Botones pulsadores externos conectados por el cliente a:
 - XF: bobina de cierre comunicante y de diagnóstico
 - MX: bobina de apertura comunicante y de diagnóstico
 - MN: bobina de disparo estándar o de diagnóstico
- IO: con la aplicación predefinida de funcionamiento del interruptor del módulo IO configurada en modo de control remoto
- Comunicación: comando remoto enviado a través de la interfaz IFE, EIFE o IFM.

Ajuste del modo de control

El modo Auto o Manual se puede establecer tal como se indica a continuación:

- En la pantalla de Micrologic X, en **Inicio → Configuración → Comunicación → Modo control → Modo**.
- Con Aplicación EcoStruxure Power Device a través de Bluetooth o una conexión USB OTG.

El modo Local o Remoto se puede establecer tal como se indica a continuación:

- Cuando el módulo IO se utiliza con la aplicación predefinida de funcionamiento del interruptor, el modo local o remoto se define únicamente mediante el selector del modo de control conectado a una entrada digital I1 del módulo IO.
- Cuando el módulo IO no se utiliza con la aplicación predefinida de funcionamiento del interruptor, el modo local o remoto se puede establecer tal como se indica a continuación:
 - Con el software EcoStruxure Power Commission a través de una conexión USB.
 - Con la Aplicación EcoStruxure Power Device a través de Bluetooth. o conexión USB OTG.

NOTA:

- El modo Local o Remoto no se puede establecer en la pantalla Micrologic X.
- Cuando se establece el modo Automático, el modo de control es Auto: Local o Auto: Remoto, en función de la última configuración.
Visualización del modo de control

El modo de control (Manual, Auto: Local o Auto: Remoto) se visualiza tal como se indica a continuación:
- en la pantalla de Micrologic X, en Inicio → Configuración → Comunicación → Modo control → Modo
- con el software EcoStruxure Power Commission a través de una conexión USB
- con Aplicación EcoStruxure Power Device a través de Bluetooth o conexión USB OTG
- en las páginas web de IFE/EIFE.
- mediante un controlador remoto a través de la red de comunicación.

Eventos predefinidos

Al cambiar la configuración del modo de control se generan los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo manual activado</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Modo local activado</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de configuración IO y CU: modo local/remoto</td>
<td>Configuración</td>
<td>Media</td>
</tr>
</tbody>
</table>
Función de apertura

Presentación
Las unidades de control Micrologic X reciben y procesan órdenes de apertura eléctrico. Al abrir, se genera un evento.

Principio de funcionamiento
Los comandos de cierre se pueden enviar de la siguiente manera:
- Directamente mediante un botón pulsador de apertura mecánico.
- De forma local mediante un botón pulsador de apertura externo.
- A distancia a través de un comando remoto gestionado por la unidad de control Micrologic X.
Las órdenes de apertura tienen prioridad sobre las de cierre. Las órdenes de cierre no se tienen en cuenta mientras haya una orden de apertura activa.

Las órdenes de apertura en bobinas de disparo MN o MX efectuadas con botón pulsador externo se pueden mantener para forzar la posición de apertura del interruptor automático y rechazar cualquier orden de cierre. Las órdenes de apertura de Micrologic X no se mantienen.
Gestión de la función de apertura

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO
- No use el interruptor automático sin confirmar que no creará una situación de peligro.
- No permita que ninguna persona trabaje en la red eléctrica sin haber verificado físicamente la ejecución correcta de las acciones locales o remotas del software para abrir el interruptor automático o desconectar el circuito eléctrico.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

La unidad de control Micrologic X gestiona los comandos de cierre emitidos mediante alguno de los siguientes dispositivos:
- Módulo IO con la aplicación predefinida de funcionamiento del interruptor Consulte Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario (véase página 10).
- software EcoStruxure Power Commission.
- Aplicación EcoStruxure Power Device a través de Bluetooth o USB OTG con el Digital Module de asistente de funcionamiento del Masterpact instalado y activado
- Controlador remoto conectado a la red de comunicación. Consulte Masterpact MTZ - Guía de comunicación Modbus (véase página 10).
- Páginas web IFE/EIFE. Consulte el documento pertinente (véase página 10):
 - Enerlin’X IFE - Interfaz Ethernet para un interruptor automático - Guía del usuario
 - Enerlin’X EIFE - Interfaz Ethernet integrada para un interruptor automático Masterpact MTZ seccionable - Guía del usuario
 - Enerlin’X IFE - Servidor de panel Ethernet - Guía del usuario
- Pantalla FDM128 a través de la interfaz IFE o EIFE. Consulte Enerlin’X FDM128 - Pantalla Ethernet para ocho dispositivos - Guía del usuario (véase página 10).

La función de apertura está supervisada mediante la unidad de control Micrologic X (véase página 208).
Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>El interruptor automático ha pasado de cerrado a abierto</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Orden de apertura enviada a MX</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Permitir control mediante entrada digital desactivado</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Función de cierre

Presentación
Las unidades de control Micrologic X reciben y procesan órdenes de cierre eléctrico. Al cerrar, se genera un evento.

Principio de funcionamiento
Las órdenes de cierre se pueden enviar de la siguiente manera:
- Directamente mediante un botón pulsador de cierre mecánico.
- De forma local mediante un botón pulsador de cierre externo.
- A distancia a través de un comando remoto gestionado por la unidad de control Micrologic X.

Las órdenes de apertura tienen prioridad sobre las de cierre. Las órdenes de cierre no se tienen en cuenta mientras haya una orden de apertura activa.

NOTA: Tal como se muestra en el diagrama anterior, el botón pulsador de cierre eléctrico BPFE se puede conectar a la unidad de control Micrologic X. En este caso, la unidad de control gestionará la función y los comandos de cierre del BPFE. Los comandos de cierre del BPFE están disponibles en los modos de control Manual y Automático.

Otra opción es conectar el botón pulsador de cierre eléctrico BPFE a la bobina de cierre comunicante XF, como se muestra en el diagrama a continuación. En este caso, la unidad de control Micrologic X no gestionará la función de cierre y sólo serán válidos los comandos de cierre realizados en el modo Manual.
Gestión de la función de cierre

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

- No use el interruptor automático sin confirmar que no creará una situación de peligro.
- No permita que ninguna persona trabaje en la red eléctrica sin haber verificado físicamente la ejecución correcta de las acciones locales o remotas del software para abrir el interruptor automático o desconectar el circuito eléctrico.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

ADVERTENCIA

RIESGO DE CIERRE POR DEFECTO ELÉCTRICO

No vuelva a cerrar el interruptor automático sin haber verificado y, si es necesario, reparado la instalación eléctrica aguas abajo.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

La unidad de control Micrologic X gestiona los comandos de cierre emitidos mediante alguno de los siguientes dispositivos:

- BPFE conectado a la unidad de control Micrologic X
- Módulo IO con la aplicación predefinida de funcionamiento del interruptor Consulte Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario (véase página 10).
- software EcoStruxure Power Commission.
- Aplicación EcoStruxure Power Device a través de Bluetooth o USB OTG con el Digital Module de asistente de funcionamiento del Masterpact instalado y activado
- Controlador remoto conectado a la red de comunicación. Consulte Masterpact MTZ - Guía de comunicación Modbus (véase página 10).
- Páginas web IFE/EIFE. Consulte el documento pertinente (véase página 10).
 - Enerlin’X IFE - Interfaz Ethernet para un interruptor automático - Guía del usuario
 - Enerlin’X EIFE - Interfaz Ethernet integrada para un interruptor automático Masterpact MTZ seccionable - Guía del usuario
 - Enerlin’X IFE - Servidor de panel Ethernet - Guía del usuario
- Pantalla FDM128 a través de la interfaz IFE o EIFE. Consulte Enerlin’X FDM128 - Pantalla Ethernet para ocho dispositivos - Guía del usuario (véase página 10).
La función de cierre está supervisada mediante la unidad de control Micrologic X (véase página 208).

<table>
<thead>
<tr>
<th>CB open</th>
<th>El interruptor automático está abierto</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPFE close</td>
<td>Comando de cierre desde BPFE (si BPFE está conectado a la unidad de control Micrologic X).</td>
</tr>
<tr>
<td>Auto: Local</td>
<td>El modo de control es Auto: Local.</td>
</tr>
<tr>
<td>Inhibit close</td>
<td>Los comandos de cierre permitidos en el modo de control Automático están inhibidos.</td>
</tr>
<tr>
<td>MTZ App close</td>
<td>Comando de cierre desde la Aplicación EcoStruxure Power Device con el Digital Module del asistente de funcionamiento del Masterpact.</td>
</tr>
<tr>
<td>EcoStruxure Power Commission</td>
<td>Comando de cierre desde el software EcoStruxure Power Commission conectado al puerto mini-USB en la unidad de control.</td>
</tr>
<tr>
<td>IO local close</td>
<td>Comando de cierre local desde el módulo IO con la aplicación predefinida de funcionamiento del interruptor (I6).</td>
</tr>
<tr>
<td>COM close</td>
<td>Comando de cierre desde un controlador remoto.</td>
</tr>
<tr>
<td>Webpage close</td>
<td>Comando de cierre desde la página web de IFE/EIFE.</td>
</tr>
<tr>
<td>IO remote close</td>
<td>Comando de cierre remoto desde el módulo IO con la aplicación predefinida de funcionamiento del interruptor (I3).</td>
</tr>
<tr>
<td>FDM128 close</td>
<td>Comando de cierre desde la pantalla FDM128.</td>
</tr>
<tr>
<td>EcoStruxure Power Commission</td>
<td>Comando de cierre desde el software EcoStruxure Power Commission a través de la red de comunicación.</td>
</tr>
<tr>
<td>Close</td>
<td>Comando de cierre desde el Micrologic X a la bobina de cierre comunicante XF.</td>
</tr>
</tbody>
</table>
Inhibición de la función de cierre

La función de cierre puede inhibirse enviando un comando a través de:
- La red de comunicación o el software EcoStruxure Power Commission
- El módulo IO

NOTA: Utilizando el software EcoStruxure Power Commission (véase página 19), puede determinar si la inhibición de cierre se puede controlar utilizando el módulo IO o no.

