
 
 
  

Using AI to Optimize HVAC Systems 
in Buildings: A Real-world Example 

Executive summary 
Artificial intelligence (AI) technology has the po-
tential to significantly improve a building’s en-
ergy efficiency, environmental sustainability, and 
occupant health, but examples have been 
largely theoretical. In this paper, we describe a 
“real-world” AI solution and its implementation in 
624 school buildings. After about 5 months of 
operation (winter season), the solution reduced 
heating energy by 4%, reduced electricity usage 
by 15%, reduced CO2e emissions by 205 tonnes, 
and reduced occupant complaints by 23%. We 
explain these results and provide lessons 
learned from the project. 
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Using AI to Optimize HVAC Systems in Buildings: A Real-world Example 

 
While there has been much research in the field of AI building systems along with 
the complementary technologies that support them, there is far less literature on the 
“real-world” implementation of AI in commercial buildings and the associated re-
sults. In order to help justify AI projects, facility management and real estate lead-
ers need examples of AI implementations that explain the challenges they address 
and validation that the solution really solves those challenges. They also need guid-
ance on what to look for in an AI solution and an understanding of the steps in-
volved with an actual AI implementation. 
 
This paper attempts to address these points by describing an actual AI implemen-
tation across 78 properties in Stockholm, Sweden, on which there are 624 existing 
school buildings (see Figure 1). These buildings collectively represent 395 heating 
systems, all of which are district heating systems, except for one which is a geo-
thermal heat pump. Note that the school buildings have only heating systems since 
they are closed during cooling season (i.e., summer).  
 
We start by explaining the challenges that led SISAB, a municipal company respon-
sible for operating and maintaining these school buildings, to seek an AI-based 
building management solution. We then describe the specific AI solution and step 
through the three AI implementation phases. After about 5 months of operation (win-
ter season), the AI solution reduced heating energy by 4%, reduced electricity us-
age by 15%, reduced CO2e emissions by 205 tonnes, and  reduced occupant com-
plaints by 23%. The paper explains these results and closes with lessons learned 
and recommendations for starting an AI project.  
 

 
It’s important to note that while AI can be used in new buildings, we focus specifi-
cally on the use of AI in existing buildings. This is an important distinction in terms 
of the expected savings that AI can bring. Buildings can be designed and built to-
day with sophisticated architecture, materials, building management systems 
(BMS) and various smart sensors resulting in very efficient operation. AI used in ex-
isting buildings that lack modern design practices, are likely to result in greater 
efficiency improvements without the need to rip and replace existing systems. This 
is a key benefit for those managing portfolios with many older buildings.  
 
Note, this white paper presumes the reader has a basic understanding of AI funda-
mentals. For more information see White Paper 502, AI Fundamentals for Buildings. 

Introduction 

Figure 1 

Map of SISAB schools 
as shown in Schneider 
building management 
system 

https://go.schneider-electric.com/WW_202109_DE-AI-Fundamentals-For-Buildings-MF-LP.html
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To provide context for the challenges, we first provide some background. SISAB 
owns, operates, and maintains over 600 preschools, primary schools, and colleges 
in the city of Stockholm, Sweden. With an annual energy budget of about €24.3M 
($26.5), even a small efficiency improvement can result in significant savings. 
These savings can then be used to either reduce their budget or invest in new en-
ergy-saving technologies. These schools range in size (100-48,000 m2) and in age 
(7-15 years) requiring different heating setpoints to maintain a comfortable environ-
ment year-round for the 200,000 students and staff that occupy them.  
 
Prior to 2013, SISAB had multiple building management interfaces (provided by dif-
ferent vendors). After 2013, they established an operations center (like a network 
operations center for data centers) that operates and maintains all their buildings. 
This is now the only system where building control changes can be made (e.g., 
heating system setpoints). Even technicians in a particular school building must be 
given specific permission to make changes in that building. Prior to this, they had 
no way of knowing the history of who made what changes due to the large number 
of contractors who work on their buildings. 
 
