Grounding of RS485 communication cable in Vamp relays

User qualification
Electrical equipment should be installed, operated, serviced, and maintained only by trained and qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

Insulation and dielectric strength testing
Insulation testing may leave capacitors charged up to a hazardous voltage. At the end of each part of the test, the voltage should be gradually reduced to zero, to discharge capacitors, before the test leads are disconnected.

1 Introduction

Communication ports in protection relays have usually isolation barrier against circulating currents between devices connected to the same communication bus. These circulating currents can be caused by potential differences between devices because of the long cables or poor grounding of the device. For this reason RS485 communication port in Vamp relays is also isolated.
Grounding of RS485 communication cable in Vamp relays

Because of this isolation barrier it is critical that communication ground and cable shield ground are connected to their correct separate places. Communication cable shield is designed to prevent disturbances entering the communication line and the inducted voltages to cable shield can be rather high. For this reason communication cable shield must not be connected to communication ground.

Failure to follow this guide may cause high voltage entering communication ground which may damage the isolation barrier and RS485 converter leading communication failure to SCADA.
2 Connection examples

![Connection of VAMP 57 relay](image)

Figure 2. Connection of VAMP 57 relay

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6*</td>
<td>RS-485 tem</td>
</tr>
<tr>
<td>5*</td>
<td>RS-485 -</td>
</tr>
<tr>
<td>4*</td>
<td>RS-485 +</td>
</tr>
<tr>
<td>3*</td>
<td>RS-485 tem</td>
</tr>
<tr>
<td>2</td>
<td>RS-485 G</td>
</tr>
<tr>
<td>1</td>
<td>RS-485 SHD</td>
</tr>
</tbody>
</table>

NOTE! *Interconnect 3 & 4 and 5 & 6 when termination is needed.*
Grounding of RS485 communication cable in Vamp relays

Figure 3. Connection of VAMP 50 relay

RS-485 (2-wire) 3-pole screw connector
1 = -
2 = +
3 = GND
Figure 4. Connection of VAMP 200 series relay

RS-485 connector

1: Signal ground GND
2: Receiver - R -
3: Receiver + R +
4: Transmitter - T -
5: Transmitter + T +

DIP switches

<table>
<thead>
<tr>
<th>2/4 wire selection</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-wire</td>
<td>Off</td>
</tr>
<tr>
<td>2-wire</td>
<td>On</td>
</tr>
</tbody>
</table>

Above pictures are showing how to connect in individual relays but the whole bus connection needs to be considered also.

This means that in case of multidrop connection the cable shield must be connected only from one end. Either individually from one end of the shield between the connection points or continuous shield for the whole length of the bus and grounding at the end point only. Below example clarifies these connections.
Grounding of RS485 communication cable in Vamp relays

All Shields connected through and grounded at one end

Each shield grounded at one end only