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruptor automático cerrado</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Cierre inhabido por comunicación</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Cierre inhabido por el módulo IO</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Orden de cierre enviada a XF</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Permitir control mediante entrada digital desactivado</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de configuración IO/CU: configuración dual o inhibición de cierre</td>
<td>Configuración</td>
<td>Media</td>
</tr>
</tbody>
</table>

ADVERTENCIA

RESTRICCIÓN DE INHIBICIÓN DE CIERRE

No utilice la inhibición del comando de cierre para bloquear el dispositivo en posición abierta.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

La inhibición del comando de cierre sólo inhibe los comandos de cierre permitidos en el modo de control automático. Los comandos de cierre emitidos desde el botón pulsador de cierre mecánico o BPFE, o bien desde el botón pulsador conectado directamente a la bobina de disparo XF no se inhibirán.

Eventos predefinidos

La función genera los siguientes eventos predefinidos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruptor automático cerrado</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Cierre inhabido por comunicación</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Cierre inhabido por el módulo IO</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Orden de cierre enviada a XF</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Permitir control mediante entrada digital desactivado</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Error de configuración IO/CU: configuración dual o inhibición de cierre</td>
<td>Configuración</td>
<td>Media</td>
</tr>
</tbody>
</table>
Capítulo 7
Funciones de comunicación

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación Bluetooth con bajo nivel de energía</td>
<td>238</td>
</tr>
<tr>
<td>Comunicación NFC</td>
<td>241</td>
</tr>
<tr>
<td>Conexión USB On-The-Go (OTG)</td>
<td>243</td>
</tr>
<tr>
<td>Conexión USB</td>
<td>244</td>
</tr>
<tr>
<td>Recomendaciones sobre ciberseguridad</td>
<td>245</td>
</tr>
</tbody>
</table>
Comunicación Bluetooth con bajo nivel de energía

Descripción

Si utiliza comunicaciones BLE Bluetooth con bajo nivel de energía, puede acceder a la unidad de control Micrologic X desde un smartphone que tenga instalada Aplicación EcoStruxure Power Device (véase página 20). Esta aplicación ofrece una interfaz orientada a tareas con la unidad de control. Sólo puede establecer una conexión BLE con una unidad de control Micrologic X a la vez. Sólo se puede conectar un smartphone a una unidad de control a la vez. Durante la conexión, la unidad de control se identifica con los últimos dígitos de su número de serie. El formato del identificador es MTZ <Tipo de protección> <Final del número de serie> (por ejemplo, MTZ 5.012345), donde 5 indica la unidad de control Micrologic 5.0 X y 012345 son los 6 últimos dígitos del número de serie. Las comunicaciones BLE están cifradas mediante un estándar de cifrado avanzado (del inglés AES, Advanced Encryption Standard) de 128 bits.

Requisitos previos para utilizar Bluetooth con bajo nivel de energía

Los requisitos previos para establecer una conexión BLE son los siguientes:
- La unidad de control Micrologic X debe recibir alimentación (véase página 32).
- La comunicación BLE en la unidad de control debe estar activada.
- Debe tener un smartphone que tenga Aplicación EcoStruxure Power Device instalada.
- El smartphone debe admitir Android 4.4 o iOS 9 o superior y ser compatible con Bluetooth con bajo nivel de energía.
- Debe tener acceso a la unidad de control Micrologic X y encontrarse físicamente dentro de un alcance de 20 a 30 metros (22 a 32 yardas) durante la duración de la conexión (10 metros [11 yardas] para obtener una conexión óptima).

Activación y desactivación de la comunicación Bluetooth con bajo nivel de energía

Por defecto, la comunicación BLE está desactivada. Es posible activar o desactivar la comunicación BLE tal como se muestra a continuación:
- En la pantalla Micrologic X, en Inicio → Configuración → Comunicación → Bluetooth, ajuste Bluetooth en ON o OFF.
- Con el software EcoStruxure Power Commission, en Inicio → Configuración → Comunicación → Bluetooth, ajuste Bluetooth Activación en ON o OFF.

El estado de comunicación BLE (activada o desactivada) se puede mostrar de la siguiente manera:
- en la pantalla de Micrologic X, en Inicio → Comunicación → Bluetooth
- con el software EcoStruxure Power Commission
- en un controlador remoto a través de la red de comunicación

A LED Bluetooth
B Botón de activación de Bluetooth
C Número de serie de la unidad de control Micrologic X
Eventos predefinidos

Al activar la comunicación Bluetooth se genera el siguiente evento:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación Bluetooth activada</td>
<td>Comunicación</td>
<td>Baja</td>
</tr>
<tr>
<td>Conexión en puerto Bluetooth</td>
<td>Comunicación</td>
<td>Baja</td>
</tr>
</tbody>
</table>

Configuración del temporizador de desconexión Bluetooth

Cuando se activa la comunicación Bluetooth con el botón pulsador de activación en la unidad de control Micrologic X, existe un temporizador de la conexión mediante smartphone que finaliza la comunicación mediante un periodo de inactividad. Por defecto, este temporizador de desconexión automática está configurado en 15 minutos.

La configuración del temporizador de desconexión Bluetooth se puede cambiar tal como se muestra a continuación:

- En la pantalla de Micrologic X, en Inicio → Configuración → Comunicación → Bluetooth, ajuste Bluetooth en ON y, a continuación, ajuste el valor Temporiz. (min)BLE.
- En el software EcoStruxure Power Commission, en Inicio → Configuración → Comunicación → Bluetooth, ajuste Bluetooth time out delay (min) en el valor correspondiente.

Puede ajustar un valor de entre 5 y 60 minutos (predeterminado = 15 minutos) en incrementos de 1.

Establecimiento de una conexión Bluetooth con bajo nivel de energía

Siga los pasos que aparecen a continuación para establecer una conexión BLE a la unidad de control Micrologic X desde su smartphone.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicie la Aplicación EcoStruxure Power Device en el smartphone.</td>
</tr>
<tr>
<td>2</td>
<td>Seleccione Conectar a dispositivo mediante Bluetooth.</td>
</tr>
<tr>
<td>3</td>
<td>En la unidad de control Micrologic X, pulse el botón pulsador de activación Bluetooth. En indicador LED Bluetooth se enciende. Si no se enciende, debe activar primero la función de comunicación Bluetooth. En su smartphone, Aplicación EcoStruxure Power Device empieza a buscar y muestra una lista de dispositivos Bluetooth en la zona. Las unidades de control Micrologic X se identifican mediante su número de ID.</td>
</tr>
<tr>
<td>4</td>
<td>Seleccione la unidad de control Micrologic X a la que desea conectarse. Aparece un código de sincronización de 6 dígitos en la pantalla de Micrologic X.</td>
</tr>
<tr>
<td>5</td>
<td>Introduzca el código de sincronización en la Aplicación EcoStruxure Power Device en un tiempo máximo de 30 segundos. Si el código de sincronización es incorrecto, o si han transcurrido más de 30 segundos, se desactivará la comunicación Bluetooth (el indicador LED se apaga) y deberá iniciar el procedimiento de conexión otra vez desde el paso 3. Si se ha establecido la conexión, el indicador LED Bluetooth empezará a parpadear.</td>
</tr>
<tr>
<td>6</td>
<td>Para finalizar la conexión, puede optar por uno de estos medios: Pulse el botón pulsador Bluetooth en la unidad de control Micrologic X. Desconéctese desde la Aplicación EcoStruxure Power Device.</td>
</tr>
</tbody>
</table>

Mientras el smartphone se encuentre dentro del alcance de comunicación (un campo abierto de 20 a 30 metros [22 a 32 yardas] de la unidad de control Micrologic X), la conexión BLE permanecerá activa y la información mostrada se actualizará.

NOTA: Cada conexión es única, no puede guardar los parámetros de conexión para su próxima conexión BLE.

LED Bluetooth

El indicador LED Bluetooth en la parte frontal de la unidad de control Micrologic X puede estar:

- ENCENDIDO: hay un proceso de conexión Bluetooth en curso.
- APAGADO: Bluetooth no está activado ni desactivado.
- Parpadeando: hay una conexión Bluetooth establecida y activa.

NOTA: El indicador LED Bluetooth no indica si la función de comunicación BLE está activada o desactivada en la unidad de control Micrologic X. Si esta función está desactivada, el indicador LED no se enciende al pulsar el botón de activación Bluetooth.
Solución de problemas de comunicación Bluetooth con bajo nivel de energía

En la siguiente tabla se enumeran los problemas comunes que se encuentran al intentar establecer una conexión Bluetooth a la unidad de control Micrologic X.

