Acti 9 Communication System User Manual

04/2012

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2012 Schneider Electric. All rights reserved.

Table of Contents

	Safety Information
	About the Book
Part I	Acti 9 Communication System
Chapter 1	Overview
_	Overview
Part II	Acti 9 Smartlink
Chapter 2	Overview
-	Overview
	Description
Chapter 3	Installation
	Mounting
	Sizing the 24 V DC Power Supply
Chapter 4	Products that can be Connected to an Acti 9 Smartlink Module
Shapter 4	Acti 9 Communication System Pre-assembled Cables
	Connection of Acti 9 Products
	iEM2000T Meter (iEM3110, iEM3155, iEM3210 and iEM3255)
	Contactor (Not in the Acti 9 Range)
	Impulse Relay (Not in the Acti 9 Range)
	Meter (Not in the Acti 9 Range) Generating Summary Data Using iOF + SD24
Chantar E	
Chapter 5	Setting Up Modbus Communication.
	Modbus Master/Slave Principle
	Setup.
	Fonctions de l'appareil Acti 9 Smartlink
	Modbus Functions.
	Modbus Exception Codes
.	Description of LEDs.
Chapter 6	Tables of Modbus Registers
6.1	General Description of Modbus Tables
	Overview
	Modbus Table Format and Data Types
6.2	Summary Description of Modbus Tables
	Address Zone Table
	Summary Description of Channels 1 to 11 of the Acti 9 Smartlink Device
6.3	Products that can be Controlled by an Acti 9 Smartlink Module
	iACT24 Auxiliary for iCT Contactor
	iATL24 Auxiliary for iTL Impulse Relay
	iOF+SD24 Indication Auxiliary for iC60 Circuit Breaker
	OF+SD24 Indication Auxiliary for C60 and C120 Circuit Breakers
	iEM2000T Meter (iEM3110, iEM3155, iEM3210 and iEM3255)
	Acti 9 RCA iC60 Remote Control with Ti24 Interface
	Acti 9 Reflex iC60 Integrated Control Circuit Breaker With Ti24 Interface
	Contactor (Not in the Acti 9 Range)
	Impulse Relay (Not in the Acti 9 Range)
	Meter (Not in the Acti 9 Range)
6.4	Summary Modbus Tables and Detailed Modbus Tables.
	Modbus Tables Independent of the Channel
	States
	Orders
	Power or Flow Indicators
	Consumption Meters

	Operation Counters
	Running Hours Counter Parameter Setting Dates
	Parameter Settings
Chapter 7	Technical Characteristics
•	Technical Characteristics of the Acti 9 Smartlink.
Part III	Connecting Acti 9 Devices to a PLC
Chapter 8	Connections
	iACT24 Auxiliary for iCT Contactor
	iATL24 Auxiliary for iTL Impulse Relay
	iOF+SD24 Indication Auxiliary for iC60 Circuit Breaker.
	OF+SD24 Indication Auxiliary for C60 and C120 Circuit Breakers
	Acti 9 RCA iC60 Remote Control With Ti24 Interface
Dert IV	Acti 9 Reflex iC60 Integrated Control Circuit Breaker with Ti24 Interface
Part IV	Integration of Acti 9 Smartlink in an EGX System
Chapter 9	Overview
	Introduction to the EGX System.
	Connection.
	Configuration
	Monitoring
	Diagnostics
Appendices	
	Details of Modbus Functions
	Function 8: Diagnostics Modbus
	Function 43-14: Read Acti 9 Smartlink ID
	Function 43–15: Read Date and Time
	Function 43-16: Write Date and Time
	Function 100–4: Read n Non-Adjacent Words
Appendix B	Resetting the Acti 9 Smartlink Device with Factory Parameters
	Description

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, **can result in** death or serious injury.

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, **can result in** minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

About the Book

At a Glance

Document Scope

The purpose of this manual is to provide users, installers and maintenance personnel with the technical information necessary to install and use the Acti 9 communication system.

Validity Note

The Acti 9 communication system can be easily integrated into any building management architecture.

It combines command and control functions and protection functions designed for energy efficiency solutions in any type of environment. Based on the Modbus protocol, the Acti 9 communication system allows data to be exchanged in real time between switchboards. Monitoring and command and control are therefore possible for each circuit or load.

This system's pre-wired connectors can save time and prevent wiring errors during installation.

Related Documents

Title of Documentation	Reference Number
Instruction sheet for the iACT24 auxiliary for the iCT contactor	S1B33421
Instruction sheet for the iATL24 auxiliary for the iTL remote control switch	S1B33422
Instruction sheet for the Acti 9 Smartlink	S1B33423
Instruction sheet for the RCA iC60 remote control	S1A4079001
Instruction sheet for the Reflex iC60 integrated control circuit breaker	S1A5784801
Instruction sheet for the iEM2000T counter	S1A8936401
Instruction sheet for the iEM3100, iEM3110, iEM3115 counters	S1B46581
Instruction sheet for the iEM3150, iEM3155 counters	S1B46583
Instruction sheet for the iEM3200, iEM3210, iEM3215 counters	S1B46598
Instruction sheet for the iEM3250, iEM3255 counters	S1B46602
Reference manual for the RCA iC60 remote control for iC60 circuit breakers	A9MA01FR
Reference manual for the Reflex iC60 integrated control circuit breaker	A9MA03FR
User manual for the PowerLogic EGX300 Ethernet gateway	EGX 63230-319-216
Technical advice on the Acti 9 Smartlink device	CA908033F

You can download these technical publications and other technical information from our website at www.schneider-electric.com.

User Comments

We welcome your comments about this document. You can reach us by e-mail at techcomm@schneiderelectric.com.

Acti 9 Communication System

Overview

1

Overview

Introduction

The Acti 9 communication system is used to connect final distribution boards to any supervision system.

Modular equipment in the Acti 9 communication system is used to monitor, measure and control electrical distribution boards via a Modbus communication network.

The Acti 9 communication system concentrates the data from electrical distribution boards in real time, thus contributing to achieving energy efficiency targets.

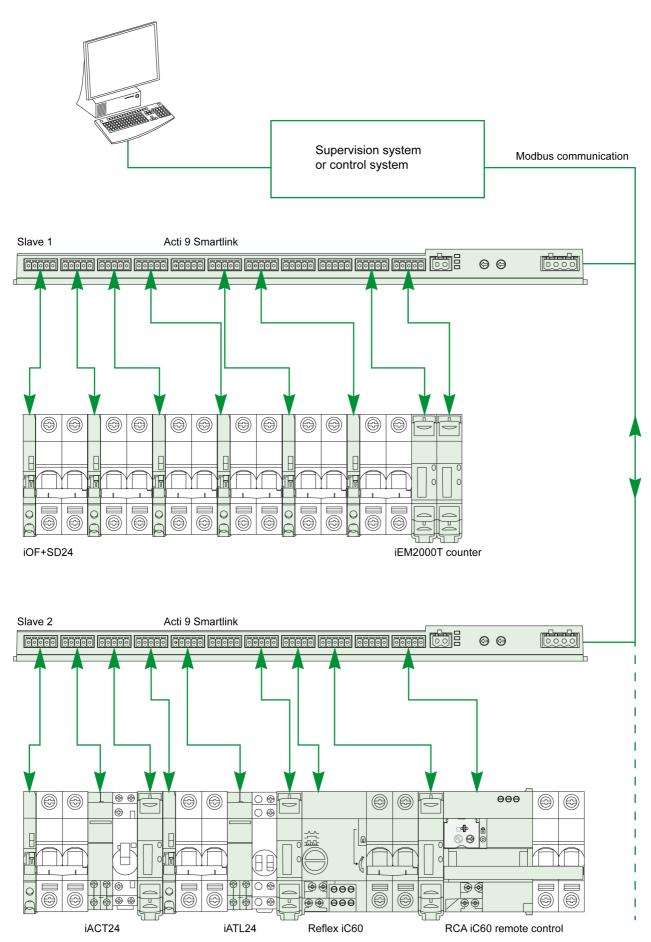
The Acti 9 communication system collects data from any meter (including kilowatt-hour, water, air, gas or steam meters).

This system consists of:

- Acti 9 Smartlink and its test kit
- iOF+SD24 and OF+SD24 indication auxiliaries
- iACT24 and iATL24 auxiliaries for contactors and impulse relays in the Acti 9 range
- The Acti 9 RCA iC60 remote control module with Ti24 interface
- The Reflex iC60 integrated control circuit breaker with Ti24 interface
- iEM2000T, iEM3110, iEM3155, iEM3210 and iEM3255 meters
- Pre-wired connectors

This system offers the following advantages and services:

- An automatic connection to the Modbus network
- No configuration operation required
- Calculation (see page 50) functions


The Acti 9 communication system is an open system:

- Acti 9 Smartlink can be used as a standard I/O distributed module
- Acti 9 Smartlink is equipped with 11 24 V DC channels Each channel is represented by a Ti24 interface consisting of:
 - Two power supply terminals: 0 V and 24 V DC
 - Two 24 V DC logic inputs (I1 and I2),
 - One 24 V DC logic output (Q)
- Each Ti24 interface is compatible with Miniconnect Phoenix standard connectors (at intervals of 3.81 mm) or equivalent.
- Acti 9 Smartlink is compatible with any type of counter (pulse output) compliant with standard IEC 62053-21 (minimum pulse 30 ms):
 - The pulse weight must be configured (written in a Modbus register)
 - Acti 9 Smartlink calculates consumption and flow
- Acti 9 Smartlink is compatible with any type of device equipped with low level inputs and outputs (24 V DC)

The Acti 9 communication system is simple and safe to use:

- The Acti 9 communication system pre-wired connectors reduce complexity and wiring time by allowing connection on an Acti 9 Smartlink module of all the Acti 9 communication system components and 24 V DC compatible products.
- All Acti 9 communication system functions can be created by sending messages (Modbus protocol) to Acti 9 Smartlink devices (Modbus slaves) that act on devices via Ti24 interfaces.

Acti 9 Communication System Block Diagram

Integration of Acti 9 Smartlink (Modbus Protocol) in Schneider Electric Offers

Acti 9 Smartlink can connect via an RS 485 link to the following offers:

- PLCs
 - UNITY platform PLCs: M340 and Premium
 - Small Twido and Zelio PLCs
- Building management system:
 - StruxureWare platform
- Supervisors and human machine interfaces (HMIs):
 - ION-E electrical distribution supervisor
 - EGX300 Web server
 - Control and display of Magelis interfaces
- Controllers dedicated to energy management:
 - iRIO

On installations where the connection is via Ethernet, compatibility is assured by means of EGX100 (Modbus RS 485 - Modbus Ethernet TCP/IP) and EGX300 gateways.

Acti 9 Smartlink is an object recognized by UNITY, EGX300, StruxureWare, iRIO and ION-E offers.

For installations using other communication systems (LON, KNX, BACnet, etc.), compatibility is assured by means of suitable gateways (for example: Modbus/KNX).

Acti 9 Smartlink

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
2	Overview	17
3	Installation	21
4	Products that can be Connected to an Acti 9 Smartlink Module	35
5	Setting Up Modbus Communication	45
6	Tables of Modbus Registers	55
7	Technical Characteristics	87

Overview

2

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Overview	18
Description	19

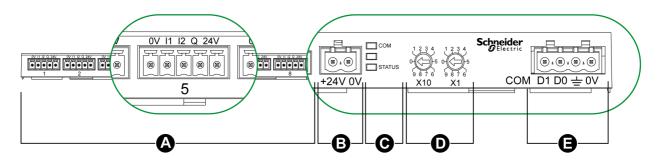
Overview

Introduction

The Acti 9 Smartlink device has 11 channels (24 V DC) and can be connected to devices in the Acti 9 range equipped with a Ti24 interface. Thanks to the Ti24 link, data can be transmitted from the Acti 9 Smartlink device to a PLC or a supervision system via a Modbus communication network.

The Acti 9 Smartlink device channels can also be used to transmit standardized I/O. The Acti 9 Smartlink device can also therefore communicate with devices (not in the Acti 9 range) with or without a Ti24 link.

Devices which can be connected to the Acti 9 Smartlink device include:


- Acti 9 products: control switch for iACT24 contactors and iATL24 impulse relays, iC60 iOF+SD24 indication auxiliary, C60 OF+SD24 indication auxiliary, RCA iC60 remote control with Ti24 interface, Reflex iC60 integrated control circuit breaker with Ti24 interface
- Meters: iEM2000T or other meters (Schneider Electric or other manufacturers) in compliance with IEC 62053-21 (minimum pulse 30 ms).
- Any product (not in the Acti 9 range) that has command and control information: 2 discrete 24 V outputs and 1 discrete 24 V inputs.

The Acti 9 Smartlink device is an intermediary between the supervisor and various electrical appliances. It can therefore be used to retrieve and process data received from devices and also control them. The functions available depend on the type of connected devices.

The Acti 9 Smartlink functions are described in detail (see page 50).

Description

Acti 9 Smartlink Device

- A 11 I/O channels
- B One 24 V DC power supply connector
- C LEDs that show the Acti 9 Smartlink (see page 54) device operating status
- D 2 thumbwheels for the device Modbus address
- E One 4-pin Modbus connector

Acti 9 Devices With Ti24 Interface

The table below describes the various devices in the Acti 9 range that can be connected to the Acti 9 Smartlink device:

Designation	Reference	Description
iACT24	A9C15924	Contactor control switch
iATL24	A9C15424	Impulse relay control switch
iOF+SD24	A9A26897	Indication auxiliary with Ti24 interface for iC60 circuit breaker
OF+SD24	A9N26899	Indication auxiliary with Ti24 interface for C60, C120 circuit breaker
RCA iC60 with Ti24 interface	A9C7012•	Remote control with Ti24 interface
Reflex iC60 with Ti24 interface	A9C6••••	Integrated control circuit breaker with Ti24 interface

Devices Without Ti24 Interface

The table below describes the various devices that can be connected:

Designation	Reference	Description
iEM2000T	A9MEM2000T	Single-phase energy meter without display
iEM3110	A9MEM3110	Three-phase energy meter with display
iEM3155	A9MEM3155	Three-phase energy meter with display
iEM3210	A9MEM3210	Three-phase energy meter with display
iEM3255	A9MEM3255	Three-phase energy meter with display
-	-	Other Schneider Electric meters
-	-	Meter (not in the Acti 9 range) compliant with standard IEC 62053-31
IH, IHP	-	Timer switches with RBN type low level relays or equivalent
IC	-	Light sensitive switches with RBN type low level relays or equivalent
TH, THP	-	Thermostats with RBN type low level relays or equivalent
-	-	24 V DC fault indication LEDs, Harmony type
_	-	All 24 V DC loads not exceeding 100 mA

Installation

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Mounting	22
Sizing the 24 V DC Power Supply	26
Connection	29

Mounting

Introduction

The Acti 9 Smartlink device can be mounted on:

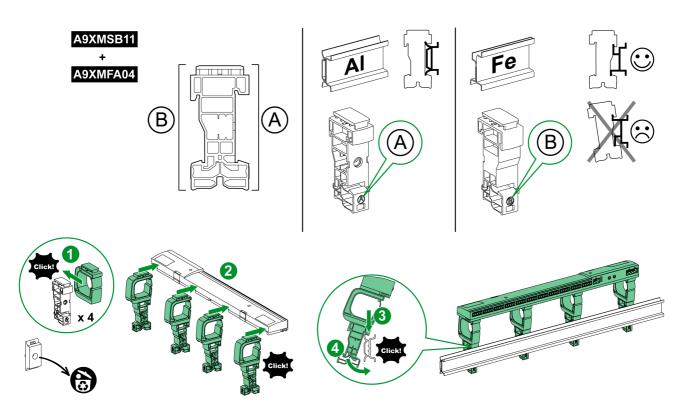
- DIN rail
- Multiclip 80,
- Multiclip 200.


Acti 9 Smartlink can be installed horizontally and vertically.

In a horizontal mounting, Acti 9 Smartlink is clipped onto DIN rails with fixing centers of 150 mm or more.

The ambient operating temperature is:

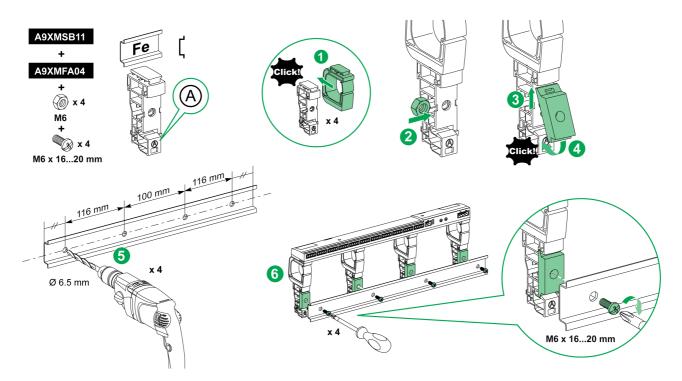
- Horizontal mounting: -25° to +60°C
- Vertical mounting: -25° to +50°C


Mounting Components

Reference	Description
A9XMSB11	Acti 9 Smartlink
A9XMFA04	Set of bracelets, adaptors and feet for DIN rail mounting
A9XM2B04	Spacers for Multiclip 200 mounting

DIN Rail Mounting

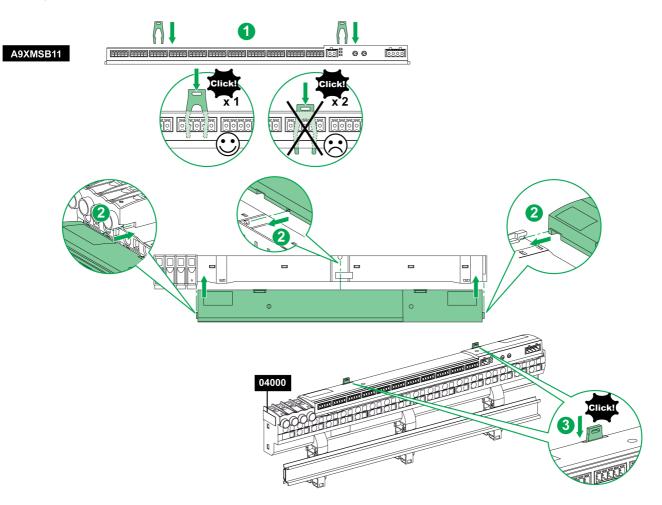
The side of the foot (**A** or **B** in the drawing below) used to mount the system on the DIN rail depends on the type of rail (aluminum or iron).



