The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this guide are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and furnished for informational use only. No part of this guide may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide or its content, except for a non-exclusive and personal license to consult it on an "as is" basis. Schneider Electric products and equipment should be installed, operated, serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this material or consequences arising out of or resulting from the use of the information contained herein.
Table of Contents

- Important Information ... 5
- About the Book ... 6
- Maintenance Plan .. 8
 - Maintenance Practices .. 8
 - Preventive Maintenance Frequency .. 12
 - Maintenance After Prolonged Storage 15
 - Maintenance Schedule ... 16
- Parts to be Maintained and Why .. 19
 - How to Maintain the Case .. 19
 - How to Maintain the Arc Chutes .. 20
 - How to Maintain the Main Contacts .. 21
 - How to Maintain Power Connections 22
 - How to Maintain the Chassis ... 23
 - How to Maintain the Charging Mechanism 25
 - How to Maintain MicroLogic X Control Unit 27
 - How to Maintain the Communication System 29
 - How to Maintain Auxiliary Circuits ... 31
 - How to Maintain Mechanical Interlocking Systems 34
- Preventive Maintenance Programs ... 36
 - General Safety Instructions .. 36
 - Basic End-User Preventive Maintenance Program 37
 - Standard End-User Preventive Maintenance Program 39
 - Manufacturer Preventive Maintenance Program 41
 - Schneider Electric Expert Diagnostics Program Used by Field Service Representatives .. 43
- Device Aging .. 46
 - Causes of Aging ... 46
 - Influence of Temperature on Aging ... 47
 - Influence of Load on Aging ... 48
 - Influence of Relative Humidity on Aging 49
 - Influence of Salt Environment on Aging 50
 - Influence of Harmonics on Aging .. 51
 - Influence of Dust on Aging .. 52
 - Influence of Corrosive Atmosphere on Aging 53
 - Influence of Vibration on Aging ... 55
 - Influence of Operating Cycles on Aging 56
 - Influence of Interrupted Currents on Aging 57
- Appendices ... 59
 - Operating Limits for MasterPact MTZ IEC Devices 60
 - Related Documents for MasterPact MTZ IEC Devices 62
Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.
About the Book

Document Scope

Schneider Electric recommends a preventive maintenance program to ensure that devices retain the operating and technical characteristics specified in the catalogs during their service life. Maintenance must be carried out by trained and qualified personnel, in accordance with instructions specified in this MasterPact™ MTZ maintenance guide.

This guide contains information on:

- Maintenance frequency depending on the environmental and operating conditions and criticality of the user application.
- Maintenance required after prolonged storage.
- Schneider Electric tools for maintenance assistance.
- The parts of the MasterPact MTZ devices that must be maintained:
 - Elements of the breaking unit: case, arc chutes, and main contacts
 - Power connections
 - Chassis
 - Charging Mechanism
 - MicroLogic™ X control unit
 - Communication system
 - Auxiliary circuits
 - Mechanical interlocking systems
- The risks involved when a part is not fully operational.
- The preventive maintenance program to be carried out, and the competence level required for each program.
- Environmental and operating conditions that cause accelerated aging of a device.
- Limits governing the use of mechanical and electrical accessories and subassemblies.
- Links to device guides and related documents that can help to maintain the MasterPact MTZ devices in proper operating order.

Audience

This guide is intended for trained and qualified personnel in charge of equipment maintenance and for Schneider Electric field service representatives in charge of equipment maintenance and diagnostics.

Validity Note

This guide applies to MasterPact MTZ IEC circuit breakers and switch-disconnectors.

Online Information

The information contained in this document is likely to be updated at any time. Schneider Electric strongly recommends that you have the most recent and up-to-date version available on www.se.com/docs.
The technical characteristics of the devices described in the present document also appear online. To access the information online, go to the Schneider Electric home page www.se.com/ww/en/download/.

The characteristics that are described in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

Convention

In this guide, the term *Masterpact MTZ device* covers circuit breakers and switch-disconnectors.

Related Documents

<table>
<thead>
<tr>
<th>Title of Documentation</th>
<th>Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MasterPact MTZ - Basic and Standard End-User Maintenance Procedures for IEC Devices</td>
<td>DOCA0103EN</td>
</tr>
<tr>
<td>MasterPact MTZ - MicroLogic X Control Unit - User Guide</td>
<td>DOCA0102EN</td>
</tr>
<tr>
<td>MicroLogic Trip Units and Control Units - Firmware History</td>
<td>DOCA0155EN</td>
</tr>
</tbody>
</table>
Maintenance Plan

Maintenance Practices

Maintenance Strategy

You can define the optimal maintenance strategy according to criticality of your application by combining four maintenance practices:

- Corrective maintenance
- Preventive maintenance
- Enhanced preventive maintenance
- Predictive maintenance (condition-based maintenance)

Corrective Maintenance

Corrective maintenance:

- Is carried out after fault recognition.
- Is intended to put an item into a state in which it can perform a required function.

Corrective maintenance is recommended only for non-critical applications that have minimal impact in business operations.

Preventive Maintenance

Preventive maintenance:

- Is carried out in either of the following cases:
 - At predetermined frequency in accordance with established time intervals or number of units of use but without previous condition investigation.
 - According to prescribed criteria.

 NOTE: The time intervals or number of units of use may be established from knowledge of the failure mechanisms of the item.

- Is intended to reduce the probability of failure or the degradation of the functioning of an item.

Preventive maintenance is recommended for user applications with low to high criticality.

Preventive maintenance includes three programs:

- Maintenance program that can be performed by the end user:
 - Basic end-user maintenance program
 - Standard end-user maintenance program
- Maintenance program that can be performed by Schneider Electric Services:
 - Manufacturer maintenance program
Each preventive maintenance program is conducted during a scheduled outage as per maintenance frequency or cycles of use in accordance with the recommendations defined in this guide, page 12.

Enhanced Preventive Maintenance

Enhanced preventive maintenance comprises the Manufacturer preventive maintenance program included in the following Schneider Electric offers:

- The Complete Manufacturer Maintenance program is recommended for devices in a user application with moderate criticality. It includes ProDiag Trip Unit diagnostic.
- The Advanced Manufacturer Maintenance program is recommended for devices in a user application with high criticality. It includes the following diagnostics:
 - ProDiag Trip Unit
 - ProDiag Breaker
 - ProDiag Clusters for drawout MasterPact MTZ devices

Contact your Schneider Electric field service representative for more information.

Predictive Maintenance (Condition-Based Maintenance)

Predictive maintenance is condition-based maintenance carried out following a forecast derived from repeated analysis or known characteristics and evaluation of the significant parameters of the degradation of the item.

A Schneider Electric service bureau assesses data on behalf of the end user to validate and trigger maintenance work orders, and schedule ensuing on-site maintenance.

Contact your Schneider Electric field service representative for more information.

EcoStruxure Facility Expert

EcoStruxure™ Facility Expert optimizes operations and maintenance, helping to ensure business continuity, and provides insights to service providers or facility managers.

EcoStruxure Facility Expert is a real-time collaborative technology available on mobile devices and PCs that enables managers and maintenance personnel to be connected with facilities and equipment. Information exchange between users is simple and fast.

The QR code on MasterPact MTZ devices enables managers and maintenance personnel to access the following automatic downloads through EcoStruxure Facility Expert:

- The MasterPact MTZ device identifier.
- Technical documentation.
- The maintenance plan for the MasterPact MTZ device.

EcoStruxure Facility Expert helps maintenance personnel to diagnose issues remotely and manage maintenance efficiently by:

- Providing relevant information on critical assets.
- Sending immediate state of the equipment and detailed information for diagnostics.

Defining Your Maintenance Plan

Low voltage circuit breakers, for example MasterPact MTZ circuit breakers, in a power distribution infrastructure play a critical role in helping to protect the equipment and activity against cable overloads, short-circuits, and insulation faults, helping to ensure safety, reliability, security, and sustainability.
If you are a plant manager, maintenance manager, facility manager, or safety manager, you are responsible for helping to ensure your power distribution infrastructure with MasterPact MTZ devices works in optimum conditions throughout its life cycle.

To achieve the necessary level of protection you need to have a maintenance plan to maintain each MasterPact MTZ device (system and parts) in a satisfactory operational state for its useful service life, and you must ensure that the plan is carried out.

This guide provides you with the insights necessary to build your own MasterPact MTZ maintenance plan, tailored to your device operating conditions (determined by the level of external stress of your device), and the environmental conditions impacting the aging and performance of your MasterPact MTZ device, and the criticality of the application.

Schneider Electric recommends that you build your MasterPact MTZ maintenance plan according to:

- The required preventive maintenance programs, page 12:
 - Basic end-user maintenance program
 - Standard end-user maintenance program
 - Manufacturer maintenance program

- The frequency of each maintenance program, defined by:
 - The environmental conditions and device operating conditions:
 - Favorable, page 12
 - Normal, page 13
 - Severe, page 13
 - The criticality of the user application, page 13:
 - Low
 - Moderate
 - High

Example of Maintenance Plan

The following example is a preventive maintenance plan for three MasterPact MTZ devices operating under different conditions in the facility.

The maintenance plan is based on the following parameters:

- Number and types of maintenance programs: apply the three preventive maintenance programs recommended by Schneider Electric:
 - Basic end-user maintenance program
 - Standard end-user maintenance program
 - Manufacturer maintenance program

- Frequency for each maintenance program: determined according to the following:
 - Environmental and operating conditions
 - Criticality of the user application

<table>
<thead>
<tr>
<th>Criteria</th>
<th>MasterPact MTZ device no. 1</th>
<th>MasterPact MTZ device no. 2</th>
<th>MasterPact MTZ device no. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>30 °C (86 °F)</td>
<td>25 °C (77 °F)</td>
<td>30 °C (86 °F)</td>
</tr>
<tr>
<td>Percent load (I/In)</td>
<td>67%</td>
<td>48%</td>
<td>85%</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>75%</td>
<td>85%</td>
<td>70%</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>Urban zones, scattered industrial activity, and heavy traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt environment</td>
<td>No salt mist</td>
<td>No salt mist</td>
<td>No salt mist</td>
</tr>
<tr>
<td>Dust</td>
<td>Moderate level</td>
<td>High level</td>
<td>Low level</td>
</tr>
</tbody>
</table>
Maintenance Plan

MasterPact MTZ device

<table>
<thead>
<tr>
<th>Criteria</th>
<th>MasterPact MTZ device no. 1</th>
<th>MasterPact MTZ device no. 2</th>
<th>MasterPact MTZ device no. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Environmental and operating conditions</td>
<td>Normal</td>
<td>Severe</td>
<td>Severe</td>
</tr>
<tr>
<td>Criticality of the user application</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

Maintenance Program Frequency

<table>
<thead>
<tr>
<th>Maintenance Program Frequency</th>
<th>MasterPact MTZ device no. 1</th>
<th>MasterPact MTZ device no. 2</th>
<th>MasterPact MTZ device no. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user maintenance program</td>
<td>Every year</td>
<td>Every year</td>
<td>Every year</td>
</tr>
<tr>
<td>Standard end-user maintenance program</td>
<td>Every 2 years</td>
<td>Every 2 years</td>
<td>Every 2 years</td>
</tr>
<tr>
<td>Manufacturer maintenance program</td>
<td>Every 5 years</td>
<td>Every 3 years</td>
<td>Every 2 years</td>
</tr>
<tr>
<td>Diagnostic services (ProDiag programs)</td>
<td>Contact your Schneider Electric field service representative to plan maintenance operations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the data above, the recommended maintenance plan for the three MasterPact MTZ devices is as follows:

- **Maintenance plan for MasterPact MTZ no. 1 device**, operating in normal operating conditions and with user application with low criticality:

<table>
<thead>
<tr>
<th>Maintenance plan</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
<th>Year 9</th>
<th>Year 10</th>
<th>Year 11</th>
<th>Year 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user maintenance program</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Standard end-user maintenance program</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
</tr>
<tr>
<td>Manufacturer maintenance program</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Diagnostic services (ProDiag programs)</td>
<td>Contact your Schneider Electric field service representative to plan maintenance operations.</td>
<td></td>
</tr>
</tbody>
</table>

- **Maintenance plan for MasterPact MTZ no. 2 device**, operating in severe operating conditions and with user application with moderate criticality:

<table>
<thead>
<tr>
<th>Maintenance plan</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
<th>Year 9</th>
<th>Year 10</th>
<th>Year 11</th>
<th>Year 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user maintenance program</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Standard end-user maintenance program</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
</tr>
<tr>
<td>Manufacturer maintenance program</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Diagnostic services (ProDiag programs)</td>
<td>Contact your Schneider Electric field service representative to plan maintenance operations.</td>
<td></td>
</tr>
</tbody>
</table>

- **Maintenance plan for MasterPact MTZ no. 3 device**, operating in severe operating conditions and with user application with high criticality:

<table>
<thead>
<tr>
<th>Maintenance plan</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
<th>Year 8</th>
<th>Year 9</th>
<th>Year 10</th>
<th>Year 11</th>
<th>Year 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user maintenance program</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
</tr>
<tr>
<td>Standard end-user maintenance program</td>
<td>–</td>
</tr>
<tr>
<td>Manufacturer maintenance program</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
</tr>
<tr>
<td>Diagnostic services (ProDiag programs)</td>
<td>Contact your Schneider Electric field service representative to plan maintenance operations.</td>
<td></td>
</tr>
</tbody>
</table>
Preventive Maintenance Frequency

Preventive Maintenance Safety Instructions

Maintenance recommendations for each device are intended to maintain the equipment or subassemblies in a satisfactory operational state for their useful service life.

