Modicon M340

Processeurs Manuel de configuration

Traduction de la notice originale

10/2019

Le présent document comprend des descriptions générales et/ou des caractéristiques techniques des produits mentionnés. Il ne peut pas être utilisé pour définir ou déterminer l'adéquation ou la fiabilité de ces produits pour des applications utilisateur spécifiques. Il incombe à chaque utilisateur ou intégrateur de réaliser l'analyse de risques complète et appropriée, l'évaluation et le test des produits pour ce qui est de l'application à utiliser et de l'exécution de cette application. Ni la société Schneider Electric ni aucune de ses sociétés affiliées ou filiales ne peuvent être tenues pour responsables de la mauvaise utilisation des informations contenues dans le présent document. Si vous avez des suggestions, des améliorations ou des corrections à apporter à cette publication, veuillez nous en informer.

Vous acceptez de ne pas reproduire, excepté pour votre propre usage à titre non commercial, tout ou partie de ce document et sur quelque support que ce soit sans l'accord écrit de Schneider Electric. Vous acceptez également de ne pas créer de liens hypertextes vers ce document ou son contenu. Schneider Electric ne concède aucun droit ni licence pour l'utilisation personnelle et non commerciale du document ou de son contenu, sinon une licence non exclusive pour une consultation « en l'état », à vos propres risques. Tous les autres droits sont réservés.

Toutes les réglementations locales, régionales et nationales pertinentes doivent être respectées lors de l'installation et de l'utilisation de ce produit. Pour des raisons de sécurité et afin de garantir la conformité aux données système documentées, seul le fabricant est habilité à effectuer des réparations sur les composants.

Lorsque des équipements sont utilisés pour des applications présentant des exigences techniques de sécurité, suivez les instructions appropriées.

La non-utilisation du logiciel Schneider Electric ou d'un logiciel approuvé avec nos produits matériels peut entraîner des blessures, des dommages ou un fonctionnement incorrect.

Le non-respect de cette consigne peut entraîner des lésions corporelles ou des dommages matériels.

© 2019 Schneider Electric. Tous droits réservés.

Table des matières

	Consignes de sécurité	5
	A propos de ce manuel	9
Partie I	Automates Modicon M340	11
Chapitre 1	Présentation des stations automates Modicon M340	13
	Station automate Modicon M340	13
Chapitre 2	Présentation générale des composants d'une station	
	automate	15
	Présentation générale des processeurs	16
	Présentation générale des racks	17
	Présentation générale des modules d'alimentation	18
	Présentation générale du module d'extension du rack	19
	Présentation générale des modules d'entrées/sorties	20
	Présentation générale des modules de comptage	23
	Présentation générale de la communication	25
	Mise à la terre des modules installés	26
	Processeurs, modules et équipements Modicon M340H (renforcés) .	28
Chapitre 3	Présentation générale des réseaux d'automates	31
	Présentation générale du protocole Modbus	32
	Présentation générale d'un réseau Ethernet	33
	Présentation générale du bus de terrain CANopen	34
Chapitre 4	Normes et conditions de mise en service	35
	Normes et certifications	35
Partie II	Processeurs BMX P34 xxxx	37
Chapitre 5	Présentation des processeurs BMX P34 xxxx	39
•	Présentation générale	40
	Description physique des processeurs BMX P34 xxxx	43
	USB Link	45
	Liaison Modbus	46
	Liaison CANopen	48
	Liaison Ethernet	50
	Catalogue des processeurs BMX P34 xxxxx	53
	Horodateur	5/

Chapitre 6	Caractéristiques générales des processeurs	
	BMX P34 xxxx	57
	Caractéristiques électriques des processeurs BMX P34 xxxxx	58
	Caractéristiques générales du processeur BMX P34 1000	60
	Caractéristiques générales du processeur BMX P34 2000	62
	Caractéristiques générales des processeurs BMX P34 2010/20102	64
	Caractéristiques générales du processeur BMX P34 2020	66
	Caractéristiques générales des processeurs BMX P34 2030/20302	68
	Caractéristiques de la mémoire du processeur BMX P34 xxxxx	70
Chapitre 7	Installation des processeurs BMX P34 xxxx	73 74
	Cartes mémoire pour processeurs BMX P34 xxxxx	7 4 76
Chapitre 8	Diagnostic des processeurs BMX P34 xxxx	85
Chapia o	Visualisation	86
	Recherche des défauts à partir des voyants d'état du processeur	91
	Défauts bloquants	92
	Défauts non bloquants	94
	Défauts processeur ou système	96
Chapitre 9	Performances des processeurs	97 98
	Temps de cycle de la tâche MAST : Présentation	102
	Temps de cycle de la tâche MAST : traitement du programme	103
	Temps de cycle de tâche MAST : traitement interne en entrée et en	
	sortie	104
	Calcul du temps de cycle de la tâche MAST	107
	Temps de cycle de tâche FAST	108
	Temps de réponse sur événement	109
Index		111

Consignes de sécurité

Informations importantes

AVIS

Lisez attentivement ces instructions et examinez le matériel pour vous familiariser avec l'appareil avant de tenter de l'installer, de le faire fonctionner, de le réparer ou d'assurer sa maintenance. Les messages spéciaux suivants que vous trouverez dans cette documentation ou sur l'appareil ont pour but de vous mettre en garde contre des risques potentiels ou d'attirer votre attention sur des informations qui clarifient ou simplifient une procédure.

La présence de ce symbole sur une étiquette "Danger" ou "Avertissement" signale un risque d'électrocution qui provoquera des blessures physiques en cas de non-respect des consignes de sécurité.

Ce symbole est le symbole d'alerte de sécurité. Il vous avertit d'un risque de blessures corporelles. Respectez scrupuleusement les consignes de sécurité associées à ce symbole pour éviter de vous blesser ou de mettre votre vie en danger.

A DANGER

DANGER signale un risque qui, en cas de non-respect des consignes de sécurité, **provoque** la mort ou des blessures graves.

A AVERTISSEMENT

AVERTISSEMENT signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** la mort ou des blessures graves.

A ATTENTION

ATTENTION signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** des blessures légères ou moyennement graves.

AVIS

AVIS indique des pratiques n'entraînant pas de risques corporels.

REMARQUE IMPORTANTE

L'installation, l'utilisation, la réparation et la maintenance des équipements électriques doivent être assurées par du personnel qualifié uniquement. Schneider Electric décline toute responsabilité quant aux conséquences de l'utilisation de ce matériel.

Une personne qualifiée est une personne disposant de compétences et de connaissances dans le domaine de la construction, du fonctionnement et de l'installation des équipements électriques, et ayant suivi une formation en sécurité leur permettant d'identifier et d'éviter les risques encourus.

AVANT DE COMMENCER

N'utilisez pas ce produit sur les machines non pourvues de protection efficace du point de fonctionnement. L'absence de ce type de protection sur une machine présente un risque de blessures graves pour l'opérateur.

A AVERTISSEMENT

EQUIPEMENT NON PROTEGE

- N'utilisez pas ce logiciel ni les automatismes associés sur des appareils non équipés de protection du point de fonctionnement.
- N'accédez pas aux machines pendant leur fonctionnement.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Cet automatisme et le logiciel associé permettent de commander des processus industriels divers. Le type ou le modèle d'automatisme approprié pour chaque application dépendra de facteurs tels que la fonction de commande requise, le degré de protection exigé, les méthodes de production, des conditions inhabituelles, la législation, etc. Dans certaines applications, plusieurs processeurs seront nécessaires, notamment lorsque la redondance de sauvegarde est requise.

Vous seul, en tant que constructeur de machine ou intégrateur de système, pouvez connaître toutes les conditions et facteurs présents lors de la configuration, de l'exploitation et de la maintenance de la machine, et êtes donc en mesure de déterminer les équipements automatisés, ainsi que les sécurités et verrouillages associés qui peuvent être utilisés correctement. Lors du choix de l'automatisme et du système de commande, ainsi que du logiciel associé pour une application particulière, vous devez respecter les normes et réglementations locales et nationales en vigueur. Le document National Safety Council's Accident Prevention Manual (reconnu aux Etats-Unis) fournit également de nombreuses informations utiles.

Dans certaines applications, telles que les machines d'emballage, une protection supplémentaire, comme celle du point de fonctionnement, doit être fournie pour l'opérateur. Elle est nécessaire si les mains ou d'autres parties du corps de l'opérateur peuvent entrer dans la zone de point de pincement ou d'autres zones dangereuses, risquant ainsi de provoquer des blessures graves. Les produits logiciels seuls, ne peuvent en aucun cas protéger les opérateurs contre d'éventuelles blessures. C'est pourquoi le logiciel ne doit pas remplacer la protection de point de fonctionnement ou s'y substituer.

Avant de mettre l'équipement en service, assurez-vous que les dispositifs de sécurité et de verrouillage mécaniques et/ou électriques appropriés liés à la protection du point de fonctionnement ont été installés et sont opérationnels. Tous les dispositifs de sécurité et de verrouillage liés à la protection du point de fonctionnement doivent être coordonnés avec la programmation des équipements et logiciels d'automatisation associés.

NOTE: La coordination des dispositifs de sécurité et de verrouillage mécaniques/électriques du point de fonctionnement n'entre pas dans le cadre de cette bibliothèque de blocs fonction, du Guide utilisateur système ou de toute autre mise en œuvre référencée dans la documentation.

DEMARRAGE ET TEST

Avant toute utilisation de l'équipement de commande électrique et des automatismes en vue d'un fonctionnement normal après installation, un technicien qualifié doit procéder à un test de démarrage afin de vérifier que l'équipement fonctionne correctement. Il est essentiel de planifier une telle vérification et d'accorder suffisamment de temps pour la réalisation de ce test dans sa totalité.

A AVERTISSEMENT

RISQUES INHERENTS AU FONCTIONNEMENT DE L'EQUIPEMENT

- Assurez-vous que toutes les procédures d'installation et de configuration ont été respectées.
- Avant de réaliser les tests de fonctionnement, retirez tous les blocs ou autres cales temporaires utilisés pour le transport de tous les dispositifs composant le système.
- Enlevez les outils, les instruments de mesure et les débris éventuels présents sur l'équipement.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Effectuez tous les tests de démarrage recommandés dans la documentation de l'équipement. Conservez toute la documentation de l'équipement pour référence ultérieure.

Les tests logiciels doivent être réalisés à la fois en environnement simulé et réel.

Vérifiez que le système entier est exempt de tout court-circuit et mise à la terre temporaire non installée conformément aux réglementations locales (conformément au National Electrical Code des Etats-Unis, par exemple). Si des tests diélectriques sont nécessaires, suivez les recommandations figurant dans la documentation de l'équipement afin d'éviter de l'endommager accidentellement.

Avant de mettre l'équipement sous tension :

- Enlevez les outils, les instruments de mesure et les débris éventuels présents sur l'équipement.
- Fermez le capot du boîtier de l'équipement.
- Retirez toutes les mises à la terre temporaires des câbles d'alimentation entrants.
- Effectuez tous les tests de démarrage recommandés par le fabricant.

FONCTIONNEMENT ET REGLAGES

Les précautions suivantes sont extraites du document NEMA Standards Publication ICS 7.1-1995 (la version anglaise prévaut) :

- Malgré le soin apporté à la conception et à la fabrication de l'équipement ou au choix et à l'évaluation des composants, des risques subsistent en cas d'utilisation inappropriée de l'équipement.
- Il arrive parfois que l'équipement soit déréglé accidentellement, entraînant ainsi un fonctionnement non satisfaisant ou non sécurisé. Respectez toujours les instructions du fabricant pour effectuer les réglages fonctionnels. Les personnes ayant accès à ces réglages doivent connaître les instructions du fabricant de l'équipement et les machines utilisées avec l'équipement électrique.
- Seuls ces réglages fonctionnels, requis par l'opérateur, doivent lui être accessibles. L'accès aux autres commandes doit être limité afin d'empêcher les changements non autorisés des caractéristiques de fonctionnement.

8 35012677 10/2019

A propos de ce manuel

Présentation

Objectif du document

Ce manuel décrit l'installation matérielle des automates Modicon M340 et l'installation de leurs principaux accessoires.

Ce document s'applique également aux automates Modicon M340H et à leurs accessoires.

Champ d'application

Cette documentation est applicable à EcoStruxure™ Control Expert 14.1 ou version ultérieure.

Le micrologiciel Modicon M340 2.4 ou version ultérieure est nécessaire.

Les caractéristiques techniques des équipements décrits dans ce document sont également fournies en ligne. Pour accéder à ces informations en ligne :

Etape	Action
1	Accédez à la page d'accueil de Schneider Electric www.schneider-electric.com.
2	 Dans la zone Search, saisissez la référence d'un produit ou le nom d'une gamme de produits. N'insérez pas d'espaces dans la référence ou la gamme de produits. Pour obtenir des informations sur un ensemble de modules similaires, utilisez des astérisques (*).
3	Si vous avez saisi une référence, accédez aux résultats de recherche Product Datasheets et cliquez sur la référence qui vous intéresse. Si vous avez saisi une gamme de produits, accédez aux résultats de recherche Product Ranges et cliquez sur la gamme de produits qui vous intéresse.
4	Si plusieurs références s'affichent dans les résultats de recherche Products , cliquez sur la référence qui vous intéresse.
5	Selon la taille de l'écran, vous serez peut-être amené à faire défiler la page pour consulter la fiche technique.
6	Pour enregistrer ou imprimer une fiche technique au format .pdf, cliquez sur Download XXX product datasheet.

Les caractéristiques présentées dans ce document devraient être identiques à celles fournies en ligne. Toutefois, en application de notre politique d'amélioration continue, nous pouvons être amenés à réviser le contenu du document afin de le rendre plus clair et plus précis. Si vous constatez une différence entre le document et les informations fournies en ligne, utilisez ces dernières en priorité.