The table below describes the procedure for mounting the Acti 9 Smartlink device on a DIN rail:

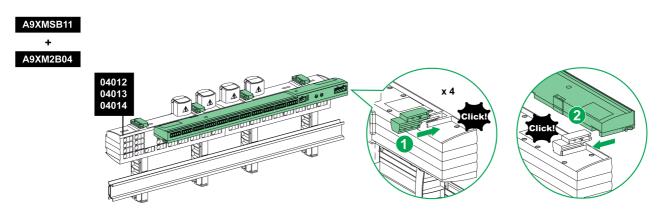
Step	Action
1	Clip one bracelet onto one foot according to the type of rail. Repeat this step three times.
2	Clip the Acti 9 Smartlink device on top of the bracelets.
3	Place the top of the foot at an angle against the top lip of the rail.
4	Clip the bottom of the foot into place.
5	Repeat steps 3 and 4 for each of the other three feet.

Simple DIN Rail Mounting


To mount the system on a simple DIN rail (iron), use side ${\boldsymbol{\mathsf{A}}}$ of the foot.

The table below describes the procedure for mounting the Acti 9 Smartlink device on a simple DIN rail:

Step	Action
1	Clip one bracelet onto side A of a foot. Repeat this step three times.
2	Place one M6 nut inside a foot. Repeat this step three times.
3	Position the top of an adaptor diagonally at the front of a foot.
4	Clip the bottom of the adaptor into place. Repeat steps 3 and 4 three times.
5	Drill the rail making sure that the drill hole diameters and positioning dimensions are correct, as shown in the above graphic.
6	Screw the feet onto the rail.


Mounting on Multiclip 80

The table below describes the procedure for mounting the Acti 9 Smartlink device on Multiclip 80.

Step	Action
1	Position the two clips in the notches on the Acti 9 Smartlink device.
2	Slide the Acti 9 Smartlink device front first onto the Multiclip 80 until fully inserted.
3	Push down the two clips until they click into place.

Mounting on Multiclip 200

The table below describes the procedure for mounting the Acti 9 Smartlink device on Multiclip 200.

Step	Action
1	Slide the four spacers from the back into the notches on top of the Multiclip 200.
2	Slide the Acti 9 Smartlink device front first onto the spacers, until it clicks into place.

Sizing the 24 V DC Power Supply

Safety Information

A A DANGER

RISK OF ELECTROCUTION

Isolate the Acti 9 Smartlink power terminals from the power terminals connected to the Modbus network line.

Failure to follow these instructions will result in death or serious injury.

Example: The 0 V and the 24 V of a 24 V DC power supply connected to the TRV00210 ULP communication module must be isolated from the **0 V** or **+24 V** terminals of the 24 V DC power supply for the Acti 9 Smartlink device.

General Characteristics

Acti 9 Smartlink device consumption:

Status	Consumption
Device with no load	35 mA
Device under load	1.5 A maximum

Products in the Acti 9 Range

If products connected to the channels (Ti24 interfaces) of an Acti 9 Smartlink device are in the Acti 9 range, the consumption of a channel output is the same as the consumption of an input because the output is connected to the input. All that needs to be done is to add up the consumption of 3 input currents per channel.

Example: Assuming that the input current is less than 5 mA, the consumption of an Acti 9 Smartlink device is as follows:

No-load consumption + number of outputs x 3 input currents = 35 mA + 11 x (3 x 5 mA) = 200 mA

Products that can be Controlled by a Channel

If products connected to the channels (Ti24 interfaces) of an Acti 9 Smartlink device are in a different range, the maximum consumption of a device channel is 110 mA. The output for each channel supplies 100 mA and the inputs can consume up to 10 mA.

Example: Assuming that the consumption of one channel is 110 mA, the consumption of one Acti 9 Smartlink device is as follows:

No-load consumption + number of outputs x consumption per channel = 35 mA + 11 x (110 mA) = 1.3 A

Selection of the Acti 9 Smartlink 24 V DC Power Supply

The 24 V DC power supply must correspond to the following criteria:

- It must be local to the electrical cabinet.
- It must be different from the Modbus network 24 V DC power supply so as to maintain galvanic isolation between the Modbus network (common to several electrical cabinets) and the 24 V DC I/O.
- It must be Safety Extra Low Voltage (SELV) type.
- Galvanic isolation between the power supply input (AC voltage) and the power supply output (DC voltage) must be at least 3 kV AC at 50 Hz.
- The rated AC voltage of the power supply input must be 240 V AC +15/-20%.
- This power supply can be used to supply other products inside the electrical cabinet provided that these products are double insulated or with reinforced insulation so as to preserve the power supply's SELV quality.

Phaseo ABL8MEM240xx (OVC II) or ABL7RM24025 (OVC II) modular power supplies and their accessories comply with the above recommendations. These accessories provide the redundancy and backup power supply functions and can eliminate micro-cuts on the line.

The upstream and downstream protection functions of the Phaseo power supply must be installed as indicated in their respective manuals.

NOTE: OVC means overvoltage category.

If overvoltage category IV or III is needed in the installation, we recommend using:

- Either power supplies (limited to 1 A) in the ULP (Universal Logic Plug) system with references 54440 to 54445. See the User's Manual, ULP Connection System, reference TRV99100
- Or use the Phaseo power supply recommended above, protecting it with an isolating transformer from the Phaseo Optimum (ABL6TS) range or the Universal (ABT7PDU) range.

NOTE: For each of these solutions, you should refer to the respective manuals.

Protection against a 240 V fault on the Acti 9 Smartlink device 24 V input

In case a 240 V power supply is accidentally connected to the 24 V input on the Acti 9 Smartlink power supply, fuse protection is provided.

Protection against a 240 V AC fault on the Acti 9 Smartlink channels

In the event of a wiring error or electrical fault, the 240 V AC voltage may be present on the channels of the Acti 9 Smartlink device: the neutral or phase (240 V AC) can be in contact with the Ti24 interfaces or the 24 V DC power supply.

The insulation inside the Acti 9 Smartlink device prevents propagation of this dangerous voltage (240 V AC) over the Modbus network.

The protection function inside the Acti 9 Smartlink device eliminates the risk of fire inside the Acti 9 Smartlink device.

These 2 protection functions (internal insulation and internal protection) cannot prevent wiring errors or electrical faults. A risk of dangerous voltage remains on the Acti 9 Smartlink device channels.

A A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Implement a TT or TN-S earthing system.
- Connect the SELV power supply 0 V DC to the protective earth to make it a PELV (Protective Extra Low Voltage) power supply. The upstream residual current protection must be type A.

Failure to follow these instructions will result in death or serious injury.

NOTE: In the majority of cases, the presence of a PELV means an upstream residual current protection can trip, thus protecting people and property.

A A DANGER

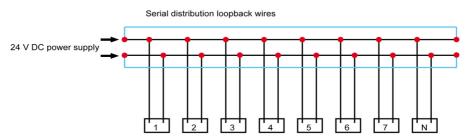
ACCIDENTAL EQUIPMENT BEHAVIOR

- Connect the 0 V DC of the SELV power supply to the protective earth at a single point to avoid any stray currents (50 Hz, harmonics, or transient currents) circulating across the 0 V DC.
- Check that products supplied by this power supply are not already connecting the 0 V DC to the protective earth.

Failure to follow these instructions will result in death or serious injury.

NOTICE

RISK OF DAMAGING THE ACTI 9 SMARTLINK DEVICE


- Connect the 0 V DC of the SELV power supply to the protective earth at a single point to avoid any stray currents (50 Hz, harmonics, or transient currents) circulating across the 0 V DC.
- Check that products supplied by this power supply are not already connecting the 0 V DC to the
 protective earth.

Failure to follow these instructions can result in equipment damage.

Electromagnetic Compatibility (EMC) Recommendations

A star 24 V DC distribution is preferable to a serial 24 V DC distribution because star 24 V DC distribution can minimize the wiring impedance.

If serial distribution is used, it is advisable to wire 2 serial loopback wires (see the 2 blue wires in the drawing below) in order to minimize impedance.

In a poor-quality electrical distribution network, it is advisable to use a Phaseo power supply from the Universal range (ABL8RPS240xx) which can withstand up to 500 V AC incoming and also offers galvanic insulation between the power supply AC input and the power supply DC output of 4 kV AC at 50 Hz.

It is mandatory to comply with segregation recommendations between low level signals (24 V DC) and the power conductors, see:

- The Low voltage and high voltage technical manual, reference FRAED208919FR
- The wiki internet site in English: http://www.electrical-installation.org

Connection

Safety Instructions

A A DANGER

RISK OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Wear suitable personal protective equipment and follow the currently applicable electrical safety instructions.
- This equipment may only be installed by qualified electricians who have read all the relevant information.
- NEVER work alone.
- Before performing visual inspections, tests, or maintenance on this equipment, disconnect all sources of electric power. Assume that all circuits are live until they have been completely deenergized, tested and tagged. Pay particular attention to the design of the power system. Consider all power supply sources, particularly the potential for backfeed.
- Before closing protective covers and doors, carefully inspect the work area to ensure that no tools or objects have been left inside the equipment.
- Take care when removing or replacing panels. Take special care to ensure that they do not come into contact with live busbars. To minimize the risk of injuries, do not tamper with the panels.
- The successful operation of this equipment depends upon proper handling, installation, and operation. Failure to follow basic installation procedures can lead to personal injury as well as damage to electrical equipment or other property.
- NEVER shunt an external fuse/circuit breaker.
- This equipment must be installed inside a suitable electrical cabinet.

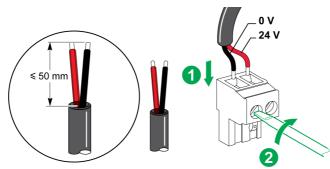
Failure to follow these instructions will result in death or serious injury.

A DANGER

RISK OF ELECTROCUTION

Isolate the Acti 9 Smartlink power terminals from the power terminals connected to the Modbus network line.

Failure to follow these instructions will result in death or serious injury.


Connection of the I/O Channels

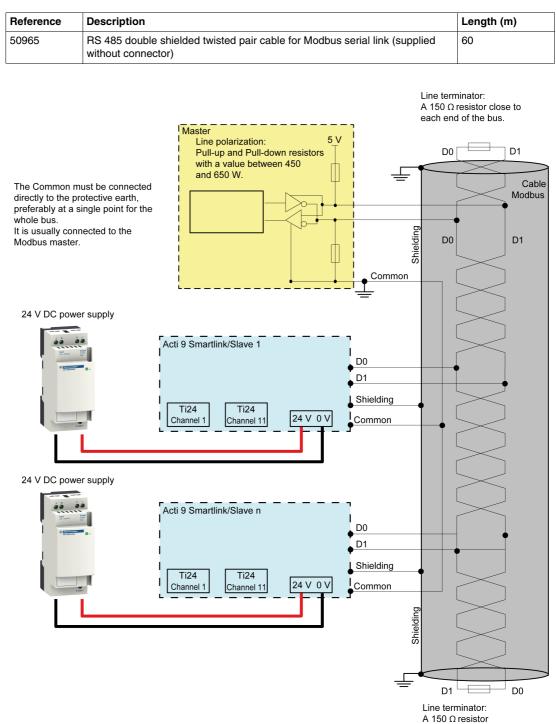
Female connectors that can be connected to the Acti 9 Smartlink I/O channels are as follows:

Reference	Description	Length (mm)
A9XC2412	5-pin spring connector supplied for 12 connectors	-
A9XCAS06	Set of 6 pre-assembled cables with 2 Ti24 connectors	100
A9XCAM06	Set of 6 pre-assembled cables with 2 Ti24 connectors	160
A9XCAL06	Set of 6 pre-assembled cables with 2 Ti24 connectors	870
A9XCAU06	Set of 6 pre-assembled cables with 1 Ti24 connector	870

Each Ti24 interface (I/O channel) is compatible with Miniconnect Phoenix standard connectors (at intervals of 3.81 mm) or equivalent.

Connecting the Power Supply Connector

The table below describes the procedure for connecting the power supply connector:

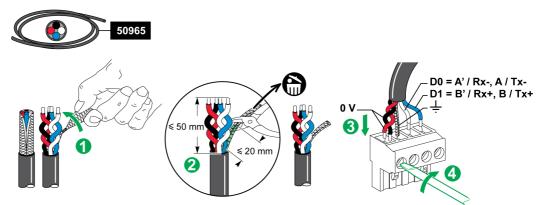

Step	Action
1	Insert both stripped power supply wires in the connector.
2	Fix the wires in place using the connector tightening screws.

The table below gives the characteristics of cables that can be used to connect the 24 V DC power supply:

				C c	
7 mm	0.21.5 mm ²		0.8 N.m	0.6 x 3.5	

Connecting the Modbus Connector

The Schneider Electric communication cables to be used are:



NOTICE

HAZARD OF NON-OPERATION OF MODBUS NETWORK

• Comply with the wiring and connection rules described below in order to create a working Modbus network.

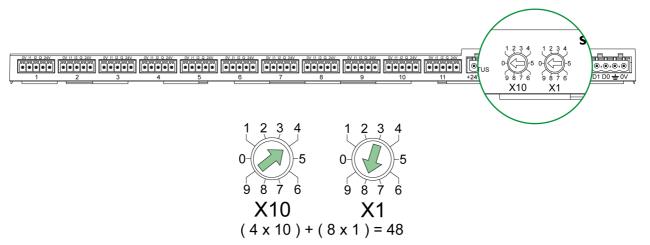
Failure to follow these instructions can result in equipment damage.

The table below describes the procedure for connecting the Modbus connector:

Step	Action
1	Coil up the Modbus communication cable shielding.
2	Cut the shielding 20 mm from the sheath.
3	Insert the stripped wires in the connector terminals as shown in the above graphic.
4	Fix the wires in place using the connector tightening screw.

The table below gives the characteristics of cables that can be used to connect the Modbus connector:

			\mathbf{G}^{c}	B
7 mm	0.25 mm ²		0.8 N.m	0.6 x 3.5


Checking the Modbus Serial Link

The table below gives the characteristics of the RS 485 link that need to be checked during installation:

Designation	Description
Shielding connection	Each Modbus serial link must have shielding connected at one point to an earthed link.
Bus polarization	 Pull-up resistor connected to the 5 V: 450650 Ohm Pull-down resistor connected to ground (Modbus 0 V): 450650 Ohm
	NOTE: This polarization is recommended for the master.
Line terminator	A 150 Ohm resistor ± 5%
Ground polarity	The ground circuit (0 V of an optional power supply) must be connected directly to a protected earth, preferably at a single point on the bus. This point is usually placed on the master or its slaves.
Trunk cable	A pair of shielded twisted cables and a third conductor at minimum.
Maximum length of bus	1000 m at 19,200 Baud with the Schneider Electric 50965 cable

Setting the Modbus Address Parameters

- The Acti 9 Smartlink device addressing is performed using 2 thumbwheels:
- The left-hand thumbwheel sets the tens.
- The right-hand thumbwheel sets the units.

NOTE:

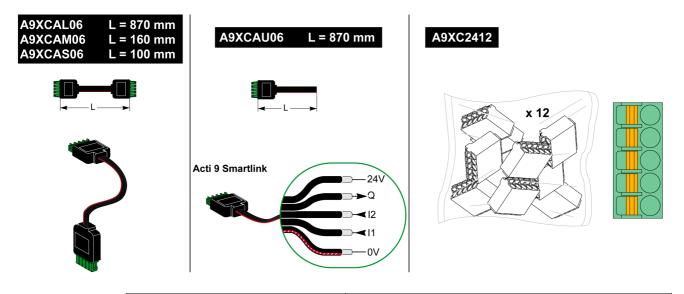
- The Acti 9 Smartlink device addressing must be between 01 and 99.
- A standard Modbus network consists of up to 31 slaves.
- In run mode, the user can change the Modbus slave address without having to de-energize the Acti 9 Smartlink.
- To reset the Acti 9 Smartlink factory settings (pulse weight at value 10, meters at 0, communication parameters), proceed as follows:
 - De-energize Acti 9 Smartlink
 - Set the Modbus address to value 00
 - Re-energize Acti 9 Smartlink
 - Set the selected address

See details in Appendix B (see page 133).

Products that can be Connected to an Acti 9 Smartlink Module

What Is in This Chapter?

This chapter contains the following topics:


Торіс	Page
Acti 9 Communication System Pre-assembled Cables	36
Connection of Acti 9 Products	37
iEM2000T Meter (iEM3110, iEM3155, iEM3210 and iEM3255)	38
Contactor (Not in the Acti 9 Range)	39
Impulse Relay (Not in the Acti 9 Range)	40
Meter (Not in the Acti 9 Range)	41
Generating Summary Data Using iOF + SD24	42

Acti 9 Communication System Pre-assembled Cables

Description

Acti 9 communication pre-assembled cables are a very quick way to connect all the Acti 9 communication system components and compatible products (24 V DC) to the channels of an Acti 9 Smartlink module.