Lastly, over the years, SISAB installed temperature and CO2 sensors inside their 
school buildings (currently over 20,000 sensors) so that the heating and ventilation 
systems could provide real-time control. This equated to roughly one million data 
points every day. Neither the heating & ventilation systems nor maintenance per-
sonnel were able to do this. 
 
Given this background, SISAB realized it had three main challenges: 
 
• Reduce their overall heating energy and the associated heating costs while 

maintaining a mean indoor temperature of 20°C (68°F). 

• Implement a solution in the existing buildings and control system without re-
placing existing equipment. 

• Analyze a large data set from all the sensors, identify the optimal setpoints, 
and then make changes in real time. 

 
 
Selection 

In March 2018, SISAB selected an AI solution developed by Myrspoven. The pro-
jected payback of less than three years helped justify the investment (see Results 
section for actual payback). After implementation, SISAB eventually called their sys-
tem SOLIDA (SISAB On-Line Intelligent Data Analysis). This solution didn’t require 
retrofitting any of SISAB’s existing components such as building controllers. The 
cloud-hosted AI service did not replace their conventional building controls but ra-
ther runs on top of their existing BMS. One could say that the AI solution is acting 
as a virtual building operator using the same control knobs a human would use. The 
biggest difference is that the human typically makes changes a few times a year 
based on occupant complaints, while this AI solution makes adjustments every 15 
minutes to optimize results continuously. The AI solution expects a conventional 
BMS to do the basic management functions while the AI service adjusts setpoints 
for air temperature, air pressure (for airflow) or both (depending on the building) to 
get the best indoor climate and energy performance. These are key benefits for or-
ganizations with existing buildings. 
 
Selection guidance  

The core concept of Myrspoven AI is that the logic is created by data instead of a 
programmer. In this specific case, the school building produces the data (e.g., tem-
peratures, valve positions, setpoints, energy readings, etc.). Also, the solution 

AI solution 

Building 
challenges 

https://sisab.se/
https://sisab.se/
https://myrspoven.se/
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offered the option of integrating external data sources, such as weather data. Fur-
thermore, when we discuss traditional building HVAC controls, this generally infers 
a building that runs on specific schedules, which can be energy optimized. For ex-
ample, by turning on heating/cooling equipment at 6am and shutting down at 6pm, 
eliminating energy use during the holidays, operating the HVAC equipment only un-
der the zones that are occupied, etc. However, instead of a fixed schedule, the AI 
solution can use past data and predicted future events to decide when to con-
trol/adjust equipment.  
 
While other AI solutions may require custom programming to build a model from 
scratch, the Myrspoven software installs a generic “out-of-the-box” model with no 
human programming. Instead of running on schedules, the AI model is given input 
values and a very specific output/goal to reach, using supervised learning1 and 
other AI techniques. In essence, the generic model learns by making changes to 
the system and observing the result, thereby transforming into a tailored model, fit 
for a specific building. This is illustrated in Figure 2. 
 

Self-
Learning 

AI

1 2

35

Measure
Read building data such as 
tempeature & pressure

Learn
What were the 
outcomes of the 
changes?

Predict
Which settings provide 
optimal savings in next 

48 hours?

Assess
Does the current control
strategy need changes?

4 Control
Change setpoints

 
 
For facility management and real estate leaders assessing AI solutions, the follow-
ing guidance may help narrow down available options. Consider solutions that: 
 
• don’t require retrofitting existing components such as building controllers 

• work “out of the box”, i.e., don’t require custom coding, and require only 
changes to variables such as setpoints  

• can be deployed via a private cloud hosted by a cloud provider, as a means 
of shifting data privacy and data security responsibility to the provider 

 
With this background, we now discuss the details of implementing this solution. 
 