Documents à consulter

Titre du document	Numéro de référence
Plateformes, normes et certifications Modicon M580, M340 et X80 I/O	EIO000002726 (anglais), EIO000002727 (français), EIO000002728 (allemand), EIO000002730 (italien), EIO000002729 (espagnol), EIO0000002731 (chinois)
Modicon X80 - Racks et modules d'alimentation - Matériel - Manuel de référence	EIO000002626 (anglais), EIO000002627 (français), EIO000002628 (allemand), EIO000002630 (italien), EIO0000002629 (espagnol), EIO0000002631 (chinois)
EcoStruxure™ Control Expert - Langages de programmation et structure - Manuel de référence	35006144 (anglais), 35006145 (français), 35006146 (allemand), 35013361 (italien), 35006147 (espagnol), 35013362 (chinois)
EcoStruxure™ Control Expert - Modes de fonctionnement	33003101 (anglais), 33003102 (français), 33003103 (allemand), 33003104 (espagnol), 33003696 (italien), 33003697 (chinois)

Vous pouvez télécharger ces publications ainsi que d'autres informations techniques sur notre site Web : www.schneider-electric.com/en/download.

Information spécifique au produit

A AVERTISSEMENT

FONCTIONNEMENT IMPREVU DE L'EQUIPEMENT

L'utilisation de ce produit requiert une expertise dans la conception et la programmation des systèmes d'automatisme. Seules les personnes avec l'expertise adéquate sont autorisées à programmer, installer, modifier et utiliser ce produit.

Respectez toutes les réglementations et normes de sécurité locales et nationales.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Partie I

Automates Modicon M340

Objet de cette section

Cette section présente de façon générale les configurations automate Modicon M340, les différents sous-ensembles pouvant les composer, ainsi que les réseaux et bus de terrain utilisés.

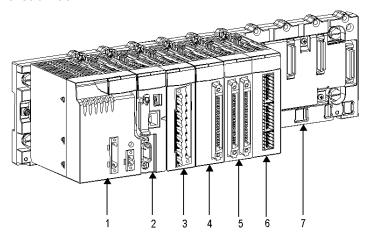
Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	
1	Présentation des stations automates Modicon M340	13
2	Présentation générale des composants d'une station automate	15
3	Présentation générale des réseaux d'automates 31	
4	Normes et conditions de mise en service	35

Chapitre 1

Présentation des stations automates Modicon M340


Station automate Modicon M340

Généralités

Les processeurs de plate-forme automatisée Modicon M340 gèrent l'ensemble de la station automate, qui se compose de modules d'entrée/sortie TOR, de modules d'entrée/sortie analogiques, de modules de comptage, de modules experts et de modules de communication. Ces modules sont répartis sur un ou plusieurs racks raccordés au bus local. Chaque rack doit comporter sa propre alimentation ; le rack principal accueille l'unité centrale.

Illustration

Le schéma suivant présente un exemple de configuration de la station automate Modicon M340 avec un rack :

Tableau des repères

Le tableau suivant décrit la composition de la station automate ci-dessus.

Repère	Description
1	Module d'alimentation
2	Processeur
3	Module d'entrées/sorties à bornier 20 points
4	Module d'entrées/sorties à 1 connecteur 40 points
5	Module d'entrées/sorties à 2 connecteurs 40 points
6	Module de comptage
7	Rack à 8 emplacements

14 35012677 10/2019

Chapitre 2

Présentation générale des composants d'une station automate

Objet de cette section

Cette section présente de façon générale les différents composants qui peuvent constituer une station automate.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation générale des processeurs	
Présentation générale des racks	
Présentation générale des modules d'alimentation	18
Présentation générale du module d'extension du rack	
Présentation générale des modules d'entrées/sorties	
Présentation générale des modules de comptage	
Présentation générale de la communication	
Mise à la terre des modules installés	
Processeurs, modules et équipements Modicon M340H (renforcés)	

Présentation générale des processeurs

Généralités

Chaque station automate est pourvue d'un processeur, choisi en fonction des caractéristiques suivantes :

- puissance de traitement (nombre d'entrées/sorties gérées)
- capacité mémoire
- ports de communication

Pour plus d'informations, reportez-vous à la *Présentation des processeurs BMX P34 xxxx, page 39*.

Présentation générale des racks

Généralités

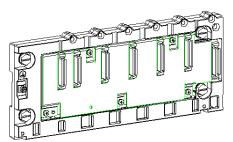
Les racks sont disponibles en plusieurs tailles. La liste ci-dessous indique le nombre d'emplacements disponibles pour l'UC et les modules pour chaque référence de rack :

4 emplacements: BMXXBP0400(H) ou BMEXBP0400(H)

6 emplacements : BMXXBP0600(H)

8 emplacements: BMXXBP0800(H) ou BMEXBP0800(H)
12 emplacements: BMXXBP1200(H) ou BMEXBP1200(H)

• racks avec alimentations redondantes :


o 6 emplacements : BMEXBP0602(H)o 10 emplacements : BMEXBP1002(H)

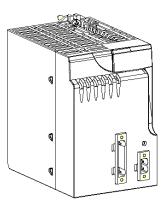
Chaque rack inclut un emplacement supplémentaire réservé au module d'alimentation et un emplacement sur la droite est réservé au module d'extension de rack BMXXBE1000.

Pour plus d'informations, consultez le chapitre *Description des racks Modicon X80 (voir Modicon X80, Racks et modules d'alimentation, Manuel de référence du matériel).*

Représentation des racks

Le schéma suivant représente le rack BMXXPB0400 :

Présentation générale des modules d'alimentation


Général

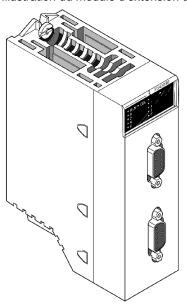
Chaque rack nécessite 1 module d'alimentation défini en fonction du circuit distribué (courant alternatif ou courant continu) et de la puissance nécessaire au niveau du rack.

Pour plus d'informations, consultez le chapitre *Description des modules d'alimentation Modicon X80 (voir Modicon X80, Racks et modules d'alimentation, Manuel de référence du matériel).*

Figure

La figure suivante représente un module d'alimentation BMXCPS•••• :

Présentation générale du module d'extension du rack


Général

Ce module permet de connecter un maximum de 4 racks en chaîne, selon l'unité centrale, répartis sur une longueur maximale de 30 mètres.

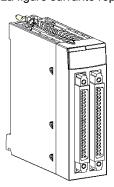
Pour plus d'informations, consultez la section *Module d'extension de rack BMXXBE1000* (voir Modicon X80, Racks et modules d'alimentation, Manuel de référence du matériel).

Figure

Illustration du module d'extension de rack BMXXBE1000 :

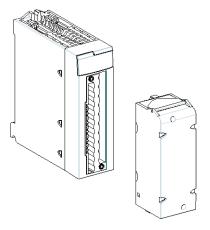
Présentation générale des modules d'entrées/sorties

Généralités


La gamme Modicon M340 est composée de modules d'entrées/sorties TOR et analogiques.

Entrées/sorties TOR

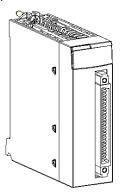
Une large gamme de modules d'entrées/sorties TOR permet de s'adapter aux mieux à vos besoins. Ces modules se différencient par les caractéristiques suivantes :


Caractéristiques Description	
Modularité	 8 voies 16 voies 32 voies 64 voies
Type d'entrées	 Modules avec entrées à courant continu (24 V cc et 48 V cc) Modules avec entrées à courant alternatif (24 V ca, 48 V ca et 120 V ca)
Type de sorties	 Modules avec sorties à relais Modules avec sorties statiques à courant continu (24 V cc/0,1 A - 0,5 A - 3 A) Modules avec sorties statiques à courant alternatif (24 V ca/240 V ca/3 A)
Type de connectique	 Borniers 20 points Connecteurs de type 40 points permettant le raccordement aux capteurs et aux pré-actionneurs par l'intermédiaire du système de précâblage TELEFAST 2

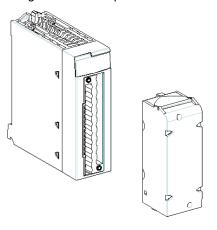
La figure suivante représente un module d'entrées/sorties TOR avec connecteurs 40 points :

20 35012677 10/2019

La figure suivante représente un module d'entrées/sorties TOR avec bornier 20 points :



Entrées/sorties analogiques


Une large gamme de modules d'entrées/sorties analogiques permet de s'adapter aux mieux à vos besoins. Ces modules se différencient par les caractéristiques suivantes :

Caractéristiques	Description
Modularité	2 voies4 voies
Performances et gammes de signaux proposés	Tension/courantThermocoupleThermosonde
Type de connectique	 Borniers 20 points Connecteurs de type 40 points permettant le raccordement aux capteurs et aux pré-actionneurs par l'intermédiaire du système de précâblage TELEFAST 2

La figure suivante représente un module d'entrées/sorties analogique avec un connecteur 40 points :

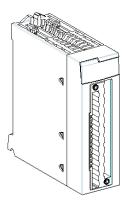
La figure suivante représente un module d'entrées/sorties analogique avec bornier 20 points :

Présentation générale des modules de comptage

Généralités


Les automates de la gamme Modicon M340 proposent des fonctions de comptage (décomptage, comptage, comptage/décomptage) grâce aux modules métiers de comptage.

Deux modules de comptage sont disponibles :


- module BMX EHC 0200 à 2 voies de comptage avec fréquence maximale d'acquisition de 60 kHz,
- module BMX EHC 0800 à 8 voies de comptage avec fréquence maximale d'acquisition de 10 kHz.

Illustration

La figure suivante représente le module de comptage BMX EHC 0200 :

La figure suivante représente le module de comptage BMX EHC 0800 :

Présentation générale de la communication

Généralités

Les automates de la gamme Modicon M340 peuvent être utilisés avec différents modes de communication :

- USB
- Série
- Ethernet
- CANopen
- AS-Interface,

Mise à la terre des modules installés

Général

La mise à la terre des modules Modicon M340 est indispensable pour éviter tout choc électrique.

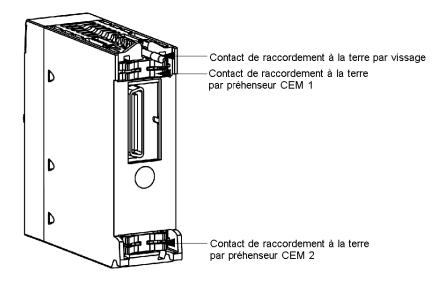
Mise à la terre des processeurs et des alimentations

⚠ A DANGER

RISQUE D'ELECTROCUTION, D'EXPLOSION OU D'ARC ELECTRIQUE

Vérifiez que les contacts de raccordement à la terre sont présents et ne sont pas tordus. S'ils sont absents ou tordus, n'utilisez pas le module et contactez votre représentant Schneider Electric.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.


A AVERTISSEMENT

COMPORTEMENT IMPREVU DE L'EQUIPEMENT

Serrez les vis des modules. Une rupture dans le circuit peut entraîner un comportement inattendu du système.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Tous les modules Modicon M340 possèdent des contacts de terre en face arrière pour la mise à la terre.

Ces contacts raccordent le bus de mise à la terre des modules au bus de mise à la terre du rack.

Processeurs, modules et équipements Modicon M340H (renforcés)

Présentation

Les équipements renforcés peuvent fonctionner à des plages de températures plus étendues et dans des environnements plus rudes que les équipements M340 standard.

NOTE: Pour plus d'informations, reportez-vous au chapitre *Installation dans des environnements* plus rudes (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).

Equipement « H »

Les équipements suivants sont disponibles en version renforcée (« H ») :

- Processeurs:
 - O BMX P34 2020H
 - O BMX P34 2030 2H
- · Alimentations:
 - O BMX CPS 3020H
 - O BMX CPS 3500H
 - O BMX CPS 4002H
- Embases:
 - O BMX XBP 0400H
 - O BMX XBP 0600H
 - O BMX XBP 0800H
 - O BMX XBP 1200H
 - O BME XBP 0400H
 - O BME XBP 0800H
 - O BME XBP 1200H
 - O BME XBP 0602H
 - O BME XBP 1002H
- Extension d'embase :
 - O BMX XBE 1000H
- Modules de comptage :
 - O BMX ECH 0200H
 - O BMX ECH 0800H
- Modules d'entrées analogiques :
 - O BMX ART 0414H
 - O BMX ART 0814H
 - O BMX AMI 0810H
- Modules de sorties analogiques :
 - O BMX AMO 0210H
 - O BMX AMO 0410H

28 35012677 10/2019

- Module d'entrées/sorties analogiques :
 - O BMX AMM 0600H
- Accessoires de câblage TELEFAST
 - O ABE7 CPA 0410H
 - O ABE7 CPA 0412H
- Modules d'entrées numériques :
 - O BMX DDI 1602H
 - BMX DDI 1603H
- Modules d'entrées/sorties numériques :
 - O BMX DAI 1602H
 - O BMX DAI 1603H
 - O BMX DAI 1604H
 - O BMX DAI 1614H
 - O BMX DAI 1615H
 - O BMX DDM 16022H
 - O BMX DDM 16025H
- Modules de sorties numériques :
 - **O** BMX DAO 1605H
 - BMX DAO 1615H
 - BMX DDO 1602H
 - **O** BMX DDO 1612H
 - O BMX DRA 0805H
 - O BMX DRA 0815H
 - O BMX DRA 1605H
 - O BMX DRC 0805H
- Modules d'interface série synchrone (SSI) :
 - O BMX EAE 0300H

Chapitre 3

Présentation générale des réseaux d'automates

Objet de cette section

Cette section présente de façon générale les réseaux d'automates.