Description	Length (mm)	Reference
Pre-assembled cable with 2 Ti24 connectors	100	A9XCAS06
Pre-assembled cable with 2 Ti24 connectors	160	A9XCAM06
Pre-assembled cable with 2 Ti24 connectors	870	A9XCAL06
Pre-assembled cable with 1 Ti24 connector	870	A9XCAU06
5-pin connector (Ti24)	-	A9XC2412

~	Description of	the Connector at the Ti24 Interface End
24 V	Terminal	Description
	24 V	24 V of the 24 V DC power supply
	Q	Control output
	12	Input number 2
	11	Input number 1
	0 V	0 V of the 24 V DC power supply

NOTE: Do not connect 2 wires in each of the Ti24 connector terminals (A9XC2412).

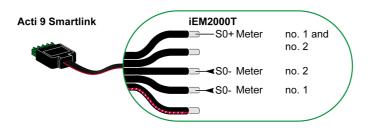
The table below gives the characteristics of cables that can be used with the A9XC2412 connector:

				NG Co
10 mm	0.51.5 mm ²			0.4 x 2.5

Connection of Acti 9 Products

Device	Presentation	
iACT24 auxiliary for iCT contactor	 The iACT24 auxiliary: Can be used to control a contactor (iCT) via its Y1, Y2 and Y3 inputs. The Y3 (24 V DC) input can be controlled by one of the Acti 9 Smartlink device channels. Is used to find out the contactor status (O/C status). 	
iATL24 auxiliary for iTL contactor	 The iATL24 auxiliary: Can be used to control an (iTL) impulse relay via its Y1, Y2 and Y3 inputs. The Y3 (24 V DC) input can be controlled by one of the Acti 9 Smartlink device channels. Is used to find out the impulse relay status (O/C status). 	
iOF+SD24 indication auxiliary for iC60 circuit breaker	The iOF+SD24 indication auxiliary is used to find out the status of an iC60 circuit breaker (OF and SD states).	
OF+SD24 indication auxiliary for C60 or C120 circuit breaker	The OF+SD24 indication auxiliary is used to find out the status of an C60 or C120 circuit breaker (OF and \overline{SD} states).	
Acti 9 RCA iC60 remote control with Ti24 interface	 The Acti 9 RCA iC60 remote control: Should have a Ti24 interface (with product references A9C70122 and A9C70124). Can be used to control an iC60 circuit breaker via input Y3 of its Ti24 interface. Input Y3 (24 V DC) can be controlled by one of the device channels Acti 9 Smartlink. 	
	• Can be used to find out the OF and SD status of the circuit breaker associated with the RCA iC60 remote control.	
Acti 9 Reflex iC60 integrated control circuit breaker with Ti24 interface	 The Acti 9 Reflex iC60 integrated control circuit breaker: Should have a Ti24 interface (with product references A9C6••••) Can allow the device to be controlled via input Y3 of its Ti24 interface. The Y3 (24 V DC) input can be controlled by one of the Acti 9 Smartlink device channels. Can be used to communicate its O/C and auto/OFF status. 	

NOTE: All the devices in the above table can be connected to channel N ($1 \le N \le 11$) of an Acti 9 Smartlink module with A9XCAS06 pre-wired connector (or A9XCAM06 or A9XCAL06).


iEM2000T Meter (iEM3110, iEM3155, iEM3210 and iEM3255)

Overview

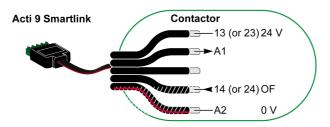
The iEM2000T, iEM3110, iEM3155, iEM3210 and iEM3255 products are kilowatt-hour meters from the Schneider Electric range.

Wiring

iEM2000T, iEM3110, iEM3155, iEM3210 and iEM3255 kilowatt-hour meters can be connected to channel N ($1 \le N \le 11$) of an Acti 9 Smartlink module with an A9XCAU06 pre-wired connector: molded connector (at Acti 9 Smartlink end), and with 5 wires (at iEM2000T end).

NOTE: A single Acti 9 Smartlink channel can take account of 2 meters, 1 meter on input I1 and 1 meter on input I2.

Description of Ti24 Connector at Acti 9 Smartlink End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Q	Logic output	
12	Logic input I2	
11	Logic input I1	
0 V	0 V of the 24 V DC power supply	


Contactor (Not in the Acti 9 Range)

Overview

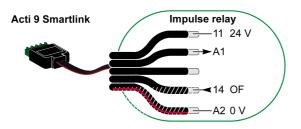
Any contactor (CT), not in the Acti 9 range, that can be remotely controlled in 24 V DC and that indicates its status via an OF output, can be controlled by one of the channels of an Acti 9 Smartlink module.

Wiring

A contactor can be connected with an A9XCAU06 pre-wired connector: molded connector (at Acti 9 Smartlink end), and with 5 wires (at contactor end).

The contactor wiring diagram is:

Description of Ti24 Connector at Acti 9 Smartlink End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Q	Logic output	
12	Logic input I2	
11	Logic input I1	
0 V	0 V of the 24 V DC power supply	


Impulse Relay (Not in the Acti 9 Range)

Overview

Any impulse relay (TL), not in the Acti 9 range, that can be remotely controlled in 24 V DC and that indicates its status via an OF output, can be controlled by one of the channels of an Acti 9 Smartlink module.

Wiring

An impulse relay can be connected with an A9XCAU06 pre-wired connector: molded connector (at Acti 9 Smartlink end), and with 5 wires (at impulse relay end).

The impulse relay wiring diagram is:

Description of Ti24 Connector at Acti 9 Smartlink End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Q	Logic output	
12	Logic input I2	
11	Logic input I1	
0 V	0 V of the 24 V DC power supply	

Meter (Not in the Acti 9 Range)

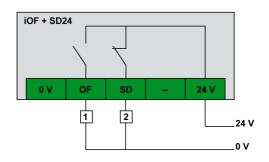
Overview

Any meter, not in the Acti 9 range, that has 1 pulse output, can be controlled by one of the channels of an Acti 9 Smartlink module.

Wiring

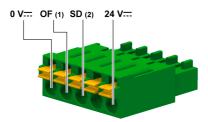
A meter can be connected with an A9XCAU06 pre-wired connector: molded connector (at Acti 9 Smartlink end), and with 5 wires (at meter end).

NOTE: A single Acti 9 Smartlink channel can take account of 2 meters, 1 meter on input I1 and 1 meter on input I2.


Description of Ti24 Connector at Acti 9 Smartlink End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Q	Logic output	
12	Logic input I2	
11	Logic input I1	
0 V	0 V of the 24 V DC power supply	

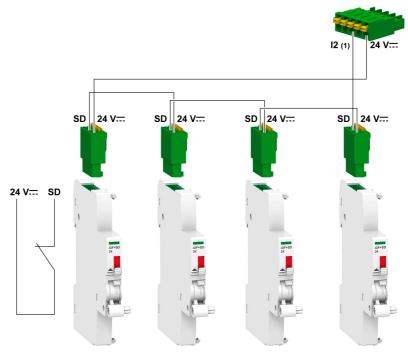
Generating Summary Data Using iOF + SD24

Overview

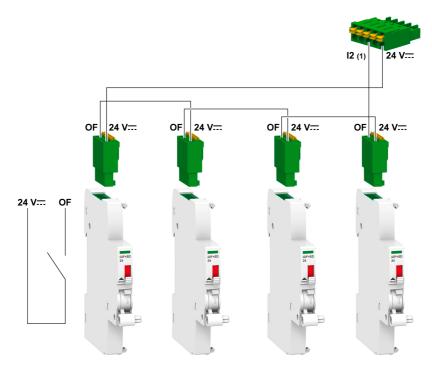

The electrical summary of SD (or OF) contacts of iOF + SD24 and OF + SD24 auxiliaries is described in the following pages with wiring diagrams that only show iOF + SD24 auxiliaries but the principle is the same with OF + SD24 auxiliaries.

iOF + SD24 Auxiliary

Wiring OF or SD Contacts on iOF + SD24 in Series


If an electrical summary of the SD (or OF) signals is needed so as to avoid using more than one PLC input or more than one Acti 9 Smartlink channel, the SD (or OF) signals can be wired in series using the A9XCA2412 15-pin connector (spring cage).

(1) OF corresponds to input I1 (of a channel) in Acti 9 Smartlink


(2) SD corresponds to input I2 (of a channel) in Acti 9 Smartlink

Wiring SD Contacts on iOF + SD24 in Series

(1) Input I2 (of a channel) on Acti 9 Smartlink or PLC input

Wiring OF Contacts on iOF + SD24 in Series

(1) Input I1 (of a channel) on Acti 9 Smartlink or PLC input

Action Generated Automatically by the Electrical Summary Data

An action based on the SD (or OF) electrical summary data can be generated automatically, using an iACT24 auxiliary to commission batteries for emergency lighting, for example.

The alarm (summary data) is transmitted to the supervision system via Acti 9 Smartlink.

(1) Input I1 (of a channel) on Acti 9 Smartlink or PLC input

Setting Up Modbus Communication

What Is in This Chapter?

This chapter contains the following topics:

Торіс	
Modbus Master/Slave Principle	46
Setup	49
Fonctions de l'appareil Acti 9 Smartlink	50
Modbus Functions	52
Modbus Exception Codes	53
Description of LEDs	54

Modbus Master/Slave Principle

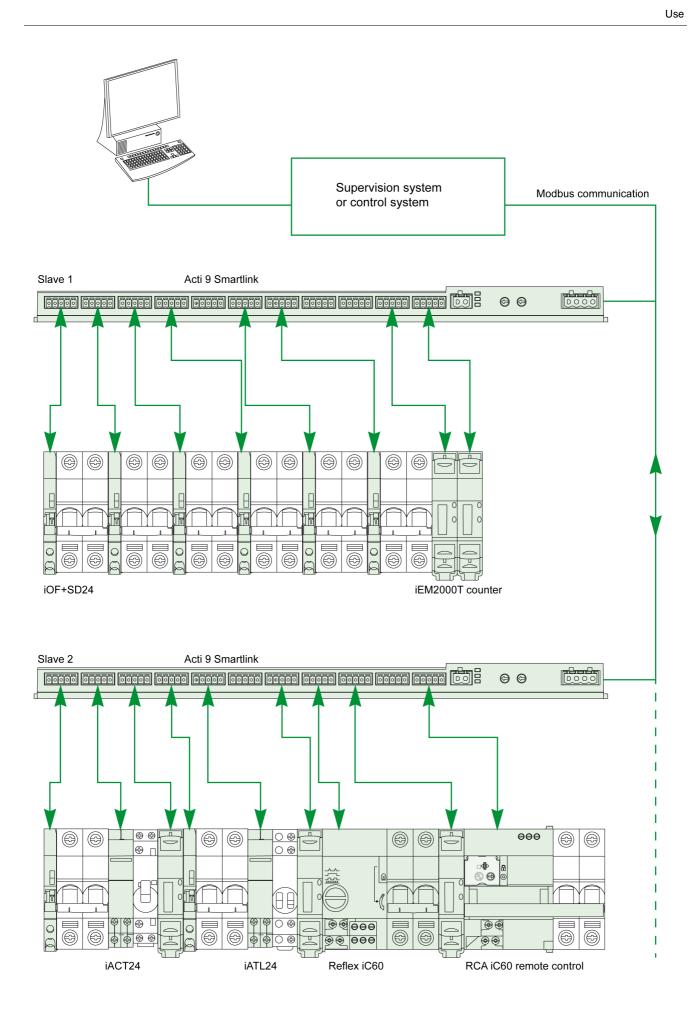
Overview

The Modbus protocol exchanges data using a request/response mechanism between a master and a slave. The master/slave principle is a type of communication protocol in which a device (the master) controls 1 or more devices (the slaves). A standard Modbus network consists of 1 master and up to 31 slaves.

NOTE: For more information, a detailed description of the Modbus protocol is available on www.modbus.org.

Characteristics of the Master/Slave Principle

- The master/slave principle has the following characteristics:
- Only one master at a time is connected to the network.
- Only the master can launch communication and send requests to slaves.
- The master can address each slave individually using its dedicated address or all slaves simultaneously using address 0.
- The slaves can only send responses to the master.
- Slaves cannot launch communication with either the master, or the other slaves.


Master/Slave Communication Modes

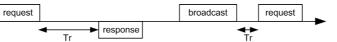
The Modbus protocol can exchange data using 2 communication modes:

- Request/response mode
- Broadcast mode

Each Acti 9 Smartlink has a Modbus address (1 to 99), and concentrates data from connected devices on its 11 channels (Ti24 interface).

The states and orders for each device connected to Acti 9 Smartlink are accessible in registers whose address depends on the channel (1 to 11) on which the device is connected.

Request/Response Mode


In request/response mode, the master addresses 1 slave using the slave's dedicated address. The slave processes the request, then responds to the master.

Broadcast Mode

In broadcast mode, the master addresses all the slaves using address 0. Slaves do not respond to broadcast messages.

Turnaround Time

The turnaround time Tr is the time between the end of receipt of a request and sending the response.

The typical value of the turnaround time Tr is less than 10 ms with the Modbus protocol.

Data Exchange

The Modbus protocol uses 2 data types:

- Bits
- 16-bit words called registers

Each register has a register number. Each data type (bit or register) has a 16-bit address. Messages exchanged with the Modbus protocol contain the address of the data to be processed.

Frames

All frames exchanged with the Modbus protocol are 256 bytes maximum and consist of 4 fields:

Field	Definition	Size	Description
1	Slave number	1 byte	 Destination of the request 0: broadcast (all slaves are affected) 1247: unique destination
2	Function code	1 byte	Modbus (see page 52) Function
3	DataSub-function code	n bytes	Request or response dataSub-function code
4	Check	2 bytes	CRC16 (to check transmission errors)

Data Format

The data format is configured as shown below:

Start	Data	Parity	Stop
1 bit	8 bits	1 bit	1 bit

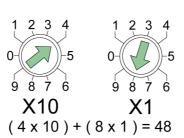
NOTE: For more information, a detailed description of the Modbus protocol is available on www.modbus.org.

Setup

Initialization

The table below describes the 2 initialization phases for the Acti 9 Smartlink device:

Phase	Description
1	 Acti 9 Smartlink must be connected to a Modbus master. When the 24 V DC power supply is activated, the Modbus communication for the Acti 9 Smartlink device is initialized and addressing is taken into account.
2	After receiving a maximum of 25 frames from the master, Acti 9 Smartlink automatically adapts its communication parameters to those of the master (speed, parity and number of stop bits).


NOTE: The Modbus network communication speed is the same for all serial connections for the Modbus devices used. It is imposed by the lowest communication speed of a slave device.

NOTE: Automatic adaptation to the communication parameters only occurs on powering up the Acti 9 Smartlink.

Setting the Modbus Address Parameters

The Acti 9 Smartlink device addressing is performed using 2 thumbwheels:

- The left-hand thumbwheel sets the tens
- The right-hand thumbwheel sets the units

NOTE:

- The Acti 9 Smartlink device address must be between 01 and 99.
- A standard Modbus network consists of up to 31 slaves.
- If the Acti 9 Smartlink device is powered up while its address is set to 00, it retrieves the factory-set parameters, described in Appendix B (see page 133).

Communication Parameters

The communication parameter values are as follows:

Settings	Authorized Values	Default Value
Data rate (in Bauds)	4800, 9600, and 19,200	19,200
Parity	 Even and one stop bit Odd and one stop bit No parity (parity bit eliminated), 2 stop bits are needed. 	Even (with 1 stop bit)

NOTE: The Modbus network communication speed is the same for all serial connections for the Modbus devices used. It is imposed by the lowest communication speed of a slave device.

8.0.0.0

Acti 9 Smartlink Device Functions

Acti 9 Device Command and Control Functions

The products concerned are:

- iOF+SD24
- OF+SD24
- iACT24
- iATL24
- Reflex iC60
- RCA iC60

Input state acquisition function:

- Open/closed state (input I1 of the Ti24 interface)
- Trip signal (input I2 of the Ti24 interface)

Open and close order function:

Each Acti 9 Smartlink channel offers an output (Q):

- Output Q is set to 1 by forcing the bit of the channel concerned to 1 in the activation register (ON). The Modbus command register bit is automatically set to 0 by Acti 9 Smartlink as soon as the order has been sent to output Q.
- Output Q is set to 0 by forcing the bit of the channel concerned to 1 in the deactivation register. The Modbus command register bit is automatically set to 0 by Acti 9 Smartlink as soon as the order has been sent to output Q.

Installation life management function:

- Acti 9 Smartlink stores the number of changes of state (or number of operations) for the control and protection devices, which allows the wear on these devices to be estimated. To do this, Acti 9 Smartlink counts the changes of state of input I1 (on falling edge) for each channel.
- Acti 9 Smartlink stores the number of protection device trips, thus highlighting faults in the electrical installation. To do this, Acti 9 Smartlink counts the changes of state of input I2 (on falling edge) for each channel.
- Acti 9 Smartlink stores the total time when control products are closed, which allows the wear on controlled loads to be estimated. To do this, Acti 9 Smartlink counts the changes of state of input I1 (OF state) for each channel.
- This data (number of changes of state, running hours) can be reset to 0, and the initialization date can be stored.

Command and Control Functions of Devices Not in the Acti 9 Range

Input state acquisition function:

All other types of device offering low level I/O (24 V DC) can be connected to the 22 inputs and 11 outputs offered by Acti 9 Smartlink. Each Acti 9 Smartlink channel offers 2 inputs (I1 and I2).

Command function:

Each Acti 9 Smartlink channel offers an output (Q).

- Output Q is set to 1 by forcing the bit of the channel concerned to 1 in the activation register (ON). The Modbus command register bit is automatically set to 0 by Acti 9 Smartlink as soon as the order has been sent to output Q.
- Output Q is set to 0 by forcing the bit of the channel concerned to 1 in the deactivation register. The Modbus command register bit is automatically set to 0 by Acti 9 Smartlink as soon as the order has been sent to output Q.

Counting Functions

Schneider Electric energy meters with pulse output:

- iEM2000T (the pulse weight equals 10)
- iEM3110 (the pulse weight can be configured)
- iEM3155 (the pulse weight can be configured)
- iEM3210 (the pulse weight can be configured)
- iEM3255 (the pulse weight can be configured)

Acti 9 Smartlink calculates the energy consumption and the average power between 2 pulses.

