Modicon X80
离散量输入/输出模块
用户手册
(英语原始文件译文)

12/2018
本文档中提供的信息包含有关此处所涉及产品之性能的一般说明和/或技术特性。本文档并非用于 (也不代替) 确定这些产品对于特定用户应用场合的适用性或可靠性。任何此类用户或设备集成商 都有责任就相关特定应用场合或使用方面对产品执行适当且完整的风险分析、评估和测试。 Schneider Electric 或其任何附属机构或子公司对于误用此处包含的信息而产生的后果概不负责。 如果您有关于改进或更正此出版物的任何建议，或者从中发现错误，请通知我们。 本手册可用于法律所界定的个人以及非商业用途。 在未获得施耐德电气书面授权的情况下，不得 翻印传播本手册全部或部分内容，亦不可建立任何有关本手册或其内容的超文本链接。施耐 德电气不对个人和非商业机构进行非独占可商业的授权或许可。 请遵循本手册或其内容原义并 自负风险。与此有关的所有其他权利均由施耐德电气保留。 在安装和使用本产品时，必须遵守国家、地区和当地的所有相关的安全法规。出于安全方面的考 虑和为了帮助确保符合归档的系统数据，只允许制造商对各个组件进行维修。 当设备用于具有技术安全要求的应用场合时，必须遵守有关的使用说明。 未能使用施耐德电气软件或认可的软件配合我们的硬件，则可能导致人身伤害、设备损坏或不正 确的运行结果。 不遵守此信息可能导致人身伤害或设备损坏。 © 2018 Schneider Electric。 保留所有权利。
<table>
<thead>
<tr>
<th>章节</th>
<th>标题</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>安全信息</td>
<td>11</td>
</tr>
<tr>
<td>I</td>
<td>关于本书</td>
<td>15</td>
</tr>
<tr>
<td>I</td>
<td>离散量 I/O 模块的硬件安装</td>
<td>17</td>
</tr>
<tr>
<td>I</td>
<td>第1章 简介</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>模块的一般描述</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>带 20 针端子块连接的离散量模块的物理描述</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>带 40 针端子块连接的离散量模块的物理描述</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>带 40 针连接器的离散量模块的物理描述</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>离散量输入模块目录</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>离散量输出模块目录</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>离散量混合输入/输出模块目录</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>温度降级</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>标准和认证</td>
<td>35</td>
</tr>
<tr>
<td>II</td>
<td>安装模块的一般规则</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>模块的装配</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>装配 20 针端子块</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>装配 40 针端子块</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>传感器和执行器的电源选择简介</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>接线注意事项</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>如何连接独立 I/O 模块：连接 20 针端子板模块</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>如何连接离散量 I/O 模块：连接 40 针端子块模块</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>如何连接离散输入/输出模块：连接 40 管脚连接器模块</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>如何连接离散量输入/输出模块：将 40 针连接器模块连接至 TELEFAST 接口</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>传感器/输入兼容性和执行器/输出兼容性</td>
<td>76</td>
</tr>
<tr>
<td>III</td>
<td>离散量输入/输出模块诊断处理</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>一般保护措施</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>模块和通道状态显示</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>诊断</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>检查连接</td>
<td>88</td>
</tr>
<tr>
<td>IV</td>
<td>BMX DDI 1602 输入模块</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>95</td>
</tr>
<tr>
<td>章节</td>
<td>模块名称</td>
<td>页码</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>第5章</td>
<td>BMX DDI 1603 输入模块</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>101</td>
</tr>
<tr>
<td>第6章</td>
<td>BMX DDI 1604T 输入模块</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>108</td>
</tr>
<tr>
<td>第7章</td>
<td>BMX DAI 1602 输入模块</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>115</td>
</tr>
<tr>
<td>第8章</td>
<td>BMX DAI 1603 输入模块</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>123</td>
</tr>
<tr>
<td>第9章</td>
<td>BMX DAI 1604 输入模块</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>129</td>
</tr>
<tr>
<td>第10章</td>
<td>BMX DAI 1614 输入模块</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>135</td>
</tr>
<tr>
<td>第11章</td>
<td>BMX DAI 1615 输入模块</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>143</td>
</tr>
<tr>
<td>第12章</td>
<td>BMX DAI 0805 输入模块</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>151</td>
</tr>
<tr>
<td>第13章</td>
<td>BMX DAI 0814 输入模块</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>简介</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>特性</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>连接模块</td>
<td>157</td>
</tr>
<tr>
<td>章节</td>
<td>模块描述</td>
<td>页码</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>第14章</td>
<td>BMX DDI 3202 K 输入模块</td>
<td>159 160 161 163</td>
</tr>
<tr>
<td>第15章</td>
<td>BMX DDI 6402 K 输入模块</td>
<td>165 166 167 169</td>
</tr>
<tr>
<td>第16章</td>
<td>BMX DDO 1602 静态输出模块</td>
<td>171 172 173 175</td>
</tr>
<tr>
<td>第17章</td>
<td>BMX DDO 1612 静态输出模块</td>
<td>177 178 179 181</td>
</tr>
<tr>
<td>第18章</td>
<td>BMX DRA 0804T 继电器输出模块</td>
<td>183 184 185 187</td>
</tr>
<tr>
<td>第19章</td>
<td>BMX DRA 0805 继电器输出模块</td>
<td>189 190 191 194</td>
</tr>
<tr>
<td>第20章</td>
<td>BMX DRA 0815 继电器输出模块</td>
<td>197 198 199 202</td>
</tr>
<tr>
<td>第21章</td>
<td>BMX DRA 1605 继电器输出模块</td>
<td>205 206 207 209</td>
</tr>
<tr>
<td>第22章</td>
<td>BMX DRC 0805 继电器输出模块</td>
<td>211 212 213 216</td>
</tr>
</tbody>
</table>
第23章 BMX DDO 3202 K 静态输出模块 219
简介 ... 220
特性 ... 221
连接模块 ... 222
第24章 BMX DDO 6402 K 静态输出模块 225
简介 ... 226
特性 ... 227
连接模块 ... 228
第25章 BMX DAO 1605 三端双向可控硅输出模块 231
简介 ... 232
特性 ... 233
连接模块 ... 234
第26章 BMX DAO 1615 三端双向可控硅隔离型输出模块 237
简介 ... 238
特性 ... 239
连接模块 ... 240
第27章 BMX DDM 16022 混合静态输入/输出模块 245
简介 ... 246
特性 ... 247
连接模块 ... 248
第28章 BMX DDM 16025 混合继电器输入/输出模块 255
简介 ... 256
特性 ... 257
连接模块 ... 258
第29章 BMX DDM 3202 K 混合静态输入/输出模块 265
简介 ... 266
特性 ... 267
连接模块 ... 268
第30章 用于离散量 I/O 模块的 TELEFAST 2 连接接口链路 273
30.1 离散量 I/O 的 TELEFAST 2 连接接口简介 274
离散量 I/O 模块的 TELEFAST 2 连接接口概述 275
TELEFAST 2 连接基板目录 276
离散量 I/O 模块和 TELEFAST 2 连接基板的组合 277
30.2 离散量 I/O 的 TELEFAST 2 接口的连接原理 278
将离散量输入/输出模块连接到 TELEFAST 2 本体接口 279
TELEFAST 2 连接基板的尺寸和安装 280
第II部分 离散量输入/输出模块的软件实现