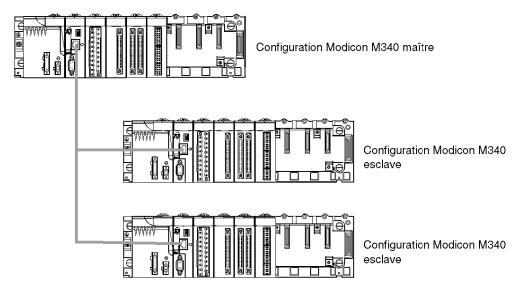
Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation générale du protocole Modbus	32
Présentation générale d'un réseau Ethernet	
Présentation générale du bus de terrain CANopen	

Présentation générale du protocole Modbus

Généralités


Le protocole Modbus est un protocole créant une structure hiérarchisée (un maître et plusieurs esclaves).

Le maître gère l'ensemble des échanges selon deux types de dialogues :

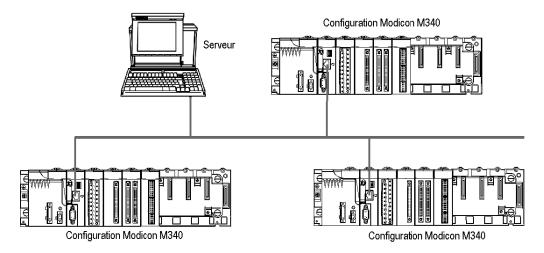
- le maître échange avec l'esclave et attend la réponse,
- le maître échange avec l'ensemble des esclaves sans attendre de réponse (diffusion générale).

Illustration

L'illustration suivante présente un réseau Modbus :

Présentation générale d'un réseau Ethernet

Généralités


La communication Ethernet vise essentiellement les applications de :

- · coordination entre automates programmables,
- supervision locale ou centralisée,
- communication avec l'informatique de gestion de production,
- communication avec les entrées/sorties distantes.

La communication Ethernet supporte également, en fonction agent, la gestion du standard de supervision réseau SNMP.

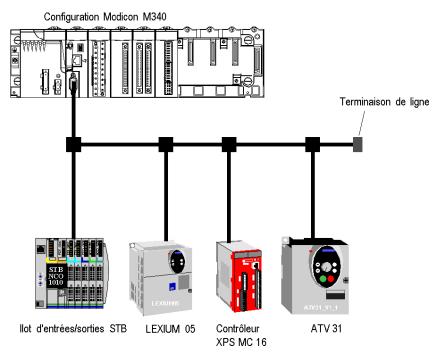
Illustration

L'illustration suivante représente un réseau Ethernet :

Présentation générale du bus de terrain CANopen

Généralités

Une architecture CANopen comprend:


- un maître du bus,
- des équipements esclaves appelés aussi nœuds.

Le bus fonctionne selon un mode d'échange point à point. A tout moment, chaque équipement peut envoyer une requête sur le bus et les équipements concernés répondent.

La priorité des requêtes circulant sur le bus est déterminée par un identifiant au niveau de chaque message.

Illustration

L'exemple suivant illustre une architecture de bus de terrain CANopen :

Chapitre 4

Normes et conditions de mise en service

Normes et certifications

Télécharger

Cliquez sur le lien correspondant à votre langue favorite pour télécharger les normes et les certifications (format PDF) qui s'appliquent aux modules de cette gamme de produits :

Titre	Langues
Plateformes, normes et certifications Modicon M580, M340 et X80 I/O	 Anglais: <u>EIO0000002726</u> Français: <u>EIO0000002727</u> Allemand: <u>EIO0000002728</u> Italien: <u>EIO0000002730</u> Espagnol: <u>EIO0000002729</u> Chinois: <u>EIO0000002731</u>

Partie II

Processeurs BMX P34 xxxx

Objet de cette partie

Cette section décrit les processeurs BMX P34 •••• et leur installation.

Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	Page
5	Présentation des processeurs BMX P34 xxxx	39
6	Caractéristiques générales des processeurs BMX P34 xxxx	57
7	Installation des processeurs BMX P34 xxxx	73
8	Diagnostic des processeurs BMX P34 xxxx	85
9	Performances des processeurs	97

Chapitre 5

Présentation des processeurs BMX P34 xxxx

Objet de cette section

Cette section décrit les processeurs BMX P34

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation générale	40
Description physique des processeurs BMX P34 xxxx	43
USB Link	45
Liaison Modbus	46
Liaison CANopen	
Liaison Ethernet	50
Catalogue des processeurs BMX P34 xxxxx	
Horodateur	

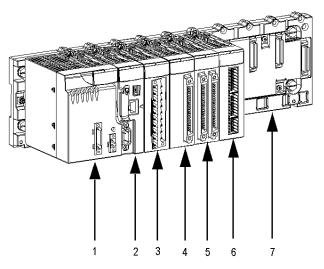
Présentation générale

Présentation

Une large gamme processeurs BMX P34 ••••• de différents niveaux de performances et capacités sont disponibles pour répondre à tous vos besoins.

Généralités

Les processeurs BMX P34 ••••• peuvent être installés sur les racks X80.

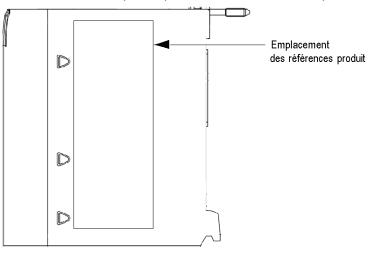

Fonctions

Les processeurs BMX P34 ••••• gèrent l'ensemble de la station automate, qui inclut les éléments suivants :

- modules d'entrée/sortie TOR
- modules d'entrée/sortie analogiques
- autres modules experts
- modules de communication

Illustration

Le schéma ci-après représente une architecture gérée par un processeur :



Le tableau suivant identifie les éléments numérotés de la configuration représentée ci-dessus.

Numéro	Désignation
1	Module d'alimentation
2	Processeur
3	Module à bornier 20 broches
4	Module à 1 connecteur 40 broches
5	Module à 2 connecteurs 40 broches
6	Module de comptage
7	Rack

Références produit des processeurs

Le schéma suivant indique l'emplacement des références de produit sur le côté du processeur :

Caractéristiques principales des processeurs BMX P34 •••••

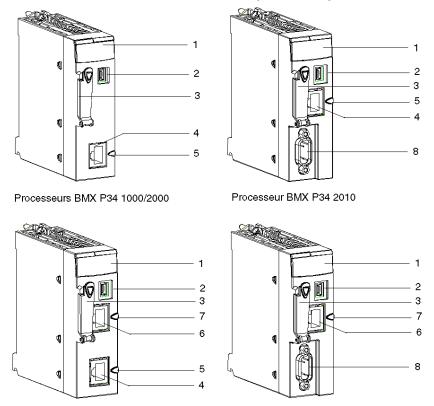
Le tableau suivant présente les caractéristiques principales des processeurs BMX P34 •••••.

Processeur	Nombre global maximal d'entrées/sorties TOR	Nombre global maximal d'entrées/sorties analogiques	Taille mémoire maximum	Liaison Modbus	Liaison CANopen maître intégrée	Liaison Ethernet intégrée
BMX P34 1000	512	128	2048 Ko	X	-	-
BMX P34 2000	1024	256	4096 Ko	X	-	-
BMX P34 2010/20 102	1024	256	4096 Ko	X	x	-
BMX P34 2020	1024	256	4096 Ko	X	-	Х
BMX P34 2030/20 302	1024	256	4096 Ko	-	X	X

Légende

X Disponible

Non disponible


Description physique des processeurs BMX P34 xxxx

Généralités

Les processeurs BMX P34 •••• diffèrent selon les composants qu'ils incluent.

Illustration

Les schémas suivants identifient les divers composants d'un processeur BMX P34 •••• :

Processeur BMX P34 2020 Processeur BMX P34 2030

Description

Le tableau suivant présente les composants d'un processeur BMX P34 ••••.

Repère	Fonction
1	Bloc de visualisation
2	Port USB
3	Cache de protection de la carte mémoire
4	Port série
5	Bague de repérage du port série (noire)
6	Port Ethernet
7	Bague de repérage du port Ethernet (verte)
8	Port CANopen

USB Link

Général

Tous les processeurs possèdent une liaison USB.

Description

2 câbles sont disponibles pour raccorder une interface homme machine sur le port USB du processeur :

- BMX XCA USB 018, 1,8 m (5,91 ft)
- BMX XCA USB 045, 4,5 m (14,76 ft)

Ces 2 câbles sont munis d'un connecteur à chaque extrémité :

- USB type A : connexion à la console
- USB type mini-B: connexion au processeur

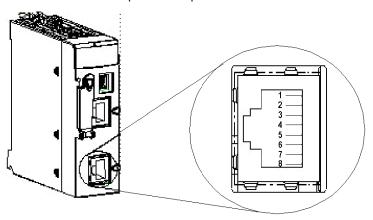
En montage fixe avec un pupitre de type XBT raccordé au processeur via le port USB, il est conseillé de raccorder le câble USB à un kit de connexion de blindage (voir Modicon X80, Racks et modules d'alimentation, Manuel de référence du matériel).

NOTE: Avec M340, il est fortement recommandé d'utiliser un câble blindé USB 2.0 conforme à la norme USB internationale. Les cables BMX XCA USB 018 et BMX XCA USB 045 sont conçus pour ce type d'utilisation et éviter un fonctionnement imprévu de l'automate. Ces câbles sont blindés et testés contre les perturbations électriques.

Liaison Modbus

Généralités

Les processeurs suivants comportent une voie de communication intégrée dédiée à la communication série et prennent en charge les communications via liaison Modbus :


- BMX P34 1000,
- BMX P34 2000,
- BMX P34 2010/20102,
- BMX P34 2020.

Présentation du port série

Le tableau suivant décrit les caractéristiques des voies de communication série :

Caractéristique	Description	
Numéro de voie	Voie 0	
Protocoles pris en charge	Protocole Modbus (ASCII et RTU)Protocole mode caractère	
Raccordement	Connecteur femelle RJ45	
Liaison physique	 Liaison série non isolée RS 485 Liaison série non isolée RS 232 	

L'illustration suivante représente le port série RJ45 :

L'illustration suivante représente l'affectation des broches du port série RJ45 des processeurs BMX P34 xxxxx :

1	RXD	
2	TXD	
3	RTS	
4	D1	
5	D0	
6	CTS	
7	Alimentation	électrique
8	Commun	
E	3lindage	

Le connecteur RJ45 comporte 8 broches. Les broches utilisées diffèrent selon la liaison physique utilisée.

Les broches utilisées par la liaison série RS 232 sont les suivantes :

Broche 1 : signal RXD
Broche 2 : signal TXD
Broche 3 : signal RTS
Broche 6 : signal CTS

Les broches utilisées par la liaison série RS 485 sont les suivantes :

Broche 4 : signal D1Broche 5 : signal D0

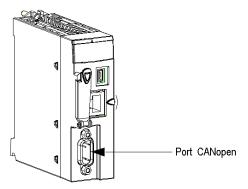
Les broches 7 et 8 sont dédiées à l'alimentation de l'interface homme machine via la liaison série :

• Broche 7 : alimentation du réseau 5 VCC/190 mA

• Broche 8 : commun de l'alimentation électrique du réseau (0 V)

NOTE: Les câbles d'alimentation RS 232 à 4 fils, RS 485 à 2 fils et RS 485 à 2 fils utilisent le même connecteur mâle RJ45.

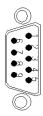
Liaison CANopen


Introduction

Les processeurs suivants ont une voie de communication intégrée dédiée aux communications CANopen et prennent en charge la communication par liaison CANopen :

- BMX P34 2010/20102,
- BMX P34 2030/20302.

Présentation du port CANopen


La figure suivante représente la position du port CANopen sur le processeur BMX P34 2030 :

Connecteurs CANopen

Le port CANopen du module de processeur est équipé d'un connecteur SUB-D9.

La figure suivante représente le port CANopen du processeur et les libellés des broches :

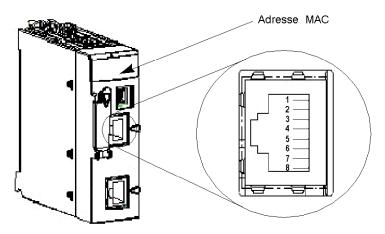
Le tableau suivant présente le brochage de la liaison CANopen.

Broche	Signal	Description
1	-	Réservé
2	CAN_L	Ligne du bus CAN_L (dominant bas)
3	CAN_GND	Terre CAN
4	-	Réservé
5	Réservé	Protection CAN optionnelle
6	(GND)	Terre optionnelle
7	CAN_H	Ligne du bus CAN_H (dominant haut)
8	-	Réservé
9	Réservé	Alimentation positive externe CAN (dédiée à l'alimentation des opto-coupleurs et des émetteurs-récepteurs) Optionnel

NOTE: Les broches CAN_SHLD et CAN_V+ ne sont pas disponibles sur les processeurs de la gamme Modicon M340. Ce sont des connexions réservées.

Liaison Ethernet

Général


Les processeurs suivants comportent une voie intégrée dédiée aux communications Ethernet, avec deux commutateurs rotatifs permettant de sélectionner facilement l'adresse IP du processeur.

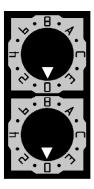
- BMX P34 2020,
- BMX P34 2030/20302.

NOTE: ces processeurs n'ont qu'une adresse IP.

Présentation du port Ethernet

L'illustration suivante représente le port Ethernet RJ45 :

L'illustration suivante représente l'affectation des broches du port Ethernet :


1	TD+
2	TD-
3	RD+
4	Non connecté
5	Non connecté
6	RD-
7	Non connecté
8	Non connecté

Présentation de l'adresse MAC

L'adresse MAC figure sur la face avant du processeur, au-dessous du panneau d'affichage du processeur.