<table>
<thead>
<tr>
<th>Descripción del problema</th>
<th>Causas posibles</th>
<th>Soluciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>El indicador LED Bluetooth no se enciende al pulsar el botón pulsador de activación Bluetooth en la unidad de control Micrologic X.</td>
<td>La función Bluetooth no está activada en la unidad de control Micrologic X.</td>
<td>Active la comunicación Bluetooth en la unidad de control Micrologic X.</td>
</tr>
<tr>
<td></td>
<td>La unidad de control Micrologic X no recibe alimentación.</td>
<td>Compruebe la fuente de alimentación de la unidad de control Micrologic X.</td>
</tr>
<tr>
<td>Se ha establecido una conexión Bluetooth, pero se ha perdido la señal.</td>
<td>El smartphone está fuera del alcance.</td>
<td>Coloque el smartphone dentro del alcance de Bluetooth y establezca una nueva conexión.</td>
</tr>
<tr>
<td>El LED Bluetooth de la unidad de control parpadea, pero no puede ver el número de ID en la lista de dispositivos disponibles.</td>
<td>Ya hay un smartphone conectado a la unidad de control Micrologic X.</td>
<td>Compruebe si hay otro smartphone conectado a la unidad de control dentro del alcance.</td>
</tr>
</tbody>
</table>
Comunicación NFC

Descripción

Con la comunicación de campo cercano (NFC) puede acceder a la unidad de control Micrologic X desde un smartphone que tenga Aplicación EcoStruxure Power Device instalada. Con NFC, puede acceder a la unidad de control y descargar datos en su smartphone, incluso aunque la unidad de control no reciba alimentación. La comunicación NFC siempre está activada y no se puede desactivar.

Sólo puede establecer una conexión NFC con una unidad de control Micrologic X al mismo tiempo y sólo puede haber un smartphone conectado a la unidad de control a la vez.

Las unidades de control Micrologic X usan etiquetas NFC pasivas, que no tienen una fuente de alimentación. Reciben alimentación del smartphone que las lee; por tanto, no emiten ninguna onda electromagnética cuando no se está utilizando la comunicación NFC.

NOTA: La comunicación NFC sólo está disponible en la versión para Android de la Aplicación EcoStruxure Power Device.

Requisitos previos para utilizar NFC

Los requisitos previos para establecer una conexión NFC son los siguientes:

- Debe tener un smartphone que tenga Aplicación EcoStruxure Power Device instalada.
- El smartphone debe admitir NFC.
- Debe tener acceso físico a la unidad de control Micrologic X. El smartphone debe encontrarse a una distancia de 20 mm (0.8 in) de la pantalla de la unidad de control.
Establecimiento de una conexión NFC

Siga los pasos que aparecen a continuación para establecer una conexión NFC a la unidad de control Micrologic X desde su smartphone.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicie la Aplicación EcoStruxure Power Device en el smartphone.</td>
</tr>
<tr>
<td>2</td>
<td>Seleccione Conectar a dispositivo mediante NFC.</td>
</tr>
</tbody>
</table>
| 3 | Coloque el smartphone frente a la pantalla del Micrologic X a una distancia máxima de 20 mm (0.8 in) en la zona de comunicación NFC inalámbrica.
NOTA: La antena NFC de la unidad de control se encuentra alrededor de la pantalla del Micrologic X. La posición de la antena NFC en el smartphone depende del modelo utilizado. Si no se ha establecido la comunicación, compruebe si el smartphone tiene antena NFC y repita el procedimiento.
Un primer pitido indica que se ha establecido la comunicación. Aplicación EcoStruxure Power Device empieza a descargar datos. Un segundo pitido indica que la descarga de datos ha finalizado. Si la operación falla, aparece un mensaje en el smartphone. Empiece el procedimiento de nuevo.
NOTA: No quite el smartphone de la pantalla del Micrologic X mientras se estén descargando los datos. Si lo hace, la descarga no se completará (perderá la conexión NFC). |
| 4 | Quite el smartphone de la pantalla del Micrologic X. |

Los datos NFC descargados de la unidad de control Micrologic X no se actualizan automáticamente. Para obtener actualizaciones, deberá establecer una nueva conexión NFC. Tenga en cuenta que cada nuevo conjunto de datos descargados sobrescribe los datos anteriores. Puede usar la Aplicación EcoStruxure Power Device para consultar los datos descargados.

Solución de problemas de comunicación NFC

En la siguiente tabla se enumeran los problemas comunes que se encuentran al intentar establecer una conexión NFC con la unidad de control Micrologic X.

<table>
<thead>
<tr>
<th>Descripción del problema</th>
<th>Causas posibles</th>
<th>Soluciones</th>
</tr>
</thead>
</table>
| No se ha establecido la conexión NFC. (No emite ningún pitido) | El smartphone se encuentra fuera de la zona de comunicación inalámbrica NFC.
El smartphone tiene una carcasa reforzada (por ejemplo, metálica) que bloquea la señal.
El smartphone no tiene capacidad NFC.
La comunicación NFC no está activada en el smartphone. | Mueva el smartphone para que la antena se encuentre en la zona de comunicación inalámbrica NFC y repita el procedimiento de conexión.
Extraiga la carcasa del smartphone y repita el procedimiento de conexión.
–
Asegúrese de que la comunicación NFC esté activada en el smartphone. |
| Se ha establecido una conexión NFC, pero se ha perdido la señal. (No se ha emitido un segundo pitido.) | Se ha movido el smartphone fuera de la zona de comunicación inalámbrica NFC antes de que haya terminado la transmisión de datos. | Mueva el smartphone a la zona de comunicación inalámbrica NFC y repita el procedimiento de conexión.
Mantenga el smartphone en la zona hasta que oiga el segundo pitido. |
| No se han transmitido datos. Aparece el mensaje **Fallo de memoria. Inténtelo de nuevo.** en el smartphone. | La carga de la batería interna es demasiado baja para registr la información. | Sustituya la batería interna para que se pueda registrar información en el futuro. |
Conexión USB On-The-Go (OTG)

Descripción
Si utiliza una conexión USB OTG, puede acceder a la unidad de control Micrologic X desde un smartphone que tenga Aplicación EcoStruxure Power Device (véase página 20) instalada. Esta aplicación ofrece una interfaz orientada a tareas con la unidad de control.

Requisitos previos para usar una conexión USB OTG
Los requisitos previos para establecer una conexión USB OTG son los siguientes:
- Debe tener un smartphone que tenga Aplicación EcoStruxure Power Device instalada.
- El smartphone debe admitir Android 4.4 o iOS 9 o superior.
- Para conectar el cable directamente al puerto mini USB de la unidad de control, debe tener acceso físico a la unidad de control Micrologic X.
- Debe tener un adaptador USB OTG (no suministrado) y un cable USB tipo A para conectar el puerto USB del smartphone al puerto mini USB de la unidad de control Micrologic X.
- El cable USB tipo A debe cumplir una de las siguientes condiciones:
 - L ≤ 1 m, diámetro mínimo AWG 26/28
 - L ≤ 2 m, diámetro mínimo AWG 24 (por ejemplo: Molex Ref 88732-8902)

Conexión de un smartphone con Aplicación EcoStruxure Power Device al puerto mini USB
Siga los pasos que se indican a continuación para conectarse a la unidad de control Micrologic X a través del puerto mini-USB.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conecte el smartphone al puerto mini USB de la unidad de control Micrologic X con un adaptador USB OTG y un cable USB tipo A. El smartphone proporcionará alimentación a la unidad de control Micrologic X si es necesario.</td>
</tr>
<tr>
<td>2</td>
<td>Inicie la Aplicación EcoStruxure Power Device en el smartphone.</td>
</tr>
</tbody>
</table>

Eventos predefinidos
La función genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puerto USB conectado</td>
<td>Comunicación</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Conexión USB

Descripción
Desde un PC que tenga instalado el software EcoStruxure Power Commission podrá acceder a todas las funciones de supervisión y control de la unidad de control Micrologic X conectando directamente un PC al puerto mini USB de la unidad de control.

Requisitos previos para usar una conexión USB
Los requisitos previos para establecer una conexión USB son los siguientes:
- Debe tener el controlador USB instalado en el PC.
- Para conectar el cable directamente al puerto mini-USB de la unidad de control, debe tener acceso físico a la unidad de control Micrologic X.
- Para conectar el puerto USB del PC al puerto mini-USB de la unidad de control Micrologic X, debe tener un cable USB (referencia LV850067SP).

Conexión de un PC con el software EcoStruxure Power Commission al puerto mini USB
Siga los pasos que se indican a continuación para conectarse a la unidad de control Micrologic X a través del puerto mini-USB.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conecte el PC al puerto mini-USB de la unidad de control Micrologic X mediante un cable con la referencia LV850067SP. El PC proporcionará alimentación a la unidad de control Micrologic X si es necesario.</td>
</tr>
<tr>
<td>2</td>
<td>Inicie el software EcoStruxure Power Commission en el PC e inicie sesión.</td>
</tr>
<tr>
<td>3</td>
<td>En la página de inicio de EcoStruxure Power Commission, conéctese a la unidad de control Micrologic X. Existen distintas maneras de conectar el software EcoStruxure Power Commission a la unidad de control Micrologic X, en función de si se trata de la primera conexión y de cómo se ha detectado el dispositivo. Para obtener más información, consulte Ayuda en línea de EcoStruxure Power Commission.</td>
</tr>
<tr>
<td>4</td>
<td>Si conecta el software EcoStruxure Power Commission a la unidad de control Micrologic X, tendrá acceso a todas las funciones del software.</td>
</tr>
</tbody>
</table>

Modo de prueba de la unidad de control
El modo de prueba se activa al conectar el software EcoStruxure Power Commission al dispositivo a través de un PC conectado al puerto mini-USB de la unidad de control Micrologic X y al pulsar el botón Forzar disparo. Para obtener más información, consulte Ayuda en línea de EcoStruxure Power Commission.

