Micrologic[™] 5.0H and 6.0H Electronic Trip Units

Instruction Bulletin

48049-330-03 Rev. 03, 12/2019

Retain for future use.

Hazard Categories and Special Symbols

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

IFC

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

A WARNING

WARNING indicates a hazardous situation which, if not avoided, **can result in** death or serious injury.

ACAUTION

CAUTION indicates a hazardous situation which, if not avoided, **can result in** minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury. The safety alert symbol is not used with this signal word.

NOTE: Provides additional information to clarify or simplify a procedure.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

FCC Notice

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference at his own expense. This Class A digital apparatus complies with Canadian ICES-003.

Table of Contents

SECTION 1:GENERAL INFO	RMATION	6
	Introduction	6
	Communications	7
	Power and Control Settings	7
	Switch Settings MicroLogic 5.0H Trip Unit MicroLogic 6.0H Trip Unit	7 8 9
	LSIG Protection Long-Time Protection Short-Time Protection Instantaneous Protection Ground-Fault Protection for Equipment	10 10 12 13 14
	Energy Reduction Maintenance Settings (ERMS) Function	15
	MicroLogic Trip Unit Configuration Control Power External Power Supply	16 16 17
	MicroLogic Setup	18
	Advanced Protection Neutral Protection Alarms Demand Current and Voltage Protection Current or Voltage Unbalance Protection Reverse Power Protection (rPmax) Minimum (Under) and Maximum (Over) Frequency Protection Load Shedding Phase Rotation Protection	18 20 21 22 22 23 23 24
	M2C and M6C Programmable Contact Kits	24
	Zone-Selective Interlocking	25
	Metering Harmonics Harmonic Quality Indicators	25 26 28
	Trip Unit Testing	28
	Indicator Lights Overload Indicator Light Trip Indicator Lights	28 28 29
	Test/Reset Button	29
	Graphic Display Screen	30
	Contact Wear Indicator	30
	Operation Counter	30
SECTION 2: GRAPHIC DISPL		31

	Graphic Display	31
	Bar Graph Display and Menus Metering Menu	32 32
	Protection Menu	35
SECTION 3:TRIP UNIT CONF	IGURATION	40
1	Trip Unit Parameters Adjustment	40
	M2C/M6C Programmable Contacts	40
	MicroLogic Trip Unit Setup	43
	Metering Setup	48
	Switch Settings Adjustment	
		56
	MicroLogic 5.0H Trip Unit	56
	MicroLogic 6.0H Trip Unit	56
	Zone-Selective Interlocking (ZSI)	57
	Trip Unit Operation Verification	58
	Trip Unit Resetting	59
	Equipment Ground-Fault Trip Functions Testing	59
	Trip Unit Status Check	60
SECTION 4:OPERATION		61
	Current Levels	61
	Voltage Levels	62
	Power Levels	63
	Harmonics	. 04
	Frequency	69
	Trip Unit History	69
	Trip History	69
	Alarm History	70
	Operation Counter	. 70
	Protoction Sotup	71
	Amperage Protection	71
	Voltage Protection	74
	Other Protection	75
	Current Load Shedding	76
	Power Load Shedding	76
SECTION 5:TRIP UNIT REPL		77
	Trip Unit Replacement for Energy Reduction Maintenance Setting (ERMS)	. 78
	Required Tools	. 79
	Preparation	79
	Record Switch Settings	79
	Circuit Breaker Accessory Cover Removal	. 79 70
	Onour Diearter Aucessury Ouver Nethoval	

Rating Plug Removal Trip Unit Removal	
Trip Unit Replacement Battery Installation Trip Unit Installation	
Circuit Breaker Accessory Cover Replacement	
Trip Unit Installation Check Secondary Injection Testing Primary Injection Testing Check Accessory Operation	
Trip Unit Setup	
Circuit Breaker Reconnection	
SECTION 6:ADJUSTABLE RATING PLUG REPLACEMENT	
Remove Rating Plug	85
Install New Rating Plug	
SECTION 7:BATTERY REPLACEMENT	
Circuit Breaker Disconnection	
Accessory Cover Removal	
Withstand Module Shifting	
Battery Replacement	
Withstand Module Replacement	
Accessory Cover Replacement	
Circuit Breaker Reconnection	89
APPENDIX A: GRAPHIC DISPLAY FLOWCHARTS	
Metering Menu Flowchart	
Maintenance Menu Flowchart	
Protection Menu Flowchart	
APPENDIX B:DEFAULT SETTINGS AND TOLERANCES	
Default Settings	
Metering Range and Accuracy	
APPENDIX C:NETWORK/COM ACCESS	
Remotely Readable Values	
APPENDIX D:TRIP UNIT VOLTAGE SUPPLY ARCHITECTURE	101
Minimum Voltage Protection	101
Voltage Unbalance Protection	103
Loss of Multiple Phases	103
APPENDIX E:TRIP UNIT SETTINGS	104
Index:	107

Section 1— General Information

Introduction

MicroLogic™ trip units provide adjustable tripping functions on electronic trip circuit breakers. The product name (A) specifies the level of protection provided by the trip unit.

P. -Provides protection plus power measurements H-Provides protection plus harmonic metering

MicroLogic trip units are field replaceable to allow for upgrading of the trip unit in

the field. For complete information on available circuit breaker models, frame sizes, interrupting ratings, sensor plugs, rating plugs and trip units, see the product catalog.

MicroLogic Trip Unit Figure 1 –

Communications

MicroLogic trip units can communicate with other devices via "Modbus" through the Circuit Breaker Communication Module (BCM). For information on the register lists and other communication devices refer to bulletin 0613IB1313: *Modbus Communications System*.

A WARNING

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

- Change default passwords at first use to help prevent unauthorized access to device settings, controls and information.
- Disable unused ports/services and default accounts to help minimize pathways for malicious attackers.
- Place networked devices behind multiple layers of cyber defenses (such as firewalls, network segmentation, and network intrusion detection and protection.
- Use cybersecurity best practices (for example, least privilege, separation of duties) to help prevent unauthorized exposure, loss, modification of data and logs, or interruption of services.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Power and Control Settings

Using the graphic display screen and keypad on the trip unit, trip unit options can be set or system measurements checked. See Section 2 —Graphic Display Navigation for more information.

Switch Settings

On the face of the trip unit are adjustable switches to allow changing of the LSI or LSIG trip characteristics of the trip unit. Trip units are shipped with the long-time pickup switch set at 1.0 and all other trip unit switches set at their lowest settings. All advanced protection settings are turned "off."

Fine switch adjustments can be made with the navigation keys. See page 55.

MicroLogic 5.0H Trip Unit

The MicroLogic 5.0H trip unit provides selective (LSI) protection and power measurement.

- A. Graphic display screen
- B. Protection menu button*
- C. Maintenance menu button*
- D. Metering menu button*
- E. Down button
- F. Up button

ENGLISI

- G. Enter button
- H. Long-time pickup (Ir) switch
- I. Long-time delay (tr) switch
- J. Short-time pickup (Isd) switch
- K. Short-time delay (tsd) switch
- L. Instantaneous pickup (li) switch
- M. Test plug receptacle
- N. Long-time pickup overload indicator light
- O. Reset button for battery status check and trip indicator LED
- P. Self-protection and advancedprotection indicator light
- Q. Short-time or instantaneous trip indicator light
- R. Long-time trip indicator light
- * Button includes an LED indicating the active menu.

MicroLogic 6.0H Trip Unit

- A. Graphic display screen
- B. Protection menu button*
- C. Maintenance menu button*
- D. Metering menu button*
- E. Down button
- F. Up button
- G. Enter button
- H. Long-time pickup (Ir) switch
- I. Long-time delay (tr) switch
- J. Short-time pickup (Isd) switch
- K. Short-time delay (tsd) switch
- L. Instantaneous pickup (li) switch
- M. Ground-fault protection pickup (Ig) switch
- N. Ground-fault protection delay (tg) switch
- O. Test plug receptacle
- P. Ground-fault push-to-trip button
- Q. Long-time pickup overload indicator light
- R. Reset button for battery status check and trip indicator LED
- S. Self-protection and advancedprotection indicator light
- T. Ground-fault trip indicator light
- U. Short-time or instantaneous trip indicator light
- V. Long-time trip indicator light
- Button includes an LED indicating the active menu.

equipment (≤ 1200 A) (LSIG) and power measurement. **Figure 3 – 6.0H Trip Unit**

The MicroLogic 6.0H trip unit provides selective and ground-fault protection for

LSIG Protection

Long-Time Protection

Long-time protection protects equipment against overloads.

NOTE: MicroLogic trip units are powered from the circuit to always provide fault protection. All other functions (display, metering, communications, etc.) require external power. See page 17 for more information.

Figure 4 – Long-Time Protection Switches

- Long-time protection is standard on all trip units.
- Long-time pickup (Ir) (A) sets the maximum current level based on sensor plug rating (In) which the circuit breaker will carry continuously. If current exceeds this value, circuit breaker will trip after the preset time delay. The long-time pickup (Ir) is adjustable from 0.4–1.0 times the circuit breaker sensor plug rating (In) (D).
- Long-time delay (tr) (B) sets the length of time that the circuit breaker will carry an overcurrent below the short-time or instantaneous pickup current level before tripping. Two options are available:
 - Standard I²t long-time delay curve. See Table 1 for I²t long-time delay settings.
 - Idmtl (inverse definite minimum time lag) long-time delay curves vary in slope to enhance selectivity.

Option	Description	Curve
DT	Definite time	Constant
SIT	Standard inverse time	10.5t
VIT	Very inverse time	It
EIT	Extremely inverse time	l ² t
HVF	High-voltage fuse compatible	l ⁴ t

Table 1 – MicroLogic Trip Unit I²t Long-Time Delay Values

Setting ¹	Long-Time Delay in Seconds ²									
tr at 1.5 x Ir	12.5	25	50	100	200	300	400	500	600	
tr at 6 x Ir	0.5	1	2	4	8	12	16	20	24	
tr at 7.2 x Ir	0.34 ³	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	

 1 Ir = In x long-time pickup. In = sensor rating. Trip threshold between 1.05 and 1.20 Ir.

²Time-delay accuracy +0/-20%.

³When tsd is set to 0.4 off, then tr = 0.5 instead of 0.34.

- The overload indicator light (C) indicates that the long-time pickup threshold Ir has been exceeded.
- For MasterPact[™] NT and NW circuit breakers, sensor value (In) can be changed by replacing sensor plug (D) located below the trip unit. For further information, see the instructions packed with the sensor plug replacement kit.
- Neutral protection is not available when Idmtl protection is selected.
- The Idmtl selections do not utilize the same thermal imaging feature as the I²t long-time protection function. Both the basic long-time protection and Idmtl EIT are I²t curves, but the different thermal imaging features result in different system performances. For welding applications it is recommended the basic I²t long-time protection be used to ensure expected system performance.
- Both long-time pickup and long-time delay are located on the field-replaceable adjustable rating plug. To change settings to more precisely match the application, various rating plugs are available. For instructions on replacing the rating plug, see "Adjustable Rating Plug Replacement" on page 85.
- Long-time protection uses true RMS measurement.

Option	Setting ¹	Long	Time	Delay	in Sec	onds					Tolerance
	tr at 1.5 x Ir	0.52	1	2	4	8	12	16	20	24	+0/-20%
DT	tr at 6 x Ir	0.52	1	2	4	8	12	16	20	24	+0/-20%
ы	tr at 7.2 x Ir	0.52	1	2	4	8	12	16	16.6	16.6	+0/-20%
	tr at 10 x Ir	0.52	1	2	4	8	12	16	16.6	16.6	+0/-20%
	tr at 1.5 x Ir	1.9	3.8	7.6	15.2	30.4	45.5	60.7	75.8	91	+0/-30%
сіт	tr at 6 x Ir	0.7	1	2	4	8	12	16	20	24	+0/-20%
311	tr at 7.2 x Ir	0.7	88.0	1.77	3.54	7.08	10.6	14.16	17.7	21.2	+0/-20%
	tr at 10 x Ir	0.7 ²	8.0	1.43	2.86	5.73	8.59	11.46	14.33	17.19	+0/-20%
	tr at 1.5 x Ir	1.9	7.2	14.4	28.8	57.7	86.5	115.4	144.2	173.1	+0/-30%
VIT	tr at 6 x Ir	0.7	1	2	4	8	12	16	20	24	+0/-20%
VII	tr at 7.2 x Ir	0.7	0.81	1.63	3.26	6.52	9.8	13.1	16.34	19.61	+0/-20%
	tr at 10 x Ir	0.7 ²	0.75	1.14	2.28	4.57	6.86	9.13	11.42	13.70	+0/-20%
	tr at 1.5 x Ir	12.5	25	50	100	200	300	400	500	600	+0/-30%
EIT	tr at 6 x Ir	0.7 ³	1	2	4	8	12	16	20	24	+0/-20%
C 11	tr at 7.2 x Ir	0.7 ²	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	+0/-20%
	tr at 10 x Ir	0.7 ²	0.7 ³	0.7 ³	1.41	2.82	4.24	5.45	7.06	8.48	+0/-20%
	tr at 1.5 x Ir	164.5	329	658	1316	2632	3950	5265	6581	7900	+0/-30%
	tr at 6 x Ir	0.7 ³	1	2	4	8	12	16	20	24	+0/-20%
1141	tr at 7.2 x Ir	0.7 ²	0.7 ³	1.1 ³	1.42	3.85	5.78	7.71	9.64	11.57	+0/-20%
	tr at 10 x Ir	0.72	0.7 ²	0.73	0.7 ³	1.02	1.53	2.04	2.56	3.07	+0/-20%

Table 2 – MicroLogic Trip Unit Idmtl Long-Time Delay Values

 1 Ir = In x long-time pickup. In = sensor rating. Trip threshold between 1.05 and 1.20 Ir. 2 Tolerance = +0/-60%

 3 Tolerance = +0/-40%

Thermal imaging provides continuous temperature rise status of the wiring, both before and after the device trips. This allows the circuit breaker to respond to a series of overload conditions which could cause conductor overheating, but would go undetected if the long-time circuit was cleared every time the load dropped below the pickup setting or after every tripping event.

NOTE: If checking trip times, wait a minimum of 15 minutes after circuit breaker trips before resetting to allow the thermal imaging to reset completely to zero or use a test kit to inhibit the thermal imaging.

Short-Time Protection

Short-time protection protects equipment against short circuits.

Figure 5 – Short-Time Protection Switches

- Short-time protection is standard on 5.0H and 6.0H trip units.
- The short-time pickup (Isd) (A) sets current level (below instantaneous trip level) at which circuit breaker will trip after the preset time delay.
- The short-time delay (tsd) (B) sets the length of time that the circuit breaker will carry an overcurrent above the short-time pickup current level before tripping.
- The I²t on/I²t off option provides improved selectivity with downstream protective devices:
 - With I²t off selected, fixed time delay is provided.
 - With I²t on selected, inverse time I²t protection is provided up to 10 x Ir. Above 10 x Ir, fixed time delay is provided.

Setting	Short-Time Delay					
I ² t off (ms at 10 Ir) (seconds)	0	0.1	0.2	0.3	0.4	
l ² t on (ms at 10 Ir) (seconds)	-	0.1	0.2	0.3	0.4	
tsd (min. trip) (milliseconds)	20	80	140	230	350	
tsd (max. trip) (milliseconds)	80	140	200	320	500	

Table 3 – MicroLogic Trip Unit Short-Time Delay Values

- Intermittent currents in the short-time tripping range which do not last sufficiently long to trigger a trip are accumulated and shorten the trip delay appropriately.
- Short-time protection can be zone-selective interlocked (ZSI) with upstream or downstream circuit breakers. Setting tsd to the 0 setting turns off zoneselective interlocking.
- Short-time protection uses true RMS measurement.
- Short-time pickup and delay can be adjusted to provide selectivity with upstream or downstream circuit breakers.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

Instantaneous Protection

Instantaneous protection protects equipment against short circuits with no intentional time delay.

Figure 6 – Instantaneous Protection Switches

MicroLogic 5.0H Trip Unit

- Instantaneous protection (li) (A) is standard on all trip units.
- Instantaneous protection is based on the circuit breaker sensor rating (In).
- Circuit breaker open command is issued as soon as threshold current is exceeded.
- Instantaneous protection uses peak current measurement.
- When instantaneous protection switch is set to off, the instantaneous protection is disabled.

Table 4 –	MicroLogic	Instantaneous	Values
-----------	------------	---------------	--------

Setting	Interru	Interruption Current							
li (= ln x)	2	3	4	6	8	10	12	15	off

li = instantaneous In = sensor rating

Pickup accuracy ± 10%

Ground-Fault Protection for Equipment

Equipment ground-fault protection protects conductors against overheating and faults from ground-fault currents (\leq 1200 A).

Figure 7 – Ground-Fault Protection Switches

MicroLogic 6.0H Trip Unit

- Equipment ground-fault protection is standard on 6.0H trip units.
- Ground-fault pickup (Ig) (A) sets ground current level where circuit breaker will trip after the preset time delay.
- Ground-fault delay (tg) (B) sets the length of time that the circuit breaker will carry a ground-fault current above the ground-fault pickup current level before tripping.
- Equipment ground-fault protection can be zone-selective interlocked (ZSI) with upstream or downstream circuit breakers. Setting the ground-fault delay (tg) to the 0 setting turns off zone-selective interlocking.
- Neutral protection and equipment ground-fault protection are independent and can operate concurrently.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

lg (= ln x)	Α	в	С	D	E	F	G	н	J
$ln \le 400 A$	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
400 A < In \le 1200 A	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
In > 1200 A	500 A	640 A	720 A	800 A	880 A	960 A	1040 A	1120 A	1200 A

Table 5 – MicroLogic Trip Unit Ground-Fault Pickup Values

In = sensor rating.

Ig = ground-fault pickup.

Table 6 – MicroLogic Trip Unit Ground-Fault Delay Values

Setting	Ground-Fault Delay					
l ² t off (ms at ln) (seconds)	0	0.1	0.2	0.3	0.4	
l ² t on (ms at In) (seconds)	-	0.1	0.2	0.3	0.4	
tg (min. trip) (milliseconds)	20	80	140	230	350	
tg (max. trip) (milliseconds)	80	140	200	320	500	

Energy Reduction Maintenance Settings (ERMS) Function

The energy reduction maintenance setting (ERMS) function is available on circuit breaker fitted with:

- BCM ULP with firmware version 4.1.3 and above.
- MicroLogic P or H trip unit with blue ERMS label (A) as shown below.
- IO Module with application switch set to position 3.

Figure 8 – ERMS Label on Trip Unit

See bulletin 0613IB1317: IO Module - Input/Output Interface for LV Circuit Breakers - User Guide and bulletin NHA67346: ERMS Instruction Bulletin for more information, installation, and testing.

The ERMS function is used to reduce the li protection settings in order to trip as fast as possible when a fault occurs. The pre-programmed factory setting for li protection in ERMS mode is 2xIn. The ERMS setting can be adjusted using Instruction Bulletin NHA67346.

HAZARD OF ARC FLASH

- Do not change the MicroLogic P or H trip unit's settings while in ERMS mode.
- Seal the transparent cover of the MicroLogic P or H trip unit when using the ERMS mode.

Failure to follow these instructions will result in death or serious injury.

If any of the basic protection settings are changed using the rotary dials on the MicroLogic control unit while in ERMS mode, the MicroLogic control unit switches to the normal mode and then returns automatically to the ERMS mode after 5 seconds.

MicroLogic Trip Unit Configuration

Control Power

The H trip unit is designed to be used with an external 24 Vdc power supply. The large LCD display used by the H trip unit requires too much current to be powered by current flow through the circuit breaker.

The H trip unit has a circuit voltage power supply which will power the trip unit when there is approximately 150 Vac or more between two phases. The standard configuration for the voltage probes inside the circuit breaker is at the bottom connections. If the circuit breaker is open in a top fed application, there is no voltage at the bottom of the circuit breaker and the trip unit will not be powered.

The following will be powered and functional even if the trip unit is not externally powered:

- Fault protection for LSIG functions. The P trip unit is fully circuit powered for fault protection.
- LED trip indication (powered by an onboard battery). The battery's only function is to provide LED indication if all other power is off.
- Ground-fault push-to-trip button works for testing ground fault when the trip unit is powered by the circuit voltage power supply. The ground-fault push-to-trip is also functional if a Hand-Held Test Kit or Full-Function Test Kit is powering the trip unit.

The following will be powered and functional with external power:

- All of the above functions which are functional without external power.
- LCD display and backlight are functional. Backlight intensity is not controlled or adjustable, and may be different from one trip unit to another.
- All metering, monitoring, and history logs are functional.
- Communications from the trip unit to M2C and M6C programmable contact modules are powered by a 24 Vdc power supply at F1 and F2. The M6C also required an external 24 Vdc power supply.
- Modbus communications are functional, using a separate 24 Vdc power supply for the circuit breaker communications module. This separate 24 Vdc power supply is required to maintain the isolation between the trip unit and communications.
- The ground-fault push-to-trip is also functional if a Hand-Held Test Kit or Full-Function Test Kit is powering the trip unit.

External Power Supply

ACAUTION

HAZARD OF SHOCK, ARC FLASH OR EQUIPMENT DAMAGE

Trip unit and communication module must use separate power supplies.

Failure to follow these instructions can result in personal injury or equipment damage.

The trip unit can be powered by:

- 24 Vdc external power supply (recommended).
- Over 150 V on the bottom circuit breaker terminals on two phases.
- Over 150 V on the top circuit breaker terminals with external voltage option.

Table 7 – Power Supply Specifications

Function	Specification
Power for Trip Unit Alone	24 Vdc, 50 mA
Minimum Input-to-Output Isolation	2400 V
Output voltage accuracy (Including Max. 1% Ripple)	±5%
Dielectric Withstand (Input/Output)	3 kV rms
Connections	Connections UC3 F1 (-) <u> </u>

Power supply is used for:

Graphic screen display when the circuit breaker is open and top fed.

Option of linking an alarm to a relay output.

To maintain date and time when the circuit breaker is open.

NOTE: If trip unit is not connected to a communication network and does not have an external power supply, date and time will need to be re-entered every time circuit breaker trips or is turned off.

MicroLogic Setup

Use the Maintenance Menu by pressing the wrench key.

NOTE: If trip unit is connected to a communication network which provides date and time synchronization, date/time cannot be set from trip unit.

See page 43 for step-by-step instructions to set up the MicroLogic trip unit.

See Section 3 on page 40 for other trip unit configurations instructions.

Figure 9 – MicroLogic Setup

Advanced Protection

Neutral Protection

- For a three-pole circuit breaker, neutral protection is possible if a neutral current transformer is used.
 - Adjust the neutral using the trip unit keypad.
 - Possible settings are OFF, N/2, N, or 1.6N.
 - Factory setting is OFF.
 - Oversize neutral protection (1.6N) requires use of the appropriate oversize neutral current transformer.

- For a four-pole circuit breaker, set system type using the circuit breaker neutral selector dial (see Figure 10).
 - Make fine adjustments using the trip unit keypad, with the circuit breaker dial setting providing the upper limit for adjustment.
 - Factory setting is 4P4D.

Figure 10 – Four-Pole Circuit Breaker Neutral Selector Dial

Circuit Breaker Selector Dial	Available Keypad Setting
4P 3D	Off, N/2, N
3P N/2	N/2
4P 4D	N/2, N

- Neutral protection conductor type has four possible settings:
 - Off-Neutral protection is turned off.
 - N/2—Neutral conductor capacity is one-half that of the line conductors.
 - N—Neutral conductor capacity is the same as that of the line conductors.
 - 1.6N—Neutral conductor capacity is 1.6 times that of the line conductors. (Three-pole circuit breaker only.)

Table 8 – MicroLogic Trip Unit Conductor Type

Long-Time Pickup		Short-Time Pickup		Instantaneous		Ground-Fault Pickup		
	Trip Unit	Neutral	Trip Unit	Neutral	Trip Unit	Neutral	Trip Unit	Neutral
OFF	lr	None	lsd	None	li	None	lg	None
N/2	lr	1/2 lr	lsd	1/2 Isd	li	li	lg	lg
Ν	lr	lr	lsd	lsd	li	li	lg	lg
1.6N	lr	1.6 x lr	lsd	1.6 x Isd*	li	li	lg	lg

*In order to limit the range, limited to 10 x In

Alarms

ENGLISH

Alarms can be enabled or disabled for protection or load shedding.

- When an alarm occurs, an entry is made in the alarm log.
- For a trip unit to activate an alarm, both the pickup level and time delay must be exceeded. Therefore for LSIG protection and advanced protection programmed to trip the circuit breaker, the trip unit will not activate the alarm until the circuit breaker trips. (For example, if a relay is programmed for the long-time pickup Ir, the trip unit will not signal an alarm when the long-time overload indicator lights. The trip unit will only activate the alarm once the long-time overload exceeds the time delay and trips the circuit breaker.)
- Link alarms to a visual or audible signal by programming the optional M2C or M6C module contacts, when an external 24 V power supply is used on the trip unit.
- View alarms by:
 - History logs menu
 - The network system management software
- M2C/M6C contact characteristics:
 - Minimum load of 100 mA/24 V
- Breaking capacity at a 0.7 power factor

240 Vac	5 A
380 Vac	3 A
24 Vdc	1.8 A
48 Vdc	1.5 A
125 Vdc	0.4 A
250 Vdc	0.15 A

• When several alarms are activated, screen response/refresh time will be slower.

See Appendix B for default and range values.

Table 9 – Trip Unit Alarms

Alarm	Menu	Symbol	Alarm	Trip
Long-time pickup	Current protection	Ir	Х	Х
Short-time pickup	Current protection	lsd	Х	Х
Instantaneous pickup	Current protection	li	Х	Х
Ground-fault current	Current protection	<u>‡</u>	Х	Х
Ground-fault alarm	Current protection	AI≇	Х	Х
Current unbalance	Current protection	lunbal	Х	Х
Phase A maximum demand current	Current protection	la max	Х	Х
Phase B maximum demand current	Current protection	lb max	Х	Х
Phase C maximum demand current	Current protection	lc max	Х	Х
Neutral maximum demand current	Current protection	In max	Х	Х
Minimum voltage (undervoltage)	Voltage protection	Vmin	Х	Х
Maximum voltage (overvoltage)	Voltage protection	Vmax	Х	Х
Voltage unbalance	Voltage protection	Vunbal	Х	Х
Reverse power	Other protection	rPmax	Х	Х
Minimum frequency (underfrequency)	Other protection	Fmin	Х	Х
Maximum frequency (overfrequency)	Other protection	Fmax	Х	Х
Phase rotation	Other protection	Φ rotation	Х	-
Current load shedding	Load shedding I	Ished	Х	-
Power load shedding	Load shedding P	Pshed	Х	-

Demand Current and Voltage Protection

Provides pickup and dropout values for alarm, contacts or tripping for current and voltage values. (There is no minimum for current.)

Figure 11 – Minimum/Maximum Protection Curves

Provides pickup and dropout values for alarm, contacts or tripping for current and voltage values. (There is no minimum for current.)

- Pickup value (A) is set to activate an alarm or trip.
- Pickup time delay (B) is set to start timing once the pickup value has been passed.
- Dropout value (C) is set to deactivate the alarm and/or contact.
- Dropout time delay (D) is set to start timing once the dropout value has been passed.
- Minimum (under) voltage protection (V_{min}) is activated when any line-line voltage is below the minimum voltage setting.
- Maximum (over) voltage protection (V_{max}) is activated when any line-line voltage is above the maximum voltage setting.
- V_{min} has a dropout value ≥ pickup value.
- V_{max} has a dropout value \leq pickup value.
- If current or voltage protection trips the circuit breaker, the circuit breaker cannot be reset until the current or voltage problem which caused the trip is corrected.
- Ground-fault alarm on the 5.0H and 6.0H trip unit is based on true rms value of the ground current.
- Ground-fault trip on the 6.0H trip unit is based on true rms value of the ground current.
- Do not set undervoltage protection below 80%¹.

See Appendix D for an explanation of system protection behavior.

Current or Voltage Unbalance Protection

This protection applies to unbalanced values for the three-phase currents and voltages.

Figure 12 – Current or Voltage Unbalance Protection

- Unbalance values are based on the true RMS values of the three-phase currents.
- Do not set V_{unbal} above 20%¹.
- Do not use voltage unbalance protection to determine the loss of multiple phases¹.

Reverse Power Protection (rPmax)

Reverse power protection protects alternators against absorption of the total actual power over all three phases in the event that a drive motor fails.

Figure 13 – Reverse Power Protection

- Reverse power protection applies a trip curve based on the total actual power value (A) over all three phases.
- A time delay (B) starts timing if the total actual power of the three phases is not flowing in the defined direction and if it exceeds a reverse power threshold.
- The power direction is defined during trip unit setup.

ENGLI

¹ See Appendix D for an explanation of system protection behavior.

Minimum (Under) and Maximum (Over) Frequency Protection

Provides pickup and dropout values for frequency.

Figure 14 – Minimum/Maximum Frequency Curves

- Pickup value (A) is set to activate an alarm or trip.
- Pickup time delay (B) is set to start timing once the pickup value has been passed.
- Dropout value (C) is set to deactivate the alarm and/or contact.
- Dropout time delay (D) is set to start timing once the dropout value has been passed.
- F_{min} has a dropout value \geq pickup value.
- F_{max} has a dropout value ≤ pickup value.
- When system frequency is set to 400 Hz, the frequency protection is disabled.

Load Shedding

Load shedding does not trip the circuit breaker, but may be used to activate an alarm linked to an M2C or M6C contact (controlling non-priority network loads).

Figure 15 – Load Shedding

• Load shedding is defined by a threshold and time delay:

A—Activation threshold

- B-Activation time delay
- C-Dropout threshold
- D-Dropout time delay
- Power load shedding depends on the flow direction set during trip unit setup.
- Current load shedding is connected to the I²t or Idmtl long-time delay values.
- Current load shedding cannot be activated if "Long-time OFF" rating plug is installed.

Phase Rotation Protection

Protects the circuit when two of the three phases are reversed.

- If one of the phases is down, this protection is inactive.
- Options are ABC or ACB.
- When system frequency is set to 400 Hz, phase rotation protection is disabled.
- Do not use phase rotation protection to determine the loss of multiple phases in delta connected systems.

M2C and M6C Programmable Contact Kits

One or more alarms can be activated using an optional M2C or M6C programmable contact kit. The M2C contact kit provides two form A contacts with common neutral. The M6C contact kit provides six form C contacts. Each contact can be programmed through the trip unit for one alarm condition.

A 24 Vdc, 5 W auxiliary power supply is required for operation of trip unit/M2C or M6C contact kit combination.

NOTE: Trip unit and communication modules (BCM and CCM) must use separate power supplies. The M2C and M6C contact kits can share the trip unit auxiliary power supply.

M2C: 24 Vdc power M6C: external 24 Vdc power supply required supplied by trip unit 3 5 7 9 11 04 484 6133934 12 14 16

Characteristics for M2C/M6C Programmable Contacts	V	A
Minimum Load	24 Vdc	100 mA
	240 Vac	5 A
	380 Vac	3 A
Breaking Capacity at a	24 Vdc	1.8 A
Power Factor (p.f.) of 0.7	48 Vdc	1.5 A
	125 Vdc	0.4 A
	250 Vdc	0.15 A

17 19 21 23 25

24V 0V Q1 Q2 Q3 **S**6

18 20 22 24

Figure 16 – M2C/M6C Wiring Diagrams

Zone-Selective Interlocking

Short-time and ground-fault protection can be interlocked to provide zone-selective interlocking.

Control wiring links several trip units in the distribution network and in the event of a fault, a trip unit will obey the set delay time only if receiving a signal from a downstream trip unit.

If the trip unit does not receive a signal, tripping will be instantaneous (with no intentional delay).

- The fault is cleared instantaneously by the nearest upstream circuit breaker.
- Thermal stresses (I²t) in the network are minimized without any effect on the correct time delay coordination of the installation.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

NOTE: Setting short-time delay (tsd) or ground-fault delay (tg) to the 0 setting will eliminate selectivity for that circuit breaker.

Figure 17 shows circuit breakers 1 and 2 zone-selective interlocked.

- A fault at A is seen by circuit breakers 1 and 2. Circuit breaker 2 trips instantaneously and also informs circuit breaker 1 to obey set delay times. Thus, circuit breaker 2 trips and clears the fault. Circuit breaker 1 does not trip.
- A fault at B is seen by circuit breaker 1. Circuit breaker 1 trips instantaneously since it did not receive a signal from the downstream circuit breaker 2. Circuit breaker 1 trips and clears the fault. Circuit breaker 2 does not trip.

Figure 17 – Zone-Selective Interlocking

Metering

The MicroLogic H trip unit provides continuous metering of system values. Metered values can be checked using the graphic display screen or network system management software.

Harmonics

A harmonic of order n, referred to as the nth harmonic, is the sinusoidal component of a signal with a frequency that is n times higher than the fundamental frequency.

When harmonics are present, the current or voltage waveform is distorted, i.e. it is no longer perfectly sinusoidal.

A waveform is a combination of

- the original sinusoidal signal at the fundamental frequency
- other sinusoidal signals (harmonics) with frequencies that are whole-number multiples of the fundamental frequency
- a dc component, where applicable.

Superimposing the various harmonics on the fundamental waveform creates distortion. This distortion can cause serious problems:

- · Increased currents flowing in the system and overloads
- · Additional losses and premature aging of equipment
- · Disturbances to loads due to voltage harmonics
- Disturbances to communication networks.
- · Increased power losses and the need to use higher power levels
- Unnecessary tripping of protective devices

Harmonics are caused by non-linear loads.

Figure 19 – Origins of Harmonics

A load is non-linear when the current it draws does not have the same waveform as the voltage. Typical examples of non-linear loads are those using power electronics. Such loads are increasingly numerous and their share in the overall electrical consumption is growing.

Examples are:

- office equipment including computers, photocopiers, fax machines, etc.
- industrial equipment such as welding machines, arc furnaces, induction furnaces, rectifiers, etc.
- household equipment such as televisions, microwave ovens, fluorescent lighting, etc.

Non-linear phenomena may also be caused by the saturation of transformers and other equipment.

Odd Harmonics (Not Multiples of 3)			Odd Harmonics (Multiples of 3)			Even Harmonics					
Order n ¹	LV ²	MV ³	EHV ⁴	Order n ¹	LV ²	MV ³	EHV ⁴	Order n ¹	LV ²	MV ³	EHV ⁴
5	6	6	2	3	5	2.5	1.5	2	2	1.5	1.5
7	5	5	2	9	1.5	1.5	1	4	1	1	1
11	3.5	3.5	1.5	15	0.3	0.3	0.3	6	0.5	0.5	0.5
13	3	3	1.5	21	0.2	0.2	0.2	8	0.5	0.2	0.2
17	2	2	1	>21	0.2	0.2	0.2	10	0.5	0.2	0.2
19	1.5	1.5	1	_	-	-	_	12	0.2	0.2	0.2
23	1.5	1	0.7	_	-	_	-	>12	0.2	0.2	0.2
25	1.5	1	0.7	-	-	_	-	-	_	_	_

 Table 10 –
 Maximum Acceptable Levels of Harmonics

¹The harmonic content of a harmonic of order n is defined as the percentage of the rms value with respect to the rms value of the fundamental. This value is displayed on the graphic screen of the MicroLogic H trip unit.

²Low-voltage system

³Medium-voltage system

⁴EXtra-high voltage system

Harmonic Quality Indicators

Harmonic measurement provide values to evaluate the harmonic distortion of current and voltage. They are:

- the fundamental signal for
 - currents
 - voltages
 - power
- THD(I) (total harmonic distortion of current based on the fundamental current)
- THD(V) (total harmonic distortion of voltage based on the fundamental voltage)
- thd(I) (total harmonic distortion of current based on the rms current) •
- thd(V) (total harmonic distortion of voltage based on the rms voltage) .
- FFT (fast fourier transform) of odd harmonics up to 31st harmonic (percentage of rms value with respect to rms value of the fundamental)

Table 11 – Harmonic Measurements

Measurement	Symbol	Units
Waveform, current	la, lb, lc, ln	A
Waveform, voltage	Vab, Vbc, Vca	V
Fundamental current	I	А
Fundamental voltage	V	V
Fundamental power	Р	W
Harmonic distortion of current based on fundamental	THD (I)	%
Harmonic distortion of voltage based on fundamental	THD (V)	%
Harmonic distortion of current based on rms	thd (I)	%
Harmonic distortion of voltage based on rms	thd (V)	%
Amplitude spectrum of odd harmonics up to 31st harmonic	FFT	%

Trip Unit Testing

Trip unit LSIG functions can be tested using primary injection testing or secondary injection testing. Test trip unit using the Full-Function Test Kit or Hand-Held Test Kit. (See "Trip Unit Installation Check" on page 83 for more information.)

Indicator Lights

Overload Indicator Light

The overload indicator light (A) lights when the Ir long-time pickup level has been exceeded.

Figure 20 – Overload Indicator Light

MicroLogic 5.0H Trip Unit

Trip Indicator Lights

A trip indicator light on the trip unit will light when the circuit breaker trips. If the trip unit has auxiliary power connected, the trip unit will display information about the trip.

NOTICE

HAZARD OF EQUIPMENT DAMAGE

If the circuit breaker remains closed and the Ap light remains lit after the reset, open the circuit breaker and contact the sales office.

Failure to follow these instructions can result in equipment damage.

The trip indicator light will remain lit until it is reset by pressing the reset button (A). Cause of trip should be corrected before resetting.

Ir trip indicator light (B) lights when long-time pickup (Ir) signals the circuit breaker to trip.

Isd/li trip indicator light (C) lights when short-time pickup (Isd) or instantaneous pickup (Ii) signals the circuit breaker to trip.

Ig trip indicator light (D) lights when ground-fault pickup (Ig) signals the circuit breaker to trip.

Ap self-protection/advanced-protection indicator light (E) lights when the advanced protection features cause a trip to occur, the trip unit overheats, the instantaneous override value is exceeded or a trip unit power supply failure occurs.

Figure 21 – Trip Indicator Lights

NOTE: In cases where a number of causes may result in tripping, the LED signalling the last cause is the only one to remain on.

Test/Reset Button

The test/reset button (A) must be pressed after a trip to reset the fault information on the graphic display and clear the trip indicator light.

Figure 22 – Reset Button

Graphic Display Screen

The graphic display screen (A) shows the trip unit settings and information. Navigation buttons (B) are used to display and modify items on the screen. Default display shows current levels.

Figure 23 – Graphic Display Screen

Trip unit must be powered for graphic display screen to operate. The trip unit is powered if:

- circuit breaker is on and has more than 150 V of load voltage on two phases (circuit breaker is closed or bottom fed)
- the Full-Function or Hand-Held Test Kit is connected and on
- the 24 Vdc external power supply is connected
- an external voltage tap is installed and voltage of more than 150 V is present on two phases.

Contact Wear Indicator

The trip unit keeps track of the circuit breaker contact wear when a MasterPact circuit breaker type is selected. The amount of wear on the circuit breaker contacts can be transferred when a trip unit is replaced. (External trip unit power supply is required.)

Operation Counter

The circuit breaker communication module is required to display the total number of times the circuit breaker has opened since initial installation and since the last reset and the day/time of last reset

Section 2— Graphic Display Navigation

Graphic Display

Graphic display (A) functions if the trip unit is connected to a 24 Vdc external power supply or there is 150 V on at least two phases. Current alone (from primary injection test set or electrical system) will power the LSIG protection functions, but will not power the display.

Navigation buttons (B):

ſ.t.	Metering Menu Button—Provides access to metering menus
X	Maintenance Menu Button—Provides access to maintenance menus
L	Protection Menu Button—Provides access to protection menus
•	Down Button—Moves cursor downward or decreases setting value
4	Up Button—Moves cursor upward or increases setting value
4	Enter Button—Selects an option from a list or enters the set values

Figure 24 – Graphic Display

Bar Graph Display and Menus

ENGLISH

The MicroLogic H trip unit has a default bar graph display of currents and three different menus which can be accessed using navigation buttons:

- A. Bar Graph Display—Provides real-time bar graph display of line currents and measurement of line current and neutral current (if applicable) (default display)
- B. Metering Menu—Provides access to metered values of current, voltage, power, energy, harmonics and frequency
- C. Maintenance Menu—Allows user to change the trip unit configuration and provides access to history logs
- D. Protection Menu—Allows precision adjustments to basic and advanced protection

Figure 25 – Menus

When the switch cover is closed, the trip unit will return to the bar graph (default) display after 3.5 minutes of no input. (If the switch cover is open, the display stays at the window selected.) To access another menu, press the button that corresponds to the desired menu. The menu appears on the display and the green LED below the menu button lights up.

Metering Menu

Use the metering button to access the metered values of:

- A. Current
- B. Voltage
- C. Power
- D. Energy
- E. Harmonics
- F. Frequency

ENGLISH

Current

Figure 27 – Current Levels

Voltage

Figure 28 – Voltage Levels

Power

Energy

Figure 30 – Energy Levels

Harmonics

Figure 31 – Harmonics

Frequency

Figure 32 – Frequency

Maintenance Menu

Use the maintenance button to access the maintenance menu.

- A. To access the history log
- B. To set up the M2C/M6C contacts

- C. To set up the MicroLogic trip unit
- D. To set up the metering parameters
- E. To set up the communication module

Figure 33 – Maintenance Menu

History Logs

Figure 34 – History Logs

M2C/M6C Programmable Contacts

- Available only if M2C/M6C contacts are installed.
- One alarm per contact.

Can select those set up as "alarm" or "trip" under protection menu.

Figure 35 – M2C/M6C Contacts Setup

MicroLogic Setup

If trip unit is connected to a communication network which provides date and time synchronization, date/time cannot be set from trip unit.

Figure 36 – MicroLogic Setup

Metering Setup

Figure 37 – Metering Setup

Communication Setup

Figure 38 – Communication Module Setup

Protection Menu

- A. To display and adjust current protection
- B. To display and adjust voltage protection
- C. To display and adjust other protection
- D. To set current load shedding
- E. To set power load shedding

Figure 39 – Protection Menu

Amperage Protection

Figure 40 – Amperage Protection

ENGLISH

Figure 41 – Voltage Protection

Other Protection

(K-)

Figure 42 – Other Protection

Current Load Shedding

Figure 43 – Current Load Shedding

Power Load Shedding

Section 3— Trip Unit Configuration

Trip Unit Parameters Adjustment

NOTE: The protection menu settings cannot be adjusted unless the switch cover is open. When settings have been adjusted, press one of the menus buttons to save the new values.

- 1. Open switch cover (A).
- 2. Press maintenance button (B) to bring up maintenance menu (C).

Figure 45 – Maintenance Menu

M2C/M6C Programmable Contacts

If M2C or M6C contact kit is installed, use "Contacts M2C/M6C" menu to set alarm type and operational mode. The M2C kit has S1 and S2 contacts. The M6C kit has S1, S2, S3, S4, S5 and S6 contacts.

Figure 46 – M2C/M6C Contact Kits Setup

ENGLISH

1. Enter M2C/M6C contacts alarm type into trip unit memory. Available alarms Contacts Alarm S1 S1 are: M2C / M6C type Ir-Long-time pickup Alarm li lsd S1 type S2 li-Instantaneous pickup Setup Isd—Short-time pickup Reset I∉—Ground-fault current Al & Ground-fault alarm Up/ Enter T Enter Enter 41 . Down lunbal—Current unbalanced Enter lamax—Phase A demand overcurrent Exit Ibmax—Phase B demand overcurrent S2 Alarm S2 Icmax—Phase C demand overcurrent type Do you want Inmax—Neutral demand overcurrent lsd Not S1 to save new selected settings? S2 Vmin-Voltage is below set minimum No Vmax—Voltage is above set maximum Yes Vunbal—Voltage unbalanced Up/ rPmax—Reversed power Enter ₹ Down ₹ Down A Down Fmin—Frequency is below set Enter Enter Enter minimum Exit Fmax—Frequency is above set maximum Alarm type Φ rot—Phase rotation Do you want S1 to save new Ished—Current shedding settings? S2 Pshed—Power shedding No Not Selected-No alarms selected Yes 🗡 Exit Down Enter

Figure 47 – Set M2C/M6C Contact Alarm Type

2. Set up M2C/M6C contact alarm mode. Contact modes available are:

Latching contact—Stays latched until reset

Nonlatching contact—Drops out after fault is removed.

Time Delay—Delay placed on contacts

For troubleshooting purposes only the following modes are available:

Locked 0—Contacts are locked open

Locked 1—Contacts are locked closed

For short-time, instantaneous and ground fault (SIG) alarms only:

- Each alarm occurrence will activate the relay and will signal and continue to signal an alarm until the trip unit test/reset button is pressed.
- This "latching behavior occurs regardless of whether "latching" or "nonlatching" contact mode was used during alarm setup.
- Reset displays states of relays and allows them to be reset.

NOTE: Select reset option under the M2C/M6C menu to reset all alarms. The test/reset button on the trip unit will reset the trip unit so that it will stop activating the alarm, but does not reset the M2C/M6C contact.

Exit

🥕 Exit

Down

Enter

ENGLISH

MicroLogic Trip Unit Setup

Use "MicroLogic setup" menu to set display language, date and time, circuit breaker information, power sign, VT ratio and system frequency.

Figure 49 – MicroLogic Trip Unit Setup

1. Set display language.

Figure 50 – Set Language

2. Set trip unit date and time.

NOTE: If trip unit is connected to a communication network which provides date and time synchronization, date/time cannot be set from trip unit. If trip unit is not connected to a communication network which provides data and time synchronization, date and time will need to be re-entered every time trip unit power is lost.)

NOTE: In US English the date format is month/day/year. In all other languages the date format is day/month/year.

After using the test kit to do secondary injection testing, thermal imaging inhibit, ZSI testing or ground-fault inhibit, the time will need to be reset if the trip unit is not connected to a communication network providing date and time synchronization.

NOTE: If time is not synchronized by a supervisor using the network system management software, reset time semi-annually, or more often if needed.

Figure 51 – Set Date and Time

3. Enter circuit breaker information into trip unit memory.The following information must be entered to properly identify the circuit breaker over the communication network:

Standard—ANSI, UL, IEC or IEC/GB

Circuit Breaker Family—MasterPact (ANSI, UL, IEC or IEC/GB), Powerpact (UL or IEC) or Compact NS (IEC)

Circuit Breaker Type—Found on the circuit breaker faceplate

Circuit Breaker Contact Wear Code– Only modified when replacing an existing trip unit with contact wear information

NOTE: The contact wear meter is active only when circuit breaker type is MasterPact.

To maintain contact wear indicator information when replacing an existing trip unit:

- a. Read code on trip unit to be replaced. (The code is a hexadecimal number.)
- b. Remove old trip unit and install new trip unit in circuit breaker.
- c. Enter code from old trip unit in new trip unit.

Choose the signing convention to be used for power metering, energy metering and load shedding:

- P+: Power absorbed from upstream to downstream (top fed)
- P-: Power absorbed from downstream to upstream (bottom fed)

Default value is P+

5. Enter VT ratio of external voltage transformer into trip unit memory. If no external voltage transformer is present, set both primary value and secondary value to 690V.

If supply voltage for the trip unit exceeds 690V, an external voltage transformer is required.

Figure 53 – Set Power Sign

Figure 54 – Set VT Ratio

6. Enter system frequency into trip unit memory.

NOTE: When system frequency is set to 400 Hz:

- Reactive power absolute value will be correct, but sign will be wrong.
- PF absolute value will be correct, but sign will be wrong.
- Frequency value may not be accurate.
- Frequency protection is disabled.
- Phase rotation protection is disabled.

Figure 55 – Set System Frequency

Metering Setup

Use "Metering setup" menu to set parameters for metering system current and power.

Figure 56 – Metering Setup

1. Select system type.

Three measurement options are available:

Network Type	Neutral	Phase Current
3-phase, 3-wire, 3 CT (Uses 2 wattmeters)	No	l _a , l _b and l _c measured
3-phase, 4-wire, 4 CT* (Uses 3 wattmeters)	Yes	l _a , l _b , l _c and l _n measured
3-phase, 4-wire, 3 CT (Uses 3 wattmeters)	No	l _a , l _b and l _c measured

*Do not use "3-phase, 4-wire, 4 CT" type unless neutral is effectively connected to the trip device (neutral voltage connection is external to the 3pole circuit breaker). (See neutral CT instruction bulletin.)

NOTE: In the case of a four-pole circuit breaker, the ability to set the neutral is limited by the setting of the neutral type switch on the circuit breaker.

 I_n measurement is not available for "3-phase, 4-wire, 3 CT" network types and V_{an} , V_{bn} and V_{cn} simple voltage measurements are not available for "3-phase, 3-wire, 3 CT" network types.

If these measurements are desired, and if the connected system is a wye (4-wire) system, select "3-phase, 4-wire, 4 CT' and connect to neutral (V_n) voltage terminal on the neutral CT.

Figure 57 – Set System Type

2. Set current calculation method and interval.

The calculation method can be block interval or thermal calculation.

The window type is factory set as a sliding window.

The time interval can be set from five to 60 minutes in one minute increments.

Current Current Current System demand demand type demand Calculation Calculation method Current Calculation method method demand block thermal thermal Power interval demand Window type Window type Window type Sign sliding sliding sliding convention Interval Interval Interval 15 min 15 min 15 min Up/ Down Enter Enter ▼ T Down Down Enter Enter Current Current demand demand Calculation method Calculation method Do you want to save new thermal thermal settings? Window type Window type

No

Yes

Down

Enter

3. Set power calculation method and interval.

The calculation method can be block interval, thermal calculation or sync. to comms.

NOTE: The sync to comms method is available only with the communication option. This function determines demand power based on a signal from the communication module.

The default window type is sliding.

The time interval can be set from five to 60 minutes in one minute increments.

Figure 59 – Set Power Demand

block

25 min

Exit

Interval

block

25 min

Enter

Down

Interval

Figure 58 – Set Current Demand

ENGLISH

4. Select sign convention.

factor measurements:

Choose the signing convention to be Sign Sign 613331 System used for reactive power (VARS) and type convention convention reactive energy (VARhrs) and power Do you want Current to save new demand IEEE IEC settings? Power demand No Sign convention Yes Up/ ₹ Enter Enter Ŧ Down Down Enter Enter Exit **IEEE Sign Convention** Reactive Power Quadrant 1 Quadrant 2 Watts Negative (-) Watts Positive (+) VARs Positive (+) VARs Positive (+) PF Leading (+) PF Lagging (-) Reverse Power Flow Normal Power Flow Active Quadrant 3 Quadrant 4 Watts Positive (+) Watts Negative (-) VARs Negative (-) VARs Negative (-) PF Lagging (-) PF Leading (+) IEC Sign Convention Reactive Power

Figure 60 – Set Sign Convention

IEEE Alt Sign Convention

IEEE IEC

IEEE alt

Communication Module Setup

Use "Com. setup" menu to set communication module setup.

NOTE: Com. setup parameters can only be entered if a circuit breaker communication module (BCM) is installed.

NOTE: IP Data displays IFE IP address, if used.

1. Set up the Modbus address.

The setting of the Modbus address depends on the COM option. See table 12.

Figure 61 – Communication Module Setup

Table 12 – Modbus Addresses

COM Option	Modbus Address	Modbus Address Range
BCM or BCM ULP is not connected to an IFM or IFE.	The Modbus address is set up on the Modbus Com setting screen, with the parameters of the communication option (see page 51).	1 to 47
BCM ULP is connected to an IFM. The Modbus address is set up on the two address rotary switches on the from panel of the IFM.	The Modbus address is set	1 to 99
	Value 0 is forbidden because it is reserved for broadcasting messages.	
BCM ULP is connected to an IFM with legacy firmware. The Modbus address is set up on the two address rotary switches on the front panel of the IFM.	1 to 47	
	I he Modbus address is set up on the two address rotary switches on the front panel of the IFM	Value 0 is forbidden because it is reserved for broadcasting messages.
		Values 48 to 99 are not allowed.
BCM ULP is connected to an IFE.	The Modbus address is fixed and cannot be changed.	255

ENGLISH

Baud-rate = 19.2k

Parity = Even

values are:

Address = 47

Connection = 2 Wires + ULP

48049-330-03

A WARNING

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

Change default passwords at first use to help prevent unauthorized access to device settings, controls and information.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

3. Remote access.

Remote access is factory set and does not require adjustment.

NOTE: Remote access setting can be changed to allow protection settings to be changed via the communication network. Refer to the *Modbus Communications Guide* 0613IB1313 for other components and setup instructions.

