PowerLogic™ High Density Metering System
4-Meter Enclosure
Installation Guide

63230-508-207A1
08/2010
HAZARD CATEGORIES AND SPECIAL SYMBOLS

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in property damage.

NOTE: Provides additional information to clarify or simplify a procedure.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.
ENCLOSURE INSTALLATION

- **Introduction** ... 1
- **Box Contents** .. 1
- **Parts and Accessories** .. 1
- **Safety Precautions** .. 2
- **Specifications** .. 2
- **Installation** ... 4
- **Mounting the Enclosure** .. 5
- **Mounting Dimensions** ... 8
- **Wiring Connections** .. 10
- **Shorting Block Use** ... 11
- **Current Transformers** ... 12
- **Wiring Diagrams** ... 12
- **Single-Phase Tenants: Single-Phase Source** 13
- **Single-Phase Tenants: Three-Phase Source** .. 14
- **Three-Phase Tenants** ... 15
- **Control Power** .. 16
- **Replacing CPT Secondary-Side Fuse** ... 17
- **Communications** ... 18
- **Initializing the Meters** ... 18
- **Removing a Meter** .. 19
- **Cover Plates** ... 20
- **How to Upgrade Firmware** .. 20

METER WIRING DIAGRAMS

- **Safety Precautions** .. 21
- **Wire Colors** ... 21
- **Wiring Information** ... 21
- **Safety Precautions** .. 22
- **Typical Field Connections for the PM210, PM750, and ION6200** 23
- **Series 800 Power Meter WITHOUT CPT** .. 24
- **Series 800 Power Meter WITH CPT** ... 25
Section 1— Enclosure Installation

Introduction

The PowerLogic™ High Density Metering System—4-Meter Enclosure is used to monitor the amount of electricity used in individual units of multi-unit residential or commercial buildings. The system consists of one or more power meters housed in a wall-mounted metal cabinet or enclosure. Multiple enclosures may be installed at a single location.

Meters are assigned to a tenant who occupies an individual unit within a complex. The meter monitors and records the energy consumed inside the unit. At pre-determined times, tenant billing software polls the meter through a communications link to gather usage information. This information can be used as a means of monitoring overall electrical usage or to generate an electric bill for the tenant.

NOTE: Some states do not permit sub-billing. Before billing tenants, check your state and local regulations.

Box Contents

The following components are shipped with the 4-Meter Enclosure:
- Enclosure containing pre-installed meters (if any), shorting blocks, ground bar, wiring harness, and disconnect
- MCT2W terminating resistor
- Cover plate assembly kit
- User guide for meter
- This installation guide

Parts and Accessories

The following PowerLogic meters can be mounted in the enclosure:
- PM210
- PM750
- Series 800 Power Meter (PM800)
- ION6200

The enclosure is typically shipped with the meters factory-installed and wired. The 4-Meter Enclosure can contain from 0-4 meters. Table 1 lists part numbers and accessories for the High Density Metering System—4-Meter Enclosure.

Table 1: Parts and Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerLogic Power Meter</td>
<td>See Power Meter installation document (PM210, PM750, PM800, ION6200).</td>
</tr>
<tr>
<td>Cover Plate Assembly Kit</td>
<td>96DINCVRPLT</td>
</tr>
</tbody>
</table>

For more information on your particular meter, refer to the included meter installation bulletin (also available in the technical library at www.schneider-electric.us).

PowerLogic™ Tenant Metering Software is purchased separately and includes installation and use instructions.
Safety Precautions

This section contains important safety precautions that must be followed before attempting to install, service, or maintain electrical equipment. Carefully read and follow the safety precautions outlined below.

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment.
- Always use a properly rated voltage sensing device to confirm that power is off.
- All unused conductors not terminating in an insulated connector or plug at the enclosure bracket(s) must be protected using enclosed heat shrink sleeves or electrical tape.
- Supplied screw must be installed to maintain bonding.
- Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.