 
This section breaks SISAB’s AI implementation down into three main phases. How-
ever, before starting these phases, it should be noted that for any AI solution to 
work effectively, there are three requirements that a building must meet:  
 

1. A means of connecting the AI solution 

2. A means of collecting and storing data 

3. A means of performing actions 

 
1 See White Paper 502, AI Fundamentals for Buildings, for an explanation of these terms. 

AI solution  
implementation 

Figure 2 

How a generic AI model 
learns over time 

https://go.schneider-electric.com/WW_202109_DE-AI-Fundamentals-For-Buildings-MF-LP.html
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In the case of larger buildings, these requirements are relatively easy to meet. First 
and foremost, a building requires a BMS that controls the subsystems and core 
building functions in need of improvement. Buildings already contain data pro-
duced and logged by the BMS. Often, this is all the AI solution needs. In some 
cases, extra sensors can be installed for added benefits, for example, to get a 
clearer picture of indoor comfort. A rich dataset coupled with sufficient storage and 
computing power, is key for building AI analytics models to deliver accurate in-
sights.  
 
Figure 3 provides a high-level illustration of the data flows between the AI solution 
and the BMS. 

Weather data, energy 
tariffs etc.

Database AI
(creates a continuously 

improving virtual model)

Optimization

Continuous update of BMS set points 

BMS data

ECOSTRUXURE BMS

Sensors/control
 

We now describe each of the three AI implementation phases. While these phases 
apply to all 624 school buildings, we describe each phase in the context of a single 
school building. The three phases are: 
 

1. Onboarding 

2. AI learning 

3. AI control 

 
Phase I: Onboarding 

In this phase, the AI service provider and building owner or their representative 
start by establishing the objective for the AI solution along with the required interac-
tions between it and the building. There are four main steps in the onboarding 
phase:  
 

1. Establish a connection with the BMS 
The communication between the cloud-based AI service and the BMS is facil-
itated by what is typically referred to as middleware. This is a small program 
running on premise that collects agreed-upon data points and also maintains 
and monitors communication with the cloud. In this case, the middleware is a 
Smart Connector2 with a custom extension developed by Myrspoven. The 
middleware continuously monitors the secure uplink connection to the AI pro-
vider’s cloud, which allows the solution to perform its job. Note that in this 
project all school buildings were running Schneider Electric’s BMS solution 
called EcoStruxure Building Operation (EBO).  
 

 
2 This is Schneider Electric middleware software that allows communication between two different 

pieces of software. 

Figure 3 

Illustration of data flows 
between the AI solution 
and Schneider Electric’s 
BMS solution 

https://en.wikipedia.org/wiki/Middleware
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2. Collect a list of available data points 
In order to collect the building’s data points, the middleware scans the BMS 
for all “accessible” data points in the building. Most building owners are sen-
sitive to exposing certain data points, like those in a data center. In these 
cases, the sensitive data points are hidden (i.e., denied access rights), 
through BMS settings before data point discovery. An example of this is 
shown in Figure 4. 
 

 
 

3. Decide how to interact 
After discovering all the accessible data points, the AI provider needs to 
know how to interact with the building. To do this, they categorize the data as 
either: 

o Observable: These can be sensor readings measuring energy con-
sumption or temperatures with an allowed range, e.g., comfortable 
indoor temperature. It can also be any data point that may help the 
AI make better choices such as external weather data. This data 
supports the AI in making decisions. 

o Actionable: Any data point that can be changed, usually to control a 
system setting such as a temperature setpoint to control supply air 
temperature.  

 
Some additional information from the building is needed such as equipment 
types, zone classifications, etc. (information that is typically available in BMS 
graphics). This approach tries to minimize manual data gathering by letting 
the AI itself figure out how the building is connected internally. After analyz-
ing the information, the AI provider suggests a list of actionable points, each 
with an allowed range within which the AI solution can act. The objective is 
also defined in terms of comfort measures and energy metrics. With both par-
ties in agreement, live data can now be sent. This is discussed in the next 
step. 
 