4. Set remote control.

Manual: The circuit breaker cannot be opened or closed via the network system management software.

Auto: The circuit breaker can be opened or closed via the network system management software.

NOTE: For remote operation of the circuit breaker, the BCM must be set to enable opening and/or closing and circuit breaker must have communicating shunt coils with wire harness installed.

Figure 63 – Check Remote Access

Figure 64 – Set Remote Control

Switch Settings Adjustment

ENGLISH

NOTICE

HAZARD OF EQUIPMENT DAMAGE

- Using the switches to set trip unit values will override settings made using the keypad.
 - Changing the switch setting for overload, short-time or instantaneous, or changing the neutral protection selector on a four-pole circuit breaker, will delete all fine adjustments previously made using the keypad for overload, short-time and instantaneous protection.
 - Changing the switch setting for ground-fault will delete all fine adjustments made with the keypad for ground-fault protection.
- If cover pin located on back of the protective cover is missing, contact sales office for a replacement cover.

Failure to follow these instructions can result in equipment damage.

- 1. Open switch cover (A).
- 2. Confirm that cover pin (B) is on back of the protective cover. This pin is necessary to lock trip unit settings when they are set to trip.
- Adjust the appropriate switches (C) to desired values. Display screen (D) automatically shows appropriate setting curve (E). The set value is displayed as a boxed value in amperes or seconds.
- Make fine adjustments using navigation keys (F) or network system management software. All fine adjustments are stored in non-volatile memory.

NOTE: Fine adjustments can only be made for values less than those set with the switches. Using switches to set values after making fine adjustments using the keypad will override the keypad adjustments.

Fine switch settings are in the following increments:

- Long-time pickup = 1 A
- Long-time delay = 0.5 sec.
- Short-time pickup = 10 A
- Short-time delay = 0.1 sec.
- Instantaneous pickup = 10 A
- Ground-fault pickup = 1 A
- Ground-fault delay = 0.1 sec.

 Replace switch cover. Use wire seal MICROTUSEAL (A), not supplied, to provide tamper evidence if necessary.

NOTE: When the cover is closed, the navigation keys can no longer be used to make adjustments to the trip unit settings if they are set to trip.

6. Check settings using keypad (B) and graphic display or the network system management software.

Figure 66 – Check Switch Settings

Examples

MicroLogic 5.0H Trip Unit

- 1. Set switches:
 - A—Long-time pickup (Ir)
 - B-Long-time delay (tr)
 - C—Short-time pickup (Isd)
 - D-Short-time delay (tsd)
 - E-Instantaneous pickup (li)
- 2. Fine-tune adjust using keypad and graphic display screen or the network system management software.

MicroLogic 6.0H Trip Unit

- 1. Set switches:
 - A—Long-time pickup (Ir)
 - B-Long-time delay (tr)
 - C—Short-time pickup (Isd)
 - D-Short-time delay (tsd)
 - E-Instantaneous pickup (li)
 - F-Ground-fault pickup (Ig)
 - G-Ground-fault delay (tg)
- 2. Fine-tune adjust using keypad and graphic display screen or the network system management software.

Figure 68 – Set Pickup Levels

Zone-Selective Interlocking (ZSI)

The number of devices which can be interlocked are shown in Table 13.

Table 13 – ZSI Combinations

R-RIM module is required to restrain any devices.

Numerical References—Maximum number of upstream circuit breakers which can be restrained without requiring a RIM Module.

Circuit breaker terminals are shipped with terminals Z3, Z4 and Z5 jumpered to self-restrain the short-time and ground-fault functions. Remove the jumpers when activating zone-selective interlocking.

Figure 69 – Jumpered Terminals

Wire circuit breakers for zone-selective interlocking.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

Figure 70 – ZSI Wiring Example

Trip Unit Operation Verification

Use a test kit connected to the trip unit test plug receptacle (A) to verify trip unit is functioning as desired. See instructions shipped with test kit to perform verification tests.

NOTE: To verify operation of the circuit breaker and trip unit, use primary injection testing. (See "Trip Unit Installation Check" on page 83 for more information.)

Figure 71 – Verify Trip Unit Operation

ENGLISH

Trip Unit Resetting

When the circuit breaker trips, the fault indicator will remain lit until the trip unit is reset.

Do not return circuit breaker to service until cause of trip is determined. For more information, refer to the circuit breaker installation instructions shipped with the circuit breaker.

Press the reset/test button (A) to reset the trip unit after trip.

Figure 72 - Reset Trip Unit

Equipment Ground-Fault Trip Functions Testing

Paragraph 230-95 (c) of the National Electrical Code requires that all equipment ground-fault protection systems be tested when first installed.

With the trip unit powered and the circuit breaker closed, test the equipment ground-fault (MicroLogic 6.0H trip unit) trip function.

Figure 73 – Test Equipment Ground-Fault Trip Function

The trip unit is powered if:

- circuit breaker is on and has more than 150 V of load voltage on two phases (circuit breaker is closed or bottom fed)
- the Full-Function or Hand-Held Test Kit is connected and on
- the 24 Vdc external power supply is connected
- an external voltage tap is installed and voltage of more than 150 V is present on two phases.

For instructions on how to close circuit breaker, refer to the circuit breaker installation instructions shipped with the circuit breaker.

To test trip function, press the ground-fault test button (A). Circuit breaker should trip.

If circuit breaker does not trip, contact the local field office.

Trip Unit Status Check

Check trip unit battery and trip indicators.

- 1. Make sure trip unit is powered. The trip unit is powered if:
 - circuit breaker is on and has more than 150 V of load voltage on two phases (circuit breaker is closed or bottom fed).
 - the Full-Function or Hand-Held Test Kit is connected and on.
 - the 24 Vdc external power supply is connected.
 - the external voltage tap is installed and voltage of more than 150 V is present on two phases.
- 2. Press test/reset button (A).
 - All trip indicators (B) will light up
 - Battery status will be displayed
 - The battery bar graph reading is valid after the reset button has been released
- 3. If the battery bar graph shows the battery needs to be changed, use Square D battery catalog number S33593:
 - lithium battery
 - 1.2AA, 3.6 V, 800 ma/h

For instructions on replacing battery, see Section 7—Battery Replacement.

Figure 74 – Check Trip Unit Status

60-EN

Section 4— Operation

Metered Values

Current Levels

I_a—Instantaneous A phase current

Ib-Instantaneous B phase current

I_c—Instantaneous C phase current

In-Instantaneous neutral current

I≰—Instantaneous ground current

I_amax—Maximum instantaneous A phase

Ibmax—Maximum instantaneous B phase

Icmax—Maximum instantaneous C phase

Inmax—Maximum instantaneous neutral

I≰ max—Maximum instantaneous ground

Iamax—Maximum demand A phase current

Ibmax—Maximum demand B phase current

Icmax—Maximum demand C phase current

Inmax—Maximum demand neutral current

Maximum measurements can also be reset

Ia — Demand A phase current

Ib —Demand B phase current

Ic — Demand C phase current

In —Demand neutral current

·/···

current

current

current

current

current

Use the metering menus to monitor circuit breaker current (I), voltage (V), power (P), energy (E), harmonics and frequency (F).

NOTE: System measurements can also be checked remotely using System Manager Software (SMS) (version 3.3 or later) or other network system management software.

Figure 76 – Check Current Levels

to zero.

Voltage Levels

Vab—Instantaneous voltage between A and B phases

Vbc—Instantaneous voltage between B and C phases

Vca—Instantaneous voltage between C and A phases

Van—Instantaneous voltage between A phase and neutral

Vbn—Instantaneous voltage between B phase and neutral

Vcn—Instantaneous voltage between C phase and neutral

Figure 77 – Check Voltage Levels

Power Levels

- P-Instantaneous active power
- Q-Instantaneous reactive power
- S-Instantaneous apparent power
- Power Factor-Instantaneous power factor
- P—Demand active power
- Q—Demand reactive power
- \overline{S} —Demand apparent power
- Pmax—Maximum demand active power
- Qmax—Maximum demand reactive power
- Smax—Maximum demand apparent power

Maximum measurements can also be reset to zero.

NOTE: To ensure reliable power and power factor measurements, "Power sign" (page 46) and "Sign convention" (page 50) must be set.

ENGLISH

ENGLISH

Total reactive energy (E. Q)

Total active energy (E. P)

Total apparent energy (E. S)

Active energy in (E.P.)

Energy Levels

Reactive energy in (E.Q.)

Active energy out (E.P.)

Reactive energy out (E.Q.)

Energy measurements can also be reset to zero.

NOTE: To ensure reliable energy measurements, "Power sign" (page 46) and "Sign convention" (page 50) must be set.

Marmonics

Waveform—Waveform capture for Ia, Ib, Ic, In, Vab, Vbc and Vca. Waveform records one cycle with a measurement range of 1 to 1.5 In for current and 0 to 690 V. Resolution is 64 points per cycle.

Fundament.—Current, voltage and power for the fundamental waveform

Figure 80 – Check Harmonics

Continued on next page

Harmonics (continued)

THD (I)—Total harmonic distortion of current based on **fundamental** current

$$THD(I) = \frac{\sqrt{\sum_{n=2}^{\infty} I_n^2}}{I_{fund}}$$

- THD(I) < 10% are considered normal*.
- 10% < THD(I) < 50% indicates significant harmonic disturbance. There is a risk of temperature rise, requiring cables and sources to be oversized.
- THD(I) > 50% indicates major harmonic disturbance. Malfunctions are probable. An in-depth analysis and installation of compensation equipment is required.

THD (V)—Total harmonic distortion of voltage based on **fundamental** voltage

$$THD(V) = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_{fund}}$$

- THD(V) < 5% are considered normal*.
- 5% < THD(V) < 8% indicates significant harmonic disturbance. There is a risk of temperature rise, requiring cables and sources to be oversized.
- THD(V) > 8% indicates major harmonic disturbance. Malfunctions are probable. An in-depth analysis and installation of compensation equipment is required.

thd (I)—Total harmonic distortion of current based on **rms** current*

$$thd(I) = \frac{\sqrt{\sum_{n=2}^{\infty} I_n^2}}{I_{rms}}$$

thd (V)—Total harmonic distortion of voltage based on **rms** voltage*

$$thd(V) = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_{rms}}$$

*If calculated value of THD or thd is less than or equal to 2%, trip unit will display 0%.

Exit

Exit

Continued on next page

Down

Enter

Harmonics (continued)

FFT (Fast Fourier Transform)—Distortion level for harmonic orders from 3 to 31 for

- each current la, lb, lc and ln
- phase-to-phase voltage Vab, Vbc, Vca

FFT Harmonic Waveform I (3,5,7,...31) Fundament V (3,5,7,...31) THD thd FFT Enter **Down** Enter la FFT la FFT FFT THD = 2.1 THD = 2.1 la (3,..,31) 0.5% 0.0% lb (3,..,31) (3,..,31) lc In (3,..,31) 3 5 7 9 11 3 5 7 9 11 Up/ Down Up to 31st 🛕 Up Enter 4 Exit Ib FFT Ib FFT FFT THD = 2.1 THD = 2.1 la (3,..,31) 0.0% 0.0% lb (3,..,31) (3,..,31) lc In (3,..,31) 3 5 7 9 11 3 5 7 9 11 Up/ Down Up to 31st 🗛 Up Down ₹ ŧ Enter 4 Exit IC FFT IC FFT FFT THD = 2.1 THD = 2.1 la (3,..,31) 0.0% 0.0% lb (3,..,31) lc (3,..,31) In (3,..,31) 5 7 9 11 5 7 9 11 3 3 Up/ Down 🚺 Up ₹ Down Enter Exit

Figure 80 – Check Harmonics (continued)

Continued on next page

Harmonics (continued)

Figure 80 – Check Harmonics (continued)

Frequency

Figure 81 – Check Frequency

ENGLISH

Trip Unit History

Use the maintenance menu to review the trip unit history stored in the history logs.

Figure 82 – History Log Menu

🍞 Trip History

The trip unit stores information about the LSIG fault causing the last ten trips. For each fault the following are stored:

- Current values of Ir, Isd, Ii, and Ig
- Pickup setpoint for voltage and other protection
- Date
- Time (hour, minute and second)

NOTE: Trips from use of a test kit are not recorded in the trip history log.

Figure 83 – Check Trip History

Alarm History

The trip unit records measurement at each of the last ten alarms activated. For each alarm the following are stored:

- Indication and value of the alarm setting
- Date
- Time (hour, minute and second)

Operation Counter

This displays the maximum number of operations (trip or circuit breaker openings) since the circuit breaker was installed. The number is obtained from the circuit breaker communication module (BCM).

Trip history Alarm history Operations Total 19 Contact Operations

since last reset

Exit

Figure 85 – Check Operation Counter

Contact Wear

This displays the amount of contact wear on the contact with the greatest wear. When this number reaches 100, it is recommended that a visual inspection of the contacts be done. This function works only on MasterPact[™] NT and NW circuit breakers.

Figure 86 – Check Contact Wear

wear

Enter

Protection Setup

Use the protection menus to check protection setup for amperage protection, voltage protection, other protection, current load shedding and power load shedding.

Refer to Appendix B for default settings and setting ranges.

Amperage Protection

The "Change IdmtI (A) setting with I(A)" screen will only appear if long-time, shorttime and/or instantaneous adjustments have been previously made under the IdmtI (A) menu screen. If the user responds Yes, the IdmtI (A) settings will be lost when the menu goes to the I(A) adjustment screen. If no adjustments have been made under the IdmtI (A) menu screen, the menu goes directly to the I(A) adjustment screen.

The "Change I (A) setting with Idmtl(A)" screen will only appear if long-time, shorttime and/or instantaneous adjustments have been previously made under the I(A) menu screen. If the user responds Yes, the I(A) settings will be lost when the menu goes to the Idmtl(A) adjustment screen. If no adjustments have been made under the Idmtl(A) menu screen, the menu goes directly to the I(A) adjustment screen.

NOTE: Neutral protection is disabled if ldmtl protection is selected.

Figure 87 – Protection Menu

Figure 88 – Check Amperage Protection

Continued on next page

Continued on next page

Voltage Protection ·*··

phase-to-phase values.

loss of the second phase.

20%¹.

NOTICE

HAZARD OF EQUIPMENT DAMAGE

Setting undervoltage protection (Vmin) below 80% or voltage unbalance (Vunbal) above 20% can cause the trip unit to not perform as expected.

Failure to follow these instructions can result in equipment damage

Figure 89 – Check Voltage Protection

¹ Refer to Appendix D for an explanation of system protection behavior.

500kW

5.00s

1.0s

Contection

Figure 90 – Check Other Protection

Current Load Shedding

Current load shedding can be configured for alarm only. It cannot be used to trip the circuit breaker.

Load shedding Amperage protection I Off Voltage protection Pick up Other 100% Ir protection 80% tr Load Drop out I shedding 100% Ir Load Ρ 10s shedding Enter 🕒 Exit

0613333

Power Load Shedding

Power load shedding can be configured for alarm only. It cannot be used to trip the circuit breaker.

Figure 92 – Check Power Load Shedding

Figure 91 – Check Current Load Shedding

Section 5— Trip Unit Replacement

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Failure to follow these instructions for installation, trip test and primary injection testing may result in the failure of some or all protective function.
- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E, CSA Z462, NOM 029-STPS or local equivalent.
- Replacement/upgrading of a trip unit in the field must be done by qualified persons, as defined by the National Electric Code, who are familiar with the installation and maintenance of power circuit breakers.
- Before replacing/upgrading trip unit, confirm that the circuit breaker is in good working condition. If the condition of the circuit breaker is unknown, do not proceed. For assistance in evaluating the condition of the circuit breaker, call Technical Support.
- If the circuit breaker fails to function properly in any manner upon completion of the trip unit installation, immediately remove the circuit breaker from service and call Field Services.
- Turn off all power supplying this equipment before working on or inside equipment. Follow instructions shipped with circuit breaker to disconnect and reconnect circuit breaker.
- Replace all devices, doors and covers before returning equipment to service.

Failure to follow these instructions will result in death or serious injury.

Trip unit replacement must be done by qualified persons, as defined by the National Electric Code, who are familiar with the installation and maintenance of power circuit breakers.

Before replacing trip unit, confirm that the circuit breaker is in good working condition. If the condition of the circuit breaker is unknown, do not proceed. For assistance in evaluating the condition of the circuit breaker, call Technical Support.

Read this entire section before starting the replacement procedure.

NOTE: If trip unit being replaced is a MicroLogic 2.0, 3.0 or 5.0 trip unit, order connector block S33101 and circuit breaker or cradle wiring harness if necessary.

Trip Unit Replacement for Energy Reduction Maintenance Setting (ERMS)

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Use only MicroLogic P- or H-frame trip units with the Blue ERMS label for energy reduction maintenance setting systems.
- Review bulletin 0613IB1317, *IO Module User Guide*, and bulletin NHA67346, *ERMS Installation Instructions*, for details on installation, testing and operation of the ERMS system.

Failure to follow these instructions will result in death or serious injury.

If you are replacing the trip unit to use in an ERMS system, make sure the trip unit is suitable for this application.

Only MicroLogic P- and H-frame trip units built after 15011 with the blue ERMS label (Figure 93, A) are suitable for ERMS application. Verify that the trip unit has the ERMS label at the top right hand corner. Refer to bulletin NHA67346, *ERMS Installation Instructions*, for more information about ERMS systems.

Figure 93 – Blue ERMS Label

Required Tools

- Torque-controlled screwdriver, set at 7 in-lbs (0.8 N•m) ± 10% (Lindstrom torque driver MAL500-2 or equivalent)
- MicroLogic Full-Function Test Kit (part number S33595)

Preparation

Record Switch Settings

Record all trip unit switch and advanced protection settings for later use.

Circuit Breaker Disconnection

Disconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker. The circuit breaker must be completely isolated. (For a drawout circuit breaker, place circuit breaker in the disconnected position. For a fixed-mounted circuit breaker, all voltage sources, including auxiliary power, must be disconnected.)

Circuit Breaker Accessory Cover Removal

Remove circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

Rating Plug Removal

A small Phillips screwdriver is needed to remove the adjustable rating plug.

- 1. Open switch cover (A).
- 2. Unscrew adjustable rating plug mounting screw (B).
- 3. Remove adjustable rating plug (C). Save for installation in replacement trip unit.

Figure 94 – Remove Adjustable Rating Plug

Trip Unit Removal

- 1. Remove connector block (A) from top of trip unit, if present.
- 2. Loosen two trip unit screws (B).
- 3. Slide out trip unit (C).

Figure 95 – Remove Existing Trip Unit

Trip Unit Replacement

Battery Installation

If a new trip unit is being installed, install the trip unit battery.

Install battery holder with battery (A) in trip unit, observing the correct polarity as indicated on the battery compartment.

NOTE: Battery holder with battery is located under the side flap in the cardboard box the trip unit is shipped in.

Figure 96 – Install Battery

Press test/reset button (A). All four indicator lights (B) should light. If they do not light, check polarity of battery and retest. If indicator lights still do not light up when test/reset button is pressed, stop installation and contact the local sales office for factory authorized service

Figure 97 – Trip Indicator Lights

Trip Unit Installation

- 1. Inspect trip unit connector pins and surfaces. If there is any damage, misaligned pins, or contamination, stop installation and contact the local sales office for factory authorized service.
- 2. Inspect trip unit mounting base on the circuit breaker. Clear any debris from area and check that all accessory wiring is properly routed for the trip unit being installed. If there is any damage or contamination, stop installation and contact the local sales office for factory authorized service.
- 3. For MasterPact NW circuit breaker only: Manually depress trip unit interlock (A) and hold it in place during steps 4–6 below.
- 4. Align guide rail (B) on bottom of trip unit with guide rail slot (C) on trip unit mounting base in circuit breaker and gently slide the trip unit in until it stops.

NOTE: The MasterPact NT and NW trip unit mounting bases are shock mounted and therefore can flex slightly.

Figure 98 – Install Trip Unit

NOTICE

HAZARD OF EQUIPMENT DAMAGE

Check installation of trip unit to assure proper connections and seating.

Failure to follow these instructions can result in equipment damage or improper circuit breaker tripping.

- 5. Align the trip unit so top mounting screw (A) aligns with the top threaded insert and start the screw by turning the screw two full rotations.
- Use a torque-controlled screwdriver to drive the bottom screw (B) to 7 in-lbs (0.8 N•m) ± 10%. The back of the trip unit must be flush with the trip unit mounting base.
- 7. Use a torque-controlled screwdriver to drive the top screw to 7 in-lbs $(0.8 \text{ N} \cdot \text{m}) \pm 10\%$. Mounting tab must be flush with the mounting standoff and sensor plug.

NOTE: The face of the closed switch cover must be flush with adjoining mounting base surfaces. If these surfaces are not flush, stop installation and contact the local sales office for factory authorized service.

NOTE: If you are upgrading from a MicroLogic 2.0, 3.0 or 5.0 trip unit, the connector block must be ordered separately (Part Number S33101). See instructions shipped with the connector block for installation into circuit breaker.

8. Install connector block (C) into top of trip unit.

Figure 99 – Secure Trip Unit

- 9. Install adjustable rating plug into the trip unit.
 - a. Open switch cover (A) on new trip unit.
 - b. Inspect mounting area for debris and contamination.
 - c. Gently push adjustable rating plug (B) into new trip unit.
 - d. Tighten adjustable rating plug mounting screw (C). The plug will be drawn into position flush with front face as screw is tightened.
- 10. Set trip unit switches and advanced protection settings to values recorded above or per coordination study results.
- 11. Close switch cover (A).

Figure 100 –Install Adjustable Rating Plug

Circuit Breaker Accessory Cover Replacement

Replace circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

Trip Unit Installation Check

Secondary Injection Testing

Field installation of a trip unit requires secondary injection testing with a Full-Function Test Kit. This will ensure that the newly-installed trip unit is functioning properly. The test will require opening and closing the circuit breaker. Follow the procedures outlined in the instruction bulletins shipped with the circuit breaker and the Full-Function Test Kit.

- 1. Make sure the circuit breaker is isolated from all upstream and downstream devices.
- Perform secondary injection testing as outlined in the instruction bulletin shipped with the test kit. Verify that all applicable trip unit functions are operating properly.
- 3. Repeat step 2 with the circuit breaker in the open position.

NOTE: The test kit will state that the circuit breaker should be closed when performing the test. Do not close the circuit breaker for this step.

4. If any test fails, do not put the circuit breaker into service and contact the local sales office for factory authorization service.

Primary Injection Testing

Primary injection testing is recommended to ensure that all trip system connections have been correctly made. Perform primary injection testing per the instructions in the Field Testing and Maintenance Guide, bulletin 0600IB1201.

Check Accessory Operation

- Installed accessories Validate the proper operation of all installed accessories. See the corresponding accessory instruction bulletins for operational testing procedures.
- Programmable contact module If circuit breaker has a M2C or M6C programmable contact module installed, validate its proper operation. See the corresponding accessory instruction bulletins for operational testing procedures.
- 3. Zone Selective Interlocking If the circuit breaker is part of a ZSI system, follow the Zone Selective Interlocking Test procedures as outlined in the Full Function Test Kit instruction bulletin.
- 4. Communications If communication modules exist, validate circuit breaker has re-established communications with the supervisor.

Trip Unit Setup

- 1. If an auxiliary power supply is being used for the MicroLogic trip unit, reconnect the auxiliary power supply.
- 2. Reset the trip unit switches and the advanced protection settings to original values, as recorded at the beginning of this section.

Circuit Breaker Reconnection

Reconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.

Section 6— Adjustable Rating Plug Replacement

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E, CSA Z462, NOM 029-STPS or local equivalent.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment. Follow instructions shipped with circuit breaker to disconnect and reconnect circuit breaker.
- Replace all devices, doors and covers before returning equipment to service.

Failure to follow these instructions will result in death or serious injury.

Remove Rating Plug

- 1. Disconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.
- 2. Open switch cover (A).
- 3. Record switch settings in Appendix E (switch settings and those set with graphic screen, if applicable).
- 4. Unscrew plug mounting screw (B).
- 5. Remove adjustable rating plug (C).

Figure 101 – Remove Adjustable Rating Plug

NOTE: To select correct replacement rating plug, see the product catalog.

NOTE: Adjustable rating plug must be removed when doing hi-pot testing. Adjustable rating plug must be installed for voltage measurement. If adjustable rating plug is removed, the circuit breaker will default to a long-time pickup rating of 0.4 x sensor size (In) and a long-time delay of whatever setting was selected before the rating plug was removed.

Install New Rating Plug

- 1. Inspect mounting area for debris and contamination.
- 2. Gently push in new rating plug (A).
- 3. Tighten adjustable rating plug mounting screw (B).
- 4. Set trip unit settings to values recorded in Appendix E or per coordination study results.
- 5. Close switch cover (C).

Figure 102 –Install New Adjustable Rating Plug

Section 7— Battery Replacement

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E, CSA Z462, NOM 029-STPS or local equivalent.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment. Follow instructions shipped with circuit breaker to disconnect and reconnect circuit breaker.
- Replace all devices, doors and covers before returning equipment to service.

Failure to follow these instructions will result in death or serious injury.

Circuit Breaker Disconnection

Disconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.

Accessory Cover Removal

Remove circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

Withstand Module Shifting

NOTE: Some R-frame and NS1600b–NS3200 circuit breakers have a withstand module that needs to be moved to access the battery.

Loosen screws (A) securing withstand module (B). Swing module to side to access trip unit battery cover. Do not remove withstand module connector.

Figure 103 – Shift Withstand Module

Battery Replacement

1. Insert small screwdriver blade into battery housing cover notch and rotate to slide battery housing cover (A) out of trip unit.

Figure 104 – Remove Battery Cover

- 2. Remove battery (A).
- 3. Insert new battery (B). Make sure that the polarity is correct.
- 4. Replace battery housing cover (C).

Figure 105 – Replace Battery

Withstand Module Replacement

If the withstand module was moved to access the battery, replace the withstand module (A) and tighten the screws (B).

Figure 106 – Replace Withstand Module

Accessory Cover Replacement

Replace circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

Circuit Breaker Reconnection

Reconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.

Appendix A—Graphic Display Flowcharts

Metering Menu Flowchart

Maintenance Menu Flowchart

Protection Menu Flowchart

Appendix B—Default Settings and Tolerances

Default Settings

Tuble 14 Deludit Obtainge Officence				
Description	Symbol	Default Value		
Long-time pickup	lr	Maximum		
Long-time delay	tr	Minimum		
Short-time pickup	lsd	Minimum		
Short-time delay	tsd	Minimum		
Ground-fault pickup	lg	Minimum		
Ground-fault delay	tg	Minimum		
Instantaneous	li	Minimum		
Long-time pickup Long-time delay Short-time pickup Short-time delay Ground-fault pickup Ground-fault delay Instantaneous	Ir tr Isd tsd Ig Ig Ii	Maximum Minimum Minimum Minimum Minimum Minimum		

Table 14 – Default Settings—Switches

Table 15 - Default Settings—Maintenance

Submenu	Description	Line Item	Default Value	Setting Range
	Alarm type	S#	Not selected	Not selected, lsd, lr, lunbal (SeeTable 9)
M2C/M6C contacts	Setup	S#	Latching	Latching contact, time delay, non-latching contact, Locked 0, Locked 1
	Language		English US	Deutsch, English US, English UK, Espanol, Francais
	Date/Time			
		Standard	NA	Not def, ANSI, IEC, UL, IEC/GB
	Due elsen e els stien	Circuit breaker	NA	
MicroLogic setup	Breaker selection	Туре	NA	
		Circuit breaker number	0000	0000-FFFF
	Power sign		P+	P+, P-
) /T wethe	Primary	690	000–690
	VITALIO	Secondary	690	000–690
	System frequency		50-60 Hz	50-60 Hz, 400 Hz
	System type		3Ф 4 w 4 CT	3Ф 4w 4CT, 3Ф 4w 3CT, 3Ф 3w 3CT
	Current demand	Interval	15 min.	5–60 min
Metering setup	Dower demand	Window type	Sliding	Sliding, block
	Power demand	Interval	15 min.	5–60 min
	Sign convention		IEEE	IEEE, IEEE alt, IEC
	Com parameter			
Composition	Remote access		No	Yes, no
Com setup	Remote control		Auto	Auto, manual
	IP Data			

Table 16 - Default Settings—Protection

Submenu	Description	Symbol	Line Item	Default Value	Setting Range	Tolerance
	Long-time pickup	lr		Maximum		±10%
	Long-time delay	tr		Minimum		-20%, +0%
	Short-time pickup	lsd		Minimum		±10%
	Short-time delay	tsd		Minimum		
	Instantaneous	li		Minimum		±10%
	Ground-fault trip (5.0H trip unit)	۱ <u>‡</u>	No protection			
			Mode	Trip	Trip	
	Ground-fault (6.0H trip unit)	۱ <u>≠</u>	Pickup	Switch setting	$ \begin{array}{l} I_n \leq 400 \text{ A: } 30\% - 100\% \text{ I}_n \\ 400 < I_n \leq 1200 \text{ A: } 20\% - 100\% \text{ I}_n \\ 1200 \text{ A } < I_n \text{: } 500 \text{ A} - 1200 \text{ A} \end{array} $	±10%
			Pickup delay	Switch setting	0.1–0.4 sec.	-20%, +0%
	Neutral current	Ineutral		Off	Off, N/2, N, 1.6N	
			Mode	Off	Alarm, off	
			Pickup	1200 A	0.2 x I _n –1200 A	±15%
	Ground-fault alarm	l <i>≰</i> alarm	Pickup delay	10.0 sec.	1.0–10.0 sec.	-20%, +0%
			Dropout	1200 A	20 A–pickup	±15%
			Dropout delay	1.0 sec.	1.0–10.0 sec.	-20%, +0%
Amperage protection		lunbal	Mode	Off	Alarm, trip, off	
	Current unbalance		Pickup %	60%	5–60%	-10%, +0%
			Pickup delay	40 sec.	1–40 sec.	-20%, +0%
			Dropout %	l _{unbal} pickup %	5%–pickup %	-10%, +0%
			Dropout delay	10 sec.	10–360 sec.	-20%, +0%
	Max. phase A demand current	lamax	Mode	Off	Alarm, trip, off	
			Pickup	In	$0.2 \times I_n - I_n$	±6.6%
			Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%
			Dropout	l _a max pickup	0.2 x I _n –pickup	±6.6%
			Dropout delay	15 sec.	15–3000 sec.	-20%, +0%
			Mode	Off	Alarm, trip, off	
			Pickup	I _n	0.2 x I _n –I _n	±6.6%
	Max. phase B demand current	Ibmax	Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%
			Dropout	l _b max Pickup	0.2 x I _n –pickup	±6.6%
			Dropout delay	15 sec.	15–3000 sec.	-20%, +0%
			Mode	Off	Alarm, trip, off	
			Pickup	I _n	0.2 x I _n –I _n	±6.6%
	Max. phase C demand current	Icmax	Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%
			Dropout	l _c max pickup	0.2 x I _n –pickup	±6.6%
			Dropout delay	15 sec.	15–3000 sec.	-20%, +0%
			Mode	Off	Alarm, trip, off	
		Inmax	Pickup	I _n	0.2 x l _n –l _n	±6.6%
	Max. neutral demand current		Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%
			Dropout	l _n max pickup	0.2 x I _n –pickup	±6.6%
			Dropout delay	15 sec.	15–3000 sec.	-20%, +0%

Continued on next page

ENGLISH

Submenu	Description	Symbol	Line Item	Default Value	Setting Range	Tolerance
	Minimum (under) voltage		Mode	Off	Alarm, trip, off	
			Pickup	100 V	100 V–Vmax pickup	-5%, +0%
		Vmin	Pickup delay	5 sec.	1.2–5 sec.	-0%, +20%
			Dropout	Vmin pickup	Vmin pickup–1200 A	-5%, +0%
			Dropout delay	1.2 sec.	1.2–36 sec.	-0%, +20%
			Mode	Off	Alarm, trip, off	
			Pickup	725 V	Vmin–1200 A	-0%, +5%
Voltage	Maximum (over) voltage	Vmax	Pickup delay	5 sec.	1.2–5 sec.	-0%, +20%
protection			Dropout	Vmax pickup	100–Vmax pickup	-0%, +5%
			Dropout delay	1.2 sec.	1.2–36 sec.	-0%, +20%
			Mode	Off	Alarm, trip, off	
			Pickup	20%	2–20%1	-10%, +0%
	Voltage unbalance	Vunbal	Pickup delay	40 sec.	1–40 sec.	-20%, +0%
			Dropout	Vunbal pickup	2%–Vunbal pickup	-10%, +0%
			Dropout delay	10 sec.	10–360 sec.	-20%, +0%
			Mode	Off	Alarm, trip, off	
			Pickup	500 kW	5–500kW	± 2.5%
	Reverse power	rP	Pickup delay	20 sec.	1.2–20 sec.	-0%, +20%
			Dropout	rP pickup	5kW–rP pickup	± 2.5%
			Dropout delay	1 sec.	1–360 sec.	-0%, +20%
			Mode	Off	Alarm, trip, off	
			Pickup	45 Hz	45 Hz–Fmax pickup	± 0.5 Hz
Other protection	Minimum (under) frequency	Fmin	Pickup delay	5 sec.	1.2–5 sec.	-0%, +20%
			Dropout	Fmin pickup	Fmin Pickup–440 Hz	± 0.5 Hz
			Dropout delay	1 sec.	1–36 sec.	-0%, +20%
			Mode	Off	Alarm, trip, off	
			Pickup	65 Hz	Fmin Pickup–440 Hz	± 0.5 Hz
	Maximum (over) frequency	Fmax	Pickup delay	5 sec.	0.2–5 sec.	-0%, +20%
			Dropout	Fmax pickup	45 Hz–Fmax pickup	± 0.5 Hz
			Dropout delay	1 sec.	1–36 sec.	-0%, +20%
Phase rotation	Phase rotation	_	Sequence	Phase A, phase C, phase B direction	Phase A, phase B, phase C direction or phase A, phase C, phase B direction	
			Mode	Off	Off, alarm	
			Mode	Off	Off, on	
			Pickup %	100% lr	50% lr–100% lr	±6%
Load shedding I	Load shedding I	_	Pickup delay %	80% tr	20–80% tr	-20%, +0%
-			Dropout %	Load shedding I pickup	30%–Load shedding I pickup %	±6%
			Dropout delay	10 sec.	10–600 sec.	-20%, +0%
			Mode	Off	Off, On	
			Pickup	10,000 kW	200–10,000 kW	± 2.5%
Load shedding P	Load shedding P		Pickup delay	3600 sec.	10-3600 sec.	-20%, +0%
			Dropout	Load shedding P pickup	100 kW–Load shedding P pickup %	± 2.5%
			Dropout delay	10 sec.	10-3600 sec.	-20%, +0%

Table 16 Default Settings—Protection (continued)

¹ Do not adjust above 20%

Metering Range and Accuracy

Table 17 – Metering Range and Accuracy

Item	Description	Symbol	Range	Tolerance
	Instantaneous current in A phase	l _a	0–32 kA	±1.5%
	Instantaneous current in B phase	I _b	0–32 kA	±1.5%
	Instantaneous current in C phase	I _c	0–32 kA	±1.5%
	Instantaneous current in neutral	l _n	0–32 kA	±1.5%
Instantaneous	Instantaneous current in ground	<i>ا</i> <u>چ</u>	0–32 kA	±1.5%
Current	Max. instantaneous current in A phase	l _a max	0–32 kA	±1.5%
	Max. instantaneous current in B phase	l _b max	0–32 kA	±1.5%
	Max. instantaneous current in C phase	I _c max	0–32 kA	±1.5%
	Max. instantaneous current in neutral	I _n max	0–32 kA	±1.5%
	Max. instantaneous current in ground	I≰max	0–32 kA	±1.5%
	Demand current in A phase	Īa	0–32 kA	±1.5%
	Demand current in B phase	Īb	0–32 kA	±1.5%
	Demand current in C phase	Īc	0–32 kA	±1.5%
Demand	Demand current in neutral	Īn	0–32 kA	±1.5%
Current	Max. demand current in A phase	Ī _a max	0–32 kA	±1.5%
	Max. demand current in B phase	Ī _b max	0–32 kA	±1.5%
	Max. demand current in C phase	Ī _c max	0–32 kA	±1.5%
	Max. demand current in neutral	Ī _n max	0–32 kA	±1.5%
	Phase-to-phase instantaneous voltage between A and B phase	V _{ab}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between B and C phase	V _{bc}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between C and A phase	V _{ca}	0–1200 V	±0.5%
Voltage	Phase-to-phase instantaneous voltage between A and neutral phase	V _{an}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between B and neutral phase	V _{bn}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between C and neutral phase	V _{cn}	0–1200 V	±0.5%
	Average phase-to-phase voltage	V avg 3Φ	0–1200 V	±0.5%
	Voltage unbalance	V unbal 3Φ	0–100 V	±0.5%
	Instantaneous active power	Р	0–32 MW	±2%
Power	Instantaneous reactive power	Q	0–32 Mvar	±2%
	Instantaneous apparent power	S	0–32 MVA	±2%
Power Factor	Power factor	PF	-1–1	±0.01%
	Active demand power	Р	0–32 MW	±2%
	Reactive demand power	Q	0–32 Mvar	±2%
Demand	Apparent demand power	S	0–32 MVA	±2%
Power	Max. active demand power since last reset	Pmax	0–32 MW	±2%
	Max. reactive demand power since last reset	Qmax	0–32 Mvar	±2%
	Max. apparent demand power since last reset	Smax	0–32 MVA	±2%
	Total active power	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
Energy Total	Total reactive power	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
	Total apparent power	E.S	-10 ¹⁰ –10 ¹⁰ KVAh	±2%
Energy In	Total active power in	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
спетуу ш	Total reactive power in	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
Enorgy Out	Total active power out	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
Lifergy Out	Total reactive power out	E.Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%

Continued on next page

ltem	Description	Symbol	Range	Tolerance
	Fundamental current	I	0.05 x ln–1.5 x ln	±1.5% ¹
	Fundamental voltage	V	30–1150 V	±0.5%
Harmonic	Fundamental active power	Р	0.15–13.8 kW	±2%
	Fundamental demand power	Q	0.15–13.8 kW	±2%
	Fundamental apparent power	S	0.15–13.8 kW	±2%
	Total harmonic distortion of current based on fundamental current	THD(I)	1.5–1000%	±5%
	Total harmonic distortion of voltage based on fundamental current	THD(V)	1.5–1000%	±5%
	Total harmonic distortion of current based on rms current	thd(I)	1.5–1000%	±5%
	Total harmonic distortion of voltage based on rms current	thd(V)	1.5–1000%	±5%
	FFT	FFT	1.5–1000%	±5%
Frequency	System frequency	F	45–440 Hz	±0.1 Hz

Table 17 – Metering Range and Accuracy

¹ Over the range 0.7 x In–1.5 x In

Symbol

Appendix C—Network/Com Access

Remotely Readable Values

The communication option can be used to remotely access the MicroLogic trip unit, using System Manager Software (SMS) (version 3.3 or later) or other network system management software. See the product catalog for more information on the SMS software.

Item	Description
	Instantaneous current in A phase
	Instantaneous current in B phase
	Instantaneous current in C phase
	Instantaneous current in neutral
	Instantaneous current in ground

Table 18 – Remotely Readable Values

	Instantaneous current in A phase	la
	Instantaneous current in B phase	۱ _b
	Instantaneous current in C phase	I _c
	Instantaneous current in neutral	I _n
	Instantaneous current in ground	<i>\</i> ≰
	Average current in A phase	l _a avg
	Average current in B phase	l _b avg
	Average current in C phase	l _c avg
	Average current in neutral	l _n avg
	Average current in ground	l _g avg
Current	Average instantaneous current in ground	l≰avg
	Maximum instantaneous current in A phase	l _a max
	Maximum instantaneous current in B phase	I _b max
	Maximum instantaneous current in C phase	I _c max
	Maximum instantaneous current in neutral	l _n max
	Maximum instantaneous current in ground	l <i>≛</i> max
	Instantaneous current unbalance in A phase	l _a unbal
	Instantaneous current unbalance in B phase	l _b unbal
	Instantaneous current unbalance in C phase	l _c unbal
	Instantaneous current unbalance in neutral	l _n unbal
	Max. instantaneous current unbalance	l unbal max
	Demand current in A phase	l _a
	Demand current in B phase	I _b
	Demand current in C phase	I _c
	Demand current in neutral	I _n
Demand Currents	Max. demand current since last reset in A phase	l _a max
ouncing	Max. demand current since last reset in B phase	l _b max
	Max. demand current since last reset in C phase	I _c max
	Max. demand current since last reset in neutral	I _n max
	Time stamping of demand current max.	

Continued on next page

ltem	Description	Symbol
	Instantaneous voltage between A and B phase	V inst V _{ab}
	Instantaneous voltage between B and C phase	V inst V _{bc}
	Instantaneous voltage between C and A phase	V inst V _{ca}
	Instantaneous voltage between A and neutral phase	V inst V _{an}
	Instantaneous voltage between B and neutral phase	V inst V _{bn}
	Instantaneous voltage between C and neutral phase	V inst V _{cn}
	Average phase-to-phase voltage	V avg V _{pp}
	Average phase-to-neutral voltage	V avg V _{pn}
Voltage	Voltage unbalance between V _{ab} and mean	V unbal V _{ab}
	Voltage unbalance between V_{bc} and mean	V unbal V _{bc}
	Voltage unbalance between V_{ca} and mean	V unbal V _{ca}
	Voltage unbalance between V _{an} and mean	V unbal V _{an}
	Voltage unbalance between V _{bp} and mean	V unbal V _{bn}
	Voltage unbalance between V _{en} and mean	V unbal V _{on}
	Max phase-to-phase voltage unbalance	ui
	Max. phase-to-neutral voltage unbalance	
Active Power	Instantaneous active power per phase	P
	Active demand nower	P
	Reactive demand power	0
	Apparent demand power	S
	Max, active demand power since last reset	0 Pmay
Demond	Max reactive demand power since last reset	
Demand Power	Max, apparent demand power since last reset	Smax
	Predicted active demand newer at and of window	Sillax
	Predicted active demand power at end of window	
	Predicted reactive demand power at end of window	
	Time etemping of demond power at end of window	
	Time stamping of demand power max.	-
F		E
Energy	Active energy in	
	Active energy out	
Fault values	Fault type	
	Interrupted current values	
	Fundamental	
	Phase displacement of fundamental	
	Harmonic distortion THD based on fundamental	
	Harmonic distortion thd based on rms	
Harmonics	Cos φ	
	Power factor	
	K factor	
	Distortion power	
	Distortion factor	
	Crest factor	
Frequency	System frequency	F
Update dates	Interval between last update of real-time values and the current table	
opulie unico	Update date of demand currents, demand power and energy	

Table 18 - Remotely Readable Values (continued)

Continued on next page

Item	Description	Symbol
	Trip history	
History	Alarm history	
	Event history	
	Contact wear	
Countons	Operation counter since last reset	
Counters	Date/time of last operation counter reset	
	Operation counter total (lifetime)	
	Setting of date and time	
	Password	
	Trip unit ID code	
	Trip unit ID name	
	Measurement calculation algorithm	
	Sign convention	
	Total-energy measurement mode	
0	Scale factors	
Setup	Demand-current calculation window interval	
	Power quality indication	
	Demand-power calculation mode	
	Demand-power calculation window interval	
	Battery-charge indication	
	Programmable contact assignments	
	Programmable contact setup	
	Waveform capture	
	Circuit breaker rated current	
	Type of neutral protection	
	Long-time protection settings	
	Short-time protection settings	
	Instantaneous protection settings	
Protection	Ground-fault protection settings	
	Current-unbalance protection settings	
	l ≰ alarm settings	
	Maximum-current protection settings	
	Voltage protection settings	
	Other protective functions settings	1

Table 18 - Remotely Readable Values (continued)

Appendix D—Trip Unit Voltage Supply Architecture

NOTICE

HAZARD OF EQUIPMENT DAMAGE

Setting undervoltage protection (Vmin) below 80% or voltage unbalance (Vunbal) above 20% can cause the trip unit to not perform as expected.

Failure to follow these instructions can result in equipment damage.

The trip unit has an integral internal three-phase voltage power supply which appears as a three-phase delta configured load to the system (Figure 107). This power supply is a three-phase load by itself and will inject voltage on an open phase (Figure 108).

Figure 107 –Integral Internal Three-phase Power Supply

Figure 108 – Open Phase on Three-phase Power Supply

The impact of a three-phase delta configured load on the voltage-based protection functions is as follows:

Minimum Voltage Protection

The minimum (under) voltage protection function is based on phase-to-phase voltage measurement.

For circuit configuration 1 (Figure 109), 2 (Figure 110) or 3 (Figure 111), if a fuse opens the trip unit will inject voltage on the open phase. Therefore the trip unit will meter the voltage being injected on the open phase accurately. The phase-to-phase voltage (V_{LL}) measurement will be higher than when the open phase is at zero volts. The trip unit will also accurately meter the phase-to-neutral voltage (V_{LN}) injected on the open phase and display a value greater than zero.

Figure 109 – Circuit Configuration 1

Figure 111 – Circuit Configuration 3

For circuit configuration 4 (Figure 112), the trip unit has a return path through the transformer and the injected voltage on the open phase will be zero. In this configuration the trip unit will accurately meter zero volts on V_{LN} .

To ensure the MicroLogic trip system will perform as expected regardless of system configuration the user should limit the undervoltage pickup range to 80%–100% of the nominal phase-to-phase system voltage.

Figure 112 – Circuit Configuration 4

Voltage Unbalance Protection

The voltage unbalance protection function is based on phase-to-phase voltage measurement.

For circuit configuration 1 (Figure 109), 2 (Figure 110) or 3 (Figure 111), if a fuse opens the trip unit will inject voltage on the open phase. Therefore the trip unit will meter the voltage being injected on the open phase accurately.

The phase-to-phase voltage (V_{LL}) measurement will be higher than when the open phase is at zero volts. The trip unit will also accurately meter the phase-to-neutral voltage (V_{LN}) injected on the open phase and display a value greater than zero.

For circuit configuration 4 (Figure 112), the trip unit has a return path through the transformer and the injected voltage on the open phase will be zero. In this configuration the trip unit will accurately meter zero volts on V_{LN} .

To ensure the MicroLogic trip system will perform as expected regardless of system configuration the user should limit the voltage unbalance protection settings to 0-20%.

Loss of Multiple Phases

Do not use either minimum voltage protection or voltage unbalance protection to determine the loss of multiple phases.

- The internal voltage power supply requires voltage of two phases to operate. (The voltage power supply has an operating range from 100 V to 690 V.)
- In circuit configurations 1 (Figure 109), 2 (Figure 110) and 3 (Figure 111), when multiple phases are lost the trip unit will measure the system voltage of the remaining phase on all three phases. For example, if two phases are lost on a 480 V three-phase delta system, the trip unit will meter 480 V_{LL} on all three phases.

Appendix E—Trip Unit Settings

Enter setting values in settings tables.

Table 19 - Settings-Switches

Description	Symbol	Settings
Long-time pickup	lr	
Long-time delay	tr	
Short-time pickup	Isd	
Short-time delay	tsd	
Ground-fault pickup	lg	
Ground-fault delay	tg	

Submenu	Description	Line Item	Trip Unit Setting
M2C/M6C contacts	Alarm type	S#	
	Setup	S#	
MicroLogic setup	Language		
	Date/Time		
	Breaker selection	Standard	
		Circuit breaker	
		Туре	
		Circuit breaker number	
	Neutral CT		
	VT ratio	Primary	
		Secondary	
	System frequency		
Metering setup	System type		
	Current demand	Interval	
	Power demand	Window type	
		Interval	
	Power sign		
	Sign convention		
Com setup	Com parameter		
	Remote access		
	Remote control		
	IP Data		

Table 20 –	Settings-	–Maintenance	Menu
------------	-----------	--------------	------

Table 21 – Settings—Protection Menu

Submenu	Description	Symbol	Line Item	Trip Unit Setting
	Long-time pickup	lr		
	Long-time delay	tr		
	Short-time pickup	lsd		
	Short-time delay	tsd		
	Instantaneous	li		
	Idmtl Long-time pickup	ldmtl Ir		
	Idmtl Long-time delay	ldmtl tr		
	Idmtl Mode			
	Idmtl Short-time pickup	Idmtl Isd		
	Idmtl Short-time delay	Idmtl tsd		
	Idmtl Instantaneous	Idmtl li		
			Mode	
	Ground-fault (6.0H trip unit)	<i>≰</i>	Pickup	
			Pickup delay	
	Neutral current	Ineutral		
	-		Mode	
			Pickup	
	Ground-fault alarm	l <i>≰</i> alarm	Pickup delay	
			Dropout	
			Dropout delay	
			Mode	
			Pickup %	
Amperage protection	Current unbalance	lunbal	Pickup delay	
			Dropout %	
			Dropout delay	
			Mode	
		lamax	Pickup	
	Max. phase A demand		Pickup delay	
	current		Dropout	
			Dropout delay	
	Max. phase B demand current	Ībmax	Mode	
			Pickup	
			Pickup delay	
			Dropout	
			Dropout delay	
	Max. phase C demand current	Īcmax	Mode	
			Pickup	
			Pickup delay	
			Dropout	
			Dropout delay	
	Max. neutral demand current	Inmax	Mode	
			Pickup	
			Pickup delay	
			Dropout	
			Dropout delay	

Continued on next page

Table 21 – Settings—Protection Menu (continued	Table 21 –	Settings—Protection	Menu	(continued)
--	------------	---------------------	------	-------------

Submenu	Description	Symbol	Line Item	Trip Unit Setting
			Pickup	
		., .	Pickup delay	
	Minimum (under) voltage	Vmin	Dropout	
			Dropout delay	
		Vmax	Pickup	
	Maximum (over) voltage		Pickup delay	
Voltage protection			Dropout	
			Dropout delay	
			Pickup	
		Vunbal	Pickup delay	
	Voltage unbalance		Dropout	
			Dropout delay	
-			Pickup	
	Deveree newer	~D	Pickup delay	
	Reverse power	rP	Dropout	
			Dropout delay	
			Pickup	
	Maximum (aver) frequency	Fmax	Pickup delay	
Other and stire	Maximum (over) frequency		Dropout	
Other protection			Dropout delay	
		Fmin	Pickup	
	Minimum (under) frequency		Pickup delay	
	Minimum (under) requency		Dropout	
			Dropout delay	
	Phase rotation	_	Mode	
			Sequence	
Load shedding I	Load shedding l	_	Mode	
			Pickup %	
			Pickup delay %	
			Dropout %	
			Dropout delay	
Load shedding P	Load shedding P	_	Mode	
			Pickup	
			Pickup delay	
			Dropout	
			Dropout delay	

Index

Α

Adjustable rating plug See See Rating plug Adjustable switch settings 55–56 Adjustable switches. See Switches Advanced protection checking values 61 description 18 indicator light 29 Alarm contacts. See M2C/M6C programmable contacts Alarms history 70 Amperage protection 38 checking 71

В

Battery check status 60 replacement 87 Buttons enter 31, 37, 35 ground-fault test 59 maintenance menu 31, 37, 35 navigation 31 protection menu 31 test/reset 29 up 31

С

Circuit breaker information 45 Communication module 7, 51 Communication setup menu 37 Contact wear indicator checking 70 code setting 45 meter 45 Current demand 49 **Current levels** checking 61 display 30 menu 33 Current load shedding alarm 20 checking 76 description 23 menu 39 Current shedding. See Current load shedding Current unbalance alarm 41 protection 22

D

Date setting 44 Default settings maintenance 93 protection 94 switches 93 Delay ground-fault 14 long-time 10 short-time 12

Ε

Energy levels checking 64 menu 34 Enter button 31, 37, 35 External power supply 17

F

Flowchart maintenance menu 91 metering menu 90 protection menu 92 Frequency alarm 41 checking 69 entering 47 menu 35

G

Graphic display flowchart 90 menus 32 navigation 31 screen 30 Ground-fault protection alarm 41 delay switch 14 pickup switch 14 test function 59

Η

Harmonics description 26 menu 35 waveform 26 History logs checking 69 description 36–37

Ι

l²t off 12

l²t on 12 Idmtl. See Long-time protection Ig. See Ground-fault protection pickup switch li. See Instantaneous protection In. See Sensor sizes Indicator lights advanced protection 29 ground-fault 29 overload 28 self protection 29 trip 29 Instantaneous protection description 13 pickup switch 13 Ir. See Long-time protection pickup switch Isd. See Short-time protection pickup switch

L

Language setting 43 Load shedding. See Current load shedding, voltage load shedding Long-time protection alarm 41 delay switch 10 description 11 I2t delay 10 Idmtl delay pickup switch 10 LSI. See Trip unit, 5.0H LSIG See Trip unit, 6.0H

Μ

M2C/M6C programmable contacts menu description 36 menu setting 40 Maintenance menu button 31, 37, 35 default settings 93 description 36 flowchart 91 setting 40 Maximum current alarm 41 Maximum frequency protection 23 Menus alarm history 70 amperage protection 38, 71 communication setup 37 contact wear 70

current levels 33, 61

current load shedding 39 energy levels 34, 64 frequency 69 harmonics 35 history logs 36-37 M2C/M6C programmable contacts 36 maintenance 36 metering setup 36-37 Micrologic setup 18, 37 operation counter 70 other protection 39, 75 power levels 34, 63 power load shedding 39, 76 trip history 69 voltage levels 33, 62 voltage protection 39, 74 Metering accuracy 96 range 96 Metering menu checking 61 flowchart 90 Metering setup menu description 36-37 Micrologic setup menu description 18, 37 setting 43 Micrologic trip unit. See Trip unit Minimum frequency protection 23 Modbus com values 51

Ν

Navigation buttons 31 Neutral protection 18

0

Operation 61 Operation counter description 30 menu 70 Other protection checking 75 description 18 Other protection menu 39 Overfrequency. *See* Maximum frequency protection Overheating trip indicator light 29

Ρ

Phase reversal alarm 41 checking 75 Phase rotation protection 24 Pickup ground-fault 14 instantaneous 13 long-time 10 short-time 12 Pickup levels, setting 54 Plug, rating. See Rating plug Power demand 49 Power flow power sign direction setup 46 reactive power sign convention setup 50 Power levels checking 63 menu 34 Power load shedding alarm 41 checking 76 menu 39 Primary injection testing 28 Product name 6 Protection advanced 18 amperage 71 current load shedding 39 current unbalance 22 default settings 94 instantaneous 13 load shedding 23 long-time 10 maximum frequency 23 minimum frequency 23 neutral 18 other 75 phase rotation 24 power load shedding 39 reverse power 22 short-time 12 voltage 74 voltage unbalance 22 Protection designation 6 Protection menu button 31 checking 71 default settings 94

R

flowchart 92

Rating plug description 6, 11 replacement 85 Remote access 53 Remote control 53 Remotely readable measurements 98 Replacement battery 87 rating plug 85 trip unit 77 Reset button 59 Reverse power protection alarm 41 description 22 RPmax. *See* Reverse power protection

S

Secondary injection testing 28 Self-protection indicator light 29 Sensor plug 6 Short-time protection alarm 41 delay switch 12 description 12 pickup switch 12 Sign convention 50 Status battery 60 trip unit 60 Switch cover illustration 6 opening slot 54 Switches adjusting 54 description 7 ground-fault delay 14 ground-fault pickup 14 instantaneous pickup 13 long-time delay 10 long-time pickup 10 short-time delay 12 short-time pickup 12 System type 48

Т

Test 29 Test plug 58 Test/reset button 29 Testing primary injection 28 secondary injection 28 test kits 58 trip unit 28 Thermal imaging 11 Time setting 44 Tr. *See* Long-time protection delay switch Trip history 69 Trip indicator lights 29 Trip indicators
check status 60 Ig 29 Isd/Ii 29 lights 29	wiring 58 ZSI. See Zone-selective interlocking
Trip unit	
5.0H 8	
6.0H 9	
history 69	
replacement 77	
series designation 6	
settings	
circuit breaker family 45	
circuit breaker type 45	
contact wear code 45	
date 44	
frequency 47	
instantaneous protection 13	
language 43	
recording tables 104	
short-time protection 12	
standards 45	
time 44	
VT ratio 46	
setup 43	
status check 60	
testing 28	
voltage supply architecture 101	
Tripping functions 6–7	
Tsd. See Short-time protection delay switch	

U

Underfrequency. See Minimum frequency protection Up button 31

V

Voltage levels checking 62 menu 33 Voltage protection alarm 41 checking 74 menu 39 Voltage supply architecture 101 Voltage transformer ratio 46 Voltage unbalance alarm 41 protection 22 voltage architecture 103

Ζ

Zone-selective interlocking description 25 jumpers 57

Schneider Electric USA, Inc. 800 Federal Street Andover, MA 01810 USA 888-778-2733 www.schneider-electric.us

Standards, specifications, and designs may change, so please ask for confirmation that the information in this publication is current.