第31章 应用专用离散量功能概述
<table>
<thead>
<tr>
<th>章节</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>配置</td>
</tr>
<tr>
<td>32.1</td>
<td>离散量模块的配置：一般事项</td>
</tr>
<tr>
<td></td>
<td>Modicon Mx80 本地机架中的离散量模块配置屏幕</td>
</tr>
<tr>
<td></td>
<td>X80 子站中的离散量模块配置屏幕</td>
</tr>
<tr>
<td>32.2</td>
<td>离散量输入和输出通道参数</td>
</tr>
<tr>
<td></td>
<td>机架上的离散量输入参数</td>
</tr>
<tr>
<td></td>
<td>机架中 8 通道模块的离散量输出参数</td>
</tr>
<tr>
<td>32.3</td>
<td>离散量模块参数的配置</td>
</tr>
<tr>
<td></td>
<td>如何修改任务参数</td>
</tr>
<tr>
<td></td>
<td>如何修改外部电源错误监控参数</td>
</tr>
<tr>
<td></td>
<td>如何修改故障预置模式参数</td>
</tr>
<tr>
<td></td>
<td>如何修改输出复位参数</td>
</tr>
<tr>
<td>33</td>
<td>应用专用离散量模块语言对象</td>
</tr>
<tr>
<td>33.1</td>
<td>语言对象和 IODDT</td>
</tr>
<tr>
<td></td>
<td>离散量功能对象语言的描述</td>
</tr>
<tr>
<td>33.2</td>
<td>离散量模块 IODDT 和设备 DDT</td>
</tr>
<tr>
<td></td>
<td>IODDT 关联</td>
</tr>
<tr>
<td></td>
<td>有关 T_DIS_IN_GEN 类型 IODDT 隐式对象交换的详细信息</td>
</tr>
<tr>
<td></td>
<td>有关 T_DIS_IN_STD 类型 IODDT 隐式对象交换的详细信息</td>
</tr>
<tr>
<td></td>
<td>T_DIS_IN_STD 类型 IODDT 显式对象交换的相关详情</td>
</tr>
<tr>
<td></td>
<td>有关 T_DIS_OUT_GEN 类型 IODDT 隐式对象交换的详细信息</td>
</tr>
<tr>
<td></td>
<td>有关 T_DIS_OUT_STD 类型 IODDT 隐式对象交换的详细信息</td>
</tr>
<tr>
<td></td>
<td>T_DIS_OUT_STD 类型 IODDT 显示对象交换的相关详情</td>
</tr>
<tr>
<td></td>
<td>类型 T_GEN_MOD 的 IODDT 语言对象的详细信息</td>
</tr>
<tr>
<td></td>
<td>Modicon X80 离散量 I/O 模块配置常量</td>
</tr>
<tr>
<td></td>
<td>离散量设备 DDT 名称</td>
</tr>
<tr>
<td></td>
<td>MOD_FIL 字节描述</td>
</tr>
<tr>
<td>34</td>
<td>调试</td>
</tr>
<tr>
<td></td>
<td>离散量模块的调试功能简介</td>
</tr>
<tr>
<td></td>
<td>调试屏幕</td>
</tr>
<tr>
<td></td>
<td>如何访问强制/取消强制功能</td>
</tr>
<tr>
<td></td>
<td>如何访问 SET 和 RESET 命令</td>
</tr>
<tr>
<td></td>
<td>如何访问重新激活输出命令</td>
</tr>
<tr>
<td></td>
<td>离散量模块应用的输出</td>
</tr>
<tr>
<td>35</td>
<td>模块诊断</td>
</tr>
<tr>
<td></td>
<td>如何访问诊断功能</td>
</tr>
<tr>
<td></td>
<td>如何访问离散量模块的通道诊断功能</td>
</tr>
<tr>
<td>附录</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 35012479 12/2018
安全信息

重要信息

声明

在试图安装、操作、维修或维护设备之前，请仔细阅读下述说明并通过查看来熟悉设备。下述特定信息可能会在本文其他地方或设备上出现，提示用户潜在的危险，或者提醒注意有关阐明或简化的某一过程的信息。

⚠️ 在“危险”或“警告”标签上添加此符号表示存在触电危险，如果不遵守使用说明，会导致人身伤害。

⚠️ 这是提醒注意安全的符号。提醒用户可能存在于人身伤害的危险。请遵守所有带此符号的安全注意事项，以避免可能的人身伤害甚至死亡。

<table>
<thead>
<tr>
<th>▶️ 危险</th>
</tr>
</thead>
<tbody>
<tr>
<td>危险表示若不加以避免，将会导致严重人身伤害甚至死亡的危险情况。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>▶️ 警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>警告表示若不加以避免，可能会导致严重人身伤害甚至死亡的危险情况。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>▶️ 小心</th>
</tr>
</thead>
<tbody>
<tr>
<td>小心表示若不加以避免，可能会导致轻微或中度人身伤害的危险情况。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>注意</th>
</tr>
</thead>
<tbody>
<tr>
<td>注意用于表示与人身伤害无关的危害。</td>
</tr>
</tbody>
</table>
请注意
电气设备的安装、操作、维护和维修工作仅限于有资质的人员执行。施耐德电气不承担由于使用本资料所引起的任何后果。
有资质的人员是指掌握与电气设备的制造和操作及其安装相关的技能和知识的人员，他们经过安全培训能够发现和避免相关的危险。