Preventive maintenance schedule is calculated by the MicroLogic™ X control unit from:

- The operating conditions of the MasterPact MTZ device.
- The criticality of the user application.

The MicroLogic™ X control unit generates events to inform the user that maintenance needs to be planned to conform to the preventive maintenance schedule.

⚠️ WARNING

UNINTENDED EQUIPMENT OPERATION

Follow the recommendations for the maintenance given in the different chapters of this document, for each part of the device which is maintainable.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the recommended maintenance plan is not done as required, the service life of electrical distribution equipment is reduced.

Maintenance Programs

The following table summarizes maintenance operations for the three preventive maintenance programs:

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Maintenance description</th>
<th>Performed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user maintenance</td>
<td>Visual inspection and functional testing, replacement of inoperative accessories.</td>
<td>• Trained and qualified end-user personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trained and qualified maintenance services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>provider personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Schneider Electric field service representative</td>
</tr>
<tr>
<td>Standard end-user maintenance</td>
<td>Basic end-user maintenance, plus operational servicing and subassembly tests.</td>
<td>• Trained and qualified maintenance services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>provider personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Schneider Electric field service representative</td>
</tr>
<tr>
<td>Manufacturer maintenance</td>
<td>Standard end-user maintenance, plus diagnostics and part replacements by Schneider</td>
<td>Schneider Electric field service representative</td>
</tr>
<tr>
<td></td>
<td>Electric Services.</td>
<td></td>
</tr>
</tbody>
</table>

Favorable Environmental Conditions and Device Operating Conditions

Environmental conditions and device operating conditions are considered to be favorable when all of the following conditions are met:

<table>
<thead>
<tr>
<th>Favorable environmental conditions and device operating conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Annual average ambient temperature outside the switchboard $T_a < 25 , ^\circ C$ (77 , ^\circ F) (IEC 61439-1).</td>
</tr>
<tr>
<td>Device installed in an air-conditioned room or in a ventilated switchboard.</td>
</tr>
<tr>
<td>Percent load</td>
</tr>
<tr>
<td>$< 50 %$ of I_n (daily process 8/24 h or continuous process 24/24 h)</td>
</tr>
<tr>
<td>Relative humidity</td>
</tr>
<tr>
<td>$< 50 %$</td>
</tr>
<tr>
<td>Corrosive atmosphere</td>
</tr>
<tr>
<td>Device installed in category 3C1 environment, page 53 or in a closed room that creates favorable operating conditions (air is conditioned and purified).</td>
</tr>
<tr>
<td>Salt environment</td>
</tr>
<tr>
<td>None</td>
</tr>
</tbody>
</table>
Favorable environmental conditions and device operating conditions

- **Dust**: Negligible. Device installed in a switchboard equipped with filters or a ventilated IP54 enclosure.
- **Vibration**: None

Normal Environmental Conditions and Device Operating Conditions

Environmental conditions and device operating conditions are considered to be normal **when all of the following conditions** are met:

<table>
<thead>
<tr>
<th>Normal environmental conditions and device operating conditions</th>
<th>Temperature</th>
<th>Annual average ambient temperature outside the switchboard $T_a < 25 , ^\circ C (77 , ^\circ F)$ (IEC 61439-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage load</td>
<td>< 80 % of I_n (daily process 8/24 h or continuous process 24/24 h)</td>
<td></td>
</tr>
<tr>
<td>Harmonics</td>
<td>Harmonic current per phase < 30 % of I_n</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>< 70 %</td>
<td></td>
</tr>
<tr>
<td>Corrosive atmosphere</td>
<td>Device installed in environment category 3C2 or 3C3 (IEC 60721-3-3), page 53</td>
<td></td>
</tr>
<tr>
<td>Salt environment</td>
<td>No salt mist</td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td>Low level. Device installed in a switchboard equipped with filters or a ventilated IP54 enclosure.</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>Permanent vibration < 0.2 g</td>
<td></td>
</tr>
</tbody>
</table>

Severe Environmental Conditions and Device Operating Conditions

Environmental conditions and device operating conditions are considered to be severe **if any of the following conditions** are present:

<table>
<thead>
<tr>
<th>Severe environmental conditions and device operating conditions</th>
<th>Temperature</th>
<th>Annual average ambient temperature outside the switchboard T_a between 35 , ^\circ C (95 , ^\circ F)$ and 45 , ^\circ C (113 , ^\circ F)$ (IEC 61439-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage load</td>
<td>> 80 % of I_n (daily process 8/24 h or continuous process 24/24 h)</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>> 80 %</td>
<td></td>
</tr>
<tr>
<td>Corrosive atmosphere</td>
<td>Device installed in category 3C4 environment without any particular protection, page 53</td>
<td></td>
</tr>
<tr>
<td>Salt environment</td>
<td>Device installed less than 10 kilometers from the coast without any particular protection</td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td>High level. Device not installed inside an enclosure equipped with filters or a ventilated IP54 enclosure.</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>Continuous vibrations between 0.2 g and 0.5 g</td>
<td></td>
</tr>
</tbody>
</table>

For example, severe environmental conditions and device operating conditions prevail in marine and wind power applications.

Criticality of User Application

The following table describes the three criticality levels of user application.
Criticality level	**Description**
Low | The loss of function will cause minimal curtailment of operations or may require minimal monetary investment to restore full operations. Normal contingency planning would cover the loss. |
Moderate | The loss of function will have noticeable impact on the facility. It may have to suspend some operations briefly. Some monetary investments may be necessary to restore full operations. It may cause minor personal injury. |
High | The loss of function will cause personal injury or substantial economic damage. Loss would not be disastrous, but the facility would have to suspend at least part of its operations immediately and temporarily. Reopening the facility would require significant monetary investments. |

Recommended Frequency for the Basic End-User Maintenance Program

The following table indicates the recommended frequency to perform the Basic end-user maintenance program according to operating conditions and criticality of the user application.

Operating conditions	Criticality of user application		
Favorable	Low: 2 years	Moderate: 2 years	High: 2 years
Normal	Low: 1 year	Moderate: 1 year	High: 1 year
Severe	Low: 1 year	Moderate: 1 year	High: 1 year

Recommended Frequency for the Standard End-User Maintenance Program

The following table indicates the recommended frequency to perform the Standard end-user maintenance program according to operating conditions and criticality of the user application.

Operating conditions	Criticality of user application		
Favorable	Low: 4 years	Moderate: 4 years	High: 4 years
Normal	Low: 2 years	Moderate: 2 years	High: 2 years
Severe	Low: 2 years	Moderate: 2 years	High: 2 years

Recommended Frequency for the Manufacturer End-User Maintenance Program

The following table indicates the recommended frequency to perform the manufacturer end-user maintenance program according to operating conditions and criticality of the user application.

Operating conditions	Criticality of user application		
Favorable	Low: 6 years	Moderate: 5 years	High: 4 years
Normal	Low: 5 years	Moderate: 4 years	High: 3 years
Severe	Low: 4 years	Moderate: 3 years	High: 2 years

A complete check-up is recommended when tripping occurs due to a short-time or instantaneous short-circuit.
Maintenance After Prolonged Storage

Storage Conditions

Devices must be stored in a dry, ventilated room, protected from rain, water, and chemical agents. They must be protected against dust, rubble, and paint.

If stored for an extended period, the relative humidity in the room must be maintained below 70%.

Storage temperature:
- Devices without the MicroLogic X control unit: -55 °C to +85 °C (-67 °F to +185 °F).
- Devices with the MicroLogic X control unit: -25 °C to +85 °C (-13 °F to +185 °F).

Devices must be stored in the open (OFF) position with the charging spring discharged.

Check-up and Maintenance After Prolonged Storage

After prolonged storage and if the storage conditions listed above were respected, the checks below must be carried out to ensure correct device operation:

<table>
<thead>
<tr>
<th>Part or subassembly</th>
<th>Under two years of storage</th>
<th>Over two years of storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device mechanisms</td>
<td>Standard end-user program</td>
<td>Manufacturer maintenance program</td>
</tr>
<tr>
<td>MicroLogic X control unit</td>
<td>Standard end-user program</td>
<td>Manufacturer maintenance program</td>
</tr>
<tr>
<td>Device and chassis locking</td>
<td>Standard end-user program</td>
<td>Manufacturer maintenance program</td>
</tr>
<tr>
<td>Chassis</td>
<td>Standard end-user program</td>
<td>Manufacturer maintenance program</td>
</tr>
<tr>
<td>Auxiliary circuits</td>
<td>–</td>
<td>Manufacturer maintenance program</td>
</tr>
</tbody>
</table>

In addition, if the devices were stored under severe conditions (high temperature, corrosive atmosphere):
- Check the surface condition of the metal parts (zinc) and the copper parts (silver coatings (Ag) on connection terminals or tinning (Sn)).
- Check the greasing for the device and chassis.
- Clean and regrease the clusters and disconnecting contacts.
Maintenance Schedule

Overview

The MicroLogic X control unit provides information to help with scheduling preventive maintenance operations. It monitors maintenance programs performed and generates events to indicate that maintenance is due.

For more information about the maintenance schedule function, refer to MasterPact MTZ - MicroLogic X Control Unit - User Guide, page 7.

Operating Principle

The MicroLogic X control unit generates events to indicate that maintenance is due.

The schedule for maintenance operations depends on:

• The operating and environmental conditions of the MasterPact MTZ circuit breaker.
• The criticality of the user application.
• The date of the last maintenance program performed and declared by using EcoStruxure Power Commission software.

Basic and standard end-user maintenance schedule events and Manufacturer maintenance schedule events are calculated:

• For the first event:
 ◦ From the commissioning date of the circuit breaker, if this date is declared by using EcoStruxure Power Commission software.
 ◦ Otherwise from the assembly date of the circuit breaker.
• For subsequent events, from the date of the previous maintenance program (Basic, Standard, or Manufacturer) performed, if the date is declared by using EcoStruxure Power Commission software.

 NOTE: Subsequent Manufacturer maintenance schedule events are calculated from the previous Manufacturer maintenance program performed and declared by using EcoStruxure Power Commission software.

If the date of the maintenance program performed is not declared by using EcoStruxure Power Commission software, the MicroLogic X control unit continues to use the commissioning date or assembly date to calculate the maintenance schedule events.

Maintenance Schedule Settings

The maintenance schedule is determined from the following recorded parameters and declared settings.