Présentation des commutateurs rotatifs

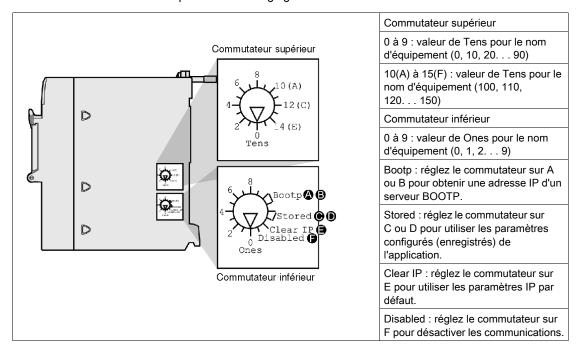
Ce processeur fonctionne comme un nœud unique sur un réseau Ethernet, et probablement d'autres réseaux. Le module doit disposer d'une adresse IP unique. Les deux commutateurs rotatifs à l'arrière du module fournissent une méthode simple pour sélectionner une adresse IP :

NOTE: Placez la flèche dans la position souhaitée en vous assurant de sentir un déclic. Si le commutateur n'est pas bien positionné, sa valeur peut être incorrecte ou non déterminée.

Chaque position du commutateur rotatif que vous utilisez pour définir une adresse IP valide est marquée sur le module.

Les informations suivantes synthétisent les réglages d'adresse valides :

- nom d'équipement : pour un nom d'équipement défini par commutateur, sélectionnez une valeur numérique entre 00 et 159. Vous pouvez utiliser les deux commutateurs :
 - Sur le commutateur supérieur (chiffres des dizaines), les paramètres disponibles sont compris entre 0 et 15.
 - Sur le commutateur inférieur (chiffres des unités), les paramètres disponibles sont compris entre 0 et 9.


Par exemple, un processeur BMX P34 2020 dont les commutateurs sont réglés comme sur la figure ci-dessus se voit attribuer le nom d'équipement DHCP BMX_2020_123. La sélection sur le commutateur inférieur d'une valeur non numérique (BOOTP, STORED, CLEAR IP, DISABLED) rend le réglage du commutateur supérieur inopérant.

- BOOTP: pour obtenir une adresse IP d'un serveur BOOTP, sélectionnez l'une des deux positions BOOTP sur le commutateur inférieur.
- STORED : l'équipement utilise les paramètres configurés (stockés) de l'application.
- CLEAR IP : l'équipement utilise les paramètres IP par défaut.
- DISABLED : l'équipement ne répond pas aux communications.

Le fonctionnement du commutateur rotatif, lorsque ce dernier est utilisé avec l'onglet Configuration IP (voir Modicon M340 pour Ethernet, Processeurs et modules de communication, Manuel utilisateur), est présenté dans le chapitre consacré aux Adresses IP (voir Modicon M340 pour Ethernet, Processeurs et modules de communication, Manuel utilisateur).

Etiquettes des commutateurs

Pour vous aider à régler les commutateurs rotatifs, une étiquette est apposée sur la droite du module. Le tableau ci-après décrit les réglages des commutateurs.

Catalogue des processeurs BMX P34 xxxxx

Présentation

Le choix d'un processeur BMX P34 xxxxx se fait, essentiellement, en fonction de ses caractéristiques et de ses possibilités.

Catalogue des processeurs BMX P34 xxxxx

Le tableau ci-après décrit les principales caractéristiques maximales des processeurs BMX P34 xxxxx.

Caractéristique		BMX P34 1000	BMX P34 2000	BMX P34 2010 /20102	BMX P34 2020	BMX P34 2030 /20302
Nombre maximum	Entrées/sorties TOR en rack	512	1 024	1 024	1 024	1 024
de voies	Entrées/sorties analogiques	128	256	256	256	256
	Voies expert (comptage, force, MPS, NOM, etc.)	20	36	36	36	36
Nombre maximum	Port série intégré	1	1	1	1	-
de modules	Port Ethernet intégré	-	-	-	1	1
	Port CANopen intégré	-	-	1	-	1
	Communication réseau (TCP/IP)	2	3	3	3	3
	Communication bus de terrain AS-i ¹	2	4	4	4	4
Taille mémoire	Application utilisateur	2 048 Ko	4 096 Ko	4 096 Ko	4 096 Ko	4 096 Ko
Légende	1 Le bus de terrain AS-i nécessite au minimum le système d'exploitation V2.10 sur l'automate.					

Horodateur

Introduction

Chaque processeur BMX P34 xxxxx comporte un horodateur, qui gère :

- la date et l'heure courantes.
- la date et l'heure du dernier arrêt de l'application.

Lorsque le processeur est mis hors tension, l'horodateur poursuit le comptage pendant quatre semaines. Cette durée est garantie pour une température inférieure à 45 °C (113 °F). Pour une température plus élevée, cette durée est réduite. Aucune opération de maintenance n'est requise pour la sauvegarde de l'horodateur.

Date et heure courantes

Le processeur actualise la date et l'heure courantes dans les mots système %SW49 à %SW53 et %SW70. Ces données sont codées en BCD (décimal codé en binaire).

Mot système	Octet de poids fort	Octet de poids faible
%SW49	00	Jours de la semaine dans la plage de valeurs 1 à 7 (1 pour lundi et 7 pour dimanche)
%SW50	Secondes (0 - 59)	00
%SW51	Heures (0 - 23)	Minutes (0 - 59)
%SW52	Mois (1 - 12)	Jours du mois (1 - 31)
%SW53	Siècle (0 - 99)	Année (0 - 99)
%SW70		Semaine (1 - 52)

Accès à la date et à l'heure

Vous pouvez accéder à la date et à l'heure des manières suivantes :

- par l'écran de mise au point du processeur,
- par le programme :
 - o lecture de mots système: %SW49 à %SW53 si le bit système %S50 a la valeur 0,
 - o mise à jour immédiate : écriture des mots système %SW50 à %SW53 si le bit système %S50 a la valeur 1,
 - o mise à jour incrémentielle : écriture du mot système %SW59. Avec ce mot, la date et l'heure peuvent être définis champ par champ en partant de la valeur courante (si le bit système %S59 a la valeur 1), ou une incrémentation/décrémentation générale peut être effectuée.

Le tableau suivant présente la fonction exécutée par chacun des bits du mot %SW59.

Rang du bit	Fonction
0	Incrémente le jour de la semaine
1	Incrémente les secondes
2	Incrémente les minutes
3	Incrémente les heures
4	Incrémente les jours
5	Incrémente les mois
6	Incrémente les années
7	Incrémente les siècles
8	Décrémente le jour de la semaine
9	Décrémente les secondes
10	Décrémente les minutes
11	Décrémente les heures
12	Décrémente les jours
13	Décrémente les mois
14	Décrémente les années
15	Décrémente les siècles

NOTE : La fonction est exécutée lorsque le bit %S59 correspondant a la valeur 1.

NOTE : Le processeur ne gère pas automatiquement le passage à l'heure d'été ou d'hiver.

Date et heure du dernier arrêt de l'application

La date et l'heure du dernier arrêt de l'application sont mémorisées en BCD dans les mots système %SW54 à %SW58.

Mot système	Octet de poids fort	Octet de poids faible	
%SW54	Secondes (0 à 59)	00	
%SW55	Heures (0 à 23)	Minutes (0 à 59)	
%SW56	Mois (1 à 12)	Jours du mois (1 à 31)	
%SW57	Siècle (0 à 99)	Année (0 à 99)	
%SW58	Jour de la semaine (1 à 7)	Cause du dernier arrêt de l'application	

La cause du dernier arrêt de l'application est indiquée par l'octet de poids faible du mot système %SW58 (valeur en BCD), qui peut avoir les valeurs suivantes.

Valeur du mot %sw58	Signification	
1	Passage en mode STOP de l'application.	
2	Arrêt de l'application par chien de garde.	
4	Coupure secteur ou opération de verrouillage de la carte mémoire.	
5	Arrêt suite à une défaillance matérielle.	
6	Arrêt suite à une défaillance logicielle (instruction HALT, erreurs SFC, échec de la vérification CRC de l'application, appel de fonction système non définie, etc.). Les détails relatifs au type de défaillance logicielle sont stockés dans %SW125.	

Chapitre 6

Caractéristiques générales des processeurs BMX P34 xxxx

Objet de cette section

Cette section présente les caractéristiques générales des processeurs BMX P34 ••••, utiles lors de leur mise en œuvre.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page	
Caractéristiques électriques des processeurs BMX P34 xxxxx	58	
Caractéristiques générales du processeur BMX P34 1000	60	
Caractéristiques générales du processeur BMX P34 2000	62	
Caractéristiques générales des processeurs BMX P34 2010/20102		
Caractéristiques générales du processeur BMX P34 2020	66	
Caractéristiques générales des processeurs BMX P34 2030/20302	68	
Caractéristiques de la mémoire du processeur BMX P34 xxxxx		

Caractéristiques électriques des processeurs BMX P34 xxxxx

Généralités

Les processeurs peuvent recevoir certains équipements non autoalimentés. Il sera donc nécessaire de tenir compte de la consommation de ces équipements lors de l'établissement du bilan global de consommation.

Consommation des processeurs

Le tableau suivant montre la consommation électrique de tous les processeurs BMX P34 xxxxx sans équipements connectés.

Processeur	Consommation moyenne
BMX P34 1000	72 mA
BMX P34 2000	72 mA
BMX P34 2010/20102	90 mA
BMX P34 2020	95 mA
BMX P34 2030/20302	135 mA

NOTE: les valeurs de consommation électrique du processeur sont mesurées au niveau de la sortie 24 V_BAC du module d'alimentation électrique, qui est la seule sortie d'alimentation électrique utilisée par les processeurs.

NOTE: dans le cas d'un raccordement d'un équipement alimenté par le port série d'un processeur, sa consommation doit être ajoutée à celle à celle du processeur. Le courant fourni par le port série est de 5 VCC/190 mA.

AVIS

ALIMENTATION INCORRECTE

Utilisez uniquement des équipements alimentés par réseau et testés par Schneider Electric.

Le non-respect de ces instructions peut provoquer des dommages matériels.

NOTE: il est possible d'utiliser des équipements alimentés par réseau et non testés par Schneider Electric. Cependant, leur fonctionnement n'est pas garanti. Pour plus d'informations, contactez votre agence commerciale Schneider.

Puissance dissipée des processeurs

Le tableau suivant montre la puissance dissipée moyenne de tous les processeurs BMX P34 xxxxx sans équipements connectés.

Processeur	Puissance dissipée moyenne
BMX P34 1000	1,7 W
BMX P34 2000	1,7 W
BMX P34 2010/20102	2,2 W
BMX P34 2020	2,3 W
BMX P34 2030/20302	3,2 W

Caractéristiques générales du processeur BMX P34 1000

Généralités

Les caractéristiques du processeur BMX P34 1000 sont présentées ci-dessous.

Version renforcée

L'équipement BMX P34 1000H (renforcé) est une version renforcée de l'équipement BMX P34 1000 (standard). Il peut être utilisé à des températures étendues et dans des environnements chimiques difficiles.

Pour plus d'informations, reportez-vous au chapitre *Installation dans des environnements plus rudes (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).*

Conditions de fonctionnement en altitude

Ces caractéristiques s'appliquent aux modules BMX P34 1000 et BMX P34 1000H utilisés à des altitudes pouvant aller jusqu'à 2 000 m (6 560 pieds). Lorsque les modules fonctionnent à plus de 2 000 m (6 560 pieds), une réduction des caractéristiques s'applique.

Pour plus d'informations, reportez-vous au chapitre *Conditions de stockage et de fonctionnement* (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).

Caractéristiques du processeur BMX P34 1000

Le tableau suivant présente les caractéristiques générales du processeur BMX P34 1000.

Caractéristique			Disponible
Température de fonctionnement		BMX P34 1000	0 à 60 °C (32 à 140 °F)
		BMX P34 1000H	-25 à 70 °C (-13 à 158 °F)
Fonctions	Nombre	Entrées/sorties TOR en rack	512
	maximum de	Entrées/sorties analogiques en rack	128
		Voies expert	20
		Voies Ethernet	2
		Bus de terrain AS-I	2
		EF de communication simultanées	8
	Nombre	USB	1
	maximum de modules	Port de ligne série Modbus intégré	1
module	modules	Port maître CANopen intégré	-
		Port Ethernet intégré	-
Horodateur sauvegardable		Oui	
Capacité mémoire des données d'application sauvegardables		128 Ko	

Caractéristique			Disponible
Structure de	Tâche MAST		1
l'application	Tâche FAST		1
	Traitement événementiel		32
Vitesse	RAM interne	100 % booléen	5,4 Kins/ms (1)
d'exécution du code de l'application		65 % booléenne + 35 % numérique	4,2 Kins/ms (1)
Temps	1 instruction booléenne de base		0,18 µs (théorique)
d'exécution	1 instruction numérique de base		0,25 µs (théorique)
	1 instruction sur flottants		1,74 µs (théorique)

(1) Kins: 1 024 instructions (liste), théorique

Caractéristiques générales du processeur BMX P34 2000

Généralités

Les caractéristiques du processeur BMX P34 2000 sont présentées ci-dessous.

Conditions de fonctionnement en altitude

Ces caractéristiques s'appliquent au module BMX P34 2000 utilisé à des altitudes pouvant aller jusqu'à 2 000 m (6 560 pieds). Lorsque le module fonctionne à plus de 2 000 m (6 560 pieds), une réduction des caractéristiques s'applique.

Pour plus d'informations, reportez-vous au chapitre *Conditions de stockage et de fonctionnement* (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).

Caractéristiques du processeur BMX P34 2000

Le tableau suivant présente les caractéristiques générales du processeur BMX P34 2000.