Eventos predefinidos
La función genera los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conexión en puerto USB</td>
<td>Comunicación</td>
<td>Baja</td>
</tr>
<tr>
<td>Unidad de control en modo de prueba</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Prueba de inyección en curso</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
<tr>
<td>Prueba cancelada por el usuario</td>
<td>Diagnóstico</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Recomendaciones sobre ciberseguridad

Descripción general
El interruptor automático Masterpact MTZ con su unidad de control Micrologic X constituye un componente clave de su instalación. Ofrece varias funciones de comunicación que aportan una mayor eficacia y flexibilidad en la gestión de su instalación. Sin embargo, estas funciones también la hacen más vulnerable a posibles ciberataques.

En este apartado se enumeran algunas de las precauciones más elementales que hay que tomar para proteger las rutas de comunicaciones que ofrecen acceso a la información relativa a su instalación y, en definitiva, control sobre ella.

Las rutas de comunicación de protección son, entre otras:
- Rutas de comunicación de acceso local
 - Comunicación inalámbrica Bluetooth con bajo nivel de energía
 - Comunicación inalámbrica NFC
 - Puerto mini-USB
- Rutas de comunicación de acceso remoto
 - La red Ethernet en el caso de que se utilice IFE la interfaz o EIFE.
 - La red Modbus-SL en el caso de que se utilice la interfaz IFM.

Para obtener información más detallada acerca de la ciberseguridad para el interruptor automático Masterpact MTZ, consulte Masterpact MTZ - Guía de ciberseguridad (véase página 10).

Recomendaciones generales sobre ciberseguridad
Existen varias reglas generales que deben seguirse con el fin de proteger la disponibilidad, la integridad y la confidencialidad de los sistemas y la red.

Para obtener directrices generales acerca de cómo proteger el acceso remoto a la red e implementar un entorno operativo seguro, consulte How Can I Reduce Vulnerability to Cyber Attacks?.

Recomendaciones sobre ciberseguridad para rutas de comunicación de acceso local
Para ayudarlo a proteger las rutas de comunicación de acceso local, se recomienda:
- Mantener cerrada y bloqueada la carcasa en la que se encuentra el interruptor automático Masterpact MTZ de modo que las personas no autorizadas no puedan acceder a la unidad de control Micrologic X.
Recomendaciones sobre ciberseguridad específicas para la comunicación inalámbrica Bluetooth con bajo nivel de energía

Las transferencias de datos que emplean la comunicación inalámbrica BLE están cifradas y, por lo tanto, el riesgo de que una persona no autorizada obtenga acceso a la información confidencial durante la transmisión es bastante limitado.

Para proteger el acceso a las funciones a las que se puede acceder a través de Bluetooth, se recomienda:
- Desactivar las comunicaciones Bluetooth (véase página 238) si no desea utilizar Bluetooth.
- Establecer el temporizador de desconexión automática Bluetooth en el tiempo mínimo (5 minutos).
- Asegurarse de que los smartphones que dispongan de Aplicación EcoStruxure Power Device estén protegidos con contraseña y se utilicen sólo con fines profesionales.
- No facilite información acerca del smartphone (número de teléfono, dirección MAC) a menos que sea estrictamente necesario.
- Desconecte el smartphone de Internet durante la conexión Bluetooth con la unidad de control Micrologic X.
- No almacene información confidencial en un smartphone.

Recomendaciones sobre ciberseguridad específicas para la comunicación inalámbrica NFC

Para proteger el acceso a datos a través de NFC, se recomienda asegurarse de que los smartphones que dispongan de Aplicación EcoStruxure Power Device estén protegidos con contraseña y se utilicen sólo con fines profesionales.

Recomendaciones sobre ciberseguridad para la conexión USB

Para proteger el acceso a las funciones a las que se puede acceder a través de una conexión USB en la unidad de control Micrologic X, se recomienda que:
- Los PC que tienen instalado el software de supervisión estén protegidos según las directrices que se indican en la publicación Masterpact MTZ - Guía de ciberseguridad.
- Sus PC tengan instalados los métodos de protección más actualizados para el sistema operativo.

Recomendaciones sobre ciberseguridad para la conexión USB OTG

Para proteger el acceso a las funciones a las que se puede acceder a través de una conexión USB OTG en la unidad de control Micrologic X, se recomienda que:
- Los smartphones que tienen instalada la Aplicación EcoStruxure Power Device estén protegidos según las directrices que se indican en la publicación Masterpact MTZ - Guía de ciberseguridad.
- Sus smartphones tengan instalados los métodos de protección más actualizados para el sistema operativo.

Recomendaciones sobre ciberseguridad para rutas de comunicación de acceso remoto a través de una red de comunicación

Si el interruptor automático Masterpact MTZ se conecta a una red de comunicación a través de la interfaz IFE, EIFE o IFM, se recomienda:
- Seguir las normas de seguridad generales con el fin de proteger la red.
- Asegurarse de que los PC que ejecutan el software de supervisión estén reforzados según las directrices de la Masterpact MTZ - Guía de ciberseguridad y que los PC estén ejecutando los métodos de refuerzo más actualizados para el sistema operativo en cuestión.
Capítulo 8
Gestión de eventos

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definición de evento</td>
<td>248</td>
</tr>
<tr>
<td>Tipo de evento</td>
<td>250</td>
</tr>
<tr>
<td>Notificaciones de eventos</td>
<td>254</td>
</tr>
<tr>
<td>Visualización de eventos</td>
<td>255</td>
</tr>
<tr>
<td>Historial de eventos</td>
<td>256</td>
</tr>
<tr>
<td>Lista de eventos</td>
<td>257</td>
</tr>
</tbody>
</table>
Definición de evento

Definición

Un evento es un cambio de estado de datos digitales o cualquier incidencia detectada por la unidad de control Micrologic X, la interfaz Ethernet EIFE o los módulos IO.

Los eventos obtienen una marca de tiempo y se registran en el historial de eventos de cada módulo.

Los eventos se categorizan en función de un nivel de seguridad:
- Alto: se requiere una acción correctiva urgente.
- Medio: hay que programar una acción correctiva.
- Bajo: sólo como información.

Todos los eventos de gravedad alta y media generan una alarma y una pantalla emergente de notificación (véase página 254) en la pantalla de la unidad de control Micrologic X.

Los eventos de gravedad baja son eventos de tipo informativo. Se pueden consultar de la siguiente manera:
- Con el software EcoStruxure Power Commission.
- Con Aplicación EcoStruxure Power Device

Las alarmas y los disparos son eventos que requieren una atención específica del usuario:
- Un disparo es un evento de gravedad alta que se genera cuando se dispara el interruptor automático.
- Una alarma es un evento con una severidad media o alta.

La información de este capítulo es válida para los eventos que se detectan mediante la unidad de control Micrologic X. Consulte los siguientes documentos en relación con los eventos que se detectan mediante la interfaz Ethernet EIFE o los módulos IO (véase página 10):
- Para obtener más información sobre eventos de EIFE, consulte Enerlin’X EIFE - Interfaz Ethernet integrada para un interruptor automático Masterpact MTZ seccionable - Guía del usuario.
- Para obtener información sobre los eventos IO, consulte Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario.

Eventos de mantenimiento

Los eventos de mantenimiento son eventos que tienen un impacto en el estado del interruptor automático. Los notifica el LED de servicio, además de generar un evento de gravedad media o alta.
- LED de servicio naranja: alarma de gravedad media detectada que requiere acción de mantenimiento no urgente.
- LED de servicio rojo: alarma de gravedad alta detectada que requiere acción de mantenimiento inmediata.
Gestión de eventos mediante la unidad de control Micrologic X

En el diagrama siguiente se ofrece una descripción general sobre cómo se gestionan los eventos mediante la unidad de control Micrologic X.

Marcas de tiempo de eventos

Cada evento obtiene una marca de tiempo con la fecha y hora del reloj interno (véase página 31) de Micrologic X.
Tipo de evento

Descripción general

Los eventos pueden ser de los siguientes tipos:

- **Aparición/completado** (Entrada/Salida): eventos que tienen un inicio y un final definidos, que representan el inicio o el final de un estado de sistema. Se añade una marca de tiempo a la aparición y al momento en el que se completan, y se registran en un historial. Por ejemplo, **Modo manual activado** es un evento de aparición/completado.

- **Instantáneo** (impulso): eventos sin duración. Solo se añade una marca de tiempo a la aparición del evento, y se registra en un historial. Por ejemplo, la recepción de un comando de apertura, un cambio en la configuración o un disparo del interruptor automático son eventos instantáneos.

El tipo de evento no se puede personalizar.

Definición del estado de evento

El estado de un evento es activo, inactivo o mantenido. Depende del tipo de evento y del modo de retención. El estado de todos los eventos se puede consultar en cualquier momento (véase página 255).

Modo de retención

Un evento se puede retenerse o no:

- **Sin retención**: mientras exista la causa del evento este tendrá el estado activo. Recupera automáticamente el estado inactivo cuando la causa del evento desaparece o se resuelve.