Schneider Electric, Square D and Micrologic are owned by Schneider Electric Industries SAS or its affiliated companies. All other trademarks are the property of their respective owners.

© 2002–2019 Schneider Electric All Rights Reserved

48049-330-03, Rev. 03, 12/2019 Replaces 48049-330-03 Rev. 01, 07/2012

Unidades de disparo electrónico MicroLogic™ 5.0H y 6.0H

48049-330-03 Rev. 03, 12/2019

Conservar para uso futuro.

Categorías de peligros y símbolos especiales

Aseqúrese de leer detenidamente estas instrucciones y realice una inspección visual del equipo para familiarizarse con él antes de instalarlo, hacerlo funcionar o prestarle servicio de mantenimiento. Los siguientes mensajes especiales pueden aparecer en este boletín o en el equipo para advertirle sobre peligros potenciales o llamar su atención sobre cierta información que clarifica o simplifica un procedimiento.

La adición de cualquiera de los dos símbolos a una etiqueta de seguridad de "Peligro" o "Advertencia" indica que existe un peligro eléctrico que causará lesiones si no se siguen las instrucciones.

Este es el símbolo de alerta de seguridad. Se usa para avisar sobre peligros potenciales de lesiones. Respete todos los mensajes de seguridad con este símbolo para evitar posibles lesiones o la muerte.

PELIGRO

PELIGRO indica una situación peligrosa que, si no se evita, podrá causar la muerte o lesiones serias.

A ADVERTENCIA

ADVERTENCIA indica una situación peligrosa que, si no se evita, puede causar la muerte o lesiones serias.

A PRECAUCIÓN

PRECAUCIÓN indica una situación peligrosa que, si no se evita, puede causar lesiones menores o moderadas.

AVISO

AVISO se usa para hacer notar prácticas no relacionadas con lesiones físicas. El símbolo de alerta de seguridad no se usa con esta palabra de indicación.

NOTA: Proporciona información adicional para clarificar o simplificar un procedimiento.

Observe que

Solamente el personal calificado deberá instalar, hacer funcionar y prestar servicios de mantenimiento al equipo eléctrico. Schneider Electric no asume responsabilidad alguna por las consecuencias emergentes de la utilización de este material.

Aviso FCC

Este equipo ha sido probado y cumple con los límites establecidos para un dispositivo digital clase A, de acuerdo con la parte 15 de las reglas de la FCC. Estos límites han sido designados para proporcionar protección razonable contra interferencias perjudiciales cuando se hace funcionar el equipo en un entorno comercial. Este equipo genera, usa y puede radiar energía de radio frecuencia y, si no se instala y se usa de acuerdo con el manual de instrucciones, puede causar interferencias perjudiciales en las comunicaciones de radio. Es posible que el uso de este equipo en un área residencial cause interferencias perjudiciales, en cuyo caso el usuario tendrá que corregir las interferencias por cuenta propia. Este aparato digital clase A cumple con la norma canadiense ICES-003.

SECCIÓN 1:SECCIÓN 1	INFORMACIÓN GENERAL	7
	Introducción	7
	Comunicaciones	8
	Ajustes de potencia y de control Ajustes de los selectores Unidad de disparo MicroLogic 5.0H Unidad de disparo MicroLogic 6.0H	
	Protección LSIG Protección de tiempo largo Protección de tiempo corto Protección instantánea Protección contra fallas a tierra del equipo	
	Función de ajustes de mantenimiento para la reducción de energía	(ERMS) 17
	Configuración de la unidad de disparo MicroLogic Alimentación de control Fuente de alimentación externa	18 18 19
	Configuración MicroLogic	20
	Protección avanzada Protección neutra Alarmas Valores de protección de demanda de corriente y tensión mínim máxima (sobre) Protección de desequilibrio de corriente o tensión Protección de potencia inversa (rPmáx) Protecciones de frecuencia máxima (sobre) y mínima (baja) Desconexión/reconexión de carga Protección de rotación de fases	20 22 a (baja) y 22 a (baja) y 24 25 25 25 26 26 26 27
	Kits de contactos programables M2C y M6C	27
	Enclavamiento selectivo de zona	
	Medición	29
	Armónicos Indicadores de la calidad de los armónicos	29 32
	Prueba de la unidad de disparo	32
	Luces indicadoras Luz indicadora de sobrecarga Luces indicadoras de disparo	33 33 33
	Botón de prueba/restablecimiento	34
	Pantalla de visualización	35
	Indicador de desgaste de los contactos	35
	Contador de maniobras	
SECCIÓN 2:NAVEGACI	ÓN POR LA PANTALLA DE VISUALIZACIÓN	37

	Pantalla de visualización	37
	Visualización de gráficos de barras y menús	38
	Menú de medición	39
	Menú de servicio de mantenimiento	
		44
SECCION 3:CONFIGUR	ACION DE LA UNIDAD DE DISPARO	47
	Ajuste de los parámetros de la unidad de disparo	47
	Contactos programables M2C/M6C	47
	Configuración de la unidad de disparo MicroLogic	50 54
	Configuración del módulo de comunicación	
	Ajuste de los selectores de configuración	61
	Fiemplos	63
	Unidad de disparo MicroLogic 5.0H	63
	Unidad de disparo MicroLogic 6.0H	64
	Enclavamiento selectivo de zona (ZSI)	65
	Verificación del funcionamiento de la unidad de disparo	67
	Restablecimiento de la unidad de disparo	67
	Prueba de la función de disparo por falla a tierra del equipo	68
	Verificación del estado de la unidad de disparo	69
SECCIÓN 4:FUNCIONAI	MIENTO	70
	Valores de medición	70
	Niveles de corriente	71
	Niveles de tensión	72
	Niveles de potencia	73
	Niveles de energia	
	Annonicos Frecuencia	
	Historial de la unidad de disparo	70
	Historial de disparo	
	Historial de alarmas	80
	Contador de maniobras	80
	Desgaste de contactos	80
	Configuración de protección	81
	Protección de corriente	81
	Protección de tensión	
	Otro tipo de protección	
	Desconexión/reconexión de carga de comencia	80
SECCIÓN 5:SUSTITUCIO		87
	Sustitución de la unidad de dispara para los ajustos de mantenimic	
	reducción de energía (ERMS)	
	Herramientas necesarias	89
	Preparación	89
	Anotación de los ajustes de los selectores	

	Desconexión del interruptor	89
	Extracción de la cubierta de accesorios del interruptor	
	Desmontaje de la unidad de disparo	
Si	ustitución de la unidad de disparo	00
	Instalación de la pila	
	Instalación de la unidad de disparo	
C	plocación de la cubierta de accesorios del interruptor	93
Ve	erificación de la instalación de la unidad de disparo	
	Pruebas de invección secundaria	
	Verificación del funcionamiento de los accesorios	
C	onfiguración de la unidad de disparo	
R	econexión del interruptor	
SECCIÓN 6:SUSTITUCIÓN DEL		95
D	esmontaje del calibrador	
In	stalación del nuevo calibrador	
SECCIÓN 7:SUSTITUCIÓN DE		
D	esconexión del interruptor	97
D	esmontaje de la cubierta de accesorios	97
D	esplazamiento del módulo de aguante	97
S	ustitución de la pila	
C	plocación del módulo de aguante	98
C	plocación de la cubierta de accesorios	99
R	econexión del interruptor	99
APÉNDICE A: DIAGRAMAS DE F	LUJO DE LA PANTALLA DE VISUALIZACIÓN	100
Di	agrama de flujo del menú de mediciones	100
D	agrama de flujo del menú de servicio de mantenimiento	101
D	agrama de flujo del menú de protecciones	102
APÉNDICE B:AJUSTES DE FÁI		103
Aj	ustes de fábrica	103
G	ama de medición y precisión	106
APÉNDICE C:ACCESO A LA RI	ED/COM	108
Va	alores de lectura remota	108
APÉNDICE D:ARQUITECTURA	DE LA TENSIÓN DE ALIMENTACIÓN DE LA UNIDAD) DE
DISPARO		111
Pi	otección de tensión mínima	111
Pi	otección de desequilibrio de tensión	113
Pe	érdida de fases múltiples	113

ESPAÑOL

APÉNDICE E:AJUSTES DE LA UNIDAD DE DISPARO	114
117	
ÍNDICE	115

Sección 1—Sección 1—Información general

Introducción

Las unidades de disparo MicroLogic[™] proporcionan funciones de disparo ajustables a los interruptores de disparo electrónico. El nombre del producto (A) especifica el tipo de protección provisto por la unidad de disparo.

Las unidades de disparo MicroLogic se pueden actualizar en campo a una versión más reciente. Consulte el catálogo de productos para obtener información más detallada acerca de los modelos de interruptores, tamaños de marcos, valores nominales de interrupción, enchufes sensores, calibradores y unidades de disparo disponibles.

Figura 1 – Unidad de disparo MicroLogic

Comunicaciones

Las unidades de disparo MicroLogic se pueden comunicar con otros dispositivos a través de Modbus mediante el módulo de comunicación del interruptor (BCM). Para obtener información sobre las listas del registro y otros dispositivos de comunicación, consulte el boletín 0613IB1313: *Sistema de comunicaciones Modbus*.

A ADVERTENCIA

POSIBLE COMPROMISO DE LA DISPONIBILIDAD, LA INTEGRIDAD Y LA CONFIDENCIALIDAD DEL SISTEMA

- Cambie de inmediato las contraseñas predeterminadas para ayudar a prevenir accesos no autorizados a la configuración, los controles y la información del dispositivo.
- Desactive los puertos/servicios no utilizados y las cuentas predeterminadas para reducir al mínimo las vías de acceso de ataques malintencionados.
- Proteja los dispositivos en red con múltiples niveles de ciberseguridad (como firewalls, segmentación de redes y sistemas de detección y protección frente a accesos no autorizados a redes).
- Use las mejores prácticas en materia de ciberseguridad (por ejemplo: privilegios mínimos, separación de tareas) para contribuir a prevenir la exposición, la pérdida o la modificación no autorizadas de datos y registros, o la interrupción de los servicios.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Ajustes de potencia y de control

Ajuste las opciones de la unidad de disparo o verifique las mediciones del sistema con la pantalla de visualización y la terminal de programación y ajustes. Consulte la sección 2 —Navegación por la pantalla de visualización para obtener más información. También es posible verificar las mediciones del sistema con el software System Manager Software (SMS), versión 3.2 o posterior, o cualquier otro software de gestión de sistemas de red.

Ajustes de los selectores

Las funciones de disparo de LSI o LSIG se pueden ajustar en los selectores ubicados en la parte frontal de la unidad de disparo. Las unidades de disparo vienen de fábrica con el selector de activación de tiempo largo ajustado en 1,0 y los otros selectores ajustados en su valor más bajo. Todos los ajustes de protección avanzada vienen desactivados.

Es posible realizar ajustes finos a los selectores a través de las teclas de navegación. Consulte la página 61.

Unidad de disparo MicroLogic 5.0H

La unidad de disparo MicroLogic 5.0H proporciona protección selectiva (LSI) y mediciones de potencia.

- A. Pantalla de visualización
- B. Botón del menú de protección¹
- C. Botón del menú de servicio de mantenimiento¹
- D. Botón del menú de medición¹
- E. Botón flecha abajo
- F. Botón flecha arriba

ESPAN

- G. Botón de introducción de valores
- H. Selector de activación de tiempo largo (Ir)
- I. Selector de retardo de tiempo largo (tr)
- J. Selector de activación de tiempo corto (Isd)
- K. Selector de retardo de tiempo corto (tsd)
- L. Selector de activación instantánea (li)
- M. Receptáculo para el enchufe de prueba
- N. Luz indicadora de sobrecarga de activación de tiempo largo
- Botón de restablecimiento de la verificación del estado de las pilas y el LED indicador de disparo
- P. Luz indicadora de autoprotección y protección avanzada
- Q. Luz indicadora de disparo de tiempo corto o instantáneo
- R. Luz indicadora de disparo de tiempo largo
- ¹ Este botón incluye un LED que indica el menú activo.

Unidad de disparo MicroLogic 6.0H

La unidad de disparo MicroLogic 6.0H proporciona protección (LSIG) selectiva y de falla a tierra del equipo (≤ 1200 A) así como mediciones de potencia.

- A. Pantalla de visualización
- B. Botón del menú de protección¹
- C. Botón del menú de servicio de mantenimiento¹
- D. Botón del menú de medición¹
- E. Botón flecha abajo
- F. Botón flecha arriba
- G. Botón de introducción de valores
- H. Selector de activación de tiempo largo (Ir)
- I. Selector de retardo de tiempo largo (tr)
- J. Selector de activación de tiempo corto (Isd)
- K. Selector de retardo de tiempo corto (tsd)
- L. Selector de activación instantánea (li)
- M. Selector de activación de protección contra fallas a tierra (lg)
- N. Selector de retardo de protección contra fallas a tierra (tg)
- O. Receptáculo para el enchufe de prueba
- P. Botón de disparo por falla a tierra
- Q. Luz indicadora de sobrecarga de activación de tiempo largo
- R. Botón de restablecimiento de la verificación del estado de las pilas y el LED indicador de disparo
- S. Luz indicadora de autoprotección y protección avanzada
- T. Luz indicadora de disparo por falla a tierra
- U. Luz indicadora de disparo de tiempo corto o instantáneo
- V. Luz indicadora de disparo de tiempo largo
- ¹ Este botón incluye un LED que indica el menú activo.

Figura 3 – Unidad de disparo 6.0H

Protección LSIG

Protección de tiempo largo

La protección de tiempo largo protege al equipo contra sobrecargas.

NOTA: Las unidades de disparo MicroLogic son alimentadas desde el circuito para proporcionar protección contra fallas en todo momento. Todas las demás funciones (módulos de visualización, medición, comunicación, etc.) requieren una fuente de alimentación externa. Consulte la página 19 para obtener más información.

Figura 4 – Selectores de protección de tiempo largo

Unidad de disparo MicroLogic 5.0H Unidad de disparo MicroLogic 6.0H

- La protección de tiempo largo es una función estándar en todas las unidades de disparo.
- La activación de tiempo largo (Ir) (A) establece el nivel máximo de la corriente (en base a los valores nominales del enchufe sensor [In]) que llevará el interruptor continuamente. Si la corriente excede este valor, se disparará el interruptor una vez que alcanza el valor del retardo de tiempo prefijado. La activación de tiempo largo (Ir) se puede ajustar de 0,4 a 1,0 veces el valor nominal del enchufe sensor (In) del interruptor (D).
- El retardo de tiempo largo (tr) (B) establece el período durante el cual el interruptor llevará una sobrecorriente por debajo del nivel de la corriente de activación instantánea o de tiempo corto antes de dispararse. Se encuentran disponibles dos opciones:
 - Curva de retardo de tiempo largo l²t estándar. Consulte la tabla 1 para obtener los ajustes de retardo de tiempo largo de l²t.
 - Las curvas de retardo de tiempo largo ldmtl (retardo mínimo de tiempo inverso independiente) varían en su pendiente para mejorar la selectividad.

Opción	Descripción	Curva
DT	Tiempo definido	Constante
SIT	Tiempo inverso estándar	10,5t
VIT	Gran tiempo inverso	It
EIT	Tiempo extremadamente inverso	l ² t
HVF	Compatible con fusibles de alta tensión	l ⁴ t

Ajuste ¹	Retard	Retardo de tiempo largo en segundos ²							
tr a 1,5 x Ir	12,5	25	50	100	200	300	400	500	600
tr a 6 x Ir	0,5	1	2	4	8	12	16	20	24
tra7.2 x Ir	0.34 ³	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6

Tabla 1 – Valores de retardo de tiempo largo de l²t de la unidad de disparo MicroLogic

¹Ir = In x activación de tiempo largo. In = valor nominal del sensor.

Umbral de disparo entre 1,05 y 1,20 lr.

²Precisión del retardo +0/-20%.

³Cuando tsd se ajusta en 0,4 off, tr = 0,5 en lugar de 0,34.

- La luz indicadora de sobrecarga (C) se ilumina cuando se ha excedido el valor de umbral de activación de tiempo largo Ir.
- Es posible cambiar el valor del sensor In en los interruptores de potencia MasterPact[™] NT y NW sustituyendo el enchufe sensor (D) ubicado debajo de la unidad de disparo. Lea las instrucciones incluidas con el accesorio de sustitución del enchufe sensor para obtener información adicional.
- · La protección del neutro no está disponible al seleccionar la protección Idmtl.
- Las selecciones de Idmtl no utilizan la misma opción de imagen térmica que la función de protección de tiempo largo l²t. La protección básica de tiempo largo y tiempo extremadamente inverso de Idmtl son curvas l²t, cuyas opciones diferentes de imagen térmica resultan en rendimientos diferentes del sistema. Para las aplicaciones de soldadura se recomienda la utilización de protección básica de tiempo largo l²t para obtener el rendimiento esperado del sistema.
- Las funciones de activación de tiempo largo y retardo de tiempo largo están situadas en el calibrador ajustable de sustitución en campo. Para modificar los ajustes en valores más apropiados para la aplicación, se encuentran disponibles varios tipos de calibradores. Consulte la sección 6 "Sustitución del calibrador ajustable" para obtener información sobre cómo sustituirlo.
- · La protección de tiempo largo utiliza medición de rcm verdadera.

Opción	Ajuste ¹	Retar	Retardo de tiempo largo en segundos								Tolerancia
	tra 1,5 x Ir	0,52	1	2	4	8	12	16	20	24	+0/-20%
рт	tra6xlr	0,52	1	2	4	8	12	16	20	24	+0/-20%
ы	tr a 7,2 x Ir	0,52	1	2	4	8	12	16	16,6	16,6	+0/-20%
	tr a 10 x Ir	0,52	1	2	4	8	12	16	16,6	16,6	+0/-20%
	tra 1,5 x Ir	1,9	3,8	7,6	15,2	30,4	45,5	60,7	75,8	91	+0/-30%
SIT	tra6xlr	0,7	1	2	4	8	12	16	20	24	+0/-20%
511	tr a 7,2 x Ir	0,7	0,88	1,77	3,54	7,08	10,6	14,16	17,7	21,2	+0/-20%
	tr a 10 x Ir	0,7 ²	0,8	1,43	2,86	5,73	8,59	11,46	14,33	17,19	+0/-20%
	tra 1,5 x Ir	1,9	7,2	14,4	28,8	57,7	86,5	115,4	144,2	173,1	+0/-30%
VIT	tra6xlr	0,7	1	2	4	8	12	16	20	24	+0/-20%
•	tr a 7,2 x Ir	0,7	0,81	1,63	3,26	6,52	9,8	13,1	16,34	19,61	+0/-20%
	tr a 10 x Ir	0,72	0,75	1,14	2,28	4,57	6,86	9,13	11,42	13,70	+0/-20%
	tra 1,5 x Ir	12,5	25	50	100	200	300	400	500	600	+0/-30%
FIT	tra6xlr	0,7 ³	1	2	4	8	12	16	20	24	+0/-20%
L 11	tr a 7,2 x Ir	0,72	0,69	1,38	2,7	5,5	8,3	11	13,8	16,6	+0/-20%
	tra 10 x Ir	0,72	0,7 ³	0,7 ³	1,41	2,82	4,24	5,45	7,06	8,48	+0/-20%
	tra 1,5 x Ir	164,5	329	658	1316	2632	3950	5265	6581	7900	+0/-30%
HVF	tr a 6 x Ir	0,7 ³	1	2	4	8	12	16	20	24	+0/-20%
	tr a 7,2 x Ir	0,72	0,7 ³	1,1 ³	1,42	3,85	5,78	7,71	9,64	11,57	+0/-20%
	tr a 10 x Ir	0,7 ²	0,72	0,73	0,7 ³	1,02	1,53	2,04	2,56	3,07	+0/-20%

 Tabla 2 –
 Valores de retardo de tiempo largo de ldmtl de la unidad de disparo MicroLogic

¹Ir = In x activación de tiempo largo. In = valor nominal del sensor. Umbral de disparo entre 1,05 y 1,20 Ir.

²Tolerancia = +0/-60%

³Tolerancia = +0/-40%

Imágenes térmicas proporcionan información sobre el estado continuo de elevación de la temperatura del cableado, antes y después de dispararse el dispositivo. Esto permite al interruptor responder a una serie de condiciones de sobrecarga que podrían provocar el sobrecalentamiento del conductor, las cuales podrían pasar desapercibidas si se restablece el circuito de tiempo largo cada vez que la carga desciende por debajo del ajuste de activación o después de cada disparo.

NOTA: Cuando verifique los tiempos de disparo, espere por lo menos 15 minutos después de haberse disparado el interruptor y antes de restablecerse para permitir que se restablezca completamente en cero la imagen térmica o utilice un equipo de pruebas para inhibirla.

Protección de tiempo corto

Esta función protege al equipo contra cortocircuitos.

Figura 5 – Selectores de protección de tiempo corto

Unidad de disparo MicroLogic 5.0H Unidad de disparo MicroLogic 6.0H

- La protección de tiempo corto es una función estándar en las unidades de disparo 5.0H y 6.0H.
- La activación de tiempo corto (Isd) (A) ajusta el nivel de la corriente (inferior al nivel de disparo instantáneo) en el que el interruptor se disparará después de alcanzar el valor de retardo de tiempo preajustado.
- El retardo de tiempo corto (tsd) (B) ajusta el período durante el cual el interruptor llevará una sobrecorriente por encima del nivel de la corriente de activación de tiempo corto antes de dispararse.
- La opción l²t on/l²t off proporciona un criterio selectivo mejorado mediante los dispositivos de protección de corriente descendente:
 - Cuando se selecciona I²t off, se proporciona un retardo con tiempo fijo.
 - Cuando se selecciona l²t on, se proporciona una protección l²t de tiempo inverso hasta un máximo de 10 veces lr. Para valores mayores que 10 veces el valor de Ir, se proporciona un retardo de tiempo fijo.

Tabla 3 – Valores de retardo de tiempo corto de la unidad de disparo MicroLogic Valores de retardo de tiempo corto de la unidad de disparo

Ajuste	Retardo de tiempo corto						
l ² t off (ms a 10 lr) (segundos)	0	0,1	0,2	0,3	0,4		
l ² t on (ms a 10 lr) (segundos)	_	0,1	0,2	0,3	0,4		
tsd (disparo mín.) (milisegundos)	20	80	140	230	350		
tsd (disparo máx.) (milisegundos)	80	140	200	320	500		

- Las corrientes intermitentes, en la gama de disparo de tiempo corto con una duración insuficiente para activar un disparo, acumulan y acortan el retardo del disparo adecuadamente.
- Es posible seleccionar un enclavamiento selectivo de zona (ZSI) en la protección de tiempo corto con los interruptores de corriente ascendente o descendente. Al ajustar en 0 tsd, se desactiva el enclavamiento selectivo de zona.

- La protección de tiempo corto utiliza valores de medición rcm verdaderos.
- La activación y el retardo de tiempo corto pueden ser ajustados para proporcionar un criterio selectivo con los interruptores de corriente ascendente y descendente.

NOTA: Utilice l²t off con ZSI para obtener una coordinación correcta. No se recomienda utilizar l²t on con ZSI ya que, debido al retardo en el dispositivo de corriente ascendente que recibe la señal de restricción, es posible que se dispare la unidad en un período más corto que el indicado en la curva de disparo publicada.

Protección instantánea

La protección instantánea protege al equipo contra cortocircuitos sin retardo de tiempo intencional.

Figura 6 – Selectores de protección instantánea

Unidad de disparo MicroLogic 5.0H Unidad de disparo MicroLogic

- La protección instantánea (Ii) (A) es una función estándar en todas las unidades de disparo.
- La protección instantánea se basa en los valores nominales del sensor (In) del interruptor.
- Se emite un comando de apertura del interruptor tan pronto se excede la corriente de umbral.
- La protección instantánea utiliza los valores de medición de la corriente pico.
- Cuando el selector de protección instantánea se ajusta en "off", la protección se desactiva.

Tabla 4 – Valores de protección instantánea de la unidad de disparo MicroLogic Valores de protección instantánea de la unidad de disparo

Ajuste	Corriente de irrupción								
li (= ln x)	2	3	4	6	8	10	12	15	off

li = protección instantánea.

In = valor nominal del sensor.

Precisión de activación ± 10%

Protección contra fallas a tierra del equipo

La protección contra fallas a tierra del equipo protege a los conductores contra sobrecalentamiento y fallas de las corrientes de falla a tierra (≤ 1 200 A).

Figura 7 – Selectores de protección contra fallas a tierra

Unidad de disparo MicroLogic

- La protección contra fallas a tierra del equipo es una función estándar en las unidades de disparo 6.0H.
- La activación de falla a tierra (Ig) (A) ajusta el nivel de la corriente de falla a tierra en el cual el interruptor se disparará después de alcanzar el valor de retardo de tiempo predefinido.
- El retardo de falla a tierra (tg) (B) ajusta el período durante el cual el interruptor llevará una corriente de falla a tierra por encima del nivel de activación de la corriente de falla a tierra antes de dispararse.
- Es posible utilizar un enclavamiento selectivo de zona (ZSI) en la protección contra fallas a tierra del equipo con los interruptores de corriente ascendente o descendente. Al ajustar en 0 el retardo de falla a tierra (tg), se desactiva el enclavamiento selectivo de zona.
- Las protecciones neutra y contra fallas a tierra del equipo son independientes y pueden funcionar simultáneamente.

NOTA: Utilice I²t off con ZSI para obtener una coordinación correcta. No se recomienda utilizar I²t on con ZSI ya que, debido al retardo en el dispositivo de corriente ascendente que recibe la señal de restricción, es posible que se dispare la unidad en un período más corto que el indicado en la curva de disparo publicada.

	-								
lg (= ln x)	Α	В	С	D	E	F	G	н	J
In ≤ 400 A	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
400 A < In ≤ 1 200 A	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
In > 1 200 A	500 A	640 A	720 A	800 A	880 A	960 A	1 040 A	1 120 A	1 200 A

Tabla 5 –	Valores de activación de falla a tierra de la unidad de disparo
	MicroLogic

In = valor nominal del sensor. Ig = activación de falla a tierra.

WICIOLOGIC						
Ajuste Retardo de falla a tierra						
I ² t off (ms en In) (segundos)	0	0,1	0,2	0,3	0,4	
l ² t on (ms en In) (segundos)	-	0,1	0,2	0,3	0,4	
tg (disparo mín.) (milisegundos)	20	80	140	230	350	
tg (disparo máx.) (milisegundos)	80	140	200	320	500	

Tabla 6 – Valores de retardo de falla a tierra de la unidad de disparo MicroLogic Valores de retardo de falla a tierra de la unidad de disparo

Función de ajustes de mantenimiento para la reducción de energía (ERMS)

La función de ajustes de mantenimiento para la reducción de energía (ERMS) está disponible en los interruptores equipados con:

- BCM ULP y firmware versión 4.1.3 y superior.
- Unidad de disparo MicroLogic P o H con la etiqueta azul (A) del ERMS como se muestra a continuación.
- Módulo de E/S con el conmutador de aplicación en la posición 3.

Figura 8 – Etiqueta del ERMS en la unidad de disparo

Consulte el boletín 0613IB1317: *Módulo de E/S—Interfaz de entrada/salida para los interruptores de potencia de BT—Guía del usuario* y el boletín NHA67346: *Boletín de instrucciones del ERMS* para obtener más información sobre la instalación y pruebas.

La función ERMS se utiliza para reducir el ajuste de protección li para activar un disparo lo más pronto posible cuando sucede una falla. El ajuste de fábrica preprogramado para la protección li en modo ERMS es 2xIn. Consulte el boletín de instrucciones NHA67346 para obtener información sobre cómo ajustar el ERMS.

PELIGRO DE DESTELLO POR ARQUEO

- No cambie los ajustes de la unidad de disparo MicroLogic P o H mientras se encuentra en el modo ERMS.
- Selle la cubierta transparente de la unidad de disparo MicroLogic P o H cuando utiliza el modo ERMS.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Si cualquiera de los ajustes de protección básica se modifican mediante los selectores giratorios en la unidad de disparo MicroLogic mientras se encuentra en el modo ERMS, la unidad de disparo MicroLogic cambia al modo normal y luego regresa automáticamente al modo ERMS después de 5 segundos.

Configuración de la unidad de disparo MicroLogic

Alimentación de control

La unidad de disparo H ha sido diseñada para usarse con una fuente de alimentación externa de 24 Vcd. La pantalla de cristal líquido grande que usa la unidad de disparo H necesita demasiada corriente para ser energizada por el flujo de corriente que pasa por el interruptor automático.

La unidad de disparo H tiene una fuente de alimentación de tensión del circuito que energizará la unidad de disparo cuando hay aproximadamente 150 V~ (c.a.) o más entre las dos fases. La configuración estándar para las sondas de tensión dentro del interruptor automático se encuentra en las conexiones en la parte inferior. Si el interruptor automático está abierto en una aplicación de alimentación por la parte superior, no habrá tensión en la parte inferior del interruptor y la unidad de disparo no estará energizada.

Las siguientes funciones estarán energizadas y disponibles aun cuando la unidad de disparo no sea alimentada con una fuente externa:

- Protección contra fallas para las funciones LSIG. La unidad de disparo H está completamente energizada por el circuito para proteger contra fallas.
- LED indicador de disparo (energizado por una pila integrada). La función exclusiva de la pila es proporcionar una indicación por LED cuando todas la demás fuentes de alimentación están desconectadas.
- El botón de disparo por falla a tierra funciona para pruebas de falla a tierra cuando la unidad de disparo es energizada por la fuente de alimentación de tensión del circuito. El botón de disparo por falla a tierra también funciona cuando un equipo de pruebas de amplias funciones o portátil está energizando la unidad de disparo.

Las siguientes funciones estarán energizadas y disponibles con alimentación externa:

- Todas las funciones anteriores que están disponibles sin alimentación externa.
- La pantalla de cristal líquido y la contraluz funcionan correctamente. La intensidad de la contraluz no se puede controlar ni ajustar, y puede ser diferente en cada unidad de disparo.
- Todas las funciones de medición, supervisión y registros cronológicos de historial están disponibles.
- Las comunicaciones entre la unidad de disparo y los módulos de contactos programables M2C y M6C son energizadas por una fuente de alimentación de 24 Vcd en F1 y F2. El módulo M6C también necesita una fuente de alimentación externa de 24 Vcd.
- Los módulos de comunicaciones Modbus funcionan empleando una fuente de alimentación separada de 24 Vcd para el módulo de comunicaciones del interruptor automático. Esta fuente de alimentación separada de 24 Vcd es necesaria para mantener el aislamiento entre la unidad de disparo y el módulo de comunicaciones.
- El botón de disparo por falla a tierra también funciona cuando un equipo de pruebas de amplias funciones o portátil está energizando la unidad de disparo.

Fuente de alimentación externa

APRECAUCIÓN

PELIGRO DE DESCARGA ELÉCTRICA, DESTELLO POR ARQUEO O DAÑO AL EQUIPO

La unidad de disparo y el módulo de comunicaciones deberán utilizar fuentes de alimentación independientes.

El incumplimiento de esta instrucción puede causar lesiones personales o daño al equipo.

La unidad de disparo se puede energizar con:

- una fuente de alimentación externa de 24 Vcd, recomendada.
- más de 150 V en las terminales inferiores del interruptor automático, en dos fases.
- más de 150 V en las terminales superiores del interruptor automático con opción de tensión externa.

Tabla 7 –	Especificaciones de la fuente de alimentación	
-----------	---	--

Función	Especificación
Alimentación únicamente para la unidad de disparo	24 Vcd, 50 mA
Aislamiento mínimo de entrada a salida	2 400 V
Precisión de la tensión de salida (incluyendo una ondulación máx. del 1%)	±5%
Rigidez dieléctrica (entrada/salida)	3 kV rcm
Conexiones	Conexiones UC3 F1 (-) 24 Vcd F2 (+) 24 Vcd

La fuente de alimentación se utiliza para:

- Visualizar gráficos en pantalla cuando el interruptor automático está abierto y es alimentado por la parte superior.
- Conectar una alarma a una salida de relevador.
- Conservar la fecha y hora mientras el interruptor automático está abierto.

NOTA: Si la unidad de disparo no está conectada a una red de comunicaciones y no tiene una fuente de alimentación externa, tendrá que volver a ingresar la fecha y hora cada vez que se dispara o desconecta el interruptor.

Configuración MicroLogic

Utilice el menú de servicio de mantenimiento presionando la llave para tuercas.

Configuración de MicroLogic

NOTA: Si la unidad de disparo está conectada a una red de comunicación que proporciona la sincronización de fecha y hora, no es posible configurar la fecha y hora desde la unidad de disparo.

Consulte la página 50 para obtener las instrucciones paso a paso para configurar la unidad de disparo MicroLogic.

Consulte la Sección 3 en la página 47 para obtener otras instrucciones de configuración de la unidad de disparo.

Figura 9 – Configuración MicroLogic

Protección avanzada

Protección neutra

- La protección neutra mayor (1.6N) requiere un transformador de corriente al neutro de mayor tamaño.
- Para un interruptor de cuatro polos, configure el tipo de sistema mediante el selector de neutro del interruptor (vea la figura 10).
 - Realice ajustes precisos a través de la terminal de programación y ajustes de la unidad de disparo; sin embargo, seleccione el límite superior de ajuste con el selector del interruptor.
 - Ajuste de fábrica: 4P4D.

Figura 10 – Selector de neutro de un interruptor de cuatro polos

Ajustes de protección neutra para un interruptor de cuatro polos

	Selector del interuptor	Ajustes disponibles a través de la terminal de programación y ajustes
_	4P 3D	Off, N/2, N
	3P N/2	N/2
	4P 4D	N/2, N

- La protección neutra para conductores tiene cuatro ajustes posibles:
 - Off-Desactivación de la protección neutra.
 - N/2—La capacidad del conductor neutro es la mitad de la de los conductores de línea.
 - N—La capacidad del conductor neutro es la misma que la de los conductores de línea.
 - 1.6N—La capacidad del conductor neutro es 1,6 veces la de los conductores de línea (interruptores de tres polos solamente).

Tabla 8 – 1	Tipo de protección	para la unidad de	disparo MicroLogic
-------------	--------------------	-------------------	--------------------

	Activación de tiempo largo		Activación de tiempo corto		Instantánea		Activación de falla a tierra	
Ajuste	Unidad de disparo	Neutra	Unidad de disparo	Neutra	Unidad de disparo	Neutra	Unidad de disparo	Neutra
OFF	lr	Ninguna	lsd	Ninguna	li	Ninguna	lg	Ninguna
N/2	lr	1/2 Ir	lsd	1/2 Isd	li	li	lg	lg
Ν	lr	lr	lsd	lsd	li	li	lg	lg
1.6N	lr	1,6 x lr	lsd	1,6 x lsd*	li	li	lg	lg

*A fin de limitar la gama, limitado en 10 x In.

Alarmas

Es posible activar o desactivar las alarmas con la función de protección o desconexión/reconexión de carga.

- Cuando se activa o desactiva una alarma, ésta se registra en el archivo cronológico de alarmas.
- Para que una unidad de disparo active una alarma, el nivel de activación y el retardo de tiempo deberán ser excedidos. Sin embargo, para que las protecciones LSIG y avanzada programadas disparen el interruptor, la unidad de disparo no activará la alarma hasta que se dispare el interruptor. Por ejemplo, si la activación de tiempo largo Ir de un relé está programada, la unidad de disparo no indicará una alarma cuando se encienda el indicador de sobrecarga. La unidad de disparo activará la alarma sólo cuando la sobrecarga de tiempo largo exceda el retardo de tiempo y dispare el interruptor).
- Conecte las alarmas a una señal visual o audible programando los contactos M2C o M6C del módulo opcional cuando se utiliza una fuente de alimentación externa de 24 V === (cd) en la unidad de disparo.
- Visualice las alarmas en el:
 - menú de registros cronológicos históricos
 - software de gestión del sistema de la red
- Características de los contactos M2C/M6C:
 - carga mínima de 100 mA/24 V == (cd)
 - capacidad de interrupción con un factor de potencia de 0,7

240 V~	5 A
380 V~	3 A
24 V (cd)	1,8 A
48 V (cd)	1,5 A
125 V (cd)	0,4 A
250 V (cd)	0,15 A

• Cuando se activan varias alarmas, el tiempo de respuesta/regeneración de la pantalla será más lento.

Consulte el apéndice B para obtener la gama de valores y los valores por omisión.

Alarma	Menú	Símbolo	Alarma	Disparo
Activación de tiempo largo	Protección corriente	lr	х	х
Activación de tiempo corto	Protección corriente	Isd	х	х
Activación instantánea	Protección corriente	li	х	х
Corriente de falla a tierra	Protección corriente	<i>≰</i>	х	х
Alarma de falla a tierra	Protección corriente	Al≇	х	х
Desequilibrio de corriente	Protección corriente	ldeseq.	х	х
Demanda de corriente máxima, fase 1	Protección corriente	I1 máx	х	Х
Demanda de corriente máxima, fase 2	Protección corriente	l2 máx	х	х
Demanda de corriente máxima, fase 3	Protección corriente	13 máx	х	х
Demanda de corriente máxima neutra	Protección corriente	In máx	х	х
Tensión mínima (baja tensión)	Protección de tensión	Umín	х	х
Tensión máxima (sobretensión)	Protección de tensión	Umáx	х	х
Desequilibrio de tensión	Protección de tensión	Udeseq.	х	х
Potencia inversa	Otras proteccion.	rPmáx	х	х
Frecuencia mínima (baja frecuencia)	Otras proteccion.	Fmín	х	х
Frecuencia máxima (sobrefrecuencia)	Otras proteccion.	Fmáx	х	х
Rotación de fases	Otras proteccion.	rot Φ	х	-
Desconexión/reconexión de carga de corriente	Desconex. reconex. I	Desconex. reconex. I	х	_
Desconexión/reconexión de carga de potencia	Desconex. reconex. P	Desconex. reconex. P	х	-

Valores de protección de demanda de corriente y tensión mínima (baja) y máxima (sobre)

Proporciona los valores de activación y desactivación de alarma, contactos o disparo para los valores de corriente y tensión (no existe un mínimo para la corriente).

- El valor de activación (A) se ajusta para activar una alarma o disparo.
- El retardo de tiempo de activación (B) se ajusta para empezar a contar el tiempo transcurrido una vez que ha pasado el valor de activación.
- El valor de desactivación (C) se ajusta para desactivar la alarma y/o el contacto.
- El retardo de tiempo de desactivación (D) se ajusta para empezar a contar el tiempo transcurrido una vez que ha pasado el valor de desactivación.
- La protección de tensión (baja) mínima (U_{mín}) se activa cuando una tensión de línea a línea es inferior al ajuste de tensión mín.
- La protección de tensión máxima (sobre) (U_{máx}) se activa cuando una tensión de línea a línea es superior al ajuste de tensión máx.
- U_{mín} tiene un valor de desactivación ≥ valor de activación.
- U_{máx} tiene un valor de desactivación ≤ valor de activación.
- Si la protección de corriente o tensión dispara el interruptor, no es posible restablecerlo sino hasta que se corrija el problema de corriente o tensión que causó el disparo.
- El valor de la alarma de falla a tierra en las unidades de disparo 5.0H y 6.0H se basa en valores de rcm verdaderos de la corriente de tierra.
- El valor de disparo de falla a tierra en la unidad de disparo 6.0H se basa en un valor de rcm verdadero de la corriente de tierra.
- No ajuste la protección de baja tensión por debajo del 80%¹.

¹ Consulte el apéndice D para obtener una explicación del comportamiento de la protección del sistema.

Protección de desequilibrio de corriente o tensión

Esta protección se aplica a los valores de desequilibrio de tensiones y corrientes de tres fases.

Figura 12 – Protección de desequilibrio de corriente o tensión

- Los valores de desequilibrio se basan en los valores de rcm verdaderos de las corrientes de tres fases.
- No ajuste el valor de U_{deseq.} en un valor superior al 20%¹.
- No utilice la protección de desequilibrio de tensión para determinar la pérdida de múltiples fases^{*}.

Protección de potencia inversa (rPmáx)

Este tipo de protección protege a alternadores contra la absorción total de la potencia real de las tres fases ante la posible falla de un motor accionador.

Figura 13 – Protección de potencia inversa

- La protección de potencia inversa aplica una curva de disparo en base al valor total de la potencia real (A) de las tres fases.
- El retardo de tiempo (B) comienza a contar el tiempo transcurrido si el valor total de la potencia real de las tres fases no circula en la dirección definida y si éste excede un umbral de potencia inversa.
- La dirección de la potencia se define durante la configuración de la unidad de disparo.

¹ Consulte el apéndice D para obtener una explicación del comportamiento de la protección del sistema.

Protecciones de frecuencia máxima (sobre) y mínima (baja)

Proporciona valores de activación y desactivación a la frecuencia.

Figura 14 – Curvas de frecuencia – mínima y máxima

- El valor de activación (A) se ajusta para activar una alarma o disparo.
- El retardo de tiempo de activación (B) se ajusta para empezar a contar el tiempo transcurrido una vez que ha pasado el valor de activación.
- El valor de desactivación (C) se ajusta para desactivar la alarma y/o el contacto.
- El retardo de tiempo de desactivación (D) se ajusta para empezar a contar el tiempo transcurrido una vez que ha pasado el valor de desactivación.
- F_{mín} tiene un valor de desactivación ≥ valor de activación.
- F_{máx} tiene un valor de desactivación ≤ valor de activación.
- Cuando la frecuencia del sistema se ajusta en 400 Hz, la protección de frecuencia se desactiva.

Desconexión/reconexión de carga

La desconexión/reconexión de carga no dispara el interruptor pero se puede utilizar para activar una alarma conectada a un contacto M2C o M6C (que controla las cargas de red no prioritarias).

Figura 15 – Desconexión/reconexión de carga

- La desconexión/reconexión de carga se define con un umbral y un retardo de tiempo.
 - A-Umbral de activación
 - B-Retardo de tiempo de activación
 - C-Umbral de desactivación
 - D-Retardo de tiempo de desactivación
- La desconexión/reconexión de carga de potencia depende de la dirección del flujo definida durante la configuración de la unidad de disparo.

- La desconexión/reconexión de carga de corriente está conectada a los valores de retardo de tiempo largo l²t o Idmtl.
- La desconexión/reconexión de carga de corriente no puede ser activada si se ajusta el calibrador de tiempo largo en OFF.

Protección de rotación de fases

Protege el circuito cuando se invierten dos de las tres fases.

- Si existe una falla en una de las fases, esta protección estará inactiva.
- Las opciones son 123 ó 132.
- Cuando la frecuencia del sistema se ajusta en 400 Hz, la protección de rotación de fases se desactiva.
- No utilice la protección de rotación de fases para determinar la pérdida de múltiples fases en los sistemas conectados en delta.

Kits de contactos programables M2C y M6C

Es posible activar una o dos alarmas con el kit de contactos programables M2C o M6C opcional. El kit de contactos M2C proporciona dos contactos forma A con neutro en común. El kit de contactos M6C proporciona seis contactos forma C. Es posible programar cada contacto para una condición de alarma a través de la unidad de disparo.

La unidad de disparo necesita una fuente de alimentación auxiliar de 24 V₌₌ (cd), 5 W para hacer funcionar cualquier combinación de kit de contactos M2C o M6C.

NOTA: La unidad de disparo y los módulos de comunicación (MCI y MCC) deberán utilizar fuentes de alimentación separadas. Los kits de contactos M2C y M6C pueden compartir la fuente de alimentación auxiliar de la unidad de disparo.

Figura 16 – Diagramas de cableado de los contactos M2C/M6C

M2C: alim. de 24 V____(cd) suministrada por la unidad de disparo

Características de los contactos programables M2C/M6C	v	A
Carga mínima	24 V(cd)	100 mA
	240 V~	5 A
	380 V~	3 A
Capacidad de ruptura con un	24 V(cd)	1,8 A
factor de potencia (f.p.) de 0,7	48 V <u></u> (cd)	1,5 A
	125 V (cd)	0,4 A
	250 V <u></u> (cd)	0,15A

Enclavamiento selectivo de zona

Es posible interbloquear la protección de tiempo corto y contra fallas a tierra para proporcionar un enclavamiento selectivo de zona.

El cableado de control conecta varias unidades de disparo en la red de distribución y, en caso de una falla, una unidad de disparo obedecerá el tiempo de retardo ajustado sólo si recibe una señal de una unidad de disparo de corriente descendente.

Si la unidad de disparo no recibe una señal, el disparo será instantáneo (sin retardo intencional).

- La falla es restablecida instantáneamente por el interruptor de corriente ascendente más cercano.
- Los esfuerzos térmicos (l²t) en la red se ven reducidos sin afectar la correcta coordinación del retardo de tiempo de la instalación.

NOTA: Utilice I²t off con ZSI para obtener una coordinación correcta. No se recomienda utilizar I²t on con ZSI ya que, debido al retardo en el dispositivo de corriente ascendente que recibe la señal de restricción, es posible que se dispare la unidad en un período más corto que el indicado en la curva de disparo publicada.

NOTA: Cuando se ajusta en 0 el retardo de tiempo corto (tsd) o retardo de falla a tierra (tg), se eliminará el criterio de selectividad del interruptor.

La figura 17 muestra los interruptores 1 y 2 con enclavamiento selectivo de zona.

- Los interruptores 1 y 2 detectan una falla en A. El interruptor 2 se dispara instantáneamente y ordena al interruptor 1 que respete los tiempos de retardo establecidos. Por consiguiente, el interruptor 2 se dispara y restablece la falla. El interruptor 1 no se dispara.
- El interruptor 1 detecta una falla en B. El interruptor 1 se dispara instantáneamente puesto que no recibió una señal del interruptor de corriente descendente 2. El interruptor 1 se dispara y restablece la falla. El interruptor 2 no se dispara.

Figura 17 – Enclavamiento selectivo de zona

Medición

La unidad de disparo MicroLogic H proporciona medición continua de los valores del sistema. Los valores medidos pueden verificarse a través de la pantalla de visualización de gráficos o el software de gestión del sistema de la red.

Armónicos

Un armónico del orden n, es el componente sinusoidal de una señal con una frecuencia n veces mayor que la frecuencia fundamental.

Cuando están presentes armónicos, la forma de onda de la corriente o tensión se distorsiona; es decir, ya no es perfectamente sinusoidal.

Una forma de onda es una combinación de

- la señal sinusoidal original en la frecuencia fundamental
- otras señales sinusoidales (armónicos) con frecuencias que son múltiplos de números enteros de la frecuencia fundamental
- un componente de corriente directa, si correspondiera.

Figura 18 – Forma de onda afectada por armónicos

La superposición de varios armónicos en la forma de onda fundamental crea una distorsión. Esta distorsión puede crear problemas graves:

- Aumento de corrientes que circulan en la red y sobrecargas
- Pérdidas adicionales y desgaste prematuro del equipo
- Perturbaciones en las cargas debido a los armónicos de tensión
- Perturbaciones a las redes de comunicación.
- Aumento de pérdidas de alimentación así como la necesidad de utilizar niveles más altos de alimentación
- Disparos innecesarios de los dispositivos de protección

Los armónicos son causados por cargas no lineales.

Figura 19 – Orígenes de los armónicos

Una carga es no lineal cuando la corriente que extrae no tiene la misma forma de onda que la tensión. Ejemplos típicos de cargas no lineales se encuentran en los dispositivos que utilizan electrónica de potencia. Este tipo de cargas es muy numeroso y su parte en el consumo total de energía eléctrica está creciendo cada vez más.

Algunos ejemplos de éstas son:

- equipo de oficina que incluye computadoras, fotocopiadoras, máquinas de fax. etc.
- equipo industrial tal como máquinas de soldadura, hornos de arcos, hornos de inducción, rectificadores, etc.
- equipo electrodoméstico tales como televisores, hornos de microondas, lámparas fluorescentes, etc.

Los fenómenos de cargas no lineales pueden también ser causados por la saturación de transformadores y otro equipo.