4. Start sending live data 
This step tests and verifies the interaction between the cloud and building. 
For example, it verifies that a 1st floor temperature sensor isn’t reporting as a 
2nd floor temperature. The middleware is configured to periodically read the 
relevant data points from the BMS and send them to the cloud, as well as re-
ceive actions from the cloud and write them to the BMS. If the cloud service 
were to go offline, a problem is detected in the building, or if the building op-
erator chooses to do so, the AI solution can be disabled for the whole build-
ing or for a particular subsystem. The BMS then automatically reverts to its 
default method of managing the building. As an example, Figure 5 shows the 
operator graphics for the supply air portion of an air handling unit. The blue 
text is the actual sensor reading of pressure and temperature. The grey is the 
setpoint by conventional control and green is the setpoint recommended by 
the AI service. 

 
 

Figure 4 

Example of setting BMS 
data point access rights 
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Actual sensor reading
Setpoint by conventional control
AI recommended setpoint

 
 

Phase 2: AI learning 

This phase involves training of the Myrspoven AI model in the cloud. Despite being 
in a learning phase, the AI model is capable of making small changes as we de-
scribe below. Training consists of the following three steps, carried out remotely 
(offsite) by the AI provider: 
 

1. Verify collected data  
The quantity, quality, and content of the datasets dictate the accuracy of any 
model therefore the data quality needs to be verified. If the input data is bad, 
the AI decisions will be bad as well. In Myrspoven’s case, the models know 
exactly what data they need to collect for a well-functioning program. Note 
that this data verification is slightly different from that in step 4 of the 
onboarding phase. In the AI learning phase, the verification focuses on erro-
neous data from a correct sensor (e.g., signal noise), whereas in step 4, veri-
fication focuses on permission to read and write data, and tests the whole da-
taflow upstream and downstream between cloud and building, as well as au-
tomatic testing of scenarios such as broken uplink or safeguards when set-
points from the cloud are out-of-bounds. 

2. Train the model 
Training takes place in the cloud. The AI service learns how the building be-
haves given certain changes. For example, if an air flow setpoint is changed, 
how will indoor comfort evolve along with the associated change in energy 
and cost? While training is mostly based on monitoring the building, to get 
more interesting data, some small deviations are made to control points. For 
example, if two fans are usually running at the same speed, it will instruct one 
fan to slightly change to learn how that affects the building.  

3. Test the model 
With new data arriving in the cloud, the model is retrained daily, and accu-
racy improves. The more data, the better the model. For SISAB, after one 
month of data, the model was good enough to use as a basis for controlling 
the building (described in next phase “AI control”).  

 
Phase 3: AI control  

Once the model knows the building behavior, it can be used for taking useful ac-
tions (actual control of the building). In this phase, the AI provider instructs the AI 
solution to begin managing the applicable building systems. The AI model and 
building performance continuously improves from this point. 
 
The AI solution doesn’t need to be told how to do something, only what the goal is. 
More precisely, it needs to know what is considered good and bad in terms of in-
door comfort, energy consumption, and other factors. With the combination of the 
model, a performance measure, and a weather forecast, it can start turning virtual 
knobs to determine the best course of action in the coming hours or days. Of 
course, the combinations of all possible actions are too many to be tested even with 
the cloud’s computing power. To address this challenge, the AI solution selects an 
initial plan and the very first control decisions are applied to the building. When new 
data become available, the plan is revised and is now looking a little further ahead. 
The main data flows are shown in Figure 3. 

Figure 5 

Example of BMS data points 
recommended by AI 
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The AI solution was fully implemented in 624 school buildings in November 2020 
and has been running during the winter season since then. As mentioned in the in-
troduction, the schools are in session only during the winter months. In order to as-
sess the impact of AI, SISAB compared the energy bills between two periods:   
 

November 1, 2019 to March 31, 2020 (No AI in any building) 
November 1, 2020 to March 31, 2021  (AI implemented in 624 buildings)  

 
In comparing the bills from each period, they found that running the AI service in 
conjunction with EcoStruxure Building Operation for 5 months resulted in: 
 
• 4% heating energy savings 

• 15% electricity savings  

• 205 tonnes reduction in greenhouse gas (GHG) emissions 

• 23% reduction in complaints from building occupants 

• 2-year payback 

 
We describe these savings below. 
 