- **Con retención**: el evento no recupera el estado inactivo de forma automática cuando la causa del evento desaparece o se resuelve. Se mantiene en el estado mantenido hasta que lo rearma el usuario.

El modo de retención de determinados eventos (véase página 257) se puede personalizar mediante el software EcoStruxure Power Commission.

Actividad

Se pueden desactivar determinados eventos para que la unidad de control Micrologic X no tenga en cuenta el evento. En este caso, el evento no se registra en un historial y no genera ninguna alarma.

Los eventos se pueden deshabilitar mediante el software EcoStruxure Power Commission. Para obtener más información sobre qué eventos se pueden deshabilitar, consulte la lista de eventos (véase página 257). Los eventos se pueden habilitar de nuevo después de deshabilitarse.

Eventos de ocurrencia/finalización desbloqueados

En el gráfico se muestra el estado de evento de un evento de ocurrencia/finalización desbloqueado:

![Diagrama de eventos desbloqueados](image)

- **A** Evento inactivo
- **B** Evento activo
- 1 Ocurricencia de evento: se incluye una marca de tiempo en el evento, se registra en un historial y se notifica, en función de la severidad.
- 2 Finalización de evento: se incluye una marca de tiempo en el evento y se registra en un historial.
Eventos de ocurrencia/finalización retenidos

En el gráfico se muestra el estado de evento de un evento de ocurrencia/finalización retenido:

A Evento inactivo
B Evento activo
C Evento mantenido

1 Ocurrencia de evento: se incluye una marca de tiempo en el evento, se registra en un historial y se notifica, en función de la severidad.
2 Finalización de evento: se incluye una marca de tiempo en el evento y se registra en un historial.
3 Restablecimiento de evento: se incluye una marca de tiempo en el comando de restablecimiento, que se registra en un historial de funcionamiento. Todos los eventos mantenidos se restablecen.

El gráfico siguiente muestra el estado de evento de un evento retenido en el que se intenta un restablecimiento antes de la finalización del evento:

A Evento inactivo
B Evento activo
C Evento mantenido

1 Ocurrencia de evento: se incluye una marca de tiempo en el evento, se registra en un historial y se notifica, en función de la severidad.
2 Restablecimiento de evento: el comando de restablecimiento obtiene una marca de tiempo y se registra en el historial de funcionamiento, pero no tiene ningún efecto en el evento 1 de Micrologic ya que no se ha finalizado el evento externo.
3 Finalización de evento: se incluye una marca de tiempo en el evento y se registra en un historial.
4 Restablecimiento de evento: se incluye una marca de tiempo en el comando de restablecimiento, que se registra en un historial de funcionamiento. Todos los eventos mantenidos se restablecen.
En el gráfico se muestra el estado de evento de un evento recurrente de ocurrencia/finalización retenido:

A Evento inactivo
B Evento activo
C Evento mantenido
1 Ocurrencia de evento: se incluye una marca de tiempo en el evento, se registra en un historial y se notifica, en función de la severidad.
2 Finalización de evento: se incluye una marca de tiempo en el evento y se registra en un historial.
3 Restablecimiento de evento: se incluye una marca de tiempo en el comando de restablecimiento, que se registra en un historial de funcionamiento. Todos los eventos mantenidos se restablecen.

Eventos instantáneos sin retención

En el gráfico se muestra el estado de evento de un evento instantáneo sin retención:

A Evento inactivo
1 Ocurrencia de evento: se incluye una marca de tiempo en el evento, se registra en un historial y se notifica, en función de la severidad.
Eventos instantáneos retenidos

En el gráfico se muestra el estado de evento de un evento instantáneo retenido:

A Evento inactivo
C Evento mantenido
1 Ocurrencia de evento: se incluye una marca de tiempo en el evento, se registra en un historial y se notifica, en función de la severidad.
2 Restablecimiento de evento: se incluye una marca de tiempo en el comando de restablecimiento, que se registra en un historial de funcionamiento. Todos los eventos mantenidos se restablecen.

En el gráfico se muestra el estado de evento de un evento recurrente instantáneo retenido:

A Evento inactivo
C Evento mantenido
1 Ocurrencia de evento: se incluye una marca de tiempo en el evento, se registra en un historial y se notifica, en función de la severidad.
2 Restablecimiento de evento: se incluye una marca de tiempo en el comando de restablecimiento, que se registra en un historial de funcionamiento. Todos los eventos mantenidos se restablecen.

Reinicio de eventos retenidos

Los eventos retenidos se pueden reiniciar de la siguiente manera:
- Pulsando el botón de prueba/reinicio en la parte frontal de la unidad de control Micrologic X durante 3-15 segundos.
- Con el software EcoStruxure Power Commission (protegido con contraseña).
- Con Aplicación EcoStruxure Power Device (protegido con contraseña).
- Mediante el envío de un comando de ajuste a través de la red de comunicación (protegido con contraseña).

Los comandos de restablecimiento no se centran en eventos específicos. Se restablecen todos los estados de eventos mantenidos que gestiona la unidad de control Micrologic X y se borran todos los LED de causa de disparo.

Los comandos de restablecimiento se centran en un módulo específico. Por ejemplo, al pulsar el botón de prueba/restablecimiento de 3 a 15 segundos se restablecen los eventos de la unidad de control Micrologic X, pero no se restablecen los eventos del módulo IO.

El comando de restablecimiento genera el siguiente evento:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restablecimiento de alarma</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Notificaciones de eventos

Presentación
Los eventos de gravedad alta (incluidos disparos) y los de gravedad media se notifican mediante una pantalla emergente en la unidad de control Micrologic X.
Los eventos de disparo se notifican mediante el contacto de señalización de defecto eléctrico estándar SDE1 y el contacto de señalización de defecto eléctrico opcional SDE2.
Además, los eventos se pueden configurar para que se notifiquen de las siguientes maneras:
- Mediante el módulo M2C opcional.
- Mediante el módulo IO opcional.
- Por correo electrónico desde la interfaz Ethernet IFE o EIFE.

Pantalla emergente
Todos los eventos de gravedad alta y media generan una pantalla emergente en la pantalla de Micrologic X (véase página 74).
- Una pantalla emergente roja indica un disparo o un evento de gravedad alta, que requiere atención inmediata.
- Una pantalla emergente naranja indica un evento de gravedad media, que recomienda actuar.

Notificaciones de M2C
El software EcoStruxure Power Commission se puede usar para asignar la notificación a un grupo de hasta ocho eventos o alarmas a cualquiera de las dos salidas de M2C.
La salida de M2C permanece activada mientras uno de los eventos asignados a ella esté activo o mantenido.
El software EcoStruxure Power Commission también permite forzar el estado de las salidas de M2C. Al forzar una salida M2C se generan los siguientes eventos:

<table>
<thead>
<tr>
<th>Evento</th>
<th>Historial</th>
<th>Gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salida 1 de M2C forzada</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
<tr>
<td>Salida 2 de M2C forzada</td>
<td>Funcionamiento</td>
<td>Baja</td>
</tr>
</tbody>
</table>

Notificaciones del módulo IO
Cuando una salida del módulo IO no está asignada a una aplicación predefinida, EcoStruxure Power Commission se puede usar para asignar la notificación de:
- Un solo evento.
- Un grupo de hasta ocho eventos o alarmas.
Para obtener más información, consulte Ayuda en línea de EcoStruxure Power Commission.
Cuando la salida del módulo IO está asignada a un grupo de alarmas, la salida permanece activada mientras uno de los eventos asignados a ella esté activo o mantenido. Se debe ajustar el modo de funcionamiento sin retención de la salida del módulo IO.
El software EcoStruxure Power Commission también permite forzar el estado de las salidas del módulo IO.
Consulte Enerlin’X IO - Módulo de aplicación de entrada/salida para un interruptor automático - Guía del usuario (véase página 10).

Notificación por correo electrónico
Las páginas web de IFE o EIFE permiten seleccionar eventos para la notificación por correo electrónico. La notificación por correo electrónico no está configurada de manera predeterminada.
Para obtener más información, consulte la documentación (véase página 10) siguiente:
- Enerlin’X IFE - Interfaz Ethernet para un interruptor automático- Guía del usuario
- Enerlin’X EIFE - Interfaz Ethernet integrada para un interruptor automático Masterpact MTZ seccionable - Guía del usuario
- Enerlin’X IFE - Servidor de panel Ethernet - Guía del usuario
Visualización de eventos

Introducción

La tabla de estado de los eventos muestra el estado de todos los eventos en el momento de la consulta. El estado puede ser inactivo, activo o mantenido.

Los eventos que están en estado activo y mantenido se muestran en las interfaces siguientes:

- Pantalla de Micrologic X
- Software EcoStruxure Power Commission.
- Aplicación EcoStruxure Power Device

El estado de un evento se puede comprobar utilizando la red de comunicación.

Visualización de eventos en la pantalla de Micrologic X

Para visualizar los eventos activos y mantenidos en la pantalla de Micrologic X, acceda a Inicio → Alarmas & historial → Alarmas.

Se muestran los eventos activos de gravedad alta y media y los eventos mantenidos.

Los eventos se muestran con la descripción del evento y la hora en que se produjeron, pero no en un orden específico.

Si el evento finaliza mientras la pantalla está abierta, aparece el mensaje Finalización en la pantalla.

Visualización de eventos en el software EcoStruxure Power Commission

Se muestran los eventos de gravedad alta y media, los eventos activos y los eventos mantenidos.