Armónicos impares (no múltiplos de 3)			Armónicos impares (múltiplos de 3)			Armónicos pares					
Orden n ¹	LV ²	MV ³	EHV ⁴	Orden n¹	LV ²	MV ³	EHV ⁴	Orden n ¹	LV ²	MV ³	EHV ⁴
5	6	6	2	3	5	2,5	1,5	2	2	1,5	1,5
7	5	5	2	9	1,5	1,5	1	4	1	1	1
11	3,5	3,5	1,5	15	0,3	0,3	0,3	6	0,5	0,5	0,5
13	3	3	1,5	21	0,2	0,2	0,2	8	0,5	0,2	0,2
17	2	2	1	>21	0,2	0,2	0,2	10	0,5	0,2	0,2
19	1,5	1,5	1	-	-	-	-	12	0,2	0,2	0,2
23	1,5	1	0,7	-	-	-	-	>12	0,2	0,2	0,2
25	1,5	1	0,7	-	-	-	-	—	-	-	-

Tabla 10 – Niveles máximos de aceptación de armónicos

¹ El contenido de un armónico del orden n se define como el porcentaje del valor rcm con respecto al valor rcm del fundamental. Este valor se muestra en la pantalla de gráficos de la unidad de disparo MicroLogic H.

²Sistema de baja tensión

³Sistema de media tensión

⁴Sistema de tensión muy alta

Indicadores de la calidad de los armónicos

La medición de armónicos proporciona valores para evaluar la distorsión de los armónicos de la corriente y de la tensión. Estas son:

- la señal fundamental para
 - corrientes
 - tensiones
 - potencia
- THD(I) (distorsión de armónicos total de la corriente en base a la corriente del fundamental)
- THD(U) (distorsión de armónicos total de la tensión en base a la tensión del fundamental)
- thd(I) (distorsión de armónicos total de la corriente en base a la corriente de rcm)
- thd(U) (distorsión de armónicos total de la tensión en base a la tensión de rcm)
- FFT (transformación de Fourier rápida) de armónicos impar hasta el 31 (porcentaje del valor rcm con respecto al valor rcm del fundamental)

Tabla 11 – Mediciones de armónicos

Medición	Símbolo	Unidades
Forma de onda, corriente	11, 12, 13, In	А
Forma de onda, tensión	U12, U23, U31	V
Corriente del fundamental	I	A
Tensión del fundamental	U	V
Potencia del fundamental	Р	W
Distorsión de armónicos de la corriente en base al fundamental	THD (I)	%
Distorsión de armónicos de la tensión en base al fundamental	THD (U)	%
Distorsión de armónicos de la corriente en base al valor rcm	thd (I)	%
Distorsión de armónicos de la tensión en base al valor rcm	thd (U)	%
Espectro de amplitud de armónicos impar hasta el armónico 31	FFT	%

Prueba de la unidad de disparo

Las funciones LSIG de la unidad de disparo se prueban con inyección primaria o secundaria. Realice pruebas a la unidad de disparo utilizando el equipo de pruebas de amplias funciones o el equipo de pruebas portátil. (Consulte la sección "Verificación de la instalación de la unidad de disparo" en la página 93 para obtener más información.)

Luces indicadoras

Luz indicadora de sobrecarga

La luz indicadora de sobrecarga (A) se ilumina cuando se ha excedido el nivel de activación de tiempo largo (Ir).

Figura 20 – Luz indicadora de sobrecarga

Luces indicadoras de disparo

Una luz indicadora se iluminará cuando se dispare el interruptor. Si la unidad de disparo tiene una fuente de alimentación auxiliar conectada, la unidad mostrará información acerca del disparo.

AVISO

PELIGRO DE DAÑO AL EQUIPO

Si después de un restablecimiento el interruptor permanece cerrado y la luz Ap permanece iluminada, abra el interruptor y póngase en contacto con la oficina de ventas.

El incumplimiento de esta instrucción puede causar daño al equipo.

La luz indicadora permanecerá iluminada hasta que se restablece al oprimir el botón de restablecimiento (A). La causa del disparo deberá corregirse antes de restablecer la luz indicadora.

La luz indicadora de disparo Ir (B) se ilumina cuando la activación de tiempo largo (Ir) provoca el disparo del interruptor.

La luz indicadora de disparo Isd/li (C) se ilumina cuando la activación de tiempo corto (Isd) o activación instantánea (Ii) provoca el disparo del interruptor.

La luz indicadora de disparo Ig (D) se ilumina cuando la activación de falla a tierra (Ig) provoca el disparo del interruptor.

La luz indicadora de autoprotección/protección avanzada Ap (E) se ilumina cuando las funciones de protección avanzada ocasionan un disparo, la unidad de disparo se sobrecalienta, se rebasa el nivel máximo de protección instantánea o se produce una falla en la fuente de alimentación de la unidad de disparo.
Figura 21 – Luces indicadoras de disparo

NOTA: Si las causas de disparo son varias, el LED de señalización de la última causa será el único que permanecerá iluminado.

Botón de prueba/restablecimiento

El botón de prueba/restablecimiento (A) deberá oprimirse después de un disparo para restablecer la información de la falla en la pantalla de visualización y apagar la luz indicadora de disparo.

Figura 22 – Botón de restablecimiento

Pantalla de visualización

La pantalla de visualización (A) muestra los ajustes e información acerca de la unidad de disparo. Los botones de navegación (B) se utilizan para mostrar y modificar elementos en la pantalla. La visualización por omisión muestra los niveles de corriente.

La unidad de disparo deberá estar energizada para que funcione la pantalla de visualización. La unidad de disparo está energizada:

- si el interruptor está conectado y tiene más de 150 V~ (ca) de tensión de carga en dos fases (el interruptor está cerrado o recibe alimentación por la parte inferior).
- si el equipo de pruebas de amplias funciones o portátil está conectado y energizado.
- si la fuente de alimentación externa de 24 V --- (cd) está conectada.
- si la derivación de tensión externa está instalada y hay más de 150 V ~ (ca) en dos fases.

Indicador de desgaste de los contactos

La unidad de disparo lleva un registro del desgaste de los contactos de un interruptor cuando se selecciona un interruptor de potencia MasterPact. Es posible transferir este registro de desgaste de los contactos del interruptor cuando se sustituye una unidad de disparo (se necesita una fuente de alimentación externa para la unidad de disparo).

Contador de maniobras

Se necesita un módulo de comunicación del interruptor para visualizar la cantidad total de instancias en que se ha abierto el interruptor desde su instalación inicial y desde el último restablecimiento así como la fecha/hora de este último restablecimiento.

Sección 2—Navegación por la pantalla de visualización

Pantalla de visualización

La pantalla de visualización (A) funciona solamente si la unidad de disparo está conectada a una fuente de alimentación externa de 24 V === (cd) o si hay 150 V en por lo menos dos fases. La corriente (de un equipo de pruebas de inyección primaria o sistema eléctrico) únicamente energizará las funciones de protección LSIG pero no energizará el visualizador.

Botones de navegación (B):

<i>.t.</i> .	Botón del menú de medición: proporciona acceso a los menús de medición
P	Botón del menú de servicio de mantenimiento: proporciona acceso a los menús de servicio de mantenimiento
L	Botón del menú de protección: proporciona acceso a los menús de protección
	Botón flecha abajo: desplaza el cursor hacia abajo o disminuye el valor de los ajustes
+	Botón flecha arriba: desplaza el cursor hacia arriba o aumenta el valor de los ajustes
•	Botón de introducción de valores: selecciona una opción de una lista o ingresa los valores de los ajustes

Figura 24 – Pantalla de visualización

Visualización de gráficos de barras y menús

La unidad de disparo MicroLogic H incluye una visualización por omisión de gráficos de barras de corrientes y tres menús diferentes los cuales se pueden acceder a través de los botones de navegación:

- A. Visualización de gráficos de barras: proporciona una visualización de gráficos de barras en tiempo real de las corrientes de línea y mediciones de las corrientes de línea y neutra, si es aplicable, (visualización por omisión)
- B. Menú de medición: proporciona acceso a los valores de medición de corriente, tensión, potencia, energía, armónicos y frecuencia
- C. Menú de servicio de mantenimiento: permite al usuario cambiar la configuración de la unidad de disparo y proporciona acceso a los archivos cronológicos de historial
- D. Menú de protección: permite realizar ajustes precisos a las protecciones básica y avanzada

Una vez que se cierra la cubierta de los selectores, la unidad de disparo regresará a la visualización (por omisión) de gráficos de barras después de transcurridos 3 1/2 minutos sin ingresar un valor. (si la cubierta de los selectores está abierta, la visualización permanecerá en la ventana seleccionada.) Si desea visualizar otro menú, presione el botón correspondiente. Aparecerá el menú en la visualización y se encenderá el LED verde debajo del botón del menú.

Figura 25 – Menús

Menú de medición

Utilice el botón de medición para acceder a los valores de medición de:

- A. Corriente
- B. Tensión
- C. Potencia
- D. Energía
- E. Armónicos
- F. Frecuencia

Figura 26 – Menú de medición

Corriente

Figura 27 – Niveles de corriente

🔄 Tensión

Figura 28 – Niveles de tensión

Potencia

Figura 29 - Niveles de potencia

🔄 Energía

Figura 30 – Niveles de energía

Armónicos

Figura 31 – Armónicos

I

U

Ρ

Ε

ESPAÑOL

Frecuencia

Figura 32 - Frecuencia

Menú de servicio de mantenimiento

Utilice el botón de servicio de mantenimiento para acceder a los menús correspondientes.

- A. Para acceder al archivo cronológico de historial
- B. Para configurar los contactos M2C/M6C
- C. Para configurar la unidad de disparo MicroLogic
- D. Para configurar los parámetros de medición
- E. Para configurar el módulo de comunicación

Figura 33 – Menú de servicio de mantenimiento

Archivos cronológicos de historial

(مر

Figura 34 – Archivos cronológicos de historial

•

Contactos programables M2C/M6C

- Disponible solamente si están instalados los contactos M2C/M6C.
- Una alarma por contacto.
- Solamente se pueden seleccionar aquéllos configurados como "alarma" o "disparo" en el menú de protección.

Figura 35 – Contactos programables M2C/M6C

Configuración de MicroLogic

Si la unidad de disparo está conectada a una red de comunicación que proporciona la sincronización de fecha y hora, no es posible configurar la fecha y hora desde la unidad de disparo.

Figura 36 – Configuración de MicroLogic

Desplaza el cursor hacia abajo Protección Desplaza el cursor hacia arriba В de tensión Otras Selecciona el elemento С proteccion. en cuestión Desconex. D Regresa a la pantalla anterior Reconex. Desconex. P Ε Regresa a la visualización Reconex. de gráficos de barras

Protección de corriente

Figura 40 - Protección de corriente

Protección de tensión

Figura 41 – Protección de la tensión

Otro tipo de protección

Figura 42 – Otro tipo de protección

45-ES

Desconex./reconex. de carga de potencia

Ŀ

Ŀ

Figura 44 - Desconexión/reconexión de carga de potencia

Ajusta los valores de desconexión/reconexión de carga de potencia (alarma solamente)

Sección 3—Configuración de la unidad de disparo

Ajuste de los parámetros de la unidad de disparo

NOTA: La cubierta de los selectores deberá estar abierta para poder ajustar la unidad de disparo a través del menú de protección. Una vez que se han configurado los ajustes, presione uno de los botones de menú para guardar los nuevos valores.

- 1. Abra la cubierta de los selectores (A).
- 2. Presione el botón de servicio de mantenimiento (B) para mostrar el menú de servicio de mantenimiento (C).

Figura 45 – Menú de servicio de mantenimiento

Contactos programables M2C/M6C

Si está instalado el kit de contactos M2C o M6C, utilice el menú "Contactos M2C/M6C" para configurar el tipo de alarma y modo de funcionamiento. El kit M2C tiene contactos S1 y S2. El kit M6C tiene contactos S1, S2, S3, S4, S5 y S6.

Figura 46 – Configuración de los accesorios de contactos programables M2C/M6C

ESPAÑO

- contactos M2C/M6C Contactos Tipo S1 S1 M2C / M6C de alarma Ir-Activación de tiempo largo Tipo de S1 li lsd alarma S2 li-Activación instantánea Configurar Isd-Activación de tiempo corto Reset I ∉—Corriente de falla a tierra Al≰—Alarma de falla a tierra Arriba/ Intro F Intro Intro Abajo Ideseg.—Deseguilibrio de corriente Intro I1máx—Sobrecorriente en la fase 1 Salir I2máx—Sobrecorriente en la fase 2 Tipo S2 S2 I3máx—Sobrecorriente en la fase 3 de alarma ¿Desea lsd Inmáx-Sobrecorriente en el neutro No S1 guardar los utilizado cambios? S2 Umín—Tensión por debajo del ajuste No Umáx—Tensión por arriba del ajuste Si Arriba/ Abajo Intro ₹ Abajo Abajo Udeseq.—Desequilibrio de tensión A Intro Intro Intro rPmáx-Potencia inversa Salir Fmín-Frecuencia por debajo del Tipo Fmáx—Frecuencia por arriba del ajuste de alarma ¿Desea S1 guardar los cambios? S2 Desconex. reconex. I-No Si Desconex. reconex. P-Salir Abajo Intro
- 1. Ingrese el tipo de alarma para los contactos M2C/M6C en la memoria de la unidad de disparo. Las alarmas disponibles son:

mínimo

máximo

ajuste mínimo

máximo

Desconexión/reconexión de carga de corriente

Desconexión/reconexión de carga de potencia

No seleccionado-No se seleccionó ninguna alarma

2. Configuración del modo de alarma para los contactos M2C/M6C. Los modos de los contactos disponibles son:

Con enganche—Permanece enganchado hasta que se restablece

Sin enganche—Se desactiva después de solucionar la falla

Retardo de tiempo—Retardo asignado a los contactos

El diagnóstico de problemas se puede realizar sólo bajo los siguientes modos:

Forzado a 0—Se bloquean los contactos en posición abierta

Forzado a 1—Se bloquean los contactos en posición cerrada

Para las alarmas de tiempo corto, instantánea y de falla a tierra (SIG) solamente:

- Cada instancia de alarma activará el relé y emitirá una señal de alarma que continuará hasta que se presione el botón de prueba/restablecimiento de la unidad de disparo.
- Este comportamiento "con enganche" sucede independientemente si se usa o no el modo de contacto "con enganche" o "sin enganche" durante la configuración de la alarma.
- El botón de restablecimiento le permite visualizar el estado de los relés y, a su vez, restablecerlos.

NOTA: Seleccione Reset (restablecer) bajo el menú M2C/M6C para restablecer todas las alarmas. El botón de prueba/restablecimiento restablecerá la unidad de disparo para desactivar la alarma pero no restablecerá el contacto M2C/M6C.

Contactos Configurar S1 S1 M2C / M6C M2C/M6C Contacto Contacto Tipo de S1 Forzado a 1 Transitorio alarma S2 Configura Tiempo Reset 1s Arriba/ Intro Intro Intro 4 ₹ Abajo Intro Configurar S1 S1 M2C/M6C Contacto Contacto ¿Desea S1 Transitorio Transitorio quardar los cambios? S2 Tiempo Tiempo No 1s 5s Si Arriba/ Abajo Abajo Abajo ₹ A Abajo Intro Intro Intro Intro Salir S2 S2 S2 S2 Contacto Contacto Contacto Contacto Transitorio Transitorio Forzado a 1 Transitorio Tiempo Tiempo Tiempo 360s 360s Arriba/ Intro Arriba/ ₹ 4 Abajo Ŧ Abajo Abajo Intro Intro Intro Salir Contactos Configurar M2C / M6C M2C/M6C ¿Desea Tipo de S1 guardar los alarma cambios? S2 Configura Sólo modo Transitorio No Reset Si Salir Abajo 🤌 Salir Intro

Configuración de la unidad de disparo MicroLogic

Utilice el menú "Configurar MicroLogic" para ajustar idioma, fecha y hora, información sobre el interruptor, signo de potencia, razón del transformador de tensión (Transfo de tensión) y frecuencia de la red.

1. Ajuste del idioma de visualización.

Figura 49 – Configuración de la unidad de disparo MicroLogic

Idioma Idioma Deutsch Fecha / hora English US Selección interruptor English UK Signo potencia Español Transfo Français de tensión Arriba/ ₹ Intro , Abajo Intro

Figura 50 – Ajuste de idioma

2. Ajuste de fecha y hora de la unidad de disparo.

NOTA: Si la unidad de disparo está conectada a una red de comunicación que proporciona la sincronización de fecha y hora, no es posible configurar la fecha y hora desde la unidad de disparo. (Si la unidad de disparo no está conectada a la red de comunicación que proporciona la sincronización de fecha y hora, éstas tendrán que volver a ingresarse cada vez que haya una pérdida de alimentación.)

NOTA: El formato de fecha en inglés americano es mes/día/año. En todos los demás idiomas el formato de fecha es día/mes/año.

Después de utilizar el equipo de pruebas de inyección secundaria, inhibición de imágenes térmicas, pruebas de ZSI o inhibición de fallas a tierra, tendrá que volver a ajustar la hora si la unidad de disparo no está conectada a una red de comunicación que proporcione sincronización de fecha y hora.

NOTA: Si la hora no es sincronizada por un supervisor con el software de gestión del sistema de la red, vuelva a ajustarla cada seis meses o más frecuentemente, si es necesario.

Figura 51 – Configuración de fecha y hora

48049-330-03

 Ingrese la información del interruptor en la memoria de la unidad de disparo. Deberá ingresar la siguiente información para identificar correctamente el interruptor en la red de comunicación:

Norma—ANSI, UL, IEC o IEC/GB

Familia de interruptores—MasterPact (ANSI, UL, IEC o IEC/GB), Powerpact (UL o IEC) o Compact NS (IEC)

Tipo de interruptor—Información ubicada en la placa frontal del interruptor

Código de desgaste de los contactos del interruptor–Solamente se modifica cuando se sustituye una unidad de disparo existente con información sobre el desgaste de los contactos

NOTA: El medidor de desgaste del contacto está activo sólo cuando el tipo de interruptor es MasterPact.

Siga estos pasos para conservar la información del indicador de desgaste del contacto cuando se sustituye una unidad de disparo existente:

- Lea el código en la unidad de disparo que se va a sustituir (el código es un número hexadecimal).
- Desmonte la unidad de disparo antigua e instale la nueva unidad en el interruptor.
- c. Ingrese el código de la unidad de disparo antigua en la unidad nueva.

4. Seleccione el signo de la potencia.

Elija la convención de signos a utilizar para las mediciones de potencia, energía y desconexión/reconexión de carga:

- P+: Potencia absorbida de la corriente ascendente a la corriente descendente (alimentación superior)
- P-: Potencia absorbida de la corriente descendente a la corriente ascendente (alimentación inferior)

Figura 53 – Configuración del signo de la potencia Idioma Signo potencia Signo potencia Signo

Figura 54 – Configuración de la razón del transformador de

El valor por omisión es P+.

 Ingrese la razón del transformador de tensión externo en la memoria de la unidad de disparo. Si no está presente un transformador de tensión externo, ajuste los valores primario y secundario a 690 V~ (ca).

Se necesitará un transformador de tensión externo cuando la tensión de alimentación de la unidad de disparo exceda 690 V~ (ca).

6. Ingrese la frecuencia de la red en la memoria de la unidad de disparo.

NOTA: Cuando se ajusta la frecuencia en 400 Hz:

- El valor absoluto de la potencia reactiva será el correcto, pero tendrá el signo incorrecto.
- El valor absoluto del factor de potencia será el correcto, pero tendrá el signo incorrecto.
- El valor de la frecuencia puede que no sea preciso.
- La protección de la frecuencia estará inhabilitada.
- La protección de rotación de fases estará inhabilitada.

Configuración de las mediciones

Utilice el menú "Configurar medidas" para ajustar los parámetros de medición de la potencia y corriente de la red.

Figura 55 - Configuración de la frecuencia de la red

1. Seleccione el tipo de red.

Están disponibles tres opciones de medición:

Tipo de red	Neutro	Corriente de fases
3 fases, 3 hilos, 3 TC (utiliza 2 wattímetros)	No	Mediciones de I_1 , I_2 e I_3
3 fases, 4 hilos, 4 TC* (utiliza 3 wattímetros)	Sí	Mediciones de I_1 , I_2 , I_3 e I_n
3 fases, 4 hilos, 3 TC (utiliza 3 wattímetros)	No	Mediciones de I ₁ , I ₂ e I ₃

Figura 57 – Configuración del tipo de red

*No utilice el tipo de 3 fases, 4 hilos, 4 TC salvo que el neutro esté bien conectado a la unidad de disparo (la conexión de tensión neutra debe realizarse en el exterior del interruptor de 3 polos). (Consulte el boletín de instrucciones del TC al neutro).

NOTA: El ajuste del neutro en los interruptores de 4 polos está limitado a los ajustes del selector tipo neutro en el interruptor.

La medición I_n no está disponible para los tipos de red de 3 fases, 4 hilos, 3 TC. Las mediciones de tensión simple U_{1n} , U_{2n} y U_{3n} no están disponibles para los tipos de red de 3 fases, 3 hilos, 3 TC.

Si desea obtener estas mediciones, y si la red está conectada en estrella (4 hilos), seleccione 3 fases, 4 hilos, 4 TC y conecte a la terminal de tensión del neutro (V_n) en el TC al neutro.

55-ES

2. Ajuste el método y el intervalo de cálculo de la corriente.

> El método de cálculo puede ser media aritmética o modelo térmico.

El tipo de ventana viene ajustado de fábrica como ventana deslizante.

La duración puede ajustarse entre 5 y 60 minutos en incrementos de 1 minuto.

3. Configure el método de cálculo de la potencia y duración.

El método de cálculo puede ser media aritmética, modelo térmico o sinc. con comunic.

NOTA: El método sinc. con comunic. está disponible sólo con la opción de comunicación. Esta función determina la demanda de potencia en base a una señal del módulo de comunicación.

El tipo de ventana por omisión es "deslizante".

La duración puede ajustarse entre 5 y 60 minutos en incrementos de 1 minuto.

Figura 59 – Configuración de la demanda de potencia

Intro

4. Selección de la convención de signos

Elija la convención de signos que habrá de utilizar para las mediciones de potencia reactiva (VARs), energía reactiva (VARhrs) y factor de potencia:

IEEE

IEC

IEEE alt

Figura 60 – Configuración de la convención de signos

Potencia reactiva				
Cuadrante 2 Watts negativo (-) VARs positivo (+) Avance de FP (+)	Cuadrante 1 Watts positivo (+) VARs positivo (+) Retraso de FP (-)			
Sentido de potencia	Sentido de potencia normal ─►	Potencia		
Cuadrante 3 Watts negativo (-) VARs negativo (-) Retraso de FP (-)	Cuadrante 4 Watts positivo (+) VARs negativo (-) Avance de FP (+)	activa		

Convención de signos de IEC

Convención de signos de IEEE Alt

Potencia reactiva				
Cuadrante 2	Cuadrante 1			
Watts negativo (-) VARs negativo (-) Avance de FP (+)	Watts positivo (+) VARs negativo (-) Retraso de FP (-)			
Sentido de potencia inverso	Sentido de potencia normal	Potencia		
Cuadrante 3 Watts negativo (-) VARs positivo (+) Retraso de FP (-)	Cuadrante 4 Watts positivo (+) VARs positivo (+) Avance de FP (+)	activa		

57-ES

Configuración del módulo de comunicación

Utilice el menú "Configurar Com." para configurar el módulo de comunicación.

NOTA: No es posible ingresar los parámetros de configuración de comunicación si no está instalado un módulo de comunicación del interruptor (BCM).

NOTA: IP datos muestra la dirección IP del módulo IFE, si se utiliza.

1. Configure la dirección de Modbus.

La configuración de la dirección de Modbus depende de la opción COM. Consulte la tabla 12.

Figura 61 – Configuración del módulo de comunicación

Tabla 12 – Direcciones de Modbus

Opción COM	Dirección de Modbus	Gama de direcciones de Modbus
EI BCM o BCM ULP no está conectado a un módulo IFM o IFE.	La dirección Modbus se configura en la pantalla de configuraciones Com de Modbus, con los parámetros de la opción de comunicación (consulte la página 58).	1 a 47
	La dirección Modbus se configura en los dos selectores giratorios de dirección en el panel frontal del módulo IFM.	1 a 99
conectado a un módulo IFM.		El valor 0 está prohibido porque está reservado para la difusión de mensajes.
	La dirección Modbus se configura en los dos selectores giratorios de dirección en el panel frontal del módulo IFM.	1 a 47
El BCM ULP está conectado a un módulo IFM con el		El valor 0 está prohibido porque está reservado para la difusión de mensajes.
firmware antiguo.		Los valores 48 a 99 no están permitidos.
El BCM ULP está conectado a un módulo IFE.	La dirección Modbus es fija y no puede cambiarse.	255

 Ajuste los parámetros de comunicación. Los valores por omisión son:

Dirección = 47

Baud-rate (Velocidad en baudios) = 19,2k

Paridad = Par

Conexión = 2 Hilos + ULP

Figura 62 – Configuración de los valores de com. de Modbus

48049-330-03

A ADVERTENCIA

POSIBLE COMPROMISO DE LA DISPONIBILIDAD, LA INTEGRIDAD Y LA CONFIDENCIALIDAD DEL SISTEMA

Cambie de inmediato las contraseñas predeterminadas para ayudar a prevenir accesos no autorizados a la configuración, los controles y la información del dispositivo.

El incumplimiento de estas instrucciones puede causar la muerte o lesiones serias.

3. Acceso remoto.

El acceso a distancia viene ajustada de fábrica y no requiere ajustes adicionales.

NOTA: Es posible modificar el ajuste de acceso a distancia para permitir la modificación de los ajustes de protección a través de la red de comunicación. Para obtener información acerca de otros componentes y las instrucciones de configuración, consulte la Guía de comunicaciones Modbus 0613IB1313.

4. Ajuste el mando a distancia.

Manual: El interruptor no se puede abrir ni cerrar a través del software de gestión del sistema de la red.

Auto: El interruptor se puede abrir o cerrar a través del software de gestión del sistema de la red.

NOTA: Para que el interruptor pueda funcionar a distancia, deberá ajustarse el BCM para que permita su apertura y/o cierre. Además, el interruptor deberá tener instaladas bobinas en derivación de comunicación y arnés de cables.

Figura 64 – Configuración del mando a distancia.

Ajuste de los selectores de configuración

AVISO

PELIGRO DE DAÑO AL EQUIPO

- Si se utilizan los selectores para ajustar los valores de la unidad de disparo se anularán los ajustes realizados a través de la terminal de programación y ajustes.
 - Si modifica el ajuste de los selectores de protección contra sobrecargas, de tiempo corto o instantánea, o bien de protección neutra, en un interruptor de cuatro polos, se borrarán todos los ajustes precisos realizados con anterioridad a través de la terminal de programación y ajustes para estas protecciones.
 - Si se cambia el ajuste del selector de protección contra fallas a tierra se borrarán todos los ajustes precisos realizados a través de la terminal de programación y ajustes para esta protección.
- Si se ha perdido el pasador de la cubierta ubicado en la parte posterior de la cubierta protectora, comuníquese con la oficina de ventas para obtener una cubierta de repuesto.

El incumplimiento se estas instrucciones puede causar daño al equipo.

- 1. Abra la cubierta de los selectores (A).
- Asegúrese de que el pasador de la cubierta (B) se encuentre en la parte posterior de la cubierta protectora. Este pasador es indispensable para bloquear los ajustes de la unidad de disparo cuando se han configurado para disparar.
- Ajuste los selectores apropiados (C) en los valores deseados. La pantalla de visualización (D) muestra la curva de ajustes (E) apropiada. El valor ajustado se muestra en un recuadro en amperes o segundos.
- Realice ajustes precisos utilizando las teclas de navegación (F) o a través del software de gestión del sistema de la red. Estos ajustes precisos se almacenan en la memoria no volátil.

NOTA: Los ajustes precisos se pueden realizar sólo a valores inferiores a los realizados con los selectores. Si se utilizan los selectores para ajustar valores después de realizar ajustes precisos a través de la terminal de programación y ajustes se anulará el efecto de estos últimos.

Los ajustes precisos de los selectores se realizan en los siguientes incrementos:

- Activación de tiempo largo = 1 A
- Retardo de tiempo largo = 0,5 s
- Activación de tiempo corto = 10 A
- Retardo de tiempo corto = 0,1 s
- Activación instantánea = 10 A
- Activación de falla a tierra = 1 A
- Retardo de falla a tierra = 0,1 s

Figura 65 – Ajuste de los selectores de configuración

5. Vuelva a colocar la cubierta de los selectores. Utilice un sello de alambre MICROTUSEAL (A, no provisto), si es necesario, para proporcionar evidencia de manipulaciones no autorizadas.

NOTA: Una vez que se cierra la cubierta, ya no se pueden utilizar las teclas de navegación para realizar modificaciones a los ajustes de la unidad de disparo cuando están ajustados en disparo.

6. Verifique los ajustes a través de la terminal de programación y ajustes (B) y la pantalla de visualización o el software de gestión del sistema de la red.

Ejemplos

Unidad de disparo MicroLogic 5.0H

- 1. Ajuste de los selectores:
 - A-Activación de tiempo largo (Ir)
 - B-Retardo de tiempo largo (tr)
 - C-Activación de tiempo corto (Isd)
 - D-Retardo de tiempo corto (tsd)
 - E-Activación instantánea (li)
- 2. Realice ajustes precisos a través de la terminal de programación y ajustes y de la pantalla de visualización o el software de gestión del sistema de la red.

Figura 66 - Verificación de los ajustes de los selectores de

configuración

0

70

Figura 67 – Ajuste de los niveles de activación

Unidad de disparo MicroLogic 6.0H

- 1. Ajuste de los selectores:
 - A-Activación de tiempo largo (Ir)
 - B—Retardo de tiempo largo (tr)
 - C-Activación de tiempo corto (Isd)
 - D-Retardo de tiempo corto (tsd)
 - E-Activación instantánea (li)
 - F-Activación de falla a tierra (Ig)
 - G-Retardo de falla a tierra (tg)
- Realice ajustes precisos a través de la terminal de programación y ajustes y de la pantalla de visualización o el software de gestión del sistema de la red.

Figura 68 – Ajuste de los niveles de activación

Enclavamiento selectivo de zona (ZSI)

La tabla 13 muestra la cantidad de dispositivos que pueden ser enclavados.

	Tabla 13 –	Combinaciones	de ZSI
--	------------	---------------	--------

R—Se requiere un módulo de RIM para restringir cualquier dispositivo.

Referencias numéricas—Cantidad máxima de interruptores de corriente ascedente que pueden restringirse sin necesitar un módulo MIR.

Las terminales Z3, Z4 y Z5 del interruptor vienen de fábrica conectadas en puente para restringir automáticamente las funciones de tiempo corto y de falla a tierra. Retire los puentes cuando active el enclavamiento selectivo de zona.

Figura 69 – Terminales en puente

Conexiones auxiliares

Conecte los interruptores para enclavamiento selectivo de zona.

NOTA: Utilice I²t off con ZSI para obtener una coordinación correcta. No se recomienda utilizar l²t on con ZSI, ya que debido al retardo en el dispositivo de corriente ascendente que recibe la señal de restricción, es posible que se dispare la unidad en un período más corto que el indicado en la curva de disparo publicada.

Figura 70 – Ejemplo de alambrado de ZSI

Verificación del funcionamiento de la unidad de disparo

Utilice un equipo de pruebas conectado al receptáculo de enchufe de pruebas (A) de la unidad de disparo para verificar el funcionamiento de ésta. Lea las instrucciones adjuntas con el equipo de pruebas para realizar las pruebas de verificación.

NOTA: Para verificar el funcionamiento del interruptor y la unidad de disparo, realice pruebas de inyección primaria (consulte la sección "Verificación de la instalación de la unidad de disparo" en la página 93 para obtener más información).

Figura 71 – Verificación del funcionamiento de la unidad de disparo

Restablecimiento de la unidad de disparo

Cuando se dispara el interruptor, el indicador de falla permanecerá iluminado hasta que se restablezca la unidad de disparo.

No haga funcionar el interruptor sin antes haber determinado la causa del disparo. Si desea obtener más información, consulte las instrucciones de instalación del interruptor incluidas con el envío.

Presione el botón de restablecimiento/prueba (A) para restablecer la unidad después de un disparo.

Figura 72 – Restablecimiento de la unidad de disparo

Prueba de la función de disparo por falla a tierra del equipo

El inciso 230-95(c) del Código nacional eléctrico de EUA (NEC) y la NOM-001 requiere pruebas de los sistemas de protección contra fallas a tierra cuando se instalan por primera vez.

Con la unidad de disparo desenergizada y el interruptor cerrado, pruebe la función de disparo por falla a tierra del equipo (en la unidad de disparo MicroLogic 6.0P).

Figura 73 – Prueba de la función de disparo por falla a tierra del equipo

La unidad de disparo está energizada:

- si el interruptor está conectado y tiene más de 150 V ~ (ca) de tensión de carga en dos fases (el interruptor está cerrado o recibe alimentación por la parte inferior).
- si el equipo de pruebas de amplias funciones o portátil está conectado y energizado.
- si la fuente de alimentación externa de 24 V == (cd) está conectada.
- si la derivación de tensión externa está instalada y hay más de 150 V ~ (ca) en dos fases.

Para obtener instrucciones sobre el cierre del interruptor, consulte las instrucciones de instalación correspondientes incluidas.

Para probar la función de disparo, presione el botón de pruebas de falla a tierra (A). El interruptor se disparará.

Si esto no sucede, póngase en contacto con la oficina local de campo.

Verificación del estado de la unidad de disparo

Revise los indicadores de pila y disparo de la unidad de disparo.

- 1. Asegúrese de que la unidad de disparo esté energizada. La unidad de disparo está energizada:
 - si el interruptor está conectado y tiene más de 150 V ~ (ca) de tensión de carga en dos fases (el interruptor está cerrado o recibe alimentación por la parte inferior).
 - si el equipo de pruebas de amplias funciones o portátil está conectado y energizado.
 - si la fuente de alimentación externa de 24 V == (cd) está conectada.
 - si la derivación de tensión externa está instalada y hay más de 150 V ~ (ca) en dos fases.
- 2. Oprima el botón de prueba/restablecimiento (A).
 - Todos los indicadores de disparo (B) se iluminarán
 - Se mostrará el estado de la pila
 - La lectura de la gráfica de barras de la pila es válida después de haber soltado el botón de restablecimiento.
- 3. Si el gráfico de barras muestra que es necesario cambiar la batería, emplee el número de catálogo S33593 Square D para solicitar una pila de repuesto:
 - pila de litio:
 - -1,2 AA; 3,6 V, 800 ma/h

Consulte la sección 7 "Sustitución de la pila" para obtener instrucciones al respecto.

Sección 4—Funcionamiento

Valores de medición

Utilice los menús de medición para supervisar la corriente (I), tensión (U), potencia (P), energía (E), armónicos y frecuencia (F) del interruptor.

NOTA: También es posible verificar a distancia las mediciones del sistema con el System Manager Software (SMS) (versión 3.3 o posterior) o cualquier otro software de gestión de sistemas de red.

Figura 75 – Menú de medición

Niveles de corriente

- I1-Corriente instantánea en la fase 1
- I₂—Corriente instantánea en la fase 2 I₃—Corriente instantánea en la fase 3
- I_n —Corriente instantánea en el neutro
- I *≰* —Corriente instantánea en tierra

I₁máx—Corriente instantánea máxima en la fase 1

 ${\rm I_2m\acute{a}x}{-\!\!-}{\rm Corriente}$ instantánea máxima en la fase 2

 I_3 máx—Corriente instantánea máxima en la fase 3

I_nmáx—Corriente instantánea máxima en el neutro

I1 —Demanda de corriente en la fase 1

 $\overline{I_2}$ —Demanda de corriente en la fase 2

 $\overline{I_3}$ —Demanda de corriente en la fase 3

 $\overline{I_n}$ —Demanda de corriente en el neutro

I₁máx—Demanda de corriente máxima en la fase 1

T₂máx—Demanda de corriente máxima en la fase 2

I₃máx—Demanda de corriente máxima en la fase 3

I_nmáx—Demanda de corriente máxima en el neutro

Las mediciones máximas también pueden volverse a poner en cero.

Niveles de tensión

- U12-Tensión eficaz entre las fases 1 y 2
- U23—Tensión eficaz entre las fases 2 y 3
- U31—Tensión eficaz entre las fases 3 y 1

U1n—Tensión eficaz entre la fase 1 y el neutro

U2n—Tensión eficaz entre la fase 2 y el neutro

U_{3n}—Tensión eficaz entre la fase 3 y el neutro

Figura 77 – Verificación de los niveles de tensión

Niveles de potencia

- P-Potencia activa instantánea
- Q-Potencia reactiva instantánea
- S-Potencia aparente instantánea

Factor de potencia—Factor de potencia instantánea

- P—Demanda de potencia activa
- Q-Demanda de potencia reactiva
- S—Demanda de potencia aparente
- Pmáx—Demanda máxima de potencia activa

Qmáx—Demanda máxima de potencia reactiva

Smáx—Demanda máxima de potencia aparente

Las mediciones máximas también pueden volverse a poner en cero.

NOTA: Para asegurar mediciones fiables de la potencia y el factor de potencia, deberá configurarse el signo de la potencia, página 53, y la convención de signos, página 57.

Figura 78 - Verificación de los niveles de potencia

🛐 Niveles de energía

Energía activa total (E.P.)

Energía reactiva total (E.Q.)

Energía aparente total (E.S.)

Energía activa, consumida (E.P.)

Energía reactiva, consumida (E.Q.)

Energía activa, generada (E.P.)

Energía reactiva, generada (E.Q.)

Las mediciones de energía también se pueden volver a poner en cero.

NOTA: Para asegurar mediciones fiables de la energía, deberá configurarse el signo de la potencia, página 53, y la convención de signos, página 57.

🕎 Armónicos

Forma de onda—Captura de forma de onda para I1, I2, I3, In, V12, V23 y V31. La forma de onda registra un ciclo con una gama de medición entre 1 y 1,5 In para la corriente y entre 0 y 690 V~ (ca). La resolución es de 64 puntos por ciclo.

Fundament.—Corriente, tensión y potencia para la forma de onda fundamental

Armonico Captur. ond **I**1, 2, 3 Т (A) Captur. ond 1, 2, 3 U (V) Fundament. IN Ρ (kW) THD V12,23,31 Ε (kWh) thd **A**rmonico FFT Intro Intro Intro Salir IN Captur. ond Captur. ond V12,23,31 1, 2, 3 I1, 2, 3 IN IN V12,23,31 V12,23,31 .1. Salir ₹ Abajo 🔻 Abajo Salir Intro Intro Salir Fundament. I (A) Armonico Fundament. Captur. ond T (A) 11 = 363 A Fundament. 12 = 0 A U (V) THD 13 = 0 A Ρ (W) In = 0 A thd FFT *.T.*, Salir 🔁 Intro 🔻 Abajo Intro U (V) P, Q, S Fundament. Fundament. Fundament. Fundament. I (A) Т (A) Р (kW) U12 = 430 V U23 = 401 V 14 U (V) U (V) U31 = 431 V Q (kvar) Р Р (W) (W) 88 U1n = 245 V U2n = 242 V s (kVA) U3n = 242 V 88 Salir Abajo ſ., Salir Abajo $\overline{\nabla}$ Intro Salir Intro 4

Figura 80 – Verificación de armónicos

2 %

0 %

0 %

0 %

2 %

0 %

0 %

0 %

Armónicos (continuación)

THD (I)—Distorsión total de armónicos en la corriente en base a la corriente fundamental

$$THD(I) = \frac{\sqrt{\sum_{n=2}^{\infty} l_n^2}}{l_{fund}}$$

- THD(I) < 10% se considera normal*
- 10% < THD(I) < 50% indica una perturbación significativa en el armónico. Existe un riesgo de elevación de la temperatura; por lo tanto, se requieren cables y fuentes de tamaño más grande.
- THD(I) > 50% indica una perturbancia mayor en el armónico. Es posible que se produzcan fallas durante el funcionamiento. Es necesario realizar un análisis profundo así como la instalación de equipo de compensación.

THD (U)—Distorsión total de armónicos en la tensión en base a la tensión fundamental

$$THD(V) = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_{fund}}$$

- THD(U) < 5% se considera normal*
- 5% < THD(U) < 8% indica una perturbación significativa en el armónico. Existe un riesgo de elevación de la temperatura; por lo tanto, se requieren cables y fuentes de tamaño más grande.
- THD(U) > 8% indica una perturbancia mayor en el armónico. Es posible que se produzcan fallas durante el funcionamiento. Es necesario realizar un análisis profundo así como la instalación de equipo de compensación.

*Si el valor calculado de THD o thd es inferior o igual al 2%, la unidad de disparo mostrará 0%.

Figura 80 – Verificación de armónicos (continuación)

Armónicos (continuación)

thd (I)—Distorsión total de armónicos en la corriente en base a la corriente **rcm***

$$thd(l) = \frac{\sqrt{\sum_{n=2}^{\infty} l_n^2}}{l_{rcm}}$$

thd (V)—Distorsión total de armónicos en la tensión en base a la tensión **rcm***

$$thd(V) = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_{rcm}}$$

*Si el valor calculado de THD o thd es inferior o igual al 2%, la unidad de disparo mostrará 0%.

FFT (Transformada rápida de Fourier)— Nivel de distorsión en las órdenes de los armónicos 3 a 31 para

- las corrientes I1, I2, I3 e In
- las tensiones de fase a fase U12, U23, U31

Figura 80 – Verificación de armónicos (continuación)

Armónicos (continuación)

Figura 80 – Verificación de armónicos (continuación)

🕎 Frecuencia

Figura 81 – Verificación de la frecuencia

ESPAÑOL

Historial de la unidad de disparo

Utilice el menú de servicio de mantenimiento para repasar el historial de la unidad de disparo almacenado en los registros cronológicos de historial.

🗾 Historial de disparo

La unidad de disparo almacena información acerca de la falla de LSIG que provocó los últimos diez disparos. Se almacena la siguiente información para cada una de las fallas:

- Valores de corriente para Ir, Isd, li e Ig
- Punto de ajuste de activación para la tensión y otro tipo de protecciones
- Fecha
- Hora (hora, minutos y segundos)

NOTA: Los disparos provocados por el equipo de pruebas no se anotan en el registro cronológico de historial.

Figura 82 – Menú de registros cronológicos de historial

Figura 83 – Verificación del historial de disparo

🌈 Historial de alarmas

La unidad de disparo registra las mediciones correspondientes a cada una de las diez últimas alarmas activadas. Se almacena la siguiente información para cada una de ellas:

- Indicación y valor del ajuste de alarma
- Fecha
- Hora (hora, minutos y segundos)

ESPAÑOL

🜈 Contador de maniobras

Éste visualiza la cantidad máxima de maniobras, disparos o aperturas del interruptor, desde la instalación del interruptor. Esta cantidad la proporciona el módulo de comunicación del interruptor (BCM).

Desgaste de contactos

Aquí se indica el contacto con mayor desgaste. Cuando el número llega a 100, se recomienda realizar una inspección visual de los contactos. Esta función está disponible sólo en los interruptores de potencia MasterPact[™] NT y NW.

Figura 85 – Verificación del contador de maniobras

Figura 86 – Verificación del desgaste de contactos

Configuración de protección

Utilice los menús de protección para verificar la configuración de protección de la corriente, tensión, otras protecciones, desconexión/reconexión de carga de corriente y desconexión/reconexión de carga de potencia.

Consulte el apéndice B para obtener los valores de configuración por omisión así como las gamas de éstos.

🕎 Protección de corriente

La pantalla "Cambiar la regulación Idmtl (A) por I(A)" aparecerá sólo si los ajustes de tiempo largo, tiempo corto y/o instantánea se han realizado con anterioridad en la pantalla del menú Idmtl (A). Si el usuario proporciona una respuesta positiva (Sí), los ajustes de Idmtl(A) se perderán cuando se cambia de menú a la pantalla de ajuste de I(A). Si no se ha realizado ningún ajuste en la pantalla de menú Idmtl(A), el menú pasa directamente a la pantalla de ajuste I(A).

La pantalla "Cambiar la regulación I(A) por Idmtl(A)" aparecerá sólo si los ajustes de tiempo largo, tiempo corto y/o instantánea se han realizado con anterioridad en la pantalla del menú I(A). Si el usuario proporciona una respuesta positiva (Sí), los ajustes de I(A) se perderán cuando se cambia de menú a la pantalla de ajuste de Idmtl(A). Si no se ha realizado ningún ajuste en la pantalla de menú Idmtl(A), el menú pasa directamente a la pantalla de ajuste I(A).

NOTA: La protección neutra es inhabilitada si se selecciona la protección de Idmtl.

Figura 87 – Menú de protección

Figura 88 - Verificación de la protección de corriente

Continúa en la siguiente página

ESPAÑOL

Protección de corriente

Figura 88 – Verificación de la protección de corriente

11 máx (A)

240A

240A

15s

15s

15s

Salir

15.

15s

Off

Activación

| **‡**

(A)

Ineutro (A)

Intro

Protección de tensión

AVISO

PELIGRO DE DAÑO AL EQUIPO

Si se ajusta la protección de baja tensión (Umín) por debajo del 80% o el desequilibrio de tensión (Udeseq.) por encima del 20% es posible que no funcione correctamente la unidad de disparo.

El incumplimiento de esta instrucción puede causar daño al equipo.

Los ajustes de activación de la protección de tensión son valores de fase a fase.

Los valores de desequilibrio se basan en los valores de rcm verdaderos de las corrientes de tres fases.

La alarma de baja tensión se desactiva al perderse la segunda fase.

NOTA: No ajuste la protección de baja tensión por debajo del 80%. No ajuste el valor de Udeseq. en un valor superior al 20%^{*}.

* Consulte el apéndice D para obtener una explicación del comportamiento de la protección del sistema.

Manuel Marcel Internation Otro tipo de protección

Figura 90 - Verificación de otro tipo de protección

85-ES

Desconexión/reconexión de carga de corriente

La desconexión/reconexión de carga de corriente puede configurarse solamente para alarmas. No se puede utilizar para disparar el interruptor.

Figura 91 – Verificación de la desconexión/reconexión de carga de la corriente

Figura 92 - Verificación de la desconexión/reconexión de

carga de potencia

Desconexión/reconexión de carga de potencia

La desconexión/reconexión de carga de potencia puede configurarse solamente para alarmas. No se puede utilizar para disparar el interruptor.

Protección corriente	Desconex. P Reconex.
Protección de tensión	Off
Otras proteccion.	Activación 10.00MW
Desconex. Reconex.	3600s Desactiv.
Desconex. P	10.00MW 10s
Intro	Salir

06133331

ESPAÑOL

Sección 5—Sustitución de la unidad de disparo

🛦 PELIGRO

PELIGRO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO POR ARQUEO

- El incumplimiento de estas instrucciones durante la instalación, la prueba de disparo y las pruebas de inyección primaria podrá causar problemas a algunas o todas las funciones de protección.
- Utilice equipo de protección personal (EPP) apropiado y siga las prácticas de seguridad eléctrica establecidas por su Compañía, consulte la norma 70E de NFPA o Z462 de CSA y NOM-029-STPS.
- Según la definición del Código nacional eléctrico de EUA (NEC), NOM-001-SEDE, solamente personal calificado, familiarizado con la instalación y servicios de mantenimiento de los interruptores de potencia, deberá sustituir/actualizar la unidad de disparo en campo.
- Antes de sustituir/actualizar la unidad de disparo, asegúrese de que el interruptor esté funcionando correctamente. Si no es posible determinar la condición de funcionamiento del interruptor, deténgase aquí. Si desea obtener asistencia para evaluar la condición del interruptor, comuníquese con el Centro de asistencia técnica.
- Si el interruptor no funciona correctamente al completar la instalación de la unidad de disparo, de inmediato ponga el interruptor fuera de servicio y llame al Centro de servicios en campo.
- Desenergice el equipo antes de realizar cualquier trabajo en él. Siga las instrucciones incluidas con el interruptor para desconectar y volver a conectarlo.
- Vuelva a colocar todos los dispositivos, las puertas y las cubiertas antes de volver a poner en servicio el equipo.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Según la definición del Código nacional eléctrico de EUA (NEC), NOM-001-SEDE, solamente personal calificado, familiarizado con la instalación y servicios de mantenimiento de los interruptores de potencia, deberá sustituir la unidad de disparo.

Antes de sustituir la unidad de disparo, asegúrese de que el interruptor esté funcionando correctamente. Si no es posible determinar la condición de funcionamiento del interruptor, deténgase aquí. Si desea obtener asistencia para evaluar la condición del interruptor, comuníquese con el Centro de asistencia técnica.

Cerciórese de leer completamente esta información antes de iniciar el procedimiento de sustitución.

NOTA: Si la unidad que va a sustituir es una unidad de disparo MicroLogic 2.0, 3.0 o 5.0, solicite el bloque de conectores S33101 y un arnés para cables para el interruptor o cuna, si fuese necesario.

Sustitución de la unidad de disparo para los ajustes de mantenimiento para la reducción de energía (ERMS)

A PELIGRO

PELIGRO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO POR ARQUEO

- Utilice solamente unidades de disparo MicroLogic P o H con la etiqueta azul ERMS (sistema de ajustes de mantenimiento para la reducción de energía).
- Repase el boletín 0613IB1317, Guía del usuario del módulo de E/S y el boletín NHA67346, Instrucciones de instalación del ERMS, para obtener más información acerca de la instalación, pruebas y funcionamiento del sistema ERMS.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Si está sustituyendo la unidad de disparo para usarla en un sistema ERMS, asegúrese de que la unidad sea apropiada para esta aplicación.

Solamente las unidades de disparo MicroLogic marcos P y H, fabricadas después del código de fecha "15011" con la etiqueta azul ERMS (figura 93, A) son adecuadas para las aplicaciones del ERMS. Compruebe que la unidad de disparo tenga colocada la etiqueta ERMS en la esquina superior derecha. Consulte el boletín NHA67346, *Instrucciones de instalación del ERMS*, para obtener más información acerca de los sistemas ERMS.

Herramientas necesarias

- Destornillador de par prefijado en 0,8 N•m (7 lbs-pulg) ± 10% (destornillador Lindstrom MAL500-2 o uno equivalente)
- Equipo de pruebas de amplias funciones MicroLogic (número de pieza S33595)

Preparación

Anotación de los ajustes de los selectores

Anote todos los ajustes de los selectores y de protección avanzada de la unidad de disparo ya que tendrá que utilizarlos posteriormente.

Desconexión del interruptor

Desconecte el interruptor tal como se indica en el boletín de instrucciones correspondiente incluido. El interruptor debe estar completamente aislado. (En un interruptor removible, coloque el interruptor en la posición de desconectado. En un interruptor fijo, todas las fuentes de tensión, incluyendo la fuente auxiliar, deben ser desconectadas).

Extracción de la cubierta de accesorios del interruptor

Retire la cubierta de accesorios del interruptor como se indica en la sección "Instalación de accesorios" en el boletín de instrucciones correspondiente incluido.

Desmontaje del calibrador

Se necesita un destornillador Phillips pequeño para desmontar el calibrador ajustable.

- 1. Abra la cubierta de los selectores (A).
- 2. Desatornille el tornillo de montaje (B) del calibrador ajustable.
- 3. Retire el calibrador ajustable (C). Guárdelo para instalarlo en la unidad de disparo de repuesto.

Figura 94 – Desmontaje del calibrador ajustable

Desmontaje de la unidad de disparo

- 1. Retire el bloque de conectores (A) de la parte superior de la unidad de disparo, si está instalado.
- 2. Afloje los dos tornillos (B) de la unidad de disparo.
- 3. Deslice la unidad de disparo (C) hasta que esté totalmente afuera.

Figura 95 – Desmontaje de la unidad de disparo existente

Sustitución de la unidad de disparo

Instalación de la pila

Si se está instalando una unidad de disparo nueva, primero instale la pila en la unidad.

Instale la cubierta con pila (A) en la unidad de disparo, observe la polaridad correcta marcada en el compartimiento de la pila.

NOTA: La cubierta del compartimiento de la pila y la pila vienen debajo de la tapa de la caja de embalaje de la unidad de disparo.

Figura 96 - Instalación de la pila

Presione el botón de prueba/restablecimiento (A). Las cuatro luces indicadoras (B) deberán iluminarse. Si no se iluminan, verifique la polaridad de la pila y vuelva a realizar la prueba. Si las luces indicadoras todavía no se iluminan al presionar el botón de prueba/restablecimiento, detenga la instalación y póngase en contacto con la oficina local de ventas para solicitar servicio autorizado de fábrica.