Specifications

Table 2: Technical Specifications

<table>
<thead>
<tr>
<th>PHYSICAL CHARACTERISTICS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>Without hood</td>
<td>W 7.5 inches, H 30.8 inches, D 7.4 inches (W 190 mm, H 288 mm, D 188 mm)</td>
</tr>
<tr>
<td>With hood</td>
<td>W 7.88 inches, H 31.5 inches, D 7.50 inches (W 200 mm, H 800 mm, D 191 mm)</td>
</tr>
<tr>
<td>Mounting</td>
<td>Wall mount</td>
</tr>
<tr>
<td>Weight (maximum including meter, hood, and Control Power Transformer (CPT))</td>
<td>46 lbs. (22.2 kg.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMUNICATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RS485 port</td>
<td>2-wire, up to 19200 baud, Modbus RTU</td>
</tr>
</tbody>
</table>

POWER

Power specifications vary according to equipment configuration. See separate power specifications in Table 3.
ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>PM210, PM750</th>
<th>PM800 (PM800 display: -25° to +70° C)</th>
<th>ION6200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter operating temperature</td>
<td>+14° F to +131° F (-10° C to +55° C)</td>
<td>-13° F to +158° F (-20° C to +70° C) display</td>
<td>-4° F to +158° F (-20° C to +70° C)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40° F to +185° F (-40° C to +85° C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity rating</td>
<td>5 to 95% RH at 50° C (non-condensing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>9842 ft (3000 m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STANDARDS

US and Canada

Enclosure

UL 508A

Meter Accuracy Rating

- PM210: ANSI C12.16 Accuracy Class 1
- PM750: ANSI C12.20 Accuracy Class 0.5
- PM800: ANSI C12.20 Accuracy Class 0.5
- ION6200: ANSI C12.20 Accuracy Class 0.5

Table 3: Input Specifications

<table>
<thead>
<tr>
<th>Meter</th>
<th>Control Power Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without CPT</td>
<td></td>
</tr>
<tr>
<td>PM210</td>
<td>115 to 415 ± 10% Vac; 5 VA; 50 to 60 Hz</td>
</tr>
<tr>
<td></td>
<td>125 to 250 ± 20% Vdc, 3W</td>
</tr>
<tr>
<td>PM750</td>
<td>115 to 415 ± 10% Vac; 5 VA; 50 to 60 Hz</td>
</tr>
<tr>
<td></td>
<td>125 to 250 ± 20% Vdc, 3W</td>
</tr>
<tr>
<td>PM800</td>
<td>115 to 415 +/- 10% Vac; 11VA; 50 to 60Hz</td>
</tr>
<tr>
<td></td>
<td>125 to 250 +/-20% Vdc, 6W</td>
</tr>
<tr>
<td>ION6200</td>
<td>100 to 240 Vac, 13 VA; 50 to 60 Hz</td>
</tr>
<tr>
<td></td>
<td>110 to 300 Vdc, 3W</td>
</tr>
<tr>
<td>With CPT</td>
<td></td>
</tr>
<tr>
<td>PM210</td>
<td>277 to 480 Vac, 5 VA; 50 to 60 Hz</td>
</tr>
<tr>
<td>PM750</td>
<td>277 to 480 Vac, 5 VA; 50 to 60 Hz</td>
</tr>
<tr>
<td>PM800</td>
<td>277 to 600 +/- 10% Vac, 60VA; 60Hz</td>
</tr>
<tr>
<td>ION6200</td>
<td>277 to 600 Vac, 13 VA; 50 to 60 Hz</td>
</tr>
</tbody>
</table>

Current Specification

CT Inputs: 5 A nominal, 6 A maximum

Voltage Specification

- PM210/PM750: 10 to 480 Vac (L-L), 10 to 277 Vac (L-N), 10 to 1.6 MVac with external VT
- PM800: 20 to 600 Vac (L-L), 10 to 347 Vac (L-N)
- ION6200: 103 to 690 Vac (L-L), 60 to 400 Vac (L-N)
Installation

The 4-meter enclosure is available in two configurations (see Figure 1). The Type 1 configuration has clear viewing windows in the door and is intended for indoor applications. The Type 3R configuration has a rain hood and a solid door (no viewing windows) and is intended for outdoor applications.

The door is equipped with a hasp for a lock or seal to prevent tampering.

Figure–1: 4-Meter Enclosure

The meters, interior components, and wiring connections are covered by a protective, removable, exterior case enclosure. To access the interior, remove the case from the supporting base/backplate (see Figure 2). The meters are positioned on a supporting bracket attached to the base/backplate that swivels outward to allow access to the back of the meter and terminals for field wiring.

To remove the case, complete these steps:

1. Push the locking bar up to open the door.
2. Remove the front bonding screw.
3. Lift the case up and out to slide off the base/backplate.
Mounting the Enclosure

Mount the metering enclosure next to the distribution panelboard that serves the load to be monitored.