Los eventos se pueden ordenar por:

- Fecha
- Gravedad:
 - Eventos de gravedad alta
 - Eventos de gravedad media
- Historial
- Tipo

Visualización de eventos en Aplicación EcoStruxure Power Device

De forma predeterminada, los eventos se ordenan cronológicamente. Pueden ordenarse por otros parámetros, como fecha, gravedad, tipo o historial.
Historial de eventos

Descripción general

Todos los eventos se registran en uno de los dos historiales de la unidad de control Micrologic X:
- Disparo
- Protección
- Diagnóstico
- Medición
- Configuración
- Funcionamiento
- Comunicación

Se registran los eventos de todas las gravedades, incluidos los eventos de gravedad baja.

Los eventos registrados en los historiales se muestran tal como se indica a continuación:
- En la pantalla de Micrologic X.
- Con el software EcoStruxure Power Commission.
- Con la Aplicación EcoStruxure Power Device.

Los historiales de eventos se pueden descargar utilizando la red de comunicación.

En un historial se registra la información siguiente de cada evento:
- ID de evento: código de evento
- Tipo de evento: Entrada/Salida o Impulso
- Marca de tiempo: fecha y hora de la aparición y el momento en el que se completa
- Datos de contexto (solo para determinados eventos)

Número máximo de eventos de cada historial

Cada historial tiene un tamaño predefinido máximo. Cuando un historial se llena, cada evento nuevo sobreescribe el evento más antiguo del historial en cuestión.

<table>
<thead>
<tr>
<th>Historial de eventos</th>
<th>Número máximo de eventos almacenados en el historial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparo</td>
<td>50</td>
</tr>
<tr>
<td>Protección</td>
<td>100</td>
</tr>
<tr>
<td>Diagnóstico</td>
<td>300</td>
</tr>
<tr>
<td>Medición</td>
<td>300</td>
</tr>
<tr>
<td>Configuración</td>
<td>100</td>
</tr>
<tr>
<td>Funcionamiento</td>
<td>300</td>
</tr>
<tr>
<td>Comunicación</td>
<td>100</td>
</tr>
</tbody>
</table>

Visualización del historial de evento en la pantalla de Micrologic X

Para obtener más información sobre cómo se muestran los eventos en la pantalla de Micrologic X, consulte Menú de alaramas e historial (véase página 63).

Visualización del historial de eventos en el software EcoStruxure Power Commission

Todos los eventos registrados en historiales se pueden consultar utilizando el software EcoStruxure Power Commission. Los eventos se pueden exportar en forma de archivo Excel.

Los eventos de los historiales se muestran en orden cronológico, empezando por el más reciente.

Visualización del historial de eventos en el Aplicación EcoStruxure Power Device

Todos los eventos registrados en los historiales se muestran en Aplicación EcoStruxure Power Device.

Los eventos de los historiales se muestran en orden cronológico, empezando por el más reciente.

Los eventos se pueden ordenar por fecha y hora o por número de orden y se pueden filtrar de acuerdo con los siguientes criterios:
- Tipo
- Gravedad
- Historial

Al hacer clic en un evento específico de la lista, se muestra una lista de todas las apariciones del mismo evento, en orden cronológico.
Lista de eventos

Características del evento

Los eventos se enumeran según el historial en el que se registren (véase página 256).

Cada evento se define por las características siguientes:

- Código: código de evento
- Mensaje de usuario
- Historial (véase página 256)
- Tipo (véase página 250); no se puede personalizar
 - Entrada/Salida: aparición del evento/momento en el que se completa.
 - Impulso: evento instantáneo.
- Con enclavamiento (véase página 250):
 - Sí: el evento está retenido y el usuario debe restablecer el estado del evento.
 - No: el evento no está retenido.

NOTA: Con el software EcoStruxure Power Commission se puede personalizar el modo de retención de los eventos marcados con un (1) en las siguientes tablas.

- Actividad (véase página 250):
 - Activado
 - Desactivado

NOTA: Con el software EcoStruxure Power Commission se puede personalizar la actividad de los eventos marcados con un (1) en las siguientes tablas.

- Gravedad (véase página 248):
 - Eventos de gravedad alta.
 - Sucesos de gravedad media.
 - Sucesos de gravedad baja.

- Indicador LED de servicio (véase página 199):
 - Sí: el indicador LED de servicio está encendido en naranja o rojo, según la gravedad del evento. Se requiere acción de mantenimiento
 - No: el indicador LED de servicio no está encendido. No se requiere acción de mantenimiento.
Eventos de disparo

<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Histórico</th>
<th>Tipo</th>
<th>Con enciavamiento</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x6400</td>
<td>Disparo Ir (véase página 86)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6401</td>
<td>Disparo Isd (véase página 89)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6402</td>
<td>Disparo II (véase página 91)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6403</td>
<td>Disparo Ig (véase página 94)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6404</td>
<td>Disparo IΔn (véase página 98)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6406</td>
<td>Disparo de autoprotección definitiva (SELLIM)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6407</td>
<td>Disparo de diagnóstico automático (véase página 203)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x641D</td>
<td>Disparo de autoprotección definitiva (DIN/DINF)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x641E</td>
<td>Disparo de prueba IΔn/Ig (véase página 96)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6414</td>
<td>Disparo por potencia inversa (véase página 119)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6410</td>
<td>Disparo por potencia inversa (véase página 119)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x642A</td>
<td>Disparo por infratensión en las 3 fases (véase página 109)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6411</td>
<td>Disparo por sobretensión en una fase (véase página 112)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x642B</td>
<td>Disparo por sobretensión en las 3 fases (véase página 112)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6415</td>
<td>Disparo baja frecuencia (véase página 115)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x6416</td>
<td>Disparo alta frecuencia (véase página 115)</td>
<td>Disparo</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
</tbody>
</table>
Eventos de protección

<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x631D</td>
<td>Funcionamiento de autoprotección definitiva (DIN/DINF) (véase página 82)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6306</td>
<td>Funcionamiento de autoprotección definitiva (SELLIM) (véase página 82)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0xF11</td>
<td>Orden de restablecimiento de memoria térmica (véase página 87)</td>
<td>Protección</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x03F5</td>
<td>Prealarma Ir (I > 90 % Ir) (véase página 88)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6200</td>
<td>Inicio Ir (I > 105 % Ir) (véase página 88)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6300</td>
<td>Operación Ir (véase página 88)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6201</td>
<td>Inicio Isd (véase página 90)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x6301</td>
<td>Operación Isd (véase página 90)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6302</td>
<td>Operación Il (véase página 91)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x05C</td>
<td>Alarma Ig (véase página 122)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6203</td>
<td>Inicio Ig (véase página 94)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x6303</td>
<td>Operación Ig (véase página 94)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x05D</td>
<td>Alarma IΔn (véase página 122)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6204</td>
<td>Inicio IΔn (véase página 98)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x6304</td>
<td>Operación IΔn (véase página 98)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6210</td>
<td>Inicio por infratensión en 1 fase (véase página 109)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x6310</td>
<td>Operación por infratensión de 1 fase (véase página 109)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x622A</td>
<td>Inicio por infratensión en las 3 fases (véase página 109)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x632A</td>
<td>Operación por infratensión en las 3 fases (véase página 109)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6211</td>
<td>Inicio por sobretensión en 1 fase (véase página 112)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x6311</td>
<td>Operación por sobretensión de 1 fase (véase página 112)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x622B</td>
<td>Inicio por sobretensión en las 3 fases (véase página 112)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x632B</td>
<td>Operación por sobretensión en las 3 fases (véase página 112)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6216</td>
<td>Arranque a alta frecuencia (véase página 115)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x6316</td>
<td>Operación a alta frecuencia (véase página 115)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.
<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Histórico</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x6215</td>
<td>Arranque a baja frecuencia (véase página 115)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado<sup>(1)</sup></td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x6315</td>
<td>Operación a baja frecuencia (véase página 115)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6214</td>
<td>Inicio por potencia inversa (véase página 119)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No<sup>(1)</sup></td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x6314</td>
<td>Operación por potencia inversa (véase página 119)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0C03</td>
<td>ERMS activado (véase página 124)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x0C04</td>
<td>Alarma de diagnóstico automático (módulo de conmutación ERMS) ESM (véase página 124)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0C05</td>
<td>Comunicación perdida con ESM (módulo de conmutación ERMS) (véase página 124)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1300</td>
<td>Curva B activa (véase página 102)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1309</td>
<td>Cambio protección por pantalla activado (véase página 83)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No<sup>(1)</sup></td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x130A</td>
<td>Cambio protección remota activado (véase página 83)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No<sup>(1)</sup></td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1100</td>
<td>Cambio de protección por pantalla (véase página 84)</td>
<td>Protección</td>
<td>Impulso</td>
<td>No<sup>(1)</sup></td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1108</td>
<td>Cambio de protección por Bluetooth/USB/IFE (véase página 84)</td>
<td>Protección</td>
<td>Impulso</td>
<td>No<sup>(1)</sup></td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0EF8</td>
<td>Protecciones opcionales inhibidas por IO (véase página 108)</td>
<td>Protección</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
</tbody>
</table>