The following parameters for environmental conditions are recorded by the MicroLogic X control unit:

• Temperature
• Percent load
• Harmonics
• Relative humidity
• Vibration

The following parameters for environmental conditions and user application criticality are declared by using EcoStruxure Power Commission software (password-protected).
Data Availability

Maintenance schedule data is as follows:

- Data of the last maintenance program performed, if the data is declared by using EcoStruxure Power Commission software:
 - Program performed: Basic, Standard, or Manufacturer
 - Date of maintenance operation
 - Name of service provider
 - Name of maintenance personnel
- Data of the next maintenance program to be performed:
 - Program to be performed: Basic, Standard, or Manufacturer
 - Either the number of months before the program is due or the number of months it is overdue

Maintenance schedule data is available as follows:

- On the MicroLogic X display screen at: **Home > Maintenance > Assistance > Maint.schedule**
- With EcoStruxure Power Commission software
- With EcoStruxure Power Device app through Bluetooth or USB OTG connection
- On a remote controller using the communication network

Predefined Events

The maintenance schedule function generates the following events:

<table>
<thead>
<tr>
<th>Event</th>
<th>History</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule basic maintenance within one month</td>
<td>Diagnostic</td>
<td>Medium(1)</td>
</tr>
<tr>
<td>Schedule standard maintenance within one month</td>
<td>Diagnostic</td>
<td>Medium(2)</td>
</tr>
<tr>
<td>Schedule manufacturer maintenance within three months</td>
<td>Diagnostic</td>
<td>Medium(2)</td>
</tr>
</tbody>
</table>

(1) Disabled by default. Customizable with EcoStruxure Power Commission software.

(2) Enabled by default, with pop-up messages.

For information about recommended action on events, refer to the relevant document:

- MasterPact MTZ1 - Circuit Breakers and Switch-Disconnectors - User Guide
• MasterPact MTZ2/MTZ3 - Circuit Breakers and Switch-Disconnectors - User Guide
Parts to be Maintained and Why

How to Maintain the Case

Functions

The case of the device:
• Insulates the main contacts
• Helps to protect the user against arcing effects
• Provides a support for:
 ◦ Mechanism
 ◦ Control unit
 ◦ Auxiliaries
 ◦ Power connection
• Withstands the thermal and electrodynamic stresses generated during short-circuits

Degradation Factors

The factors which can cause degradation of the case are the following:
• Dusty or dirty environment
• Humidity
• High ambient temperature
• Shocks
• Stresses due to high short-circuit currents

Potential Hazards

Performing regular maintenance on the case can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
<th>Equipment damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc flash</td>
<td>Death or serious injury</td>
<td>–</td>
</tr>
<tr>
<td>Insulation resistance of the case too low and impulse voltage</td>
<td>Electric shock</td>
<td>–</td>
</tr>
<tr>
<td>Disruptive discharge</td>
<td>–</td>
<td>Degradation of the breaking unit</td>
</tr>
<tr>
<td>High short-circuit current</td>
<td>–</td>
<td>Degradation of the breaking unit</td>
</tr>
</tbody>
</table>

Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the case of the device.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user preventive maintenance</td>
<td>Check the general condition of the device.</td>
<td>Device NII_Z_1</td>
</tr>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Measure the insulation resistance.</td>
<td>Contact your Schneider Electric field service representative.</td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain the Arc Chutes

Functions

The arc chutes of the device:
• Are mounted on each arc chamber of the breaking unit
• Are composed of splitters and filters
The splitters of the arc chutes limit the stress exerted on the installation by:
• Helping to extinguish the arc
• Absorbing the arc energy under normal electrical operations and electric faults
The filters of the arc chutes filter the pressured gas expelled out of the arc chamber and cool it to a temperature at which it is no longer ionized and is therefore non-conductive.

Degradation Factors

The factors which can cause degradation of the arc chutes are the following:
• Frequent switching operations at rated current
• Stresses due to high short-circuit currents

Potential Hazards

Performing regular maintenance on the arc chutes can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
<th>Equipment damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc flash</td>
<td>Death or serious injury</td>
<td>–</td>
</tr>
<tr>
<td>Insulation resistance of the case too low and impulse voltage</td>
<td>Electric shock</td>
<td>–</td>
</tr>
<tr>
<td>High short-circuit current</td>
<td>–</td>
<td>Degradation of the breaking unit</td>
</tr>
</tbody>
</table>

Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the arc chutes of the device.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard end-user preventive maintenance</td>
<td>Check the condition of the breaking unit.</td>
<td>Breaking Unit NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check mounting of arc chutes and filter cleanliness.</td>
<td>Breaking Unit NIII_Z_2</td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain the Main Contacts

Functions

The main contacts of the device:

- Are mounted in the arc chamber
- Are composed of the fixed and the movable contacts

The movable contacts make (close) or break (open) the electrical circuit under normal conditions (at rated current In) or fault conditions (overload and short-circuit).

Degradation Factors

The factors which can cause degradation of the main contacts are the following:

- Frequent switching operations at rated current
- Stresses due to high short-circuit currents

Potential Hazards

Performing regular maintenance on the main contacts can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
<th>Equipment damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>Personal injury</td>
<td>Equipment damage</td>
</tr>
<tr>
<td>Thermal dissipation due to high-resistance contact</td>
<td>Death or serious injury</td>
<td>Degradation of the breaking unit</td>
</tr>
</tbody>
</table>

Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the main contacts of the device.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard end-user preventive maintenance</td>
<td>Check the condition of the breaking unit.</td>
<td>Breaking unit NIII_Z_1</td>
</tr>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Measure the contact resistance for each pole.</td>
<td>Contact your Schneider Electric field service representative.</td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain Power Connections

Functions

<table>
<thead>
<tr>
<th>HAZARD OF HEAT GENERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power connections must never use other material than copper or aluminum.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in death, serious injury, or equipment damage.</td>
</tr>
</tbody>
</table>

Power connections are the links between devices and electrical distribution systems (for example, busbars, cables). Connection terminals are used to make the links.

Degradation Factors

The factors which can cause degradation of the power connections are the following:

- Vibration
- Overheating
- Incorrect tightening torque
- Deteriorated washer

Potential Hazards

Performing regular maintenance on the power connections can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>Personal injury</td>
</tr>
<tr>
<td></td>
<td>Equipment damage</td>
</tr>
<tr>
<td>Thermal dissipation due to insufficient tightening torque</td>
<td>Death or serious injury</td>
</tr>
</tbody>
</table>

Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the power connections of the device.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard end-user preventive maintenance</td>
<td>Check connection system.</td>
<td>Power Connections NIII_Z_1</td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain the Chassis

Functions

The chassis mechanism is used to rack the device in and out.

The sliding connections between the chassis and device are made up of two parts: clusters and disconnecting contacts. Grease between the clusters and the disconnecting contacts facilitates the connection and avoids damaging the silver-coated surface by reducing the racking-in friction.

Degradation Factors

The factors which can cause degradation of the chassis are the following:

- Dusty environment
- Shocks
- Corrosive atmosphere
- Idle for long periods of time
- Incorrect operation

Potential Hazards

Performing regular maintenance on the chassis can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety shutter malfunction</td>
<td>Electric shock</td>
</tr>
<tr>
<td>Device remains jammed in connected position.</td>
<td>–</td>
</tr>
</tbody>
</table>

Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the chassis.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user preventive maintenance</td>
<td>Check device racking operation.</td>
<td>Chassis NII_Z_1</td>
</tr>
<tr>
<td>Standard end-user preventive maintenance</td>
<td>Check operation of safety shutters.</td>
<td>Chassis NIII_Z_2</td>
</tr>
</tbody>
</table>
Maintenance program

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean chassis and check presence of</td>
<td>Chassis NIII_Z_3</td>
<td></td>
</tr>
<tr>
<td>grease on chassis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check disconnecting contact clusters.</td>
<td>Chassis NIII_Z_4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Check connection/disconnection torque.</td>
<td>Contact your Schneider Electric field service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>representative.</td>
</tr>
<tr>
<td></td>
<td>Clean and regrease chassis of MasterPact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTZ drawout devices.</td>
<td></td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain the Charging Mechanism

Functions

The charging mechanism is used to close the main contacts.

Degradation Factors

The factors which can cause degradation of the charging mechanism are the following:

- Dusty or dirty environment
- Shocks
- Corrosive atmosphere
- Idle for long periods of time

Potential Hazards

Performing regular maintenance on the charging mechanism can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
<th>Equipment damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging mechanism is jammed.</td>
<td>Personal injury</td>
<td>Jammed mechanism</td>
</tr>
</tbody>
</table>

Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the charging mechanism.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user preventive maintenance</td>
<td>Operate the device manually and electrically</td>
<td>Mechanism NII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Charge the device electrically with MCH gear motor</td>
<td>Mechanism NII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Check the complete closing of the device poles</td>
<td>Mechanism NII_Z_3</td>
</tr>
<tr>
<td>Standard end-user preventive maintenance</td>
<td>Check the MCH gear motor charging time at 0.85 Un.</td>
<td>Mechanism NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check the general condition of the mechanism.</td>
<td>Mechanism NIII_Z_2</td>
</tr>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Check opening and closing forces.</td>
<td>Contact your Schneider Electric field service representative.</td>
</tr>
<tr>
<td></td>
<td>Clean and regrease the mechanism.</td>
<td></td>
</tr>
</tbody>
</table>
For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain MicroLogic X Control Unit

Functions

The control unit permanently monitors the electrical network and generates trip orders when electrical faults are detected.

Electronic component qualification data is usually quoted for a 10-year lifetime by the component suppliers according to the device mission profile. The control unit can operate more than 10 years, depending on the operating environmental conditions (for example, temperature, humidity, vibrations, mechanical shocks, corrosive atmosphere).

Schneider Electric recommends that the field service representative replaces the MicroLogic X control unit and associated optional ESM or M2C modules every 15 years. Each time the MicroLogic X control unit is replaced, the performer, the rating plug, and the sensor plug must be replaced by the Schneider Electric field service representative.

Firmware Update Policy

The MicroLogic X control unit is the main component of the intelligent modular unit (IMU).

The primary reason for updating the firmware of a MicroLogic X control unit is to obtain the latest IMU features. If the latest IMU features are not required, it is not mandatory to update the firmware of the MicroLogic X control unit and the Enerlin’X devices of the IMU.

Use the latest version of EcoStruxure Power Commission software to update the firmware of the MicroLogic X control unit or an Enerlin’X device of the IMU.

After updating the firmware of one device, Schneider Electric recommends that you update the firmware of the other devices in the IMU to keep consistency and avoid discrepancies between devices. Before proceeding, check the compatibility of the other devices with the new firmware.

For more information about firmware update policy, refer to *MicroLogic Trip Units and Control Units - Firmware History*, page 7.

Degradation Factors

The factors which can cause degradation of the control unit and electronic components are the following:

- Shocks
- Vibration
- Humidity
- High ambient temperature
- Corrosive atmosphere

Potential Hazards

Performing regular maintenance on the control unit can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>High short-circuit current and no tripping order</td>
<td>Personal injury</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the control unit.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user preventive maintenance</td>
<td>Check the general condition of the device.</td>
<td>Device NII Z_1</td>
</tr>
<tr>
<td>Standard end-user preventive maintenance</td>
<td>Check overcurrent protection.</td>
<td>Control Unit NIII Z_4</td>
</tr>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Perform aging diagnostic to evaluate when to preventively replace the MicroLogic X control unit.</td>
<td>Contact your Schneider Electric field service representative.</td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain the Communication System

Functions

The communication system allows data transmission between the device and the remote controller. It can be used to remotely operate (open/close) the device.

Maintenance, production, management, and other departments can use this function to manage energy and assets, and monitor the quality of the electrical network.

In MasterPact MTZ circuit breakers, the device data can be accessed by using the ULP port module connected to a communication interface and an appropriate software tool such as EcoStruxure Power Commission software.

MasterPact MTZ devices with communication interface:

Degradation Factors

The factors which can cause degradation of the communication system are the following:

- Vibration
- Electro-magnetic field disturbances
- Equipment and software breakdown
- Modification of communication system architecture

Potential Hazards

Performing regular maintenance on the communication system can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect or no operation (critical to safety) as a result of misleading information</td>
<td>Death or serious injury</td>
</tr>
<tr>
<td>Communication loss</td>
<td>−</td>
</tr>
<tr>
<td>Incorrect decision taken as a result of misleading information (status, metering, health)</td>
<td>−</td>
</tr>
<tr>
<td>Incorrect system management leading to financial losses</td>
<td>−</td>
</tr>
</tbody>
</table>
Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the communication system.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Check data transmission over the IFE Ethernet interface or EIPE embedded Ethernet interface.</td>
<td>Contact your Schneider Electric field service representative.</td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain Auxiliary Circuits

Functions

Auxiliary circuits are made of two parts, an electrical or mechanical accessory with the associated wiring:

- Voltage releases (XF, MX, MN)
- Gear motor (MCH)
- Indication contacts (OF, CE, CT, CD, SDE, PF)

Auxiliary wiring links devices and transmits the following information:

- Orders to the control devices
- Status-condition information

Voltage Releases

The voltage releases (XF, MX, MN) can be standard or with diagnostic and communicating function (XF, MX) or diagnostic function (MN).