Energy consumption = Number of pulses counted × pulse weight

Average power between 2 pulses = (3600 × Pulse weight)/t; the result is expressed for one hour.

With t, the time in seconds between the last 2 pulses received.

Other types of meter with pulse output:

- water, gas meters, etc.
- Any type of meter whose pulse output complies with standard IEC 62053-21 (minimum pulse 30 ms).

The pulse weight can be configured.

Acti 9 Smartlink calculates the consumption and the average flow between 2 pulses.

Consumption = Number of pulses counted × pulse weight

Average flow = $(3600 \times \text{pulse weight})/t$; the result is expressed for one hour.

With t, the time in seconds between the last 2 pulses received.

- The average power data (or average flow) between 2 pulses is reset to 0:
- After a duration d = 3 x t; if 3 x t is less than 5 seconds, the duration d equals 5 seconds With t, the time in seconds between the last 2 pulses received.
- After 24 hours without a pulse
- After loss of the 24 V DC input/output voltage

Modbus Functions

General Description

The Modbus protocol offers functions for reading or writing data on the Modbus network. This protocol also offers diagnostic and network management functions.

Only Modbus functions managed by the Acti 9 Smartlink device are described here.

Table of Modbus Functions

The following table describes in detail the functions supported by Acti 9 Smartlink devices:

Function Code	Function Name
01	Read n output or internal bits
02	Read n input bits
03	Read n output or internal words
05	Write 1 bit
06	Write 1 word
08 ⁽¹⁾	Modbus diagnostics
15	Write n bits
16	Write n words
43–14 ⁽²⁾	Read identification
43–15 ⁽³⁾	Read the date and time
43–16 ⁽⁴⁾	Write the date and time
100–4 ⁽⁵⁾	Read n non-adjacent words where n ≤100. NOTE:
	 Thanks to the read distributed holding register function, the user can: Avoid reading a large block of adjacent words when only a few words are needed. Avoid multiple use of functions 3 and 4 in order to read non-adjacent words.
(1) For more details, see the a	ppendix describing function 8 (see page 126)
(2) For more details, see the a	ppendix describing function 43–14 (see page 127)
(3) For more details, see the a	ppendix describing function 43-15 (see page 129)
(4) For more details, see the a	ppendix describing function 43-16 (see page 130)
(5) For more details, see the a	ppendix describing function 100-4 (see page 131)

NOTE: For more information, a detailed description of the Modbus protocol is available on www.modbus.org.

Exception Responses

Exception responses issued by the master or a slave can be the result of data processing errors. One of the following events can occur after a request from the master:

- If the slave receives the request from the master without a communication error and manages the request correctly, it sends back a normal response.
- If the slave does not receive the request from the master due to a communication error, it does not send back a response. The master program ends by applying a time delay condition to the request.
- If the slave receives the request from the master but detects a communication error, it does not send back a response. The master program ends by applying a time delay condition to the request.
- If the slave receives the request from the master without a communication error but cannot manage it (for example, the request consists of reading a register that does not exist), the slave sends back an exception response to inform the master of the nature of the error.

Exception Frame

The slave sends an exception frame to the master to indicate an exception response. An exception response consists of 4 fields:

Field	Definition	Size
1	Slave number	1 byte
2	Exception function code	1 byte
3	Exception code	n bytes
4	Check	2 byte

Managing Modbus Exceptions

The exception response frame consists of 2 fields that distinguish it from a normal response frame:

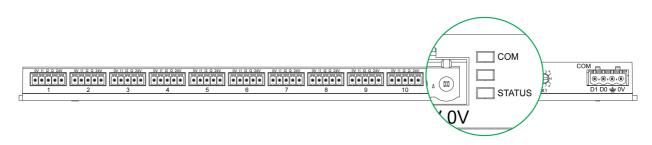
- The exception response's exception function code is the same as the original request function code plus 128 (0x80).
- The exception code depends on the communication error detected by the slave.

The table below describes the exception codes managed by the Acti 9 Smartlink device:

Exception Code	Name	Description
01	Illegal function	The function code received in the request is not a permitted action for the slave. It is possible that the slave is in an unsuitable state to process a specific request.
02	Illegal data address	The data address received by the slave is not a permitted address for the slave.
03	Illegal data value	The value of the request data field is not a permitted value for the slave.
04	Slave device failure	The slave is unable to perform a required action due to an unrecoverable error.
06	Slave device busy	The slave is busy processing another command. The master should send the request once the slave is free.

NOTE: For more information, a detailed description of the Modbus protocol is available on www.modbus.org.

Access to Variables


A Modbus variable can have the following attributes:

- Read-only
- Read/write
- Write-only

NOTE: An attempt to write to a read-only variable generates an exception response.

Description of LEDs

LED Status

Mode	LEDs	Status
Initialization	СОМ	COM: On, yellow
	STATUS	STATUS: On, green
Start-up	СОМ	COM :
		 On yellow during communication with the Modbus serial port Off if there is no Modbus communication
	STATUS	STATUS: On alternately green and red once a second.
Operation	СОМ	СОМ:
		 On yellow during communication with the Modbus serial port Off if there is no Modbus communication
	STATUS	STATUS: Green LED permanently on
Downgraded	СОМ	COM :
		 On yellow during communication with the Modbus serial port Off if there is no Modbus communication
	STATUS	STATUS: Permanently orange. Peripheral device problem:
		 Short-circuit or overload on the 24 V DC I/O The power supply level is less than 19.2 V DC
Failure	СОМ	COM :
		 On yellow during communication with the Modbus serial port Off if there is no Modbus communication
	STATUS	STATUS: On, red (internal problem)

The table below lists the LED status according to the operating mode:

Tables of Modbus Registers

What Is in This Chapter?

This chapter contains the following sections:

Section	Торіс					
6.1	General Description of Modbus Tables	56				
6.2	Summary Description of Modbus Tables	60				
6.3	Products that can be Controlled by an Acti 9 Smartlink Module	64				
6.4	Summary Modbus Tables and Detailed Modbus Tables	75				

6.1

General Description of Modbus Tables

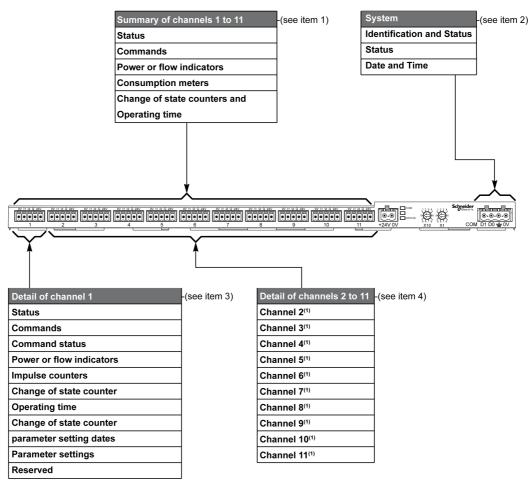
What Is in This Section?

This section contains the following topics:

Торіс	Page
Overview	57
Modbus Table Format and Data Types	58

Overview

Overview


All the Modbus tables in the Acti 9 Smartlink device have been designed to minimize the number of Modbus requests that the master system needs to send in order to collect the data prepared by Acti 9 Smartlink.

The Modbus tables in the Acti 9 Smartlink device are compact and are summaries of all the data collected on the 11 channels of the Acti 9 Smartlink device.

The following sections describe the Modbus tables in the Acti 9 Smartlink device:

- Section 6.2 presents:
 - The overall list of the Acti 9 Smartlink (see page 61) device address zones
 - A summary of the channel 1 to 11 (see page 62) address zones
- Section 6.3 presents the address zones for each type of device that can be connected to Acti 9 Smartlink: iOF+SD24, OF+SD24, iACT24, iATL24, RCA iC60, Reflex iC60, iEM2000T, meter, contactor and impulse relay (see page 64).
- Section 6.4 presents the address zones for each type of data (status, commands, measurements and parameter settings) with a summary description of the zones and a detailed description of the data zones per channel (see page 75).

General Organization of Modbus Tables in Acti 9 Smartlink Devices

Key

Item	Description	Link
1	Channel summary data	(see page 78)
2	System data independent of the channel	(see page 76)
3	Data for channel 1 Devices that can be connected to channel 1	(see page 62) (see page 64)
4	Data for channel 2 to 11 Devices that can be connected to channel 2 to 11	(see page 62) (see page 64)

Modbus Table Format and Data Types

Table Formats

Register tables have the following columns:

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
---------	-----	----	---	------	------	-------	-------	-----	------------------	-------------

Designation	Description
Address	16-bit register address that allows the user to access the variable. The address is expressed in decimal notation.
No.	Number of 16-bit registers that need to be read/written to access the complete information.
RW	Whether the register is read only (R) or read-write (RW).
x	 Scale factor: Scale "X1" means that the value of the register is the right one with the unit indicated. A scale of 10 means that the register contains the value multiplied by 10. The actual value is therefore the value of the register divided by 10. A scale of 0.1 means that the register contains the value multiplied by 0.1. The actual value is therefore the value of the register multiplied by 10.
Unit	Information unit of measurement: • "–": no unit corresponding to the value expressed. • "h": hours • "D": the unit depends on the connected device.
Туре	Coding data type (see "Data type" table below).
Range	Range of permitted values for the variable, usually a subset of what the format allows. For BITMAP type data, the content of this domain is "-".
Fault	Default value for the variable
Svd	 Saving the value in the event of a power failure: "Y": the value of the register is saved in the event of a power failure. "N": the value is lost in the event of a power failure.
	NOTE: On start-up or reset, the available values are retrieved.
Function code	Code of functions that can be used in the register.
Description	Information about the register and the restrictions that apply.

Data Types

The following data types appear in the tables of Modbus registers:

Name	Description	Range
UINT	16-bit unsigned integer	065,535
INT	16-bit signed integer	-32,768+32,767
UINT32	32-bit unsigned integer	04,294,967,295
INT32	32-bit signed integer	-2,147,483,648+2,147,483,647
Float32	32-bit value	Standard IEEE representation of floating point numbers (with single precision)
ASCII	8-bit alphanumeric character	Table of ASCII Characters
BITMAP	16-bit field	-
DATE	See below	-
hrs	Hour	The running time expressed in hours is UINT32 type.

NOTE:

For ASCII type data, the order of transmission of characters in words (16-bit registers) is as follows:

- Character n as least significant
- Character n + 1 as most significant

All registers (16-bit) are transmitted with Big Endian coding:

- The most significant byte is transmitted first
- The least significant byte is transmitted second

- 32-bit variables saved on two 16-bit words (e.g. consumption meters) are in Big Endian format:
- The most significant word is transmitted first, then the least significant.
- 64-bit variables saved on four 16-bit words (e.g. dates) are in Big Endian format:
- The most significant word is transmitted first, and so on.

DATE

DATE format in accordance with TI081 standard:

Word								Bits								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	Reserve	Reserved (0)							R4 (0)	Yea	r (0 ⁻	127)		1	l	1
2	0	0 Mont					12) WD (0) Day (131)									
3	SU (0) 0 Hour (023))			iV	0 Minute (059)						
4	Millisecond (059,999)															
R4: Year: Month: Day: Hour: Minute: Millisecond: WD (day of the week) : SU (summertime):				1 byt 4 bits 5 bits 1 byt 1 byt 2 byt Bit at Bit at	s e e t 0 if th t 1 for t 1 if th	nis par summ	ameter is nertime, bi rmation is	not us t at 0	if this	•				is not		

Direct Bit Addressing

Addressing is permitted for BITMAP type zones with functions 1, 2, 5 and 15.

The address of the first bit is constructed as follows: (register address x 16) + bit number.

This addressing mode is specific to Schneider Electric.

Example: For functions 1, 2, 5 and 15, bit 3 of register 0x0078 should be addressed; the bit address is therefore 0x0783.

NOTE: The register whose bit needs to be addressed should have an address ⊴0x0FFF.

Example of Modbus Frames

Request

Definition	Number of Bytes	Value	Comment
Slave number	1 byte	0x05	Acti 9 Smartlink Modbus Address
Function code	1 byte	0x03	Reads n output or internal words
Address	2 bytes	0x36E2	Address of a consumption meter whose address is 14050 in decimal notation.
Number of words	2 bytes	0x0002	Reads two 16-bit registers.
CRC	2 bytes	хххх	Value of CRC16.

Response

Definition	Number of Bytes	Value	Comment
Slave number	1 byte	0x05	Acti 9 Smartlink Modbus Address
Function code	1 byte	0x03	Reads n output or internal words
Number of Bytes	2 bytes	0x0004	Number of bytes read
Value of words read	4 bytes	0x0000 then 0x0005	Reads two 16-bit registers
CRC	2 bytes	xxxx	Value of CRC16.

Registers and Addresses

The address of register number n is n-1. For example, the address of register number 12001 is 12000. In order to avoid confusion, the detailed tables in subsequent chapters of this manual give the register number addresses.

6.2

Summary Description of Modbus Tables

What Is in This Section?

This section contains the following topics:

Торіс	Page
Address Zone Table	61
Summary Description of Channels 1 to 11 of the Acti 9 Smartlink Device	62

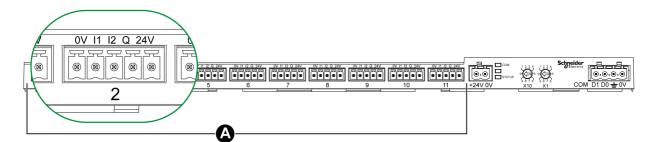
Address Zone Table

Description	Address	No. of Words	Туре	RW
System		1		
Identification and Status	100	12	ASCII	R
Status	112	1	BITMAP	R
Date and Time	115	4	DATE	RW
Summary of channels 1 to 11				
Status	120	2	BITMAP	R
Orders	130	4	BITMAP	RW
Power or flow indicators	14000	44	Float32	R
Consumption meters	14050	44	UINT32	R
Operation and Running hours counters	14100	66	UINT32	RW
Detail of channel 1				
Status	14200	1	BITMAP	R
Orders	14201	2	BITMAP	RW
Order status	14203	1	BITMAP	R
Power or flow indicators	14204	4	Float32	R
Impulse counters	14208	4	UINT32	RW
Operation counters	14212	4	UINT32	RW
Running hours	14216	2	UINT32	RW
Date of setting operation counter parameters	14218	12	DATE	R
Parameter settings	14230	2	UNIT	RW
Reserved	14232	8	-	-
Detail of channels 2 to 11	-		-	T
Channel 2 ⁽¹⁾	14240	40	-	-
Channel 3 ⁽¹⁾	14280	40	-	-
Channel 4 ⁽¹⁾	14320	40	-	-
Channel 5 ⁽¹⁾	14360	40	-	-
Channel 6 ⁽¹⁾	14400	40	-	-
Channel 7 ⁽¹⁾	14440	40	-	-
Channel 8 ⁽¹⁾	14480	40	-	-
Channel 9 ⁽¹⁾	14520	40	-	-
Channel 10 ⁽¹⁾	14560	40	-	-
Channel 11 ⁽¹⁾	14600	40	-	-
⁽¹⁾ The detailed information for channels 2 to 1 information for channel 1. To address the chan to the channel 1 registers.	1 has the sa nel N (1 ⊴N :	me structu ⊴11) regist	re as the de ers, add 40	etailed × (N - 1)

Registers and Addresses

The address of register number n is n-1. For example, the address of register number 12001 is 12000. In order to avoid confusion, the detailed tables in subsequent chapters of this manual give the register number addresses.

Summary Description of Channels 1 to 11 of the Acti 9 Smartlink Device


Address Table

	Channe	ls									
	1	2	3	4	5	6	7	8	9	10	11
Status			-	1	1	-	1		1	-	-1
Input I1 (bit 0)	14200	14240	14280	14320	14360	14400	14440	14480	14520	14560	14600
Input I2 (bit 1)	14200	14240	14280	14320	14360	14400	14440	14480	14520	14560	14600
Commands											
Commands output Q (bit 0 and bit 1): Acti 9 product	14201	14241	14281	14321	14361	14401	14441	14481	14521	14561	14601
Commands output Q (bit 0 and bit 1): non-Acti 9 product	14202	14242	14282	14322	14362	14402	14442	14482	14522	14562	14602
State of output Q (bit 0)	14203	14243	14283	14323	14363	14403	14443	14483	14523	14563	14603
Measurements			-			-		-		-	4
Input I1 power or flow indicator ⁽²⁾	14204	14244	14284	14324	14364	14404	14444	14484	14524	14564	14604
Input I2 power or flow indicator ⁽²⁾	14206	14246	14286	14326	14366	14406	14446	14486	14526	14566	14606
Input I1 consumption meter ⁽¹⁾⁽²⁾	14208	14248	14288	14328	14368	14408	14448	14488	14528	14568	14608
Input I2 consumption meter (1)(2)	14210	14250	14290	14330	14370	14410	14450	14490	14530	14570	14610
Operation and Running Hours	Counter	s									
11 operation counter ⁽¹⁾	14212	14252	14292	14332	14372	14412	14452	14492	14532	14572	14612
I2 operation counter ⁽¹⁾	14214	14254	14294	14334	14374	14414	14454	14494	14534	14574	14614
I1 input running hours ⁽¹⁾	14216	14256	14296	14336	14376	14416	14456	14496	14536	14576	14616
Parameter Settings											
Pulse weight (input I1) ⁽²⁾	14230	14270	14310	14350	14390	14430	14470	14510	14550	14590	14630
Pulse weight (input I2) ⁽²⁾	14231	14271	14311	14351	14391	14431	14471	14511	14551	14591	14631
⁽¹⁾ Data type: UINT32 ⁽²⁾ Information specific to Meter t	ype devic	es									

Registers and Addresses

The address of register number n is n-1. For example, the address of register number 12001 is 12000. In order to avoid confusion, the detailed tables in subsequent chapters of this manual give the register number addresses.