⁽¹⁾ Se puede personalizar con el software EcoStruxure Power Commission.
<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1120</td>
<td>Comunicación perdida con el módulo IO#1 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado<sup>(1)</sup></td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1121</td>
<td>Comunicación perdida con el módulo IO#2 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado<sup>(1)</sup></td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1122</td>
<td>Comunicación perdida con el módulo EIFE o IFE (véase página 203)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado<sup>(1)</sup></td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1123</td>
<td>Comunicación perdida con el módulo IFM (véase página 203)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>Sí</td>
<td>Activado<sup>(1)</sup></td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1302</td>
<td>Unidad de control en modo de prueba (véase página 244)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1303</td>
<td>Prueba de inyección en curso (véase página 244)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1304</td>
<td>Prueba cancelada por el usuario (véase página 244)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x142C</td>
<td>Protección Ig configurada en modo desactivado (véase página 94)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1400</td>
<td>Fallo grave de autoverificación de la unidad de control 1 (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1404</td>
<td>Fallo grave de autoverificación de la unidad de control 2 (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1405</td>
<td>Fallo grave de autoverificación de la unidad de control 3 (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1406</td>
<td>Fallo grave de autoverificación de la unidad de control 4 (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1416</td>
<td>Fallo grave de autoverificación de la unidad de control 5 (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1402</td>
<td>Sensor de corriente interna desconectado (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1403</td>
<td>Sensor de corriente neutra externa desconectado (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1408</td>
<td>Sensor de diferencial (Vigi) desconectado (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1430</td>
<td>Configuración de la protección restablecida a los valores de fábrica (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
</tbody>
</table>

⁽¹⁾ Se puede personalizar con el software EcoStruxure Power Commission.
<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historical</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x142F 5167</td>
<td>La última modificación de los ajustes de protección no se ha aplicado por completo (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x140F 5135</td>
<td>Configuración de protección no accesible #1 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1474 5236</td>
<td>Configuración de protección no accesible #2 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1475 5237</td>
<td>Configuración de protección no accesible #3 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1476 5238</td>
<td>Configuración de protección no accesible #4 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1477 5239</td>
<td>Configuración de protección no accesible #5 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x140T 5127</td>
<td>Comprobación automática de la unidad de control #1 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1470 5232</td>
<td>Comprobación automática de la unidad de control #2 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1471 5233</td>
<td>Comprobación automática de la unidad de control #3 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1472 5234</td>
<td>Comprobación automática de la unidad de control #4 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1473 5235</td>
<td>Comprobación automática de la unidad de control #5 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1411 5137</td>
<td>Medición y protección opcional no válidas #1 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1478 5240</td>
<td>Medición y protección opcional no válidas #2 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1479 5241</td>
<td>Medición y protección opcional no válidas #3 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x147C 5244</td>
<td>Comprobación automática de protección opcional no válida (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1412 5138</td>
<td>Comunicación NFC no válida #1 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Bajo</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1414 5140</td>
<td>Comunicación NFC no válida #2 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1415 5141</td>
<td>Comunicación NFC no válida #3 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x140A 5130</td>
<td>Pantalla o comunicación inalámbrica no válidas #1 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.
<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x147A</td>
<td>Pantalla o comunicación inalámbrica no válidas #2 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x147B</td>
<td>Pantalla o comunicación inalámbrica no válidas #3 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1422</td>
<td>Comunicación Bluetooth no válida (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1433</td>
<td>Sustituir batería (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1437</td>
<td>Batería no detectada (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Bajo</td>
<td>No</td>
</tr>
<tr>
<td>0x1436</td>
<td>Restablecimiento de alarma de la unidad de control (véase página 203)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1434</td>
<td>Comprobación de diagnóstico automático: firmware (véase página 37)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Desactivado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1409</td>
<td>No se puede leer el conector del sensor (véase página 201)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x0D0A</td>
<td>Configuración de fábrica de la unidad de control no válida #1 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0D0B</td>
<td>Configuración de fábrica de la unidad de control no válida #2 (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x0D00</td>
<td>Discrepancia crítica de módulos de hardware (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0D01</td>
<td>Discrepancia crítica de módulos de firmware (véase página 37)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0D02</td>
<td>Discrepancia de módulos de hardware no crítica (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0D03</td>
<td>Discrepancia de módulos de firmware no crítica (véase página 37)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0D08</td>
<td>Conflictio de direcciones entre módulos (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x0D09</td>
<td>Discrepancia de firmware en la unidad de control (véase página 37)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1413</td>
<td>Prueba IΔn/Ig: sin disparo Δn (véase página 99) Ig (véase página 96)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>No</td>
</tr>
<tr>
<td>0x142A</td>
<td>Botón de prueba IΔn/Ig pulsado Δn (véase página 99) Ig (véase página 96)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1305</td>
<td>Prueba de ZSI en curso (véase página 107)</td>
<td>Diagnóstico</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.
<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historical</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1440 (5184)</td>
<td>El desgaste de los contactos es superior al 60 %. Compruebe los contactos (véase página 210)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1441 (5185)</td>
<td>El desgaste de los contactos es superior al 95 %. Planifique su sustitución (véase página 210)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1442 (5186)</td>
<td>Los contactos están completamente desgastados. Es necesario sustituir el interruptor automático (véase página 210)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1443 (5187)</td>
<td>La vida útil restante del interruptor automático está por debajo del umbral de alarma (véase página 206)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1444 (5188)</td>
<td>El interruptor automático ha alcanzado el número máximo de operaciones (véase página 206)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1460 (5216)</td>
<td>Comprobación automática no válida: bobina MX1 (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1461 (5217)</td>
<td>No se ha detectado la bobina MX1 (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Desactivado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1450 (5200)</td>
<td>Las operaciones de carga de MCH superan el umbral (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1451 (5201)</td>
<td>El MCH ha alcanzado el número máximo de operaciones (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1462 (5218)</td>
<td>Comprobación automática no válida: bobina XF (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1463 (5219)</td>
<td>No se ha detectado la bobina XF (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Desactivado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1464 (5220)</td>
<td>Comprobación automática no válida: bobina de disparo por falta de tensión MN (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1465 (5221)</td>
<td>Bobina de disparo por falta de tensión MN no detectada (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Desactivado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1466 (5222)</td>
<td>Caída de tensión en bobina de disparo por falta de tensión MN (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Desactivado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1467 (5223)</td>
<td>Pérdida de comunicación en bobina de disparo por falta de tensión MN (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Desactivado(1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.
<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1468 (5224)</td>
<td>Comprobación automática no válida: bobina MX2 (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1469 (5225)</td>
<td>No se ha detectado la bobina MX2 (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Desactivado¹</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1306 (4870)</td>
<td>Presencia de una fuente de alimentación externa de 24 V (véase página 203)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1438 (5176)</td>
<td>Se ha perdido la tensión principal, interruptor automático cerrado (véase página 208)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td>0x1445 (5189)</td>
<td>La vida útil restante de Micrologic está por debajo del umbral de alarma (véase página 207)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1446 (5190)</td>
<td>La unidad de control Micrologic ha alcanzado el máximo de la vida útil (véase página 207)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Alto</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1452 (5202)</td>
<td>El contador de funcionamiento de la bobina MX1 está por encima del umbral de alarma (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1453 (5203)</td>
<td>La bobina MX1 ha alcanzado el número máximo de operaciones (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Alto</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1454 (5204)</td>
<td>El contador de funcionamiento de la bobina XF está por encima del umbral de alarma (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1455 (5205)</td>
<td>La bobina XF ha alcanzado el número máximo de operaciones (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Alto</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1456 (5206)</td>
<td>El contador de funcionamiento de la bobina de disparo MN está por encima del umbral de alarma (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1457 (5207)</td>
<td>La bobina de disparo MN ha alcanzado el número máximo de operaciones (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Alta</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1458 (5208)</td>
<td>El contador de funcionamiento de la bobina MX2 está por encima del umbral de alarma (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1459 (5209)</td>
<td>La bobina MX2 ha alcanzado el número máximo de operaciones (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado¹</td>
<td>Alto</td>
<td>Sí</td>
</tr>
<tr>
<td>0x1480 (5248)</td>
<td>Programar mantenimiento básico en el plazo de un mes (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Desactivado¹</td>
<td>Media</td>
<td>Sí</td>
</tr>
</tbody>
</table>

¹ Se puede personalizar con el software EcoStruxure Power Commission.
<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1481</td>
<td>Programar mantenimiento estándar en el plazo de un mes (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado (1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>(5249)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1482</td>
<td>Programar mantenimiento del fabricante en el plazo de tres meses (véase página 196)</td>
<td>Diagnóstico</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado (1)</td>
<td>Media</td>
<td>Sí</td>
</tr>
<tr>
<td>(5250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.