The XF closing voltage release closes the circuit breaker instantaneously when powered if the spring mechanism is charged.

The MX opening voltage release opens the circuit breaker instantaneously when powered.

The MN undervoltage release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage.

In MasterPact MTZ devices, diagnostic and/or communicating voltage releases are continuously supervised by the control unit when they are declared in EcoStruxure Power Commission software. If a breakdown or power outage occurs, or the recommended number of operations is reached, an alarm is generated to take action for replacement.

It is important to periodically check operation of the voltage releases at minimum values. Whether the auxiliary needs to be replaced depends on the operating conditions and environmental conditions.

It is recommended that you replace voltage releases every 15 years.

MCH Gear Motor

The MCH gear motor automatically recharges the operating mechanism springs as soon as the circuit breaker is closed.

The MCH gear motor makes it possible to close the device immediately after opening. The spring charging handle serves as a backup if the auxiliary voltage is interrupted.

Given the mechanical forces exerted to charge the mechanism, periodic checks on the operation of the MCH gear motor and the charging time are required to help ensure the device closing function.

With MasterPact MTZ devices, the number of charging operations is recorded, giving information on the remaining useful life of the MCH gear motor.

Indication Contacts

Contacts indicate the following information:
- OF: position of the main contacts (opened or closed)
- CE, CT, CD: position of the device in the chassis (connected, test, or disconnected)
- SDE: trip due to an electrical fault
- PF: the device is ready to close

This information enables a remote operator to respond as necessary. Incorrect indications can result in erroneous device operation.

Improper contact performance can be caused by vibrations, corrosion, or abnormal temperature rises.

Preventive maintenance consists in regularly checking that contacts conduct or isolate correctly, depending on their position.

Auxiliary Wiring

Auxiliary wiring is used to transmit the following information:
- Orders to the various control devices
- Status-condition information

Incorrect connections or damaged insulation can cause unintended opening or non-operation of the circuit breaker.

The auxiliary wiring must be regularly inspected and replaced as required, particularly in environments with vibrations, high ambient temperatures, or corrosive atmosphere.

Degradation Factors

The factors which can cause degradation of the auxiliaries are the following:
- High ambient temperature
- Humidity
- Corrosive atmosphere
- Vibration

Potential Hazards

Performing regular maintenance on the auxiliaries can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose wiring</td>
<td>Electric shock</td>
</tr>
<tr>
<td>Loss of local control (open/close), such as emergency stop</td>
<td>Death or serious injury</td>
</tr>
<tr>
<td>Loss of remote control (open/close)</td>
<td>Unwanted operation</td>
</tr>
<tr>
<td>Misleading information</td>
<td>Unwanted operation</td>
</tr>
</tbody>
</table>
Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the control unit.

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user preventive maintenance</td>
<td>Check auxiliary wiring and insulation.</td>
<td>Auxiliaries NII_Z_1</td>
</tr>
<tr>
<td>Standard end-user preventive maintenance</td>
<td>Check operation of indication contacts (OF, PF).</td>
<td>Auxiliaries NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check closing operation with XF closing voltage release at 0.85 Un.</td>
<td>Auxiliaries NIII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Check opening operation with MX opening voltage release at 0.70 Un.</td>
<td>Auxiliaries NIII_Z_3</td>
</tr>
<tr>
<td></td>
<td>Check closing and opening operations with MN undervoltage release.</td>
<td>Auxiliaries NIII_Z_4</td>
</tr>
<tr>
<td></td>
<td>Check time delay of MNR delayed undervoltage release.</td>
<td>Auxiliaries NIII_Z_5</td>
</tr>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Check opening time of MX opening voltage release.</td>
<td>Contact your Schneider Electric field service representative.</td>
</tr>
<tr>
<td></td>
<td>Check closing time of XF closing voltage release.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check opening time of MN undervoltage release.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preventively replace the voltage releases XF, MX, MN.</td>
<td></td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
How to Maintain Mechanical Interlocking Systems

Functions

A source changeover system, either manual or automatic (ATS), enhances the continuity of service of an electrical distribution system.

Mechanical interlocking between the devices in the source changeover system prevents the closing of two devices simultaneously.

The use of mechanical interlocking for source-changeover systems using cables or connecting rods is compulsory for Automatic Transfer Switch (ATS) applications.

A mechanical interlocking system is made of the following parts depending on the type of MasterPact MTZ devices:

- An interlocking plate on the side of each MasterPact MTZ device.
- A set of cables or connecting rods linking the MasterPact MTZ devices.

The figure below illustrates a mechanical interlocking system by cable for source changeover between two MasterPact MTZ2 devices:

Degradation Factors

The factors which can cause degradation of the mechanical interlocking system are the following:

- Dusty or dirty environment
- Vibration

Potential Hazards

Performing regular maintenance on the mechanical interlocking system can help to avoid the potential hazards and consequences listed in the following table.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Consequence</th>
<th>Equipment damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inappropriate or no operation of the source changeover system</td>
<td>Death or serious injury</td>
<td>–</td>
</tr>
</tbody>
</table>

Preventive Action

The following table lists the preventive maintenance procedures to be performed to maintain the mechanical interlocking system.
Parts to be Maintained and Why

IEC Circuit Breakers and Switch-Disconnectors

<table>
<thead>
<tr>
<th>Maintenance program</th>
<th>Preventive action</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic end-user preventive maintenance</td>
<td>Operate interlocking systems</td>
<td>Mechanical Interlocking NII_Z_1</td>
</tr>
<tr>
<td>Manufacturer preventive maintenance</td>
<td>Operate mechanical interlocking by cable.</td>
<td>Contact your Schneider Electric field service representative.</td>
</tr>
<tr>
<td></td>
<td>Operate mechanical interlocking by rod.</td>
<td></td>
</tr>
</tbody>
</table>

For more information, refer to Preventive Maintenance Programs, page 36.
Preventive Maintenance Programs

General Safety Instructions

Read the following instructions carefully and make sure to follow them while performing a maintenance program.

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E or CSA Z462 or local equivalent.
- This equipment must be installed and serviced by qualified electrical personnel.
- Turn off all power supplying this equipment before performing maintenance inspections. Assume that all circuits are live until they are de-energized, tested, grounded, and tagged. Consider all sources of power, including the possibility of backfeeding and control power.
- Always use a properly rated voltage sensing device to confirm that power is off.
- Replace all devices, doors, and covers before turning on power to this equipment.
- Beware of potential hazards and carefully inspect the work area for tools and objects that may have been left inside the equipment.

Failure to follow these instructions will result in death or serious injury.
Basic End-User Preventive Maintenance Program

Definition

The Basic end-user preventive maintenance program can be carried out by:
• Trained and qualified end-user personnel.
• Trained and qualified maintenance services provider personnel.
• Schneider Electric field service representatives.

The Basic end-user preventive maintenance program comprises:
• Limited visual inspection.
• Function checks.
• Replacement by standard exchange of certain assemblies.

The Basic end-user preventive maintenance program must be performed every year in the case of normal operating conditions. Refer to the recommended frequency for the Basic end-user maintenance program for other cases, page 14.

Procedures

The Basic end-user procedures are described in detail in MasterPact MTZ - Basic and Standard End-User Maintenance Procedures for IEC Devices, page 7.

<table>
<thead>
<tr>
<th>Part</th>
<th>Procedure title</th>
<th>Procedure name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Check the general condition of the device</td>
<td>Device NII_Z_1</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Operate the device manually and electrically</td>
<td>Mechanism NII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Charge the device electrically with MCH gear motor</td>
<td>Mechanism NII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Check the complete closing of device poles</td>
<td>Mechanism NII_Z_3</td>
</tr>
<tr>
<td>Auxiliaries</td>
<td>Check auxiliary wiring and insulation</td>
<td>Auxiliaries NII_Z_1</td>
</tr>
<tr>
<td>Control unit</td>
<td>Check device tripping and operation of SDE fault-trip indication contacts</td>
<td>Control Unit NII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check ground-fault (MicroLogic 6.0 X) or earth-leakage (MicroLogic 7.0 X) protection function</td>
<td>Control Unit NII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Check operation of Energy Reduction Maintenance Settings (ERMS)</td>
<td>Control Unit NII_Z_3</td>
</tr>
<tr>
<td>Device locking</td>
<td>Operate device keylocks</td>
<td>Device Locking NII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Operate device padlocks</td>
<td>Device Locking NII_Z_2</td>
</tr>
<tr>
<td>Chassis</td>
<td>Check device racking operation</td>
<td>Chassis NII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check IBPO racking interlock between racking handle and opening pushbutton (MasterPact MTZ2/MTZ3)</td>
<td>Chassis NII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Check EIFE chassis position limit switches</td>
<td>Chassis NII_Z_3</td>
</tr>
<tr>
<td>Chassis locking</td>
<td>Operate chassis keylocking system</td>
<td>Chassis Locking NII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Operate chassis padlocking system</td>
<td>Chassis Locking NII_Z_2</td>
</tr>
<tr>
<td>Mechanical interlocking</td>
<td>Operate interlocking systems</td>
<td>Mechanical Interlocking NII_Z_1</td>
</tr>
</tbody>
</table>

Tools

Performing the procedures of the maintenance program requires the following:
• A standard toolbox with electrical tools and equipment for an electrician.
Time Required

The average total time required for experienced, trained, and qualified personnel to perform this maintenance program is as follows:

- 15 minutes for a fixed device with all accessories installed
- 20 minutes for a drawout device with all accessories installed
Preventive Maintenance Programs

Standard End-User Preventive Maintenance Program

Definition

The Standard end-user preventive maintenance program can be carried out by:

- Trained and qualified maintenance services provider personnel.
- Schneider Electric field service representatives.

The Standard end-user preventive maintenance program includes the Basic end-user preventive maintenance program, page 37.

The Standard end-user preventive maintenance program comprises:

- Extended visual inspection.
- Extended function checks.
- Part and system servicing (cleaning, greasing).
- Part replacement (based on time intervals or number of units of use).

The Standard end-user preventive maintenance program must be performed every two years in the case of normal operating conditions. Refer to the recommended frequency for the Standard end-user maintenance program for other cases, page 14.

Procedures

The Standard end-user procedures are described in detail in MasterPact MTZ - Basic and Standard End-User Maintenance Procedures for IEC Devices, page 7.

<table>
<thead>
<tr>
<th>Part</th>
<th>Procedure title</th>
<th>Procedure name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Check the MCH gear motor charging time at 0.85 Un</td>
<td>Mechanism NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check the general condition of the mechanism</td>
<td>Mechanism NIII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Check the number of device operating cycles</td>
<td>Mechanism NIII_Z_3</td>
</tr>
<tr>
<td>Breaking unit (arc chutes + contacts)</td>
<td>Check the condition of the breaking unit</td>
<td>Breaking Unit NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check mounting of arc chutes and filter cleanliness</td>
<td>Breaking Unit NIII_Z_2</td>
</tr>
<tr>
<td>Auxiliaries</td>
<td>Check operation of indication contacts (OF, PF)</td>
<td>Auxiliaries NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check closing operation with XF closing voltage release at 0.85 Un</td>
<td>Auxiliaries NIII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Check opening operation with MX opening voltage release at 0.70 Un</td>
<td>Auxiliaries NIII_Z_3</td>
</tr>
<tr>
<td></td>
<td>Check closing and opening operations with MN undervoltage release</td>
<td>Auxiliaries NIII_Z_4</td>
</tr>
<tr>
<td></td>
<td>Check time delay of MNR delayed undervoltage release</td>
<td>Auxiliaries NIII_Z_5</td>
</tr>
<tr>
<td>Control unit</td>
<td>Check microswitches OF/SDE/PF/CH</td>
<td>Control Unit NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check M2C programmable contacts</td>
<td>Control Unit NIII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Save protection settings, reports, and event logs with EcoStruxure Power Commission software</td>
<td>Control Unit NIII_Z_3</td>
</tr>
<tr>
<td></td>
<td>Check overcurrent protection</td>
<td>Control Unit NIII_Z_4</td>
</tr>
<tr>
<td>Chassis</td>
<td>Check operation of CD, CT, CE position contacts and EF auxiliary contacts</td>
<td>Chassis NIII_Z_1</td>
</tr>
<tr>
<td></td>
<td>Check operation of safety shutters</td>
<td>Chassis NIII_Z_2</td>
</tr>
<tr>
<td></td>
<td>Clean chassis and check presence of grease on chassis</td>
<td>Chassis NIII_Z_3</td>
</tr>
<tr>
<td></td>
<td>Check disconnecting contact clusters</td>
<td>Chassis NIII_Z_4</td>
</tr>
<tr>
<td>Power connections</td>
<td>Check connection system</td>
<td>Power Connections NIII_Z_1</td>
</tr>
</tbody>
</table>
Tools

Performing the procedures of the maintenance program requires the following:

- A standard toolbox with electrical tools and equipment for an electrician.