Caractéristique			Disponible
Température de fonctionnement			0 à 60 °C (32 à 140 °F)
Fonctions	Nombre	Entrées/sorties TOR en rack	1 024
	maximum de	Entrées/sorties analogiques en rack	256
		Voies de comptage	36
		Voies Ethernet	2
		Bus de terrain AS-i	4
		EF de communication simultanées	16
	Nombre	USB	1
	maximum de modules	Port de ligne série Modbus intégré	1
	modules	Port maître CANopen intégré	-
		Port Ethernet intégré	-
	Horodateur sauvegardable		Oui
Capacité mémoire des données d'application sauvegardables		256 Ko	
Structure de	Tâche MAST		1
l'application	Tâche FAST		1
	Traitement événementiel		64

Caractéristique			Disponible
Vitesse d'exécution du code de l'application	RAM interne	100 % booléen	8,1 Kins/ms (1)
		65 % booléenne + 35 % numérique	6,4 Kins/ms (1)
Temps 1 instruction bo		enne de base	0,12 μs
d'exécution	1 instruction nume	érique de base	0,17 μs
	1 instruction sur flottants		1,16 µs

(1) Kins: 1 024 instructions (liste)

Caractéristiques générales des processeurs BMX P34 2010/20102

Conditions de fonctionnement en altitude

Ces caractéristiques s'appliquent aux modules BMX P34 2010 et BMX P34 20102 utilisés à des altitudes pouvant aller jusqu'à 2 000 m (6 560 pieds). Lorsque les modules fonctionnent à plus de 2 000 m (6 560 pieds), une réduction des caractéristiques s'applique.

Pour plus d'informations, reportez-vous au chapitre *Conditions de stockage et de fonctionnement* (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).

Caractéristiques des processeurs BMX P34 2010/20102

Le tableau suivant présente les caractéristiques générales des processeurs BMX P34 2010/20102.

Caractéristique			Disponible
Température de fonctionnement			0 à 60 °C (32 à 140 °F)
Fonctions	Nombre	Entrées/sorties TOR en rack	1 024
	maximum de	Entrées/sorties analogiques en rack	256
		Voies expert	36
		Voies Ethernet	2
		Bus de terrain AS-i	BMX P34 2010 : 0
			BMX P34 20102 : 4
		EF de communication simultanées	16
	Nombre	USB	1
	maximum de modules	Port de ligne série Modbus intégré	1
		Port maître CANopen intégré	1
		Port Ethernet intégré	-
Horodateur sauve		egardable	Oui
Capacité mémoire	des données d'ap	plication sauvegardables	256 Ko
Structure de	Tâche MAST		1
l'application	Tâche FAST		1
	Traitement événe	mentiel	64
Vitesse	RAM interne	100 % booléen	8,1 Kins/ms (1)
d'exécution du code de l'application		65 % booléenne + 35 % numérique	6,4 Kins/ms (1)
Temps	1 instruction booléenne de base		0,12 μs
d'exécution	1 instruction numérique de base		0,17 μs
	1 instruction sur flottants		1,16 µs

(1) Kins: 1 024 instructions (liste)

NOTE: le mode expert est disponible pour les processeurs BMX P34 20102.

Caractéristiques générales du processeur BMX P34 2020

Généralités

Les caractéristiques du processeur BMX P34 2020 sont présentées ci-dessous.

Version renforcée

L'équipement BMX P34 2020H (renforcé) est une version renforcée de l'équipement BMX P34 2020 (standard). Il peut être utilisé à des températures étendues et dans des environnements chimiques difficiles.

Pour plus d'informations, reportez-vous au chapitre *Installation dans des environnements plus rudes (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).*

Conditions de fonctionnement en altitude

Ces caractéristiques s'appliquent aux modules BMX P34 2020 et BMX P34 2020H utilisés à des altitudes pouvant aller jusqu'à 2 000 m (6 560 pieds). Lorsque les modules fonctionnent à plus de 2 000 m (6 560 pieds), une réduction des caractéristiques s'applique.

Pour plus d'informations, reportez-vous au chapitre *Conditions de stockage et de fonctionnement* (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).

Caractéristiques du processeur BMX P34 2020

Le tableau suivant présente les caractéristiques générales du processeur BMX P34 2020.

Caractéristique			Disponible
Température de fonctionnement		BMX P34 2020	0 à 60 °C (32 à 140 °F)
		BMX P34 2020H	-25 à 70 °C (-13 à 158 °F)
Fonctions	Nombre	Entrées/sorties TOR en rack	1 024
	maximum de	Entrées/sorties analogiques en rack	256
		Voies expert	36
Nombre		Voies Ethernet	3
		Bus de terrain AS-i	4
	EF de communication simultanées	16	
	USB	1	
	maximum de modules	Port de ligne série Modbus intégré	1
modules	modules	Port maître CANopen intégré	-
		Port Ethernet intégré	1
	Horodateur sauvegardable		Oui
Capacité mémoire des données d'application sauvegardables		256 Ko	

Caractéristique			Disponible
Structure de	Tâche MAST		1
l'application	Tâche FAST		1
Traitement évéi		mentiel	64
Vitesse	RAM interne	100 % booléen	8,1 Kins/ms (1)
d'exécution du code de l'application		65 % booléenne + 35 % numérique	6,4 Kins/ms (1)
Temps	1 instruction booléenne de base		0,12 μs
d'exécution	1 instruction numérique de base		0,17 μs
	1 instruction sur flottants		1,16 µs

(1) Kins: 1 024 instructions (liste)

Caractéristiques générales des processeurs BMX P34 2030/20302

Version renforcée

L'équipement BMX P34 20302H (renforcé) est une version renforcée de l'équipement BMX P34 20302 (standard). Il peut être utilisé à des températures étendues et dans des environnements chimiques difficiles.

Pour plus d'informations, reportez-vous au chapitre *Installation dans des environnements plus rudes (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).*

Conditions de fonctionnement en altitude

Ces caractéristiques s'appliquent aux modules BMX P34 2030, BMX P34 20302 et BMX P34 20302H utilisés à des altitudes pouvant aller jusqu'à 2 000 m (6 560 pieds). Lorsque les modules fonctionnent à plus de 2 000 m (6 560 pieds), une réduction des caractéristiques s'applique.

Pour plus d'informations, reportez-vous au chapitre *Conditions de stockage et de fonctionnement* (voir Plateformes Modicon M580, M340 et X80 I/O, Normes et certifications).

Caractéristiques des processeurs BMX P34 2030/20302

Le tableau suivant présente les caractéristiques générales des processeurs BMX P34 2030/20302.

Caractéristique			Disponible	
Température de fonctionnement		BMX P34 2030/20302	0 à 60 °C (32 à 140 °F)	
		BMX P34 20302H	-25 à 70 °C (-13 à 158 °F)	
Fonctions	Nombre maximum de	Entrées/sorties TOR en rack	1 024	
		Entrées/sorties analogiques en rack	256	
		Voies expert	36	
		Voies Ethernet	3	
		Bus de terrain AS-i	BMX P34 2030 : 0	
			BMX P34 20302 : 4	
		EF de communication simultanées	16	
	Nombre maximum de modules	USB	1	
		Port de ligne série Modbus intégré	-	
		Port maître CANopen intégré	1	
		Port Ethernet intégré	1	
	Horodateur sauvegardable		Oui	
Capacité mémoire des données d'application sauvegardables			256 Ko	

Caractéristique			Disponible
Structure de l'application	Tâche MAST		1
	Tâche FAST		1
	Traitement événementiel		64
Vitesse	RAM interne	100 % booléen	8,1 Kins/ms (1)
d'exécution du code de l'application		65 % booléenne + 35 % numérique	6,4 Kins/ms (1)
Temps d'exécution	1 instruction booléenne de base		0,12 μs
	1 instruction numérique de base		0,17 μs
	1 instruction sur flottants		1,16 µs

(1) Kins: 1 024 instructions (liste)

NOTE: le mode expert est disponible pour les processeurs BMX P34 20302.

Caractéristiques de la mémoire du processeur BMX P34 xxxxx

Introduction

Les pages suivantes présentent les caractéristiques principales de la mémoire des processeurs BMX P34 •••••.

Taille des données localisées

Le tableau ci-dessous indique la taille maximale des données localisées en fonction du type de processeur :

Type des objets	Adresse	Taille maximale pour le processeur BMX P34 1000	Taille par défaut pour le processeur BMX P34 1000	Taille maximale pour les processeurs BMX P34 20x0x	Taille par défaut pour les processeurs BMX P34 20x0x
Bits internes	%Mi	16 250	256	32 634	512
Bits d'entrée/sortie	%Ir.m.c %Qr.m.c	(1)	(1)	(1)	(1)
Bits système	%Si	128	128	128	128
Mots internes	%MWi	32 464	512	32 464	1 024
Mots constantes	%KWi	32 760	128	32 760	256
Mots système	%SWi	168	168	168	168

(1) Dépend de la configuration matérielle déclarée (modules d'entrées/sorties).

Taille des données non localisées

Les données non localisées sont les suivantes :

- Types de Données Elémentaires (EDT)
- DDT (types de données dérivés)
- données des blocs fonction DFB et EFB

Taille des données localisées et non localisées

La taille totale des données localisées et non localisées est limitée à :

- 128 kilo-octets pour le processeur BMX P34 1000,
- 256 kilo-octets pour les processeurs BMX P34 20x0x.

Taille des données localisées dans le cas d'une configuration de RAM d'état

Le tableau ci-dessous indique la taille maximale et par défaut des données localisées dans le cas d'une configuration de RAM d'état en fonction du type de processeur.

Type des objets	Adresse	Processeur BMX P34 1000 V2.40		Processeurs BMX P34 2000, 20102, 2020, 20302 (tous V2.40)	
		Taille maximale	Taille par défaut	Taille maximale	Taille par défaut
bits de sortie et bits internes	%M (0x)	32 765	752	65 530	1 504
bits d'entrée et bits internes	%I (1x)	32 765	752	65 530	1 504
mots d'entrée et mots internes	%IW (3x)	32 765	256	65 530	512
mots de sortie et mots internes	%MW (4x)	32 765	256	65 530	512

NOTE: pour utiliser une configuration de RAM d'état, vous devez disposer du firmware Modicon M340 2.4 ou version ultérieure.

NOTE: si vous remplacez le processeur BMX P34 2xxx par un BMX P34 1000, supprimez les fonctions non disponibles (DFB, EFB, etc.) dans les sections et dans l'éditeur de données (utilisez les commandes Purger les instances FB inutilisées, Purger les types DFB non instanciés, Effacer les instances de données privées non utilisées, au besoin). Sinon, l'application ne pourra pas être générée.

Chapitre 7

Installation des processeurs BMX P34 xxxx

Objectif de cette section

Cette section traite de l'installation des processeurs BMX P34 •••• et des cartes mémoires d'extension.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Mise en place des processeurs	74
Cartes mémoire pour processeurs BMX P34 xxxxx	76

Mise en place des processeurs

Présentation

Les processeurs BMX P34 xxxxx sont alimentés par le bus du rack.

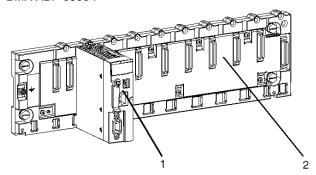
Les opérations de mise en place (installation, montage et démontage) sont détaillées ci-après.

Précautions d'installation

Un processeur BMX P34 xxxx doit toujours être placé dans l'emplacement identifié par 00 du rack.

Avant d'installer un module, retirez le cache de protection du connecteur du module situé sur le rack.

DANGER


RISQUE D'ELECTROCUTION

Débranchez toutes les sources d'alimentation avant d'installer le processeur.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Installation

L'illustration suivante représente un processeur BMX P34 2010 monté dans un rack BMX XBP 0800 :

Le tableau ci-dessous décrit les différents éléments de l'assemblage :

Numéro	Description
1	Processeur
2	Rack standard

Installation du processeur sur le rack

Le tableau ci-dessous présente la procédure d'installation d'un processeur sur un rack.

Etape	Action	Illustration

A AVERTISSEMENT

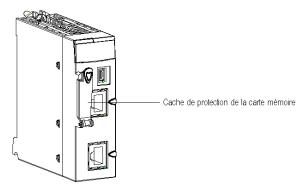
FONCTIONNEMENT IMPREVU DE L'EQUIPEMENT

Vérifiez qu'une carte mémoire adaptée est installée avant de brancher un nouveau processeur sur le rack. Une carte incorrecte peut entraîner un dysfonctionnement du système.

Consultez %SW97 pour vérifier l'état de la carte.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

1	Vérifiez que l'alimentation est hors	L'illustration suivante décrit les étapes 1 et 2.
ı	tension et que la carte mémoire utilisée est appropriée.	3
2	Positionnez les deux ergots de guidage situés à l'arrière du module (partie inférieure) dans les emplacements correspondants du rack. Remarque : avant de placer les ergots, veillez à retirer le cache de protection.	
3	Faites pivoter le module vers le haut du rack de façon à plaquer le module sur le fond du rack. Il est alors maintenu en place.	
4	Serrez la vis de fixation pour assurer le maintien en position du module sur le rack. Couple de serrage: 0,4 à 1,5 N•m (0,30 à 1,10 lbf-ft).	L'illustration suivante décrit l'étape 3.


Cartes mémoire pour processeurs BMX P34 xxxxx

Général

Tous les processeurs BMX P34 •••• ont besoin d'une carte mémoire.

Emplacement de la carte mémoire

L'illustration suivante représente l'emplacement de la carte mémoire sur un processeur BMX P34 •••• avec le cache de protection en place.

A AVERTISSEMENT

FONCTIONNEMENT INATTENDU DE L'EQUIPEMENT

Vérifiez que le cache de protection est fermé lorsque le processeur est en marche afin de respecter les caractéristiques environnementales.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Description des cartes mémoire

Seules les cartes mémoire Schneider sont compatibles avec les processeurs BMX P34 ••••.

Les cartes mémoire Schneider utilisent la technologie Flash et ne nécessitent aucune batterie. Ces cartes peuvent prendre en charge environ 100 000 cycles d'écriture/suppression (valeur typique).