Reminder: The figure below shows the terminals for each channel.

A Channels from 1 to 11

Description of terminals for each channel (Ti24 interface):

Terminal	Description
24 V	24 V of the 24 V DC power supply
Q	Control output
12	Input number 2
11	Input number 1
0 V	0 V of the 24 V DC power supply

Products that can be Controlled by an Acti 9 Smartlink Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
iACT24 Auxiliary for iCT Contactor	65
iATL24 Auxiliary for iTL Impulse Relay	66
iOF+SD24 Indication Auxiliary for iC60 Circuit Breaker	67
OF+SD24 Indication Auxiliary for C60 and C120 Circuit Breakers	68
iEM2000T Meter (iEM3110, iEM3155, iEM3210 and iEM3255)	69
Acti 9 RCA iC60 Remote Control with Ti24 Interface	70
Acti 9 Reflex iC60 Integrated Control Circuit Breaker With Ti24 Interface	71
Contactor (Not in the Acti 9 Range)	72
Impulse Relay (Not in the Acti 9 Range)	73
Meter (Not in the Acti 9 Range)	74

iACT24 Auxiliary for iCT Contactor

Overview

The iACT24 auxiliary:

- Is used to control a contactor (iCT) via its Y1, Y2 and Y3 inputs.
 - The Y3 (24 V DC) input can be controlled by one of the Acti 9 Smartlink device channels.
- Is used to find out the contactor status (O/C status: open/closed status).

The Modbus information in the table below is given for an iACT24 auxiliary connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
O/C status: open/closed status	14200	1	BITMAP	R	bit $0 = 0$: contactor open bit $0 = 1$: contactor closed
Device present	14200	1	BITMAP	R	bit 1 = 0: connection fault or no connected device bit 1 = 1: connected device
Orders	i	i			
Deactivate contactor coil	14201	1	BITMAP	RW	bit 0 = 1: deactivate coil ⁽²⁾
Activate contactor coil	14201	1	BITMAP	RW	bit 1 = 1: activate coil ⁽²⁾
Meters	i	i			
Number of contactor open/close cycles	14212	2	UINT32	RW	-
Load running time for an NO contactor	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N ($1 \le N \le 11$) registers, add $40 \times (N - 1)$ to the channel 1 registers.

⁽²⁾ The Acti 9 Smartlink device resets the bit to state 0 when the order is taken into account (unless no product is connected to the channel). If bits 0 and 1 of address 14201 are activated simultaneously, the Acti 9 Smartlink device does nothing.

iATL24 Auxiliary for iTL Impulse Relay

Overview

- The iATL24 auxiliary:
- Can be used to control an impulse relay (iTL) via its inputs Y1, Y2 and Y3.
- The Y3 (24 V DC) input can be controlled by one of the Acti 9 Smartlink device channels.
- Is used to find out the impulse relay status (O/C status: open/closed status).

The Modbus information in the table below is given for an iATL24 auxiliary connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
O/C status: open/closed status	14200	1	BITMAP	R	bit $0 = 0$: impulse relay open bit $0 = 1$: impulse relay closed
Device present	14200	1	BITMAP	R	bit 1 = 0: connection fault or no connected device bit 1 = 1: connected device
Orders					
Deactivate impulse relay coil	14201	1	BITMAP	RW	bit 0 = 1: deactivate $coil^{(2)}$
Activate contactor coil	14201	1	BITMAP	RW	bit 1 = 1: activate coil ⁽²⁾
Counters					
Number of impulse relay opening/closing cycles	14212	2	UINT32	RW	-
Load running time	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N ($1 \le N \le 11$) registers, add $40 \times (N - 1)$ to the channel 1 registers.

⁽²⁾ The Acti 9 Smartlink device resets the bit to state 0 when the order is taken into account (unless no product is connected to the channel). If bits 0 and 1 of address 14201 are activated simultaneously, the Acti 9 Smartlink device does nothing.

iOF+SD24 Indication Auxiliary for iC60 Circuit Breaker

Overview

The iOF+SD24 indication auxiliary is used to find out the status of an iC60 circuit breaker (OF and \overline{SD} states).

The Modbus information in the table below is given for an iOF+SD24 auxiliary connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status	·				
OF status	14200	1	BITMAP	R	bit $0 = 0$: circuit breaker open bit $0 = 1$: circuit breaker closed
status SD	14200	1	BITMAP	R	bit 1 = 0: device tripped (fault present) bit 1 = 1: device not tripped
Meters	L				
Number of circuit breaker opening/closing cycles	14212	2	UINT32	RW	-
Number of circuit breaker trips	14214	2	UINT32	RW	-
Load running time	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N ($1 \le N \le 11$) registers, add $40 \times (N - 1)$ to the channel 1 registers.

OF+SD24 Indication Auxiliary for C60 and C120 Circuit Breakers

Overview

The OF+SD24 indication auxiliary is used to find out the status of a C60 or C120 circuit breaker (OF and \overline{SD} states).

The Modbus information in the table below is given for an OF+SD24 auxiliary connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
OF status	14200	1	BITMAP	R	bit $0 = 0$: circuit breaker open bit $0 = 1$: circuit breaker closed
status SD	14200	1	BITMAP	R	bit 1 = 0: device tripped (fault present) bit 1 = 1: device not tripped
Meters					
Number of circuit breaker opening/closing cycles	14212	2	UINT32	RW	-
Number of circuit breaker trips	14214	2	UINT32	RW	-
Load running time	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N (1 \le N \le 11) registers, add 40 × (N – 1) to the channel 1 registers.

iEM2000T Meter (iEM3110, iEM3155, iEM3210 and iEM3255)

Overview

The iEM2000T, iEM3110, iEM3155, iEM3210 and iEM3255 products are energy meters (Acti 9 range).

The Modbus information in the table below is given for a iEM2000T meter (iEM3110, iEM3155, iEM3210 and iEM3255) connected to channel 1.

The same channel (Ti24 interface) on the Acti 9 Smartlink can take account of 2 meters:

- One meter connected to input I1
- One meter connected to input I2

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status	i.				
Pulse output (meter 1)	14200	1	BITMAP	R	bit 0
Pulse output (meter 2)	14200	1	BITMAP	R	bit 1
Meters					
Power or flow indicator (meter 1)	14204	2	Float32	R	(2)
Power or flow indicator (meter 2)	14206	2	Float32	R	(2)
Consumption meter (meter 1)	14208	2	UINT32	RW	(3)
Consumption meter (meter 2)	14210	2	UINT32	RW	(3)
Settings	L		u.	1	
Pulse weight (meter 1)	14230	1	UINT	RW	(2)
Pulse weight (meter 2)	14231	1	UINT	RW	(2)

 $^{(1)}$ To address the channel N (1≤N ≤11) registers, add 40 \times (N – 1) to the channel 1 registers.

⁽²⁾ The register contains the flow value.

- The flow is: (3600 x pulse weight)/t, with t representing the time in seconds between 2 pulses. The result is expressed for one hour.
- The pulse weight is 10 by default. The unit depends on the connected device: energy, gas, water, etc.

⁽³⁾ The consumption value (associated with a channel) is obtained by multiplying the number of pulses (received by inputs I1 and I2 of this channel) by the pulse weight.

Acti 9 RCA iC60 Remote Control with Ti24 Interface

Overview

The Acti 9 RCA iC60 remote control:

- Should have a Ti24 interface (with product references A9C70122 and A9C70124).
- Can be used to control a iC60 circuit breaker via input Y3 of its Ti24 interface.
 - The Y3 (24 V DC) input can be controlled by one of the Acti 9 Smartlink device channels.
- Can be used to find out the OF and SD states of the circuit breaker associated with the Acti 9 RCA iC60 remote control.

The Modbus information in the table below is given for an Acti 9 RCA iC60 remote control connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
OF status	14200	1	BITMAP	R	bit $0 = 0$: circuit breaker open bit $0 = 1$: circuit breaker closed
status SD	14200	1	BITMAP	R	bit 1 = 0: device tripped (fault present) bit 1 = 1: device not tripped
Orders					
Activation of the open order	14201	1	BITMAP	RW	bit $0 = 1$: activation of the open order ⁽²⁾
Activation of the close order	14201	1	BITMAP	RW	bit $1 = 1$: activation of the close order ⁽²⁾
Meters					-
Number of circuit breaker open/close cycles	14212	2	UINT32	RW	-
Number of circuit breaker trips	14214	2	UINT32	RW	-
Load running time	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N ($1 \le N \le 11$) registers, add $40 \times (N - 1)$ to the channel 1 registers.

⁽²⁾ The Acti 9 Smartlink device resets the bit to state 0 when the order is taken into account (unless no product is connected to the channel). If bits 0 and 1 of address 14201 are activated simultaneously, the Acti 9 Smartlink device does nothing.

Acti 9 Reflex iC60 Integrated Control Circuit Breaker With Ti24 Interface

Overview

The Acti 9 Reflex iC60 integrated control circuit breaker:

- Should have a Ti24 interface (with product references A9C6••••).
- Can allow the device to be controlled via input Y3 of its Ti24 interface
 - The Y3 (24 V DC) input can be controlled by one of the Acti 9 Smartlink device channels.
- Can be used to communicate its O/C and auto/OFF status.

The Modbus information in the table below is given for an Acti 9 Reflex iC60 integrated control circuit breaker connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
O/C status: open/closed status	14200	1	BITMAP	R	bit $0 = 0$: circuit breaker open bit $0 = 1$: circuit breaker closed
auto/OFF status: handle position	14200	1	BITMAP	R	bit 1 = 0: handle in OFF position (device open) bit 1 = 1: handle in upper position: auto
Orders			-		
Activation of the open order	14201	1	BITMAP	RW	bit $0 = 1$: activation of the open order ⁽²⁾
Activation of the close order	14201	1	BITMAP	RW	bit $1 = 1$: activation of the close order ⁽²⁾
Meters		I		1	1
Number of circuit breaker open/close cycles	14212	2	UINT32	RW	-
Number of circuit breaker trips	14214	2	UINT32	RW	-
Load running time	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N (1 \leq N \leq 11) registers, add 40 × (N – 1) to the channel 1 registers.

⁽²⁾ The Acti 9 Smartlink device resets the bit to state 0 when the order is taken into account (unless no product is connected to the channel). If bits 0 and 1 of address 14201 are activated simultaneously, the Acti 9 Smartlink device does nothing.

Contactor (Not in the Acti 9 Range)

Overview

The contactor (CT) can be remotely controlled in 24 V DC and its status (OF status) can be determined. The contactor can be controlled by one of the Acti 9 Smartlink device channels.

The Modbus information in the table below is given for a contactor connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
OF status	14200	1	BITMAP	R	bit $0 = 0$: contactor open bit $0 = 1$: contactor closed
Orders				-	
Deactivate contactor coil	14202	1	BITMAP	RW	bit 0 = 1: deactivate $coil^{(2)}$
Activate contactor coil	14202	1	BITMAP	RW	bit 1 = 1: activate coil ⁽²⁾
Meters					
Number of contactor open/close cycles	14212	2	UINT32	RW	-
Load running time for an NO contactor	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N ($1 \le N \le 11$) registers, add $40 \times (N - 1)$ to the channel 1 registers.

⁽²⁾ The Acti 9 Smartlink device resets the bit to state 0 when the order is taken into account (unless no product is connected to the channel). If bits 0 and 1 of address 14202 are activated simultaneously, the Acti 9 Smartlink device does nothing.

Impulse Relay (Not in the Acti 9 Range)

Overview

The impulse relay (TL) can be remotely controlled in 24 V DC and its status (OF status) can be determined.

The impulse relay can be controlled by one of the Acti 9 Smartlink device channels.

The Modbus information in the table below is given for an impulse relay connected to channel 1.

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
OF status	14200	1	BITMAP	R	bit $0 = 0$: impulse relay open bit $0 = 1$: impulse relay closed
Orders				1	
Deactivate impulse relay coil	14202	1	BITMAP	RW	bit 0 = 1: deactivate coil ⁽²⁾
Activate impulse relay coil	14202	1	BITMAP	RW	bit 1 = 1: activate coil ⁽²⁾
Counters		I			
Number of impulse relay opening/closing cycles	14212	2	UINT32	RW	-
Load running time	14216	2	UINT32	RW	in hours

⁽¹⁾ To address the channel N ($1 \le N \le 11$) registers, add $40 \times (N - 1)$ to the channel 1 registers.

⁽²⁾ The Acti 9 Smartlink device resets the bit to state 0 when the order is taken into account (unless no product is connected to the channel). If bits 0 and 1 of address 14202 are activated simultaneously, the Acti 9 Smartlink device does nothing.

Meter (Not in the Acti 9 Range)

Overview

The meter delivers a pulse output.

The Modbus information in the table below is given for a meter connected to channel 1.

The same channel (Ti24 interface) on the Acti 9 Smartlink can take account of 2 meters:

- One meter connected to input I1
- One meter connected to input I2

Description	Address ⁽¹⁾	No. of Register(s)	Туре	Action	Values and Meanings
Status					
Pulse output (meter 1)	14200	1	BITMAP	R	bit 0
Pulse output (meter 2)	14200	1	BITMAP	R	bit 1
Meters			1		ł
Power or flow indicator (meter 1)	14204	2	Float32	R	(2)
Power or flow indicator (meter 2)	14206	2	Float32	R	(2)
Consumption meter (meter 1)	14208	2	UINT32	RW	(3)
Consumption meter (meter 2)	14210	2	UINT32	RW	(3)
Settings			+	1	
Pulse weight (meter 1)	14230	1	UINT	RW	(2)
Pulse weight (meter 2)	14231	1	UINT	RW	(2)

⁽¹⁾ To address the channel N ($1 \le N \le 11$) registers, add $40 \times (N - 1)$ to the channel 1 registers.

⁽²⁾ The register contains the flow value.

- The flow is: (3600 x pulse weight)/t, with t representing the time in seconds between 2 pulses. The result is expressed for one hour.
- The pulse weight is 10 by default. The unit depends on the connected device: energy, gas, water, etc.

⁽³⁾ The consumption value (associated with a channel) is obtained by multiplying the number of pulses (received by inputs I1 and I2 of this channel) by the pulse weight.

Summary Modbus Tables and Detailed Modbus Tables

What Is in This Section?

This section contains the following topics:

Торіс	Page
Modbus Tables Independent of the Channel	76
States	78
Orders	79
Power or Flow Indicators	81
Consumption Meters	82
Operation Counters	83
Running Hours Counter	84
Parameter Setting Dates	85
Parameter Settings	86

6.4

Modbus Tables Independent of the Channel

Overview

Address	Description
100	Identification and Status
115	Date and Time

Identification and Status

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
100	6	R	-	-	ASCII	-	N/A	N	03, 100–4	 Serial number on 12 ASCII characters; 11 alphanumeric digits maximum [SN] or [S/N]: PP YY WW [D[nnnn]] PP: SAP Bridge plant number YY: Year in decimal notation [0599] WW: Week in decimal notation [153] D: Day of the week in decimal notation [17] nnnn: Sequence of numbers [000110.000–1]
106	3	R	-	-	ASCII	-	N/A	N	03, 100–4	Hardware version on 6 ASCII characters. The version is not handled at present. Example: "V0.0.2" • First word: "V0" • Second word: ".0" • Third word: ".2"
109	3	R	-	-	ASCII	_	N/A	N	03, 100–4	Software version on 6 ASCII characters. Example: "V0.0.1"
112	1	R	X1	_	BITMAP	-	0x0000	N	01, 02, 03, 100–4	Acti 9 Smartlink device status and diagnostic register Bit 0 = 1: start-up phase Bit 1 = 1: operating phase Bit 2 = 1: downgraded mode Bit 3 = 1: failure mode Bit 4: not used Bit 5: not used Bit 6 = 1: invalid data Bit 7 = 1: invalid 24 V I/O Bit 8: not used Bit 9: not used Bit 10: not used Bit 11: not used Bit 12: not used Bit 13: E2PROM error Bit 14: RAM error Bit 15: FLASH error NOTE: Bits 0 to 3 are exclusive: only one mode is used at any given time.

NOTE:

Downgraded mode comes into effect:

- When the power supply is cut or less than 16 V DC.
- In the event of overcurrent (overload or short-circuit) on the Ti24 I/O.

If a short-circuit on an output has caused a change to downgraded mode, at the end of the short-circuit, the output is reset to 0 by the electronics: the Modbus master system sends a Modbus message to reset the output to 1 if it was at 1, before the short-circuit.

Failure mode intervenes if there is an FLASH and/or RAM and/or E2PROM error.

The data is invalid in the start-up phase, downgraded and failure modes. Invalid data include inputs 1 and 2, the power or flow indicator, the operation and running hours counter.

- The E2PROM error bit is activated during the operating phase when a checksum error is detected in an E2PROM page.
- The RAM error bit is activated during the product initialization phase when an error is detected during a test of the RAM.
- The FLASH error bit is activated during the start-up phase when a checksum error is detected on the FLASH memory.

Date and Time

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description	
115	4	RW	-	-	DATE	(1)	N/A	N	03, 16 100–4	Indicates the year, month, day, hour, minute and millisecond on the Acti 9 Smartlink device.	
(1) See desc	⁽¹⁾ See description of the DATE <i>(see page 59)</i> type.										

States

Summary of States

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
120	1	R	-	-	BITMAP	-	0x0000	N	01, 02, 03, 100–4	Electrical status on input 1 of all channels ⁽¹⁾ .
121	1	R	-	-	BITMAP	-	0x0000	N	01, 02, 03, 100–4	Electrical status on input 2 of all channels ⁽¹⁾ .

(1)

- Bit 0 to 10: channel 1 to 11
- Bits 11 to 15: reserved

Each bit gives the electrical level of input 1 and 2:

- 0 = no current
- 1 = input current

Reserved bits do not mean anything.

