PowerLogic™ PowerView™ v2.01 is an easy-to-use, entry-range power monitoring solution ideally suited for small system applications. The software polls the network for compatible PowerLogic devices, simplifying system and device configuration. Connection and data logging begins automatically at factory preset intervals, settings which are easily changed by the user. PowerView allows users to track real-time power conditions and perform remote monitoring of electrical equipment or installations at key distribution points across an electrical network.

Use logged values to reveal energy waste, unused capacity and historical trends. The software’s Report Builder includes time of use configurations, allowing the user to create reports with energy and demand values for time periods with specific billing requirements. Power costs can be allocated to departments or processes. Generated reports publish in Microsoft Excel for easy data access and custom reporting. PowerView is a cost-effective power monitoring solution and a key first step towards a comprehensive energy intelligence strategy.

PowerView is compatible with the following devices: PM9C, PM710, PM750, PM800 series and Enercept meters, as well as circuit breaker trip units Micrologic A, P, H, and Compact NSX A and E.

See page 5 for details of actual parameters logged.

Applications

- Power consumption monitoring: use historical data for trend information; plan expansion based on actual usage; avoid over-design and use an electrical system to its full capacity.
- Cost allocation: track power-related costs for building, process, or tool; create time-of-use energy profiles.
- Equipment monitoring: monitor electrical equipment or installations at key distribution points across the network; monitor for pending problems or scheduled maintenance.
- Strategic planning: use logged values of current, voltage, power, power factor, energy, demand power, demand current to develop strategies to avoid interruptions.
- Preventative maintenance: proactively manage the power system; base maintenance schedule on actual operating history.

Functions

- Automated data acquisition from compatible devices
- Real time viewing of data
- Historical tabular data into Microsoft Excel
- Historical trending
- Reporting
- TCP/IP, serial communications
- Pre-defined meter onboard data log retrieval
- Microsoft SQL2005 Express-Advanced data warehouse
- Backup/restore database management.

Part numbers

<table>
<thead>
<tr>
<th>PowerView software</th>
<th>Part numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>PLVDEVKITENG</td>
</tr>
<tr>
<td>French</td>
<td>PLVDEVKITFRA</td>
</tr>
<tr>
<td>Spanish</td>
<td>PLVDEVKITESP</td>
</tr>
</tbody>
</table>

(1) These are the internal part numbers Schneider Electric country organizations should use when ordering PowerView. Note: PowerView is sold only to country organizations.
Monitoring software

PowerView (cont.)

Automatic device acquisition and data integration

- PowerLogic PowerView uses industry-standard Modbus TCP/IP and RS-485 (2 wire or 4 wire) protocols to interface with devices.
- Easy-to-use device setup component polls the network and detects supported devices; select up to 32 devices to add to the system – or manually add/delete device connections.
- Onboard meter or PC-based historical logging (depending upon device capabilities) begins automatically at default or user-defined intervals.

Real-time monitoring

- Real Time Display shows data from devices monitoring key distribution points in the electrical system. Measured quantities include current, voltage, power, power factor, energy, demand power, demand current, and total harmonic distortion (THD).
- Display real-time power and energy measurements and historical trends.
- View data by single device or view and compare real time data from multiple devices.
- Real-time summary views:
 - Demand current – view the amount of electricity consumed over time.
 - Energy – view measured kilowatt-hours for sub-billing or comparison purposes.
 - Load current – measure the current required to supply load demands.
 - Overview – view the real energy (kWH), 3-phase current (A), real power (kW) and power factor of connected devices.
 - Power – measure the rate energy is drawn from electrical system (watts).
 - Input status summary – check the input status of I/O-capable devices.
 - Output status summary – check the output status of I/O-capable devices.

- Desktop access to power system information from any department, building or region. Graphical views of relevant, actionable information.
Monitoring software

Support load studies or expansion planning, optimize equipment use by maximizing capacity or balancing loads. Reveal critical trends, expensive processes or energy waste.

PowerView (cont.)

Reporting
- Use Report Builder to build and generate reports in a few clicks.
- Standard reports include:
 - General measurement – trend patterns for electrical energy usage, power demand or any other logged parameter. These reports include the referenced data points of the trend. Leverage these values in Excel to create detailed reports, enable further analysis and reveal true business conditions.
 - Energies by day; energies by hour – analyze measured kilowatt-hours for cost allocation or comparison purposes.
 - THD quantities – measure, analyze and compare total harmonic distortion.
 - Time of Use (TOU) – define up to 3 TOU schedules each with 10 periods for energy accumulation; supports weekends, special days, holidays.
- Report Builder publishes the reports in Microsoft Excel.

Database management
- Microsoft SQL2005 Express-Advanced database management includes:
 - Database backups
 - Database restores
 - Historical database management
 - Maintained below 2.9GB in size.

Computer requirements
- 5 GB Hard Drive free space.
- 512M RAM Memory.
- 800MHz Pentium 3 class (or equivalent).

Microsoft Windows operating systems supported
- MS Windows XP Professional Edition SP2.
- MS Vista.

Microsoft Office required
PowerLogic PowerView requires one of the following versions of MS Office installed on each workstation running PowerView:
- Office 2000
- Office XP
- Office 2003
- Office 2007

PowerView includes robust Microsoft SQL2005 Express-Advanced database management.
Monitoring software

PowerView (cont.)

![Diagram](powerview_diagram.png)

Compatible meters and trip units

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PM9C</th>
<th>PM200</th>
<th>Micrologic</th>
<th>PM500</th>
<th>ION6200</th>
<th>PM750 PM710</th>
<th>PM800 series</th>
<th>Enercept</th>
<th>Compact NSX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase current (A, B, C)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Phase voltage (AN, BN, CN)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Line voltage (AB, BC, CA)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Power factor total</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Real energy (kWh)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Reactive energy (kVARh)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Real power total (kVAR)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Apparent power total (kVA)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Demand real power total (kWd)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Demand reactive power total (kVARd)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Demand apparent power total (kVAd)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Demand current (A, B, C)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Neutral current</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Apparent energy (kVArh)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>THD phase voltage (AN, BN, CN)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>THD current (A, B, C)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>