Time Required

In addition to the Basic end-user maintenance program, the average time required for experienced, trained, and qualified maintenance personnel to perform this maintenance program is as follows:

- 45 minutes for a fixed device with all accessories installed
- 1 hour for a drawout device with all accessories installed
Manufacturer Preventive Maintenance Program

Definition

The Manufacturer preventive maintenance program must be done exclusively by Schneider Electric field service representatives.

The Manufacturer preventive maintenance program includes the Basic and Standard end-user preventive maintenance programs, page 39.

The Manufacturer preventive maintenance program comprises:
- Complete function checks.
- Condition checks (test-based).
- Complete part and system servicing (cleaning, greasing).
- Control unit replacement (diagnostic-based).

The Manufacturer preventive maintenance program must be performed every five years in the case of normal operating conditions and user application with low criticality. Refer to the recommended frequency for the Manufacturer maintenance program for other cases, page 14.

Procedures

<table>
<thead>
<tr>
<th>Part</th>
<th>Procedure title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Measure insulation resistance</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Check opening and closing forces</td>
</tr>
<tr>
<td></td>
<td>Clean and regrease the mechanism</td>
</tr>
<tr>
<td>Breaking unit</td>
<td>Measure the contact resistance for each pole</td>
</tr>
<tr>
<td>Auxiliaries</td>
<td>Check opening time of MX opening voltage release</td>
</tr>
<tr>
<td></td>
<td>Check closing time of XF closing voltage release</td>
</tr>
<tr>
<td></td>
<td>Check opening time of MN undervoltage release</td>
</tr>
<tr>
<td></td>
<td>Preventively replace the XF, MX, MN voltage releases (1)</td>
</tr>
<tr>
<td></td>
<td>Preventively replace MicroLogic X control unit and electronic modules</td>
</tr>
<tr>
<td>Control unit</td>
<td>Diagnose the performance of the MicroLogic X control unit functions</td>
</tr>
<tr>
<td></td>
<td>Preventively replace the MicroLogic X control unit (2)</td>
</tr>
<tr>
<td>Chassis</td>
<td>Check connection/disconnection torque</td>
</tr>
<tr>
<td></td>
<td>Clean and regrease chassis of MasterPact drawout devices</td>
</tr>
<tr>
<td>Communication system</td>
<td>Check data transmission over the IFE Ethernet interface or EIFE embedded Ethernet interface</td>
</tr>
<tr>
<td>Mechanical interlocking</td>
<td>Operate mechanical interlocking by cable</td>
</tr>
<tr>
<td></td>
<td>Operate mechanical interlocking by rod</td>
</tr>
</tbody>
</table>

(1) As part of the preventive maintenance plan, Schneider Electric recommends replacing the voltage releases after 15 years of operation.

(2) As part of the preventive maintenance plan, Schneider Electric recommends that the field service representative replaces the MicroLogic X control unit and associated optional ESM or M2C modules after 15 years of operation. Each time the MicroLogic X control unit is replaced, the performer, and the rating and sensor plugs must be replaced by the field service representative.

Time Required

The average total time required for a Schneider Electric field service representative to perform this maintenance program including the Standard one, is as follows:
- From 1.5 hours to 2 hours depending on the frame size, for a fixed device with all accessories installed.
• From 2 hours to 3 hours depending on the frame size, for a drawout device with all accessories installed.
Schneider Electric Expert Diagnostics Program Used by Field Service Representatives

Performing Diagnostics of MasterPact Devices with Schneider Electric

Schneider Electric offers a large portfolio of manufacturer diagnostic services for electrical distribution equipment.

Enhanced Manufacturer Maintenance by Schneider Electric is condition-based maintenance where inspection and/or testing, analysis, and the ensuing maintenance actions are conducted on site. Testing, analysis, and ensuing recommended maintenance actions for low voltage (LV) circuit breakers and switch-disconnectors, for example MasterPact MTZ devices, are provided by the following diagnostics programs:

- ProDiag Trip Unit
- ProDiag Breaker
- ProDiag Clusters

The ProDiag diagnostics programs deliver a comprehensive report with data collected during testing, along with expert recommendations based on analytics. This enables you to anticipate downtime and improve the availability of your installation.

Contact your Schneider Electric field service representative for more information.

ProDiag Trip Unit

Designed by Schneider Electric, ProDiag Trip Unit is used to perform diagnostics of circuit breaker control unit tripping performance.

Accurate tripping time operation in accordance with control unit settings defined for an electrical installation is now a strategic function for evaluating protection performance. Fault detection and tripping speed reaction stops short-circuits from creating high incident energy levels.

ProDiag Trip Unit can help to mitigate the risks of potential failure of LV circuit breaker control unit performance by:

- Detection of tripping time drifts.
- Verification of LV circuit breaker and control unit features according to electrical network characteristics (breaking capacity, discrimination).
- Analysis of the history of alarms and events.

Non-performing LV circuit breaker control unit causes unwanted effects such as:

- Unintended trips (power outage).
- Downstream industrial equipment inefficiencies.
- Breakdowns.
- Longer short-circuits (overheating and internal fires).
- Circuit breaker and switchgear destruction, or even complete destruction of the electrical room.

ProDiag Trip Unit helps the end user to discover and understand LV circuit breaker control unit performance and criticality. Diagnosis is conducted on de-energized LV circuit breaker and only by Schneider Electric field service representatives.
Regular diagnosis of LV circuit breaker control unit tripping performance is delivered with the Complete Manufacturer Maintenance program. This solution brings the end user the following benefits:

- Help ensure the protection of downstream LV electrical distribution equipment, goods, and people operating them.
- Enhance reliability, mitigating unintended shutdown risks and operating costs.
- Extend the equipment lifespan, optimizing the total cost of ownership.

ProDiag Breaker

Designed by Schneider Electric, ProDiag Breaker diagnostics evaluate the performance of opening, closing, and spring charging operations.

A quick and reliable opening of LV circuit breaker is a strategic function for evaluating the complete operating chain. The fault detection rate and reaction speed stops short-circuits from creating high incident energy level.

ProDiag Breaker is used to mitigate the risk of LV circuit breaker electro-kinematic incident. ProDiag Breaker identifies the symptoms of undetected incident or degradation of the equipment that can cause unwanted effects like:

- Stress on internal moving parts.
- Accelerated wear of internal moving parts.
- Overheating and/or internal fires.
- Circuit breaker and switchgear destruction.
- Electrical room complete destruction.

ProDiag Breaker is conducted on de-energized LV circuit breaker and only by Schneider Electric field service representatives.

Regular diagnosis of electric and kinematic performance of LV circuit breakers is delivered with the Advanced Manufacturer Maintenance program. This solution brings the end user the following benefits:

- Alert in the early stages of above described phenomena not detected during regular preventive maintenance.
- Help ensure the protection of downstream LV electrical distribution equipment, goods, and people operating them.
- Enhance reliability, mitigating unexpected shutdown risks and operating costs.
- Extend the equipment lifespan, optimizing the total cost of ownership.

ProDiag Clusters

Designed by Schneider Electric, ProDiag Clusters is used to diagnose early stages of connection cluster deterioration not detected during regular preventive maintenance. This deterioration can result from one or more of the following factors:

- Severe environmental conditions
- User application with high criticality
• Accelerated aging process caused by racking-out and racking-in operations
• Electrical stress
• Uneven maintenance
Device Aging

Causes of Aging

Introduction

Switchboards and switchgear age whether they are in operation or not. Aging is due primarily to the influence of the environment and the operating conditions.

Influence of the Environment

A device placed in a given environment is subjected to its effects. The main environmental factors that accelerate device aging are:

- Temperature
- Percent load
- Relative humidity
- Salt environment
- Current harmonics
- Dust
- Corrosive atmosphere
- Vibration
- Operating cycles
- Interrupted currents

The tables in this chapter summarize for each factor:

- Why it is harmful: influence
- How to identify it: appearance
- Impact on operation: consequences
Influence of Temperature on Aging

Ambient Temperature Outside the Switchboard

The ambient temperature around the switchboard affects the device temperature, which is itself affected by the percent load.

Major variations in temperature (greater than 30 °C (86 °F)) cause both mechanical stresses (thermal expansion) and condensation, both of which can accelerate aging.

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging of plastic insulation. Deterioration of the mechanical characteristics of plastic parts (insulation, case) for which deterioration speed is increased with temperature rise.</td>
<td>Change in color</td>
<td>Breaking of parts leading to potential failure of functions</td>
</tr>
<tr>
<td>• Hardening of grease. • Elimination of grease on disconnecting contact clusters.</td>
<td>• Change in color and viscosity • Caramel color of clusters</td>
<td>• Device cannot be operated • Increase of racking forces exerted on clusters</td>
</tr>
<tr>
<td>Deterioration of insulating varnishes on coils.</td>
<td>Burning smell</td>
<td>Potential failure of coils (current transformers, MN, MX, or XF voltage releases, MCH gear motor, RES electrical remote reset)</td>
</tr>
<tr>
<td>Hardening of glues.</td>
<td>Visual</td>
<td>Loss of labels</td>
</tr>
<tr>
<td>Deterioration of electronic components.</td>
<td>Modified display of LCDs</td>
<td>• Interruption of display • Nuisance tripping or no tripping</td>
</tr>
<tr>
<td>Deterioration of opto-electronic devices and SCRs.</td>
<td>Not identifiable</td>
<td>Possible transmission of erroneous orders</td>
</tr>
<tr>
<td>Interruption of battery backup power.</td>
<td>Not identifiable</td>
<td>Trip-cause indication not displayed</td>
</tr>
</tbody>
</table>

Recommendations

The maintenance and installation recommendations according to the annual average ambient temperature T_a are defined in the following table:

<table>
<thead>
<tr>
<th>Annual average ambient temperature T_a</th>
<th>Description</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25 °C (77 °F)</td>
<td>Optimum operating conditions</td>
<td>Implement the standard program.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>25 to 35 °C (77 to 95 °F)</td>
<td>A 10 °C (50 °F) increase in the ambient temperature is equivalent to a 5 % increase in the percent load.</td>
<td>Carry out more frequent periodic checks, page 12.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>35 to 45 °C (95 to 113 °F)</td>
<td>A 20 °C (68 °F) increase in the ambient temperature is equivalent to a 10 % increase in the percent load.</td>
<td>Carry out more frequent periodic checks, page 12.</td>
<td>Install forced-air ventilation in the switchboard, or air conditioning for the electrical room.</td>
</tr>
</tbody>
</table>

Example: Influence of the ambient temperature on the service life for a 1,000 A device, with an 80 % load.

<table>
<thead>
<tr>
<th>Annual average ambient temperature T_a</th>
<th>Typical service life of the device (electronic components excluded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C (77 °F)</td>
<td>30 years</td>
</tr>
<tr>
<td>35 °C (95 °F)</td>
<td>27 years</td>
</tr>
<tr>
<td>45 °C (113 °F)</td>
<td>25 years</td>
</tr>
</tbody>
</table>
Influence of Load on Aging

Percent Load (I/In)

The percent load affects the device temperature, which is itself affected by the ambient temperature.

