NOTES:

1. INSTALLATION SHALL COMPLY WITH ALL APPLICABLE LOCAL AND NATIONAL CODES.
2. REFER TO PRODUCT DOCUMENTATION FOR ADDITIONAL DETAILS.
3. DRAWING DEPICTS POWER SYSTEM CONNECTIONS AND IS NOT REPRESENTATIVE OF PHYSICAL LAYOUT.
4. ALL AC BREAKERS ARE RATED CONTINUOUS DUTY RATED WITH 2A/2B AUX CONTACTS FOR APC CONTROL, AND CONFIGURATED WITH REQUIRED SYSTEM SETTINGS AS DETAILED IN PRODUCT DOCUMENTATION.

SPECIFICATIONS:

- **Device Rating for G35TSBP10K30F-DP (to use with 10 - 30kVA UPS):**
 - Q1, Q2, Q3: 125A CB 3 POLE 600V SQUARE-D by Schneider Electric, HX36125A-B, 2A/2B STANDARD
 - Q7: 250A CB 3 POLE 500V SQUARE-D by Schneider Electric, HXHL3625025DC1386, 1-SHUNT TRIP (24VDC) 1-AUX. SWITCH

- **Device Rating for G33TBXR2B6S/G33TBXR6B6S:**
 - XR BATTERY ENCLOSURES (OPTIONAL) (G33TBXR2B6S/G33TBXR6B6S)

Shunt Trip:

- 1-SHUNT TRIP (24VDC) 1-AUX. SWITCH

Legend:

- AC CABLE = PROVIDED BY OTHERS
- DC CABLE = PROVIDED BY OTHERS
- DC BUS

Schneider Electric

Diagram:

- **UPS System Output:**
 - 208V 3PH - 4 WIRE + GROUND
 - 120V 1PH - 2 WIRE + GROUND

Design:

- **Wise Galaxy 3500**
 - INPUT 208V 3PH, DUAL Mains
 - OUTPUT 208V 3PH
 - 10-30kVA 1 MGD, DCP=1 DISTRIBUTION SYSTEM ONE LINE DIAGRAM

Approval:

- **Drawing is Approved:**
 - Project: G35TSBP10K30F2C1-DP-SD
 - Approved by: A. Warner 04-DEC-15
 - Project Submittal Drawings Sheet 2 of 3

Diagram Information:

- Drawing is an abbreviation of the above information and is subject to change without notice.

Schneider Electric

Schneider Electric
Galaxy 3500® 10K to 30K UPS Frame (1 Module) Site Planning Data - MBP-DP Cabinets

Battery - Nominal Voltage: +/-192V DC
Input Voltage: 208V AC, **Output Voltage**: 208V AC

<table>
<thead>
<tr>
<th>UPS Rating</th>
<th>SKU Number</th>
<th>System Input @ 208V AC</th>
<th>UPS Input @ 208V AC (Inverter operation)</th>
<th>Nominal System Bypass Current 208V AC (A)</th>
<th>System Output Power</th>
<th>Nominal Current(A) (in UPS Cabinet)</th>
<th>Recommended Over current Protection Device Rating (MIB / BIB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kVA/8kW</td>
<td>G35T10KF1B2S</td>
<td>24.3</td>
<td>26.7</td>
<td>27.8</td>
<td>10kVA/8kW</td>
<td>27.8</td>
<td>27.5 35</td>
</tr>
<tr>
<td></td>
<td>G35T10KF2B2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T10KF1B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T10KF2B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T10KF3B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T10KF4B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15kVA/12kW</td>
<td>G35T15KF2B2S</td>
<td>36.5</td>
<td>40.2</td>
<td>41.6</td>
<td>15kVA/12kW</td>
<td>41.6</td>
<td>41.2 60</td>
</tr>
<tr>
<td></td>
<td>G35T15KF2B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T15KF3B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T15KF4B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20kVA/16kW</td>
<td>G35T20KF2B2S</td>
<td>48.5</td>
<td>53.4</td>
<td>55.5</td>
<td>20kVA/16kW</td>
<td>55.5</td>
<td>55 80</td>
</tr>
<tr>
<td></td>
<td>G35T20KF2B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T20KF3B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G35T20KF4B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30kVA/24kW</td>
<td>G35T30KF3B4S</td>
<td>73</td>
<td>80.3</td>
<td>83.3</td>
<td>30kVA/24kW</td>
<td>83.3</td>
<td>82.5 110</td>
</tr>
<tr>
<td></td>
<td>G35T30KF4B4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes.

1. Nominal Input current based on nominal mains voltage + batteries fully charged at 100% ohmic load.
2. Maximum Input current based on fully battery recharge + nominal mains voltage at 100% ohmic load.
3. Suggested input overcurrent protection based on continuous full load.
4. Nominal battery voltage assumed to be 2.0 volts/ cell (lead acid technology)