Status of Each Channel

	Channel	Channels									
	1	2	3	4	5	6	7	8	9	10	11
Input I1 (bit 0)	14200	14240	14280	14320	14360	14400	14440	14480	14520	14560	14600
Input I2 (bit 1)	14200	14240	14280	14320	14360	14400	14440	14480	14520	14560	14600

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14200	1	R	-	_	BITMAP	_	0x0000	N		Electrical status of inputs 1 and 2 of all connected devices ⁽²⁾ .

(2)

• Bit 0 = electrical level of input 1

• Bit 1 = electrical level of input 2

• Bits 2 to 15 = reserved

NOTE: "Reserved" means that the bits are fixed at 0 and do not mean anything.

Meaning of bits for inputs I1 and I2:

- 0 = no current
- 1 = input current

Orders

Summary of iACT24 / iATL24 / RCA iC60 / Reflex iC60 Device Orders

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
130	1	RW	-	-	BITMAP	-	0x0000	N	01, 02, 03, 05, 06, 15, 16, 100–4	Open order for Acti 9 product ⁽¹⁾ .
131	1	RW	-	-	BITMAP	-	0x0000	N	01, 02, 03, 05, 06, 15, 16, 100–4	Close order for Acti 9 product ⁽¹⁾ .

Orders, on Each Channel, of iACT24 / iATL24 / RCA iC60 / Reflex iC60 Devices

	Channel	Channels									
	1	2	3	4	5	6	7	8	9	10	11
Output Q (bit 0 and bit 1): Acti 9 product	14201	14241	14281	14321	14361	14401	14441	14481	14521	14561	14601

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14201	1	RW	-	-	BITMAP	-	0x0000	N		Close and open order for products in the Acti 9 range ⁽²⁾ .

Summary of Orders for Devices Other Than iACT24 / iATL24 / RCA iC60 / Reflex iC60

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
132	1	RW	-	-	BITMAP	-	0x0000	N	01, 02, 03, 05, 06, 15, 16, 100–4	Deactivation order for product not in the Acti 9 range ⁽¹⁾ .
133	1	RW	-	-	BITMAP	-	0x0000	Ν	01, 02, 03, 05, 06, 15, 16, 100–4	Activation order for product not in the Acti 9 range ⁽¹⁾ .

Orders, on Each Channel, for Devices Other Than iACT24 / iATL24 / RCA iC60 / Reflex iC60

	Channel	s									
	1	2	3	4	5	6	7	8	9	10	11
Output Q (bit 0 and bit 1): non-Acti 9 product	14202	14242	14282	14322	14362	14402	14442	14482	14522	14562	14602

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14202	1	RW	_	_	BITMAP	_	0x0000	Ν	03, 06, 16, 100–4	Deactivation and activation order for product not in the Acti 9 range ⁽³⁾ .

(1)

- Bits 0 to 10: channel 1 to 11
- Bits 11 to 15: reserved

(2)

- Bit 0 = close order
- Bit 1 = open order
- Bits 2 to 15 = no meaning

(3)

- Bit 0 = deactivation order
- Bit 1 = activation order
- Bits 2 to 15 = no meaning

NOTE:

- Each bit corresponds to an open order (activated when the bit is at 1).
- The open order on several channels is possible.
- The Acti 9 Smartlink device resets the bit to state 0 when the open order is taken into account (unless
 no product is connected to the channel).
- If a reserved bit is at 1, the Acti 9 Smartlink device resets it to 0.
- "No meaning" indicates that the bits are fixed at 0 or 1 and do not affect the system.
- If bits 0 and 1 are at 1, there is no effect on the system.
- The Acti 9 Smartlink device resets the bit to state 0 when the order is taken into account.

Power or Flow Indicators

Summary of All Channels

	Channel	s									
	1	2	3	4	5	6	7	8	9	10	11
Input I1	14000	14002	14004	14008	14010	14012	14014	14014	14016	14018	14020
Input I2	14022	14024	14026	14028	14030	14032	14034	14036	14038	14040	14042

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14000	2	R	X1	D	Float32	-	0	Ν	03, 100–4	Power or flow indicator for channel 1/input 1 ⁽¹⁾ .

(1)

- When the impulse counter (the unit depends on the connected device: energy, gas, water, etc.) is connected to input 1 or 2 of channel 1, the register contains the flow value. This is calculated as follows:
 - (3600 x pulse weight)/t, t representing the time in seconds between 2 pulses. The result is expressed for one hour.
- The pulse weight is 10 by default and can be configured by the Modbus command. **Example**: This register indicates the active power between the last 2 pulses if an iEM2000T device is connected to the channel 1/input 1 (Pulse weight = 10 Wh).

NOTE:

This register is reset to 0:

- After a duration d = 3 x t (t being the time in seconds between the last 2 pulses), if 3 x t is less than 5 seconds, the duration d equals 5 seconds
- After 24 hours without a pulse

• After loss of the 24 V DC input/output voltage

- The accuracy of the power or flow indication is:
- 5% if the pulse frequency is 5 Hertz or less
- 17% if the pulse frequency equals the maximum frequency of 17 Hertz

	Channe	ls									
	1	2	3	4	5	6	7	8	9	10	11
Input I1 power or flow indicator ⁽²⁾	14204	14244	14284	14324	14364	14404	14444	14484	14524	14564	14604
Input I2 power or flow indicator ⁽²⁾	14206	14246	14286	14326	14366	14406	14446	14486	14526	14566	14606

Power or Flow Indicators on Each Channel

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14204	2	R	X1	D	Float32	-	0	N	03, 100–4	Power or flow indicator for input 1 ⁽²⁾ .
14206	2	R	X1	D	Float32	-	0	N	03, 100–4	Power or flow indicator for input $2^{(2)}$.

⁽²⁾ The same channel (Ti24 interface) on the Acti 9 Smartlink can take account of 2 counters:

- One counter connected to input I1
- One counter connected to input I2

Consumption Meters

Summary of All Channels

The consumption meters in this Modbus table indicate the consumption from meters connected to each Acti 9 Smartlink channel (1 to 11).

The consumption value (associated with a channel) is obtained by multiplying the number of pulses (received by inputs 11 and I2 of this channel) by the pulse weight.

	Channels	S									
	1	2	3	4	5	6	7	8	9	10	11
Input I1	14050	14052	14054	14056	14058	14060	14062	14064	14066	14068	14070
Input I2	14072	14074	14076	14078	14080	14082	14084	14086	14088	14090	14092

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14050	2	R	X1	-	UINT32	-	0	Y	03, 100–4	Consumption meter on channel 1/input I1.

NOTE:

- The number of pulses from inputs I1 and I2 of each channel (1 to 11) are available in registers 14212 (channel 1) to 14614 (channel 11). The number of pulses can be preset by writing to the impulse counter register. See the Operation Counters (*see page 83*) chapter.
- The pulse weights of inputs I1 and I2 of each channel (1 to 11) are available and can be set in registers 14230 (channel 1) to 14631 (channel 11). The pulse weight is 10 by default. See the Parameter Settings (see page 86) chapter.

Consumption Meters on Each Channel

	Channel	s									
	1	2	3	4	5	6	7	8	9	10	11
Input I1 consumption meter ⁽¹⁾	14208	14248	14288	14328	14368	14408	14448	14488	14528	14568	14608
Input I2 consumption meter ⁽¹⁾	14210	14250	14290	14330	14370	14410	14450	14490	14530	14570	14610

⁽¹⁾ The same channel (Ti24 interface) on the Acti 9 Smartlink can take account of 2 meters:

- One meter connected to input I1
- One meter connected to input I2

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14208	2	RW	X1	-	UINT32	-	0	Y	03, 100–4	Consumption meter on input 1.
14210	2	RW	-	-	UINT32	-	0	Y	03, 100–4	Consumption meter on input 2.

Operation Counters

Summary of All Channels

	Channel	s									
	1	2	3	4	5	6	7	8	9	10	11
Input I1	14100	14102	14104	14106	14108	14110	14112	14114	14116	14118	14120
Input I2	14122	14124	14126	14128	14130	14132	14134	14136	14138	14140	14142

Address	No.	RW	x	Unit	Туре	Range	Fault	Svd	Function Code	Description
14100	2	RW	_	-	UINT32	_	0	Y	03, 16, 100–4	Operation counter for channel 1/input 1: changes from state 1 to state 0.

Operation Counters on Each Channel

	Channel	Channels									
	1	2	3	4	5	6	7	8	9	10	11
I1 operation counter	14212	14252	14292	14332	14372	14412	14452	14492	14532	14572	14612
I2 operation counter	14214	14254	14294	14334	14374	14414	14454	14494	14534	14574	14614

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14212	2	RW	-	-	UINT32	-	0	Y	03, 16 100–4	Operation counter for channel 1/input 1. This register indicates the number of changes of state of input 1 from state 1 to state 0.

Running Hours Counter

Summary of All Channels

	Channel	Channels									
	1	2	3	4	5	6	7	8	9	10	11
Input I1	14144	14146	14148	14150	14152	14154	14156	14158	14160	14162	14164

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14144	2	RW	X1	hrs	UINT32	-	0	Y	03, 16, 100–4	Running hours counter for channel 1/input 1. Counting starts when the input is activated.

Running Hours Counters on Each Channel

	Channel	Channels									
	1	2	3	4	5	6	7	8	9	10	11
11 input running time	14216	14256	14296	14336	14376	14416	14456	14496	14536	14576	14616

Address	No.	RW	X	Unit	Туре	Range	Fault	Svd	Function Code	Description
14216	2	RW	X1	hrs	UINT32	-	0	Y	03, 16 100–4	Running hours counter for channel 1/input 1. Counting starts when the input is activated.

Parameter Setting Dates

Parameter Setting Dates for Each Channel

	Channe	Channels									
	1	2	3	4	5	6	7	8	9	10	11
Input I1 date	14218	14258	14298	14338	14378	14418	14458	14498	14538	14578	14618
Input I2 date	14222	14262	14302	14342	14382	14422	14462	14502	14542	14582	14622
Running hours parameter setting date on input I1	14226	14266	14306	14346	14386	14426	14466	14506	14546	14586	14626

Address	No.	RW	x	Unit	Туре	Range	Fault	Svd	Function Code	Description
14218	4	R	-	_	DATE	(1)	(1)	Y	03, 100–4	Date when the operation counter parameter was last set. This register indicates the date and time when the operation counter parameter was last set on input 1.
14222	4	R	-	_	DATE	(1)	(1)	Y	03, 100–4	Date when the operation counter parameter was last set. This register indicates the date and time when the operation counter parameter was last set on input 2.
14226	4	R	-	-	DATE	(1)	(1)	Y	03, 100–4	Date when the running hours counter parameter was last set. This register indicates the date and time when the running hours counter parameter was last set on input 1.

⁽¹⁾ See description of the DATE *(see page 59)* type.

Parameter Settings

Parameter Settings for Each Channel

	Channel	Channels									
	1	2	3	4	5	6	7	8	9	10	11
Pulse weight (I1)	14230	14270	14310	14350	14390	14430	14470	14510	14550	14590	14630
Pulse weight (I2) ⁽¹⁾	14231	14271	14311	14351	14391	14431	14471	14511	14551	14591	14631

Address	No.	RW	x	Unit	Туре	Range	Fault	Svd	Function Code	Description
14230	1	RW	X1	D	UNIT	065,535	10	Y	03, 06, 16 100–4	Pulse weight: this register can be used to set the value of the pulse weight for the meter connected to input 1 of channel 1.
14231	1	RW	X1	D	UNIT	065,535	10	Y	03, 06, 16 100–4	Pulse weight: this register can be used to set the value of the pulse weight for the meter connected to input 2 of channel 1.
14232	8	-	-	-	-	-	-	-	-	Reserved.

 $^{(1)}$ The same channel (Ti24 interface) on the Acti 9 Smartlink can take account of 2 meters:

• One meter connected to input I1

• One meter connected to input I2

Technical Characteristics

Technical Characteristics of the Acti 9 Smartlink

General Characteristics

Characteristic		Value				
Product marking		CE, GOST				
Temperature	Operation (horizontal)	–25+60° C				
	Operation (vertical)	–25+50° C				
	Storage	-40+85° C				
Tropicalization	1	Execution 2 (relative humidity of 93% at 40°C)				
Resistance to voltage dips		10 ms, class 3 according to IEC 61000-4-29				
Degree of protection		IP 20				
Level of pollution		3				
Overvoltage category		OVC II				
Conforming to SELV specification	IS	Yes				
Altitude	Operation	02,000 m				
	Storage	03,000 m				
Immunity to vibration	IEC 60068-2-6	1 g/± 3.5 mm, 5300 Hz, 10 cycles				
Immunity to mechanical shock		15 g/11 ms				
Immunity to electrostatic	IEC 61000-4-2	Air: 8 kV				
discharge		Contact: 4 kV				
Immunity to radiated electromagnetic interference	IEC 61000-4-3	10 V/m – 80 MHz to 3 GHz				
Immunity to fast transients	IEC 61000-4-4	1 kV for the I/O and Modbus communication. 2 kV for the 24 V DC - 5 kHz - 100 kHz power supply				
Immunity to conducted magnetic fields	IEC 61000-4-6	10 V from 150 kHz to 80 MHz				
Immunity to magnetic fields at line frequency	IEC 61000-4-8	30 A/m continuous 100 A/m pulse				
Resistance to corrosive atmospheres	IEC 60721-3-3	Level 3C2 on H ² S/SO ² /NO ² /Cl ²				
Fire withstand	For live parts	30 s at 960° C. IEC 60695-2-10 and IEC 60695-2-11				
	For other parts	30 s at 650° C. IEC 60695-2-10 and IEC 60695-2-11				
Salt mist	IEC 60068-2-52	Severity 2				
Environment		Conforms to RoHS directives				
Installation position		Horizontal or vertical				
Mean time between failures		More than 1,851,818 hours				

Mechanical Characteristics

Characteristic		Value
Dimensions	Length	358.5 mm
	Height	22.5 mm
	Depth	40 mm
Ground		195 g

Communication Module

Characteristic		Value
Type of interface module		Modbus, RTU, RS485 serial connection
Transmission	Transfer rate	960019,200 Baud
	Medium	Double shielded twisted pair
Structure	Туре	Modbus
	Method	Master/slave
Device type		Slave
Turnaround time		10 ms (approx.)
Max. length of Modbus line		1,000 m
Type of bus connector		4-pin connector
Power supply	Nominal	Non-isolated 24 V DC with protection against negative voltages up to -28.8 V DC
	Voltage limits	19.2 28.8 V DC with ripple
	Current consumption, no- load	35 mA
	Maximum input intensity	1.5 A
	Maximum current inrush	3 A (limited internally)
Isolation	Between the Modbus serial connection and 24 V DC Ti24 I/O interfaces	1,500 V RMS for 1 minute
Number of I/O channels		11

Integrated Functions

Characteristic		Value
Counter	Number of counters	Up to 22 (22 inputs)
	Maximum frequency	16.667 Hz, IEC 62053-31
Period stored in backup memory		10 years

Inputs

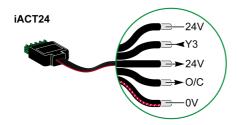
Characteristic		Value
Number of logic inputs		22 (2 per channel)
Rated input voltage		24 V DC
Input type		Current sink, type 1 IEC 61131-2
Weight (0 V)		1 for 2 inputs (1 per channel)
Input voltage limits		19.228.8 V DC
Rated input current		2.5 mA
Maximum input current		5 mA
Filter time	At state 1	2 ms
	At state 0	2 ms
Isolation		No isolation between the Ti24 interfaces
Negative voltage protection		Yes
Recommended length of cables and cordsets		20 m max.

Outputs

Characteristic		Value
Number of logic outputs		11 (1 per channel)
Logic output		Current source, 24 V DC 0.1 A IEC 61131-2
Weight (0 V)		1
Rated output voltage	Voltage	24 V DC
	Maximum current	100 mA
Filter time		1 ms
Voltage drop (voltage at state 1)		1 V max.
Maximum current inrush		500 mA
Leakage current		0.1 mA
Overvoltage protection		33 V DC
Short-circuit protection		Yes
Overload protection		Yes
Current limiting		Yes

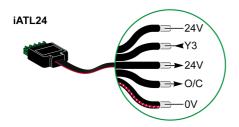
Connecting Acti 9 Devices to a PLC

Connections


8

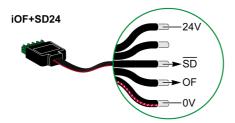
What Is in This Chapter?

This chapter contains the following topics:


Торіс	Page
iACT24 Auxiliary for iCT Contactor	94
iATL24 Auxiliary for iTL Impulse Relay	95
iOF+SD24 Indication Auxiliary for iC60 Circuit Breaker	96
OF+SD24 Indication Auxiliary for C60 and C120 Circuit Breakers	97
Acti 9 RCA iC60 Remote Control With Ti24 Interface	98
Acti 9 Reflex iC60 Integrated Control Circuit Breaker with Ti24 Interface	99

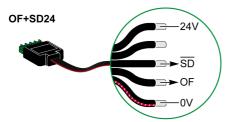
An iACT24 auxiliary for iCT contactor can also be connected with an A9XCAU06 pre-wired connector: molded connector (at iACT24 end), and with 5 wires (at PLC end).

Description of Ti24 Connector at iACT24 End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Y3	Control input	
24 V	Indication of connector presence	
O/C	Open/closed contactor state	
0 V	0 V of the 24 V DC power supply	


An iATL24 auxiliary for iTL impulse relay can also be connected with an A9XCAU06 pre-wired connector: molded connector (at iATL24 end), and with 5 wires (at PLC end).