Eventos de medición

<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0F12</td>
<td>Restablecer corrientes MÍN/MÁX (véase página 169)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3858)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F13</td>
<td>Restablecer tensiones MÍN/MÁX (véase página 169)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3859)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F14</td>
<td>Restablecer potencia MÍN/MÁX (véase página 169)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3860)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F15</td>
<td>Reiniciar frecuencia MÍN/MÁX (véase página 169)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3861)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F16</td>
<td>Restablecer armónicos MÍN/MÁX (véase página 169)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3862)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F17</td>
<td>Restablecer factor potencia MÍN/MÁX (véase página 169)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3863)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F18</td>
<td>Restablecer demanda de corriente Mín/Máx (véase página 171)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3864)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F19</td>
<td>Restablecer demanda de potencia Mín/Máx (véase página 171)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3865)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0F1A</td>
<td>Restablecer contadores energía (véase página 177)</td>
<td>Medición</td>
<td>Impulso</td>
<td>No (1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>(3866)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.
Eventos de funcionamiento

<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicador LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0C02 (3074)</td>
<td>ERMS activado durante más de 24 horas (véase página 124)</td>
<td>Funcionamiento</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1000 (4096)</td>
<td>Interruptor automático abierto (véase página 229)</td>
<td>Funcionamiento</td>
<td>Impulso</td>
<td>No(1)</td>
<td>Activado(1)</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1001 (4097)</td>
<td>Interruptor automático cerrado (véase página 232)</td>
<td>Funcionamiento</td>
<td>Impulso</td>
<td>No(1)</td>
<td>Activado(1)</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x0411 (1041)</td>
<td>Orden de cierre enviada a XF (véase página 232)</td>
<td>Funcionamiento</td>
<td>Impulso</td>
<td>No</td>
<td>Activado(1)</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x0410 (1040)</td>
<td>Orden apertura enviada a MX (véase página 229)</td>
<td>Funcionamiento</td>
<td>Impulso</td>
<td>No</td>
<td>Activado(1)</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1002 (4098)</td>
<td>Modo manual activado (véase página 226)</td>
<td>Funcionamiento</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1004 (4100)</td>
<td>Modo local activado (véase página 228)</td>
<td>Funcionamiento</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x111F (4383)</td>
<td>Permitir control mediante entrada digital desactivado (véase página 229)</td>
<td>Funcionamiento</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x100A (4106)</td>
<td>Cierre inhibido por comunicación (véase página 232)</td>
<td>Funcionamiento</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1009 (4105)</td>
<td>Cierre inhibido por el módulo IO (véase página 232)</td>
<td>Funcionamiento</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x1307 (4871)</td>
<td>Restablecimiento de alarma (véase página 253)</td>
<td>Funcionamiento</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x130B (4875)</td>
<td>Salida 1 de M2C forzada (véase página 254)</td>
<td>Funcionamiento</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td>0x130C (4876)</td>
<td>Salida 2 de M2C forzada (véase página 254)</td>
<td>Funcionamiento</td>
<td>Entrada/Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.
Eventos de configuración

<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicator LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0D06 (3334)</td>
<td>Error de configuración IO/CU: configuración dual o inhibición de cierre</td>
<td>Configuración</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Configuración dual (véase página 102) Inhibir comando de cierre (véase página 232)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0D0C (3340)</td>
<td>Error de configuración IO/CU: inhibición de protección opcional</td>
<td>Configuración</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 108)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0D0D (3341)</td>
<td>Error de configuración IO y CU: modo local/remoto</td>
<td>Configuración</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 224)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x112B (4395)</td>
<td>Modo de actualización del firmware de la unidad de control</td>
<td>Configuración</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x112C (4396)</td>
<td>Error de actualización del firmware de la unidad de control</td>
<td>Configuración</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Media</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1107 (4359)</td>
<td>Fecha y hora configuradas</td>
<td>Configuración</td>
<td>Impulso</td>
<td>No(1)</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1130 (4400)</td>
<td>Licencia de Digital Module instalada</td>
<td>Configuración</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1131 (4401)</td>
<td>Licencia de Digital Module desinstalada</td>
<td>Configuración</td>
<td>Impulso</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.

Eventos de comunicación

<table>
<thead>
<tr>
<th>Código</th>
<th>Mensaje de usuario</th>
<th>Historial</th>
<th>Tipo</th>
<th>Retención</th>
<th>Actividad</th>
<th>Gravedad</th>
<th>Indicator LED de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1301 (4665)</td>
<td>Conexión en puerto USB</td>
<td>Comunicación</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 244)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1429 (5161)</td>
<td>Comunicación Bluetooth activada</td>
<td>Comunicación</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado(1)</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 238)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1427 (5159)</td>
<td>Conexión en puerto Bluetooth</td>
<td>Comunicación</td>
<td>Entrada/ Salida</td>
<td>No</td>
<td>Activado</td>
<td>Baja</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(véase página 238)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Se puede personalizar con el software EcoStruxure Power Commission.
Apéndices
Apéndice A

Información sobre la licencia

Información sobre la licencia de software criptográfico
Copyright © 1995-1997 Eric Young (eay@cryptsoft.com).
Copyright © 1998-2006 The OpenSSL Project. Todos los derechos reservados.
Copyright © 2002 Sun Microsystems, Inc. Todos los derechos reservados.
Este producto incluye software criptográfico desarrollado por Eric Young (eay@cryptsoft.com).
ESTE SOFTWARE SE PROPORCIONA POR ERIC YOUNG "TAL CUAL" Y SE EXCLUYE CUALQUIER GARANTÍA EXPRESA O IMPLÍCITA, INCLUIDAS, ENTRE OTRAS, LAS GARANTÍAS IMPLÍCITAS DE COMERCIABILIDAD E IDONEIDAD PARA UN FIN DETERMINADO. EN NINGÚN CASO EL AUTOR NI SUS COLABORADORES SERÁN RESPONSABLES POR NINGÚN DAÑO DIRECTO, INDIRECTO, INCIDENTAL, ESPECIAL, EJEMPLAR O CONSECUENTE (INCLUÍDOS, ENTRE OTROS, LA ADQUISICIÓN O SUSTITUCIÓN DE BIENES O SERVICIOS, PéRDIDA DE USO, DE DATOS, LUCRO CESANTE O INTERRUPTIÓN DEL NEGOCIO) POR CUALQUIER CAUSA Y POR CUALQUIER TEORÍA DE RESPONSABILIDAD, YA SEA POR CONTRATO, RESPONSABILIDAD ESTRUCTA O AGRARIO (INCLUIDA LA NEGLIGENCIA O CUALQUIER OTRO TIPO DE AGRARIO) QUE SE DERIVE DEL USO DE ESTE SOFTWARE, AUNQUE HAYAN SIDO ADVERTIDOS DE LA POSIBILIDAD DE DICHO DAÑO.

Este producto incluye software desarrollado por el proyecto OpenSSL para su uso en el kit de herramientas OpenSSL http://www.openssl.org/
ESTE SOFTWARE SE PROPORCIONA POR EL PROYECTO OpenSSL "TAL CUAL" Y SE EXCLUYE CUALQUIER GARANTÍA EXPRESA O IMPLÍCITA, INCLUIDAS, ENTRE OTRAS, LAS GARANTÍAS IMPLÍCITAS DE COMERCIABILIDAD E IDONEIDAD PARA UN FIN DETERMINADO. EN NINGÚN CASO EL PROYECTO OpenSSL NI SUS COLABORADORES SERÁN RESPONSABLES POR NINGÚN DAÑO DIRECTO, INDIRECTO, INCIDENTAL, ESPECIAL, EJEMPLAR O CONSECUENTE (INCLUÍDOS, ENTRE OTROS, LA ADQUISICIÓN O SUSTITUCIÓN DE BIENES O SERVICIOS, PéRDIDA DE USO, DE DATOS, LUCRO CESANTE O INTERRUPTACIÓN DEL NEGOCIO) POR CUALQUIER CAUSA Y POR CUALQUIER TEORÍA DE RESPONSABILIDAD, YA SEA POR CONTRATO, RESPONSABILIDAD ESTRUCTA O AGRARIO (INCLUIDA LA NEGLIGENCIA O CUALQUIER OTRO TIPO DE AGRARIO) QUE SE DERIVE DEL USO DE ESTE SOFTWARE, AUNQUE HAYAN SIDO ADVERTIDOS DE LA POSIBILIDAD DE DICHO DAÑO.

Información sobre la licencia para las comunicaciones por USB
Copyright © 2010 Texas Instruments Incorporated (http://www.ti.com/).
Este producto incluye software desarrollado por Texas Instruments Incorporated (http://www.ti.com/).
ESTE SOFTWARE SE PROPORCIONA POR LOS TITULARES DE LOS DERECHOS DE AUTOR Y SUS COLABORADORES "TAL CUAL" Y SE EXCLUYE CUALQUIER GARANTÍA EXPRESA O IMPLÍCITA, INCLUIDAS, ENTRE OTRAS, LAS GARANTÍAS IMPLÍCITAS DE COMERCIABILIDAD E IDONEIDAD PARA UN FIN DETERMINADO. EN NINGÚN CASO EL TITULAR DE LOS DERECHOS DE AUTOR NI SUS COLABORADORES SERÁN RESPONSABLES POR NINGÚN DAÑO DIRECTO, INDIRECTO, INCIDENTAL, ESPECIAL, EJEMPLAR O CONSECUENTE (INCLUÍDOS, ENTRE OTROS, LA ADQUISICIÓN O SUSTITUCIÓN DE BIENES O SERVICIOS, PéRDIDA DE USO, DE DATOS, LUCRO CESANTE O INTERRUPTIÓN DEL NEGOCIO) POR CUALQUIER CAUSA Y POR CUALQUIER TEORÍA DE RESPONSABILIDAD, YA SEA POR CONTRATO, RESPONSABILIDAD ESTRUCTA O AGRARIO (INCLUIDA LA NEGLIGENCIA O CUALQUIER OTRO TIPO DE AGRARIO) QUE SE DERIVE DEL USO DE ESTE SOFTWARE, AUNQUE HAYAN SIDO ADVERTIDOS DE LA POSIBILIDAD DE DICHO DAÑO.
Debido a la evolución de las normas y del material las características indicadas en los textos y las imágenes de este documento solo nos comprometen después de confirmación de las mismas por parte de nuestros servicios.