开始之前
不得将本产品在缺少有效作业点防护的机器上使用。如果机器上缺少有效的作业点防护，则有可能导致机器的工作人员严重受伤。

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>不得将此软件及相关自动化设备用在不具有作业点防护的设备上。</td>
</tr>
<tr>
<td>在操作期间，不得将手放入机器。</td>
</tr>
</tbody>
</table>

不遵循上述说明可能导致人员伤亡或设备损坏。

此自动化设备及相关软件用于控制多种工业过程。根据所需控制功能、所需的防护级别、生产方法、异常情况、政府法规等因素的不同，适用于各种应用的自动化设备的类型或型号会有所差异。在某些应用情况下，如果需要后备冗余，则可能需要一个以上的处理器。

只有用户、机器制造商或系统集成商才能清楚知道机器在安装、运行及维护过程中可能出现的各种情况和因素，因此，也只有他们才能确定可以正确使用的自动化设备和相关安全装置及互锁设备。在为特定应用选择自动化和控制设备以及相关软件时，您应参考适用的当地和国家标准及法规。National Safety Council's Accident Prevention Manual (美国全国公认) 同样提供非常有用的信息。

对于包装机等一些应用而言，必须提供作业点防护等额外的操作人员防护。如果操作人员的手部及其他身体部位能够自由进入夹点或其他危险区域内，并且可导致人员严重受伤，则必须提供这种防护。仅凭软件产品本身无法防止操作人员受伤。因此，软件无法被取代，也无法取代作业点防护。

在使用设备之前，确保与作业点防护相关的安全设备与机械/电气联锁装置已经安装并且运行。与作业点防护相关的所有联锁装置与安全设备必须与相关自动化设备及软件协调使用。

注意：关于协调用于作业点防护的安全设备与机械/电气联锁装置的内容不在本文档中功能块库、系统用户指南或者其他实施的范围之内。
启动与测试

安装之后，在使用电气控制与自动化设备进行常规操作之前，应当由合格的工作人员对系统进行
一次启动测试，以验证设备正确运行。安排这种检测非常重要，而且应该提供足够长的时间来执
行彻底并且令人满意的测试。

执行设备文档中所建议的所有启动测试。保存所有设备文档以供日后参考使用。

按照地方法规（例如：依照美国 National Electrical Code）验证所完成的系统无任何短路且未安
装任何临时接地线。如果必须进行高电位电压测试，请遵循设备文档中的建议，防止设备意外损
坏。

在对设备通电之前：
- 从设备上拆下工具、仪表以及去除碎片。
- 关闭设备柜门。
- 从输入电源线中拆除所有的临时接地线。
- 执行制造商建议的所有启动测试。

操作与调节

下列预防措施来自于NEMA Standards Publication ICS 7.1-1995（以英文版本为准）：
- 无论在设计与制造设备或者在选择与评估部件时有多谨慎，如果对此类设备造作不当，将会导
 致危险出现。
- 有时会因为对设备调节不当而导致设备运行不令人满意或不安全。在进行功能调节时，始终以
 制造商的说明书为向导。进行此类调节的工作人员应当熟悉设备制造商的说明书以及与电气设
 备一同使用的机器。
- 操作人员应当只能进行操作人员实际所需的运行调整。应当限制访问其他控件，以免对运行特
 性进行擅自更改。

警告

- 验证已经完成所有安装与设置步骤。
- 在执行运行测试之前，将所有元件件上用于运送的挡块或其他临时性支撑物拆下。
- 从设备上拆下工具、仪表以及去除碎片。

不遵循上述说明可能导致人员伤亡或设备损坏。
关于本书

概览

文档范围

本手册介绍了 Modicon X80 离散量模块的软硬件实施。

有效性说明

此文档适用于 EcoStruxure™ Control Expert 14.0 或更高版本。
本文档中描述的设备技术特性在网站上也有提供。要在线访问此信息:

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>访问 Schneider Electric 主页 www.schneider-electric.com</td>
</tr>
</tbody>
</table>
| 2 | 在 Search 框中键入产品参考号或产品系列名称。
- 勿在参考号或产品系列中加入空格。
- 要获得有关类似模块分组的信息，请使用星号(*)。 |
| 3 | 如果您输入的是参考号，则转至 Product Datasheets 搜索结果，单击您感兴趣的参考号。
如果您输入产品系列的名称，则转到 Product Ranges 搜索结果，单击您感兴趣的产品系列。 |
| 4 | 如果 Products 搜索结果中出现多个参考号，请单击您感兴趣的参考号。 |
| 5 | 根据屏幕大小，您可能需要向下滚动查看数据表。 |
| 6 | 要将数据表保存为.pdf 文件或打印数据表，请单击 Download XXX product datasheet。 |

本手册中介绍的特性应该与在线显示的那些特性相同。依据我们的持续改进政策，我们将不断修订内容，使其更加清楚明了，更加准确。如果您发现手册和在线信息之间存在差异，请以在线信息为准。

相关文档

<table>
<thead>
<tr>
<th>文档标题</th>
<th>参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modicon M580、M340 和 X80 I/O 平台，标准和认证</td>
<td>EIO0000002726（英语）、EIO0000002727（法语）、EIO0000002728（德语）、EIO0000002730（意大利语）、EIO0000002729（西班牙语）、EIO0000002731（简体中文）</td>
</tr>
</tbody>
</table>

35012479 12/2018 15

关于产品的资讯

<table>
<thead>
<tr>
<th>文档标题</th>
<th>参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoStruxure™ Control Expert, 操作模式</td>
<td>33003101（英语）、33003102（法语）、33003103（德语）、33003104（西班牙语）、33003696（意大利语）、33003697（简体中文）</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert 程序语言和结构参考手册</td>
<td>35006144（英语）、35006145（法语）、35006146（德语）、35013361（意大利语）、35006147（西班牙语）、35013362（简体中文）</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert 通讯功能块库</td>
<td>33002527（英语）、33002528（法语）、33002529（德语）、33003682（意大利语）、33002530（西班牙语）、33003683（简体中文）</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert I/O 管理功能块库</td>
<td>33002531（英语）、33002532（法语）、33002533（德语）、33003684（意大利语）、33002534（西班牙语）、33003685（简体中文）</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert Concept 应用程序转换器用户手册</td>
<td>33002515（英语）、33002516（法语）、33002517（德语）、33003676（意大利语）、33002518（西班牙语）、33003677（简体中文）</td>
</tr>
</tbody>
</table>