4% heating energy savings 

All the heating systems were district heating, except for one which was a geother-
mal heat pump system. Heating energy savings were calculated by first normalizing 
the monthly district water heating bills according the degree days (weather ad-
justed). The normalized heating energy usage was then aggregated and compared 
to the same school buildings after AI was implemented. Any school building with a 
change of over 20% was considered an outlier and was excluded from the analysis. 
This same calculation was done with school buildings that were excluded from the 
AI project. These buildings serve as the control group to isolate the effect of the AI 
solution. 
 
Overall, the AI solution reduced heating energy and heating costs by an average of 
7% in the experimental group of buildings. However, the buildings in the control 
group saw an average savings of 3%3 which indicates that the AI solution was re-
sponsible for 4% savings. These savings were possible through a combination of 
the AI model and additional heat sources: people (students and staff), lights, com-
puters, and solar heat gain through windows. For example, the temperature would 
rise when students entered the classroom, or when the school room windows were 
exposed to the sun. By anticipating the temperature patterns, the AI model was 
able to proactively lower the setpoints and take advantage of these “free” heat 
sources. In doing so, it also prevented uncomfortable spikes in temperature. In fact, 
the overall mean indoor temperature increased 1°C while overall heating energy de-
creased. 
 
15% electricity savings 

The electricity savings was calculated based on total electricity costs before 
(8,000MWh) and after AI was implemented (6,800MWh) for the same time period as 
the heating energy comparison. These costs were not weather-adjusted and in-
cluded the entire electricity bill, not just the fan motors. This means that the savings 
percentage would have been significantly higher if were only for the fan motors. 
 

 
3 This increase was due to the manual energy optimizations by energy engineers throughout all build-

ings. For example, trimming setpoints, installing VFD’s, fine-tuning pumps, and improving insulation.  

Results 

https://buildpass.co.uk/blog/what-are-degree-days-and-how-do-we-use-them/
https://www.statisticshowto.com/control-group/
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The 15% total electricity savings were from reduced ventilation motor energy. The 
ventilation system uses fan motors to supply air to the classrooms. By analyzing the 
CO2 data, the AI model was able to optimize airflow through air pressure setpoints 
such that the CO2 levels remained within a customer-defined range, but never be-
low 800ppm (parts per million). More airflow decreases CO2 levels but increases 
fan energy.  
 
205 tonnes reduction in GHG emissions 

Using Sweden’s emissions factor for electricity (44 kg CO2e/MWh4) and its average 
district heating emissions factor (61 kg CO2e / MWh5) the buildings were able to re-
duce their greenhouse gas emissions by 52.8 metric tonnes and 152.5 metric 
tonnes respectively, for a total of 205.3 metric tonnes. These savings are equivalent 
to the emissions of nearly 173,000 dwellings in Sweden or 3.5% of all dwellings in 
Sweden6. Note that Sweden has a relatively low electricity emission factor due to its 
large proportion of renewable energy sources. Had this project taken place in a 
more carbon-intensive country like the United States (379 kg CO2e/MWh4), the total 
emissions reduction from electricity savings would have been almost nine times 
greater. 
 
23% reduction in complaints from building occupants 

While not one of the original goals of the AI project, after evaluating the project out-
comes, management discovered that by reducing the indoor temperature variation 
in the buildings, the AI solution was able to improve the overall occupant satisfac-
tion in the school buildings with a 23% reduction in complaints. Occupants report 
deficiencies by calling SISAB customer service who pass the trouble ticket to the 
appropriate organization who then handles the work. This allowed SISAB to meas-
ure the complaints related to thermal comfort before and after implementing AI. This 
decrease in complaints also allowed SISAB’s technicians to shift their efforts to 
other projects which improve occupant satisfaction. 
 