Figura 97 – Luces indicadoras

Instalación de la unidad de disparo

- Inspeccione visualmente las espigas del conector y las superficies de la unidad de disparo. Si encuentra algún daño, por ejemplo, espigas desalineadas o contaminación, detenga la instalación y póngase en contacto con la oficina local de ventas y solicite servicio autorizado de fábrica.
- 2. Inspeccione la base de montaje de la unidad de disparo en el interruptor. Retire los residuos del área y asegúrese de que los cables de los accesorios se hayan dirigido correctamente hacia la unidad de disparo que se está instalando. Si encuentra algún daño o contaminación, detenga la instalación y póngase en contacto con la oficina local de ventas y solicite servicio autorizado de fábrica.
- 3. En los interruptores de potencia MasterPact NW solamente: Al realizar los pasos 4 a 6, manualmente presione y sostenga en su lugar el bloqueo (A) de la unidad de disparo.
- 4. Alinee el riel guía (B) situado en la parte inferior de la unidad de disparo con la ranura (C) del riel guía en la base de montaje de la unidad de disparo en el interruptor y deslice suavemente la unidad hacia adentro hasta llegar al tope.

NOTA: Las bases de montaje de las unidades de disparo para los interruptores de potencia MasterPact NT y NW se han montado sobre amortiguadores; por consiguiente, es posible doblarlas ligeramente.

Figura 98 – Instalación de la unidad de disparo

Interruptor de potencia MasterPact NW

ESPAN

AVISO

PELIGRO DE DAÑO AL EQUIPO

Compruebe la instalación de la unidad de disparo y asegúrese de que esté correctamente conectada y apoyada en su lugar.

El incumplimiento de esta instrucción puede causar daño al equipo o el disparo incorrecto del interruptor.

- 5. Alinee la unidad de disparo de manera que el tornillo de montaje (A) esté alineado con el inserto roscado superior y gire dos vueltas.
- Utilice un destornillador de par prefijado para apretar el tornillo inferior (B) a 0,8 N•m (7 lbs-pulg) ± 10%. La lengüeta de montaje debe estar a ras con el separador de montaje y el enchufe sensor.
- Utilice un destornillador de par prefijado para apretar el tornillo superior a 0,8 N•m (7 lbs-pulg) ± 10%. La lengüeta de montaje debe estar a ras con el separador de montaje flexible.

NOTA: Cuando está cerrada, la parte frontal de la cubierta de los selectores deberá estar a ras con las superficies de la base de montaje. En caso de que las superficies no se encuentren a ras, detenga la instalación y póngase en contacto con la oficina local de ventas y solicite servicio autorizado de fábrica.

NOTA: Si está actualizando una unidad de disparo MicroLogic 2.0, 3.0 o 5.0, debe solicitar el bloque de conectores por separado (número de pieza S33101). Consulte las instrucciones incluidas con el bloque de conectores al instalarlo en el interruptor.

8. Instale el bloque de conectores (C) en la parte superior de la unidad de disparo.

Figura 99 – Instalación de la unidad de disparo

- 9. Instale el calibrador ajustable en la unidad de disparo.
 - a. Abra la cubierta de los selectores (A) de la unidad nueva.
 - b. Realice una inspección visual del área de montaje y retire cualquier material residual y/o contaminante que llegase a encontrar.
 - c. Suavemente empuje el calibrador ajustable (B) hasta que encaje en la nueva unidad de disparo.
 - d. Apriete el tornillo de montaje (C) del calibrador ajustable. El calibrador encajará debidamente en su posición, hasta encontrarse a ras con la parte frontal, a medida que se aprieta el tornillo.
 - e. Restablezca los ajustes de la unidad de disparo en los valores originales anotados anteriormente o según los resultados de los.
- 10. Restablezca los ajustes de los selectores y de protección avanzada de la unidad de disparo en los valores originales anotados anteriormente o según los resultados de los estudios de coordinación.
- 11. Cierre la cubierta de los selectores (A).

Figura 100 –Instalación del calibrador ajustable

Colocación de la cubierta de accesorios del interruptor

Vuelva a colocar la cubierta de accesorios del interruptor como se indica en la sección "Instalación de los accesorios" del boletín de instrucciones del interruptor correspondiente incluido.

Verificación de la instalación de la unidad de disparo

Pruebas de inyección secundaria

Para la instalación en campo de una unidad de disparo es necesario realizar pruebas de inyección secundaria con un equipo de pruebas de amplias funciones. Esto garantizará el funcionamiento correcto de la unidad de disparo recién instalada. Durante la prueba será necesario abrir y cerrar el interruptor. Siga los procedimientos detallados en los boletines de instrucciones incluidos con el interruptor y el equipo de pruebas de amplias funciones.

Asegúrese de que el interruptor esté aislado de todos los dispositivos de corriente ascendente y corriente descendente.

- 1. Realice las pruebas de inyección secundaria de acuerdo con las instrucciones del boletín incluido con el equipo de pruebas de amplias funciones.
- 2. Asegúrese de que todas las funciones aplicables de la unidad de disparo funcionen correctamente.
- 3. Repita el paso 2 con el interruptor en la posición de abierto.

NOTA: No cierre el interruptor durante este paso aun cuando el equipo de pruebas indique que deberá estar cerrado.

 Si falla alguna de las pruebas, no ponga el interruptor en servicio y comuníquese con la oficina local de ventas y solicite servicio autorizado de fábrica.

Pruebas de inyección primaria

Se recomienda realizar pruebas de inyección primaria para asegurarse de haber conectado correctamente el sistema de disparo. Realice las pruebas de inyección primaria según las instrucciones en Pruebas de campo y guía de mantenimiento, boletín número 0600IB1201.

Verificación del funcionamiento de los accesorios

- Accesorios instalados Compruebe el funcionamiento apropiado de todos los accesorios instalados. Consulte los boletines de instrucciones correspondientes de los accesorios para conocer los procedimientos de prueba.
- Módulo de contactos programables Si el interruptor tiene instalado un módulo M2C o M6C, asegúrese de que éste esté funcionando correctamente. Consulte los boletines de instrucciones correspondientes de los accesorios para conocer los procedimientos de las pruebas de funcionamiento.
- Enclavamiento selectivo de zona Si el interruptor es parte del sistema de ZSI, siga los procedimientos de prueba para ZSI como se describe en el equipo de pruebas de amplias funciones.
- 4. Comunicaciones Si el interruptor viene con un módulo de comunicación, compruebe que se haya restablecido la comunicación con el supervisor.

Configuración de la unidad de disparo

- 1. Si se utiliza una fuente de alimentación auxiliar en la unidad de disparo MicroLogic, vuelva a conectarla.
- Vuelva a restablecer los ajustes de los selectores y de protección avanzada de la unidad de disparo en los valores originales anotados al comienzo de esta sección.

Reconexión del interruptor

Vuelva a conectar el interruptor tal como se indica en el boletín de instrucciones correspondiente incluido.

Sección 6—Sustitución del calibrador ajustable

A PELIGRO

PELIGRO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO POR ARQUEO

- Utilice equipo de protección personal (EPP) apropiado y siga las prácticas de seguridad eléctrica establecidas por su Compañía, consulte la norma 70E de NFPA o Z462 de CSA y NOM-029-STPS.
- Solamente el personal eléctrico calificado deberá instalar y prestar servicio de mantenimiento a este equipo.
- Desenergice el equipo antes de realizar cualquier trabajo en él. Siga las instrucciones incluidas con el interruptor para desconectar y volver a conectarlo.
- Vuelva a colocar todos los dispositivos, las puertas y las cubiertas antes de volver a poner en servicio el equipo.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Desmontaje del calibrador

- 1. Desconecte el interruptor tal como se indica en el boletín de instrucciones correspondiente incluido.
- 2. Abra la cubierta de los selectores (A).
- 3. Anote los ajustes de los selectores en el apéndice E (los ajustes de los selectores y los de la pantalla de gráficos, si correspondiera).
- 4. Desatornille el tornillo de montaje (B) del calibrador.
- 5. Retire el calibrador ajustable (C).

Figura 101 – Desmontaje del calibrador ajustable

NOTA: Para seleccionar el calibrador de repuesto correcto, consulte el catálogo de productos.

NOTA: Retire el calibrador ajustable durante la ejecución de las pruebas de rigidez dieléctrica. El calibrador ajustable debe estar instalado para realizar las mediciones de tensión. Si falta este calibrador, el interruptor regresará al valor nominal por omisión de activación de tiempo largo de 0,4 multiplicado por el tamaño del sensor (In) y a un retardo de tiempo largo del ajuste anteriormente seleccionado antes de haber retirado el calibrador.

Instalación del nuevo calibrador

- 1. Realice una inspección visual del área de montaje y retire cualquier material residual y/o contaminante que llegase a encontrar.
- 2. Suavemente empuje el calibrador ajustable (A) hasta que encaje en la nueva unidad de disparo.
- 3. Apriete el tornillo de montaje (B) del calibrador ajustable.
- Restablezca los ajustes de la unidad de disparo en los valores originales anotados en el apéndice E o según los resultados de los estudios de coordinación.
- 5. Cierre la cubierta de los selectores (C).

Figura 102 – Instalación del nuevo calibrador ajustable

Sección 7—Sustitución de la pila

A PELIGRO

PELIGRO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO POR ARQUEO

- Utilice equipo de protección personal (EPP) apropiado y siga las prácticas de seguridad eléctrica establecidas por su Compañía, consulte la norma 70E de NFPA o Z462 de CSA y NOM-029-STPS.
- Solamente el personal eléctrico calificado deberá instalar y prestar servicio de mantenimiento a este equipo.
- Desenergice el equipo antes de realizar cualquier trabajo en él. Siga las instrucciones incluidas con el interruptor para desconectar y volver a conectarlo.
- Vuelva a colocar todos los dispositivos, las puertas y las cubiertas antes de volver a poner en servicio el equipo.

El incumplimiento de estas instrucciones podrá caisar la muerte o lesiones serias.

Desconexión del interruptor

Desconecte el interruptor tal como se indica en el boletín de instrucciones correspondiente incluido.

Desmontaje de la cubierta de accesorios

Retire la cubierta de accesorios del interruptor como se indica en la sección "Instalación de accesorios" en el boletín de instrucciones correspondiente incluido.

Desplazamiento del módulo de aguante

NOTA: Algunos interruptores automáticos marco R y NS1600b a NS3200 tienen un módulo de aguante que necesita retirarse para acceder a la pila.

Afloje los tornillos (A) sujetando el módulo (B). Gire el módulo hacia un lado para tener acceso a la cubierta de la pila de la unidad de disparo. No retire el conector del módulo de aguante.

Figura 103 – Desplazamiento del módulo de aguante

Sustitución de la pila

 Inserte la punta de un destornillador pequeño en la muesca de la cubierta del compartimiento de la pila y gírelo para sacar la cubierta (A) de la unidad de disparo.

Figura 104 – Extracción de la cubierta de la pila

- 2. Retire la pila (A).
- 3. Coloque la nueva pila (B). Asegúrese de que los polos estén en el sentido correcto.
- 4. Vuelva a colocar la cubierta del compartimiento de la pila (C).

Figura 105 – Sustitución de la pila

Colocación del módulo de aguante

NOTA: Si el módulo de aguante se retiró para acceder a la pila, vuelva a colocar el módulo (A) y apriete los tornillos (B).

Vuelva a colocar el módulo de aguante (A). Apriete los tornillos (B) sujetando el módulo.

Figura 106 – Colocación del módulo de aguante

Colocación de la cubierta de accesorios

Vuelva a colocar la cubierta de accesorios del interruptor como se indica en la sección "Instalación de los accesorios" del boletín de instrucciones del interruptor correspondiente incluido.

Reconexión del interruptor

Vuelva a conectar el interruptor tal como se indica en el boletín de instrucciones correspondiente incluido.

Apéndice A—Diagramas de flujo de la pantalla de visualización

Diagrama de flujo del menú de mediciones

Diagrama de flujo del menú de servicio de mantenimiento

Diagrama de flujo del menú de protecciones

Apéndice B—Ajustes de fábrica y tolerancias

Ajustes de fábrica

Tabla 14 – Ajustes de fábrica—Selectores

Valor de fábrica	Símbolo	Valor de fábrica
Activación de tiempo largo	lr	Máximo
Retardo de tiempo largo	tr	Mínimo
Activación de tiempo corto	Isd	Mínimo
Retardo de tiempo corto	tsd	Mínimo
Activación de falla a tierra	lg	Mínimo
Retardo de falla a tierra	tg	Mínimo
Instantáneo	li	Mínimo

Tabla 15 – Ajustes de fábrica—Menú de servicio de mantenimiento

Submenú	Valor de fábrica	Elemento de línea	Valor de fábrica	Gama de ajustes
Contactos M2C/M6C	Tipo de alarma	S#	No seleccionado	No seleccionado, Isd, Ir, Ideseq. (Consulte la tabla 10)
	Configurar	S#	Con enganche	Contacto de enganche, retardo de tiempo, contacto sin enganche, forzado a 0, forzado 1
	Idioma		English US	Deutsch, English US, English UK, Español, Français
	Fecha/hora			
	Selección interruptor	Norma	NA	No def, ANSI, IEC, UL, IEC/GB
		interruptor	NA	
Configurar MicroLogic		tipo	NA	
		Número de interruptor	0000	0000-FFFF
	Signo de potencia		P+	P+, P-
	Transfo. de tensión	Primario	690	000 a 690
		Secundario	690	000 a 690
	Frecuencia de red		50 a 60 Hz	50-60 Hz, 400 Hz
	Tipo de sistema		3⊕ 4 hilos 4 TC	3Φ 4hilos 4TC, 3Φ 4hilos 3TC, 3Φ 3hilos 3TC
	Cálculo I media	Duración	15 min.	5 a 60 minutos
Configurar medidas	Cálculo P media	Tipo ventana	deslizante	deslizante, fijo
		Duración	15 min.	5 a 60 minutos
	Convención de signos		IEEE	IEEE, IEEE alt, IEC
	Parámetros com.			
Configurar Com	Regulación a distancia		No	Sí, no
Configurar Com.	Mando a distancia		Auto	Auto, manual
	IP Datos			

Submenú	Valor de fábrica	Elemento de línea	Valor de fábrica	Gama de ajustes	Submenú	Tolerancia
	Activación de tiempo largo	lr		Máximo		±10%
	Retardo de tiempo largo	tr		Mínimo		-20%, +0%
	Activación de tiempo corto	lsd		Mínimo		±10%
	Retardo de tiempo corto	tsd		Mínimo		
	Instantáneo	li		Mínimo		±10%
	Falla de tierra (unidad de disparo 5.0H)	۱ <u>≠</u>	Sin protección			
			Modo	Disparo	Disparo	
	Falla de tierra (unidad de disparo 6.0H)	<i>≰</i>	Activación	Configuración del selector	I _n ≤ 400 A: 30%–100% I _n 400 < I _n ≤ 1200 A: 20%–100% I _n 1200 A < I _n : 500 A–1200 A	±10%
			Retardo de activación	Configuración del selector	0.1 a 0.4 s	-20%, +0%
	Corriente neutra	Ineutro		Off	Off, N/2, N, 1.6N	
			Modo	Off	Alarma, off	
			Activación	1200 A	0,2 x I _n -1200 A	±15%
	Alarma de falla a tierra	l <i>≰</i> alarma	Retardo de activación	10.0 s	1.0–10.0 s	-20%, +0%
			Desactivación	1200 A	20 A–activación	±15%
			Retardo de desactivación	1,0 s	1,0–10,0 s	-20%, +0%
	Desequilibrio de corriente		Modo	Off	Alarma, disparo, off	
			% de activación	60%	5–60%	-10%, +0%
		ldeseq.	Retardo de activación	40 s	1–40 s	-20%, +0%
Protección do corrigento			% de desactivación	% de activación: I _{deseg.}	5%–% de activación	-10%, +0%
			Retardo de desactivación	10 s	10–360 s	-20%, +0%
	Demanda de corriente máx. en la fase 1	11máx	Modo	Off	Alarm, disparo, off	
			Activación	In	0,2 x I _n - I _n	±6,6%
			Retardo de activación	1500 s	15–1500 s	-20%, +0%
			Desactivación	Activación: I ₁ máx	0,2 x I _n –activación	±6,6%
			Retardo de desactivación	15 s	15–3000 s	-20%, +0%
	Demanda de corriente máx. en la fase 2	12máx	Modo	Off	Alarm, disparo, off	
			Activación	I _n	0,2 x I _n -I _n	±6,6%
			Retardo de activación	1500 s	15–1500 s	-20%, +0%
			Desactivación	Activación: l ₂ máx	0,2 x I _n –activación	±6,6%
			Retardo de desactivación	15 s	15–3000 s	-20%, +0%
			Modo	Off	Alarm, disparo, off	
	Demanda de corriente máx. en la fase 3		Activación	I _n	$0,2 \times I_{n} - I_{n}$	±6,6%
		13máx	Retardo de activación	1500 s	15–1500 s	-20%, +0%
			Desactivación	Activación: I ₃ máx	0,2 x I _n –activación	±6,6%
			Retardo de desactivación	15 s	15–3000 s	-20%, +0%
		Inmáx	Modo	Off	Alarm, disparo, off	
			Activación	I _n	0,2 x I _n -I _n	±6,6%
	Demanda de corriente		Retardo de activación	1500 s	15–1500 s	-20%, +0%
			Desactivación	Activación: I _n máx	0,2 x I _n –activación	±6,6%
			Retardo de desactivación	15 s	15–3000 s	-20%, +0%

Tabla 16 –	Ajustes de fábrica-	–Menú de	protección
------------	---------------------	----------	------------

Tabla continúa en la siguiente página

ESPAÑOL

Submenú	Valor de fábrica	Elemento de línea	Valor de fábrica	Gama de ajustes	Submenú	Tolerancia
			Modo	Off	Alarma, disparo, off	
	Tanai (m. (haia) ar (nina		Activación	100 V	100 V–activación de Umáx	-5%, +0%
		l Imín	Retardo de activación	5 s	1,2–5 s	-0%, +20%
	rension (baja) minima	Umin	Desactivación	Activación Umín	Activación Umín–1200 A	-5%, +0%
			Retardo de desactivación	1,2 s	1,2–36 s	-0%, +20%
			Modo	Off	Alarma, disparo, off	
Protección			Activación	725 V	Umín–1200 A	-0%, +5%
de tensión	Tensión (sobre) máxima	Umáx	Retardo de activación	5 s	1,2–5 s	-0%, +20%
			Desactivación	Activación Umáx	100–activación de Umáx	-0%, +5%
			Retardo de desactivación	1,2 s	1,2–36 s	-0%, +20%
			Modo	Off	Alarma, disparo, off	
			Activación	20%	2–20%1	-10%, +0%
	Deseguilibrio de tensión	Udeseq.	Retardo de activación	40 s	1–40 s	-20%, +0%
			Desactivación	Activación Udeseg.	2%–activación de Udeseg.	-10%, +0%
			Retardo de desactivación	10 s	10–360 s	-20%, +0%
			Modo	Off	Alarma, disparo, off	
			Activación	500 kW	5–500kW	± 2,5%
	Potencia inversa	rP	Retardo de activación	20 s	0.2–20 s	-0%. +20%
			Desactivación	Activación rP	5kW–activación de rP	± 2.5%
			Retardo de desactivación	1 s	1–360 s	-0%, +20%
		Fmín	Modo	Off	Alarma, disparo, off	
	Frecuencia (baja) mínima		Activación	45 Hz	45 Hz–Activación de Fmáx	± 0.5 Hz
Otras			Retardo de activación	5 s	0.2–5 s	-0%, +20%
protecciones			Desactivación	Activación Fmín	Activación de Fmín–440 Hz	± 0.5 Hz
			Retardo de desactivación	1 s	1–36 s	-0%. +20%
	Frecuencia (sobre) máxima	Fmáx	Modo	Off	Alarma, disparo, off	
			Activación	65 Hz	Activación de Fmín–440 Hz	± 0.5 Hz
			Retardo de activación	5 s	0.2–5 s	-0%. +20%
			Desactivación	Activación Fmáx	45 Hz–Activación de Fmáx	± 0.5 Hz
			Retardo de desactivación	1 s	1–36 s	-0%, +20%
Rotación de fases	Rotación de fases	_	Secuencia	Sentido de rotación: fase 1, fase 3, fase 2	Sentido de rotación: fase 1, fase 2, fase 3 o fase 1, fase 3, fase 2	
			Modo	Off	Off, alarma	
			Modo	Off	Off, on	
	Desconex /reconex I	_	% de activación	100% Ir	50% lr–100% lr	±6%
Desconex /reconex I			% de retardo de activación	80% tr	20–80% tr	-20%, +0%
			% de desactivación	Activación de I de desconex /reconex de carga	30%–% de activación de l de desconexión/reconexión de carga	±6%
			Retardo de desactivación	10 s	10–600 s	-20%, +0%
	Desconex /reconex P	_	Modo	Off	Off, On	
			Activación	10,000 kW	200–10,000 kW	± 2,5%
			Retardo de activación	3600 s	10–3600 s	-20%, +0%
Desconex /reconex P			Desactivación	Activación de P de desconex /reconex de carga	100 kW–% de activación de P de desconexión/reconexión de carga	± 2,5%
			Retardo de desactivación	10 s	10–3600 s	-20%, +0%

Tabla 16 –	Ajustes de	fábrica-Menú	de protección	(continuación)
------------	------------	--------------	---------------	----------------

¹ No ajuste por encima del 20%
Gama de medición y precisión

Tabla 17 – Gama de medición y precisión

Art.	Descripción	Símbolo	Gama	Tolerancia
	Corriente instantánea en la fase 1	I ₁	0–32 kA	±1,5%
	Corriente instantánea en la fase 2	l ₂	0–32 kA	±1,5%
	Corriente instantánea en la fase 3	l ₃	0–32 kA	±1,5%
Art. Corriente instantánea Demanda de corriente Demanda de corriente Tensión Potencia instantánea Factor de potencia	Corriente instantánea en el neutro	l _n	0–32 kA	±1,5%
Corriente instantáneo	Descripcion Simbolo Gama I Corriente instantánea en la fase 1 I ₁ 0-32 kA 1 Corriente instantánea en la fase 2 I ₂ 0-32 kA 1 Corriente instantánea en la fase 3 I ₃ 0-32 kA 1 Corriente instantánea en la fase 3 I ₃ 0-32 kA 1 Corriente instantánea en lerar I 4 0-32 kA 1 Corriente instantánea máx. en la fase 1 I ₁ máx 0-32 kA 1 Corriente instantánea máx. en la fase 3 I ₃ máx 0-32 kA 1 Corriente instantánea máx. en la fase 3 I ₃ máx 0-32 kA 1 Demanda de corriente en la fase 1 I ₁ 0-32 kA 1 Demanda de corriente en la fase 3 I ₃ 0-32 kA 1 Demanda de corriente máx. en la fase 1 I ₁ máx 0-32 kA 1 Demanda de corriente máx. en la fase 2 I ₂ 0-32 kA 1 Demanda de corriente máx. en la fase 1 I ₁ máx 0-32 kA 1 Demanda de corriente máx. en la fase 2 I ₃ máx 0-32 kA	±1,5%		
	Corriente instantánea máx. en la fase 1	l ₁ máx	NO Cumu Tote anota $0-32 kA$ $\pm 1,5\%$ $0-1200 V$ $\pm 0,5\%$ $0-32 MWa$ $\pm 2\%$ $0-32 MVA$ $\pm 2\%$ <t< td=""></t<>	
	Corriente instantánea máx. en la fase 2	SimboloGamaTolerancia $ _1$ 0-32 kA±1,5% $ _2$ 0-32 kA±1,5% $ _3$ 0-32 kA±1,5% $ _n$ 0-32 kA±1,5% $ _1$ $ _{\phi}$ 0-32 kA±1,5% $ _{\phi}$ 0-32 kA±1,5% $ _{\phi}$ 0-32 kA±1,5% $ _{g}$ máx0-32 kA±1,5% $ _{g}$ 0-32 kA±1,5% $ _{g}$ 0-1200 V±0,5% U_{12} 0-1200 V±0,5% U_{12} 0-1200 V±0,5% U_{23} 0-1200 V±0,5% U_{23} 0-1200 V±0,5% U_{23} 0-1200 V±0,5% Q 0-32 MWa±2% Q 0-32 MVa±2% Q 0-32 MVa±2% Q 0-32 MVa±2% Q 0-32 MVa±2%		
	Corriente instantánea máx. en la fase 3			
Art. Corriente instantánea Demanda de corriente Tensión Tensión Potencia instantánea Factor de potencia Demanda de potencia Total de energía Energía consumida Energía generada	Corriente instantánea máx. en el neutro	l _n máx	0–32 kA	±1,5%
	Corriente instantánea máx. en tierra	l≰máx	0–32 kA	Tolerancia $\pm 1,5\%$
	Demanda de corriente en la fase 1	Ī ₁	0–32 kA	±1,5%
	Demanda de corriente en la fase 2	I ₂	0–32 kA	±1,5%
	Demanda de corriente en la fase 3	Ī ₃	0–32 kA	±1,5%
Demanda de corriente Tensión	Demanda de corriente en el neutro	Ī _n	0–32 kA	±1,5%
corriente	Demanda de corriente máx. en la fase 1	Ī ₁ máx	O Gama I 0-32 kA 1 0-1200 V 1 0-32 MW 1 0-32 MVA 1 0-32 MVA 1	±1,5%
	Drinch Drinch Drinch Drinch Drinch Drinch Drinch ante instantánea en la fase 1 1 0-32 kA £1,59 ante instantánea en la fase 3 3 0-32 kA £1,59 ante instantánea en el neutro n 0-32 kA £1,59 ante instantánea en úerra !# 0-32 kA £1,59 ante instantánea máx. en la fase 2 !gmáx 0-32 kA £1,59 ante instantánea máx. en la fase 3 !gmáx 0-32 kA £1,59 ante instantánea máx. en la fase 3 !gmáx 0-32 kA £1,59 ante instantánea máx. en la fase 3 !gmáx 0-32 kA £1,59 and a de corriente en la fase 1 !n 0-32 kA £1,59 and a de corriente en la fase 1 !a 0-32 kA £1,59 and a de corriente en la fase 1 !a 0-32 kA £1,59 and a de corriente en la fase 1 !a Imáx 0-32 kA £1,59 and a de corriente máx. en la fase 1 !a Imáx 0-32 kA £1,59 and de	±1,5%		
Art. Description Simbolo Gama Corriente instantánea en la fase 1 Ir 0.32 kA Corriente instantánea en la fase 3 Ig 0.32 kA Corriente instantánea en la fase 3 Ig 0.32 kA Corriente instantánea en teraa Ir 0.32 kA Corriente instantánea en teraa Ir 0.32 kA Corriente instantánea máx, en la fase 1 Ir,máx 0.32 kA Corriente instantánea máx, en la fase 1 Ir,máx 0.32 kA Corriente instantánea máx, en la fase 3 Igmáx 0.32 kA Corriente instantánea máx, en la fase 3 Igmáx 0.32 kA Corriente instantánea máx, en la fase 3 Igmáx 0.32 kA Corriente instantánea máx, en la fase 3 Igmáx 0.32 kA Demanda de corriente en la fase 3 Ig 0.32 kA Demanda de corriente en la fase 3 Igmáx 0.32 kA Demanda de corriente máx, en la fase 3 Igmáx 0.32 kA Demanda de corriente máx, en la fase 3 Igmáx 0.32 kA Demanda de corriente máx, en la fase 3 Igmáx 0.32 kA <tr< td=""><td>0–32 kA</td><td>±1,5%</td></tr<>	0–32 kA	±1,5%		
	Demanda de corriente máx. en el neutro	l _n máx	0–32 kA	Tolerancia $\pm 1,5\%$ $\pm 2,5\%$ $\pm 2,5\%$ $\pm 2,5\%$ $\pm 2,5\%$ $\pm 2,5\%$ $\pm 2,5\%$
	Tensión eficaz entre las fases 1 y 2	U ₁₂	GamaIoleran $0-32 \text{ kA}$ $\pm 1,5\%$ $0-1200 \text{ V}$ $\pm 0,5\%$ $0-32 \text{ MVA}$ $\pm 2\%$ $0-32 \text{ MVA}$ $\pm $	±0,5%
	Tensión eficaz entre las fases 2 y 3	U ₂₃	0–1200 V	±0,5%
	Tensión eficaz entre las fases 3 y 1	U ₃₁	0–1200 V	±0,5%
Tonsión	Tensión eficaz entre la fase 1 y el neutro	V _{1n}	0–1200 V	±0,5%
Tensión Potencia instantánea	Tensión eficaz entre la fase 2 y el neutro	V _{2n}	0–1200 V	±0,5%
	Tensión eficaz entre la fase 3 y el neutro	V _{3n}	0–1200 V	±0,5%
	Tensión promedio de fase a fase	Umedia 3 Φ	0–1200 V	±0,5%
	Desequilibrio de tensión	Udeseq.3 Φ	0–100 V	±0,5%
	Potencia activa instantánea	Р	0–32 MW	±2%
Corriente instantánea Demanda de corriente Tensión Potencia instantánea Factor de potencia Demanda de potencia Demanda de potencia	Potencia reactiva instantánea	Q	0–32 Mvar	±2%
	Potencia aparente instantánea	I_1 0-32 kA ±1, I_2 0-32 kA ±1, I_3 0-32 kA ±1, I_n 0-32 kA ±1, $I_{1máx}$ 0-32 kA ±1, $I_{2máx}$ 0-32 kA ±1, $I_{2máx}$ 0-32 kA ±1, $I_{3máx}$ 0-32 kA ±1, $I_{1máx}$ 0-32 kA ±1, $I_{2máx}$ 0-32 kA ±1, I_{2} 0-32 kA ±1, I_{2} 0-32 kA ±1, I_{2} 0-32 kA ±1, I_{1} 0-32 kA ±1, I_{2} 0-32 kA ±1, I_{2} 0-32 kA ±1, I_{2} 0-32 kA ±1, I_{2} 0-1200 V ±0, U_{23} 0-1200 V ±0, U_{21} 0-1200 V ±0, V_{2n} 0-1200 V ±0, V_{2n} 0-1200 V ±0, V_{2n} 0-1200 V ±0, V_{3n} 0-1200 V ±0,	±2%	
Factor de potencia	Factor de potencia	PF	-1–1	±0,01%
	Demanda de potencia activa	Р	0–32 MW	±2%
	Demanda de potencia reactiva	Q	0–32 Mvar	±2%
	Demanda de potencia aparente	S	0–32 MVA	±2%
Demanda de potencia	Demanda de potencia activa máx. desde el último restablecimiento	Pmáx	0–32 MW	±2%
	Demanda de potencia reactiva máx. desde el último restablecimiento	<u>Q</u> máx	0–32 Mvar	±2%
	Demanda de potencia aparente máx. desde el último restablecimiento	Smáx	0–32 MVA	±2%
	Total de potencia activa	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
Total de energía	Total de potencia reactiva	E.Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
-	Total de potencia aparente	E.S	-10 ¹⁰ –10 ¹⁰ KVAh	±2%
	Total de potencia activa consumida	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
Energía consumida	Total de potencia reactiva consumida	E.Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
	Total de potencia activa generada	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
⊨nergia generada	Total de potencia reactiva generada	Is0-32 kA $\pm 1,5\%$ \bar{I}_n 0-32 kA $\pm 1,5\%$ $\bar{I}_1máx$ 0-32 kA $\pm 1,5\%$ $\bar{I}_2máx$ 0-32 kA $\pm 1,5\%$ $\bar{I}_3máx$ 0-32 kA $\pm 1,5\%$ $\bar{I}_nmáx$ 0-32 kA $\pm 1,5\%$ U_{12} 0-1200 V $\pm 0,5\%$ U_{23} 0-1200 V $\pm 0,5\%$ U_{21} 0-1200 V $\pm 0,5\%$ V_{2n} 0-1200 V $\pm 0,5\%$ V_{2n} 0-1200 V $\pm 0,5\%$ V_{2n} 0-1200 V $\pm 0,5\%$ Udeseq.3Φ0-100 V $\pm 0,5\%$ Udeseq.3Φ0-100 V $\pm 0,5\%$ P0-32 MW $\pm 2\%$ S0-32 MVA $\pm 2\%$ PF-1-1 $\pm 0,01\%$ P0-32 MVA $\pm 2\%$ Q0-32 MVA $\pm 2\%$ S0-32 MVA $\pm 2\%$ PF-1-1 $\pm 0,01\%$ P0-32 MVA $\pm 2\%$ Q0-32 MVA $\pm 2\%$ Q0-32 MVA $\pm 2\%$ Fmáx0-32 MVA $\pm 2\%$ Q0-32 MVA $\pm 2\%$ E. P-10 ¹⁰ -10 ¹⁰ Kwh $\pm 2\%$ E. Q-10 ¹⁰ -10 ¹⁰ Kwh $\pm 2\%$ E. Q-10 ¹⁰ -10 ¹⁰ Kwh $\pm 2\%$ E. P-10 ¹⁰ -10 ¹⁰ Kvarh $\pm 2\%$	±2%	

ESPAÑOL

Tabla continúa en la siguiente página

Art.	Descripción	Símbolo	Gama	Tolerancia
	Corriente del fundamental	I	0.05 x ln–1.5 x ln	±1,5% ¹
	Tensión del fundamental	U	30–1150 V	±0,5%
	Potencia activa fundamental	Р	0.15–13.8 kW	±2%
	Demanda de potencia del fundamental	Q	0.15–13.8 kW	±2%
	Potencia aparente fundamental	S	0.15–13.8 kW	±2%
Armonico	Distorsión total de armónicos en la corriente en base a la corriente del fundamental	THD(I)	1.5–1000%	±5%
	Distorsión total de armónicos en la tensión en base a la corriente del fundamental	THD(V)	1.5–1000%	±5%
	Distorsión total de armónicos en la corriente en base a la corriente rcm	thd(I)	1.5–1000%	±5%
	Distorsión total de armónicos en la tensión en base a la corriente rcm	thd(V)	1.5–1000%	±5%
	FFT	FFT	1.5–1000%	±5%
Frecuencia	Frecuencia del sistema	F	45–440 Hz	±0,1 Hz

Tabla 17 – Gama de medición y precisión (continuación)

¹ Por encima de la gama 0,7 x In–1,5 x In

Apéndice C—Acceso a la red/Com

Valores de lectura remota

Es posible acceder a distancia a la unidad de disparo MicroLogic a través de la opción de comunicación utilizando el System Manager Software (SMS) (versión 3.3 o posterior) o cualquier otro software de gestión de sistemas de red. Consulte el catálogo de productos para obtener más información sobre el software SMS.

Art.	Descripción	Símbolo
	Corriente instantánea – 1	I ₁
	Corriente instantánea – 2	l ₂
	Corriente instantánea – 3	I ₃
	Corriente instantánea – N	I _n
	Corriente instantánea en tierra	<i>\≰</i>
	Corriente media en la fase 1	I ₁ media
	Corriente media en la fase 2	l ₂ media
	Corriente media en la fase 3	l ₃ media
	Corriente media en neutro	I _n media
Corrigate	Corriente instantánea media en tierra	I <i>≰</i> media
Corriente	Corriente instantánea máxima – 1	l ₁ máx
	Corriente instantánea máxima – 2	l ₂ máx
	Corriente instantánea máxima – 3	l ₃ máx
	Corriente instantánea máxima – N	l _n máx
	Corriente instantánea máxima en tierra	l <i>≛</i> máx
	Desequilibrio de corriente instantánea – 1	l ₁ deseq.
	Desequilibrio de corriente instantánea – 2	l ₂ deseq.
	Desequilibrio de corriente instantánea – 3	l ₃ deseq.
	Desequilibrio de corriente instantánea – N	l _n deseq.
	Desequilibrio de corriente instantánea máx.	ldeseq.máx
	Demanda de corriente – 1	I ₁
	Demanda de corriente – 2	l ₂
	Demanda de corriente – 3	l ₃
_	Demanda de corriente – N	I _n
Demandas de corriente	Demanda de corriente máx. desde el último restablecimiento (reset) - 1	l ₁ máx
	Demanda de corriente máx. desde el último restablecimiento (reset) - 2	l ₂ máx
	Demanda de corriente máx. desde el último restablecimiento (reset) - 3	l ₃ máx
	Demanda de corriente máx. desde el último restablecimiento (reset) - N	l _n máx
	Estampado de hora de demanda de corriente máx.	

 Tabla 18 –
 Valores de lectura remota

Tabla continúa en la siguiente página

Art.	Descripción	Símbolo
	Tensión instantánea entre las fases 1 y 2	Uinst U ₁₂
	Tensión instantánea entre las fases 2 y 3	Uinst U ₂₃
	Tensión instantánea entre las fases 3 y 1	Uinst U ₃₁
	Tensión instantánea entre la fase 1 y el neutro	Uinst U _{1n}
	Tensión instantánea entre la fase 2 y el neutro	Uinst U _{3n}
	Tensión instantánea entre la fase 3 y el neutro	Uinst U _{3n}
	Tensión media de fase a fase	Umedia U _{ff}
- ·/	Tensión media de fase a neutro	Umedia U _{fn}
lension	Desequilibrio de tensión entre U ₁₂ y la media	Udeseq. U ₁₂
	Desequilibrio de tensión entre U_{23} y la media	Udeseq. U ₂₃
	Desequilibrio de tensión entre U ₃₁ y la media	Udeseq. U ₃₁
	Desequilibrio de tensión entre U _{1n} y la media	Udeseq. U _{1n}
	Desequilibrio de tensión entre U_{2n} y la media	Udeseq. U _{2n}
	Desequilibrio de tensión entre U _{3n} y la media	Udeseq. U _{3n}
	Desequilibrio de tensión máx. de fase a fasea	1 011
	Deseguilibrio de tensión máx. de fase a neutro	
Potencia activa	Potencia activa instantánea por fase	Р
	Demanda de potencia activa	Р
	Demanda de potencia reactiva	Q
	Demanda de potencia aparente	S
	Demanda de potencia activa máx. desde el último restabl. (reset)	Pmáx
Demanda de	Demanda de potencia reactiva máx. desde el último restabl. (reset)	Qmáx
potencia	Demanda de potencia aparente máx. desde el último restabl. (reset)	Smáx
	Demanda de potencia activa pronosticada al fin del intervalo	
	Demanda de potencia reactiva pronosticada al fin del intervalo	
	Demanda de potencia aparente pronosticada al fin del intervaloa	
	Demanda de potencia aparente Demanda de potencia activa máx. desde el último restabl. (reset) Demanda de potencia reactiva máx. desde el último restabl. (reset) Demanda de potencia aparente máx. desde el último restabl. (reset) Demanda de potencia aparente máx. desde el último restabl. (reset) Demanda de potencia aparente máx. desde el último restabl. (reset) Demanda de potencia aparente máx. desde el último restabl. (reset) Demanda de potencia activa pronosticada al fin del intervalo Demanda de potencia aparente pronosticada al fin del intervalo Demanda de potencia aparente pronosticada al fin del intervalo Demanda de potencia aparente pronosticada al fin del intervalo Demanda de potencia aparente pronosticada al fin del intervalo Demanda de potencia aparente pronosticada al fin del intervalo Demanda de potencia aparente pronosticada al fin del intervalo	
	Energía activa total	E
Energía	Energía activa consumida	
5	Energía activa generada	
Valores de	Tipo de falla	
falla	Valores de corriente interrumpida	
	Fundamental	
	Desfasaie de la señal fundamental	
	Harmonic distortion THD based on fundamental	
	Harmonic distortion thd based on rms	
	Cos @	
Armónicos	Eactor de potencia	
	Factor K	
	Distorsión de potencia	
	Distorsión de factor	
	Factor de cresta	
Frecuencia	Frecuencia del sistema	F
Fechas de	Intervalo entre la última actualización de los valores de tiempo real y la tabla de corrientes	
actualización	Fecha de actualización de demandas de corriente, demanda de potencia γ energía	

Tabla 18 – Valores de lectura remota (continuación)

Tabla continúa en la siguiente página

Art.	Descripción	Símbolo
	Historial de disparo	
Historial	Historial de alarmas	
	Historial de eventos	
	Desgaste de contactos	
Controlours	Contador de maniobras desde el último restabl. (reset)	
Contadores	Fecha/hora desde el último restabl, del contador de operaciones	
	Contador de maniobras total (vida útil)	
	Configuración de fecha y hora	
	Contraseña	
	Código de identificación de la unidad de disparo	
	Nombre de identificación de la unidad de disparo	
	Algoritmo para el cálculo de medición	
	Convención de signos	
	Modo de medición de energía total	
Configura-	Factores de escala	
ción	Intervalo de ventana para el cálculo de demanda de corriente	
	Indicación de calidad de la potencia	
	Modo de cálculo de demanda de potencia	
	Intervalo de ventana para el cálculo de demanda de potencia	
	Indicación de carga de la pila	
	Asignación de los contactos programables	
	Configuración de los contactos programables	
	Captura de la forma de onda	
	Corriente nominal del interruptor	
	Tipo de protección del neutro	
	Ajustes de protección de tiempo largo	
	Ajustes de protección de tiempo corto	
	Ajustes de protección instantánea	
Protección	Ajustes de protección contra fallas a tierra	
	Ajustes de protección de desequilibrio de corriente	
	Ajustes de la alarma de l 🛓	
	Ajustes de protección de la corriente máxima	
	Ajustes de protección de la tensión	
	Ajustes de las funciones de otro tipo de protección	

Tabla 18 – Valores de lectura remota (continuación)

Apéndice D—Arquitectura de la tensión de alimentación de la unidad de disparo

AVISO

PELIGRO DE DAÑO AL EQUIPO

Si se ajusta la protección de baja tensión (Umín) por debajo del 80% o el desequilibrio de tensión (Udeseq.) por encima del 20% es posible que no funcione correctamente la unidad de disparo.

El incumplimiento de esta instrucción puede causar daño al equipo.

La unidad de disparo viene equipada con una fuente de tensión de alimentación interna de tres fases que aparece al sistema como una carga de tres fases configurada en triángulo (figura 107). Esta fuente de alimentación es en realidad una carga de tres fases e inyectará tensión a una fase abierta (figura 108).

El impacto de una carga de tres fases configurada en triángulo sobre las funciones de protección basadas en la tensión es el siguiente:

Figura 107 – Fuente de alimentación interna de tres fases, incorporada

Protección de tensión mínima

La función de protección de (baja) tensión mínima se base en la medición de tensión de fase a fase.

En la configuración 1 (figura 109), 2 (figura 110) o 3 (figura 111), si un fusible se abre la unidad de disparo inyectará tensión en la fase abierta. Por lo tanto, la unidad de disparo medirá exactamente la tensión que se inyecta en la fase abierta. La medición de la tensión de fase a fase (V_{LL}) será mayor que la de la fase abierta en cero volts. La unidad de disparo también medirá exactamente la tensión de fase a neutro (V_{LN}) inyectada en la fase abierta y mostrará un valor mayor que cero.

Figura 109 – Configuración de circuitos 1

Figura 111 – Configuración de circuitos 3

En la configuración de circuitos 4 (figura 112), la unidad de disparo tiene una trayectoria de retorno a través del transformador y la tensión inyectada en la fase abierta será cero. En esta configuración, la unidad de disparo medirá exactamente cero volts en V_{LN} .

Figura 112 – Configuración de circuitos 4

Para asegurar que el sistema de disparo MicroLogic funcione como se espera, independientemente de la configuración del sistema, el usuario deberá limitar la gama de activación de baja tensión entre el 80% y 100% de tensión nominal del sistema, fase a fase.

Protección de desequilibrio de tensión

La función de protección de desequilibrio de tensión se base en la medición de tensión de fase a fase.

En la configuración 1 (figura 109), 2 (figura 110) o 3 (figura 111), si un fusible se abre la unidad de disparo inyectará tensión en la fase abierta. Por lo tanto, la unidad de disparo medirá exactamente la tensión que se inyecta en la fase abierta.

La medición de la tensión de fase a fase (V_{LL}) será mayor que la de la fase abierta en cero volts. La unidad de disparo también medirá exactamente la tensión de fase a neutro (V_{LN}) inyectada en la fase abierta y mostrará un valor mayor que cero.

En la configuración de circuitos 4 (figura 112), la unidad de disparo tiene una trayectoria de retorno a través del transformador y la tensión inyectada en la fase abierta será cero. En esta configuración, la unidad de disparo medirá exactamente cero volts en V_{LN} .

Para asegurar que el sistema de disparo MicroLogic funcione como se espera, independientemente de la configuración del sistema, el usuario deberá limitar los ajustes de protección de desequilibrio de la tensión entre el 0 y 20%.

Pérdida de fases múltiples

No utilice la protección de tensión mínima ni la protección de desequilibrio de la tensión para determinar la pérdida de fases múltiples.

- La fuente de alimentación de tensión interna requiere tensión de dos fases para su funcionamiento. (la fuente de alimentación de tensión tiene una gama de funcionamiento entre 100 V~(ca) y 690 V~(ca)].
- En las configuraciones de circuitos 1 (figura 109), 2 (figura 110) o 3 (figura 111), cuando se pierden fases múltiples, la unidad de disparo medirá la tensión del sistema de la fase restante en todas las tres fases. Por ejemplo, si se pierden dos fases en un sistema en delta de tres fases y 480 V~ (ca), la unidad de disparo medirá V_{LL} en las tres fases.

Apéndice E—Ajustes de la unidad de disparo

Anote los valores de ajustes en las tablas.

Tabla 19 – Ajustes—Selectores

Descripción	Símbolo	Ajuste
Activación de tiempo largo	lr	
Retardo de tiempo largo	tr	
Activación de tiempo corto	lsd	
Retardo de tiempo corto	tsd	
Activación de falla a tierra	lg	
Retardo de falla a tierra	tg	

0
ž
•
Ω
ົ
Ш

Tabla 20 – Ajustes—Menú de servicio de mantenimiento

Submenú	Descripción	Elemento de línea	Ajuste de la unidad de disparo
Contactos M2C/M6C	Tipo de alarma	S#	
	Configurar	S#	
	Idioma		
	Fecha/hora		
	Selección interruptor	Norma	
		interruptor	
		tipo	
Configurar MicroLogic		Número de interruptor	
	Signo de potencia		
	Transfo. de tensión	Primario	
		Secundario	
	Frecuencia de red		
	Tipo de sistema		
	Cálculo I media	Duración	
Configurar medidas	Cálculo P media	Tipo ventana	
		Duración	
	Convención de signos		
	Parámetros com.		
Configurar Com	Regulación a distancia		
	Mando a distancia		
	IP Datos		

Submenú	Descripción	Símbolo	Elemento de línea	Trip Unit Setting
	Activación de tiempo largo	lr		
	Retardo de tiempo largo	tr		
	Activación de tiempo corto	Isd		
	Retardo de tiempo corto	tsd		
	Instantáneo	li		
	Activación de tiempo largo Idmtl	Idmtl Ir		
	Retardo de tiempo largo Idmtl	Idmtl tr		
	Modo Idmtl			
	Activación de tiempo corto Idmtl	Idmtl Isd		
	Retardo de tiempo corto Idmtl	Idmtl tsd		
	Idmtl instantánea	Idmtl li		
			Modo	
	Falla de tierra (unidad de disparo 6 0H)	<u>‡</u>	Activación	
			Retardo de activación Retardo de activación Activación Retardo de activación Desactivación Retardo de desactivación Modo Ødo Retardo de desactivación Retardo de desactivación Modo % de activación Retardo de activación	
	Corriente neutra	Ineutro		
			Modo	
			Activación	
	Alarma de falla a tierra	l <i>≰</i> alarma	Retardo de activación	
			Desactivación	
			Retardo de desactivación	
	Desequilibrio de corriente		Modo	
		Ideseq.	% de activación	
Protección de corriente			Retardo de activación	
			% de desactivación	
			Retardo de desactivación	
			Modo	
	Domanda do corriento máx, on		Activación	
	la fase 1	I1máx	Retardo de activación	
			Desactivación	
			Modo Activación Retardo de activación Desactivación Retardo de desactivación Modo % de activación % de activación % de desactivación Retardo de activación Modo Activación Retardo de activación Desactivación Retardo de activación Modo Activación Retardo de activación Desactivación Retardo de activación Desactivación Retardo de desactivación Modo Activación Retardo de activación Desactivación Retardo de desactivación Desactivación Retardo de activación Retardo de activación Retardo de activación Retardo de act	
			Modo	
	Demondo de comiente méru en		Activación	
	la fase 2	l2máx	Retardo de activación	
			Desactivación	
			Retardo de desactivación	
			Modo	
	Demanda de corriente máx, en		Activación	
	la fase 3	I3máx	Retardo de activación	
			Desactivación	
			Retardo de desactivación	
			Modo	
	Demanda de corriente máx en		Activación	
	el neutro	Inmáx	Retardo de activación	
			Desactivación	
			Retardo de desactivación	

Tabla 21 – Ajustes-Menú de protección

Tabla continúa en la siguiente página

ESPAÑOL

Submenú	Descripción	Símbolo	Elemento de línea	Trip Unit Setting
			Activación	
			Retardo de activación	
	Tension (baja) minima	Umin	Desactivación	
			Retardo de desactivación	
			Activación	
Ducto coión do tonción		l Ima és c	Retardo de activación	
Protección de tensión	Tension (sobre) maxima	Umax	Desactivación	
			Retardo de desactivación	
			Activación	
	Descentilitation de Associétée	11.1	Retardo de activación	
Submenú Protección de tensión Otras protecciones Desconexión I Desconexión P	Desequilibrio de tension	Udeseq.	Desactivación	
			Retardo de desactivación	
			Activación	
	Potencia inversa	rP	Retardo de activación	
			Desactivación	
			Retardo de desactivación	
	Frecuencia (baja) mínima	Fmáx	Activación	
			Retardo de activación	
Otres anotesianes			Desactivación	
Otras protecciones			Retardo de desactivación	
			Activación	
Protección de tensión Otras protecciones Desconexión I Desconexión P	Frecuencia (sobre) máxima	Fmín	Retardo de activación	
			Desactivación	
			Retardo de desactivación	
	Deteción de fesse		Modo	
	Rotación de lases	_	Secuencia	
			Modo	
			% de activación	
Desconexión I	Desconexión I	—	% de retardo de activación	
			% de desactivación	
			Retardo de desactivación	
			Modo	
			Activación	
Desconexión P	Desconexión P	-	Retardo de activación	
			Desactivación	
			Retardo de desactivación	

Tabla 21 –	Ajustes-	-Menú de	protección	(continuación)
------------	----------	----------	------------	----------------

Índice

Α

Acceso remoto 60 Activación falla a tierra 16 instantánea 15 tiempo corto 14 tiempo largo 11 Ajuste de fecha 51 Ajuste de hora 51 Ajustes de fábrica menú de protección 104 selectores 103 Ajustes de los selectores de configuración 62, 64 Alarma de la corriente máxima 48 Alarmas descripción 22 historial 80 Archivos cronológicos de historial descripción 42-44 verificación 79 Armónicos indicadores de calidad 32 menú 41 Arquitectura de la tensión de alimentación 111

В

Baja corriente. Consulte Protección de corriente mínima Baja frecuencia. Consulte Protección de frecuencia mínima Baja tensión. Consulte Protección de tensión mínima Botón de prueba/restablecimiento 34 Botón de restablecimiento 67 Botón del menú de servicio de mantenimiento 37 Botones menú de servicio de mantenimiento 37 navegación 37 prueba de falla a tierra 68 prueba/restablecimiento 34

С

Calibrador descripción 7, 12 sustitución 95 Calibrador ajustable *Consulte* calibrador Configuración de idioma 50 Configuración de la razón del transformador de tensión 53 Contactos de alarma. Consulte Contactos programables M2C/M6C Contactos programables M2C/M6C descripción del accesorio 27 menú 43 Contador de maniobras descripción 36 menú 80 Convención de signos 57 Cubierta de los selectores ilustración 7 ranura de apertura 61

D

Demanda de corriente 56 Demanda de potencia 56 Desconexión/reconexión de carga de corriente 48, 86 alarma 23 descripción 27 menú 46 verificación 86 Desconexión/reconexión de carga de potencia alarma 48 menú 46 verificación 86 Deseguilibrio de corriente alarma 48 protección 25 Desequilibrio de tensión alarma 48 arquitectura de la tensión 113 protección 25 Designación de protección 7 Diagrama de flujo menú de mediciones 100 menú de protecciones 102 menú de servicio de mantenimiento 101

Е

Enchufe de pruebas 67 Enchufe sensor 7 Enclavamiento selectivo de zona cableado 66 descripción 28 puentes 66 Estado pila 69 unidad de disparo 69

F

Frecuencia alarma 48 configuración 54 menú 41 verificación 79 Funcionamiento 70 Funciones de disparo 7–8

Н

Historial de disparo 79

I²t off 14 1²t on 14 Idmtl. Consulte Protección de tiempo largo Ig. Consulte Selector de activación de protección contra fallas a tierra li. Consulte Protección instantánea In. Consulte Tamaños de sensor Indicador de desgaste de los contactos configuración del código 52 medidor 52 verificación 80 Indicadores de disparo lg 33 Isd/li 33 luces 33 verificación de estado 69 Información sobre el interruptor 52 Inversión de fases alarma 48 verificación 85 Ir. Consulte Selector de activación de tiempo largo Isd. Consulte Selector de activación de la protección de tiempo largo

L

LSIG *Consulte* Unidad de disparo 6.0H Luz indicadora autoprotección 33 disparo 33 falla a tierra 33 protección avanzada 33 Luz indicadora de disparo por sobrecalentamiento 33

Μ

Mando a distancia 60 Medición gama 106 precisión 106 Menú de configuración de comunicaciones 44 Menú de configuración de mediciones descripción 43-44 Menú de configuración de Micrologic configuración 50 descripción 43 Menú de mediciones diagrama de flujo 100 verificación 70 Menú de otro tipo de protección 45 Menú de protección ajustes de fábrica 104 verificación 81 Menú de protección de la tensión 45 Menú de protecciones diagrama de flujo 102 Menú de servicio de mantenimiento configuración 47 descripción 42 diagrama de flujo 101 Menus Micrologic setup 20 Menús archivos cronológicos de historial 42-44 armónicos 41 configuración de comunicaciones 44 configuración de mediciones 43-44 configuración de Micrologic 43 contactos programables M2C/M6C 43 contador de maniobras 80 de red 79 desconexión/reconexión de carga de corriente 46, 86 desconexión/reconexión de carga de potencia 46, 86 desgaste de contactos 80 historial de alarmas 80 historial de disparo 79 niveles de corriente 39, 71

niveles de energía 40, 74 niveles de potencia 40, 73 niveles de tensión 39, 72 otro tipo de protección 45, 85 protección de corriente 45, 81 protección de tensión 45, 84 servicio de mantenimiento 42 Micrologic setup menu description 20 Módulo de comunicación 8, 58

Ν

Niveles de activación, ajuste 61 Niveles de corriente menú 39 verificación 71 visualización 35 Niveles de energía menú 40 verificación 74 Niveles de potencia menú 40 verificación 73 Niveles de tensión menú 39 verificación 72 Nombre del producto 7

0

Otro tipo de protección descripción 18 verificación 85

Ρ

Pérdida de fases múltiples 113 Pila sustitución 97 verificación de estado 69 Protección alarmas 22 avanzada 18 corriente 81 corriente máxima neutra 24 demanda de corriente mínima 24 desconexión/reconexión de carga 26 desconexión/reconexión de carga de corriente 46 desconexión/reconexión de carga de potencia 46 desequilibrio de corriente 25 desequilibrio de tensión 25 frecuencia máxima 26 frecuencia mínima 26 instantánea 15

neutra 20 otro tipo 85 rotación de fases 27 tensión 84 tensión máxima 24 tensión mínima 24 tiempo corto 14 tiempo largo 11 Protección avanzada descripción 18 verificación de valores 70 Protección contra fallas a tierra alarma 48 función de prueba 68 selector de activación 16 selector de retardo 16 Protección contra fallas a tierra del equipo 68 Protección de corriente 45 verificación 81 Protección de demanda de corriente máxima 24 Protección de demanda de corriente mínima 24 Protección de frecuencia máxima 26 Protección de frecuencia mínima 26 Protección de la potencia inversa alarma 48 Protección de rotación de fases 27 Protección de tensión alarma 48 verificación 84 Protección de tensión máxima 24 Protección de tensión mínima 24 Protección de tiempo corto alarma 48 selector de activación 14 selector de retardo 14 Protección de tiempo largo alarma 48 descripción 12-13 retardo I2t 11 retardo Idmtl selector de activación 11 selector de retardo 11 Protección neutra 20 Pruebas equipo 67 función de disparo por falla a tierra 68 inyección primaria 32 invección secundaria 32 unidad de disparo 32 Pruebas de inyección primaria 32

Pruebas de inyección secundaria 32

R

Razón del transformador de tensión 53 Repuesto unidad de disparo 87 Restablecimiento de la unidad de disparo 67 Retardo falla a tierra 16 tiempo corto 14 tiempo largo 11 rPmáx *Consulte* Protección de potencia inversa

S

Selectores activación de falla a tierra 16 activación de tiempo largo 11 activación instantánea 15 ajuste 61 descripción 8 retardo de falla a tierra 16 retardo de tiempo corto 14 retardo de tiempo largo 11 Selectores ajustables. Consulte Selectores Sentido de potencia configuración de la convención de signos de la potencia reactiva 57 configuración de la dirección del signo de potencia 53 Sobrecorriente Consulte Protección de corriente máxima Sobrefrecuencia Consulte Protección de frecuencia máxima Sobretensión. Consulte Protección de tensión máxima Sustitución calibrador 95 pila 97

Т

Tipo de red 55 Tr. *Consulte* Selector de retardo de la protección de tiempo largo Tsd. *Consulte* Selector de retardo de

la protección de tiempo corto

U

Unidad de disparo 5.0H 9 6.0H 10 ajustes código de desgaste de los contactos 52 familia de interruptores 52 fecha 51 frecuencia 54 hora 51 idioma 50 normas 52 tablas de registro 114 tipo de interruptor 52 arquitectura de la tensión de alimentación 111 configuración 50 designación de serie 7 historial 79

pruebas 32 repuesto 87 restablecimiento 67 verificación de estado 69

V

Valores de com. de Modbus 58 Valores de lectura remota 108 Visualización de gráficos diagrama de flujo 100 menús 38 navegación 37 pantalla 35

Ζ

ZSI. *Consulte* Enclavamiento selectivo de zona

ESPAÑOL

Importado en México por: Schneider Electric México, S.A. de C.V. Av. Ejercito Nacional No. 904 Col. Palmas, Polanco 11560 México, D.F. 55-5804-5000 www.schneider-electric.com.mx

Normas, especificaciones y diseños pueden cambiar, por lo tanto pida confirmación de que la información de esta publicación está actualizada.