The recommended clearances for the installed enclosure are shown in Figure 3 below:
Figure–3: Recommended Enclosure Clearances

1. Top View A
2. Top View B
3. Front View A
4. Front View B

Min. Clearance to the Left
Min. Clearance to the Right
Min. Clearance Above

Measurements shown are in inches and [millimeters]

CAUTION

LOOSE CONDUCTIVE PARTICLES

Do not drill into the enclosure. Drilling will produce metal shavings that may fall into vents, reduce spacings, and possibly create electrical short circuits.

Failure to follow these instructions can result in equipment damage.
Six (6) pre-drilled 3/8-inch holes are provided on the backplane of the enclosure for mounting. Use #10 or up to 5/16-inch screws, with washers, to attach the enclosure to the wall. Always mount with a minimum of six (6) screws. Figure 4 shows the pre-drilled mounting holes and knockout points for the electrical conduit.

Figure–4: Mounting Holes and Conduit Knockouts
Mounting Dimensions

Figure 5 shows dimensions for the enclosure without the hood. Figure 6 shows dimensions for the enclosure with a hood.

Figure–5: Dimensions for Type 1 Enclosure (without Hood)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>[192]</td>
</tr>
<tr>
<td>30.8</td>
<td>[783]</td>
</tr>
<tr>
<td>13.8</td>
<td>[349]</td>
</tr>
<tr>
<td>4.8</td>
<td>[121]</td>
</tr>
<tr>
<td>7.4</td>
<td>[188]</td>
</tr>
</tbody>
</table>

A. Front view
B. Back view
C. Side view
D. Top view

Measurements shown are in inches and [millimeters].
Figure–6: Dimensions for Type 3R Enclosure (with Hood)

A. Front view
B. Back view
C. Side view
D. Top view

Measurements shown are in inches and millimeters.
Wiring Connections

Conduit knockouts are provided on the enclosure (see Figure 4 on page 7). To comply with national and local standards, Class 1 (voltage input) wiring must be kept separate from Class 2 (current transformer and communications) wiring. Refer to NEC code and local codes before installing. For all field wiring, use copper conductors with 600V rated insulation only.

Control power and voltage inputs require overcurrent protection external to the enclosure. Voltage inputs must be connected to the load side of a Class CC, G, J, RK1, RK5, L or T 15A branch circuit fuse or inverse-time/instantaneous-trip circuit breaker. Use copper conductors only.

Conduit hubs must be rated to the same weather rating as the enclosure and must comply with the standard for conduit, tubing and cable fittings, UL 514B.

The wiring configuration is designed specifically for the High Density Metering System application. Do not change the wiring configuration.

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment.
- Always use a properly rated voltage sensing device to confirm that power is off.
- All unused conductors not terminating in an insulated connector or plug at the enclosure bracket(s) must be protected using enclosed heat shrink sleeves or electrical tape.
- Supplied screw must be installed to maintain bonding.
- Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.
Shorting Block Use

See Figure 7 and follow the instructions following it for using the shorting blocks.

Figure–7: Shorting Block Use

WARNING

HAZARD OF ELECTRICAL SHOCK
Do not loosen slider screws or attempt to move sliders. These screws are locked in place at the factory.
Failure to follow these instructions can result in death or serious injury.

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH
Before loosening the screws:
- Remove all power from the circuit.
- Use a properly rated voltage sensing device to confirm that all power is off.
Failure to follow these instructions will result in death or serious injury.

DANGER

Shorting Bar Screws

NOTE: Short block is shown in shorted position.

Shorting the Current Inputs

By default, the current inputs are shorted when you receive the enclosure. To short the current inputs, complete these steps:

1. Turn off all power supplying this equipment before working on or inside this equipment. Use a properly rated voltage sensing device to confirm that all power is off.
2. Loosen the four (4) shorting bar screws.
3. Slide shorting bar toward field connection screws or bottom of the enclosure.
4. Tighten all four (4) shorting bar screws 6 ± 1 in-lb (0.68 N•m ± 0.1).

Removing Short from Current Inputs

To measure the energy from the circuit, you must remove the default short from the current inputs. To remove short from the current inputs, complete these steps:

1. Turn off all power supplying this equipment before working on or inside this equipment. Use a properly rated voltage sensing device to confirm that all power is off.
2. Ensure field wiring leads from current transformers are securely connected to the shorting block.
3. Ensure wiring in the enclosure is securely connected to a metering device.
4. Loosen the four (4) shorting bar screws.
5. Slide shorting bar away from field connection screws or toward the top of the enclosure.
6. Tighten the left-most (GND) shorting bar screw.
Current Transformers

Field-installed current transformer (CT) leads require stripped wire terminal connections. The CT shorting block is shipped in the shorted position by default from the factory.