2-year payback 

The AI project achieved a simple payback period of 2 years based on the aggre-
gated energy savings described above. These results were verified by comparing 
the school buildings before and after they were managed by AI.  
 
 
The stakeholders in this project learned some lessons along the way that serve as 
recommendations for others who embark on a similar project. We share some nota-
ble lessons below. 
 
Define technical requirements 
Clearly defining technical requirements is a must to help ensure the success of a 
project. This helped SISAB and Myrspoven choose the specific buildings and solu-
tion architectures most suitable for the project. Even out-of-the-box solutions have 
site-specific needs for a successful implementation.  
 
Establish tight collaboration between partners 
As with most new cutting-edge technologies, there tends to be a steep learning 
curve early on in the project and stakeholders should expect this. This was the case 
with implementing a new AI solution in school buildings (an uncommon AI 

 
4 Our World In Data, Carbon Intensity of Electricity, 2021 
5 Sweden Green Building Council, Treatment of Scandinavian District Energy Systems in LEED, Table 8 
6 Based on 1.2 kg CO2e emissions per dwelling using 2019 electricity and district heating TWh for resi-

dential and service sector on pg. 9 of Energy in Sweden 2021, and Swedish dwellings in 2019,  

Lessons  
learned 

https://ourworldindata.org/grapher/carbon-intensity-electricity?region=Europe
https://www.sgbc.se/app/uploads/2020/06/Treatment-of-Scandinavian-District-Energy-Systems-in-LEED-v1.1-2014.pdf
https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=198022
https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__BO__BO0104__BO0104D/BO0104T01/table/tableViewLayout1/
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application). This required tight collaboration between SISAB and their vendors, es-
pecially with Myrspoven and Schneider Electric. For example, early on in the imple-
mentation, there were frequent breaks in real-time data communication between the 
SOLIDA platform and Myrspoven’s software, such as rebooting the server daily. An-
other challenge stemmed from the school holiday and vacation schedules, making 
it difficult to optimize the AI model. The team addressed this issue by hard coding 
the schedule, allowing the AI model to learn how the school buildings are used. The 
closer the collaboration between the stakeholders, the quicker issues like this are 
resolved. 
 
Take an agile7 approach to designing the solution 
Start with doing the bare minimum to achieve a goal, then measure, refine, and iter-
ate to continuously improve the outcome. Test your assumptions early and quick to 
make sure you are moving in the right direction. Keep a close and frequent feed-
back loop between developers, architects, customers, end-users, and tenants to 
ensure you are all aligned. Make sure that the solution is designed in a way that is 
open to change and customizations. Develop the initial minimum viable product 
(MVP) with tight collaboration between developers and end-users. This reduces 
risks, minimizes gaps between expected and actual outcomes, and improves the 
overall project experience. 
 
Choose open BMS systems 
A lack of open systems presents a big challenge to digitalizing buildings. For a long 
time, system vendors would lock out other vendors from their system. When sys-
tems from multiple vendors are integrated, open access to data is strongly recom-
mended. Some stakeholders call this a “single pane of glass for information”, others 
call it open, or non-proprietary. SISAB had firsthand experience with this challenge 
prior to 2013, when they had multiple building management interfaces from different 
vendors. See White Paper WP501, Smart Buildings: A Framework for Assessing the 
“Openness” of a Building Management System (BMS), for more information on open 
systems.  
 
Among other benefits, moving to a centralized and open system allowed them to 
freely share specific data between applications from different vendors. They did 
this initially with the AI application, but two others followed. They integrated a real-
time wireless radon measurement and monitoring system. SISAB and Myrspoven 
have also started working with the electrical utility on programs like load sharing, 
dynamic energy pricing, and automated demand response, to reduce costs and 
further improve their environmental footprint in Sweden.  
 