Schneider Electric y Square D son marcas comerciales de Schneider Electric Industries SAS o sus compañías afiliadas. Todas las otras marcas comerciales son propiedad de sus respectivos propietarios.

© 2002–2019 Schneider Electric Reservados todos los derechos

48049-330-03, Rev. 03, 12/2019 Reemplaza 48049-330-03 Rev. 01, 07/2012

Déclencheurs électroniques MicroLogic^{MC} 5.0H et 6.0H

Directives d'utilisation

48049-330-03 Rev. 03, 12/2019

À conserver pour usage ultérieur.

Catégories de dangers et symboles spéciaux

Lisez soigneusement ces directives et examinez l'appareillage afin de vous familiariser avec lui avant son installation, son fonctionnement ou son entretien. Les messages spéciaux qui suivent peuvent apparaître dans ce document ou sur l'appareillage. Ils vous avertissent de dangers potentiels ou attirent votre attention sur des renseignements pouvant éclaircir ou simplifier une procédure.

L'ajout de l'un ou l'autre des symboles à une étiquette de sécurité « Danger » ou « Avertissement » vous indique qu'un danger électrique existe et qu'il pourra y avoir des blessures corporelles si les directives ne sont pas suivies.

Ceci est le symbole d'une alerte de sécurité. Il sert à vous avertir d'un danger potentiel de blessures corporelles. Respectez toutes les consignes de sécurité accompagnant ce symbole pour éviter toute situation potentielle de blessure ou de mort.

A DANGER

DANGER indique une situation de danger qui, si elle n'est pas évitée, **entraînera** la mort ou des blessures graves.

A AVERTISSEMENT

AVERTISSEMENT indique une situation de danger qui, si elle n'est pas évitée, **peut entraîner** la mort ou des blessures graves.

ATTENTION

ATTENTION indique une situation de danger qui, si elle n'est pas évitée, **peut entraîner** des blessures mineures ou modérées.

AVIS

AVIS est utilisé pour commenter des pratiques sans rapport avec les blessures physiques. Le symbole d'alerte de sécurité n'est pas employé avec ce mot de signalement.

REMARQUE : Fournit des renseignements complémentaires pour clarifier ou simplifier une procédure.

Veuillez noter

Seul un personnel qualifié doit effectuer l'installation, l'utilisation, l'entretien et la maintenance du matériel électrique. Schneider Electric n'assume aucune responsabilité des conséquences éventuelles découlant de l'utilisation de cette documentation.

Avis FCC

Cet appareil a été testé et s'est révélé conforme aux limites des périphériques numériques de classe A, conformément au paragraphe 15 des réglementations de la FCC. Ces limites sont conçues pour assurer une protection raisonnable contre les interférences nuisibles lorsque l'appareil fonctionne dans un environnement commercial. Cet appareil génère, utilise et peut rayonner des fréquences radio et, s'il n'est pas installé et utilisé conformément aux directives fournies dans le manuel d'utilisation, peut causer des interférences nuisibles aux communications radio. Le fonctionnement de cet appareil dans une zone résidentielle est susceptible de provoquer des interférences nuisibles, auquel cas l'utilisateur devra corriger ces interférences à ses propres frais.

Table des matières

SECTION 1:GÉNÉRALITÉS		7
	Introduction	7
	Communications	8
	Réglages de la puissance et des contrôles	8
	Réglages des commutateurs Déclencheur MicroLogic 5.0H Déclencheur MicroLogic 6.0H	8 9 10
	Protection LSIG Protection de longue durée Protection de courte durée Protection instantanée Protection des appareils contre les défauts à la terre	11 11 14 15 16
	Fonction des réglages d'entretien pour la réduction d'énergie (ERMS)	17
	Configuration du déclencheur MicroLogic Alimentation de contrôle Alimentation externe	18 18 19
	Configuration du déclencheur MicroLogic	20
	Protection évoluée Protection du neutre Alarmes Valeurs minimales et maximales de la protection de courant moven	20 20 22
	(demande) et de la protection de tension	24 25 26 26 26 27 27 27
	Mesure	27 28 28 31
	Essai du déclencheur	31
	Voyants Voyant de surcharge Voyants de déclenchement	32 32 32
	Bouton d'essai/de remise à zéro	33
	Écran d'affichage graphique	33
	Voyant d'usure des contacts	34
	Compteur de manœuvres	34
SECTION 2:NAVIGATION SU	IR L'AFFICHEUR GRAPHIQUE	35
	Afficheur graphique	35

	Graphique à barres et menus	36
	Menu Mesures	37
	Menu Entretien	40
	Menu Protections	42
SECTION 3:CONFIGURATIO	N DU DÉCLENCHEUR	44
	Configuration des paramètres du déclencheur	44
	Contacts programmables M2C/M6C	44
	Configuration du déclencheur MicroLogic	47
	Configuration des mesures	51
	Configuration du module de communication	55
	Affinement des réglages des commutateurs	58
	Exemples	60
	Déclencheur MicroLogic 5.0H	60
	Declencheur MicroLogic 6.0H	60
	Interverrouillage sélectif de zone (ZSI)	61
	Vérification du fonctionnement du déclencheur	63
	Réarmement du déclencheur	63
	Vérification de la fonction de déclenchement de l'appareil sur défaut à la 64	a terre
	Vérification de l'état du déclencheur	65
SECTION 4:FONCTIONNEME	ENT	66
	Valeurs mesurées	66
	Niveaux des courants	67
	Niveaux des tensions	68
	Niveaux des puissances	69
	Niveaux des énergies	70
	Harmoniques	71
	Historique du déclencheur	75
	Historiques défauts	75
	Fréquence	75
	Historiques des alarmes	/6
	Lisure des contacts	70
		70
	Configuration des protections	77
	Protections en courant	//
	Autros protections	80
	Délestage de charge en courant	01 82
	Délestage de charge en puissance	82
SECTION 5:REMPLACEMEN		83
	Remplacement du déclencheur en fonction des réglages d'entretien po	urla
	réduction d'énergie (ERMS)	84
	Outils nécessaires	85
	Préparation	85
	Noter les réglages des commutateurs	85

FRANÇAIS

	Déconnexion du disjoncteur Retrait du couvercle des accessoires du disjoncteur Retrait de la fiche de valeur nominale Retrait de la fiche de valeur nominale Retrait du déclencheur	85 85 85 85 85 86
	Remplacement du déclencheur Installation de la pile Installation du déclencheur	86 86 87
	Remise en place du couvercle des accessoires du disjoncteur	89
	Vérification de l'installation du déclencheur Essai d'injection secondaire Essai d'injection primaire Vérification du fonctionnement des accessoires	90 90 90 90
	Configuration du déclencheur	90
	Reconnexion du disjoncteur	90
SECTION 6:REMPLACEMEN	T DE LA FICHE DE LA VALEUR NOMINALE RÉGLABLE .	91
	Retrait de la fiche de la valeur nominale	91
	Installation de la nouvelle fiche de la valeur nominale réglable	92
SECTION 7:REMPLACEMEN	T DE LA PILE	93
	Déconnexion du disjoncteur	93
	Retrait du couvercle des accessoires	93
	Déplacement du module de tenue	93
	Remplacement de la pile	95
	Remise en place du module de tenue	95
	Remise en place du couvercle des accessoires	95
	Reconnexion du disjoncteur	96
ANNEXE A:ORGANIGRAMM	ES DES AFFICHAGES GRAPHIQUES	97
	Organigramme du menu mesures	97
	Organigramme du menu entretien	98
	Organigramme du menu Protections	99
ANNEXE B:RÉGLAGES PAR	DÉFAUT ET TOLÉRANCES	100
	Réglages par défaut	100
	Gamme des mesures et précision	103
ANNEXE C:ACCÈS RÉSEAU	COMMUNICATION	105
	Valeurs lisibles à distance	105
ANNEXE D:ARCHITECTURE	DE L'ALIMENTATION EN TENSION DU DÉCLENCHEUR	108
	Protection en tension minimale	108
	Protection en déséquilibre de tension	110
	Perte de plusieurs phases	110

FRANÇAIS

ANNEXE E:RÉGLAGES DU DÉCLENCHEUR	111
114	
INDEX	112

48049-330-03

Section 1—Généralités

Introduction

Les déclencheurs MicroLogic^{MC} offrent des fonctions de déclenchement réglables pour les disjoncteurs à déclenchement électronique. Le nom du produit (A) spécifie le niveau de protection fourni par le déclencheur.

Les déclencheurs MicroLogic sont remplaçables sur place, pour permettre l'amélioration des perfomances du déclencheur. Pour obtenir tous les renseignements sur les modèles de disjoncteurs, les capacités de châssis, les valeurs nominales d'interruption, les fiches de capteurs, les fiches de la valeur nominale et les déclencheurs disponibles, consulter le catalogue de produits.

Communications

Les déclencheurs MicroLogic peuvent communiquer avec d'autres dispositifs par l'intermédiaire du protocole « Modbus » grâce à un module de communication du disjoncteur (BCM). Pour plus de renseignements sur les listes de registres et autres dispositifs, se reporter aux directives d'utilisation 0613IB1313, *Système de communications Modbus*.

A AVERTISSEMENT

ALTÉRATION POSSIBLE DE LA DISPONIBILITÉ, DE L'INTÉGRITÉ ET DE LA CONFIDENTIALITÉ DU SYSTÈME

- Changez les mots de passe par défaut lors de la première utilisation afin d'empêcher tout accès non autorisé aux paramètres, aux contrôles et aux informations de l'appareil.
- Désactivez les ports/services inutilisés et les comptes par défaut pour limiter les possibilités d'accès non autorisés.
- Placez les appareils en réseau derrière plusieurs niveaux de protection : pare-feu, segmentation réseau, détection et neutralisation des intrusions, etc.
- Suivez les pratiques recommandées en matière de cybersécurité (par exemple, moindre privilège, séparation des tâches) pour limiter le risque de perte ou de divulgation de données, de modification ou de suppression des journaux et des données, et d'interruption des services.

Si ces directives ne sont pas respectées, cela peut entraîner la mort ou des blessures graves.

Réglages de la puissance et des contrôles

À l'aide de l'écran d'affichage graphique et du clavier du déclencheur, il est possible de définir des options pour le déclencheur ou de vérifier les mesures du système. Se reporter à la section 2 —Navigation sur l'afficheur graphique pour de plus amples renseignements. Les mesures du système peuvent être également vérifiées avec le logiciel System Manager Software (SMS), version 3.2 ou ultérieures, ou tout autre logiciel de gestion de systèmes en réseau.

Réglages des commutateurs

Sur la face avant du déclencheur, il y a des commutateurs réglables permettant de modifier les caractéristiques de déclenchement LSI ou LSIG du déclencheur. Les déclencheurs sont expédiés avec le commutateur d'enclenchement de longue durée réglé à 1.0 et tous les autres commutateurs à leurs réglages les plus bas. Tous les réglages de protection évoluée sont désactivés (off).

Des ajustements méticuleux des commutateurs peuvent être effectués à l'aide des touches de navigation, voir page 58.

Déclencheur MicroLogic 5.0H

Le déclencheur MicroLogic 5.0H fournit une protection sélective (LSI) et la mesure de la puissance.

- A. Écran d'affichage graphique
- B. Touche d'accès au menu protection¹
- C. Touche d'accès au menu d'entretien¹
- D. Touche d'accès au menu de mesure¹
- E. Touche de défilement vers le bas
- F. Touche de défilement vers le haut
- G. Touche d'entrée des données (validation ou sélection)
- H. Commutateur d'enclenchement de longue durée (Ir)
- I. Commutateur de retard de longue durée (tr)
- J. Commutateur d'enclenchement de courte durée (Isd)
- K. Commutateur de retard de courte durée (tsd)
- L. Commutateur d'enclenchement instantané (li)
- M. Prise d'essai
- N. Voyant de surcharge d'enclenchement de longue durée
- O. Bouton d'extinction des voyants de vérification de l'état de la pile et de déclenchement
- P. Voyant d'auto-protection et de protection évoluée
- Q. Voyant de déclenchement court retard ou instantané
- R. Voyant de déclenchement long retard
- ¹ La touche incorpore une DÉL indiquant le menu actif.

Déclencheur MicroLogic 6.0H

Le déclencheur MicroLogic 6.0H fournit une protection sélective et une protection d'appareils contre les défauts à la terre (\leq 1 200 A) (LSIG) et la mesure de la puissance.

- A. Écran d'affichage graphique
- B. Touche d'accès au menu protection*
- C. Touche d'accès au menu d'entretien*
- D. Touche d'accès au menu de mesure*
- E. Touche de défilement vers le bas
- F. Touche de défilement vers le haut
- G. Touche d'entrée des données (validation ou sélection)
- H. Commutateur d'enclenchement de longue durée (Ir)
- I. Commutateur de retard de longue durée (tr)
- J. Commutateur d'enclenchement de courte durée (Isd)
- K. Commutateur de retard de courte durée (tsd)
- L. Commutateur d'enclenchement instantané (li)
- M. Commutateur d'enclenchement de protection contre les défauts à la terre (Ig)
- N. Commutateur de retard de protection contre les défauts à la terre (tg)
- O. Prise d'essai
- P. Bouton pousser-pour-déclencher de défaut à la terre
- Q. Voyant de surcharge d'enclenchement de longue durée
- R. Bouton d'extinction des voyants de vérification de l'état de la pile et de déclenchement
- S. Voyant d'auto-protection et de protection évoluée
- T. Voyant de déclenchement sur défaut à la terre
- U. Voyant de déclenchement court retard ou instantané
- V. Voyant de déclenchement long retard

*La touche incorpore une DÉL indiquant le menu actif.

Protection LSIG

Protection de longue durée

La protection de longue durée protège les appareils contre les surcharges.

REMARQUE : Les déclencheurs MicroLogic sont alimentés par le circuit de façon à toujours offrir une protection contre les défauts. Toutes les autres fonctions (affichage, mesurage, communications, etc.) exigent une alimentation externe. Voir la page 19 pour des informations supplémentaires.

Figure 4 – Commutateurs de protection de longue durée

- La protection de longue durée est une fonction standard sur tous les déclencheurs.
- L'enclenchement de longue durée (Ir) (A) défini le niveau maximum de courant (en fonction de la valeur nominale de la prise du capteur In) que le disjoncteur porte continuellement. Si le courant dépasse cette valeur, le disjoncteur se déclenche après la temporisation prédéfinie. La valeur de l'enclenchement de longue durée (Ir) est réglable à entre 0,4 à 1,0 fois la val. nominale de la prise du capteur (In) (D).
- Le retard de longue durée (tr) (B) définit la durée pendant laquelle le disjoncteur portera une surintensité en dessous du niveau de courant d'enclenchement de courte durée ou instantané avant de se déclencher. Deux options sont disponibles :
 - Courbe de retard de longue durée l²t standard. Voir le tableau 1 pour les réglages de retard de longue durée l²t.
 - La pente des courbes de retard de longue durée ldmtl (décalage inverse minimum déterminé) varie pour renfoncer la sélectivité.

Option	Description	Courbe
DT	Durée déterminée	Constante
SIT	Durée inverse standard	1 ^{0,5} t
VIT	Durée inverse forte	It
EIT	Durée inverse extrême	l ² t
HVF	Compatible avec fusibles haute tension	l ⁴ t

MicroEogie										
Réglage ¹	Retarc	Retard de longue durée en secondes ²								
trà 1,5 x Ir	12,5	25	50	100	200	300	400	500	600	
trà6xIr	0,5	1	2	4	8	12	16	20	24	
tr à 7,2 x Ir	0,34 ³	0,69	1,38	2,7	5,5	8,3	11	13,8	16,6	

Tableau 1 – Valeurs du retard de longue durée l²t du déclencheur MicroLogic

¹Ir = In x enclenchement de longue durée. In = valeur nominale de la prise du capteur. Seuil de déclenchement entre 1,05 et 1,20 Ir.

²Précision de la temporisation +0/-20 %.

³Lorsque tsd est réglé à 0,4 désactivé (off), alors tr = 0,5 au lieu de 0,34.

- Le voyant de surcharge (C) indique que le seuil de l'enclenchement de longue durée lr a été dépassé.
- Pour les disjoncteurs MasterPact^{MC} NT et NW, la valeur du capteur (In) peut être changée en remplaçant la prise de capteur (D) située sous le déclencheur. Pour obtenir des informations supplémentaires, voir les directives jointes au kit de remplacement de la prise du capteur.
- La protection du neutre n'est pas disponible lorsque la protection ldmtl est sélectionnée.
- Les sélections Idmtl n'utilisent pas la même caractéristique d'image thermique que la fonction de protection de longue durée l²t. La protection de longue durée de base et la durée inverse forte (EIT) Idmtl sont toutes les deux courbes l²t, mais les différentes caractéristiques des images thermiques aboutissent à des performances différentes du système. Pour les applications de soudage, il est recommandé d'utiliser la protection de longue durée de base l²t afin d'assurer la performance du système attendue.
- L'enclenchement de longue durée et le retard de longue durée sont tous les deux situés sur la fiche de la valeur nominale réglable et remplaçable sur place. Pour modifier les réglages en vue de cerner plus précisément l'application, des fiches de diverses valeurs nominales sont disponibles. Pour les directives de remplacement de la fiche de la valeur nominale, voir la section 6—Remplacement de la fiche de la valeur nominale réglable.
- La protection de longue durée utilise une mesure efficace vraie (RMS).

	-	- J	-								
Option	Réglage ¹	Retar	Retard de longue durée en secondes								
	trà 1,5 x Ir	0,52	1	2	4	8	12	16	20	24	+0/-20 %
пт	trà6xIr	0,52	1	2	4	8	12	16	20	24	+0/-20 %
ы	tr à 7,2 x Ir	0,52	1	2	4	8	12	16	16,6	16,6	+0/-20 %
	tr à 10 x lr	0,52	1	2	4	8	12	16	16,6	16,6	+0/-20 %
	tr à 1,5 x Ir	1,9	3,8	7,6	15,2	30,4	45,5	60,7	75,8	91	+0/-30 %
сіт	trà6xIr	0,7	1	2	4	8	12	16	20	24	+0/-20 %
311	tr à 7,2 x Ir	0,7	0,88	1,77	3,54	7,08	10,6	14,16	17,7	21,2	+0/-20 %
	tr à 10 x Ir	0,7 ²	0,8	1,43	2,86	5,73	8,59	11,46	14,33	17,19	+0/-20 %
	tr à 1,5 x Ir	1,9	7,2	14,4	28,8	57,7	86,5	115,4	144,2	173,1	+0/-30 %
)//T	trà6xIr	0,7	1	2	4	8	12	16	20	24	+0/-20 %
VII	tr à 7,2 x Ir	0,7	0,81	1,63	3,26	6,52	9,8	13,1	16,34	19,61	+0/-20 %
	tr à 10 x Ir	0,7 ²	0,75	1,14	2,28	4,57	6,86	9,13	11,42	13,70	+0/-20 %
	tr à 1,5 x Ir	12,5	25	50	100	200	300	400	500	600	+0/-30 %
EIT	tr à 6 x Ir	0,7 ³	1	2	4	8	12	16	20	24	+0/-20 %
C11	tr à 7,2 x Ir	0,7 ²	0,69	1,38	2,7	5,5	8,3	11	13,8	16,6	+0/-20 %
	tr à 10 x lr	0,7 ²	0,7 ³	0,7 ³	1,41	2,82	4,24	5,45	7,06	8,48	+0/-20 %
	tr à 1,5 x Ir	164,5	329	658	1316	2632	3950	5265	6581	7900	+0/-30 %
	trà6xIr	0,7 ³	1	2	4	8	12	16	20	24	+0/-20 %
IIVE	tr à 7,2 x Ir	0,7 ²	0,7 ³	1,1 ³	1,42	3,85	5,78	7,71	9,64	11,57	+0/-20 %
	tr à 10 x Ir	0,7 ²	0,7 ²	0,7 ³	0,7 ³	1,02	1,53	2,04	2,56	3,07	+0/-20 %

Tableau 2 – Valeurs du retard de longue durée ldmtl du déclencheur MicroLogic

 1 Ir = In x enclenchement de longue durée. In = valeur nominale de la prise du capteur. Seuil de déclenchement entre 1,05 et 1,20 Ir.

 2 Tolérance = +0/-60 %

 3 Tolérance = +0/-40 %

L'image thermique fournit en permanence l'état d'échauffement du câblage, avant et après les déclenchements du dispositif. Cela permet au disjoncteur de répondre à une suite de conditions de surcharge qui pourraient entraîner la surchauffe des conducteurs, mais qui resteraient indétectables si le circuit de longue durée était remis à zéro à chaque retour de la charge en dessous du réglage de l'enclenchement ou après chaque événement de déclenchement.

REMARQUE : Lors de la vérification des temps de déclenchement, attendre un minimum de 15 minutes après le déclenchement du disjoncteur avant de le réarmer, pour permettre à l'image thermique de se remettre complètement à zéro ou utiliser une trousse d'essais pour inhiber l'image thermique.

Protection de courte durée

La protection de courte durée protège les appareils contre les courts-circuits.

Figure 5 – Commutateurs de protection de courte durée

- La protection de courte durée est une fonction standard sur les déclencheurs 5.0H et 6.0H.
- L'enclenchement de courte durée (Isd) (A) définit le niveau de courant (en dessous du niveau de déclenchement instantané) auquel le disjoncteur se déclenchera après la temporisation prédéfinie.
- Le retard de courte durée (tsd) (B) définit la durée pendant laquelle le disjoncteur portera une surintensité au-dessus du niveau de courant d'enclenchement de courte durée avant de se déclencher.
- L'option l²t activé/l²t désactivé fournit une sélectivité améliorée avec les dispositifs de protection en aval :
 - Avec l²t désactivé sélectionné, une temporisation fixe est fournie.
 - Avec l²t activé sélectionné, une protection à retard inverse l²t est fournie jusqu'à 10 x Ir. Au-dessus de 10 x Ir, une temporisation fixe est fournie.

Réglage	Retard de courte durée						
l ² t désactivé (ms à 10 lr) (secondes)	0	0,1	0,2	0,3	0,4		
I ² t activé (ms à 10 Ir) (secondes)	-	0,1	0,2	0,3	0,4		
tsd (déclenchement min.) (millisecondes)	20	80	140	230	350		
tsd (déclenchement max.) (millisecondes)	80	140	200	320	500		

l ableau 3 – Valeurs du retard de courte duree du declencheur MicroLoc	ableau 3 - Valeurs du retard	d de courte durée du	déclencheur MicroLogi
--	------------------------------	----------------------	-----------------------

- Des courants intermittents dans la gamme des déclenchements court retard qui ne durent pas suffisamment longtemps pour provoquer un déclenchement sont accumulés et raccourcissent le retard de déclenchement de façon adéquate.
- L'interverrouillage sélectif de zone (ZSI) peut être utilisé avec la protection de courte durée pour les disjoncteurs en amont ou en aval. Le réglage de tsd à 0 désactive l'interverrouillage sélectif de zone.
- La protection de courte durée utilise la mesure efficace vraie (RMS).
- L'enclenchement et le retard de courte durée peuvent être réglés pour fournir la sélectivité avec des disjoncteurs en amont ou en aval.

REMARQUE : Utiliser la fonction l²t désactivé avec ZSI pour une bonne coordination. L'utilisation de la fonction l²t activé avec ZSI n'est pas recommandée puisque le retard avec lequel le dispositif en amont recevra un signal d'entrave

peut entraîner le déclenchement du déclencheur en un temps plus court que la courbe de déclenchement publiée.

Protection instantanée

La protection instantanée protège les appareils contre les courts-circuits sans retard intentionnel.

Figure 6 – Commutateurs de protection instantanée

Déclencheur MicroLogic 5.0H

- La protection instantanée (li) (A) est une fonction standard sur tous les déclencheurs.
- La protection instantanée est basée sur la valeur nominale de capteur (In) du • disjoncteur.
- La commande d'ouverture du disjoncteur est donnée aussitôt que le courant de • seuil est dépassé.
- La protection instantanée utilise la mesure de courant de crête. •
- Quand le commutateur de protection instantanée est mis hors tension (off), la protection instantanée est désactivée.

Tableau 4 – Valeurs de protection instantanée du déclencheur MicroLogic

Réglage	Courant d'interruption								
li (= ln x)	2	3	4	6	8	10	12	15	off

li = instantanée

In = valeur nominale du capteur

Précision d'enclenchement ± 10 %

Protection des appareils contre les défauts à la terre

La protection des appareils contre les défauts à la terre protège les conducteurs contre la surchauffe et les défauts en provenance de courants de défaut à la terre (\leq 1 200 A).

Figure 7 – Commutateurs de protection contre les défauts à la terre

- La protection des appareils contre les défauts à la terre est une fonction standard sur les déclencheurs 6.0H.
- L'enclenchement sur défaut à la terre (lg) (A) définit le niveau de courant de défaut à la terre auquel le disjoncteur se déclenche après la temporisation prédéfinie.
- Le retard de défaut à la terre (tg) (B) définit la durée pendant laquelle le disjoncteur portera un courant de défaut à la terre au-dessus du niveau de courant de défaut à la terre avant de se déclencher.
- L'interverrouillage sélectif de zone (ZSI) peut être utilisé avec la protection contre les défauts à la terre pour les disjoncteurs en amont ou en aval. Le réglage du retard de défaut à la terre (tg) à 0 désactive l'interverrouillage sélectif de zone.
- La protection du neutre et la protection d'appareil contre les défauts à la terre sont indépendantes et peuvent fonctionner en même temps.

REMARQUE : Utiliser la fonction l²t désactivé avec ZSI pour une bonne coordination. L'utilisation de la fonction l²t activé avec ZSI n'est pas recommandée puisque le retard avec lequel le dispositif en amont recevra un signal d'entrave peut entraîner le déclenchement du déclencheur en un temps plus court que la courbe de déclenchement publiée.

lg (= ln x)	Α	в	С	D	E	F	G	н	J	
$ln \le 400 A$	0,3	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	
400 A < In \le 1 200 A	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	
In > 1 200 A	500 A	640 A	720 A	800 A	880 A	960 A	1 040 A	1 120 A	1 200 A	

Tableau 5 – Valeurs d'enclenchement sur défaut à la terre du déclencheur MicroLogic

In = valeur nominale du capteur.

Ig = enclenchement sur défaut à la terre

MICTOLOGIC								
Réglage	Reta	Retard de défaut à la terre						
l ² t désactivé (ms à ln) (secondes)	0	0,1	0,2	0,3	0,4			
I ² t activé (ms à In) (secondes)	-	0,1	0,2	0,3	0,4			
tg (déclenchement min.) (millisecondes)	20	80	140	230	350			
tg (déclenchement max.) (millisecondes)	80	140	200	320	500			

Tableau 6 – Valeurs du retard sur défaut à la terre du déclencheur MicroLogic

Fonction des réglages d'entretien pour la réduction d'énergie (ERMS)

La fonction des réglages d'entretien pour la réduction d'énergie (ERMS) est disponible sur un disjoncteur muni d'un :

- Module BCM ULP avec MicroLogiciel version 4.1.3 et plus récente.
- Déclencheur MicroLogic P ou H avec l'étiquette bleue ERMS (A) comme montré ci-dessous.
- Module d'E/S avec interrupteur d'application réglé à la position 3.

Figure 8 – Étiquette ERMS sur le déclencheur

Voir les directives 0613IB1317 : *Module d'interface d'entrée/sortie pour disjoncteur BT - Guide d'exploitation* et les directives NHA67346 : *Directives d'utilisation de ERMS* pour plus d'informations, pour l'installation et des essais.

La fonction ERMS est utilisée pour réduire les réglages de protection li de façon à obtenir un déclenchement aussi rapide que possible lorsqu'un défaut se produit. Le réglage préprogrammé à l'usine pour la protection li en mode ERMS est 2xIn. Le réglage de l'ERMS peut être ajusté à l'aide de ces directives d'utilisation (NHA67346).

RISQUE D'ÉCLAIR D'ARC ÉLECTRIQUE

- Ne modifiez pas les réglages du déclencheur MicroLogic P ou H lorsque le mode ERMS est utilisé.
- Scellez le couvercle transparent du déclencheur MicroLogic P ou H lors de l'utilisation du mode ERMS.

Si ces directives ne sont pas respectées, cela entraînera la mort ou des blessures graves.

Si des réglages de protection de base sont modifiés à l'aide de cadrans rotatifs sur le déclencheur MicroLogic tout en étant en mode ERMS, le déclencheur MicroLogic passe en mode normal puis retourne automatiquement au mode ERMS au bout de 5 secondes.

Configuration du déclencheur MicroLogic

Alimentation de contrôle

Le déclencheur H est conçu pour être utilisé avec une alimentation externe de 24 Vcc. Le grand afficheur LCD utilisé par le déclencheur H nécessite trop de courant pour être alimenté par un courant venant du disjoncteur.

Le déclencheur H possède une alimentation de tension qui alimentera le déclencheur lorsqu'il existe environ 150 Vca ou plus entre deux phases. La configuration standard des sondes de tension à l'intérieur du disjoncteur se trouve aux raccordements inférieurs. Si le disjoncteur est ouvert dans une application alimenté par le haut, il n'y a pas de tension au bas du disjoncteur et le déclencheur ne sera pas alimenté.

Les fonctions suivantes seront alimentées et fonctionnelles même si le déclencheur n'est pas alimenté de façon externe :

- Protection contre les défauts pour les fonctions LSIG. Le déclencheur H est totalement alimenté par le circuit pour assurer la protection contre les défauts.
- Indication de déclenchement par un voyant DÉL (alimenté par une pile embarquée). La seule fonction de la pile est de fournir une indication par la DÉL si toute autre alimentation est coupée.
- Le bouton de déclenchement (pousser-pour-déclencher) de défaut à la terre simule un défaut à la terre quand le déclencheur est alimenté par l'alimentation de tension du circuit. Le bouton de déclenchement par défaut à la terre est également fonctionnel si une trousse d'essai portative ou une trousse d'essai des fonctions complètes alimente le déclencheur.

Les fonctions suivantes seront alimentées et fonctionnelles avec une alimentation externe :

- Toutes les fonctions ci-dessus qui sont fonctionnelles sans alimentation externe.
- L'afficheur LCD et le rétro-éclairage sont fonctionnels. L'intensité du rétroéclairage n'est pas contrôlé ou réglable et peut être différente d'un déclencheur à un autre.
- Tous les journaux de mesure, de surveillance et historiques sont fonctionnels.
- Les communications du déclencheur vers les modules de contact programmables M2C et M6C sont alimentées par une alimentation de 24 Vcc à F1 et F2. Le M6C exige aussi une alimentation externe de 24 Vcc.
- Les communications Modbus sont fonctionnelles, utilisant une alimentation séparée de 24 Vcc pour le module de communication du disjoncteur. Cette alimentation séparée de 24 Vcc est requise pour maintenir l'isolation entre le déclencheur et les communications.
- Le bouton de déclenchement de défaut à la terre est également fonctionnel si une trousse d'essai portative ou une trousse d'essai des fonctions complètes alimente le déclencheur.

Alimentation externe

ATTENTION

RISQUE D'ÉLECTROCUTION, ÉCLAIR D'ARC ÉLECTRIQUE OU DE DOMMAGES MATÉRIELS

Le déclencheur et le module de communication doivent utiliser des alimentations séparées.

Si cette directive n'est pas respectée, cela peut entraîner des blessures ou des dommages matériels.

Le déclencheur peut être alimenté par :

- Alimentation externe 24 Vcc (recommandée).
- Plus de 150 V sur les bornes inférieures du disjoncteur sur deux phases.
- Plus de 150 V sur les bornes supérieures du disjoncteur avec option de tension externe.

Tableau 7 – Caractéristiques de l'alimentation

Fonction	Spécifications
Alimentation pour le déclencheur seul	24 Vcc, 50 mA
Isolation minimale entrée-sortie	2400 V
Précision de la tension de sortie (y compris l'ondulation max. de 1 %)	±5 %
Résistance diélectrique (entrée/sortie)	3 kV rms
Raccordements	Connexions UC3 F1 (-) 24 Vcc F2 (+) 24 Vcc

L'alimentation est utilisée pour :

- Écran d'affichage graphique lorsque le disjoncteur est ouvert et alimenté par le haut
- Option de liaison d'une alarme à une sortie à relais
- · Pour maintenir la date et l'heure lorsque le disjoncteur est ouvert.

REMARQUE : Si le déclencheur n'est pas raccordé à un réseau de communication et s'il ne possède pas d'alimentation externe, la date et l'heure doivent être entrées de nouveau à chaque fois que le disjoncteur se déclenche ou est désactivé.

Configuration du déclencheur MicroLogic

Utiliser le menu d'entretien en appuyant la touche en forme de clé plate à fourche.

Configuration du déclencheur MicroLogic

REMARQUE : Si le déclencheur est raccordé à un réseau de communication qui fournit la synchronisation de la date et de l'heure, la date et l'heure ne peuvent pas être réglées à partir du déclencheur.

Se reporter à la 47 pour les directives pas à pas pour configurer le déclencheur MicroLogic.

Voir la Section 3 à la page 44 pour d'autres directives de configuration du déclencheur.

Figure 9 – Configuration du déclencheur MicroLogic

Protection évoluée

Protection du neutre

RISQUE DE DOMMAGES MATÉRIELS

Si le sélecteur du neutre du disjoncteur quadripolaire est réglé sur 4P3D, le courant du neutre ne doit pas dépasser le courant nominal du disjoncteur.

Pour un disjoncteur tripolaire avec protection du neutre surdimensionnée (1.6N), sélectionnez un transformateur de courant du neutre surdimensionné approprié.

Si ces directives ne sont pas respectées, cela peut entraîner des dommages matériels.

La protection du neutre protège les conducteurs du neutre contre la surchauffe.

- Pour un disjoncteur tripolaire, la protection du neutre est possible si un transformateur de courant de neutre est utilisé.
 - Régler le neutre à l'aide du clavier du déclencheur.
 - Réglages possibles : OFF, N/2, N, ou 1.6N.
 - Le réglage d'usine est OFF.
 - Une protection du neutre surdimensionnée (1.6N) nécessite l'emploi d'un transformateur de courant du neutre surdimensionné approprié.
- Pour un disjoncteur quadripolaire, régler le type de système à l'aide du sélecteur du neutre du disjoncteur (voir Figure 10).
 - Effectuer les réglages fins à l'aide du clavier du déclencheur, le réglage du sélecteur du disjoncteur fournissant la limite supérieure de réglage.
 - Le réglage d'usine est 4P4D.

Figure 10 – Sélecteur du neutre du disjoncteur quadripolaire

Réglages de la protection du neutre pour un disjoncteur quadripolaire

_	Sélecteur du disjoncteur	Réglage du clavier disponible			
	4P 3D	Off, N/2, N			
	3P N/2	N/2			
	4P 4D	N/2, N			

- La protection du conducteur de neutre offre quatre réglages possibles suivant le type de conducteur :
 - Off-La protection du neutre est désactivée.
 - N/2—La capacité des conducteurs du neutre est la moitié de celle des conducteurs de ligne.
 - N—La capacité des conducteurs du neutre est la même que celle des conducteurs de ligne.
 - 1.6N—La capacité des conducteurs du neutre est 1,6 fois celle des conducteurs de ligne. (Disjoncteur tripolaire uniquement.)

Tableau 8 – Type de conducteurs du déclencheur MicroLogic

Réglage	Enclench Iongue du	ement de Enclenchement de irée courte durée		Instantané		Enclenchement sur défaut à la terre		
	Décl.	Neutre	Décl.	Neutre	Décl.	Neutre	Décl.	Neutre
OFF	lr	Aucun	lsd	Aucun	li	Aucun	lg	Aucun
N/2	lr	1/2 Ir	lsd	1/2 Isd	li	li	lg	lg
N	lr	lr	lsd	lsd	li	li	lg	lg
1.6N	lr	1,6 x lr	lsd	1,6 x Isd*	li	li	lg	lg

*Pour limiter la gamme, limitée à 10 x In

Alarmes

Les alarmes peuvent être activées ou désactivées pour la protection ou le délestage de charge.

- Si une condition d'alarme se produit, une entrée est effectuée dans le journal des alarmes.
- Pour qu'un déclencheur active une alarme, le niveau d'enclenchement ainsi que la temporisation choisie doivent être dépassés. En conséquence, pour la protection LSIG et la protection avancée programmées pour déclencher le disjoncteur, le déclencheur n'activera pas l'alarme tant que le disjoncteur ne sera pas déclenché. (Par exemple, si un relais est programmé pour l'enclenchement de longue durée lr, le déclencheur ne signalera pas d'alarme quand le voyant de surcharge de longue durée s'allume. Le déclencheur n'activera l'alarme que lorsque la surcharge de longue durée dépassera la temporisation choisie et déclenchera le disjoncteur.)
- Relier les alarmes à un signal visuel ou sonore en programmant les contacts d'un module optionnel M2C ou M6C, quand une alimentation externe de 24 V est utilisée avec le déclencheur.
- Visualiser les alarmes :
 - Au menu des enregistrements historiques
 - À l'aide du logiciel de gestion des systèmes en réseau
- Caractéristiques des contacts des M2C/M6C :
 - Charge minimale de 100 mA/24 V
 - Pouvoir de coupure à un facteur de puissance de 0,7

240 Vca	5 A
380 Vca	3 A
24 Vcc	1,8 A
48 Vcc	1,5 A
125 Vcc	0,4 A
250 Vcc	0,15 A

 Lorsque plusieurs alarmes se trouvent activées, le temps de réponse/ rafraîchissement de l'écran est plus lent. Voir l'annexe B pour les valeurs par défaut et les valeurs de gammes.

Alarme	Menu	Symbole	Alarme	Décl.
Enclenchement de longue durée	Protections en courant	lr	Х	Х
Enclenchement de courte durée	Protections en courant	lsd	Х	Х
Enclenchement instantané	Protections en courant	li	Х	х
Courant de défaut à la terre	Protections en courant	<u>‡</u>	Х	Х
Alarme de défaut à la terre	Protections en courant	Al≰	Х	х
Déséquilibre de courant	Protections en courant	ldéséq.	Х	Х
Courant moyen (demande) maximum pour la phase 1	Protections en courant	11max	х	х
Courant moyen (demande) maximum pour la phase 2	Protections en courant	12max	х	х
Courant moyen (demande) maximum pour la phase 3	Protections en courant	13max	х	х
Courant moyen (demande) maximum pour le neutre	Protections en courant	In max	х	х
Tension minimale (sous-tension)	Protections en tension	Umin	Х	Х
Tension maximale (surtension)	Protections en tension	Umax	Х	х
Déséquilibre de tension	Protections en tension	Udéséq.	Х	Х
Inversion de puissance	Autres protections	rPmax	Х	Х
Fréquence minimale (sous-fréquence)	Autres protections	Fmin	Х	Х
Fréquence maximale (surfréquence)	Autres protections	Fmax	Х	Х
Sens de rotation des phases	Autres protections	Rotation phases	х	-
Délestage de charge en courant	Délestage relestage I	Délestage relestage l	х	_
Délestage de charge en puissance	Délestage relestage P	Délestage relestage P	х	-

Tableau 9 – Alarmes du déclencheur

Valeurs minimales et maximales de la protection de courant moyen (demande) et de la protection de tension

Fournit des valeurs d'enclenchement et de retombée de l'alarme, les contacts ou le déclenchement pour des valeurs de courant et de tension. (Il n'y a pas de minimum pour le courant.)

Figure 11 – Courbes de protection minimale/maximale

- La valeur d'enclenchement (A) est réglée pour activer une alarme ou un déclenchement.
- La temporisation d'enclenchement (B) est réglée pour commencer la temporisation une fois que la valeur d'enclenchement a été dépassée.
- La valeur de retombée (C) est réglée pour désactiver l'alarme ou le contact.
- La temporisation de retombée (D) est réglée pour commencer la temporisation une fois que la valeur de retombée a été dépassée.
- La protection de sous tension (U_{min}) est activée lorsqu'une tension entre phases se trouve en dessous du réglage minimum de tension.
- La protection de sur tension (U_{max}) est activée lorsqu'une tension entre phases se trouve au-dessus du réglage maximum de tension.
- U_{min} a une valeur de retombée ≥ valeur d'enclenchement.
- U_{max} a une valeur de retombée ≤ valeur d'enclenchement.
- Si la protection du courant ou de la tension déclenche le disjoncteur, ce dernier ne peut pas être réarmé tant que le problème de courant ou de tension ayant provoqué le déclenchement ne soit corrigé.
- Une alarme de défaut à la terre sur les déclencheurs 5.0H et 6.0H est basée sur la valeur efficace vraie (RMS) du courant dans la terre.
- Un déclenchement sur défaut à la terre sur le déclencheur 6.0H est basée sur la valeur efficace vraie (RMS) du courant dans la terre.
- Ne pas régler la protection en sous-tension en dessous de 80 %¹.

Pour avoir une explication du comportement de la protection du système, se reporter à l'annexe D

Protection contre le déséquilibre de courant ou de tension

Cette protection s'applique à des valeurs non équilibrées pour les courants et tensions triphasés.

Figure 12 – Protection contre le déséquilibre de courant ou de tension

- Les valeurs de déséquilibre sont basées sur les valeurs efficaces réelles des courants triphasés.
- Ne pas régler U_{déséd}, au-dessus de 20 %¹.
- Ne pas utiliser la protection contre le déséquilibre de tension pour déterminer la perte de phases multiples^{*}.

Protection contre l'inversion de puissance (rPmax)

La protection contre l'inversion de puissance protège les alternateurs contre l'absorption de la puissance réelle totale des trois phases en cas de panne d'un moteur d'entraînement.

Figure 13 – Protection contre l'inversion de puissance

- La protection contre l'inversion de puissance applique une courbe de déclenchement basée sur la valeur totale de la puissance réelle (A) des trois phases.
- La temporisation (B) démarre si la puissance réelle totale des trois phases ne s'écoule pas dans le sens défini et si elle dépasse le seuil d'inversion de puissance.
- Le sens de la puissance est défini pendant la configuration du déclencheur.

¹ Pour avoir une explication du comportement de la protection du système, se reporter à l'annexe D

Protection de fréquence minimale (sous) et maximale (sur)

Fournit les valeurs d'enclenchement et de retombée pour la fréquence.

Figure 14 – Courbes de protection de fréquence minimale/maximale

- La valeur d'enclenchement (A) est réglée pour activer une alarme ou un déclenchement.
- La temporisation d'enclenchement (B) est réglée pour commencer la temporisation une fois que la valeur d'enclenchement a été dépassée.
- La valeur de retombée (C) est réglée pour désactiver l'alarme ou le contact.
- La temporisation de retombée (D) est réglée pour commencer la temporisation une fois que la valeur de retombée a été dépassée.
- F_{min} a une valeur de retombée \geq valeur d'enclenchement.
- F_{max} a une valeur de retombée ≤ valeur d'enclenchement.
- Lorsque la fréquence du système est réglée à 400 Hz, la protection de fréquence est désactivée.

Délestage de charge (Délestage relestage)

Le délestage de charge ne déclenche pas le disjoncteur, mais peut être utilisé pour activer une alarme reliée à un contact M2C ou M6C (contrôle de charges de réseau non prioritaires).

Figure 15 – Délestage de charge (Délestage relestage)

- Le délestage de charge est défini par un seuil et une temporisation :
 - A—Seuil d'activation
 - B—Temporisation d'activation
 - C—Seuil de retombée
 - D—Temporisation de retombée
- Le délestage de charge en puissance dépend du sens de l'écoulement établi pendant la configuration du déclencheur.

- Le délestage de charge en courant est connecté aux valeurs de retard des protections l²t ou ldmtl longue durée.
- Le délestage de charge en courant ne peut pas être activé si un commutateur de valeur nominale « arrêt de longue durée » est installé.

Protection du sens de rotation des phases

Protège le circuit lorsque deux des trois phases sont inversées.

- Si l'une des phases est défectueuse, cette protection est inactive.
- Les options sont 123 ou 132.
- Lorsque la fréquence du système est réglée à 400 Hz, la protection du sens de rotation des phases est désactivée.
- Ne pas utiliser la protection du sens de rotation des phases pour déterminer la perte de phases multiples dans des systèmes raccordés en triangle.

Kits de contacts programmables M2C/M6C

Une ou plusieurs alarmes peuvent être activées à l'aide d'un kit de contacts programmables optionnel M2C ou M6C. Le kit de contacts M2C fournit deux contacts de type A avec neutre commun. Le kit de contacts M6C fournit six contacts de type C. Chaque contact peut être programmé pour une condition d'alarme au moyen du déclencheur.

Une alimentation auxiliaire de 24 Vcc, 5W est nécessaire pour le fonctionnement de chaque combinaison déclencheur/kit de contacts M2C ou M6C.

REMARQUE : Le déclencheur et les modules de communication (BCM et CCM) doivent utiliser des alimentations séparées. Les kits de contacts M2C et M6C peuvent partager l'alimentation auxiliaire du déclencheur.

Figure 16 – Schémas de câblage de M2C/M6C

Caractéristiques des modules de contacts programmables M2C et M6C	v	А
Charge minimale	24 Vcc	100 mA
	240 Vca	5 A
	380 Vca	3 A
Pouvoir de coupure au facteur de puissance (f.p.)	24 Vcc	1,8 A
de 0,7	48 Vcc	1,5 A
	125 Vcc	0,4 A
	250 Vcc	0,15 A

Interverrouillage sélectif de zone

Les protections de courte durée et contre les défauts à la terre peuvent être interverrouillée pour fournir l'interverrouillage sélectif de zone.

Un câblage de commande relie plusieurs déclencheurs du réseau de distribution et, en cas de défaut, un déclencheur n'obéit au temps du retard établi que s'il reçoit un signal d'un déclencheur en aval.

Si le déclencheur ne reçoit pas de signal, le déclenchement est instantané (sans retard intentionnel).

- Le défaut est isolé instantanément par le disjoncteur en amont le plus proche.
- Les contraintes thermiques (l²t) du réseau sont minimisées, sans avoir d'effet sur la coordination de la temporisation de l'installation.

REMARQUE : Utiliser la fonction l²t désactivé avec ZSI pour une bonne coordination. L'utilisation de la fonction l²t activé avec ZSI n'est pas recommandée puisque le retard avec lequel le dispositif en amont recevra un signal d'entrave peut entraîner le déclenchement du déclencheur en un temps plus court que la courbe de déclenchement publiée.

REMARQUE : Le réglage d'un retard de courte durée (tsd) ou d'un retard de défaut à la terre (tg) à la valeur 0, élimine la sélectivité pour ce disjoncteur.