NOTE: Recommend metering class current transformers with 5A secondary.

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

• Never open circuit a CT; use the shorting block to short circuit the leads of the CT before attaching or removing any device.

Failure to follow these instructions will result in death or serious injury.

Wiring Diagrams

The wiring diagrams in this manual use the symbols shown in Table 4.

Table 4: Wiring Diagram Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage disconnect switch</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td></td>
</tr>
<tr>
<td>Earth ground</td>
<td></td>
</tr>
<tr>
<td>Protective conductor terminal symbol</td>
<td></td>
</tr>
<tr>
<td>Current transformer</td>
<td></td>
</tr>
<tr>
<td>Shorting block</td>
<td></td>
</tr>
<tr>
<td>Potential transformer</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The disconnect circuit breaker must be placed within reach of the power meter and labeled: Disconnect Circuit Breaker for Power Meter.
Single-Phase Tenants: Single-Phase Source

Figure–8: 2-Wire System Line-to-Neutral 1CT (L-N only)

- For PM210, PM750, and PM800 use System Type 10.
- For ION6200, use Volts Mode 2W.

Figure–9: 2-Wire System Line-to-Line 1CT (L-L only)

- For PM210, PM750, and PM800 use System Type 11.
- For ION6200, use Volts Mode 2W.
- Use with 120/240 V systems.

Figure–10: 3-Wire System 1CT (L-L with L-N)

- For PM210, PM750, and PM800 use System Type 12.
- For ION6200, use Volts Mode 2W.
Single-Phase Tenants: Three-Phase Source

Figure–11: 4-Wire System 2CTs (L1-L2)

- For PM210, PM750, and PM800 use System Type 12.
- Not applicable for ION6200.

Figure–12: 4-Wire System 2CTs (L2-L3)

- For PM210, PM750, and PM800 use System Type 12.
- Not applicable for ION6200.

Figure–13: 4-Wire System 2CTs (L3-L1)

- For PM210, PM750, and PM800 use System Type 12.
- Not applicable for ION6200.
Three-Phase Tenants

Figure–14: 3-Wire System, 2CTs, No PT

- For PM210, PM750, and PM800 use System Type 30.
- For ION6200, use Volts Mode Delta Direct.

Figure–15: 3-Wire System, 3 CTs, no PT

- For PM210, PM750, and PM800 use System Type 31.
- For ION6200, use Volts Mode Delta Direct.

Figure–16: 4-Wire Wye Direct Voltage Input Connection, 3 CTs

- For PM210, PM750, and PM800 use System Type 40.
- For ION6200, use Volts Mode 4W-Wye.
- Use with 208Y/120 V, and 600Y/347 V (ION6200 only) systems.
Control Power

Control power wiring depends on the installed meter. For the PM210, PM750, and PM800, see Figure 17 and Figure 18. For the ION6200, see Figure 19 and Figure 20.

Using jumpers, control power can be derived from the phase conductors. Control power can also be supplied by a separate feed.

Power Meters PM210, PM750, and PM800

| Figure–17: Direct Connect Control Power (Phase to Phase) < 415 + 10% Vac |
| Figure–18: Direct Connect Control Power (Phase to Neutral) < 300 + 10% Vac |

- Control power source > 415 Vac (L-L) or > 300 Vac (L-N) require a control power transformer. A control power transformer is available in this enclosure by specifying an input voltage range of "4T," which allows control power connections of 480–600 ± 10% Vac.

ION6200 Meter

| Figure–19: Direct Connect Control Power (Phase to Phase) < 240 + 10% Vac |
| Figure–20: Direct Connect Control Power (Phase to Neutral) < 240 + 10% Vac |

- Control power source > 240 Vac requires a control power transformer. A control power transformer is available in this enclosure by specifying an input voltage range of "4T," which allows control power connections of 480–600 ± 10% Vac.
Replacing CPT Secondary-Side Fuse

You must remove the finger guards to replace the fuse. The fuse should be a 5A, 260V, 5AG standard fuse (Bussman #FNQ-5 or equivalent). See Figure 21 below.

Figure–21: Remove Finger Guards
Communications

The meters use common daisy-chain wiring and communicate using Modbus protocol over RS485. The last meter in the chain must be terminated. Figure 22 shows the communications connections.

Figure–22: RS485 Serial Modbus Connection

- Multiple enclosures can be daisy-chained together. The maximum number of meters on a daisy chain is 32. See the separate meter instruction bulletin for more information on communications connections.
- The last panel on daisy chain must be terminated. Use the MCT2W terminating resistor, included with enclosure.
- When connecting additional enclosures, remove the terminator from all but the last one.
- Torque all screws to 10 ± 1 in-lb (1.13 N•m ± 0.1).