Start with a “critical mass” of buildings  
In the first winter season, the project team implemented the AI software in 624 
school buildings. When the AI solution is first implemented, the model takes a 
longer time to learn, especially if many of the independent variables are correlated. 
A model needs lots of random inputs to learn quickly. If you feed the model inputs 
with very consistent indoor temperatures, correlated with outdoor temperatures, 
same amount of people every day, etc., the model predictions will be less reliable. 
Figure 6 shows an example of how outdoor temperatures (x-axis) are correlated 
with room temperature (y-axis). This meant that the team continuously adjusted the 
algorithm to improve the predictions. From this experience they learned that about 
600 school buildings are an optimal “critical mass” or “sweet spot” to make algo-
rithm adjustments while still managing building comfort. With too many buildings, 
you end up spending too much time optimizing the algorithm instead of managing 

 
7 “Agile is an iterative approach to project management and software development that helps teams de-

liver value to their customers faster and with fewer headaches. Instead of betting everything on a "big 
bang" launch, an agile team delivers work in small, but consumable, increments.” 

https://www.se.com/us/en/download/document/Buildings_WP501_EN/
https://www.se.com/us/en/download/document/Buildings_WP501_EN/
https://www.atlassian.com/agile
https://www.atlassian.com/agile
https://www.atlassian.com/agile
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the buildings. Note that this critical mass may be different for different types of 
buildings and different AI solutions. 
 

 
 
Integrate AI into the BMS interface 
Early in the project, contractors performing field maintenance would look at the 
BMS’s interface and think there was a problem because they couldn’t understand 
that AI was part of the control strategy. This prompted the team to integrate certain 
AI related information, including graphics elements, into the BMS interface. This 
also avoided having to switch between user interfaces. The team also added the 
capability of setting temperature boundaries (safety guardrails) for upper and lower 
limits to ensure that the AI control didn’t deviate outside of this range. It’s important 
to program these boundaries as close to the controller as possible to avoid issues 
in case of a network failure. Finally, during maintenance, contractors needed the 
ability to temporarily disable the external AI control. This feature was also added to 
the BMS interface.  
 
Ensure AI solution is flexible 
Each BMS is different in terms of communication protocols, control strategies, nam-
ing conventions, system design, etc. Flexibility allows the AI solution to scale more 
easily with the number of buildings. For example, can the AI solution work with the 
control strategies without having to retrofit or reprogram them? During the discovery 
phase of the project, the developers took an inventory of all the different ways to 
manipulate the control strategy for the different systems (e.g., HVAC units, BMS 
controllers, programmable logic controllers, etc.). For example, the AI solution 
couldn’t change the BMS controller’s temperature setpoint directly because the 
BMS controller used a separate control loop to establish the temperature. In turn, 
the control loop was driven by a set of indoor reference temperatures as a function 
of outdoor temperatures. Since these indoor reference temperatures could be 
changed, the AI solution learned what these inputs should be as means of estab-
lishing the intended temperature setpoint for each controller. 
 
Avoid aggressive control overrides and bypasses  
As discussed above, manipulating control systems can be beneficial but system in-
tegrators must use caution to prevent premature mechanical equipment failures. 
For example, making large and frequent changes to setpoints cause wear on actua-
tors and reduce their expected “calendar” lifetime. Aggressive overrides and by-
passes can also negatively impact occupant comfort if the system becomes unsta-
ble.  
  

Figure 6 

Outdoor temperatures 
correlated with room 
temperatures 
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AI for buildings is a heavily researched topic but few practical real-world implemen-
tation examples are published to guide facility management and real estate lead-
ers. The AI implementation discussed in this paper represents the integration of an 
active AI service with live brownfield buildings. By using artificial intelligence (AI) 
with data from a BMS, new analytics, optimization, and control strategies become 
possible. The solution reduced heating energy by 4%, reduced electricity usage by 
15%, reduced CO2e emissions by 205 tonnes, and reduced occupant complaints by 
23%, providing an overall improvement in occupant comfort. The examples dis-
cussed in this paper focus primarily on HVAC optimization. AI for buildings, how-
ever, has a wide array of applications in facility management, resource allocation, 
occupancy analysis, asset tracking, access control & security, among others. 
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