Trois modèles de carte mémoire sont disponibles :

- La carte BMX RMS 008MP, utilisée pour enregistrer les données d'application et les pages
 Web
- La carte BMX RMS 008MPF, utilisée pour enregistrer les données d'application et les pages Web, mais aussi pour stocker les fichiers utilisateur créés par l'application avec les blocs fonction de gestion de fichiers (ou les fichiers transférés par FTP). L'espace disponible pour les fichiers utilisateur dans la partition du système de fichiers est de 8 Mo (zone de stockage des données).
- La carte BMX RMS 128MPF, utilisée pour enregistrer les données d'application et les pages Web, mais aussi pour stocker les fichiers utilisateur créés par l'application avec les blocs fonction de gestion de fichiers (ou les fichiers transférés par FTP). L'espace disponible pour les fichiers utilisateur dans la partition du système de fichiers est de 128 Mo (zone de stockage des données).

NOTE : les pages Web sont des pages Schneider Electric ; elles ne peuvent pas être modifiées.

NOTE: la carte BMX RMS 008MP est fournie avec chaque processeur. Les autres doivent être commandées séparément.

Caractéristiques de la carte mémoire

Le tableau suivant vous donne les principales caractéristiques des cartes mémoire :

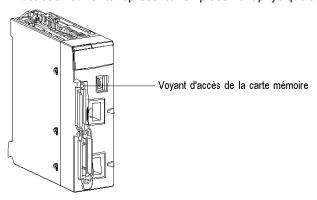
Référence de carte mémoire Stockage de l'application		Stockage de données
BMX RMS 008MP	Oui	Non
BMX RMS 008MPF	Oui	8 Mo
BMX RMS 128MPF	Oui	128 Mo

NOTE: La taille de l'espace de stockage des données indiquée ci-dessus est la taille maximale recommandée pour les fichiers utilisateurs, bien que le stockage des fichiers reste possible jusqu'à ce que la partition du système de fichiers global soit pleine. Si la taille maximale recommandée est dépassée, il est possible que l'espace disponible soit insuffisant pour une mise à jour du firmware, auquel cas il faudra supprimer des fichiers utilisateur.

La compatibilité des deux cartes mémoire est la suivante :

- La carte BMX RMS 008MP est compatible avec tous les processeurs.
- Les cartes BMX RMS 008MPF et BMX RMS 128MPF sont compatibles avec les processeurs suivants :
 - O BMX P34 2000.
 - O BMX P34 2010.
 - o BMX P34 20102,
 - O BMX P34 2020.
 - BMX P34 2030.
 - O BMX P34 20302.

NOTE : La carte mémoire est formatée pour être utilisée avec les produits Schneider Electric. Ne tentez pas d'utiliser ou de formater la carte à l'aide d'autres outils. Cela empêcherait le fonctionnement du programme et le transfert des données dans un automate Modicon M340.


NOTE: pour plus d'informations sur la structure de la mémoire dans les cartes mémoire, consultez la page Structure de la mémoire des automates Modicon M340 (*voir EcoStruxure* [™] *Control Expert, Langages de programmation et structure, Manuel de référence*).

NOTE: Pour plus d'informations sur les services Ethernet fournis par les cartes mémoire, consultez la page Cartes mémoire Modicon M340 (voir Modicon M340 pour Ethernet, Processeurs et modules de communication, Manuel utilisateur) dans la section Communication Ethernet.

Voyant d'accès à la carte mémoire

Le voyant d'accès de la carte mémoire est inclus sur tous les processeurs Modicon M340. Ce voyant indique à l'utilisateur l'état de la carte mémoire pour son retrait.

L'illustration suivante représente l'emplacement physique du voyant d'accès de la carte mémoire :

Ce voyant est vert et possède différents états :

- Allumé : la carte est reconnue et le processeur y a accès.
- Clignotant : le voyant s'éteint chaque fois que le processeur accède à la carte, et se rallume à la fin de l'accès.
- Eteint : la carte a peut-être été retirée, car le processeur n'y a pas y accès.

NOTE: Un front montant sur le bit %S65 arrête les actions en cours, désactive l'accès à la carte, puis éteint le voyant CARDAC. Dès que ce voyant est éteint, vous pouvez retirer la carte.

NOTE : Le voyant d'accès à la carte mémoire n'est visible que si le capot est ouvert.

NOTE: Le voyant rouge CARDERR indique un état d'erreur dans la carte mémoire ou signale que l'application en mémoire est différente de celle que traite le processeur. Il est situé près du haut du panneau avant du processeur.

Etats des voyants au redémarrage

Le tableau suivant présente les différents états de l'automate, du voyant d'accès à la carte mémoire et du voyant CARDERR au redémarrage ou lors d'une réinitialisation de l'automate.

	Comportement de l'automate ou de la carte mémoire	Etat de l'automate	Voyant d'accès à la carte mémoire	Voyant CARDERR
Carte mémoire absente	_	Absence de configuration	Eteint	Allumé
Carte mémoire non OK	-	Absence de configuration	Eteint	Allumé
Carte mémoire sans projet	-	Absence de configuration	Allumé	Allumé
Carte mémoire avec projet non compatible	-	Absence de configuration	Allumé	Allumé
Carte mémoire avec projet compatible	Erreur détectée lors de la restitution du projet depuis la carte mémoire vers la RAM de l'automate	Absence de configuration	Clignotant durant le transfert Allumé à la fin	ON
Carte mémoire avec projet compatible	Aucune erreur lors de la restitution du projet depuis la carte mémoire vers la RAM de l'automate		Clignotant durant le transfert Allumé à la fin	Allumé durant le transfert Eteint à la fin

Procédure d'insertion de la carte mémoire

L'illustration suivante représente la procédure d'insertion d'une carte mémoire dans un processeur BMX P34 ••••.

Etape Description Illustration

A AVERTISSEMENT

FONCTIONNEMENT INATTENDU DE L'EQUIPEMENT

Vérifiez qu'une carte mémoire adaptée est installée avant de brancher un nouveau processeur sur le rack. Une carte incorrecte peut entraîner un dysfonctionnement du système.

Consultez %SW97 pour vérifier l'état de la carte.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

1	Ouvrez le cache de protection du processeur en tirant le cache vers vous.	Ouverture du cache
2	Insérez la carte mémoire dans son emplacement en la poussant jusqu'au fond. Résultat : La carte devrait être enclenchée dans son emplacement. Remarque : L'insertion de la carte mémoire ne nécessite pas la restauration de l'application.	Insertion de la carte mémoire
3	Fermez le cache de protection de la carte mémoire.	

Procédure de retrait de la carte mémoire

Avant de retirer une carte mémoire, vous devez générer un front montant sur le bit \$\$65 pour garantir la cohérence des informations. La carte peut être extraite lorsque le voyant CARDAC est éteint. Il y a risque d'incohérence ou de perte de données si l'extraction est réalisée sans gérer le bit \$\$65. L'illustration suivante représente la procédure d'extraction d'une carte mémoire d'un processeur BMX P34 ••••.

Etape	Description	Illustration
1	Ouvrez le cache de protection du processeur en tirant le cache vers vous.	Ouverture du cache
2	Poussez la carte mémoire dans son emplacement. Résultat : La carte devrait se détacher de son emplacement.	Pousser la carte mémoire dans son emplacement
3	Retirez la carte de son emplacement. Remarque: Le voyant CARDERR est allumé lorsque la carte mémoire a été retirée du processeur.	Retrait de la carte mémoire
4	Fermez le cache de protection.	

Mise à jour d'une application

Avant de retirer une carte mémoire, vous devez générer un front montant sur le bit \$\$65 pour garantir la cohérence des informations. La carte peut être extraite lorsque le voyant CARDAC est éteint. Il y a risque d'incohérence ou de perte de données si l'extraction est réalisée sans gérer le bit \$\$65. Le tableau suivant montre la procédure de mise à jour d'une application dans un processeur à l'aide de la carte mémoire principale.

Etape	Description
1	Mettre l'automate en mode STOP.
2	Donnez au bit %S65 la valeur 1 et vérifiez que le voyant CARDAC est éteint.
3	Retirez la carte mémoire contenant l'ancienne application.
4	Insérez la carte mémoire principale dans le processeur.
5	Appuyez sur le bouton RESET à la mise sous tension. Résultat : la nouvelle application est transférée dans la mémoire RAM interne.
6	Retirez la carte mémoire principale.
7	Insérez la carte mémoire contenant l'ancienne application dans le processeur.
8	Exécutez une commande de sauvegarde.
9	Mettez l'automate en mode RUN.

Protéger une application

%SW146-147 : ces deux mots système contiennent le numéro de série unique de la carte SD (32 bits). Si la carte SD est absente ou non reconnue, les deux mots système sont réglés sur 0. Cette information permet de protéger une application contre la duplication : l'application peut vérifier la valeur du numéro de série et interrompre son fonctionnement (ou exécuter une autre action appropriée) si le numéro est différent du numéro initial. Ainsi, cette application ne peut pas s'exécuter sur une autre carte SD.

Avec Control Expert, l'application doit être protégée en lecture. Pour ce faire, désélectionnez les informations de chargement dans les paramètres Projet.

NOTE : pour appliquer la protection, vous pouvez chiffrer la valeur du numéro de série utilisé dans la comparaison.

NOTE: l'identification complète de la carte SD comprend plusieurs paramètres, dont notamment le numéro de série du produit (32 bits).

Précautions

Afin d'assurer le fonctionnement normal de la carte mémoire, les précautions ci-après sont à observer :

- Evitez de retirer la carte mémoire de son emplacement quand le processeur accède à la carte mémoire (voyant d'accès vert allumé ou clignotant).
- Evitez de toucher les connecteurs de la carte mémoire.
- Protégez la carte mémoire des sources électrostatiques et électromagnétiques, des sources de chaleur, des rayons de soleil, de l'eau et de l'humidité.
- Protégez la carte mémoire des chocs.
- Avant l'envoi d'une carte mémoire par courrier, vérifiez la politique de sécurité des services postaux. En effet, par mesure de sécurité, les services postaux de certains pays exposent le courrier à de hauts niveaux de radiation. Or, ces hauts niveaux de radiation peuvent effacer le contenu de la carte mémoire et rendre cette dernière inutilisable.
- Si vous retirez une carte sans générer un front montant sur le bit %S65 et sans vérifier que le voyant CARDAC est éteint, il y a risque de perte de données (fichier, application).

35012677 10/2019

Chapitre 8

Diagnostic des processeurs BMX P34 xxxx

Objet de cette section

Cette section traite du diagnostic sur les processeurs BMX P34 ••••.

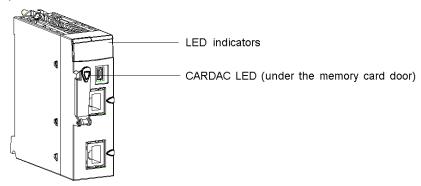
Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Visualisation	86
Recherche des défauts à partir des voyants d'état du processeur	91
Défauts bloquants	92
Défauts non bloquants	
Défauts processeur ou système	96

Visualisation

Introduction


Il existe plusieurs voyants disponibles sur les faces avant de chaque processeur, permettant un diagnostic rapide de l'état de l'automate.

Ces voyants donnent des informations sur :

- le fonctionnement de l'automate.
- la carte mémoire,
- la communication avec les modules,
- la communication série,
- la communication sur le réseau CANopen,
- la communication sur le réseau Ethernet.

Illustration

La figure suivante montre l'emplacement physique des voyants sur le panneau avant d'un processeur BMX P34 ••••• :

Voyants des processeurs BMX P34 1000/2000

Le schéma suivant montre les voyants de diagnostic sur les processeurs BMX P34 1000/2000 :

Voyants du processeur BMX P34 2010

Le schéma suivant montre les voyants de diagnostic sur le processeur BMX P34 2010 :

Voyants du processeur BMX P34 2020

La figure ci-après illustre les voyants de diagnostic du processeur BMX P34 2020. Notez qu'il existe deux affichages différents selon que vous utilisez la version 1 ou 2 (et ultérieure) du processeur.

Voyants du processeur BMX P34 2030

La figure ci-après illustre les voyants de diagnostic du processeur BMX P34 2030. Notez qu'il existe deux affichages différents selon que vous utilisez la version 1 ou 2 (et ultérieure) du processeur.

Voyant d'accès de la carte mémoire

Chaque processeur BMX P34 ••••• comporte également un voyant d'accès à la carte mémoire (voir page 78).

description

Le tableau suivant décrit les voyants RUN, ERR, I/O, SER COM, CARDERR, CAN RUN, CAN ERR, ETH STS et CARDAC sur le panneau avant.