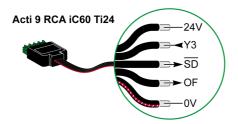
Description of Ti24 Connector at iATL24 End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Y3	Control input	
24 V	Indication of connector presence	
O/C	Open/closed impulse relay status	
0 V	0 V of the 24 V DC power supply	

iOF+SD24 Indication Auxiliary for iC60 Circuit Breaker


The iOF+SD24 indication auxiliary for iC60 circuit breaker can also be connected with an A9XCAU06 prewired connector: molded connector (at iOF+SD24 end), and with 5 wires (at PLC end).

Description of Ti24 Connector at iOF+SD24 End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Terminal not connected	-	
SD	Fault indication	
OF	Open/closed circuit breaker status	
0 V	0 V of the 24 V DC power supply	

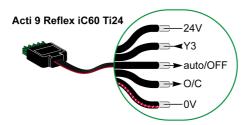
OF+SD24 Indication Auxiliary for C60 and C120 Circuit Breakers


The OF+SD24 indication auxiliary for C60 and C120 circuit breakers can also be connected with an A9XCAU06 pre-wired connector: molded connector (at OF+SD24 end), and with 5 wires (at PLC end).

Description of Ti24 Connector at OF+SD24 End (Using an A9XCAU06 Cordset)		
Terminal	Description	
24 V	24 V of the 24 V DC power supply	
Terminal not connected	-	
SD	Fault indication	
OF	Open/closed circuit breaker status	
0 V	0 V of the 24 V DC power supply	

Acti 9 RCA iC60 Remote Control With Ti24 Interface

An RCA iC60 remote control with Ti24 interface can also be connected with an A9XCAU06 pre-wired connector: molded connector (at RCA iC60 with Ti24 interface), and with 5 wires (at PLC end).



Description of Ti24 Connector at Acti 9 RCA iC60 End with Ti24 Interface (Using an A9XCAU06 Corc	

Terminal	Description
24 V	24 V of the 24 V DC power supply
Y3	Control input
SD	Fault indication
OF	RCA iC60 open/closed contactor status with Ti24 interface
0 V	0 V of the 24 V DC power supply

Acti 9 Reflex iC60 Integrated Control Circuit Breaker with Ti24 Interface

An Acti 9 Reflex iC60 integrated control circuit breaker with Ti24 interface can also be connected with an A9XCAU06 pre-wired connector: molded connector (at Reflex iC60 with Ti24 interface), and with 5 wires (at PLC end).

Description of Ti24 Connector at Acti 9 Reflex iC60 End With Ti24 Interface (Using an A9XCAU06 Cordset)				
Terminal	Description			
24 V	24 V of the 24 V DC power supply			
Y3	Control input			
auto/OFF	Handle position (upper position: auto; lower position: OFF)			
O/C	Reflex iC60 open/closed contactor status with Ti24 interface			
0 V	0 V of the 24 V DC power supply			

Integration of Acti 9 Smartlink in an EGX System

IV

Overview

9

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Introduction to the EGX System	104
Connection	105
Configuration	107
Control	113
Monitoring	116
Diagnostics	121

Introduction to the EGX System

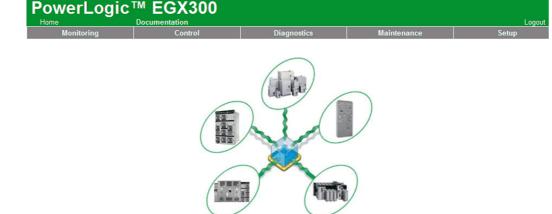
Overview

For Acti 9 Smartlink, the EGX300 gateway can be used in two different ways:

- Standard gateway function (see document EGX 63230-319-216B2 dated 11/2011)
- Function with Web Server page embedded in EGX300 and adapted for Acti 9 Smartlink

With the embedded Web Server page function, you can:

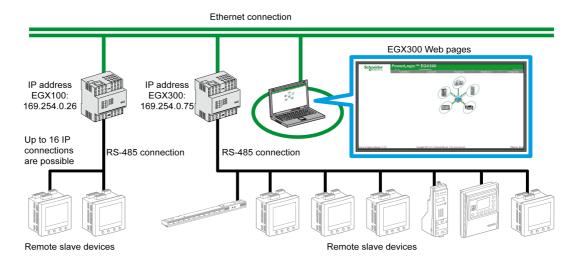
- View the discrete I/O status
- Set the energy meter parameters
- View energy consumption in the form of a graph (curves)
- Export the consumption data stored in the EGX300 in .csv format
- View the Modbus registers of Acti 9 Smartlink devices


The following chapters describe configuration and the functions accessible in the embedded Web Server for Acti 9 Smartlink.

Connection

After configuring the EGX300 gateway Ethernet parameters, you can access the EGX300 gateway on a local area network, using a standard Web browser.

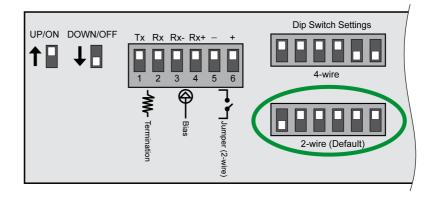
The diagram below shows the home page:


To close the EGX300 session, click Logout.

We recommend that you log out when you no longer need to access the EGX300 gateway.

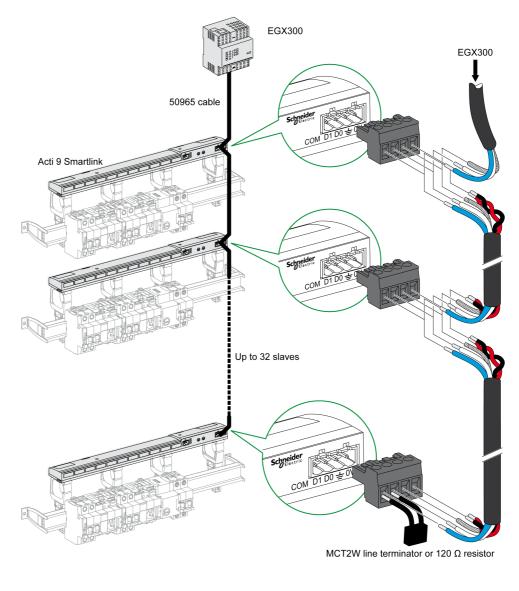
Connection

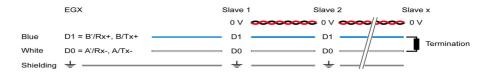
Possible Connections


The first operation consists of connecting the Acti 9 Smartink device(s) to the EGX gateway. The figure below shows the options for connecting devices on EGX:

The Acti 9 Smartlink device can be connected as a serial slave device or as a remote slave device.

Selector Switch Position


The EGX gateway selector switches must be configured for operation using 2-wire communication. The figure below shows the required selector switch configuration:



Wiring

The link used between the EGX gateway and the Acti 9 Smartlink device(s) is a 2-wire link plus an earthing braid.

The physical connection between the EGX connector and the Modbus connectors on Acti 9 Smartlink devices must be made as follows:

Configuration

Device Lists

The **Device List** page can be used to detect and configure devices connected to the EGX300 gateway. To go to this page, select the **Configuration** tab, then click on **Device List** on the left of the screen. The illustration below shows the **Device List** page:

Schneider Blectric	Monitoring	Control		Diagnostics	Maintenance	Set
p				Device List		
net & TCP/IP Port te Device Connections			Numb	er of Viewable Devices: 8 Y		
e List e Logging		Device Type		Device Name	Local ID	
Log Export		Acti 9 Smartlink	~	Acti 9 Smartlink	1	
nd Time Parameters		Modbus	~			
s TCP/IP Filtering entation Links		Modbus	~			
counts		Modbus	~			
age Access nces		Modbus	~			
le Device Types rail		Modbus	~			
Access Point		Modbus	~			
		Modbus	~			

Automatic Detection

From the **Device List** page, click the **Detection** button.

The following page will appear:

Chneider DElectric	Monitoring		Control	j.	Diagnostics	Mainte	enance	Set
	_			Device	Discovery	2011	00 07 44 40	40
& TCP/IP rt			2012-02-27 11:40 Start Address End Address					43
Device Connections st			1			10		-
ogging og Export								
and Time IP Parameters bus TCP/IP Filtering umentation Links Accounts Page Access rences able Device Types T Trail em Access Point		Device Type						
	Save	Defined	Assigned		Name		Local ID	Status
	V	Acti 9 Smartlink	Acti 9 Smartlink	~	Acti 9 Smartli	ık		Valid
			Modbus	~			2	
			Modbus	~			3	
			Modbus	~			4	
	-		Modbus	×			5	
			Modbus	~			6	
			Modbus	~			7	
			Modbus	~			8	
			Modbus	~			9	
			Modbus	~			10	

Start Discover Apply

The following procedure describes the automatic detection procedure:

Step	Action
1	Select the Start Address box.
2	Enter the Modbus address where detection is to start.
3	Select the End Address box.
4	Enter the Modbus address up to which detection is to be performed.
5	Click the Start Detection button.
6	If necessary, repeat step 5.

NOTE:

- The automatic detection process can be interrupted at any time by clicking the **Stop Detection** button.
- The device names should be configured manually. Perform steps 1 and 3 of manual configuration.

Manual Configuration

PO Felectric	Monitoring]	Control	Diag	nostics	Mainte	enance	Set
				evice Di	iscovery			
P/IP							2-02-27 11:40:43	
e Connections			Start Address			nd Addres	6	
g			1			10		
<pre> kport</pre>		David	ice Type					
e eters	Save	Defined	Assigned		Name		Local ID	Status
IP Filtering n Links	V	Acti 9 Smartlink	Acti 9 Smartlink	~	Acti 9 Smartlink		1	Valid
s			Modbus	~			2	
ice Types			Modbus	~			3	
			Modbus	~			4	
ss Point			Modbus	~			5	
			Modbus	~			6	
			Modbus	*			7	
			Modbus	~			8	
			Modbus	~			9	
			Modbus	~			10	

Start Discover Apply

The procedure for manually configuring devices connected to the EGX300 gateway is as follows:

Step	Action
1	Select the Device List page.
2	In the Assigned drop-down menu, select Acti 9 Smartlink.
3	If necessary, in the Name box, type in a name.
4	If necessary, fill in the Local ID field.

Device Logging

The **Device Logging** page is used to configure energy meters connected to the Acti 9 Smartlink device and the file storage and sending parameters.

To go to this page, select the **Configuration** tab, then click on **Device Logging** on the left of the screen. The illustration below shows the **Device Logging** page:

Schneider Electric		TM EGX30	0			
Electric	Monitoring	Control		Diagnostics	Mai	intenance
Setup Ethernet & TCP/IP Serial Port			Dev Logging Interval	ice Logging	(Minutes)	
Remote Device Connections Device List Device Logging Device Log Export		Device Name	Device Type	Logging select all clear	Purge Data select all clear	Customize
Date and Time SMMP Parameters Modbus TCP/IP Fittering Documentation Links User Accounts Web Page Access Preferences Viewable Device Types Audit Trail System Access Point		Acti 9 Smartlink	Acti 9 Smartlink	Apply		topics *

On this page you need to declare the time interval between 2 recordings. The desired interval is selected from the drop-down list of **Recording Interval** options.

Energy Meter Declarations

From the **Device Logging** page, click on **values**.

The following page will appear:

ectric		Documentation			
	Monitoring	Control	Diagnostics	Maintenance	Setup
		Device Name	Device Type		
		Acti 9 Smartlink	Acti 9 Smartlink	(6 Enabled)	
nnections		Enabled select all clear	Topic Name	intervals: 28512 davs: ≈99	
			Channel 1 Input 1: Real Energy (kWh)	Logging Interval: 5	minute
			Channel 1 Input 1: Real Power(kW)		
			Channel 1 Input 2: Real Energy (kWh)		
tering			Channel 1 Input 2: Real Power(kW)		
ks			Channel 2 Input 1: Real Energy (kWh)		
			Channel 2 Input 1: Real Power(kW)		
			Channel 2 Input 2: Real Energy (kWh)		
rpes			Channel 2 Input 2: Real Power(kW)		
pint			Channel 3 Input 1: Real Energy (kWh)		
			Channel 3 Input 1: Real Power(kW)		
			Channel 3 Input 2: Real Energy (kWh)		
			Channel 3 Input 2: Real Power(kW)		
			Channel 4 Input 1: Real Energy (kWh)		
			Channel 4 Input 1: Real Power(kW)		
			Channel 4 Input 2: Real Energy (kWh)		
			Channel 4 Input 2: Real Power(kW)		
			Channel 5 Input 1: Real Energy (kWh)		
			Channel 5 Input 1: Real Power(kW)		
			Channel 5 Input 2: Real Energy (kWh)		
			Channel 5 Input 2: Real Power(kW)		
			Channel 6 Input 1: Real Energy (kWh)		
			Channel 6 Input 1: Real Power(kW)		
			Channel 6 Input 2: Real Energy (kWh)		
			Channel 6 Input 2: Real Power(kW)		
			Channel 7 Input 1: Real Energy (kWh)		
			Channel 7 Input 1: Real Power(kW)		
			Channel 7 Input 2: Real Energy (kWh)		
			Channel 7 Input 2: Real Power(kW)		

The procedure for assigning impulse counters to the channels of an Acti 9 Smartlink device is as follows:

Step	Action
1	Check the desired box(es) opposite the Channel x Input y identification.
2	Use the vertical scroll bar to go to the bottom of the page.
3	Click on the Apply button.

NOTE:

For each channel, it is possible to select the type of information required:

- Active energy
- Active power

Declaration of the Device Log Export Type

From the declarations assigning the impulse counter to channels on the Acti 9 Smartlink device, the EGX300 gateway stores each measurement point at the selected frequency and offers the option of exporting the backup files via email or via FTP server.

To define these parameters, in the **Configuration** page, click on **Device Log Export**.

The following page will appear:

Schneider Electric		C TM EGX300			
Electric	Monitoring	Control	Diagnos	tics	Maintenance
Setup Ethernet & TCP/IP Serial Port			Device Log		
Remote Device Connections Device List Device Logging Device Log Export		O Disabled	Transpo	OFTP	OHTTP
Date and Time SNMP Parameters			Schedu		
Modbus TCP/IP Filtering Documentation Links User Accounts		C Logging Interval	Hourly O O O O	Daily OWeekly	O Monthly
Web Page Access Preferences		Day of the	-	~	
Viewable Device Types Audit Trail		Day of the	Month: 1		
System Access Point			E-Mail Parar	meters	
		From Ar	ddress: david.pellissi	er@schneider-electric.co	om
		To Add	resses: david.pellissi	er@schneider-electric.co	m
		Server IP Ar	ddress: 0 . 0	. 0 . 0	
		Server TC	P Port: 25		
		SMTP server require	s login:		

Control

Interface

To access the $\ensuremath{\textbf{Control}}$ page, proceed as follows:

Step	Action
1	Click on the Control tab.
2	Click Acti 9 Smartlink on the left of the screen.
3	The page below displays all the channels and inputs to which an impulse counter is connected.

Schneider Electric	onitoring	Contr	ol	Diagnostics	Maintenance	Setup
	sets : Acti 9 Smartli	ink (Acti 9 Sn	nartlink)			
9 Smartlink Par	ameter		Preset Value	Pulse Weight	Status	
m Pages Char	inel 1 Status Input 1		11414	3		
	inel 1 Status Input 2		0	10		
Char	inel 2 Status Input 1		0	10		
Char	inel 2 Status Input 2		0	10		
Char	inel 3 Status Input 1		0	10		
Char	inel 3 Status Input 2		0	10		
Char	inel 4 Status Input 1		0	10		
Char	inel 4 Status Input 2		0	10		
Char	inel 5 Status Input 1		1616	10		
Char	inel 5 Status Input 2		0	10		
Char	inel 6 Status Input 1		0	10		
Char	inel 6 Status Input 2		0	10		
Char	inel 7 Status Input 1		3	10		
Char	inel 7 Status Input 2		3	10		
Char	inel 8 Status Input 1		0	10		
Char	inel 8 Status Input 2		0	10		
Char	inel 9 Status Input 1		0	10		
Char	inel 9 Status Input 2		0	10		
Char	nel 10 Status Input 1		0	10		
Char	nel 10 Status Input 2		0	10		
Char	nel 11 Status Input 1		1607	10		
Char	inel 11 Status Input 2		0	10		

Pulse Weight Parameter Setting

If impulse counters have been assigned to the I/O of an Acti 9 Smartlink device, it is possible (or even essential) to configure the counter pulse weight to be able to calculate the active powers.

The table below shows how to assign the pulse weight:

Step	Action
1	Check the box opposite the desired channels to change their weight.
2	Check the desired box in the Pulse Weight column.
3	Type in the value of the desired pulse weight.
4	Repeat steps 2 and 3 for each value to be changed.
5	Click the Reset button.

NOTE: If no energy meter has been assigned to a channel of the Acti 9 Smartlink device, we recommend setting the pulse weight to 0.

Resetting Meters

It is possible, if the application requires it, to reset the values of the Acti 9 Smartlink device energy meters. The table below shows how to reset the meters:

Step	Action
1	Check the box opposite the desired channels to change their weight.
2	Check the desired box in the Preset Value column.
3	Type in the new value you wish to assign to the impulse counter concerned.
4	Repeat steps 2 and 3 for each value to be changed.
5	Click the Reset button.

Monitoring

Interface

To display the status of the Acti 9 Smartlink device I/O, go to the Monitoring page below:

Schneider Electric							Logout
	Monitoring	Сог	ntrol	Diagnostics		Maintenance	Setup
■ Real Time Data ■ Single Device Pages	_			Dashboards			1
Acti 9 Smartlink Summary Device Pages Trending		Device: Topic Name:	Acti 9 Sm Channel 1	artlink Input 1: Real Energy (kWh)	~		
Device Logging	_	Time:		ay over Past Day by Hours	~		
Dashboards	_						-
System Access Point	_			Apply			
Custom Pages	_						
	_						

Viewing the I/O

The table below describes the procedure for accessing the Acti 9 Smartlink device I/O data:

Step	Action
1	Click on Real Time Data in the left-hand panel.
2	Click on Single Device Pages in the left-hand panel.
3	Click on Acti 9 Smartlink in the left-hand panel.
4	The I/O data (basic readings) screen below is displayed.