警告

意外的设备操作

应用此产品要求在控制系统的设计和编程方面具有经验。只允许具有此类专业知识的人士对此产品进行编程、安装、改动和应用。

请遵守所有当地和国家/地区的安全法规和标准。

不遵循上述说明可能导致人员伤亡或设备损坏。
第I部分
离散量 I/O 模块的硬件安装

本部分主题
本部分介绍 Modicon X80 离散量 I/O 模块的产品系列。

本部分包含了哪些内容？
本部分包括以下各章：

<table>
<thead>
<tr>
<th>章</th>
<th>章节标题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>简介</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>安装模块的一般规则</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>离散量输入/输出模块诊断处理</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>BMX DDI 1602 输入模块</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>BMX DDI 1603 输入模块</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>BMX DDI 1604T 输入模块</td>
<td>103</td>
</tr>
<tr>
<td>7</td>
<td>BMX DAI 1602 输入模块</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>BMX DAI 1603 输入模块</td>
<td>119</td>
</tr>
<tr>
<td>9</td>
<td>BMX DAI 1604 输入模块</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>BMX DAI 1614 输入模块</td>
<td>131</td>
</tr>
<tr>
<td>11</td>
<td>BMX DAI 1615 输入模块</td>
<td>139</td>
</tr>
<tr>
<td>12</td>
<td>BMX DAI 0805 输入模块</td>
<td>147</td>
</tr>
<tr>
<td>13</td>
<td>BMX DAI 0814 输入模块</td>
<td>153</td>
</tr>
<tr>
<td>14</td>
<td>BMX DDI 3202 K 输入模块</td>
<td>159</td>
</tr>
<tr>
<td>15</td>
<td>BMX DDI 6402 K 输入模块</td>
<td>165</td>
</tr>
<tr>
<td>16</td>
<td>BMX DDO 1602 静态输出模块</td>
<td>171</td>
</tr>
<tr>
<td>17</td>
<td>BMX DDO 1612 静态输出模块</td>
<td>177</td>
</tr>
<tr>
<td>18</td>
<td>BMX DRA 0804T 继电器输出模块</td>
<td>183</td>
</tr>
<tr>
<td>19</td>
<td>BMX DRA 0805 继电器输出模块</td>
<td>189</td>
</tr>
<tr>
<td>20</td>
<td>BMX DRA 0815 继电器输出模块</td>
<td>197</td>
</tr>
<tr>
<td>21</td>
<td>BMX DRA 1605 继电器输出模块</td>
<td>205</td>
</tr>
<tr>
<td>22</td>
<td>BMX DRC 0805 继电器输出模块</td>
<td>211</td>
</tr>
<tr>
<td>23</td>
<td>BMX DDO 3202 K 静态输出模块</td>
<td>219</td>
</tr>
<tr>
<td>24</td>
<td>BMX DDO 6402 K 静态输出模块</td>
<td>225</td>
</tr>
<tr>
<td>25</td>
<td>BMX DAO 1605 三端双向可控硅输出模块</td>
<td>231</td>
</tr>
</tbody>
</table>
应用专用离散量模块

<table>
<thead>
<tr>
<th>章</th>
<th>章节标题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>BMX DAO 1615 三端双向可控硅隔离型输出模块</td>
<td>237</td>
</tr>
<tr>
<td>27</td>
<td>BMX DDM 16022 混合静态输入/输出模块</td>
<td>245</td>
</tr>
<tr>
<td>28</td>
<td>BMX DDM 16025 混合继电器输入/输出模块</td>
<td>255</td>
</tr>
<tr>
<td>29</td>
<td>BMX DDM 3202 K 混合静态输入/输出模块</td>
<td>265</td>
</tr>
<tr>
<td>30</td>
<td>用于离散量 I/O 模块的 TELEFAST 2 连接接口链路</td>
<td>273</td>
</tr>
</tbody>
</table>
第1章
简介

本节主题
本章对离散量输入/输出模块进行了一般性介绍。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>模块的一般描述</td>
<td>20</td>
</tr>
<tr>
<td>带 20 针端子块连接的离散量模块的物理描述</td>
<td>21</td>
</tr>
<tr>
<td>带 40 针端子块连接的离散量模块的物理描述</td>
<td>22</td>
</tr>
<tr>
<td>带 40 针连接器的离散量模块的物理描述</td>
<td>24</td>
</tr>
<tr>
<td>离散量输入模块目录</td>
<td>25</td>
</tr>
<tr>
<td>离散量输出模块目录</td>
<td>28</td>
</tr>
<tr>
<td>离散量混合输入/输出模块目录</td>
<td>31</td>
</tr>
<tr>
<td>温度降级</td>
<td>33</td>
</tr>
<tr>
<td>标准和认证</td>
<td>35</td>
</tr>
</tbody>
</table>
模块的一般描述

概览

Modicon X80 系列的离散量输入/输出模块是标准格式的模块 (占用一个位置)，配备了:

- 一个 20 针端子块或
- 一个 40 针端子块或
- 一个或两个 40 针连接器

对于配备 40 针连接器输出的模块，可以使用一系列名为 TELEFAST 2 (参见第 273 页) 的产品，将离散量输入/输出模块快速连接至工作组件。

许多离散量输入和输出均可满足以下要求:

- 功能性：直流或交流输入/输出，采用正逻辑或负逻辑
- 模块化：每个模块 8、16、32 或 64 个通道

输入

输入从传感器接收信号，并执行以下功能:

- 采集
- 适配
- 电隔离
- 过滤
- 防干扰

输出

输出存储由处理器发出的指令，以通过去耦合和放大电路来控制预执行器。
带 20 针端子块连接的离散量模块的物理描述

概览
I/O 模块放在一个塑料盒中，该塑料盒可以为所有电子部件提供 IP20 保护。

示意图
下图显示一个 20 针离散量模块和一个 20 针端子块。

元素
下表描述带 20 针端子块连接的离散量输入/输出模块的不同元素。

<table>
<thead>
<tr>
<th>编号</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>坚固结构支撑和保护电子卡</td>
</tr>
<tr>
<td>2</td>
<td>模块参考标签
注：模块的右侧也有一个标签。</td>
</tr>
<tr>
<td>3</td>
<td>通道状态显示面板</td>
</tr>
<tr>
<td>4</td>
<td>可容纳 20 针端子块的连接器</td>
</tr>
<tr>
<td>5</td>
<td>20 针端子块，用于连接传感器或执行器</td>
</tr>
</tbody>
</table>