Libellé	Séquence	Indication
RUN (vert) : état	allumé	Automate en marche normale, exécution du programme
opérationnel	clignotant	Automate en mode STOP ou bloqué par une erreur de logiciel
	éteint	Automate non configuré (application absente, non valide ou incompatible)
ERR (rouge) : erreur	allumé	Erreur processeur ou système détectée
détectée	clignotant	 Automate non configuré (application absente, non valide ou incompatible) Automate bloqué par une erreur de logiciel
	éteint	Etat normal (pas d'erreur interne détectée)
I/O (rouge) : état d'entrée/sortie	allumé	 Erreur d'entrée/sortie provenant d'un module ou d'une voie Erreur de configuration détectée
	éteint	Etat normal (pas d'erreur interne détectée)
SER COM (jaune) : état des données série	clignotant	Echange de données sur la liaison série en cours (réception ou émission)
	éteint	Pas d'échange de données sur la liaison série
CARDERR (rouge): erreur de carte mémoire détectée Pour plus d'informations, reportez-vous à la section Gestion de la sauvegarde de projet pour les automates Modicon M340 (voir EcoStruxure TM Control Expert, Modes de fonctionnement).	allumé	 Absence de carte mémoire Carte mémoire non reconnue Contenu de la carte mémoire différent de l'application sauvegardée dans le processeur
	éteint	Carte mémoire reconnue Contenu de la carte mémoire identique à l'application sauvegardée dans le processeur
CAN RUN (vert) :	allumé	Réseau CANopen en état opérationnel
opérations CANopen	clignotement rapide (alterne allumé 50 ms, éteint 50 ms)	Détection automatique du flux de données ou de services LSS en cours (alterne avec CAN ERR)
	clignotement lent (alterne allumé 200 ms, éteint 200 ms)	Réseau CANopen en état pré-opérationnel
	1 clignotement	Réseau CANopen arrêté
	3 clignotements	Téléchargement du micrologiciel CANopen en cours

Libellé	Séquence	Indication
CAN ERR (rouge) : erreurs	allumé	Bus CANopen arrêté
CANopen détectées	clignotement rapide (alterne allumé 50 ms, éteint 50 ms)	Détection automatique du flux de données ou de services LSS en cours (alterne avec CAN RUN)
	clignotement lent (alterne allumé 200 ms, éteint 200 ms)	Configuration CANopen non valide
	1 clignotement	Au moins un des compteurs d'erreurs détectées a atteint ou dépassé le niveau d'alerte
	2 clignotements	Un événement de garde (NMT-esclave ou NMT-maître) ou un événement pulsation a eu lieu
	3 clignotements	Le message SYNC n'a pas été reçu avant la fin de la période du cycle de communication
	éteint	Pas d'erreur CANopen détectée
	éteint	Pas d'activité de communication.
ETH STS (vert) : état de la	allumé	Communication OK
communication Ethernet	2 clignotements	Adresse MAC incorrecte
	3 clignotements	Liaison Ethernet non connectée
	4 clignotements	Adresse IP en double
	5 clignotements	Attente d'une adresse IP de serveur
	6 clignotements	Mode sécurité (avec adresse IP par défaut)
	7 clignotements	Conflit de configuration entre les commutateurs rotatifs et la configuration interne
CARDAC (vert) : accès à la carte mémoire Remarque : Ce voyant se trouve sous le cache de	allumé	L'accès à la carte est activé
	clignotant	Activité présente sur la carte ; à chaque accès, le voyant de la carte s'éteint, puis s'allume de nouveau
protection de la carte mémoire.	éteint	L'accès à la carte est désactivé. Il est possible d'extraire la carte une fois que l'accès à la carte a été désactivé en générant un front montant sur le bit %S65.

35012677 10/2019

Le tableau suivant décrit les voyants ETH ACT et ETH 100 sur le panneau avant d'un processeur V1.

Libellé	Séquence	Indication
ETH ACT (vert) : activité de communication Ethernet (émission/réception)	allumé	Liaison Ethernet détectée : pas d'activité de communication.
	éteint	Pas de liaison Ethernet détectée.
	clignotant	Liaison Ethernet et activité de communication détectées.
ETH 100 (vert) : vitesse de transmission Ethernet	allumé	Transmission Ethernet à 100 Mbits/s (Fast Ethernet).
	éteint	Transmission Ethernet à 10 Mbits/s (Ethernet) ou aucune liaison détectée.

Le tableau suivant décrit les voyants ETH ACT et ETH LNK sur le panneau avant d'un processeur V2.

Libellé	Séquence	Indication
ETH ACT (vert) : activité de communication Ethernet (émission/réception)	allumé	Activité de communication détectée.
	éteint	Pas d'activité de communication.
ETH LNK (vert) : état de la liaison Ethernet	allumé	Liaison Ethernet détectée.
	éteint	Pas de liaison Ethernet détectée.
	éteint	Pas d'activité de communication.

NOTE : Le clignotement est rapide lorsque le voyant est allumé pendant 50 ms, puis éteint pendant 50 ms.

NOTE: Le clignotement est lent lorsque le voyant est allumé pendant 200 ms, puis éteint pendant 200 ms.

Recherche des défauts à partir des voyants d'état du processeur

Généralités

Les voyants d'état situés sur le processeur permettent de renseigner l'utilisateur sur le mode opératoire de l'automate et sur ses éventuels défauts.

Les défauts détectés par l'automate concernent :

- les circuits constituants l'automate et/ou ses modules : défauts internes.
- le procédé piloté par l'automate ou le câblage du procédé : défauts externes,
- le fonctionnement de l'application exécutée par l'automate : défauts internes ou externes.

Détection des défauts

La détection des défauts s'effectue en cours de démarrage (autotest) ou pendant le fonctionnement (c'est le cas de la plupart des défauts matériel), pendant les échanges avec les modules ou lors de l'exécution d'une instruction du programme.

Certains défauts "graves" nécessitent un redémarrage de l'automate, d'autres sont à la charge de l'utilisateur qui décide du comportement à adopter en fonction du niveau d'application souhaité.

On distingue 3 types de défauts :

- non bloquants,
- bloquants,
- processeur ou système.

Défauts bloquants

Général

Les défauts bloquants, provoqués par le programme application, n'entraînent pas de défauts pour le système mais interdisent l'exécution du programme. Sur un tel défaut, l'automate s'arrête immédiatement et passe dans l'état HALT (les tâches sont toutes arrêtées sur l'instruction courante). Le voyant ERR clignote.

Redémarrage de l'application après un défaut bloquant

Pour quitter cet état, vous devez réinitialiser l'automate ou définir le bit %s0 sur 1.

L'application est alors dans un état initial :

- les données reprennent leur valeur initiale.
- les tâches sont arrêtées en fin de cycle,
- l'image des entrées est actualisée,
- les sorties sont commandées en position de repli.

La commande RUN permet alors le redémarrage de l'application.

Diagnostic des défauts bloquants

Les défauts bloquants sont signalés par les voyants d'état ERR et RUN qui clignotent sur la face avant du processeur.

Les mots système %SW126 et %SW127 indiquent l'adresse de l'instruction qui a provoqué le défaut bloquant.

La nature du défaut est indiquée par le mot système %SW125.

Le tableau suivant présente les défauts signalés par les valeurs du mot système %SW125.

Valeur hexadécimale de %SW125	Défaut correspondant
23•••	Exécution d'une fonction CALL vers un sous- programme non défini
0	Exécution d'une fonction inconnue
2258	Exécution de l'instruction HALT
9690	Echec de la vérification CRC de l'application (checksum ou somme de contrôle)
DEB0	Débordement du chien de garde (overrun)
DE87	Erreur de calcul sur des nombres à virgule
DEF0	Division par 0
DEF1	Erreur de transfert d'une chaîne de caractères
DEF2	Dépassement de capacité
DEF3	Débordement de l'index

Valeur hexadécimale de %SW125	Défaut correspondant
DEF7	Erreur d'exécution SFC
DEFE	Etapes SFC non définies
81F4	Nœud SFC incorrect
82F4	Code SFC inaccessible
83F4	Espace de travail SFC inaccessible
84F4	Trop d'étapes SFC initiales
85F4	Trop d'étapes SFC actives
86F4	Code de séquence SFC incorrect
87F4	Description de code SFC incorrecte
88F4	Table de référence SFC incorrecte
89F4	Erreur de calcul interne de l'index SFC
8AF4	Etat d'une étape SFC non disponible
8BF4	Mémoire SFC trop petite après changement dû à un téléchargement
8CF4	Section Action/Transition inaccessible
8DF4	Espace de travail SFC trop petit
8EF4	Version du code SFC antérieure à celle de l'interpréteur
8FF4	Version du code SFC postérieure à celle de l'interpréteur
90F4	Mauvaise description d'un objet SFC : pointeur NULL
91F4	Qualificatif d'une action illégale
92F4	Mauvaise définition du temps pour un identificateur d'action
93F4	Etape macro introuvable dans la liste des étapes actives pour désactivation
94F4	Dépassement (overflow) dans la table des actions
95F4	Dépassement (overflow) dans la table d'activation/désactivation des étapes

Défauts non bloquants

Général

Un défaut non bloquant est provoqué par un défaut d'entrées/sorties sur le bus ou par l'exécution d'une instruction. Il peut être traité par le programme utilisateur et ne modifie pas l'état de l'automate.

Défauts non bloquants liés aux entrées/sorties

Un défaut non bloquant lié aux entrées/sorties est signalé par :

- le voyant d'état I/O du processeur allumé,
- les voyants d'état I/O des modules allumés,
- les bits et mots de défaut associés à la voie :
 - O Le bit %Ir.m.c.ERR à 1 indique la voie en défaut (échanges implicites).
 - O Les mots %MWr.m.c.2 indiquent le type de défaut de la voie (échanges explicites).
- bits système:
 - O %S10: défaut d'E/S sur un des modules présents sur le bus de rack,
 - O %S16: défaut d'E/S dans la tâche en cours,
 - %S118: défaut d'E/S sur le bus CANopen,
 - %S40 %S47 : défaut d'E/S sur les racks 0 à 7

Le tableau suivant présente le diagnostic des défauts non bloquants à partir des voyants d'état et des bits système.

Voyant d'état RUN	Voyant d'état ERR	Voyant d'état I/O	Bit système	Erreur
-	-	ON	%S10 à 0	Défaut d'E/S : défaut d'alimentation voie, voie rompue, module non conforme à la configuration, hors service ou défaut d'alimentation module.
-	-	ON	%S16 à 0	Défaut d'entrées/sorties dans une tâche.
-	-	ON	%S118 à 0	Défaut d'entrées/sorties sur le bus CANopen (les défauts sont les mêmes que ceux du bit %S10).
-	-	ON	%S40 - %S47 à 0	Défaut d'E/S au niveau d'un rack. (%S40 : rack 0 - %S47 : rack 7).
Clé:				
Activé : voya	Activé : voyant allumé			
- : état indéterminé				

Défauts non bloquants liés à l'exécution du programme

Un défaut non bloquant lié à l'exécution du programme est signalé par la mise à 1 d'un ou plusieurs bits système \\$S15, \\$S18 et \\$S20. La nature du défaut est indiquée dans le mot système \\$SW125 (toujours mis à jour).

Le tableau suivant présente le diagnostic des défauts non bloquants liés à l'exécution du programme.

Bit système	Erreur
%S15 à 1	Erreur de manipulation d'une chaîne de caractères
%S18 à 1	Débordement de capacité, erreur sur flottant ou division par 0
%S20 à 1	Débordement de l'index

NOTE : Il existe 2 manières de rendre bloquants les défauts non bloquants liés à l'exécution du programme :

- fonction de programme de diagnostic Control Expert, accessible à partir du logiciel de programmation
- bit %S78 (HALTIFERROR) lorsqu'il est mis à 1.

L'état HALT du processeur est déterminé à l'aide des voyants ERR et I/O clignotants. Le test et la mise à 0 de ces bits système sont à la charge de l'utilisateur.

Défauts processeur ou système

Généralités

Les défauts processeur ou système sont des défauts graves relatifs soit au processeur (matériel ou logiciel), soit au câblage du bus de rack. Ces défauts ne permettent plus d'assurer le fonctionnement correct du système. Ils entraînent un arrêt de l'automate en état ERROR qui nécessite un démarrage à froid. Le prochain démarrage à froid sera forcé en état STOP pour éviter que l'automate ne retombe en erreur.

Diagnostic des défauts processeur et système

Le tableau suivant présente le diagnostic des défauts processeur et système.

Voyant d'état RUN	Voyant d'état ERR	Voyant d'état I/O	Valeur hexadécimale du mot système %SW124	Défaut
-	Allumé	Allumé	80	Défaut de chien de garde système ou défaut de câblage sur le bus de rack
-	Allumé	Allumé	81	Défaut de câblage sur le bus de rack
-	Allumé	Allumé	90	Problème imprévu. Débordement des piles des tâches système.
Légende :				
Allumé : voy	Allumé : voyant allumé			
- : état indét	erminé			

Chapitre 9

Performances des processeurs

Objet de cette section

Cette section présente les performances des processeurs BMX P34 20•0. Les performances des processeurs BMX P34 20•0 correspondent à 150 % de celles des BMX P34 1000.

Contenu de ce chapitre

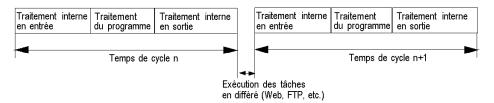
Ce chapitre contient les sujets suivants :

Sujet	Page
Exécution de tâches	98
Temps de cycle de la tâche MAST : Présentation	102
Temps de cycle de la tâche MAST : traitement du programme	103
Temps de cycle de tâche MAST : traitement interne en entrée et en sortie	
Calcul du temps de cycle de la tâche MAST	107
Temps de cycle de tâche FAST	108
Temps de réponse sur événement	109

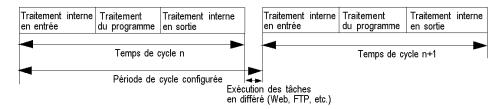
Exécution de tâches

Général

Les processeurs BMX P34 •••• peuvent exécuter des applications monotâches ou multitâches. Contrairement à une application monotâche qui n'exécute que la tâche maître, une application multitâche définit l'ordre dans lequel les tâches sont exécutées.


Tâche maître

La tâche maître représente la tâche principale du programme application. Vous avez le choix entre plusieurs modes d'exécution pour la tâche MAST :


- cyclique (par défaut) : les cycles d'exécution sont enchaînés les uns après les autres.
- périodique : un nouveau cycle démarre périodiquement, selon une période définie par l'utilisateur (1 à 255 ms).

Si le temps d'exécution est supérieur à la période configurée par l'utilisateur, le bit %S19 est mis à 1 et un nouveau cycle est lancé.

Le schéma suivant représente l'exécution cyclique de la tâche MAST :

Le schéma suivant représente l'exécution périodique de la tâche MAST :

Les deux cycles de la tâche MAST sont contrôlés par un chien de garde.

Le chien de garde se déclenche si la période d'exécution de la tâche MAST est supérieure à la période maximale définie dans la configuration, et provoque une erreur logicielle. L'application passe alors à l'état HALT et le bit %S11 est mis à 1 (l'utilisateur doit le remettre à 0).

La valeur du chien de garde (%SW11) est configurable entre 10 ms et 1 500 ms (valeur par défaut : 250 ms).

NOTE : la configuration d'une valeur inférieure à la période dans le chien de garde n'est pas autorisée.