Real Time Data Single Device Pages Acti 9 Smartlink Summer Davice Pages	Monitoring			ntrol	Smartlink)		gnostics		Mai	intenance			Log Setup
Real Time Data Single Device Pages Acti 9 Smartlink Summer Device Pages		gs : Acti 9	Smartlink	(Acti 9 S	(martlink)								
Summary Device Pages	nermames											2012-02-2	7 11:58:19
Trending	Parameter	Channel	1	2	3	4	5	6	7	8	9	10	11
	onnected Device Status Input 1		Channel 1	Channel 2 0	Channel 3 0	Channel 4	Channel 5	Channel 6 0	Channel 7 0	Channel 8 0	Channel 9	9 Channel 10 0	Channel 11
ashboards S	Status Input 2 tatus Output 1		0	0	0	0	0	0	0	1	0	0	0
System Access Point													
Custom Pages													

Assigning Channel Names

A specific name can be assigned to each channel. The procedure is as follows:

Step	Action
1	On the I/O data (basic readings) screen, click on Channel Names.
2	Click on the channel name to be changed.
3	Type in the new channel name. The number of characters is limited to 10.
4	Repeat steps 2 and 3 for all the channel names to be changed.
5	Click on the Apply button.

The illustration below gives an example of changed channel names:

Schneider Blectric

PowerLogicTM EGX300

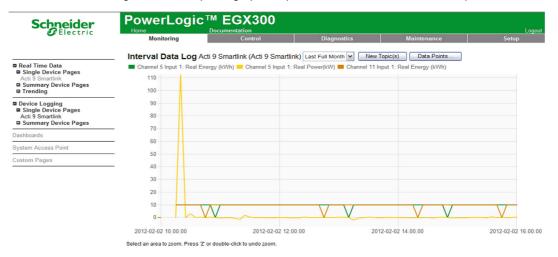
Basic Readings: Acti 9 Smartlink (Acti 9 Smartlink)

Real Time Data
 Single Device Pages
 Acti 9 Smartlink
 Summary Device Pages
 Trending
 Device Logging
 Dashboards
 System Access Point
 Custom Pages

Channel Names			
Channel	Name		
1	Channel 1		
2	Channel 2		
3	Channel 3		
4	Channel 4		
5	Channel 5		
6	Channel 6		
7	Channel 7		
8	Channel 8		
9	Channel 9		
10	Channel 10		
11	Channel 11		

Diagnostics

Cancel Apply


Maintenance

Graphic Representation of Consumption

If impulse counters have been configured, consumption can be displayed in graphic form. The procedure is as follows:

Step	Action
1	In the Monitoring page, click on Device Logging.
2	In the Device drop-down menu, select Acti 9 Smartlink.
3	To select the values to be displayed, press the New Value(s) button.
4	Choose the values to be displayed and press the Apply button.
5	Use the mouse to select an area to be enlarged.

The illustration below gives an example of graphic representation of the meter consumption:

NOTE: By default, only the first channel declared is represented. To display other channels, repeat steps 3 to 5.

Viewing Data

The data is displayed, according to the type of channel and data selected:Either discrepancies in total energy between 2 successive recordings

- Or the active power of each recording.

To display these stored values since commissioning, click on the Access Data button.

The following page will appear:

Error	Timestamp	Channel 1 Input 1: Real Energy (kWh)		Channel 5 Input 1: Real Energy (kWh)		Channel 11 Input 1: Real Energy (kWh)	Channel 11 Input 1: Real Power(kW)
0	2012-01-23 09:30:00	10	116.162	10	0	10	0
0	2012-01-23 09:35:00	19	115.718	20	115.480	20	114.821
0	2012-01-23 09:40:00	29	115.792	30	115.115	30	114.354
0	2012-01-23 09:45:00	39	116.016	40	115.336	40	114.573
0	2012-01-23 09:50:00	48	115.830	50	115.436	50	114.693
0	2012-01-23 09:55:00	58	116.279	60	115.369	60	114.587
0	2012-01-23 10:00:00	68	116.050	70	115.614	70	114.887
0	2012-01-23 10:05:00	77	115.979	80	115.425	80	114.678
0	2012-01-23 10:10:00	87	116.391	90	115.488	90	114.708
0	2012-01-23 10:15:00	97	116.354	100	115.647	100	114.876
0	2012-01-23 10:20:00	106	116.391	110	115.741	110	114.971
0	2012-01-23 10:25:00	116	116.391	120	115.818	120	115.052
0	2012-01-23 10:30:00	126	116.580	130	115.953	130	115.181
0	2012-01-23 10:35:00	135	116.467	130	115.953	140	115.122
0	2012-01-23 10:40:00	145	116.504	140	115.893	150	115.115
0	2012-01-23 10:45:00	155	111.111	150	115.889	150	115.115
0	2012-01-23 10:50:00	164	113.888	160	113.236	160	113.029
0	2012-01-23 10:55:00	174	113.672	170	113.196	170	112.093
0	2012-01-23 11:00:00	183	113.600	180	113.050	180	112.335
0	2012-01-23 11:05:00	193	113.314	190	112.952	190	112.208
0	2012-01-23 11:10:00	202	113.528	200	112.796	200	112.055
0	2012-01-23 11:15:00	211	113.636	210	112.824	210	112.093
0	2012-01-23 11:20:00	221	112.852	220	112.888	220	112.166

•

Diagnostics

Interface

From the EGX300 gateway, diagnostics can be performed on all connected devices. To do this, go to the **Diagnostics** page below:

Schneider Blectric	Monitoring	Control	Diagnostics	Maintenance	Setup		
			Statistics				
gnostics stics	Boot Time: 2012-02-27 08:15:13			Curre	ent Time: 2012-02-27 12:29:		
ead Device Registers ommunications Check	E	Ethernet			Modbus TCP/IP		
nunications Check	Link Status:	10BaseTx-HD	Server				
	Frames Transmitted OK:	4849	Frames Ser	ıt:	0		
	Collisions:	195	Frames Reg		0		
	Excessive Collisions:	0	Protocol En	ors:	0		
	Frames Received OK:	207045	Active Conr	ections:	0		
	CRC Errors:	0			0		
	Alignment Errors:	0	Maximum C	connections:	0		
	Frames Too Long:	0	Inbound Res	ad Messages:	0		
	Frames Too Short:	0	Inbound Wr	te Messages:	0		
			Outbound R	eply Messages:	0		
	C.	rial Port	Client				
			Frames Ser	it:	0		
	Frames Sent:	690	Frames Ree	ceived:	0		
	Frames Received:	672	Protocol En	ors:	0		
	CRC Errors:	0	Timeouts:		0		
	Protocol Errors:	0	Connection	Timeouts:	0		
	Timeouts:	18	Exceptions	Received:	0		
	Exceptions Received:	0	Outbound R	ead Messages:	0		
	Outbound Read Messages:	688	Outbound V	Vrite Messages:	0		
	Outbound Write Messages:	0	Inbound Re	oly Messages:	0		
	Inbound Read Messages:	0	Details:				
	Inbound Write Messages: Details:	U					

Reading Registers

On the **Diagnostics** page, click on **Read Device Registers**.

The following page will appear:

Schneider		TM EGX3	300			Logout
C Lieutite	Monitoring	Contro	ol	Diagnostics	Maintenance	Setup
Diagnostics	Read Dev	vice Registers	3			
Read Device Registers	D	evice Name	Local ID	Starting Register	Number of Regis	ters
Communications Check	Select by De	vice ID	✓ 1	1000	10	
		Register		Value		
	1000	rtogiotor	0	, and	Data Type:	
	. 1001		0		Holding Registers	~
	1002		0			
	. 1003		0		 Decimal 	
	1004		0		Hexadecimal	
	1005		0		O Binary	
	1006		0		O ASCII	
	. 1007		0			
	1008		0		Read	
	1009		0			

The table below describes the procedure for reading registers:

Step	Action
1	In the Device Name drop-down menu, select the desired device.
2	Select the Starting Register field.
3	Enter the address of the first register to be read.
4	Select the Number of Registers field.
5	Enter the number of registers to be read.
6	Click on the Read button.

Appendices

What Is in This Appendix?

The appendix contains the following chapters:

Chapter	Chapter Name	Page
A	Details of Modbus Functions	125
В	Resetting the Acti 9 Smartlink Device with Factory Parameters	133

Details of Modbus Functions

Overview

This appendix describes Modbus functions supported by the Acti 9 Smartlink device that are not available on the www.modbus.org website. It is not attempting to describe the whole protocol.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Function 8: Diagnostics Modbus	126
Function 43-14: Read Acti 9 Smartlink ID	127
Function 43–15: Read Date and Time	129
Function 43-16: Write Date and Time	130
Function 100-4: Read n Non-Adjacent Words	131

Function 8: Diagnostics Modbus

Structure of Modbus Messages Concerning Acti 9 Smartlink Diagnostic Counter Management

Request

Definition	Number of Bytes	Value
Slave number	1 byte	0x00 to 0x63
Function code	1 byte	0x08
Sub-function code	1 byte	See list below
Reserved	2 bytes	0x0000

Sub-function codes

Sub-function	Description
Codes (Decimal)	
10	Resets all the diagnostic counters
11	Reads the correct bus messages managed by the slave counter
12	Reads the incorrect bus messages managed by the slave counter
13	Reads the exception responses managed by the slave counter
14	Reads the messages sent to the slave counter
15	Reads the broadcast message counter
17	Reads the messages sent to the slave counter sent to the slave but without a response because of exception code 06: slave device busy
18	Reads the incorrect bus messages due to overload errors counter

Response

Definition	Number of Bytes	Value
Slave number	1 byte	0x00 to 0x63
Function code	1 byte	0x08
Sub-function code	1 byte	See above list
Diagnostic counter	2 bytes	Value of diagnostic counter corresponding to the sub-function code

Resetting Counters

The counters are reset to 0:

- When they reach the maximum value 65535
- When they are reset by a Modbus command (function code 8, sub-function code 10)
- When the power is cut off, or
- When the communication parameters are modified

Function 43-14: Read Acti 9 Smartlink ID

Structure of Modbus Read Acti 9 Smartlink ID Messages

The ID consists of ASCII characters called objects.

Request for basic information

Definition	Number of Bytes	Value
Slave number	1 byte	0x000x63
Function code	1 byte	0x2B
Sub-function code	1 byte	0x0E
Product ID	1 byte	0x01
Object identifier	1 byte	0x00

Response with basic information

Definition		Number of Bytes	Value
Slave number		1 byte	0x000x63
Function code		1 byte	0x2B
Sub-function code		1 byte	0x0E
Product ID		1 byte	0x01
Conformity level		1 byte	0x01
Reserved		1 byte	0x00
Reserved		1 byte	0x00
Number of objects		1 byte	0x03
Object 0: manufacturer name	Object number	1 byte	0x00
	Object length	1 byte	0x12
	Object content	18 bytes	Schneider Electric
Object 1: product code	Object number	1 byte	0x01
	Object length	1 byte	0x08
	Object content	8 bytes	"A9XMSB11"
Object 2: version number	Object number	1 byte	0x02
	Object length	1 byte	0x06 (minimum)
	Object content	6 bytes minimum	"Vx.y.z"

Request for complete information

Definition	Number of Bytes	Value
Slave number	1 byte	0x000x63
Function code	1 byte	0x2B
Sub-function code	1 byte	0x0E
Product ID	1 byte	0x02
Object identifier	1 byte	0x00

Response with complete information

Definition	Number of Bytes	Value
Slave number	1 byte	0x000x63
Function code	1 byte	0x2B
Sub-function code	1 byte	0x0E
Product ID	1 byte	0x02
Conformity level	1 byte	0x02
Reserved	1 byte	0x00
Reserved	1 byte	0x00

Definition		Number of Bytes	Value
Number of objects		1 byte	0x05
Object 0: manufacturer name	Object number	1 byte	0x00
	Object length	1 byte	0x12
	Object content	18 bytes	"Schneider Electric"
Object 1: product code	Object number	1 byte	0x01
	Object length	1 byte	0x08
	Object content	8 bytes	"A9XMSB11"
Object 2: version number	Object number	1 byte	0x02
	Object length	1 byte	0x06 (minimum)
	Object content	6 bytes minimum	"Vx.y.z"
Object 3: manufacturer URL	Object number	1 byte	0x03
	Object length	1 byte	0x1A
	Object content	26 bytes	"www.schneider-electric.com"
Object 4: product name	Object number	1 byte	0x04
	Object length	1 byte	0x12
	Object content	18 byte	"Acti 9 Smartlink"

NOTE: The above table describes how to read the ID of a Modbus Acti 9 Smartlink slave.

Function 43–15: Read Date and Time

Structure of Modbus Read Date and Time Messages

Request

Definition	Number of Bytes	Value	Example
Slave number	1 byte	0x2F	47
Function code	1 byte	0x2B	43
Sub-function code	1 byte	0x0F	15
Reserved	1 byte	0x00	Reserved

Response

Definition		Number of Bytes	Value	Example	
Slave number			1 byte	0x2F	47
Function code			1 byte	0x2B	43
Sub-function code			1 byte	0x0F	15
Reserved			1 byte	0x00	Reserved
Date and time ⁽¹⁾	byte 1	Not used	1 byte	0x00	Not used
	byte 2	Year	1 byte	0x0A	Year 2010
	byte 3	Month	1 byte	0x0B	Month of November
	byte 4	Day of the month	1 byte	0x02	Second day of the month
	byte 5	Hour	1 byte	0x0E	14 hours
	byte 6	Minute	1 byte	0x20	32 minutes
	byte 7 and byte 8	Millisecond	2 bytes	0x0DAC	3.5 seconds
(1) See description	of the DATE (see pa	<i>ge 58)</i> type.	1	1	

Function 43-16: Write Date and Time

Structure of Modbus Write Date and Time Messages

Request

Definition		Number of Bytes	Value	Example	
Slave number			1 byte	0x2F	47
Function code			1 byte	0x2B	43
Sub-function code			1 byte	0x10	16
Reserved			1 byte	0x00	Reserved
Date and time ⁽¹⁾	byte 1	not used	1 byte	0x00	Not used
	byte 2	Year	1 byte	0x0A	Year 2010
	byte 3	Month	1 byte	0x0B	Month of November
	byte 4	Day of the month	1 byte	0x02	Second day of the month
	byte 5	Hour	1 byte	0x0E	14 hours
	byte 6	Minute	1 byte	0x20	32 minutes
	byte 7 and byte 8	Millisecond	2 bytes	0x0DAC	3.5 seconds
(1) See description	of the DATE (see pa	<i>ge 58)</i> type.			

Response

Definition			Number of Bytes	Value	Example
Slave number			1 byte	0x2F	47
Function code			1 byte	0x2B	43
Sub-function code			1 byte	0x10	15
Reserved			1 byte	0x00	Reserved
Date and time ⁽¹⁾	byte 1	Not used	1 byte	0x00	Not used
	byte 2	Year	1 byte	0x0A	Year 2010
	byte 3	Month	1 byte	0x0B	Month of November
	byte 4	Day of the month	1 byte	0x02	Second day of the month
	byte 5	Hour	1 byte	0x0E	14 hours
	byte 6	Minute	1 byte	0x20	32 minutes
	byte 7 and byte 8	Millisecond	2 bytes	0x0DAE	3.502 seconds
(1) See description	of the DATE (see pa	<i>ge 58)</i> type.	1		1

Function 100-4: Read n Non-Adjacent Words

Structure of Modbus Read n Non-Adjacent Words Messages Where n ≤100

Request

Definition	Number of Bytes	Value	
Modbus slave number	1 byte	0x2F	
Function code	1 byte	0x64	
Length of data in bytes	1 byte	0x06	
Sub-function code	1 byte	0x04	
Transmission number ⁽¹⁾	1 byte	0xXX	
Address of the first word to be read (MSB)	1 byte	0x00	
Address of the first word to be read (LSB)	1 byte	0x65	
Address of the second word to be read (MSB)	1 byte	0x00	
Address of the second word to be read (LSB)	1 byte	0x67	
(1) The master gives the transmission	number in the request.	·	

NOTE: The above table describes how to read addresses 101 = 0x65 and 103 = 0x67 of a Modbus slave. The Modbus slave number is 47 = 0x2F.

Response

Definition	Number of Bytes	Value		
Modbus slave number	1 byte	0x2F		
Function code	1 byte	0x64		
Length of data in bytes	1 byte	0x06		
Sub-function code	1 byte	0x04		
Transmission number ⁽¹⁾	1 byte	0xXX		
First word read (MSB)	1 byte	0x12		
First word read (LSB)	1 byte	0x0A		
Second word read (MSB)	1 byte	0x74		
Second word read (LSB)	1 byte	0x0C		
(1) The slave sends back the same number in the response.				

NOTE: The above table describes how to read addresses 101 = 0x65 and 103 = 0x67 of a Modbus slave. The Modbus slave number is 47 = 0x2F.

Resetting the Acti 9 Smartlink Device with Factory Parameters

Description

To reset the Acti 9 Smartlink device, proceed as follows:

Step	Action
1	De-energize Acti 9 Smartlink
2	Set the Modbus address to value 00
3	Re-energize Acti 9 Smartlink

The reset data is as follows:

- The communication parameters become: 19,200 baud, even parity, 1 stop bit
- The operation counters are set to 0
- The running hours counters are set to 0
- The counter modification dates are set to the value "1 January 2000"
- The counter pulse weights are set to 10

DOCA0004EN-02

Schneider Electric Industries SAS

35, rue Joseph Monier CS30323 F - 92506 Rueil Malmaison Cedex

www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.