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging of plastic insulation</td>
<td>Change in color of insulation</td>
<td>Breaking of parts leading to potential failure of functions.</td>
</tr>
<tr>
<td>Aging of grease</td>
<td>Change in color and viscosity</td>
<td>Increase in mechanical friction.</td>
</tr>
<tr>
<td>Aging of electronic components</td>
<td>Modified display of LCDs</td>
<td>A 10 °C (50 °F) increase (that is, an 85 % load) reduces the service life of components by approximately half.</td>
</tr>
<tr>
<td>Deterioration of characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• of steel springs when temperature > 100 °C (212 °F)</td>
<td>Rupture</td>
<td>Non-operation of mechanisms.</td>
</tr>
<tr>
<td>• of stainless steel springs when temperature > 200 °C (392 °F)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendations

The maintenance and installation recommendations according to the value of percent load (I/In) are defined in the following table:

<table>
<thead>
<tr>
<th>Percent load</th>
<th>Description</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/In ≤ 80 %, 24/24 h</td>
<td>Maximum percent load taken into account in sizing the installation. At this percent load, temperature rise is reduced approximately 40 % with respect to a 100 % load.</td>
<td>Implement the standard program.</td>
<td>Normal conditions</td>
</tr>
<tr>
<td>I/In ≤ 90 %, 8/24 h</td>
<td>At this percent load, temperature rise is reduced only 20 %. Heating and cooling cycles impact on the mechanical junctions of the power circuit.</td>
<td>Carry out more frequent periodic checks, page 12.</td>
<td>Normal conditions</td>
</tr>
<tr>
<td>I/In ≤ 90 %, 24/24 h</td>
<td>The thermal stress for continuous operation is three times higher than in the previous case, but the absence of thermal cycles slows aging of the electromechanical components.</td>
<td>Preventive maintenance is difficult due to the continuous process.</td>
<td>Normal conditions</td>
</tr>
<tr>
<td>I/In = 100 %, 8/24 h</td>
<td>Between 90 % and 100 %, temperature rise is close to its maximum value. Heating and cooling cycles impact on the mechanical junctions of the power circuit, with major impact on aging.</td>
<td>• Carry out more frequent periodic checks, page 12.</td>
<td>• Provide ventilation for the switchboard.</td>
</tr>
<tr>
<td>I/In = 100 %, 24/24 h</td>
<td>Between 90 % and 100 %, temperature rise is close to its maximum value. This situation has a major impact on aging. It is not recommended.</td>
<td>• Preventive maintenance is difficult due to the continuous process.</td>
<td>• Plan more frequent periodic checks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spread the load over other outgoers.</td>
<td>• Install a device with a higher rating.</td>
</tr>
</tbody>
</table>
Influence of Relative Humidity on Aging

Relative Humidity

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
</table>
| Corrosion of metal surfaces that is accelerated when a pollutant is present (for example, corrosive gas, salt, chlorine). | Appearance of:
• Red rust on iron
• White rust on zinc
• Blue deposit on copper
• Black deposit on silver | • Increase in friction
• Potential risk of mechanical rupture resulting in non-operation of mechanisms
• Increase in contact resistance (clusters and main contacts) |
| Deterioration of dielectric qualities of plastics. | White traces on case | Potential risk of a reduction in insulation |
| Deterioration of electronic components, in particular SMCs and silver-coated components.
This phenomenon is worsened by the presence of H₂S corrosive gas (hydrogen sulphide). | • Not visible
• Appearance of dendrites on electronic boards | Short-circuiting of circuits resulting in non-operation of control unit protection, measurement, indication and communication functions |
| Deterioration of electronic components, in particular non-varnished copper circuits. | • Not visible
• Erosion of copper tracks
• Oxidation of metal connectors of components and metal cases
• Oxidation of connectors of integrated-circuits mounted on supports | • Potential failure due to short-circuit or open circuit on electronic components
• Rupture of component connectors along case
• Poor contact with integrated-circuit supports |
| Degradation of opto-electronic components. | – | Potential failure of data transmission |

Recommendations

The maintenance and installation recommendations according to the relative humidity are defined in the following table:

<table>
<thead>
<tr>
<th>Relative humidity</th>
<th>Description</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70 %</td>
<td>Level of relative humidity generally found in continental and temperate zones. The level is generally lower in switchboards due to the internal temperature rise. No significant deterioration is noted at this level.</td>
<td>Preventive maintenance</td>
<td>No particular recommendation</td>
</tr>
</tbody>
</table>
| 70 % to 85 % | Level of relative humidity generally found in zones close to water. Possible appearance of condensation on cold parts and accelerated rusting. | • Carry out more frequent periodic checks, page 12.
• Measurement of insulation resistance (dielectric strength) is advised every five years. | No particular recommendation |
| > 85 % | • Level of relative humidity generally found in tropical zones and certain factories (for example, paper mills).
• Increased possibility of condensation and rust resulting in difficulties to disconnect devices, possibility of non-opening or non-closing. | • Carry out more frequent periodic checks, page 12.
• Inspect for rust on metal parts.
• Measurement of insulation is imperative every two years. | Install heating resistors in the switchboard. |
Influence of Salt Environment on Aging

Salt Environment

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion of metal parts</td>
<td>Appearance of:</td>
<td>• Increase in friction</td>
</tr>
<tr>
<td></td>
<td>- White rust on zinc coatings</td>
<td>• Freezing of mechanism</td>
</tr>
<tr>
<td></td>
<td>- Red rust on steel</td>
<td>• Broken springs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blocking of cores of MX/XF/MN voltage releases</td>
</tr>
<tr>
<td>Possibility of salt deposits on electronic</td>
<td>Appearance of salt bridges on</td>
<td>Potential failure of electronic systems due to short-circuiting of circuits,</td>
</tr>
<tr>
<td>circuits when thick salt mists occur.</td>
<td>electronic boards</td>
<td>particularly non-varnished circuits.</td>
</tr>
<tr>
<td>Possibility of conducting salt deposits on</td>
<td>White deposit</td>
<td>Deterioration of device dielectric withstand resulting in possibility of</td>
</tr>
<tr>
<td>the device when thick salt mists occur.</td>
<td></td>
<td>phase-to-frame short-circuit and a phase-to-phase short-circuit if an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>overload occurs.</td>
</tr>
</tbody>
</table>

Recommendations

The maintenance and installation recommendations according to the salt environment are defined in the following table:

<table>
<thead>
<tr>
<th>Thresholds</th>
<th>Description</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>No salt mist</td>
<td>No influence</td>
<td>Implement the standard program.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>Moderate salt mist < 10 km (6.21 miles) from</td>
<td>Moderate aging of switchgear</td>
<td>Carry out more frequent periodic checks, page 12.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>coast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant salt mist < 1 km (0.621 miles) from</td>
<td>• Rapid aging of exposed switchgear.</td>
<td>• Carry out more frequent periodic checks, page 12.</td>
<td>• Install the switchgear in</td>
</tr>
<tr>
<td>coast</td>
<td>• On average, service life is divided</td>
<td>• Test the dielectric withstand every two years.</td>
<td>a switchboard or a room</td>
</tr>
<tr>
<td></td>
<td>by a factor of three for devices not</td>
<td></td>
<td>offering protection from</td>
</tr>
<tr>
<td></td>
<td>installed in a switchboard.</td>
<td></td>
<td>the salt mist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Increase the switchboard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IP value (IP54 is advised).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Influence of Harmonics on Aging

Harmonics

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
</table>
| Increase in skin effect, proximity effect, iron loss, Foucault/Eddy currents | • Change in color of terminals, insulators, and grease
 • Modified display of LCDs | Harmonics cause temperature rise greater than that of the fundamental current |
| Possible overload of neutral if third-order harmonics and their multiples are present | Distorted waveform | • Erroneous current value
 • Nuisance tripping if non-rms control units |

Recommendations

The maintenance and installation recommendations according to the harmonics are defined in the following table:

<table>
<thead>
<tr>
<th>THDi in % of In</th>
<th>Description</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30 %</td>
<td>No notable influence on aging.</td>
<td>Implement the standard program.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>30 % to 50 %</td>
<td>At 40 % THDI, potential heat generation is approximately 10 % higher, corresponding to 5 % more current.</td>
<td>Carry out more frequent periodic checks, page 12.</td>
<td>Standard filtering with an inductor to reduce harmonics</td>
</tr>
</tbody>
</table>
| > 50 % | – | Carry out more frequent periodic checks, page 12. | If necessary:
 • Oversize the neutral
 • Oversize switchgear
 • Filtering is mandatory |
Influence of Dust on Aging

Dust

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
</table>
| Deposit on grease of mechanisms (device and chassis) | Change in color and texture of greases | • Premature wear of mechanisms because dust mixed with grease can be abrasive.
• Increase in mechanical friction and freezing of moving parts
• Possibility of device not moving on chassis
• Possibility of device non-opening or non-closing |
| Deposit on grease of clusters | Change in color and texture of greases | • Increase in racking forces exerted.
• Increased contact resistance and temperature rise |
| Deposit on displays | – | Screen data not legible |
| Deposit on insulation | – | • Reduced insulation resistance (depends on type of dust)
• This phenomenon is worsened by the presence of humidity. |
| Deposit on device contacts | – | Increased contact resistance and temperature rise |

Recommendations

The maintenance and installation recommendations according to the dust levels are defined in the following table:

<table>
<thead>
<tr>
<th>Dust deposit</th>
<th>Description</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
</table>
| Low level | Quantity of dust generally deposited on and around devices in commercial buildings and on standard industrial premises | • Implement the standard program.
• Use a vacuum cleaner to remove dust deposits. | Switchboard with standard IP |
| Moderate level | Quantity of dust deposited on and around devices inside switchboards equipped with filters or a ventilated IP54 enclosure, and installed in dusty environments (for example, cement works, grain mills, incineration installations, plastic and steel mills, and mines) | Carry out more frequent periodic cleaning, page 23, | Make sure that the switchboard remains closed. |
| High level | Quantity of dust deposited on and around devices inside switchboards without filters or without ventilated IP54 enclosure, and installed in dusty environments (for example, cement works, grain mills, incineration installations, plastic and steel mills, and mines) | Carry out more frequent periodic cleaning, page 23, | It is mandatory to install the switchgear in special equipment offering protection against dust. |
Influence of Corrosive Atmosphere on Aging

Corrosive Atmosphere

<table>
<thead>
<tr>
<th>Corrosive atmosphere</th>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
<th>Thresholds per class in ppm (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ Sulphur dioxide</td>
<td>Corrosion of silver, aluminum, and bare copper. Phenomenon accelerated by high temperature and relative humidity.</td>
<td>• Blackening of exposed silver surfaces
• Appearance of dendrites on electronic and power circuits</td>
<td>• Increased resistance of disconnecting contacts exposed to air
• Excessive device temperature rise
• Short-circuiting of circuits resulting in non-operation of the control unit</td>
<td>• 3C1: 0.037
• 3C2: 0.11
• 3C3: 1.85
• 3C4: 4.8</td>
</tr>
<tr>
<td>H₂S Hydrogen sulphide</td>
<td>Sulphurization of silver. Phenomenon accelerated by high temperatures.</td>
<td>• Major blackening of exposed silver surfaces
• Appearance of dendrites on electronic and power circuits</td>
<td>• Increased resistance of disconnecting contacts exposed to air
• Excessive device temperature rise
• Short-circuiting of circuits resulting in non-operation of the control unit</td>
<td>• 3C1: 0.0071
• 3C2: 0.071
• 3C3: 2.1
• 3C4: 9.9</td>
</tr>
<tr>
<td>Cl₂ Chlorine</td>
<td>Corrosion of metal parts</td>
<td>• Oxidation
• Inter-granular corrosion of stainless steel</td>
<td>• Increase in friction
• Possibility of mechanical rupture
• Breaking of stainless-steel springs</td>
<td>• 3C1: 0.034
• 3C2: 0.034
• 3C3: 0.1
• 3C4: 0.2</td>
</tr>
<tr>
<td>NH₃ Ammoniac</td>
<td>• Attacks polycarbonates
• Corrodes copper</td>
<td>• Cracking of polycarbonates
• Blackening of copper</td>
<td>• Possibility of rupture
• Increased temperature rise</td>
<td>• 3C1: 0.42
• 3C2: 1.4
• 3C3: 14
• 3C4: 49</td>
</tr>
<tr>
<td>NO₂ Nitrogen oxide</td>
<td>Corrosion of metal parts</td>
<td>Oxidation</td>
<td>Increased temperature rise</td>
<td>• 3C1: 0.052
• 3C2: 0.26
• 3C3: 1.56
• 3C4: 5.2</td>
</tr>
<tr>
<td>Oily atmospheres</td>
<td>Attacks polycarbonates</td>
<td>Cracking of polycarbonates</td>
<td>• Possibility of rupture
• Increased temperature rise</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) ppm = parts per million in volume