注意：端子块单独提供。
带 40 针端子块连接的离散量模块的物理描述

概览

I/O 模块放在一个塑料盒中，该塑料盒可以为所有电子部件提供 IP20 保护。

示意图

下图显示一个 40 针离散量模块和一个 40 针端子块。
元素

下表描述带 40 针端子块连接的离散量输入/输出模块的不同元素。

<table>
<thead>
<tr>
<th>编号</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>坚固结构支撑和保护电子卡</td>
</tr>
<tr>
<td>2</td>
<td>模块参考标签</td>
</tr>
<tr>
<td></td>
<td>注：模块的右侧也有一个标签。</td>
</tr>
<tr>
<td>3</td>
<td>通道状态显示面板</td>
</tr>
<tr>
<td>4</td>
<td>可容纳 40 针端子块的连接器</td>
</tr>
<tr>
<td>5</td>
<td>40 针端子块，用于连接传感器或执行器</td>
</tr>
</tbody>
</table>

注意：端子块单独提供。
带 40 针连接器的离散量模块的物理描述

概览

输入/输出模块放在一个塑料盒中，该塑料盒可以为所有电子部件提供 IP20 保护。

示意图

下图显示 40 针离散量模块。

元素

下表描述带 40 针连接器的离散量输入/输出模块的不同元素。

<table>
<thead>
<tr>
<th>编号</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>坚固结构支撑和保护电子卡</td>
</tr>
<tr>
<td>2</td>
<td>模块参考标签
注：模块的右侧也有一个标签。</td>
</tr>
<tr>
<td>3</td>
<td>通道状态显示面板</td>
</tr>
<tr>
<td>4</td>
<td>40 针连接器，用于连接传感器或执行器</td>
</tr>
</tbody>
</table>
离散量输入模块目录

概览

下面这些表介绍离散量输入模块的两个目录:

- 使用 20 针和 40 针端子块
- 使用 40 针连接器

端子块输入模块目录

带 20 针端子块连接的离散量输入模块的目录

<table>
<thead>
<tr>
<th>模块类型</th>
<th>带 20 针端子块连接的输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>示意图</td>
<td>离散量输入模块</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>通道数</th>
<th>16 路输入</th>
<th>16 路输入</th>
<th>16 路输入</th>
<th>16 路输入</th>
<th>16 路输入</th>
<th>16 路输入</th>
<th>8 路输入</th>
<th>8 路输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>范围</td>
<td>24 VDC</td>
<td>48 VDC</td>
<td>125 VDC</td>
<td>24 VAC</td>
<td>24 VDC</td>
<td>48 VAC</td>
<td>100...120 VAC</td>
<td>100...120 VAC</td>
</tr>
<tr>
<td>隔离</td>
<td>绝缘输入</td>
<td>绝缘输入</td>
<td>绝缘输入</td>
<td>绝缘输入</td>
<td>绝缘输入</td>
<td>绝缘输入</td>
<td>通道到通道绝缘输入</td>
<td>绝缘输入</td>
</tr>
<tr>
<td>符合 IEC 61131-2</td>
<td>类型 3</td>
<td>类型 1</td>
<td>无</td>
<td>类型 1</td>
<td>无</td>
<td>类型 3</td>
<td>类型 3</td>
<td>类型 2</td>
</tr>
<tr>
<td>逻辑</td>
<td>正</td>
<td>正</td>
<td>正</td>
<td>无</td>
<td>正或负</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>接近传感器兼容性</td>
<td>2 线 DC 和 3 线 PNP 接近传感器（符合 IEC 947-5-2 标准）</td>
<td>无</td>
<td>2 线 DC 和 3 线 PNP 接近传感器（符合 IEC 947-5-2 标准）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>4 ms</td>
<td>4 ms</td>
<td>5 毫秒</td>
<td>15 毫秒</td>
<td>10 毫秒</td>
<td>10 毫秒</td>
<td>10 毫秒</td>
<td>10 毫秒</td>
</tr>
<tr>
<td>接口类型</td>
<td>20 针端子块</td>
<td></td>
</tr>
<tr>
<td>型号</td>
<td>BMX DDI 1602</td>
<td>BMX DDI 1603</td>
<td>BMX DDI 1604</td>
<td>BMX DAI 1602</td>
<td>BMX DAI 1603</td>
<td>BMX DAI 0814</td>
<td>BMX DAI 0805</td>
<td></td>
</tr>
</tbody>
</table>
带 40 针端子块连接的离散量输入模块的目录。

<table>
<thead>
<tr>
<th>模块类型</th>
<th>带 40 针端子块连接的输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>示例图</td>
<td>离散量输入模块</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>通道数</th>
<th>16 路输入</th>
<th>16 路输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>范围</td>
<td>100...120 VAC</td>
<td>200...240 VAC</td>
</tr>
<tr>
<td>隔离</td>
<td>通道到通道绝缘输入</td>
<td>通道到通道绝缘输入</td>
</tr>
<tr>
<td>符合 IEC 61131-2</td>
<td>类型 1</td>
<td>类型 1</td>
</tr>
<tr>
<td>逻辑</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>接近传感器兼容性(参见第 78 页)</td>
<td>2 线 和 3 线接近传感器（符合 IEC 947-5-2 标准）</td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>10 毫秒</td>
<td>10 毫秒</td>
</tr>
<tr>
<td>接口类型</td>
<td>40 针端子块</td>
<td>40 针端子块</td>
</tr>
<tr>
<td>型号</td>
<td>BMX DAI 1614</td>
<td>BMX DAI 1615</td>
</tr>
</tbody>
</table>
40 针连接器输入模块的目录