La figure 17 montre l'interverrouillage sélectif de zone des disjoncteurs 1 et 2.

- Un défaut en A est détecté par les disjoncteurs 1 et 2. Le disjoncteur 2 se déclenche instantanément et informe également le disjoncteur 1 d'obéir aux temps de retard établis. En conséquence, le disjoncteur 2 se déclenche et isole le défaut. Le disjoncteur 1 ne se déclenche pas.
- Un défaut en B est détecté par le disjoncteur 1. Le disjoncteur 1 se déclenche instantanément puis qu'il n'a pas reçu de signal de la part du disjoncteur 2 en aval. Le disjoncteur 1 se déclenche et isole le défaut. Le disjoncteur 2 ne se déclenche pas.

Figure 17 – Interverrouillage sélectif de zone

Mesure

Le déclencheur MicroLogic H fournit une mesure continue des valeurs du système. Les valeurs mesurées peuvent être vérifiées à l'aide de l'écran d'affichage graphique ou du logiciel de gestion des systèmes en réseau.

Harmoniques

Un harmonique de rang n est la composante sinusoïdal d'un signal dont la fréquence est n fois la fréquence fondamentale.

La présence d'harmoniques signifie que la forme d'onde de la tension ou du courant est déformée et qu'elle n'est pas parfaitement sinusoïdale.

La forme de l'onde est une superposition

- du signal d'origine sinusoïdal à la fréquence fondamentale
- d'autres signaux sinusoïdaux (harmoniques) dont les fréquences sont des multiples entiers de la fréquence fondamentale
- d'un composant cc, le cas échéant.

Figure 18 – Forme d'onde affectée par les harmoniques

La surimpression de divers harmoniques sur la forme d'onde fondamentale crée une distorsion, laquelle peut causer des problèmes graves :

- Augmentation des courants et des surcharges dans le système
- Pertes supplémentaires et vieillissement prématuré des appareils
- Perturbation des récepteurs de charge due aux tensions harmoniques
- Perturbations dans les réseaux de communication
- Pertes de puissance accrues et le besoin d'utiliser des niveaux d'alimentation plus élevés
- Déclenchement inutile des dispositifs de protection.

Les harmoniques sont le fait de charges non-linéaires.

Figure 19 – Origine des harmoniques

Une charge est dite non-linéaire lorsque le courant qu'elle absorbe n'a pas la même forme d'onde que la tension. Des exemples typiques de charges non linéaires sont celles utilisant des systèmes électroniques d'alimentation. Ces charges sont de plus en plus nombreuses et leur part dans la consommation électrique totale augmente.

Comme exemples :

- les appareils de bureautique : ordinateurs, photocopieurs, fax, etc.
- les appareils industriels : machines à souder, fours à arc, fours à induction, redresseurs, etc.
- les appareils domestiques : téléviseurs, fours micro-ondes, éclairage en néon, etc.

Des phénomènes non linéaires peuvent également provenir de la saturation de transformateurs et autres appareils.

Harmoniques impairs (non multiples de 3)			Harmonic (multiples	jues ir s de 3)	npairs	5	Harmoniques pairs				
Rang n ¹	BT ²	MT ³	THT ⁴	Rang n ¹	BT ²	MT ³	THT ⁴	Rang n ¹	BT ²	MT ³	THT ⁴
5	6	6	2	3	5	2,5	1,5	2	2	1,5	1,5
7	5	5	2	9	1,5	1,5	1	4	1	1	1
11	3,5	3,5	1,5	15	0,3	0,3	0,3	6	0,5	0,5	0,5
13	3	3	1,5	21	0,2	0,2	0,2	8	0,5	0,2	0,2
17	2	2	1	>21	0,2	0,2	0,2	10	0,5	0,2	0,2
19	1,5	1,5	1	-	-	-	-	12	0,2	0,2	0,2
23	1,5	1	0,7	-	-	-	-	>12	0,2	0,2	0,2
25	1,5	1	0,7	_	-	-	-	_	-	-	-

Tableau 10 – Niveaux maximums acceptables d'harmoniques

¹Le contenu harmonique d'un harmonique de rang n est défini comme le pourcentage de la valeur efficace (rms) relativement à la valeur rms du fondamental. Ce taux est directement accessible sur l'écran du déclencheur MicroLogic H.

²Système à basse tension

³Système à moyenne tension

⁴Système à très haute tension

Indicateurs de qualité des harmoniques

La mesure des harmoniques permet de quantifier et d'évaluer la distortion harmonique des ondes de tension et de courant, ces indicateurs de qualité sont :

- les signaux fondamentaux de
 - courants
 - tensions
 - puissances
- THD(I) (distorsion harmonique totale de courant basée sur le courant fondamental)
- THD(U) (distorsion harmonique totale de tension basée sur la tension fondamentale)
- thd(I) (distorsion harmonique totale de courant basée sur le courant efficace [rms])
- thd(U) (distorsion harmonique totale de tension basée sur la tension efficace [rms])
- FFT (transformée de Fourier rapide) des harmoniques impairs jusqu'au 31ième rang (pourcentage de valeur efficace [rms] relativement à la valeur rms du fondamental)

Tableau 11 – Mesures des harmoniques

Mesure	Symbole	Unités
Forme d'onde, courant	l1, l2, l3, ln	A
Forme d'onde, tension	U12, U23, U31	V
Courant fondamental	I	A
Tension fondamentale	U	V
Puissance fondamentale	Р	W
Distorsion harmonique de courant basée sur le courant fondamental	THD (I)	%
Distorsion harmonique de tension basée sur la tension fondamentale	THD (U)	%
Distorsion harmonique de courant basée sur le courant efficace	thd (I)	%
Distorsion harmonique de tension basée sur la tension efficace	thd (U)	%
Spectre d'amplitude d'harmoniques impairs jusqu'au rang 31	FFT	%

Essai du déclencheur

Les fonctions LSIG du déclencheur peuvent être vérifiées à l'aide d'un essai d'injection primaire ou secondaire. Vérifier le déclencheur avec la trousse d'essai des fonctions complètes ou la trousse d'essais portative. (Voir « Vérification de l'installation du déclencheur » à la page 90 pour des informations supplémentaires.)

Voyants

Voyant de surcharge

Le voyant de surcharge (A) s'allume lorsque le niveau d'enclenchement de longue durée (Ir) a été dépassé.

Figure 20 – Voyant de surcharge

Voyants de déclenchement

Un voyant de déclenchement s'allume sur le déclencheur lorsque le disjoncteur se déclenche. Si le déclencheur possède une connexion d'alimentation auxiliaire, le déclencheur affiche les informations concernant le déclenchement.

AVIS

RISQUE DE DOMMAGES MATÉRIELS

Si le disjoncteur reste fermé et le voyant Ap reste allumé après un réarmement, ouvrez le disjoncteur et contactez votre bureau des ventes.

Si cette directive n'est pas respectée, cela peut entraîner des blessures ou des dommages matériels.

Le voyant de déclenchement reste allumé jusqu'à sa remise à zéro en appuyant sur le bouton de remise à zéro (A). La cause du déclenchement doit être corrigée avant tout réarmement.

Le voyant de déclenchement Ir (B) s'allume lorsque l'enclenchement de longue durée (Ir) signale au disjoncteur de se déclencher.

Le voyant de déclenchement Isd/li (C) s'allume lorsque l'enclenchement de courte durée (Isd) ou l'enclenchement instantané (li) signale au disjoncteur de se déclencher.

Le voyant de déclenchement lg (D) s'allume lorsque l'enclenchement de défaut à la terre (lg) signale au disjoncteur de se déclencher.

Le voyant d'auto-protection/de protection évoluée Ap (E) s'allume lorsque les caractéristiques de la protection évoluée provoquent un déclenchement, le déclencheur surchauffe, le niveau de forçage instantané est dépassé ou lorsqu'une panne d'alimentation du déclencheur se produit.

Figure 21 – Voyants de déclenchement

REMARQUE : Dans les cas où des causes multiples peuvent aboutir à un déclenchement, la DÉL signalant la dernière cause est la seule à rester allumée.

Bouton d'essai/de remise à zéro

Il faut appuyer sur le bouton d'essai/de remise à zéro (Test/Reset) (A) après un déclenchement pour remettre à zéro l'information de défaut sur l'affichage graphique et éteindre le voyant de déclenchement.

Figure 22 – Bouton de remise à zéro

Écran d'affichage graphique

L'écran d'affichage graphique (A) donne les réglages et les informations concernant le déclencheur. Les touches de navigation (B) sont utilisées pour afficher et modifier les indications de l'écran. L'affichage des niveaux des courants est l'affichage par défaut.

L'écran d'affichage graphique fonctionne seulement si le déclencheur est alimenté. Le déclencheur est sous tension :

- si le disjoncteur est sous tension et a une tension de charge de plus de 150 V sur deux phases (le disjoncteur est fermé ou alimenté par ses bornes inférieures).
- si la trousse d'essais des fonctions complètes ou portative est raccordée et sous tension.
- si l'alimentation externe de 24 V cc est raccordée.
- si un dérivateur de tension externe est installé et si une tension de plus de 150 V est présente sur deux phases.

Voyant d'usure des contacts

Le déclencheur conserve la trace de l'usure des contacts du disjoncteur lorsqu'un disjoncteur du type MasterPact est choisi. Le niveau de l'usure des contacts du disjoncteur peut être transféré lors du remplacement du déclencheur. (Une alimentation externe est nécessaire pour le déclencheur.)

Compteur de manœuvres

Le module de communication du disjoncteur est nécessaire pour afficher le nombre total d'ouvertures du disjoncteur depuis son installation initiale et depuis son dernier réarmement et le jour/l'heure du dernier réarmement.

Section 2—Navigation sur l'afficheur graphique

Afficheur graphique

L'afficheur graphique (A) fonctionne si le déclencheur est raccordé à une alimentation externe de 24 Vcc ou si la tension est de 150 V sur au moins deux phases. Le courant (de l'ensemble d'essais d'injection primaire ou du système électrique) alimentera uniquement les fonctions de protection LSIG mais pas l'afficheur.

Touches de navigation (B) :

T.	Touche d'accès au menu « Mesures »—Donne accès aux menus des mesures
×	Touche d'accès au menu « Entretien »—Donne accès aux menus d'entretien
L	Touche d'accès au menu « Protection »—Donne accès aux menus de protection
Ţ	Touche de défilement vers le bas—Déplace le curseur vers le bas ou diminue la valeur du réglage
+	Touche de défilement vers le haut—Déplace le curseur vers le haut ou augmente la valeur du réglage
4	Touche d'entrée (validation ou sélection)—Sélectionne une option dans une liste ou valide les valeurs réglées

Figure 24 – Afficheur graphique

Graphique à barres et menus

Le déclencheur MicroLogic H possède un affichage graphique à barres des courants par défaut et trois menus différents dont l'accès se fait à l'aide de boutons de navigation :

- A. Graphique à barres—Fournit en temps réel un affichage graphique à barres des courants d'alimentation et de la mesure du courant de ligne et du courant du neutre (le cas échéant) (affichage par défaut)
- B. Menu Mesures—Donne accès aux valeurs mesurées du courant, de la tension, de la puissance, de l'énergie, des harmoniques et de la fréquence
- C. Menu Entretien—Permet à l'utilisateur de modifier la configuration du déclencheur et donne accès aux journaux (enregistrements) historiques
- D. Menu Protections—Permet d'effectuer des réglages précis des protections de base et évoluées

Figure 25 – Menus

Lorsque le couvercle des commutateurs est fermé, le déclencheur retourne au graphique à barres (affichage par défaut) après 3 minutes et demie sans entrée. (Si le couvercle des commutateurs est ouvert, l'affichage reste à la fenêtre sélectionnée.) Pour accéder à un autre menu, appuyer sur la touche qui correspond au menu désiré. Le menu apparaît sur l'afficheur et la DÉL verte sous la touche du menu s'allume.

Menu Mesures

Utiliser la touche des mesures pour accéder aux valeurs mesurées suivantes :

- A. Courant
- B. Tension
- C. Alimentation
- D. Énergie
- E. Harmoniques
- F. Fréquence

Figure 26 – Menu Mesures

Courant

Figure 27 – Niveaux des courants

Tension

Figure 28 – Niveaux des tensions

FRANÇAIS

Puissance

Figure 29 – Niveaux des puissances

Énergie

Figure 30 – Niveaux des énergies

Harmoniques

Figure 31 – Harmoniques

Fréquence

Figure 32 – Fréquence

Menu Entretien

Utiliser la touche d'entretien pour accéder au menu Entretien.

- A. Pour accéder au journal historique
- B. Pour configurer les contacts M2C/M6C
- C. Pour configurer le déclencheur MicroLogic
- D. Pour configurer les paramètres de mesure
- E. Pour configurer le module de communication

Figure 33 – Menu Entretien

Historiques

Figure 34 – Historiques

Contacts programmables M2C/M6C

- Seulement disponibles si les contacts M2C/M6C sont installés.
- Une alarme par contact.

Peut sélectionner les contacts configurés en tant que «alarme» ou «trip» (déclenchement) au menu Protections.

Configurer MicroLogic

Si le déclencheur est raccordé à un réseau de communication qui fournit la synchronisation de la date et de l'heure, la date/l'heure ne peuvent pas être réglées à partir du déclencheur.

Figure 36 – Configurer MicroLogic

Configurer mesures

Figure 37 – Configurer mesures

Configuration de la communication

Figure 38 – Configuration du module de communication

Menu Protections

Utiliser la touche de protection pour accéder à ces menus.

- A. Pour afficher et régler la protection en courant
- B. Pour afficher et régler la protection en tension
- C. Pour afficher et régler toute autre protection
- D. Pour régler le délestage de charge pour le courant
- E. Pour régler le délestage de charge pour la puissance

Figure 39 – Menu Protections

Protections en courant

Figure 40 – Protections en courant

٦Ŀ.

FRANÇAIS

Section 3—Configuration du déclencheur

Configuration des paramètres du déclencheur

REMARQUE : Les réglages du menu Protections ne peuvent pas être effectués tant que le couvercle des commutateurs n'est pas ouvert. Après avoir effectué les réglages, appuyer sur l'un des boutons de menu pour enregistrer les nouvelles valeurs.

- 1. Ouvrir le couvercle des commutateurs (A).
- 2. Appuyer sur la touche d'entretien (B) pour afficher le menu Entretien (C).

Figure 45 – Menu Entretien

Contacts programmables M2C/M6C

Si un kit de contacts M2C ou M6C est installé, utiliser le menu « Contacts M2C/M6C » pour choisir le type d'alarme et le mode de fonctionnement. Le kit M2C est muni des contacts S1 et S2. Le kit M6C comprend les contacts S1, S2, S3, S4, S5 et S6.

Haut/

Haut/

Bas

₹

Bas

F

S2

1. Entrer le type d'alarme des contacts M2C/M6C dans la mémoire du Contacts Type S1 S1 déclencheur. Les alarmes suivantes M2C / M6C d'alarme sont disponibles : Type d'alarme li lsd S1 Ir-Enclenchement de longue durée S2 Configurer li-Enclenchement instantané Reset Isd-Enclenchement de courte durée I ∉--Courant de défaut à la terre Entrée Entrée Entrée <u>- - -</u> Al ∉—Alarme de défaut à la terre Entrée Idéség.—Déséguilibre de courant Sortie I1max—Surintensité en phase 1 Туре I2max—Surintensité en phase 2 S2 d'alarme I3max-Surintensité en phase 3 Voulez-vous lsd Non S1 enregistrer affecté Inmax-Surintensité du neutre S2 les modifications? Umin-La tension est en-dessous du non réglage minimum choisi oui Umax-La tension est au-dessus du réglage maximum choisi Entrée ₹ Bas Bas A Udéség.—Déséguilibre de tension Entrée Entrée Entrée rPmax—Inversion de puissance Sortie Fmin-La fréquence est en dessous du Type réglage minimum choisi d'alarme Voulez-vous Fmax—La fréquence est au-dessus du S1 enregistrer réglage maximum choisi S2 les modifications? Φ rot—Sens de rotation des phases non Délestage I-Délestage de charge en oui courant Délestage P-Délestage de charge en Bas Sortie puissance Entrée Non affecté—Aucune alarme sélectionnée M2C/M6C

Figure 47 – Configuration du type d'alarme des contacts

 Configurer le mode d'alarme des contacts M2C/M6C. Modes disponibles pour les contacts :

Accrochage permanent—Reste activé jusqu'à la remise à zéro

Sans accrochage—Se déclenche après l'élimination du défaut

Temporisation—Retard placé sur les contacts

Pour les besoins de dépannage seulement, les modes suivants sont disponibles :

Forcé à 0—Les contacts sont bloqués ouverts

Forcé à 1—Les contacts sont bloqués fermés

Pour les alarmes de courte durée, instantanée ou sur défaut à la terre (alarme SIG) uniquement :

- Chaque déclenchement d'alarme active le relais, signale et continue à signaler une alarme jusqu'à ce que le bouton d'alarme/remise à zéro (Test/Reset) du déclencheur soit enfoncé.
- Quelque soit le mode choisi durant la configuration de l'alarme « accrochage » ou « sans accrochage » des contacts, ce comportement d'accrochage est présent.
- Remettre à zéro les états d'affichage des relais et permettre leur réinitialisation.

REMARQUE : Sélectionner l'option Reset (Réinitialization) au menu Contacts M2C/M6C pour remettre toutes les alarmes à zéro. Le bouton d'alarme/remise à zéro du déclencheur réarme le déclencheur de sorte qu'il arrête d'activer l'alarme, mais il ne retourne pas les contacts M2C/M6C à leur position initiale.

Figure 48 – Configuration du mode d'alarme des contacts

46-FR

Configuration du déclencheur MicroLogic

Utiliser le menu « Configurer MicroLogic » pour choisir la langue des affichages, la date et l'heure, les informations sur le disjoncteur, le sens du signe de puissance, le rapport TT (Transfo de U) et la fréquence du réseau.

1. Régler la langue de l'affichage.

Figure 49 – Configuration du déclencheur MicroLogic

Figure 50 – Configuration de la langue

2. Régler la date et l'heure du déclencheur.

> **REMARQUE :** Si le déclencheur est raccordé à un réseau de communication qui fournit la synchronisation de la date et de l'heure, la date/l'heure ne peuvent pas être réglées à partir du déclencheur. Si le déclencheur n'est pas relié à un réseau de communication qui assure la synchronisation de la date et de l'heure, la date et l'heure devront être entrées de nouveau après chaque mise hors tension du déclencheur.

> **REMARQUE** : Dans l'anglais utilisé aux États-Unis, le format de la date est mois/jour/année. Dans toutes les autres langues, le format de la date est jour/mois/année.

Après l'emploi de la trousse d'essais pour effectuer un essai d'injection secondaire, d'inhibition de l'image thermique, des essais ZSI ou du défaut de mise à la terre, le réglage de l'heure doit être refait si le déclencheur n'est pas relié à un réseau de communication assurant la synchronisation de la date et de l'heure.

REMARQUE : Si l'heure n'est pas synchronisée par un surveillant se servant du logiciel de gestion des systèmes en réseau, régler l'heure tous les six mois ou plus souvent si nécessaire.

Langue Date Date Date Date / heure 25 / 01 / 2001 28 / 01 / 2001 28 / 02 / 2001 Sélection Heure Heure Heure disjoncteur Signe puissance 18:12:35 18:12:35 18:12:35 Transfo de U Haut/ Haut/ ₹ Entrée Entrée ₹ ŧ Bas Bas Entrée Entrée 4 Date Date Date Date 28 / 02 / 2001 28/02/2001 28 / 02 / 2001 28 / 02 / 2001 Heure Heure Heure Heure 18:12:35 18:12:35 18 12:35 19:11 35 Haut/ Haut/ Haut/ ₹ Bas ₹ Bas Bas Bas Entrée Entrée Entrée Entrée Date Date 28 / 02 / 2001 28 / 02 / 2001 Heure Heure 19:11:**25** 19:11:25

Figure 51 – Configuration de la date et l'heure

|Haut/ ₹

Bas

Entrée

Sortie

 Entrer les informations du disjoncteur dans la mémoire du déclencheur. Les informations suivantes doivent être entrées pour identifier correctement le disjoncteur sur le réseau de communication :

Norme—ANSI, UL, IEC ou IEC/GB

Famille du disjoncteur—MasterPact (ANSI, UL, IEC ou IEC/GB), Powerpact (UL ou IEC) ou Compact NS (IEC)

Type de disjoncteur—Ces renseignements se trouvent sur la plaque avant du disjoncteur

Code d'usure des contacts du disjoncteur–N'est modifié qu'à l'occasion du remplacement d'un déclencheur existant, ayant l'option d'usure des contacts.

REMARQUE : Le dispositif de mesure de l'usure des contacts n'est actif que pour un disjoncteur de type MasterPact.

Pour maintenir les informations d'indication d'usure des contacts lors du remplacement d'un déclencheur :

- a. Lire le code sur le déclencheur à remplacer. (Le code est un nombre hexadécimal.)
- Retirer l'ancien déclencheur et installer le déclencheur neuf sur le disjoncteur.
- c. Entrer le code lu sur l'ancien déclencheur, sur le déclencheur neuf.

Figure 52 – Configuration des informations du disjoncteur

4. Sélectionner le signe de la puissance.

Choisir la convention du signe à utiliser pour la mesure de la puissance, de l'énergie et du délestage-relestage :

- P+ : Puissance absorbée d'amont en aval (alimentation par les bornes supérieures)
- P- : Puissance absorbée d'aval en amont (alimentation par les bornes inférieures)

La valeur par défaut est P+

 Entrer le rapport du transformateur de tension (Transfo de U) externe dans la mémoire du déclencheur. En l'absence d'un tel transformateur, régler les deux valeurs (primaire et secondaire) à 690 V.

Si la tension d'alimentation du déclencheur dépasse 690 V, un transformateur de tension externe est requis.

Figure 53 – Configuration du signe de la puissance

Figure 54 – Configuration du rapport du transformateur de

6. Entrer la fréquence du réseau dans la mémoire du déclencheur.

REMARQUE : Lorsque la fréquence du système est réglée à 400 Hz :

- La valeur absolue de la puissance réactive sera correcte, mais son signe sera incorrect.
- La valeur absolue du facteur de puissance sera correcte, mais son signe sera incorrect.
- La valeur de la fréquence peut ne pas être précise.
- La protection en fréquence est désactivée.
- La protection du sens de rotation des phases est désactivée.

Configuration des mesures

Utiliser le menu « Configurer mesures » pour configurer les paramètres de mesure du courant et de la puissance du système.

Figure 55 – Configuration de la fréquence du réseau

Figure 56 – Configuration des mesures

1. Sélectionner le type de réseau.

Trois options de mesure sont disponibles :

Type de réseau	Neutre	Courant de phase
Triphasé, 3 fils, 3 TC (utilise 2 wattmètres)	Non	l ₁ , l ₂ , et l ₃ mésurés
Triphasé, 4 fils, 4 TC* (utilise 3 wattmètres)	Oui	I ₁ , I ₂ , I ₃ et I _n mésurés
Triphasé, 4 fils, 3 TC (utilise 3 wattmètres)	Non	l ₁ , l ₂ , et l ₃ mésurés

Figure 57 – Configuration du type de réseau

*Ne pas utiliser le type « triphasé, 4 fils, 4 TC » sauf si le neutre est effectivement raccordé au dispositif de déclenchement (la connexion de la tension du neutre est externe au disjoncteur tripolaire). (Voir les directives d'installation du TC du neutre.)

FRANÇAIS

REMARQUE : Dans le cas d'un disjoncteur quadripolaire, la possibilité de régler le neutre est limitée par le réglage du commutateur du type de neutre du disjoncteur.

La mesure de I_n n'est pas disponible pour les réseaux de type « triphasé, 4 fils, 3 TC » et les mesures de tension simple V_{1n}, V_{2n} et V_{3n} ne sont pas disponibles pour les réseaux de type « triphasé, 3 fils, 3 TC ».

Si ces mesures sont désirées et si le réseau connecté est un système en étoile (à 4 fils), sélectionner « triphasé, 4 fils, 4 TC » et raccorder à la borne de tension du neutre (V_n) sur le TC du neutre.

 Régler la méthode de calcul de la demande de courant (Calcul Imoyen.) et sa durée.

La méthode de calcul peut être moyenne arithmétique ou modèle thermique.

Le type de fenêtre de durée est réglé à l'usine comme fenêtre glissante.

La durée peut être réglée de 5 à 60 minutes en incréments d'une minute.

Figure 58 – Configuration de la méthode de calcul du courant

 Régler la méthode de calcul de la demande de puissance (Calcul Pmoyen.) et sa durée.

> La méthode de calcul peut être moyenne arithmétique, modèle thermique ou synchronisation par communication.

REMARQUE : La synchronisation par communication n'est disponible qu'avec l'option de communication. La puissance moyennée est determinée à partir d'un signal synchronisé par le module de communication.

Le type de fenêtre de durée par défaut est glissante.

La durée peut être réglée de 5 à 60 minutes en incréments d'une minute.

Figure 59 – Configuration de la méthode de calcul de la puissance moyenne

4. Sélectionner la convention de signe.

Choisir la convention de signe à utiliser pour la mesure de la puissance réactive (VARs), de l'énergie réactive (VARhrs) et du facteur de puissance :

IEEE

IEC

IEEE alternate

Type de réseau		Convention de signe		Convention de signe	06133335	
Calcul I moyen.		IEEE		IEC		Voulez-vous enregistrer
Calcul P moyen.						modifications?
Convention de signe						oui
		Entrée		Haut/		Bas
		9		🛨 🚺 Bas		
				Entrée		Entrée
				Sortie		
Convention de sic	ne ll	FF				
	Type de réseau Calcul I moyen. Calcul P moyen. Convention de signe Entrée	Type de réseau Calcul I moyen. Calcul P moyen. Convention de signe Entrée	Type de réseau Calcul I moyen. Calcul P moyen. Convention de signe Entrée Convention de signe IEEE	Type de réseau Calcul I moyen. Calcul P moyen. Convention de signe IEEE Entrée Entrée	Type de réseau Calcul I moyen. Calcul P P moyen. Convention de signe IEEE IEC IEC IEC IEC IEC IEC IEC IEC IE	Type de réseau Calcul I moyen. Calcul P moyen. Convention de signe IEEE IEE IEC IEC IEC IEC IEC IEC Bas Bas Entrée Entrée Convention de signe IEE Entrée Entrée

Figure 60 – Configuration de la convention de signe

Convention de signe IEEE

Puissance réactive						
Quadrant 2 Watts négatifs (-) VAR positifs (+) Déphasage av. FP (+)	Quadrant 1 Watts positifs (+) VAR positifs (+) Déphasage arr. FP (-)					
<u> </u>						
 Ecoul. P inverse 	Écoul. P normal — Puiss.					

Convention de signe IEC

Puissance réactive					
Quadrant 2 Watts négatifs (-) VAR positifs (+) Déphasage av. FP (-)	Quadrant 1 Watts positifs (+) VAR positifs (+) Déphasage arr. FP (+)				
🗲 Écoul. P inverse	Écoul. P normal 🗕 Puiss.				
Quadrant 3 Watts négatifs (-) VAR négatifs (-) Déphasage arr. FP (-)	Quadrant 4 Watts positifs (+) VAR négatifs (-) Déphasage av. FP (+)				

Convention de signe IEEE alternate

6		
Puissance réactive		
Quadrant 2	Quadrant 1	
Watts négatifs (-) VAR négatifs (-) Déphasage av. FP (+)	Watts positifs (+) VAR négatifs (-) Déphasage arr. FP (-)	
 Écoul. P inverse 	Écoul. P normal 🔶 _ Puiss.	
Quadrant 3 Watts négatifs (-) VAR positifs (+) Déphasage arr. FP (-)	Quadrant 4 Watts positifs (+) VAR positifs (+) Déphasage av. FP (+)	

Configuration du module de communication

Utiliser le menu « Configurer Com. » pour effectuer la configuration du module de communication.

REMARQUE : Les paramètres de configuration de la communication ne peuvent

REMARQUE : Infos IP affichent l'adresse IP du module IFE, si utilisé.

1. Configurer l'adresse Modbus.

La configuration de l'adresse Modbus dépend de l'option de communication (option COM). Voir le tableau 12.

Figure 61 – Configuration du module de communication

Tableau 12 – Adresses Modbus

Option COM	Adresse Modbus	Gamme d'adresses Modbus
Le module BCM ou BCM ULP n'est pas raccordé à un module IFM ou à un module IFE.	L'adresse Modbus est configurée sur l'écran de réglage des communications Modbus, avec les paramètres de l'option de communication (voir à la page 55).	1 à 47
Le module BCM ULP est raccordé à un module IFM.	L'adresse Modbus est configurée sur les deux sélecteurs rotatifs situés sur le panneau avant du module IFM.	1 à 99 La valeur 0 est interdite parce qu'elle est réservée aux messages de diffusion.
Le module BCM ULP est raccordé à un module IFM au moyen d'un MicroLogiciel ancien.	L'adresse Modbus est configurée sur les deux sélecteurs rotatifs situés sur le panneau avant du module IFM.	1 à 47 La valeur 0 est interdite parce qu'elle est réservée aux messages de diffusion. Les valeurs de 48 à 99 ne sont pas autorisées.
Le module BCM ULP est raccordé à un module IFE.	L'adresse Modbus est fixe et ne peut pas être modifiée.	255

 Régler les paramètres de communication. Les valeurs par défaut sont les suivantes :

Adresse = 47

Vitesse de communication (Baud-rate) = 19,2k

Parité = paire

Connexion = 2 Fils + ULP

Figure 62 – Configuration des valeurs de Com Modbus

A AVERTISSEMENT

ALTÉRATION POSSIBLE DE LA DISPONIBILITÉ, DE L'INTÉGRITÉ ET DE LA CONFIDENTIALITÉ DU SYSTÈME

Changez les mots de passe par défaut lors de la première utilisation afin d'empêcher tout accès non autorisé aux paramètres, aux contrôles et aux informations de l'appareil.

Si ces directives ne sont pas respectées, cela peut entraîner la mort ou des blessures graves.

3. Réglage à distance.

L'accès à distance est configuré à l'usine et ne demande aucun réglage.

REMARQUE : Le réglage de l'accès à distance peut être modifié pour permettre aux réglages de protection d'être modifiés au moyen du réseau de communication. Pour les renseignements d'autres composants et les directives de configuration, consulter le *Guide de communications Modbus* 0613IB1313.

4. Régler la commande à distance.

Manuelle : Le disjoncteur ne peut pas être ouvert ou fermé par l'intermédiaire du logiciel de gestion des systèmes en réseau.

Automatique : Le disjoncteur peut être ouvert ou fermé par l'intermédiaire du logiciel de gestion des systèmes en réseau.

REMARQUE : Pour le fonctionnement à distance du disjoncteur, le BCM doit être réglé de façon à permettre l'ouverture ou la fermeture, et le disjoncteur doit être muni de bobines shunt de communication avec leurs faisceaux de câbles installés.

Figure 63 – Vérification de l'accès à distance

FRANÇAIS

Figure 64 – Configuration de la commande à distance

Affinement des réglages des commutateurs

AVIS

RISQUE DES DOMMAGES MATÉRIELS

- L'emploi des commutateurs pour définir les valeurs du déclencheur annule les réglages effectués à l'aide du clavier.
 - La modification des réglages des commutateurs pour les surcharges à temps court ou instantanées ou le changement du sélecteur de protection du neutre sur un disjoncteur quadripolaire annule tous les affinements des réglages précédemment effectués à l'aide du clavier pour la protection contre les surcharges à temps court et instantanées.
 - La modification du réglage des commutateurs pour le défaut de mise à la terre annule tous les affinements des réglages effectués avec le clavier pour la protection contre les défauts à la terre.
- Si l'ergot situé sur la face interne du couvercle des commutateurs manque, contacter votre bureau de vente pour obtenir un couvercle de rechange.

Si ces directives ne sont pas respectées, cela peut entraîner des dommages matériels.

- 1. Ouvrir le couvercle des commutateurs (A).
- Confirmer que l'ergot (B) du couvercle se trouve bien sur la face interne du couvercle de protection. Cet ergot est nécessaire pour verrouiller les réglages du déclencheur lorsqu'ils sont configurés pour le mode Trip (Déclenchement).
- Régler les commutateurs (C) appropriés aux valeurs désirées. L'écran (D) affiche automatiquement la courbe de réglage (E) adéquate. La valeur réglée est affichée en encadré en ampères et en secondes.
- Effectuer les réglages méticuleux à l'aide des touches de navigation (F) ou du logiciel de gestion des systèmes en réseau. Tous ces réglages sont stockés dans une mémoire non volatile.

REMARQUE : Les réglages méticuleux ne peuvent être effectués que pour des valeurs inférieures à celles réglées avec les commutateurs. L'emploi des commutateurs pour régler les valeurs après avoir effectué des églages méticuleux à l'aide du clavier annule les réglages au clavier.

Les réglages méticuleux des commutateurs se font par les incréments suivants :

- Enclenchement de longue durée = 1 A
- Retard de longue durée = 0,5 s
- Enclenchement de courte durée = 10 A
- Retard de courte durée = 0,1 s
- Enclenchement instantané = 10 A
- Enclenchement sur défaut à la terre = 1 A

 Replacer e couvercle des commutateurs. Utiliser un kit de scellement à fils MICROTUSEAL (A, non fourni), pour fournir une preuve d'effraction, si nécessaire.

REMARQUE : Lorsque le couvercle est fermé, les touches de navigation ne peuvent plus être employées pour ajuster les réglages du déclencheur si elles sont réglées pour le mode Trip (déclenchement).

 Vérifier les réglages à l'aide du clavier (B) et de l'afficheur graphique ou du logiciel de gestion des systèmes en réseau.

Exemples

Déclencheur MicroLogic 5.0H

- 1. Régler les commutateurs :
 - A-Enclenchement de longue durée (Ir)
 - B-Retard de longue durée (tr)
 - C-Enclenchement de courte durée (Isd)
 - D—Retard de courte durée (tsd)
 - E-Enclenchement instantané (li)
- Affiner le réglage à l'aide du clavier et de l'écran d'affichage graphique ou du logiciel de gestion des systèmes en réseau.

Déclencheur MicroLogic 6.0H

- 1. Régler les commutateurs :
 - A-Enclenchement de longue durée (Ir)
 - B-Retard de longue durée (tr)

C—Enclenchement de courte durée (Isd)

- D-Retard de courte durée (tsd)
- E-Enclenchement instantané (li)

F—Enclenchement sur défaut à la terre (lg)

- G-Retard de défaut à la terre (tg)
- Affiner le réglage à l'aide du clavier et de l'écran d'affichage graphique ou du logiciel de gestion des systèmes en réseau.

Figure 66 – Vérification des réglages des commutateurs

Figure 68 – Configuration des niveaux d'enclenchement

Interverrouillage sélectif de zone (ZSI)

Le nombre d'appareils pouvant être interverrouillés est indiqué au tableau 13.

Appareil en amont (reçoit une entrée du RIM) Appareil en aval (envoie une sortie au RIM)	Déclencheurs MicroLogic no .0x	Déclencheurs MicroLogic série B de Square D	Relais de défaut à la terre GC-100 de Square D pour la protection des appareils	Relais de défaut à la terre GC-200 de Square D pour la protection des appareils	Déclencheurs Merlin Gerin STR58	Déclencheurs Federal Pioneer USRC et USRCM
Déclencheurs MicroLogic no .0x	15	R	R	15	15	R
Déclencheurs MicroLogic série B de Square D	R	26	R	R	R	15
Relais de défaut à la terre GC-100 de Square D pour la protection des appareils	R	R	7	R	R	R
Relais de défaut à la terre GC-200 de Square D pour la protection des appareils	15	R	R	15	15	R
Déclencheurs Merlin Gerin STR58	15	R	R	15	15	R
Déclencheurs Merlin Gerin STR53	15	R	R	15	15	R
Déclencheurs Federal Pioneer USRC et USRCM	R	15	R	R	R	15
Module de défaut à la terre supplémentaire de Square D pour la protection des appareils	R	5	R	R	R	R

R—Une module d'interface retardateur (RIM) est requis pour retarder n'importe quel appareil.

Références numériques—Le nombre maximum de disjoncteurs en amont qui peuvent être retardés sans l'installation d'un module d'interface retardateur (RIM).

48049-330-03

Les bornes des disjoncteurs sont expédiées avec les bornes Z3, Z4 et Z5 reliées par cavalier pour produire une auto-entrave des fonctions de courte durée et de défaut à la terre. Retirer les cavaliers lors de l'activation de l'interverrouillage sélectif de zone.

Figure 69 – Bornes reliées par cavalier

Câbler les disjoncteurs pour l'interverrouillage sélectif de zone.

REMARQUE : Utiliser la fonction l²t désactivé avec ZSI pour une bonne coordination. L'utilisation de la fonction l²t activé avec ZSI n'est pas recommandée puisque le retard avec lequel le dispositif en amont recevra un signal d'entrave peut entraîner le déclenchement du déclencheur en un temps plus court que la courbe de déclenchement publiée.

Vérification du fonctionnement du déclencheur

Utiliser une trousse d'essais raccordée à la prise d'essai (A) du déclencheur pour vérifier si le déclencheur fonctionne comme il faut. Consulter les directives fournies avec la trousse d'essai pour effectuer les essais de vérification.

REMARQUE : Pour vérifier le fonctionnement du disjoncteur et du déclencheur, utiliser un essai d'injection primaire. (Voir « Vérification de l'installation du déclencheur » à la page 90 pour des informations supplémentaires.)

Réarmement du déclencheur

Lorsque le disjoncteur se déclenche, le voyant de défaut reste allumé jusqu'au réarmement du déclencheur.

Ne pas remettre le disjoncteur sous tension sans avoir déterminé la cause du déclenchement. Pour plus d'informations, se reporter aux directives d'installation du disjoncteur expédiées avec ce dernier.

Appuyer sur le bouton de remise à zéro/d'essai (Test/Reset) (A) pour réarmer le déclencheur après un déclenchement.

Vérification de la fonction de déclenchement de l'appareil sur défaut à la terre

Le paragraphe 230-95(c) du Code national de l'électricité (NEC; É.-U.) requiert que tous les systèmes de protection des appareils contre les défauts à la terre soient vérifiés quand ils sont installés la première fois.

Avec le déclencheur sous tension et le disjoncteur fermé, vérifier la fonction de déclenchement de l'appareil sur défaut à la terre (déclencheur MicroLogic 6.0H).

Figure 73 – Vérification de la fonction de déclenchement de l'appareil sur défaut à la terre

Le déclencheur est sous tension si :

- si le disjoncteur est sous tension et a une tension de charge de plus de 150 V sur deux phases (le disjoncteur est fermé ou alimenté par ses bornes inférieures).
- si la trousse d'essais des fonctions complètes ou portative est raccordée et sous tension.
- si l'alimentation externe de 24 V cc est raccordée.
- si le dérivateur de tension externe est installé et si une tension de plus de 150 V est présente sur deux phases.

Pour obtenir les directives de fermeture du disjoncteur, se reporter aux directives d'installation expédiées avec le disjoncteur.

Pour essayer la fonction de déclenchement, appuyer sur le bouton d'essai de défaut à la terre (A). Le disjoncteur doit se déclencher.

Si le disjoncteur ne se déclenche pas, contacter votre bureau de service local.

Vérification de l'état du déclencheur

Vérifier la pile du déclencheur et les voyants de déclenchement.

- 1. S'assurer que le déclencheur est sous tension. Le déclencheur est sous tension :
 - si le disjoncteur est sous tension et a une tension de charge de plus de 150 V sur deux phases (le disjoncteur est fermé ou alimenté par ses bornes inférieures).
 - si la trousse d'essais des fonctions complètes ou portative est raccordée et sous tension.
 - si l'alimentation externe de 24 V cc est raccordée.
 - si le dérivateur de tension externe est installé et si une tension de plus de 150 V est présente sur deux phases.
- 2. Appuyer sur le bouton d'essai/de remise à zéro (A).
 - Tous les voyants de déclenchement (B) s'allument
 - L'état de la pile s'affiche
 - Le relevé du graphique en barres de la pile est valide après avoir relâché le bouton de réarmement.
- 3. Si le graphique en barres de la pile indique que la pile a besoin d'être remplacée, utiliser le numéro de catalogue S33593 Square D :
 - pile au lithium
 - 1,2AA, 3,6 V, 800 ma/h

Pour les directives de remplacement de la pile, voir le chapitre 7—Remplacement de la pile.

Section 4—Fonctionnement

Valeurs mesurées

Utiliser les menus de mesures pour surveiller le courant (I), la tension (U), la puissance (P), l'énergie (E), les harmoniques et la fréquence (F) du disjoncteur.

REMARQUE: Les caractéristiques du système peuvent être également vérifiées à distance avec le logiciel System Manager Software (SMS), version 3.3 ou ultérieures, ou autre logiciel de gestion de systèmes en réseau.

Figure 75 – Menu Mesures

66-FR

Niveaux des courants

- I1-Courant instantané de la phase 1
- I₂—Courant instantané de la phase 2
- I₃—Courant instantané de la phase 3
- In-Courant instantané du neutre
- I ≰ —Courant instantané à la terre

I₁max—Courant instantané maximum de la phase 1

I₂max—Courant instantané maximum de la phase 2

I₃max—Courant instantané maximum de la phase 3

I_nmax—Courant instantané maximum du neutre

I <u>≰</u> max—Courant instantané maximum à la terre

I1 —Demande de courant de la phase 1

 $\overline{I_2}$ —Demande de courant de la phase 2

 $\overline{I_3}$ —Demande de courant de la phase 3

In —Demande de courant du neutre

 I_1 max—Demande de courant max. de la phase 1

 I_2 max—Demande de courant max. de la phase 2

 I_3 max—Demande de courant max. de la phase 3

 I_n max—Demande de courant max. du neutre

Les mesures maximales peuvent être également remises à zéro.

Niveaux des tensions

U12—Tension instantanée entre les phases 1 et 2

U23—Tension instantanée entre les phases 2 et 3

U31—Tension instantanée entre les phases 3 et 1

V1n—Tension instantanée entre la phase 1 et le neutre

V2n-Tension instantanée entre la phase 2 et le neutre

V3n—Tension instantanée entre la phase 3 et le neutre

Figure 77 – Vérification des niveaux des tensions

U Inst.

Niveaux des puissances

- P-Puissance active instantanée
- Q-Puissance réactive instantanée
- S—Puissance apparente instantanée
- Facteur de puissance—Facteur de puissance instantané
- \overline{P} Demande de puissance active
- Q—Demande de puissance réactive
- S—Demande de puissance apparente
- Pmax—Demande de puissance active maximale
- Qmax—Demande de puissance réactive maximale

Smax—Demande de puissance apparente maximale

Les mesures maximales peuvent être également remises à zéro.

REMARQUE : Pour assurer des mesures fiables de la puissance et du facteur de puissance, « Signe puissance », page 50, et « Convention de signe », page 54, doivent être réglés.

🕎 Niveaux des énergies

Énergie active totale (E.P.)

Énergie réactive totale (E.Q.)

Énergie apparente totale (E.S.)

Énergie active consommée (+) (E.P.)

Énergie réactive consommée (+) (E.Q.)

Énergie active fournie (-) (E.P.)

Énergie réactive fournie (-) (E.Q.)

Les mesures d'énergie peuvent être également remises à zéro.

REMARQUE : Pour assurer des mesures fiables d'énergie, « Signe puissance », page 50, et « Convention de signe », page 54, doivent être réglés.

Marmoniques

Forme onde—Capture de la forme d'onde pour I1, I2, I3, In, U12, U23 et U31. Un cycle de la forme d'onde est enregistré avec une gamme de mesure de 1 à 1,5 In pour le courant et de 0 à 690 V. La résolution est de 64 points par cycle.

Fondament.—Courant, tension et puissance pour forme d'onde fondamentale

Figure 80 – Vérification des harmoniques

Harmoniques (suite)

THD (I)—Distorsion harmonique totale de courant basée sur le courant fondamental

$$THD(I) = \frac{\sqrt{\sum_{n=2}^{\infty} I_n^2}}{I_{\text{fond}}}$$

- THD(I) < 10 % est considéré normal* ٠
- 10% < THD(I) < 50% indique une perturbation notable des harmoniques. Il y a risque d'échauffement, ce qui implique le surdimensionnement des câbles et des sources.
- THD(I) > 50% indique une perturbation importante des harmoniques. Des dysfonctionnements sont probables. Une analyse approfondie et la mise en place de dispositifs d'atténuation sont nécessaires.

THD (V)—Distorsion harmonique totale de tension basée sur la tension fondamentale

$$THD(V) = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_{fond}}$$

THD(V) < 5% est considéré normal*

- 5% < THD(V) < 8% indique une perturbation notable des harmoniques. Il y a risque d'échauffement, ce qui implique le surdimensionnement des câbles et des sources.
- THD(V) > 8% indique une perturbation importante des harmoniques. Des dysfonctionnements sont probables. Une analyse approfondie et la mise en place de dispositifs d'atténuation sont nécessaires.

*Si la valeur de THD ou thd calculée est inférieure ou égale à 2 %, le déclencheur affiche 0 %.

Figure 80 – Vérification des harmoniques (suite)

2 %

0 %

0 %

0 %

Page suivante

Harmoniques (suite)

thd (I)—Distorsion harmonique totale de courant basée sur le courant **efficace***

$$thd(I) = \frac{\sqrt{\sum_{n=2}^{\infty} I_n^2}}{I_{eff}}$$

thd (V)—Distorsion harmonique totale de tension basée sur la tension **efficace***

$$thd(V) = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_n}$$

*Si la valeur de THD ou thd calculée est inférieure ou égale à 2 %, le déclencheur affiche 0 %.

FFT (transformation accélérée de Fourier)—Niveau de distortion pour les harmoniques de rang 3 à 31 pour

- chaque courant I1, I2, I3 et In
- tension entre phases U12, U23, U31

Figure 80 – Vérification des harmoniques (suite)

Page suivante

Harmoniques (suite)

Figure 80 – Vérification des harmoniques (suite)

74-FR

🕎 Fréquence

Figure 81 – Vérification de la fréquence

Figure 82 – Menu Historiques

Historique du déclencheur

Utiliser le menu Entretien pour consulter l'historique du déclencheur stocké dans les journaux historiques.

Historiques défauts Contacts M2C / M6C alarmes Configurer Micrologic Configurer mesures

Configurer Com.

Entrée

Historiques Historiques Compteur de manœuvres Usure des contacts

Historiques défauts P

Le déclencheur stocke les informations sur le défaut LSIG ayant occasionné les dix derniers déclenchements. Pour chaque défaut, les renseignements suivants sont mis en mémoire :

- Les valeurs de courant de Ir, Isd, li et lg
- Point de consigne d'enclenchement pour la tension et les autres protections
- Date
- Heure (heure, minutes et secondes)

REMARQUE : Les déclenchements par suite de l'utilisation d'une trousse d'essais ne sont pas enregistrés dans le journal historique des déclenchements.

Figure 83 – Vérification des Historiques de défauts

🜈 Historiques des alarmes

Le déclencheur enregistre les mesures pour chacune des dix dernières alarmes actionnées. Pour chaque alarme, les renseignements suivants sont mis en mémoire :

- Indication et valeur du réglage de l'alarme
- Date
- Heure (heure, minutes et secondes)

Défaut Historiques Historiques Historiques défauts 20 / 05 / 00 alarmes alarmes Historiques AI **#** 996A Al≰ AL alarmes 20/05/00 20/05/00 Compteur de manœuvres Al≰ Al≰ 28/02/00 Usure des 28/02/00 contacts Al 🗲 کا∆ 26/02/00 26/02/00 Entrée Entrée Entrée 🔻 Bas Entrée Défaut Défaut Historiques 26 / 02 / 00 28/02/00 alarmes AI **#** 996A AI 4 996A AI 🗲 20 / 05 / 00 AIŧ 28/02/00 AI≨ 26/02/00 Entrée Bas Sortie Entrée Sortie

Figure 84 – Vérification des Historiques des alarmes

FRANÇAIS

🕜 Compteur de manœuvres

Ce menu affiche le nombre maximum de manœuvres (déclenchements ou ouvertures du disjoncteur) depuis l'installation du disjoncteur. Le nombre est obtenu à partir du module de communication de disjoncteur (BCM).

Usure des contacts

Ce menu affiche le niveau de l'usure des contacts pour le contact démontrant le plus d'usure. Lorsque ce nombre atteint 100, il est recommandé de procéder à une inspection visuelle des contacts. Cette fonction ne fonctionne que sur les disjoncteurs MasterPact^{MC} NT et NW.

Figure 86 – Vérification de l'usure des contacts

Configuration des protections

Utiliser les menus de protection pour vérifier la configuration des protections portant sur les courants, les tensions, les autres protections, le délestage de charge en courant et le délestage de charge en puissance.

Consulter l'annexe B pour les réglages par défaut et les gammes de réglage.

Protections en courant

L'écran « Remplacer les réglages Idmtl (A) par I(A) » n'apparaît que si des ajustements de longue durée, de courte durée ou instantanés ont été préalablement effectués à l'écran du menu Idmtl (A). Si l'utilisateur répond Oui, les réglages de Idmtl (A) seront perdus lorsque le menu passe à l'écran d'ajustement de I (A). Si aucun ajustement n'a été effectué à l'écran du menu Idmtl (A), le menu va directement à l'écran d'ajustement de I (A).

L'écran « Remplacer les réglages I (A) par Idmtl (A) » n'apparaît que si des ajustements de longue durée, de courte durée ou instantanés ont été préalablement effectués à l'écran du menu I (A). Si l'utilisateur répond Oui, les réglages de I (A) seront perdus lorsque le menu passe à l'écran d'ajustement de Idmtl (A). Si aucun ajustement n'a été effectué à l'écran du menu Idmtl (A), le menu va directement à l'écran d'ajustement de I (A).

REMARQUE : La protection du neutre est désactivée si la protection Idmtl est sélectionnée.

Figure 87 – Menu Protections

Figure 88 – Vérification de protections en courant

Page suivante

Page suivante

FRANÇAIS

Protections en tension

RISQUE DE DOMMAGES MATÉRIELS

Le réglage de la protection contre la sous-tension (Umin) en dessous de 80 % ou contre le déséquilibre de tension (Udéséq.) au-dessus de 20 % peut faire que le déclencheur ne fonctionne pas comme prévu.

Si cette directive n'est pas respectée, cela peut entraîner des dommages matériels.

Figure 89 – Vérification des protections en tension

¹ Pour avoir une explication du comportement de la protection du système, se reporter à l'annexe D

Les réglages de l'activation de la protection en tension sont des valeurs entre phases.

Les valeurs de déséquilibre sont basées sur les valeurs efficaces réelles des courants triphasés.

L'alarme de sous-tension « retombe » à la perte de la deuxième phase.

REMARQUE : Ne pas régler la protection en sous-tension en dessous de 80 %. Ne pas régler Udéséq. au-dessus de 20 %¹.

500kW

5.00s

1.0s

Autres protections

Figure 90 – Vérification d'autres protections

🕎 Délestage de charge en courant

Le délestage de charge en courant peut être configuré pour l'alarme seulement. Il ne peut pas être utilisé pour déclencher le disjoncteur.

0613333 en courant Off Protections en tension Activation Autres 100% Ir protections 80% tr Délestage | relestage Retombée 100% Ir Délestage relestage P 10s

Figure 91 – Vérification du délestage de charge en courant

Figure 92 – Vérification du délestage de charge en puissance

🕎 Délestage de charge en puissance

Le délestage de charge en puissance peut être configuré pour l'alarme seulement. Il ne peut pas être utilisé pour déclencher le disjoncteur.