Recommendations

The maintenance and installation recommendations according to the environment categories as per IEC 60721-3 standard are defined in the following table:

<table>
<thead>
<tr>
<th>Class</th>
<th>Zone</th>
<th>Presence of corrosive gases</th>
<th>Impact on device</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C1</td>
<td>Rural zones or urban zones with low industrial activity</td>
<td>Negligible</td>
<td>No impact on service life because concentrations are very low.</td>
<td>Implement the standard program.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>3C2</td>
<td>Urban zones with scattered industrial activity and heavy traffic</td>
<td>Low level</td>
<td>Moderate impact on service life.</td>
<td>Implement the standard program.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>Class</td>
<td>Zone</td>
<td>Presence of corrosive gases</td>
<td>Impact on device</td>
<td>Maintenance recommendations</td>
<td>Installation recommendations</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| 3C3 | Immediate vicinity of industrial pollution | Significant level | • Major impact on device service life, particularly concerning temperature rise.
• No impact on electronic components with varnished boards. | Implement the standard program. | No particular recommendation |
| | Example: paper mills, water treatment, chemicals, synthetic fibers, smelting plants | | | | |
| 3C4 | Inside polluting industrial premises | High level | • Significantly reduced service life if no particular precautions are taken.
• For electronic systems, no impact on varnished boards and gold-plated contacts | • Carry out more frequent periodic checks, page 12.
• Change the grease on the disconnecting contacts by Condat Pyratex EP2 fluorinated grease. | • Install the switchgear in a room offering protection from the pollution
• Use fixed rather than drawout devices |
Influence of Vibration on Aging

Vibration

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature deterioration of contact surfaces (clusters and main contacts)</td>
<td>Not identifiable</td>
<td>Increased device temperature rise</td>
</tr>
<tr>
<td>Loosening of bolted assemblies</td>
<td>Not identifiable</td>
<td>Increase in mechanical play</td>
</tr>
<tr>
<td>Wear of mechanical parts</td>
<td>Not identifiable</td>
<td>Broken springs, Increase in mechanical play between parts</td>
</tr>
<tr>
<td>Appearance of fretting corrosion on auxiliary connections</td>
<td>Not identifiable</td>
<td>Erroneous information or interruption of continuity in data or supply, excessive temperature rise</td>
</tr>
<tr>
<td>Breaking of connectors on large electronic components (for example, large capacitors)</td>
<td>Not identifiable</td>
<td>Potential failure of protection function</td>
</tr>
</tbody>
</table>

Recommendations

The maintenance and installation recommendations according to the vibrations are defined in the following table:

<table>
<thead>
<tr>
<th>Thresholds (g)</th>
<th>Description</th>
<th>Maintenance recommendations</th>
<th>Installation recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.2 g</td>
<td>Normal condition, no impact on service life</td>
<td>Implement the standard program.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>0.2 g to 0.5 g</td>
<td>Reduced service life</td>
<td>Carry out more frequent periodic checks, page 12.</td>
<td>No particular recommendation</td>
</tr>
<tr>
<td>0.5 g to 0.7 g</td>
<td>Significant increase in incidents</td>
<td>• Carry out more frequent periodic checks, page 12.</td>
<td>Install switchgear on a rubber mounting bushing</td>
</tr>
<tr>
<td>≥ 0.7 g</td>
<td>Forbidden for standard devices</td>
<td>−</td>
<td>Use special devices</td>
</tr>
</tbody>
</table>
Influence of Operating Cycles on Aging

Number of Operating Cycles

<table>
<thead>
<tr>
<th>Influence</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of operating cycles depends directly on the electrical and mechanical endurance of the device.</td>
<td>Device service life depends on the daily number of operating cycles.</td>
</tr>
</tbody>
</table>

Example: Influence of operating cycles on the service life for a MasterPact MTZ2 2000 A device.

<table>
<thead>
<tr>
<th>Number of cycles</th>
<th>Service life (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 cycles per month, or one cycle per day</td>
<td>27 years</td>
</tr>
<tr>
<td>60 cycles per month, or two cycles per day</td>
<td>13 years</td>
</tr>
<tr>
<td>120 cycles per month, or 4 cycles per day</td>
<td>6 years</td>
</tr>
</tbody>
</table>

(1) Service life is defined for endurance of 10,000 cycles and an interrupted current of less than 0.4 In
Influence of Interrupted Currents on Aging

Interrupted Currents

<table>
<thead>
<tr>
<th>Influence</th>
<th>Appearance</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear of fixed and moving contacts</td>
<td>Deterioration of contacts</td>
<td>Beyond the electrical-endurance limit, device temperature rise increases due to the greater contact resistance and a reduction in the pressure of contacts.</td>
</tr>
<tr>
<td>Wear of the arc chutes (insulating materials, separators)</td>
<td>Deterioration of insulation</td>
<td>Beyond the electrical-endurance limit, the insulation (input/output and between phases) is reduced, which results in a reduction of device suitability for isolation. In this case, the safety of persons is not guaranteed.</td>
</tr>
</tbody>
</table>

Recommendations

The maintenance and installation recommendations according to the interrupted currents are defined in the following table:

<table>
<thead>
<tr>
<th>Thresholds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/In ≤ 0.4</td>
<td>This level of interrupted current corresponds to the mechanical durability (see Mechanical endurance).</td>
</tr>
<tr>
<td>I/In ≤ 0.8</td>
<td>This level of interrupted current corresponds to approximately 125 % of the electrical durability.</td>
</tr>
<tr>
<td>I/In</td>
<td>This level of interrupted current corresponds to the electrical durability at the specified voltage (see Electrical endurance).</td>
</tr>
</tbody>
</table>
Appendices

What's in This Part

Appendices...60
Appendices

What's in This Chapter

Operating Limits for MasterPact MTZ IEC Devices ... 60
Related Documents for MasterPact MTZ IEC Devices ... 62

Operating Limits for MasterPact MTZ IEC Devices

Operating Limits of MasterPact MTZ1 Devices

The maximum number of opening/closing cycles with no load depends on the rating and performance levels of the MasterPact MTZ1 devices.

<table>
<thead>
<tr>
<th>Type of MasterPact MTZ1</th>
<th>Maximum number of cycles with periodic preventive maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTZ1 H1, H2, L1</td>
<td>12,500</td>
</tr>
<tr>
<td>MTZ1 H3</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Operating Limits of MasterPact MTZ1 Parts

These tables show the maximum possible number of operating cycles before the parts below must be replaced during the device service life.

<table>
<thead>
<tr>
<th>Type of MasterPact MTZ1</th>
<th>Maximum number of cycles before replacement of the part</th>
<th>Arc chute (at In)</th>
<th>Main contacts (at In)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTZ1 06–16 440 V H1, H2, H3</td>
<td>6,000</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>MTZ1 06–16 690 V H1, H2</td>
<td>3,000</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>MTZ1 06–10 440 V L1</td>
<td>3,000</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>MTZ1 06–10 690 V L1</td>
<td>2,000</td>
<td>2,000</td>
<td></td>
</tr>
</tbody>
</table>

(1) If any contacts are worn, all contacts must be changed. It means that the complete breaking block is replaced.

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum number of cycles before replacement of the part</th>
<th>XF/MX/MN voltage releases</th>
<th>MCH gear motor</th>
<th>Connecting-rod springs, interlocking mechanisms</th>
<th>Interlocking cables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterpact MTZ1</td>
<td>12,500</td>
<td></td>
<td>5,000</td>
<td>12,500</td>
<td>3,000</td>
</tr>
</tbody>
</table>

Operating Limits of MasterPact MTZ2/MTZ3 Devices

The maximum number of opening/closing cycles with no load depends on the rating and performance levels of the MasterPact MTZ2/MTZ3 devices.

<table>
<thead>
<tr>
<th>Type of MasterPact MTZ2/MTZ3</th>
<th>Maximum number of cycles with periodic preventive maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTZ2 08–16 N1, H1, H2, H10, L1</td>
<td>25,000</td>
</tr>
<tr>
<td>MTZ2 20 N1, H1, H2, H3, H10, L1</td>
<td>20,000</td>
</tr>
<tr>
<td>MTZ2 25–40 H1, H2, H3, H10</td>
<td>20,000</td>
</tr>
<tr>
<td>MTZ3 40–63 H1, H2</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Operating Limits of MasterPact MTZ2/MTZ3 Parts

In order to reach the maximum possible number of operating cycles, the parts below must be replaced during the device service life.
<table>
<thead>
<tr>
<th>Type of MasterPact MTZ2/MTZ3</th>
<th>Maximum number of cycles before replacement of the part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arc chute (at In)</td>
</tr>
<tr>
<td>MTZ2 08–16 N1, H1, H2</td>
<td>10,000</td>
</tr>
<tr>
<td>MTZ2 08–16 16 L1</td>
<td>3,000</td>
</tr>
<tr>
<td>MTZ2 20 440 V N1, H1, H2</td>
<td>8,000</td>
</tr>
<tr>
<td>MTZ2 20 690 V N1, H1, H2</td>
<td>6,000</td>
</tr>
<tr>
<td>MTZ2 20 440 V H3</td>
<td>2,000</td>
</tr>
<tr>
<td>MTZ2 20 690 V H3</td>
<td>6,000</td>
</tr>
<tr>
<td>MTZ2 20 L1</td>
<td>3,000</td>
</tr>
<tr>
<td>MTZ2 25–40 440 V H1, H2</td>
<td>5,000</td>
</tr>
<tr>
<td>MTZ2 25–40 690 V H1, H2</td>
<td>2,500</td>
</tr>
<tr>
<td>MTZ2 25–40 440 V H3</td>
<td>1,250</td>
</tr>
<tr>
<td>MTZ2 25–40 690 V H3</td>
<td>2,500</td>
</tr>
<tr>
<td>MTZ3 40–63 H1, H2</td>
<td>1,500</td>
</tr>
</tbody>
</table>

(1) If any contacts are worn, all contacts must be changed. It means that the complete breaking block is replaced.

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum number of cycles before replacement of the part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XF/MX/MN voltage releases</td>
</tr>
<tr>
<td>MasterPact MTZ2/MTZ3</td>
<td>12,500</td>
</tr>
</tbody>
</table>
Related Documents for MasterPact MTZ IEC Devices