En mode de fonctionnement périodique, un contrôle supplémentaire détecte un dépassement de la période. Ce dépassement n'entraîne pas l'arrêt de l'automate tant qu'il reste inférieur à la valeur du chien de garde.

Le bit %S19 signale un dépassement de période. Il est mis à 1 par le système lorsque le temps de cycle devient supérieur à la période de la tâche. L'exécution périodique est aussitôt remplacée par l'exécution cyclique.

La tâche MAST peut être contrôlée par les bits et les mots système suivants :

Objet système	Description
%SWO	Période de la tâche MAST
%S30	Activation de la tâche maître
%S11	Défaut de chien de garde
%S19	Dépassement de période
%SW27	Temps système du dernier cycle (en ms)
%SW28	Temps système le plus long (en ms)
%SW29	Temps système le plus court (en ms)
%SW30	Temps d'exécution du dernier cycle (en ms)
%SW31	Temps d'exécution du cycle le plus long (en ms)
%SW32	Temps d'exécution du cycle le plus court (en ms)

Tâche rapide

La tâche FAST est destinée aux traitements courts et périodiques.

L'exécution de la tâche FAST est périodique et doit être rapide pour éviter tout dépassement par des tâches moins prioritaires. La période de la tâche FAST peut être configurée entre 1 et 255 ms. Le principe d'exécution de la tâche FAST est le même que celui de l'exécution périodique de la tâche MAST.

La tâche FAST peut être contrôlée par les bits et les mots système suivants :

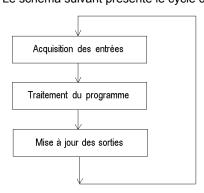
Objet système	Description
%SW1	Période de la tâche FAST
%S31	Activation de la tâche rapide
%S11	Défaut de chien de garde
%S19	Dépassement de période
%SW33	Temps d'exécution du dernier cycle (en ms)

Objet système	Description
%SW34	Temps d'exécution du cycle le plus long (en ms)
%SW35	Temps d'exécution du cycle le plus court (en ms)

Tâches d'événement

Lors du traitement d'événements, le temps de réaction du programme application peut être réduit lorsque les événements proviennent :

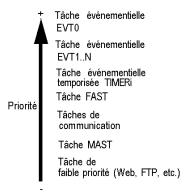
- de modules d'entrées/sorties (blocs EVTi),
- de temporisateurs d'événements (blocs TIMERi).

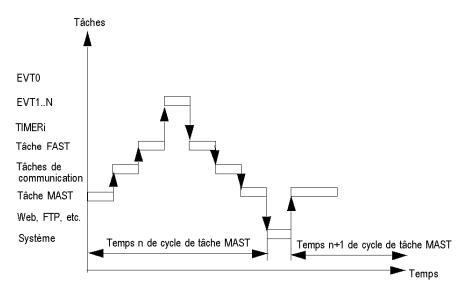

Le traitement des événements est asynchrone. En effet, l'apparition d'un événement déroute le programme application vers le processus associé à la voie d'entrées/sorties ou vers le temporisateur d'événement qui a déclenché l'événement.

Les tâches d'événement peuvent être contrôlées par les bits et les mots système suivants :

Objet système	Description
%S38	Activation du traitement d'événements
%S39	Saturation de la pile de gestion des signaux d'événement
%SW48	Nombre d'événements d'E/S et de processus de télégramme traités
	NOTE : TELEGRAM est disponible uniquement pour PREMIUM (pas sur Quantum ni sur M340).

Exécution monotâche


Le programme d'une application monotâche est associé à une seule tâche : la tâche MAST. Le schéma suivant présente le cycle d'exécution d'une application monotâche :

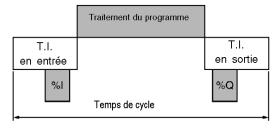

35012677 10/2019

Exécution multitâche

Le schéma suivant montre le niveau de priorité des tâches dans une structure multitâche :

Le schéma suivant montre l'exécution des tâches dans une structure multitâche :

Temps de cycle de la tâche MAST : Présentation


Généralités

Le temps de cycle de la tâche MAST correspond à la somme des temps suivants :

- temps de traitement interne en entrée,
- temps de traitement du programme de la tâche maître,
- temps de traitement interne en sortie.

Illustration

Le schéma suivant définit le temps de cycle de la tâche MAST :

T.I. Traitement interne

Temps de cycle de la tâche MAST : traitement du programme

Définition du temps de traitement du programme

Le temps de traitement du programme est équivalent au temps d'exécution du code application.

Temps d'exécution du code application

Le temps d'exécution du code application est la somme des temps nécessaires pour que le programme d'application exécute chaque instruction, à chaque cycle automate.

Le tableau ci-dessous indique le temps d'exécution pour 1 K d'instructions (soit 1 024 instructions).

Processeurs	Temps d'exécution du code application (1)			
	Programme 100 % booléen	Programme 65 % booléen + 35 % numérique		
BMX P34 2000 BMX P34 2010 BMX P34 20102 BMX P34 2020 BMX P34 2030 BMX P34 20302	0,12 milliseconde	0,15 milliseconde		

(1) Toutes les instructions sont exécutées à chaque cycle automate.

Temps de cycle de tâche MAST : traitement interne en entrée et en sortie

Général

Le temps de traitement interne des entrées et des sorties est la somme des temps suivants :

- durée temps système de la tâche MAST ;
- temps de réception maximal du système de communication et temps de gestion en entrée maximal des entrées/sorties implicites;
- temps de transmission du système de communication et temps de gestion en sortie maximal pour les entrées/sorties implicites.

Temps système de la tâche MAST

Pour les processeurs BMX P34 2000/2010/20102/2020/2030/20302, le temps système de la tâche MAST est de 700 μ s.

NOTE:

trois mots système donnent des informations sur les temps système de la tâche MAST :

- %SW27: temps système du dernier cycle,
- %SW28: temps système le plus long.
- %SW29: temps système le plus court.

Temps de gestion des entrées/sorties implicites

Le temps de gestion des entrées implicites est la somme des temps suivants :

- base fixe de 25 µs ;
- somme des temps de gestion des entrées de chaque module (IN dans le tableau ci-après).

Le temps de gestion des sorties implicites est la somme des temps suivants :

- base fixe de 25 µs (FAST), 73 µs (MAST);
- somme des temps de gestion des sorties de chaque module (OUT dans le tableau ci-après).

Le tableau suivant présente le temps de gestion des entrées (IN) et des sorties (OUT) pour chaque module.

Type de module	Temps de gestion des entrées (IN)	Temps de gestion des sorties (OUT)	Temps de gestion total (IN+OUT)
BMX DDI 1602, module à 16 entrées TOR	60 µs	40 μs	100 μs
BMX DDI 1603, module à 16 entrées TOR	60 µs	40 μs	100 μs
BMX DDI 1604, module à 16 entrées TOR	60 µs	40 μs	100 μs
BMX DDI 3202 K, module à 32 entrées TOR	67 µs	44 µs	111 µs
BMX DDI 6402 K, module à 64 entrées TOR	87 µs	63 µs	150 µs
BMX DDO 1602, module à 16 sorties TOR	60 µs	45 μs	105 μs
BMX DDO 1612, module à 16 sorties TOR	60 µs	45 µs	105 µs
BMX DDO 3202 K, module à 32 sorties TOR	67 μs	51 µs	118 μs

Type de module	Temps de gestion des entrées (IN)	Temps de gestion des sorties (OUT)	Temps de gestion total (IN+OUT)
BMX DDO 6402 K, module à 64 sorties TOR	87 μs	75 µs	162 µs
BMX DDM 16022, module à 8 entrées et 8 sorties TOR	68 μs	59 μs	127 µs
BMX DDM 3202 K, module à 16 entrées et 16 sorties TOR	75 μs	63 µs	138 µs
BMX DDM 16025, module à 8 entrées et 8 sorties TOR	68 µs	59 µs	127 µs
BMX DAI 0805, module à 8 entrées TOR	60 µs	40 µs	100 μs
BMX DAI 0814, module à 8 entrées TOR	A confirmer	A confirmer	A confirmer
BMX DAI 1602, module à 16 entrées TOR	60 µs	40 µs	100 μs
BMX DAI 1603, module à 16 entrées TOR	60 µs	40 µs	100 μs
BMX DAI 1604, module à 16 entrées TOR	60 µs	40 µs	100 μs
BMX DAI 1614, module à 16 entrées TOR	A confirmer	A confirmer	A confirmer
BMX DAI 1615, module à 16 entrées TOR	A confirmer	A confirmer	A confirmer
BMX DAO 1605, module à 16 sorties TOR	60 µs	45 µs	105 µs
BMX DAO 1615, module à 16 sorties TOR	A confirmer	A confirmer	A confirmer
BMX AMI 0410, module analogique	103 µs	69 µs	172 µs
BMX AMI 0800, module analogique	103 µs	69 µs	172 µs
BMX AMI 0810, module analogique	103 µs	69 µs	172 µs
BMX AMO 0210, module analogique	65 µs	47 µs	112 µs
BMX AMO 0410, module analogique	65 µs	47 µs	112 µs
BMX AMO 0802, module analogique	110 µs	110 µs	220 µs
BMX AMM 0600, module analogique	115 µs	88 µs	203 µs
BMX ART 0414, module analogique	103 µs	69 µs	172 µs
BMX ART 0814, module analogique	138 µs	104 µs	242 µs
BMX DRA 1605, module à 16 sorties TOR	60 µs	45 µs	105 µs
BMX DRA 0804, module à 8 sorties TOR	56 μs	43 µs	99 µs
BMX DRA 0805, module à 8 sorties TOR	56 μs	43 µs	99 µs
BMX DRA 0815, module à 8 sorties TOR	A confirmer	A confirmer	A confirmer
BMX DRC 0805, module à 8 sorties TOR	A confirmer	A confirmer	A confirmer
BMX EHC 0200, module de comptage à deux voies	102 μs	93 µs	195 µs
BMX EHC 0800, module de comptage à huit voies	228 µs	282 µs	510 µs

35012677 10/2019

Temps du système de communication

La communication (hors télégrammes) est gérée lors des phases de traitement interne de la tâche MAST :

- en entrée pour la réception de messages,
- en sortie pour l'émission de messages.

Le temps de cycle de la tâche MAST est donc affecté par le trafic de communication. Le temps par cycle consacré à la communication varie considérablement en fonction des éléments suivants :

- Trafic généré par le processeur : nombre de fonctions élémentaires de communication actives simultanément
- Trafic généré par d'autres équipements à destination du processeur ou pour lesquels le processeur assure la fonction de routeur en tant que maître.

Ce temps n'est consacré que dans les cycles où il y a un nouveau message à gérer.

NOTE: les différents temps ne se produisent pas nécessairement tous dans un même cycle. L'émission de messages a lieu dans le même cycle d'automate que l'exécution de l'instruction lorsque le trafic de communication est faible. Toutefois, les réponses ne parviennent jamais dans le même cycle que l'exécution de l'instruction.

Calcul du temps de cycle de la tâche MAST

Généralités

Le temps de cycle de la tâche MAST peut se calculer avant la phase de mise en œuvre, si la configuration automate souhaitée est connue. Pendant la phase de mise en œuvre, il est aussi possible de connaître ce temps de cycle grâce aux mots système %SW30 - %SW32.

Méthode de calcul

Le tableau suivant présente la méthode de calcul du temps de cycle de la tâche MAST.

Etape	Action
1	Calculez le temps de traitement interne en entrée et en sortie en additionnant les temps suivants : • durée temps système de la tâche MAST, (voir page 104) • temps de réception maximal du système de communication et temps de gestion maximal en entrée des entrées/sorties implicites (voir page 104), • temps de transmission maximal du système de communication et temps de gestion maximal en sortie des entrées/sorties implicites (voir page 104).
2	Calculez le temps de traitement du programme <i>(voir page 103)</i> en fonction du nombre d'instructions et de la nature (booléen, numérique) du programme.
3	Additionnez le temps de traitement du programme et le temps de traitement interne en entrée et en sortie.

Temps de cycle de tâche FAST

Définition

Le temps de cycle de la tâche FAST correspond à la somme des temps suivants :

- temps de traitement du programme ;
- temps de traitement interne en entrée et sortie.

Définition du temps de traitement interne en entrée et sortie

Le temps de traitement interne en entrée et sortie correspond à la somme des temps suivants :

- temps système de la tâche FAST;
- temps de gestion en entrée et sortie pour les entrées/sorties implicites. (voir page 104)

Pour les processeurs BMX P34 20x0x, la durée temps système de la tâche FAST est de 130 µs.

35012677 10/2019

Temps de réponse sur événement

Généralités

Le temps de réponse est le temps entre un front sur une entrée événementielle et le front correspondant sur une sortie positionnée par le programme de la tâche événementielle.

Temps de réponse

Le tableau suivant indique le temps de réponse des processeurs BMX P34 20x0x avec un programme d'application de 100 instructions booléennes et le module.

Processeurs	Minimum	Typique	Maximum
BMX P34 20x0x	1 625 µs	2 575 µs	3 675 µs

35012677 10/2019

Index

В

BMXP341000, 43 BMXP342010, 43 BMXP342020, 43 BMXP342030, 43 BMXRMS008MP, 77 BMXRMS128MPF, 77 BMXXCAUSB018, 45 BMXXCAUSB025, 45

C

câblage des accessoires BMXXCAUSB018, 45 BMXXCAUSB025, 45 CANopen connecteur, 48 carte mémoire, 76 certifications, 35 conformité, 35

D

diagnostic de modules UC, 86 diagnostic des modules d'UC, 85, 92

Ε

Ethernet connecteurs, 50

Н

homologation officielle, *35* horodateur, *54*

I

installation des UC, 73

M

mémoire modules d'UC, 70 mise à la terre, 26 Modbus connecteur, 46

N

normes, 35

P

performances, 97

Т

temps de réponse sur événement, 109

35012677 10/2019