-	
Protections en courant	Délestage P relestage
Protections	Off
Autres protections	Activation 10.00MW 3600s
Délestage relestage	Retombée
Délestage relestage	10.00MW 10s
Entrée	Sortie

Sortie

06133331

Section 5—Remplacement du déclencheur

A DANGER

RISQUE D'ÉLECTROCUTION, D'EXPLOSION OU ÉCLAIR D'ARC ÉLECTRIQUE

- L'inobservation de ces directives d'installation, d'essai de déclenchement et d'essai d'injection primaire peut aboutir à la défaillance de certaines fonctions de protection.
- Portez un équipement de protection personnelle (ÉPP) approprié et observez les méthodes de travail électrique sécuritaire. Reportez-vous aux normes NFPA 70E, CSA Z462, NOM 029-STPS ou aux codes locaux en vigueur.
- Le remplacement ou la mise à niveau d'un déclencheur sur place doit être effectué par des personnes qualifiées, selon la définition du Code national de l'électricité (É.-U.), qui sont familiarisées avec l'installation et l'entretien des disjoncteurs de puissance.
- Avant de remplacer ou de mettre à niveau un déclencheur, assurez-vous que le disjoncteur est en bon état de fonctionnement. Si la condition du disjoncteur n'est pas connue, ne pas continuer. Pour obtenir de l'assistance concernant l'évaluation du disjoncteur, appelez l'assistance technique.
- Si le disjoncteur cesse de fonctionner correctement d'une manière quelconque après avoir terminé l'installation du déclencheur, arrêtez immédiatement d'utiliser le disjoncteur et appelez les services d'intervention sur place.
- Coupez l'alimentation de l'appareil avant d'y travailler. Suivez les directives expédiées avec le disjoncteur pour le débrancher et le rebrancher.
- Replacez tous les dispositifs, les portes et les couvercles avant de remettre l'appareil sous tension.

Si ces directives ne sont pas respectées, cela entraînera la mort ou des blessures graves.

Le remplacement du déclencheur doit être effectué par des personnes qualifiées, selon la définition du Code national de l'électricité (É.-U.), qui sont familiarisées avec l'installation et l'entretien des disjoncteurs de puissance.

Avant de remplacer le déclencheur, s'assurer que le disjoncteur est en bon état de fonctionnement. Si la condition du disjoncteur n'est pas connue, ne pas continuer. Pour obtenir de l'assistance concernant l'évaluation de la condition du disjoncteur, appeler l'assistance technique.

Lire cette section en entier avant d'entamer la procédure de remplacement.

REMARQUE : Si le déclencheur à remplacer est un MicroLogic 2.0, 3.0 ou 5.0, commander un bloc connecteur S33101 et un faisceau de câbles de disjoncteur ou de berceau si nécessaire.

Remplacement du déclencheur en fonction des réglages d'entretien pour la réduction d'énergie (ERMS)

A DANGER

RISQUE D'ÉLECTROCUTION, D'EXPLOSION OU ÉCLAIR D'ARC ÉLECTRIQUE

- Utilisez uniquement les déclencheurs MicroLogic P ou H avec l'étiquette bleue (ERMS) des réglages d'entretien pour la réduction d'énergie.
- Consultez les directives d'utilisation 0613IB1317, Guide d'exploitation du module d'E/S et les directives d'utilisation NHA67346, Directives d'installation de l'ERMS, pour les détails d'installation, d'essais et de fonctionnement du système ERMS.

Si ces directives ne sont pas respectées, cela entraînera la mort ou des blessures graves.

En cas de remplacement du déclencheur pour l'utiliser dans un système ERMS, s'assurer qu'il convient à cette application.

Seuls les déclencheurs construits après le code de date 15011 munis de l'étiquette bleue ERMS (figure 93, A) conviennent à une application ERMS. Vérifier si l'étiquette ERMS se trouve à l'angle supérieur droit du déclencheur. Se reporter aux directives d'utilisation NHA67346, *Directives d'installation de l'ERM*S, pour plus d'informations sur les systèmes ERMS.

Figure 93 – Étiquette bleue ERMS

Outils nécessaires

- Tournevis dynamométrique micro-réglable, réglé à 0,8 N•m (7 lb-po) ± 10 % (tournevis dynamométrique Lindstrom MAL500-2 ou équivalent)
- Trousse d'essai des fonctions complètes MicroLogic (n^o de pièce S33595)

Préparation

Noter les réglages des commutateurs

Noter tous les réglages des commutateurs et de protection évoluée du déclencheur pour usage ultérieur.

Déconnexion du disjoncteur

Débrancher le disjoncteur selon les directives d'utilisation du disjoncteur qui l'accompagnent. Le disjoncteur doit être complètement isolé. (Pour les disjoncteurs débrochables, placer le disjoncteur en position Déconnecté. Pour les disjoncteurs fixes, toutes les sources de tension, notamment une alimentation auxiliaire, doivent être déconnectées.)

Retrait du couvercle des accessoires du disjoncteur

Retirer le couvercle des accessoires du disjoncteur comme indiqué dans la section « Installation des accessoires » des directives d'utilisation du disjoncteur expédiées avec ce dernier.

Retrait de la fiche de valeur nominale

Un petit tournevis cruciforme est nécessaire pour retirer la fiche de valeur nominale réglable.

- 1. Ouvrir le couvercle des commutateurs (A).
- 2. Dévisser la vis de montage (B) de la fiche de valeur nominale réglable.
- 3. Retirer la fiche de valeur nominale réglable (C). La mettre de côté pour l'installer dans le déclencheur de rechange.

Retrait de la fiche de valeur nominale

Un petit tournevis cruciforme est nécessaire pour retirer la fiche de valeur nominale réglable.

- 1. Ouvrir le couvercle des commutateurs (A).
- 2. Dévisser la vis de montage (B) de la fiche de valeur nominale réglable.
- 3. Retirer la fiche de valeur nominale réglable (C). La mettre de côté pour l'installer dans le déclencheur de rechange.

Figure 94 – Retrait de la fiche de valeur nominale réglable

Retrait du déclencheur

- 1. Enlever le bloc connecteur (A) du dessus du déclencheur, si présent.
- 2. Desserrer les deux vis (B) du déclencheur.
- 3. Extraire le déclencheur (D).

Figure 95 – Retrait du déclencheur existant

Remplacement du déclencheur

Installation de la pile

Si un déclencheur neuf est installé, installer la pile du déclencheur.

Installer le logement de la pile avec la pile (A) dans le déclencheur en respectant la bonne polarité indiquée sur le compartiment de la pile.

REMARQUE : Le logement de la pile avec la pile se trouve sous le rabat latéral de la boîte d'expédition du déclencheur.

Figure 96 – Installation de la pile

Appuyer sur le bouton d'essai/de remise à zéro (A). Les quatre voyants lumineux (B) doivent s'allumer. S'ils ne s'allument pas, vérifier la polarité de la pile et réessayer. Si les voyants lumineux ne s'allument toujours pas lorsqu'on appuie sur le bouton d'essai/de remise à zéro, arrêter l'installation et contacter le bureau de vente local pour obtenir un service autorisé par l'usine.

Figure 97 – Voyants lumineux

Installation du déclencheur

- Inspecter les broches du connecteur et surfaces du déclencheur. En présence de dommage, de broches non alignées ou de contamination, arrêter l'installation et contacter le bureau de vente local pour obtenir un service autorisé par l'usine.
- 2. Inspecter la base de montage du déclencheur sur le disjoncteur. Enlever tous débris pouvant s'y trouver et s'assurer que tout le câblage des accessoires est correctement acheminé pour le déclencheur à installer. En présence de dommage ou de contamination, arrêter l'installation et contacter le bureau de vente local pour obtenir un service autorisé par l'usine.
- Pour le disjoncteur MasterPact NW uniquement : appuyer manuellement sur l'interverrouillage (A) du déclencheur et le maintenir en place pendant les points 4 à 6 ci-dessous.
- Aligner le rail guide (B) sur le bas du déclencheur avec la fente (C) de rail guide sur la base de montage du déclencheur sur le disjoncteur et faire glisser soigneusement le déclencheur jusqu'à ce qu'il s'arrête.

REMARQUE : Les bases de montage des déclencheurs pour les disjoncteurs MasterPact NT et NW sont montés sur amortisseur et peuvent donc fléchir légèrement

Figure 98 – Installation du déclencheur

AVIS

RISQUE DE DOMMAGES MATÉRIELS

Vérifiez l'installation du déclencheur afin de s'assurer que les raccordements et la mise en place sont corrects.

Si cette directive n'est pas respectée, cela peut entraîner des dommages matériels ou le déclenchement inapproprié du disjoncteur.

- 5. Aligner le déclencheur de sorte que la vis de montage supérieure (A) s'aligne avec la pièce encastrée filetée et visser la vis sur deux tours complets.
- Utiliser un tournevis dynamométrique micro-réglable pour serrer la vis inférieure (B) au couple de 0,8 N•m (7 lb-po) ± 10 %. L'arrière du déclencheur doit être de niveau avec la base de montage.
- Utiliser un tournevis dynamométrique micro-réglable pour serrer la vis supérieure au couple de 0,8 N•m (7 lb-po) ± 10 %. L'onglet de montage doit être de niveau avec l'espaceur de montage et la prise du capteur.

REMARQUE : La face avant du couvercle des commutateurs doit être de niveau avec les surfaces de montage adjacentes. Si ces surfaces ne sont pas de niveau, arrêter l'installation et contacter le bureau de vente local pour obtenir un service autorisé par l'usine.

REMARQUE : S'il s'agit d'une mise à jour à partir d'un déclencheur de base MicroLogic 2.0, 3.0 ou 5.0, le bloc connecteur doit être commandé séparément (no de pièce S33101). Consulter les directives expédiées avec le bloc connecteur pour l'installation sur un disjoncteur.

8. Installer le bloc connecteur (C) sur le dessus du déclencheur.

Figure 99 – Installation du déclencheur

FRAN

- 9. Installer la fiche de valeur nominale réglable sur le déclencheur.
 - a. Ouvrir le couvercle des commutateurs (A) sur le déclencheur neuf.
 - b. Inspecter la zone de montage pour s'assurer de l'absence de débris ou de contamination.
 - c. Enfoncer doucement la fiche de valeur nominale réglable (B) dans le déclencheur neuf.
 - d. Serrer la vis de montage (C) de la fiche de valeur nominale réglable. La fiche se trouvera mise en place, de niveau avec la face avant, par le serrage de la vis.
- Remettre les réglages des commutateurs et de protection évoluée du déclencheur aux valeurs indiquées ci-dessus ou en fonction des résultats des études de coordination.
- 11. Fermer le couvercle des commutateurs (A).

Figure 100 – Installation de la fiche de valeur nominale réglable

Remise en place du couvercle des accessoires du disjoncteur

Replacer le couvercle des accessoires du disjoncteur comme indiqué dans la section « Installation des accessoires » des directives d'utilisation du disjoncteur expédiées avec ce dernier.

Vérification de l'installation du déclencheur

Essai d'injection secondaire

L'installation sur place d'un déclencheur nécessite un essai d'injection secondaire à l'aide d'une trousse d'essai des fonctions complètes. Cela assurera que le déclencheur nouvellement installé fonctionnera correctement. L'essai impose d'ouvrir et de fermer le disjoncteur. Suivre les procédures détaillées dans les directives d'utilisation expédiées avec le disjoncteur et la trousse d'essai des fonctions complètes.

- 1. S'assurer que le disjoncteur est isolé de tous les dispositifs en amont et en aval.
- Exécuter un essai d'injection secondaire comme expliqué dans les directives d'utilisation expédiées avec la trousse d'essai des fonctions complètes. Vérifier si toutes les fonctions utilisables du déclencheur fonctionnent correctement.
- 3. Répéter le point 2 avec le disjoncteur en position ouverte

REMARQUE : Ne pas fermer le disjoncteur pour ce point même si la trousse d'essai indique que le disjoncteur doit être fermé pendant l'essai.

4. Si certains essais échouent, ne pas mettre le disjoncteur en service et contacter le bureau de vente local pour obtenir un service autorisé par l'usine.

Essai d'injection primaire

L'essai d'injection primaire est recommandé pour s'assurer que toutes les connexions du système de déclenchement ont été correctement effectuées. Effectuer l'essai d'injection primaire selon les directives dans le Guide d'essai sur place et d'entretien, directives d'utilisation numéro 0600IB1201.

Vérification du fonctionnement des accessoires

- Accessoires installés Valider le bon fonctionnement de tous les accessoires installés. Consulter les directives d'utilisation correspondantes pour les procédures d'essais de fonctionnement.
- Module de contacts programmables Si le disjoncteur est muni d'un module de contacts programmables M2C ou M6C, valider son bon fonctionnement. Se reporter aux directives d'utilisation des accessoires correspondantes pour les procédures d'essais de fonctionnement.
- Interverrouillage sélectif de zone Si le disjoncteur fait partie d'un système d'interverrouillage sélectif de zone (ZSI), suivre les procédures d'essai ZSI précisées dans la trousse d'essai des fonctions complètes.
- 4. Communications En présence de modules de communication, valider que le disjoncteur a rétabli les communications avec le superviseur.

Configuration du déclencheur

- 1. Si une alimentation auxiliaire est utilisée pour le déclencheur MicroLogic, rebrancher l'alimentation auxiliaire.
- Remettre les réglages des commutateurs et de protection évoluée du déclencheur à leurs valeurs d'origine, telles qu'indiquées au début de cette section.

Reconnexion du disjoncteur

Rebrancher le disjoncteur selon les directives d'utilisation du disjoncteur qui l'accompagnent.

Section 6—Remplacement de la fiche de la valeur nominale réglable

RISQUE D'ÉLECTROCUTION, D'EXPLOSION OU ÉCLAIR D'ARC ÉLECTRIQUE					
 Portez un équipement de protection personnelle (ÉPP) approprié et observez les méthodes de travail électrique sécuritaire. Reportez-vous aux normes NFPA 70E, CSA Z462, NOM 029-STPS ou aux codes locaux en vigueur. 					
 L'installation et l'entretien de cet appareil ne doivent être effectués que par du personnel qualifié. 					
 Coupez l'alimentation de l'appareil avant d'y travailler. Suivez les directives expédiées avec le disjoncteur pour le débrancher et le rebrancher. 					
 Replacez tous les dispositifs, les portes et les couvercles avant de mettre l'appareil sous tension. 					

Si ces directives ne sont pas respectées cela entraînera la mort ou des blessures graves.

Retrait de la fiche de la valeur nominale

- 1. Débrancher le disjoncteur selon les directives d'utilisation du disjoncteur qui l'accompagnent.
- 2. Ouvrir le couvercle des commutateurs (A).
- 3. Noter tous les réglages du déclencheur dans l'annexe E (réglages des commutateurs et ceux effectués à l'aide de l'écran graphique, le cas échéant).
- 4. Dévisser la vis de montage (B) de la fiche.
- 5. Retirer la fiche de la valeur nominale réglable (C).

Figure 101 – Retrait de la fiche de la valeur nominale réglable

REMARQUE : Pour sélectionner une fiche de la valeur nominale de rechange correcte, consulter le catalogue de produits.

REMARQUE : La fiche de la valeur nominale réglable doit être retirée lors d'un essai de rupture diélectrique. Elle doit être installée pour mesurer la tension. Si la fiche est retirée, le disjoncteur se règle par défaut à la valeur nominale d'enclenchement de longue durée de 0,4 x calibre du capteur (In) et un retard de longue durée du réglage sélectionné avant le retrait de la fiche de la valeur nominale.

Installation de la nouvelle fiche de la valeur nominale réglable

- 1. Inspecter la zone de montage pour s'assurer de l'absence de débris ou de contamination.
- 2. Enfoncer doucement la fiche de valeur nominale réglable (A) dans le déclencheur neuf.
- 3. Serrer la vis de montage (B) de la fiche de la valeur nominale réglable.
- 4. Régler le déclencheur aux valeurs indiquées dans l'annexe E ou en fonction des résultats des études de coordination.
- 5. Fermer le couvercle (C) des commutateurs.

Figure 102 – Installation de la nouvelle fiche de la valeur nominale réglable

Section 7—Remplacement de la pile

A DANGER

RISQUE D'ÉLECTROCUTION, D'EXPLOSION OU ÉCLAIR D'ARC ÉLECTRIQUE

- Portez un équipement de protection personnelle (ÉPP) approprié et observez les méthodes de travail électrique sécuritaire. R
- eportez-vous aux normes NFPA 70E, CSA Z462, NOM 029-STPS ou aux codes locaux en vigueur.
- L'installation et l'entretien de cet appareil ne doivent être effectués que par du personnel qualifié.
- Coupez l'alimentation de l'appareil avant d'y travailler. Suivez les directives expédiées avec le disjoncteur pour le débrancher et le rebrancher.
- Replacez tous les dispositifs, les portes et les couvercles avant de mettre l'appareil sous tension.

Si ces directives ne sont pas respectées, cela entraînera la mort ou des blessures graves.

Déconnexion du disjoncteur

Débrancher le disjoncteur selon les directives d'utilisation du disjoncteur qui l'accompagnent.

Retrait du couvercle des accessoires

Retirer le couvercle des accessoires du disjoncteur comme indiqué dans la section « Installer les accessoires » des directives d'utilisation du disjoncteur expédiées avec ce dernier.

Déplacement du module de tenue

REMARQUE : Certains disjoncteurs à châssis R et NS1600b–NS3200 possèdent un module de tenue qui doit être déplacé pour accéder à la pile.

Desserrer les vis (A) fixant le module de tenue (B). Basculer le module sur le côté afin d'accéder au couvercle de la pile du déclencheur. Ne pas retirer le connecteur du module de tenue.

Figure 103 – Déplacement du module de tenue

Remplacement de la pile

1. Insérer le bout d'un petit tournevis plat dans l'encoche du couvercle du logement de la pile et le faire pivoter pour dégager le couvercle (A) de son logement.

Figure 104 – Retrait du couvercle de la pile

- 2. Retirer la pile (A).
- 3. Insérer une pile neuve (B). S'assurer que la polarité est correcte.
- 4. Replacer le couvercle (C) du logement de la pile.

Figure 105 – Remplacer la pile

Remise en place du module de tenue

REMARQUE : Si le module de tenue a été déplacé pour accéder à la pile, remettre en place le module (A) et serrer les vis (B).

Figure 106 – Remettre en place le module de tenue

Remise en place du couvercle des accessoires

Replacer le couvercle des accessoires du disjoncteur comme indiqué dans la section « Installation des accessoires » des directives d'utilisation du disjoncteur expédiées avec ce dernier.

Reconnexion du disjoncteur

Rebrancher le disjoncteur selon les directives d'utilisation du disjoncteur qui l'accompagnent.

Annexe A—Organigrammes des affichages graphiques

Organigramme du menu mesures

V_{3n}

(3,.,31)

 $V_{3n} = 7 \%$

Organigramme du menu entretien

Organigramme du menu Protections

Annexe B—Réglages par défaut et tolérances

Réglages par défaut

Tableau 14 – Réglages par défaut—commutateurs

Description	Symbole	Valeur par défaut
Enclenchement de longue durée	lr	Maximum
Retard de longue durée	tr	Minimum
Enclenchement de courte durée	lsd	Minimum
Retard de courte durée	tsd	Minimum
Enclenchement sur défaut à la terre	lg	Minimum
Retard de défaut à la terre	tg	Minimum
Instantané	li	Minimum

Tableau 15 – Réglages par défaut—Menu Entretien

Sous-menu	Description	Article	Valeur par défaut	Gamme de réglage
	Type d'alarme	S#	Non affecté	Non affecté, Isd, Ir, Idéséq. (Voir le tableau 9)
Contacts M2C/M6C	Configurer	S#	Accrochage permanent	Accrochage permanent, temporisation, sans accrochage, forcé à 0, forcé à 1
	Langue		English US	Deutsch, English US, English UK, Español, Français
	Date/heure			
	Sélection disjoncteur	Norme	s/o	Non def, ANSI, IEC, UL, IEC/GB
		disjoncteur	s/o	
Configurer MicroLogic		type	s/o	
		Numéro du disjoncteur	0000	0000-FFFF
	Signe puissance		P+	P+, P-
	Transfo de U	Primaire	690	000–690
		Secondaire	690	000–690
	Fréquence réseau		50-60 Hz	50-60 Hz, 400 Hz
	Type de réseau		3Φ 4 fils 4 TC	3Φ 4fils 4TC, 3Φ 4fils 3TC, 3Φ 3fils 3TC
	Calcul I moyen	Durée	15 min.	5–60 min.
Configurer mesures	Calcul P moyen	Type fenêtre	glissante	glissante, fixe
		Durée	15 min.	5–60 min.
	Convention de signe		IEEE	IEEE, IEEE alt, IEC
Quality	Paramètre com.			
	Réglage à distance		Non	oui, non
	Commande à distance		Auto	Auto, manu
	Infos IP			

Tableau 16 – Réglages par défaut—Menu Protections

Sous- menu	Description	Symbole	Article	Valeur par défaut	Gamme de réglage	Tolérance
	Enclenchement de longue durée	lr		Maximum		±10%
	Retard de longue durée	tr		Minimum		-20%, +0%
	Enclenchement de courte durée	lsd		Minimum		±10%
	Retard de courte durée	tsd		Minimum		
	Instantané	li		Minimum		±10%
	Défaut à la terre (déclencheur 5.0H)	<u>ا</u> لج	Aucune protection			
			Mode	Trip	Trip	
	Défaut à la terre (déclencheur 6.0H)	۱ <u>≠</u>	Activation	Réglage des commutateurs	$ \begin{split} & I_n \leq 400 \text{ A}: 30\% - 100\% \text{ I}_n \\ & 400 < I_n \leq 1200 \text{ A}: 20\% - 100\% \text{ I}_n \\ & 1200 \text{ A} < I_n: 500 \text{ A} - 1200 \text{ A} \end{split} $	±10%
			Retard d'activation	Réglage des commutateurs	0,1–0,4 s	-20%, +0%
	Courant de neutre	Ineutre		Off	Off, N/2, N, 1.6N	
			Mode	Off	Alarme, off	
			Activation	1200 A	0,2 x I _n -1200 A	±15%
	Alarme de défaut à la terre	l <i>≰</i> alarme	Retard d'activation	10.0 s	1,0–10,0 s	-20%, +0%
			Retombée	1200 A	20 A–activation	±15%
			Retard de retombée	1.0 s	1,0–10,0 s	-20%, +0%
	Déséquilibre de courant	ldéséq.	Mode	Off	Alarme, trip, off	
			% d'activation	60%	5–60%	-10%, +0%
			Retard d'activation	40 s	1-40 s	-20%, +0%
Protections en courant			% de retombée	% d'activation I _{déséq.}	5%–% d'activation	-10%, +0%
			Retard de retombée	10 s	10-360 s	-20%, +0%
			Mode	Off	Alarme, trip, off	
			Activation	In	0,2 x I _n –I _n	±6,6%
	Demande de courant max. de	I1max	Retard d'activation	1500 s	15–1500 s	-20%, +0%
	la phase 1		Retombée	Activation I ₁ max	0,2 x I _n –activation	±6,6%
			Retard de retombée	15 s	15–3000 s	-20%, +0%
			Mode	Off	Alarme, trip, off	
	Domondo do ocurant mov. do		Activation	I _n	0,2 x I _n –I _n	±6,6%
	la phase 2	l2max	Retard d'activation	1500 s	15–1500 s	-20%, +0%
			Retombée	Activation I ₂ max	0,2 x I _n –activation	±6,6%
			Retard de retombée	15 s	15–3000 s	-20%, +0%
			Mode	Off	Alarme, trip, off	
	Domondo do ocurant mov. do		Activation	I _n	0,2 x I _n –I _n	±6,6%
	la phase 3	13max	Retard d'activation	1500 s	15–1500 s	-20%, +0%
			Retombée	Activation I ₃ max	0,2 x I _n –activation	±6,6%
			Retard de retombée	15 s	15–3000 s	-20%, +0%
			Mode	Off	Alarme, trip, off	
	Demondo do ocurrent menu		Activation	I _n	0,2 x l _n –l _n	±6,6%
	pour le neutre	In max	Retard d'activation	1500 s	15–1500 s	-20%, +0%
			Retombée	Activation I _n max	0,2 x I _n -activation	±6,6%
			Retard de retombée	15 s	15–3000 s	-20%, +0%

Page suivante

FRANÇAIS

Tableau 16	– Réglages	par défaut-	–Menu	Protections	(suite)
------------	------------	-------------	-------	-------------	---------

Sous- menu	Description	Symbole	Article	Valeur par défaut	Gamme de réglage	Tolérance
			Mode	Off	Alarme, trip, off	
			Activation	100 V	100 V–activation Umax	-5%, +0%
	Tension minimale (sous-	Umin	Retard d'activation	5 s	1,2-5 s	-0%, +20%
	lension)		Retombée	Activation Umin	Activation Umin–1200 V	-5%, +0%
			Retard de retombée	1,2 s	1,2-36 s	-0%, +20%
			Mode	Off	Alarme, trip, off	
			Activation	725 V	Umin–1200 A	-0%, +5%
Protections	Tension maximale (surtension)	Umax	Retard d'activation	5 s	1,2-5 s	-0%, +20%
entension			Retombée	Activation Umax	100 V–activation Umax	-0%, +5%
			Retard de retombée	1,2 s	1,2-36 s	-0%, +20%
			Mode	Off	Alarme, trip, off	
			Activation	20%	2–20% ¹	-10%, +0%
	Déséquilibre de tension	Udéséq.	Retard d'activation	40 s	1-40 s	-20%, +0%
			Retombée	Activation Udéséq.	2%–activation Udéséq.	-10%, +0%
			Retard de retombée	10 s	10-360 s	-20%, +0%
			Mode	Off	Alarme, trip, off	
	Inversion de puissance		Activation	500 kW	5–500kW	± 2,5%
		rP	Retard d'activation	20 s	0,2-20 s	-0%, +20%
			Retombée	Activation rP	5kW–activation rP	± 2,5%
			Retard de retombée	1 s	1-360 s	-0%, +20%
	Fréquence minimale (sous-	Fmin	Mode	Off	Alarme, trip, off	,
			Activation	45 Hz	45 Hz–activation Fmax	± 0.5 Hz
Autres			Retard d'activation	5 s	0.2-5 s	-0%. +20%
protections	fréquence)		Retombée	Activation Fmin	Activation Fmin–440 Hz	± 0.5 Hz
			Retard de retombée	1 s	1-36 s	-0%, +20%
			Mode	Off	Alarme, trip, off	0.00, 20.00
			Activation	65 Hz	Activation Fmin–440 Hz	± 0.5 Hz
	Fréquence maximale	Fmax	Retard d'activation	55	0.2-5 s	-0% +20%
	(surfréquence)		Retombée	Activation Emax	45 Hz–activation Emax	+ 0.5 Hz
			Retard de retombée	1 s	1-36 s	-0% +20%
Sens de rotation des	Sens de rotation des phases	_	Séquence	Sens de rotation: phase 1, phase 3, phase 2	Sens de rotation: phase 1, phase 2, phase 3 ou sens de rotation: phase 1, phase 3, phase 2	
phases			Mode	Off	Alarme, off	
			Mode	Off	Off, on	
			% d'activation	100% Ir	50% lr–100% lr	±6%
Délestage relestage l	Délestage relestage l	_	% de retard d'activation	80% tr	20–80% tr	-20%, +0%
			% de retombée	Activation délestage relestage l	30%–% d'activation délestage relestage l	±6%
			Retard de retombée	10 s	10-600 s	-20%, +0%
			Mode	Off	Off, on	
			Activation	10.000 kW	200–10,000 kW	± 2.5%
Délestage	Délectore relectore P		Retard d'activation	3600 s	10-3600 s	-20%, +0%
relestage P	Delesiage relesiage P		Retombée	Activation délestage relestage P	100 kW–% d'activation délestage relestage P	± 2.5%
			Retard de retombée	10 s	10-3600 s	-20%, +0%

¹ Ne pas regler au-dessus de 20%.

Gamme des mesures et précision

Tableau 17 – Gamme des mesures et précision

Article	Description	Symbole	Gamme	Tolérance
	Courant instantané de la phase 1	I ₁	0 à 32 kA	±1,5%
	Courant instantané de la phase 2	I ₂	0 à 32 kA	±1,5%
	Courant instantané de la phase 3	l ₃	0 à 32 kA	±1,5%
	Courant instantané du neutre	l _n	0 à 32 kA	±1,5%
Courant	Courant instantané dans la terre	<i>\≰</i>	0 à 32 kA	±1,5%
instantané	Courant instantané max. de la phase 1	l ₁ max	0 à 32 kA	±1,5%
	Courant instantané max. de la phase 2	l ₂ max	0 à 32 kA	±1,5%
	Courant instantané max. de la phase 3	l ₃ max	0 à 32 kA	±1,5%
	Courant instantané max. du neutre	l _n max	0 à 32 kA	±1,5%
	Courant instantané max. dans la terre	l <i>≛</i> max	0 à 32 kA	±1,5%
	Demande de courant de la phase 1	Ī ₁	0 à 32 kA	±1,5%
	Demande de courant de la phase 2	Ī ₂	0 à 32 kA	±1,5%
	Demande de courant de la phase 3	Ī ₃	0 à 32 kA	±1,5%
Demande de	Demande de courant du neutre	Īn	0 à 32 kA	±1,5%
courant	Demande de courant max. de la phase 1	Ī ₁ max	0 à 32 kA	±1,5%
	Demande de courant max. de la phase 2	Ī ₂ max	0 à 32 kA	±1,5%
	Demande de courant max. de la phase 3	Ī ₃ max	0 à 32 kA	±1,5%
	Demande de courant max. du neutre	Ī _n max	0 à 32 kA	±1,5%
	Tension instantanée entre les phases 1 et 2	U ₁₂	0 à 1200 V	±0,5%
	Tension instantanée entre les phases 2 et 3	U ₂₃	0 à 1200 V	±0,5%
	Tension instantanée entre les phases 3 et 1	U ₃₁	0 à 1200 V	±0,5%
Tanaian	Tension instantanée entre la phase 1 et le neutre	V _{1n}	0 à 1200 V	±0,5%
rension	Tension instantanée entre la phase 2 et le neutre	V _{2n}	0 à 1200 V	±0,5%
	Tension instantanée entre la phase 3 et le neutre	V _{3n}	0 à 1200 V	±0,5%
	Tension moyenne entre phases	Umoyen 3Φ	0 à 1200 V	±0,5%
	Déséquilibre de tension	Udéséq. 3⊕	0 à 100 V	±0,5%
	Puissance active instantanée	Р	0 à 32 MW	±2%
Puissance	Puissance réactive instantanée	Q	0 à 32 Mvar	±2%
instantanee	Puissance apparente instantanée	S	0 à 32 MVA	±2%
Facteur de puissance	Facteur de puissance	PF	-1 à +1	±0,01%
	Demande de puissance active	Р	0 à 32 MW	±2%
	Demande de puissance réactive	Q	0 à 32 Mvar	±2%
Demande de	Demande de puissance apparente	S	0 à 32 MVA	±2%
puissance	Demande de puissance active max. depuis la dernière remise à zero	Pmax	0 à 32 MW	±2%
	Demande de puissance réactive max. depuis la dernière remise à zero	Qmax	0 à 32 Mvar	±2%
	Demande de puissance apparente max. depuis la dernière remise à zero	Smax	0 à 32 MVA	±2%
	Puissance active totale	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
Total des	Puissance réactive totale	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
energies	Puissance apparente totale	E. S	-10 ¹⁰ –10 ¹⁰ KVAh	±2%
Énergie	Puissance active totale consommée	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
consommée	Puissance réactive totale consommée	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
Énergie	Puissance active totale fournie	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
fournie	Puissance réactive totale fournie	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%

Page suivante

Tableau 17 – Gamme des mesures et précision (suite)

Article	Description	Symbole	Gamme	Tolérance
	Courant fondamental	I	0,05 x ln à 1,5 x ln	±1,5% ¹
	Tension fondamentale	U	30 à 1150 V	±0,5%
	Puissance active fondamentale	Р	0,15–13,8 kW	±2%
	Demande de puissance fondamentale	Q	0,15–13,8 kW	±2%
	Puissance apparente fondamentale	S	0,15–13,8 kW	±2%
Harmoniques	Distorsion harmonique totale de courant basée sur le courant fondamental	THD(I)	1,5–1000%	±5%
	Distorsion harmonique totale de tension basée sur la tension fondamentale	THD(V)	1,5–1000%	±5%
	Distorsion harmonique totale de courant basée sur le courant efficace	thd(I)	1,5–1000%	±5%
	Distorsion harmonique totale de tension basée sur la tension efficace	thd(V)	1,5–1000%	±5%
	FFT	FFT	1,5–1000%	±5%
Fréquence	Fréquence réseau	F	45 à 440 Hz	± 0,1 Hz

¹ Pour la partie de la gamme de 0,7 x In–1,5 x In

Annexe C—Accès réseau/communication

Valeurs lisibles à distance

L'option de communication peut être utiliser pour accéder au déclencheur MicroLogic à distance à l'aide du logiciel System Manager Software (SMS), version 3.3 ou ultérieures, ou autre logiciel de gestion de systèmes en réseau. Pour plus d'informations sur le logiciel SMS, voir le catalogue de produits.

Article	Description	Symbole
	Courant instantané de la phase 1	I ₁
	Courant instantané de la phase 2	l ₂
	Courant instantané de la phase 3	l ₃
	Courant instantané du neutre	l _n
	Courant instantané dans la terre	<i>\</i> ≰
	Courant moyen de la phase 1	l ₁ moy
	Courant moyen de la phase 2	l ₂ moy
	Courant moyen de la phase 3	l ₃ moy
	Courant moyen du neutre	l _n moy
Courant	Courant instantané moyen dans la terre	I≰moy
Courant	Courant instantané max. de la phase 1	l ₁ max
	Courant instantané max. de la phase 2	l ₂ max
	Courant instantané max. de la phase 3	l ₃ max
	Courant instantané max. du neutre	l _n max
	Courant instantané max. dans la terre	I <i>≛</i> max
	Déséquilibre de courant instantané de la phase 1	l ₁ déséq.
	Déséquilibre de courant instantané de la phase 2	l ₂ déséq.
	Déséquilibre de courant instantané de la phase 3	l ₃ déséq.
	Déséquilibre de courant instantané du neutre	l _n déséq.
	Déséquilibre de courant instantané max.	l déséq. max
	Demande de courant de la phase 1	I ₁
	Demande de courant de la phase 2	l ₂
	Demande de courant de la phase 3	l ₃
Demonstrate	Demande de courant du neutre	l _n
courant	Demande de courant max. depuis la dernière Ràz de la phase 1	l ₁ max
oodram	Demande de courant max. depuis la dernière Ràz de la phase 2	l ₂ max
	Demande de courant max. depuis la dernière Ràz de la phase 3	l ₃ max
	Demande de courant max. depuis la dernière Ràz du neutre	l _n max
	Chronotimbrage par horodateur de la demande de courant max.	

Tableau 18 – Valeurs lisibles à distance

Page suivante

Tableau 18 – Valeurs lisibles à distance (suite)

FRANÇAIS

Page suivante

Article	Description	Symbole
	Usure des contacts	
0	Compteur de manœuvres depuis la dernière RAZ	
Completins	Date/heure de la dernière RAZ du compteur de manœuvres	
	Total du compteur de manœuvres (durée de vie)	
	Configuration de la date et l'heure	
	Mot de passe	
	Code d'identification du déclencheur	
	Nom d'identification du déclencheur	
	Algorithme de calcul des mesures	
	Convention de signe	
	Mode de mesure de l'énergie totale	
Configuration	Facteurs de proportionnalité	
Conliguration	Intervalle des fenêtres de calcul du courant moyen	
	Indication de la qualité de l'alimentation	
	Mode de calcul de la puissance moyenne	
	Intervalle des fenêtres de calcul de la puissance moyenne	
	Indication de charge de la pile	
	Affectation des contacts programmables	
	Configuration des contacts programmables	
	Capture de forme d'onde	
	Courant nominal du disjoncteur	
	Type de protection du neutre	
	Réglages de la protection de longue durée	
	Réglages de la protection de courte durée	
	Réglages de la protection instantanée	
Protection	Réglages de la protection contre les défauts à la terre	
	Réglages de la protection de déséquilibre de courant	
	Réglages de l'alarme I <i>≰</i>	
	Réglages de la protection en courant maximum	
	Réglages de la protection en tension	
	Réglages d'autres fonctions de protection	

Tableau 18 – Valeurs lisibles à distance (suite)

Annexe D—Architecture de l'alimentation en tension du déclencheur

RISQUE DE DOMMAGES MATÉRIELS

Le réglage de la protection en sous-tension (Umin) en dessous de 80 % ou en déséquilibre de tension (Udéséq.) au-dessus de 20 % peut entraîner un fonctionnement du déclencheur autre que celui prévu.

Si cette directive n'est pas respectée. cela peut entraîner des dommages matériels.

Le déclencheur possède une alimentation en tension triphasée interne intégrée qui apparaît au système comme une charge triphasée configurée en triangle (figure 107). Cette alimentation est une charge triphasée par elle-même et elle injecte une tension sur une phase ouverte (figure 108). L'impact d'une charge triphasée configurée en triangle sur des fonctions de protection à base de tension est le suivant :

Figure 107 – Alimentation triphasée interne intégrée

Figure 108 – Phase ouverte sur une alimentation triphasée

Protection en tension minimale

La fonction de protection minimale en (sous) tension est basée sur la mesure de tension entre phases.

Pour la configuration 1 (figure 109), 2 (figure 110) ou 3 (figure 111) du circuit, si un fusible s'ouvre, le déclencheur injecte une tension sur la phase ouverte. En conséquence, le déclencheur mesurera avec précision la tension injectée sur la phase ouverte. La mesure de la tension entre phases (U_{LL}) sera plus élevée que lorsque la phase ouverte est à zéro volt. Le déclencheur mesurera également avec

précision la tension phase-neutre (V_{LN}) injectée sur la phase ouverte et affichera une valeur supérieure à zéro.

Figure 109 – Configuration 1 du circuit

Figure 111 – Configuration 3 du circuit

Pour la configuration 4 (figure 112) du circuit, le déclencheur a un chemin de retour via le transformateur et la tension injectée sur la phase ouverte sera de zéro. Dans cette configuration, le déclencheur mesurera avec précision zéro volt sur V_{IN} .

Figure 112 – Configuration 4 du circuit

Pour être sûr que le système de déclenchement MicroLogic fonctionne comme prévu quelle que soit la configuration du système, l'utilisateur doit limiter la gamme d'enclenchement en sous-tension entre 80 % et 100 % de la tension nominale entre phases du système.

Protection en déséquilibre de tension

La fonction de protection en déséquilibre de tension est basée sur la mesure de tension entre phases.

Pour la configuration 1 (figure 109), 2 (figure 110) ou 3 (figure 111) du circuit, si un fusible s'ouvre, le déclencheur injecte une tension sur la phase ouverte. En conséquence, le déclencheur mesurera avec précision la tension injectée sur la phase ouverte.

La mesure de la tension entre phases (U_{LL}) sera plus élevée que lorsque la phase ouverte est à zéro volt. Le déclencheur mesurera également avec précision la tension phase-neutre (V_{LN}) injectée sur la phase ouverte et affichera une valeur supérieure à zéro.

Pour la configuration 4 (figure 112) du circuit, le déclencheur a un chemin de retour via le transformateur et la tension injectée sur la phase ouverte sera de zéro. Dans cette configuration, le déclencheur mesurera avec précision zéro volt sur V_{LN} .

Pour être sûr que le système de déclenchement MicroLogic fonctionne comme prévu quelle que soit la configuration du système, l'utilisateur doit limiter les réglages de la protection en déséquilibre de tension entre 0 et 20 %.

Perte de plusieurs phases

Ne pas utiliser la protection en tension minimale ni la protection en déséquilibre de tension pour déterminer la perte de plusieurs phases.

- L'alimentation de tension interne nécessite la présence d'une tension sur deux phases pour fonctionner. (L'alimentation de tension possède une gamme de fonctionnement de 100 V à 690 V.)
- Dans les configurations 1 (figure 109), 2 (figure 110) ou 3 (figure 111) du circuit, lorsque plusieurs phases sont perdues, le déclencheur mesurera la tension du système de la phase restante sur l'ensemble des trois phases. Par exemple, si deux phases sont perdues sur un système en triangle triphasé de 480 V, le déclencheur mesurera 480 V_{LL} sur les trois phases.

Annexe E—Réglages du déclencheur

Entrer les valeurs des réglages dans les tableaux de configuration.

Tableau 19 – Réglages–commutateurs

Description	Symbole	Réglages
Enclenchement de longue durée	lr	
Retard de longue durée	tr	
Enclenchement de courte durée	Isd	
Retard de courte durée	tsd	
Enclenchement sur défaut à la terre	lg	
Retard de défaut à la terre	tg	

Tableau	20 –	Réglages	–Menu	Entretien
---------	------	-----------------	-------	-----------

Sous-menu	Description	Article	Réglage du déclencheur
Contacts M2C/M6C	Type d'alarme	S#	
	Configuration	S#	
	Langue		
	Date/heure		
	Sélection disjoncteur	Norme	
		Disjoncteur	
Configurar Microl agia		Туре	
Configurer MicroLogic		Numéro du disjoncteur	
	Signe puissance		
	Transfo de U	Primaire	
		Secondaire	
	Fréquence réseau		
Configurer mesures	Type de réseau		
	Calcul I moyen	Durée	
	Calcul P moyen	Type fenêtre	
		Durée	
	Convention de signes		
Configurer com.	Paramètre com.		
	Réglage à distance		
	Commande à distance		
	Infos IP		

Tableau 21 – Réglages-Menu Protections

Sous-menu	Description	Symbole	Article	Réglage du déclencheur
	Enclenchement de longue durée	lr		
	Retard de longue durée	tr		
	Enclenchement de courte durée	lsd		
	Retard de courte durée	tsd		
	Instantané	li		
	Enclenchement de longue durée Idmtl	ldmtl Ir		
	Retard de longue durée Idmtl	ldmtl tr		
	Mode Idmtl			
	Enclenchement de courte durée Idmtl	ldmtl Isd		
	Retard de courte durée Idmtl	ldmtl tsd		
	Instantané Idmtl	ldmtl li		
			Mode	
	Défaut à la terre (déclencheur 6.0H)	۱ <u></u>	Activation	
			Retard d'activation	
	Courant de neutre	Ineutre		
			Mode	
			Activation	
	Alarme de défaut à la terre	l <i>≰</i> alarme	Retard d'activation	
			Retombée	
			Retard de retombée	
			Mode	
Protections en courant		ldéséq.	% d'activation	
	Déséquilibre de courant		Retard d'activation	
			% de retombée	
			Retard de retombée	
		11max	Mode	
			Activation	
	Demande de courant max. phase 1		Retard d'activation	
			Retombée	
			Retard de retombée	
		12max	Mode	
	Demande de courant max. phase 2		Activation	
			Retard d'activation	
			Retombée	
			Retard de retombée	
	Demande de courant max. phase 3	13max	Mode	
			Activation	
			Retard d'activation	
			Retombée	
			Retard de retombée	
	Demande de courant max. du neutre	In max	Mode	
			Activation	
			Retard d'activation	
			Retombée	
			Retard de retombée	
	1	1		

Page suivante

Tableau 21 -	 Réglages- 	–Menu	Protections	(suite)
--------------	-------------------------------	-------	-------------	---------

Sous-menu	Description	Symbole	Article	Réglage du déclencheur
	Tension minimale (sous-tension)	Umin	Activation	
			Retard d'activation	
			Retombée	
			Retard de retombée	
		Umax	Activation	
Protections en tension	Tension maximale (surtension)		Retard d'activation	
			Retombée	
			Retard de retombée	
			Activation	
	Décéquilibre de tension	lldácáa	Retard d'activation	
	Desequilibre de tension	Udeseq.	Retombée	
			Retard de retombée	
			Activation	
	Inversion de nuissence	rP	Retard d'activation	
			Retombée	
			Retard de retombée	
			Activation	
	Fréquence movimele (ourfréquence)	Emoy	Retard d'activation	
Autres protections	Frequence maximale (surrequence)	Fillax	Retombée	
			Retard de retombée	
		Fmin	Activation	
	Fréquence minimale (sous-		Retard d'activation	
	fréquence)		Retombée	
			Retard de retombée	
	Sens de rotation des phases	_	Mode	
			Séquence	
Délestage relestage I	Délestage relestage l		Mode	
			% d'activation	
			% de retard	
			d'activation	
			% de retombée	
			Retard de retombée	
Délestage relestage P	Délestage relestage P	_	Mode	
			Activation	
			Retard d'activation	
			Retombée	
			Retard de retombée	

Index

Α

Afficheur graphique écran 33 menus 36 navigation 35 organigramme 97 Affinement des réglages des commutateurs 60 Alarme de courant maximale 45 Alarmes description 22 historique 76 Alimentation externe 19 Architecture de l'alimentation en tension 108 Autres protections vérification 81

В

Bouton d'essai de défaut à la terre 64 d'essai/de remise à zéro 63

С

Calcul I moyen 53 Calcul P moyen 53 Commande à distance 57 Commutateurs description 8 enclenchement de longue durée 11 enclenchement instantané 15 enclenchement sur défaut à la terre 16 réglages 58 retard de courte durée 14 retard de défaut à la terre 16 retard de longue durée 11 Commutateurs réglables 8, 44 Compteur de manœuvres description 34 menu 76 Contacts d'alarme. Voir Contacts programmables M2C/M6C Contacts programmables description 40-41 Contacts programmables M2C/M6C description du kit 27 description du menu 40 réglage du menu 44 Convention de signe 54 Couvercle des commutateurs

fente d'ouverture 58 illustration 7

D

Déclencheur 5.0H 9 6.0H 10 architecture de l'alimentation en tension 108 configuration 47 désignation de la série 7 historique 75 réarmement 63 réglages code d'usure des contacts 49 date 48 famille du disjoncteur 49 fréquence 51 heure 48 langue 47 normes 49 protection de longue durée 11 protection des appareils contre les défauts à la terre 16 protection instantanée 15 tableaux d'enregistrement 111 Transfo de U 50 type de disjoncteur 49 remplacement 83 vérification 31 vérification de l'état 65 Déclencheur Micrologic Voir Déclencheur Délestage de charge en courant alarme 23 description 27 menu 43 vérification 82 Délestage de charge en puissance alarme 45 menu 43 vérification 82 Délestage en courant. Voir Délestage de charge en courant Déséquilibre de courant alarme 45 protection 25 Déséquilibre de tension alarme 45 architecture de tension 110 protection 25

Désignation de la protection 7

Е

Enclenchement courte durée 14 défaut à la terre 16 instantané 15 longue durée 11 Essai d'injection primaire 31 Essai d'injection secondaire 31 État déclencheur 65 pile 65

F

Fiche de capteur 7 Fiche de la valeur nominale description 7, 12 remplacement 91 Fiche de la valeur nominale réglable 7, 12 Fonctionnement 66 Fonctions de déclenchement 7–8 Fréquence alarme 45 entrer 51 menu 39 vérification 75

Η

Harmoniques description 28 forme d'onde 28 menu 39 Historiques description 40 Historiques de défauts 75

I

I²t activé 14
I²t désactivé 14
Idmtl. *voir* Protection de longue durée
Ig. *Voir* Commutateur d'enclenchement de protection contre les défauts à la terre
Ii. *Voir* Protection instantanée
In. *Voir* Fiche du capteur
Indicateur d'usure des contacts dispositif de mesure 49 réglage du code 49 vérification 76 Information du disjoncteur 49 Interverrouillage sélectif de zone 61 câblage 62 cavaliers 62 description 27 installation 61 Inversion de phase alarme 45 vérification 81 Ir. *Voir* Commutateur d'enclenchement de longue durée Isd. *Voir* Commutateur d'enclenchement de courte

d'enclenchement de courte durée

L

LSI. *Voir* Déclencheur, 5.0H LSIG *Voir* Déclencheur 6.0H

Μ

Menu Autres protections 43 Menu Configurer Com. 41 Menu Configurer mesures description 40-41 réglage 51 Menu Configurer Micrologic description 41 réglage 47 Menu Entretien description 40 organigramme 98 réglage 44 réglages par défaut 100 Menu Mesures description 37 organigramme 97 vérification 66 Menu Protections organigramme 99 réglages par défaut 101 vérification 77 Menu Protections en tension 43 Menus autres protections 43, 81 compteur de manœuvres 76 configurer Com. 41 configurer mesures 40-41 configurer Micrologic 41 contacts M2C/M6C 40-41 contacts programmables M2C/M6C 40 délestage de charge en courant 43, 82

délestage de charge en puissance 43, 82 entretien 40 fréquence 75 harmoniques 39 historiques 40 historiques défauts 75 historiques des alarmes 76 mesure 37 Micrologic setup 20 niveaux des courants 37, 67 niveaux des énergies 38, 70 niveaux des puissances 38, 69 niveaux des tensions 37, 68 protections en courant 42, 77 protections en tension 43, 80 usure des contacts 76 Mesure gamme 103 précision 103 Mesures lisibles à distance 105 Micrologic setup menu description 20 Module de communication 8, 55

Ν

Niveaux d'enclenchement, réglage 58 Niveaux des courants affichage 33 menu 37 vérification 67 Niveaux des énergies menu 38 vérification 70 Niveaux des puissances menu 38 vérification 69 Niveaux des tensions menu 37 vérification 68 Nom du produit 7

0

Organigramme Menu entretien 98 menu mesures 97 menu protections 99

Ρ

Perte de plusieurs phases 110 Pile remplacement 93 vérification de l'état 65 Prise d'essai 63

Déclencheurs électroniques Micrologic 5.0H et 6.0H

Protection alarmes 22 autres 81 courte durée 14 défaut à la terre 16 délestage de charge 26 délestage de charge en courant 43 délestage de charge en puissance 43 déséquilibre de courant 25 déséguilibre de tension 25 en courant 77 fréquence maximale 26 fréquence minimale 26 instantanée 15 inversion de puissance 25 longue durée 11 neutre 20 réglages par défaut 101 sens de rotation des phases 27 tension 80 tension maximale 24 tension minimale 24 Protection contre l'inversion de puissance alarme 45 description 25 Protection contre les défauts à la terre alarme 45 commutateur d'enclenchement 16 commutateur de retard 16 vérification de la fonction 64 Protection de courte durée alarme 45 commutateur d'enclenchement 14 commutateur de retard 14 Protection de fréquence maximale 26 Protection de fréquence minimale 26 Protection de longue durée alarme 45 commutateur d'enclenchement 11 commutateur de retard 11 description 11-12 retard I2t 11 Retard Idmtl Protection de tension maximale 24 Protection de tension minimale 24

Protection des appareils contre les défauts à la terre description 16 Protection du neutre 20 Protection du sens de rotation des phases 27 Protection évoluée vérification des valeurs 66 Protection instantanée commutateur d'enclenchement 15 description 15 Protections en courant 42 vérification 77 Protections en tension alarme 45 vérification 80

R

Rapport du transformateur de tension 50 Réarmement du déclencheur 63 Réglage à distance 57 Réglage de l'heure 48 Réglage de la date 48 Réglage des langues 47 Réglages des commutateurs 59 Réglages par défaut commutateurs 100 entretien 100 protection 101 Remplacement de la pile 93 déclencheur 83 fiche de la valeur nominale 91 Retard courte durée 14 défaut à la terre 16 longue durée 11 rPmax. Voir Protection contre l'inversion de puissance

S

Sens de l'écoulement de la puissance configuration de la convention de signe de la puissance réactive 54 configuration du sens du signe de la puissance 50 Sous-fréquence. *Voir* Protection de fréquence minimale Sous-intensité. *Voir* Valeur minimale de la protection de courant moyen Sous-tension. *Voir* Protection de tension minimale Surfréquence. *Voir* Protection de fréquence maximale Surintensité. *Voir* Valeur maximale de la protection de courant moyen Surtension. *Voir* Protection de tension maximale

Т

Touches de navigation 35Tr. *Voir* Commutateur de retard de longue duréeTsd. *Voir* Commutateur de retard de courte duréeType de réseau 52

V

Valeur maximale de la protection de courant moyen 24 Valeur minimale de la protection de courant moyen 24 Vérification d'injection primaire 31 d'injection secondaire 31 déclencheur 31 trousse d'essais 63 Voyant d'auto-protection 32 Voyant de protection évoluée 32 Voyants auto-protection 32 déclenchement 32 protection évoluée 32 surcharge 32 Voyants de déclenchement 32 allumer 32 défaut à la terre 32 lg 32 Isd/li 32 vérification de l'état 65 Voyants de déclenchement de surchauffe 32

Ζ

ZSI. *Voir* Interverrouillage sélectif de zone

Schneider Electric Canada, Inc. 5985 McLaughlin Road Mississauga, ON L5R 1B8 Canada 800-565-6699 www.schneider-electric.ca

Du fait que les normes, caractéristiques et conceptions peuvent changer, demander confirmation que l'information contenue dans cette publication est à jour.

Schneider Electric, Square D et Micrologic sont des marques commerciales de Schneider Electric Industries SAS ou de ses compagnies affiliées. Toutes les autres marques commerciales utilisées dans ce document sont la propriété de leurs propriétaires respectifs.

© 2002–2019 Schneider Electric Tous droits réservés

48049-330-03, Rev. 03, 12/2019 Remplace 48049-330-03 Rev. 01, 07/2012