Initializing the Meters

The meter must be initialized before placing into service. For instructions on initializing the meters, see the meter instruction bulletin shipped with the enclosure (also available at www.schneider-electric.us).
Removing a Meter

If you need to remove a meter from the enclosure, a cover plate must be attached unless another meter is inserted into the slot. See “Cover Plates” on page 20.

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment.
- Always use a properly rated voltage sensing device to confirm that power is off.
- All unused conductors not terminating in an insulated connector or plug at the enclosure bracket(s) must be protected using enclosed heat shrink sleeves or electrical tape.
- Never open circuit a CT; use the shorting block to short circuit the leads of the CT before removing the connection from the device.
- Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.

To remove a meter, complete these steps:

1. Turn off all power supplying this equipment before working on or inside this equipment. Use a properly rated voltage sensing device to confirm that all power is off.
2. Turn off the disconnect switch, located below the bottom meter. (See “Typical Field Connections for the PM210, PM750, and ION6200” on page 23.)
3. Short CT shorting block.
4. Remove the meter.
5. Insulate any loose wires.
6. Turn on the disconnect switch.
7. Restore power.

NOTE: Do not remove the short on the current transformer shorting block while the meter is removed from the enclosure.
Cover Plates

Cover plates are used to cover openings when no meter is present. Any time a meter is removed from the enclosure, a cover plate must be attached unless another meter is inserted into the slot. Figure 23 shows the cover plate assembly.

Figure–23: Cover Plate

To Install:
1. Align the cover plate with the cut-out on the enclosure bracket door as shown.
2. Press on cover plate surface to fully seat cover plate in opening.
3. Install the two thread-forming screws into opposite corners as shown.
4. Using an IP30 TORX® Plus driver, torque the screws to 40–45 in-lb (4.52–5.08 N•m).

How to Upgrade Firmware

Go to www.powerlogic.com to upgrade firmware for your meters. Follow the instructions from the Download page that is part of the Support section. (Note: The ION6200 is not field-upgradable; thus there is no firmware upgrade for it.)
Section 2— Meter Wiring Diagrams

Factory wiring diagrams for supported meters are shown in this section. See meters on the following pages:

- PM210, PM750, and ION6200 on page 23
- PM800 without CPT on page 24
- PM800 with CPT on page 25

Safety Precautions

The figures in this section show partial diagrams of the typical field connections inside the enclosure. Meters are all wired in the same manner.

Wire Colors

The table below lists the wire colors.

<table>
<thead>
<tr>
<th>Table 1: Wire Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Power</td>
</tr>
<tr>
<td>V+ Yellow</td>
</tr>
<tr>
<td>V- White</td>
</tr>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>V1 Black</td>
</tr>
<tr>
<td>V2 Red</td>
</tr>
<tr>
<td>V3 Blue</td>
</tr>
<tr>
<td>VN White</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>I123- White</td>
</tr>
<tr>
<td>I1+ Black</td>
</tr>
<tr>
<td>I2+ Red</td>
</tr>
<tr>
<td>I3+ Blue</td>
</tr>
<tr>
<td>Comm</td>
</tr>
<tr>
<td>- Black</td>
</tr>
<tr>
<td>+ Red</td>
</tr>
<tr>
<td>SH Bare</td>
</tr>
<tr>
<td>GND</td>
</tr>
<tr>
<td>Green/Yellow</td>
</tr>
</tbody>
</table>

Wiring Information

This section shows the wiring configuration for the PowerLogic PM210, PM750, Series 800 Power Meter (PM800), and ION6200 meters as installed in the HDM 4-Meter Enclosure.
Safety Precautions

There are important safety precautions that must be followed before attempting to install, service, or maintain electrical equipment. Carefully read and follow the safety precautions outlined below.

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

• Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E. Turn off all power supplying this equipment before working on or inside equipment.
• Use a properly rated voltage sensing device to confirm that all power is off.
• This equipment must be installed and serviced only by qualified electrical personnel.
• Use only established wiring configuration designed for the High Density Metering System. Replace all devices, doors, and covers before turning on power to this equipment.
• Supplied screw must be installed to maintain bonding.
• Before energizing enclosure, all unused spaces must be filled with blank covers.

Failure to follow these instructions will result in death or serious injury.
Typical Field Connections for the PM210, PM750, and ION6200
Series 800 Power Meter WITHOUT CPT
Series 800 Power Meter WITH CPT