带 40 针连接器的离散量输入模块的目录。

<table>
<thead>
<tr>
<th>模块类型</th>
<th>通过 40 针连接器连接的输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>示意图</td>
<td>输入模块</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>通道数</th>
<th>32 路输入</th>
<th>64 路输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>范围</td>
<td>24 VDC</td>
<td>24 VDC</td>
</tr>
<tr>
<td>隔离</td>
<td>每个 16 通道组绝缘的输入</td>
<td>每个 16 通道组绝缘的输入</td>
</tr>
<tr>
<td>符合 IEC 61131-2</td>
<td>类型 1</td>
<td>不符合 IEC</td>
</tr>
<tr>
<td>逻辑</td>
<td>正</td>
<td>正</td>
</tr>
<tr>
<td>接近传感器兼容性 (参见第 76 页)</td>
<td>2 线接近传感器</td>
<td>3 线 PNP 接近传感器</td>
</tr>
<tr>
<td>响应时间</td>
<td>4 毫秒</td>
<td>4 毫秒</td>
</tr>
<tr>
<td>接口类型</td>
<td>1 x 40 针连接器</td>
<td>2 x 40 针连接器</td>
</tr>
<tr>
<td>型号</td>
<td>BMX DDI 3202 K</td>
<td>BMX DDI 6402 K</td>
</tr>
</tbody>
</table>
简介

离散量输出模块目录

概览
以下各表显示了静态输出模块和继电器输出模块的目录。

输出模块的目录
通过 20 针端子块和 40 针连接器连接的离散量静态输出模块的目录。

<table>
<thead>
<tr>
<th>模块类型</th>
<th>带 20 针端子块连接的静态输出</th>
<th>带 40 针连接器的静态输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>示意图</td>
<td>离散量输出模块</td>
<td>离散量输出模块</td>
</tr>
<tr>
<td>通道数</td>
<td>16 路输出</td>
<td>16 路输出</td>
</tr>
<tr>
<td>范围</td>
<td>24 VDC</td>
<td>24 VDC</td>
</tr>
<tr>
<td>隔离</td>
<td>绝缘输出</td>
<td>绝缘输出</td>
</tr>
<tr>
<td>电流</td>
<td>0.5 A</td>
<td>0.5 A</td>
</tr>
<tr>
<td>过载保护</td>
<td>输出具备防短路和过载保护，可自动重新激活或受控重新激活，且具有快速电磁去磁电路。</td>
<td></td>
</tr>
<tr>
<td>逻辑</td>
<td>正</td>
<td>负</td>
</tr>
<tr>
<td>响应时间</td>
<td>1.2 毫秒</td>
<td>1.2 毫秒</td>
</tr>
<tr>
<td>接口类型</td>
<td>20 针端子块</td>
<td>20 针端子块</td>
</tr>
<tr>
<td>型号</td>
<td>BMX DDO 1602</td>
<td>BMX DDO 1612</td>
</tr>
</tbody>
</table>
继电器输出模块目录
带 20 针和 40 针端子块连接的离散量继电器输出模块的目录。

<table>
<thead>
<tr>
<th>模块类型</th>
<th>带 20 针端子块连接的继电器输出</th>
<th>带 40 针端子块连接的继电器输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>示意图</td>
<td>离散量输出模块</td>
<td>离散量输出模块</td>
</tr>
<tr>
<td>通道数</td>
<td>8 路输出</td>
<td>8 路输出</td>
</tr>
<tr>
<td>范围</td>
<td>125 VDC</td>
<td>24 VDC 或 24...240 VAC</td>
</tr>
<tr>
<td>范围</td>
<td>5...125 VDC 或 24...240 VAC</td>
<td></td>
</tr>
<tr>
<td>隔离</td>
<td>输出与接地绝缘</td>
<td>输出与接地绝缘</td>
</tr>
<tr>
<td>触点类型</td>
<td>8 个绝缘通道</td>
<td>8 个绝缘通道</td>
</tr>
<tr>
<td>触点类型</td>
<td>8 个绝缘通道</td>
<td>8 个绝缘通道</td>
</tr>
<tr>
<td>触点类型</td>
<td>8 个绝缘通道</td>
<td>每个 8 通道组 1 个公共端</td>
</tr>
<tr>
<td>触点类型</td>
<td>8 个绝缘通道</td>
<td>8 个绝缘通道</td>
</tr>
<tr>
<td>每个通道的热电流</td>
<td>3 A</td>
<td>3 A</td>
</tr>
<tr>
<td>每个通道的热电流</td>
<td>2 A</td>
<td>2 A</td>
</tr>
<tr>
<td>每个通道的热电流</td>
<td>2 A</td>
<td>4 A</td>
</tr>
<tr>
<td>过载保护</td>
<td>无保护</td>
<td>无保护</td>
</tr>
<tr>
<td>逻辑</td>
<td>正/负</td>
<td>正/负</td>
</tr>
<tr>
<td>明确时间</td>
<td>最大值为 10 毫秒</td>
<td>最大值为 10 毫秒</td>
</tr>
<tr>
<td>明确时间</td>
<td>最大值为 13 毫秒</td>
<td>最大值为 13 毫秒</td>
</tr>
<tr>
<td>明确时间</td>
<td>最大值为 10 毫秒</td>
<td>最大值为 13 毫秒</td>
</tr>
<tr>
<td>明确时间</td>
<td>最大值为 10 毫秒</td>
<td>最大值为 13 毫秒</td>
</tr>
<tr>
<td>接口类型</td>
<td>20 针端子块</td>
<td>20 针端子块</td>
</tr>
<tr>
<td>接口类型</td>
<td>20 针端子块</td>
<td>20 针端子块</td>
</tr>
<tr>
<td>接口类型</td>
<td>20 针端子块</td>
<td>20 针端子块</td>
</tr>
<tr>
<td>接口类型</td>
<td>40 针端子块</td>
<td></td>
</tr>
<tr>
<td>型号</td>
<td>BMX DRA 0804T</td>
<td>BMX DRA 0805</td>
</tr>
<tr>
<td>型号</td>
<td>BMX DRA 0805</td>
<td>BMX DRA 0815</td>
</tr>
<tr>
<td>型号</td>
<td>BMX DRA 1605</td>
<td>BMX DRA 0805</td>
</tr>
<tr>
<td>型号</td>
<td>BMX DRC 0805</td>
<td></td>
</tr>
</tbody>
</table>
三端双向可控硅输出模块的目录