Related Documents for Masterpact MTZ1 Devices

<table>
<thead>
<tr>
<th>Document title</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterpact MTZ Catalogue</td>
<td>LVPED216026EN</td>
</tr>
<tr>
<td>MasterPact MTZ - Basic and Standard End-User Maintenance Procedures for IEC Devices</td>
<td>DOCA0103EN</td>
</tr>
<tr>
<td>Masterpact MTZ1 - IEC Circuit Breakers and Switch-Disconnectors - User Guide</td>
<td>DOCA0100EN</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Position Contacts (Connected / Disconnected / Test) - Instruction Sheet</td>
<td>NVE16135</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Keylock for OFF Position Lock or Disconnected Position Lock - Instruction Sheet</td>
<td>NVE16834</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - EIFE Embedded Ethernet Interface for one Masterpact MTZ Drawout Circuit Breaker - Kits and Spare Parts - Instruction Sheet</td>
<td>NVE23550</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Auxiliary Terminals - Instruction Sheet</td>
<td>NVE35463</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - VDC Mismatch Protection - Instruction Sheet</td>
<td>NVE35465</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - PF Ready-To-Close Contact - Instruction Sheet</td>
<td>NVE35466</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Clusters - Instruction Sheet</td>
<td>NVE35467</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Fixed IEC Circuit Breaker or Switch-Disconnector - Instruction Sheet</td>
<td>NVE35505</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Drawout IEC Circuit Breaker or Switch-Disconnector - Instruction Sheet</td>
<td>NVE35506</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Connectors - Instruction Sheet</td>
<td>NVE35507</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Interphase Barriers - Instruction Sheet</td>
<td>NVE35508</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Safety Shutters - Instruction Sheet</td>
<td>NVE35509</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Arc Chute - Instruction Sheet</td>
<td>NVE35511</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Arc Chute Cover - Instruction Sheet</td>
<td>NVE35512</td>
</tr>
<tr>
<td>Masterpact MTZ1 - OF ON/OFF Indication Contacts - Instruction Sheet</td>
<td>NVE35513</td>
</tr>
<tr>
<td>Masterpact MTZ1 - MCH Gear Motor - Instruction Sheet</td>
<td>NVE35514</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Auxiliary Terminal Shield for Drawout Masterpact - Instruction Sheet</td>
<td>NVE35515</td>
</tr>
<tr>
<td>Masterpact MTZ1 - CDM Operation Counter - Instruction Sheet</td>
<td>NVE35516</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Door Escutcheon - Instruction Sheet</td>
<td>NVE35517</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Transparent Cover for Drawout Masterpact Door Escutcheon - Instruction Sheet</td>
<td>NVE35518</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Door Interlock - Instruction Sheet</td>
<td>NVE35519</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Racking Interlock - Instruction Sheet</td>
<td>NVE35520</td>
</tr>
<tr>
<td>Masterpact MTZ1 - IPA Cable-Type Door Interlock - Instruction Sheet</td>
<td>NVE35521</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Mechanical Interlocking for Source Changeover (2 Sources / Cable) - Instruction Sheet</td>
<td>NVE35522</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Mechanical Interlocking for Source Changeover (2 Sources / Rods) - Instruction Sheet</td>
<td>NVE35523</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Isolation Module - Instruction Sheet</td>
<td>NVE40748</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - MN-MX-XF Voltage Releases - Instruction Sheet</td>
<td>NVE40749</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - MN-MX-XF Communicating Voltage Releases with Diagnostic Function - Instruction Sheet</td>
<td>NVE40766</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Wiring Kit for MN-MX-XF Communicating Voltage Releases with Diagnostic Function - Instruction Sheet</td>
<td>NVE40768</td>
</tr>
<tr>
<td>Masterpact MTZ1 - BPFE/BPFET Electrical Closing Pushbutton - Instruction Sheet</td>
<td>NVE40771</td>
</tr>
<tr>
<td>ULP Port Module for Fixed Masterpact MTZ1/MTZ2/MTZ3 - Instruction Sheet</td>
<td>NVE40791</td>
</tr>
</tbody>
</table>
Appendices

IEC Circuit Breakers and Switch-Disconnectors

<table>
<thead>
<tr>
<th>Document title</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULP Port Module for Drawout Masterpact MTZ1 - Instruction Sheet</td>
<td>NVE40796</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Microswitches OF/SDE/PF/CH - Instruction Sheet</td>
<td>NVE56767</td>
</tr>
<tr>
<td>Masterpact MTZ1 - VSPD Disconnected Position Locking - Instruction Sheet</td>
<td>NVE56768</td>
</tr>
<tr>
<td>Masterpact MTZ1 - VBP Lockable Pushbutton Cover - Instruction Sheet</td>
<td>NVE56769</td>
</tr>
<tr>
<td>Masterpact MTZ1 - VCPO OFF-Position Locking and BPFE Support - Instruction Sheet</td>
<td>NVE56770</td>
</tr>
<tr>
<td>Masterpact MTZ1 3P/4P - Front Cover - Instruction Sheet</td>
<td>NVE56771</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Spring Charging Handle - Instruction Sheet</td>
<td>NVE56772</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Set of 2 Cables for Interlocking 2.5 m (8.2 ft) - Instruction Sheet</td>
<td>NVE61729</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Set of 2 Rods for Interlocking - Instruction Sheet</td>
<td>NVE61744</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Retrofit Kit for NT Chassis to Masterpact MTZ1 - Instruction Sheet</td>
<td>QGH31933</td>
</tr>
<tr>
<td>Masterpact MTZ1 - Resistor for MCH 440-480 V - Instruction Sheet</td>
<td>QGH31935</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Locating Bracket for MN-MX-XF Voltage Releases - Instruction Sheet</td>
<td>QGH60497</td>
</tr>
</tbody>
</table>

Related Documents for MasterPact MTZ2/MTZ3 Devices

<table>
<thead>
<tr>
<th>Document title</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterpact MTZ Catalogue</td>
<td>LVPED216026EN</td>
</tr>
<tr>
<td>MasterPact MTZ - Basic and Standard End-User Maintenance Procedures for IEC Devices</td>
<td>DOCA0103EN</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - IEC Circuit Breakers and Switch-Disconnectors - User Guide</td>
<td>DOCA0101EN</td>
</tr>
<tr>
<td>Masterpact MTZ2 3P/4P - Front Cover - Instruction Sheet</td>
<td>NVE16117</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Position Contacts (Connected / Disconnected / Test) - Instruction Sheet</td>
<td>NVE16135</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - VSPD Disconnected Position Locking - Instruction Sheet</td>
<td>NVE16142</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - VCPO OFF-Position Locking and BPFE Support - Instruction Sheet</td>
<td>NVE16146</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - VBP Lockable Pushbutton Cover - Instruction Sheet</td>
<td>NVE16147</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Spring Charging Handle - Instruction Sheet</td>
<td>NVE16150</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Keylock for OFF Position Lock or Disconnected Position Lock - Instruction Sheet</td>
<td>NVE16834</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - EIFE Embedded Ethernet Interface for one Masterpact MTZ Drawout Circuit Breaker - Kits and Spare Parts - Instruction Sheet</td>
<td>NVE23550</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Auxiliary Terminals - Instruction Sheet</td>
<td>NVE35463</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - VDC Mismatch Protection - Instruction Sheet</td>
<td>NVE35465</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - PF Ready-To-Close Contact - Instruction Sheet</td>
<td>NVE35466</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Clusters - Instruction Sheet</td>
<td>NVE35467</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Fixed IEC Circuit Breaker or Switch-Disconnector - Instruction Sheet</td>
<td>NVE35469</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Drawout IEC Circuit Breaker or Switch-Disconnector - Instruction Sheet</td>
<td>NVE35470</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Connectors - Instruction Sheet</td>
<td>NVE35472</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Interphase Barriers - Instruction Sheet</td>
<td>NVE35473</td>
</tr>
<tr>
<td>Masterpact MTZ2 - Disconnectable Front Connections for Fixed Masterpact - Instruction Sheet</td>
<td>NVE35474</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Safety Shutters - Instruction Sheet</td>
<td>NVE35476</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Shutter Locking Block - Instruction Sheet</td>
<td>NVE35477</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - VIVC Front Face Shutter Position Indication and Locking - Instruction Sheet</td>
<td>NVE35478</td>
</tr>
<tr>
<td>Document title</td>
<td>Reference number</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Arc Chute - Instruction Sheet</td>
<td>NVE35479</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - KMT Grounding Kit - Instruction Sheet</td>
<td>NVE35480</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - OF ON/OFF Indication Contacts - Instruction Sheet</td>
<td>NVE35481</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - EF Combined Connected/Closed Contact - Instruction Sheet</td>
<td>NVE35482</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - MCH Gear Motor - Instruction Sheet</td>
<td>NVE35483</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Auxiliary Terminal Shield for Drawout Masterpact - Instruction Sheet</td>
<td>NVE35484</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - CDM Operation Counter - Instruction Sheet</td>
<td>NVE35485</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Mounting Brackets - Instruction Sheet</td>
<td>NVE35486</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Door Escutcheon - Instruction Sheet</td>
<td>NVE35491</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Transparent Cover for Drawout Masterpact Door Escutcheon - Instruction Sheet</td>
<td>NVE35492</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Door Interlock - Instruction Sheet</td>
<td>NVE35493</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Racking Interlock - Instruction Sheet</td>
<td>NVE35494</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - IPA Cable-Type Door Interlock - Instruction Sheet</td>
<td>NVE35495</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Mechanical Interlocking for Source Changeover (2 Sources / Cable) - Instruction Sheet</td>
<td>NVE35496</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Mechanical Interlocking for Source Changeover (2 Sources / Rods) - Instruction Sheet</td>
<td>NVE35497</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Mechanical Interlocking for 3 Sources - Instruction Sheet</td>
<td>NVE35498</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Mechanical Interlocking for 2 Sources and 1 Replacement - Instruction Sheet</td>
<td>NVE35499</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Mechanical Interlocking for 2 Sources and 1 Coupling - Instruction Sheet</td>
<td>NVE35500</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - SDE2 Fault-Trip Indication Contact / RES Remote Reset - Instruction Sheet</td>
<td>NVE35503</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Isolation Module - Instruction Sheet</td>
<td>NVE40748</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - MN-MX-XF Voltage Releases - Instruction Sheet</td>
<td>NVE40749</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - MN-MX-XF Communicating Voltage Releases with Diagnostic Function - Instruction Sheet</td>
<td>NVE40766</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Wiring Kit for MN-MX-XF Communicating Voltage Releases with Diagnostic Function - Instruction Sheet</td>
<td>NVE40768</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - BPFE/BPFET Electrical Closing Pushbutton - Instruction Sheet</td>
<td>NVE40773</td>
</tr>
<tr>
<td>ULP Port Module for Fixed Masterpact MTZ1/MTZ2/MTZ3 - Instruction Sheet</td>
<td>NVE40791</td>
</tr>
<tr>
<td>ULP Port Module for Drawout Masterpact MTZ2/MTZ3 - Instruction Sheet</td>
<td>NVE40797</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Microswitches OF/SDE/PF/CH - Instruction Sheet</td>
<td>NVE56766</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Set of 2 Cables for Interlocking 2.5 m (8.2 ft) - Instruction Sheet</td>
<td>NVE61729</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Set of 2 Rods for Interlocking - Instruction Sheet</td>
<td>NVE61744</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Retrofit Kit for NW Chassis to Masterpact MTZ2/MTZ3 - Instruction Sheet</td>
<td>QGH31931</td>
</tr>
<tr>
<td>Masterpact MTZ2/MTZ3 - Fixed to Drawout Device Conversion Kit - Instruction Sheet</td>
<td>QGH31938</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Locating Bracket for MN-MX-XF Voltage Releases - Instruction Sheet</td>
<td>QGH60497</td>
</tr>
</tbody>
</table>
Related Documents for MicroLogic X Control Units

<table>
<thead>
<tr>
<th>Document title</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterpact MTZ Catalogue</td>
<td>LPED216026EN</td>
</tr>
<tr>
<td>MasterPact MTZ - MicroLogic X Control Unit - User Guide</td>
<td>DOCA0102EN</td>
</tr>
<tr>
<td>MasterPact MTZ - Basic and Standard End-User Maintenance Procedures for IEC Devices</td>
<td>DOCA0103EN</td>
</tr>
<tr>
<td>Masterpact MTZ - Modbus Communication Guide</td>
<td>DOCA0105EN</td>
</tr>
<tr>
<td>Masterpact / PowerPact / Compact - LV848892SP ZSI Interface Module - Instruction Sheet</td>
<td>NHA12883</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Micrologic Neutral Current Transformer Wiring - Instruction Sheet</td>
<td>NHA13906</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Neutral Current Transformer - Instruction Sheet</td>
<td>NHA14388</td>
</tr>
<tr>
<td>Micrologic X - Embedded Display - Instruction Sheet</td>
<td>NHA49910</td>
</tr>
<tr>
<td>Micrologic X - Spare Battery - Instruction Sheet</td>
<td>NHA57283</td>
</tr>
<tr>
<td>Masterpact NT/NW/MTZ1/MTZ2/MTZ3, PowerPact P/R, Compact NS630b–NS3200 - Micrologic - Ground-Fault Interface Module with Current Sensor - Instruction Sheet</td>
<td>NHA92405</td>
</tr>
<tr>
<td>Masterpact MTZ1/MTZ2/MTZ3 - Micrologic Transparent Cover - Instruction Sheet</td>
<td>NVE16151</td>
</tr>
<tr>
<td>Micrologic X - Rectangular Sensor for Earth-Leakage Protection - Instruction Sheet</td>
<td>NVE35468</td>
</tr>
<tr>
<td>Micrologic X - Mobile Power Pack - Instruction Sheet</td>
<td>NVE40737</td>
</tr>
<tr>
<td>Micrologic X - VPS Voltage Power Supply Module - Instruction Sheet</td>
<td>NVE40741</td>
</tr>
<tr>
<td>Micrologic X - Sensor Plug - Instruction Sheet</td>
<td>NVE80064</td>
</tr>
</tbody>
</table>