通过20针和40针端子块进行连接的离散量三端双向可控硅输出模块的目录。

<table>
<thead>
<tr>
<th>模块类型</th>
<th>带20针端子块连接的三端双向可控硅输出</th>
<th>带40针端子块连接的三端双向可控硅输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>示意图</td>
<td>离散量输出模块</td>
<td>离散量输出模块</td>
</tr>
<tr>
<td>通道数</td>
<td>16路输出</td>
<td>16路输出</td>
</tr>
<tr>
<td>范围</td>
<td>100...240 VAC</td>
<td>24...240 VAC</td>
</tr>
<tr>
<td>隔离</td>
<td>由4通道组隔离的输出</td>
<td>单独隔离的输入</td>
</tr>
<tr>
<td>电流</td>
<td>最大:0.6 A/点(涉及降额(参见第33页))</td>
<td>最大:每个通道3 A(涉及降额(参见第239页))</td>
</tr>
<tr>
<td>过载保护</td>
<td>缓冲电路和变阻器</td>
<td>缓冲电路和变阻器</td>
</tr>
<tr>
<td>逻辑</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>响应时间</td>
<td>1 ms + 0.5 x (1/F) (其中F = 频率 (Hz))</td>
<td>最大:0.5 x (1/F) (其中F = 频率 (Hz))</td>
</tr>
<tr>
<td>接口类型</td>
<td>20针端子块</td>
<td>40针端子块</td>
</tr>
<tr>
<td>型号</td>
<td>BMX DAO 1605</td>
<td>BMX DAO 1615</td>
</tr>
</tbody>
</table>
离散量混合输入/输出模块目录

概览

下表介绍了通过 20 针端子块和 40 针连接器连接的离散量混合输入/输出模块的目录。

目录

通过 20 针端子块和 40 针连接器连接的离散量混合输入/输出模块的目录。

<table>
<thead>
<tr>
<th>模块类型</th>
<th>带 20 针端子块连接的混合输入/输出</th>
<th>带 40 针端子块连接的混合输入/输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>示意图</td>
<td>离散量混合输入/输出模块</td>
<td>离散量混合输入/输出模块</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>输入数</th>
<th>8 路输入</th>
<th>8 路输入</th>
<th>16 路输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入范围</td>
<td>24 VDC</td>
<td>24 VDC</td>
<td>24 VDC</td>
</tr>
<tr>
<td>隔离</td>
<td>绝缘输入</td>
<td>绝缘输入</td>
<td>绝缘输入</td>
</tr>
<tr>
<td>符合 IEC</td>
<td>类型 3</td>
<td>类型 3</td>
<td>类型 3</td>
</tr>
<tr>
<td>逻辑</td>
<td>正</td>
<td>正</td>
<td>正</td>
</tr>
<tr>
<td>响应时间</td>
<td>4 毫秒</td>
<td>4 毫秒</td>
<td>4 毫秒</td>
</tr>
<tr>
<td>输出</td>
<td>范围</td>
<td>静态输出</td>
<td>继电器输出</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>24 VDC 或 24...240 VAC</td>
<td>24 VDC</td>
</tr>
<tr>
<td>隔离</td>
<td>输出与接地隔离</td>
<td>输出与接地隔离</td>
<td>输出与接地隔离</td>
</tr>
<tr>
<td>电流</td>
<td>0.5 A</td>
<td>2 A</td>
<td>0.1 A</td>
</tr>
<tr>
<td>符合 IEC 61131-2</td>
<td>是</td>
<td>是</td>
<td>是</td>
</tr>
<tr>
<td>过载保护</td>
<td>输出带防过载和短路保护。</td>
<td>N/A</td>
<td>输出带防过载和短路保护。</td>
</tr>
<tr>
<td>逻辑</td>
<td>正</td>
<td>N/A</td>
<td>正</td>
</tr>
<tr>
<td>响应时间</td>
<td>1.2 毫秒</td>
<td>10 毫秒 (最大值)</td>
<td>1.2 毫秒</td>
</tr>
<tr>
<td>连接</td>
<td>20 针端子块</td>
<td>20 针端子块</td>
<td>1 x 40 针连接器</td>
</tr>
<tr>
<td>参考</td>
<td>BMX DDM 16022</td>
<td>BMX DDM 16025</td>
<td>BMX DDM 3202 K</td>
</tr>
</tbody>
</table>
温度降级

概览

已指定负载率为60%的通道的特性。

小心

过热危险
安装时应考虑离散量I/O模块的温度降级特性，以防止设备过热和/或性能下降。
不遵循上述说明可能导致人身伤害或设备损坏。

如果负载率高于60%，则必须考虑以下降级曲线。

每个模块总电流

注意：继电器模块不存在温度降级。因此，用户必须检查24VDC电源的总体功耗是否足够。
注意：对于静态输出，温度降级基于处于活动状态的输出所产生的最大电流。
示例

- **BMX DDO 1602**
 假设 BMX DDO 1602 模块（带 16 路 24 VDC/0.5 A 输出）对于每个通道产生 0.5 A。当环境温度读数介于 0°C 至 40°C 之间时，模块中的最大允许电流等于 16 x 0.5 = 8 A。超过 40°C 时，须应用降级曲线。在 60°C 时，24 VDC 下的最大电流不得超过 8 x 60% = 4.8 A。此值对应于 0.5 A 时的 10 路输出或 0.3 A 时的 16 路输出或其他组合。

- **BMX DDO 6402**
 假设 BMX DDO 6402 K 模块（带 64 路 24 VDC/0.1 A 输出）对于每个通道产生 0.1 A。当环境温度读数介于 0°C 至 40°C 之间时，模块中的最大允许电流等于 64 x 0.1 = 6.4 A。超过 40°C 时，须应用降级曲线。在 60°C 时，24 VDC 下的最大电流不得超过 6.4 x 60% = 3.8 A。此值对应于 0.1 A 时的 38 路输出或 0.05 A 时的 64 路输出或其他组合。

- **BMX DAO 1605**
 假设 BMX DAO 1605 模块（带 16 路 220 VAC 输出）对于每个通道产生 0.3 A。当环境温度读数介于 0°C 至 40°C 之间时，模块中最大允许电流等于 16 x 0.3 = 4.8 A（每 8 个通道组最大为 2.4 A）。超过 40°C 时，必须应用降级曲线。在 60°C 时，220 Vac 下的最大电流不得超过 4.8 A x 0.6 = 2.9 A（每 8 个通道组最大为 1.5 A）。此值对应于 0.3 A 时的 10 路输出或 0.18 A 时的 16 路输出。
标准和认证

在线帮助
通过 Control Expert 在线帮助，您可以访问适用于该系列模块的标准和认证，具体请参阅 Modicon M580、M340 和 X80 I/O 平台标准和认证指南。

下载

单击与您首选语言对应的链接，下载适用于该系列模块的标准和认证（PDF 格式）：

<table>
<thead>
<tr>
<th>语言</th>
<th>链接</th>
</tr>
</thead>
<tbody>
<tr>
<td>英语</td>
<td>Modicon M580 M340 X80 标准和认证在线帮助</td>
</tr>
<tr>
<td>法语</td>
<td>Modicon M580 M340 X80 标准和认证在线帮助</td>
</tr>
<tr>
<td>德语</td>
<td>Modicon M580 M340 X80 标准和认证在线帮助</td>
</tr>
<tr>
<td>意大利语</td>
<td>Modicon M580 M340 X80 标准和认证在线帮助</td>
</tr>
<tr>
<td>西班牙语</td>
<td>Modicon M580 M340 X80 标准和认证在线帮助</td>
</tr>
<tr>
<td>简体中文</td>
<td>Modicon M580 M340 X80 标准和认证在线帮助</td>
</tr>
</tbody>
</table>
第2章
安装模块的一般规则

本节主题
本章介绍了安装离散量输入/输出模块的一般规则。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>模块的装配</td>
<td>38</td>
</tr>
<tr>
<td>装配 20 针端子块</td>
<td>41</td>
</tr>
<tr>
<td>装配 40 针端子块</td>
<td>45</td>
</tr>
<tr>
<td>传感器和预执行器的电源选择简介</td>
<td>49</td>
</tr>
<tr>
<td>接线注意事项</td>
<td>52</td>
</tr>
<tr>
<td>如何连接独立 I/O 模块：连接 20 针端子板模块</td>
<td>56</td>
</tr>
<tr>
<td>如何连接离散量 I/O 模块：连接 40 针端子块模块</td>
<td>60</td>
</tr>
<tr>
<td>如何连接离散输入/输出模块：连接 40 脚连接器模块</td>
<td>67</td>
</tr>
<tr>
<td>如何连接离散输入/输出模块：将 40 针连接器模块连接至 TELEFAST 接口</td>
<td>72</td>
</tr>
<tr>
<td>传感器/输入兼容性和预执行器/输出兼容性</td>
<td>76</td>
</tr>
</tbody>
</table>
模块的装配

概览
离散量输入/输出模块由机架总线供电。无需关闭机架电源即可拆装模块，而不会对 PLC 产生损坏或干扰。

下面描述了装配操作（安装、组装和拆卸）。

安装注意事项
Modicon X80 离散量模块可以安装在机架中的任意位置，但以下位置除外：
- 为机架电源模块保留的位置（标有 PS、PS1 和 PS2），
- 为扩展模块保留的位置（标有 XBE），
- 主本地机架中的 CPU 保留的位置（标有 00 或者标有 00 和 01，具体取决于 CPU），
- 为远程子站中的 (e)X80 适配器模块保留的位置（标有 00）。

电源由机架底部的总线提供（3.3 V 和 24 V）。

安装模块之前，必须先从位于机架上的模块连接器上取下保护帽。

危险
存在电击、爆炸或电弧闪烁危险

断开传感器和预执行器的电源并断开与端子块的连接以便装配和拆卸模块。
如果不遵守这些说明，将会导致死亡或严重伤害。

安装

下图显示机架上安装的一些离散量输入/输出模块。
一般安装规则

下表描述构成该组件的不同元件。

<table>
<thead>
<tr>
<th>编号</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 针端子块模块</td>
</tr>
<tr>
<td>2</td>
<td>40 针连接器模块</td>
</tr>
<tr>
<td>3</td>
<td>2 x 40 针连接器模块</td>
</tr>
<tr>
<td>4</td>
<td>标准机架</td>
</tr>
</tbody>
</table>

将模块安装到机架上

下表显示了将离散量输入/输出模块安装到机架中的过程。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
<th>示意图</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>将模块背面的定位引脚（位于模块底部）插入机架中的相应插槽中。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>注意：在确定引脚位置之前，请确保已卸下护盖。</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>朝机架顶部转动模块，使模块与机架背部齐平。现在它已固定到位。</td>
<td></td>
</tr>
</tbody>
</table>
步骤 3
拧紧固定螺钉以确保模块在机架上固定到位。
拧紧扭矩：最大 1.5 牛米 (1.11 磅-英尺)

![示意图](step_3_diagram.png)
装配 20 针端子块

概览

所有带 20 针端子块的离散量输入/输出模块在装配时都需要将端子块与模块连接起来。下面描述了装配操作（组装和拆卸）。

<table>
<thead>
<tr>
<th>小心</th>
</tr>
</thead>
<tbody>
<tr>
<td>设备损坏</td>
</tr>
<tr>
<td>不要将 AC 端子块插入 DC 模块中。否则会导致损坏模块。</td>
</tr>
<tr>
<td>不遵循上述说明可能导致人身伤害或设备损坏。</td>
</tr>
</tbody>
</table>

安装 20 针端子块

<table>
<thead>
<tr>
<th>危险</th>
</tr>
</thead>
<tbody>
<tr>
<td>电击、爆炸或电弧危险</td>
</tr>
<tr>
<td>连接或断开端子块时，必须关闭传感器和预执行器的电压。</td>
</tr>
<tr>
<td>不遵守这些说明，将会导致死亡或严重伤害。</td>
</tr>
</tbody>
</table>

下表显示将 20 针端子块装配到离散量输入/输出模块的过程。
一般安装规则

装配过程

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>将模块放在机架上的正确位置后，通过将端子块编码器（端子的后下部）插入到模块的编码器（模块的前面下部）中来安装端子块。 注意：模块连接器有指示箭头，以显示端子块安装所使用的正确方向。</td>
</tr>
<tr>
<td>2</td>
<td>通过拧紧端子块下半部和上半部的 2 个安装螺钉，将端子块固定在模块上。 拧紧扭矩：0.4 N•m (0.30 lb-ft)。</td>
</tr>
</tbody>
</table>

注意：如果不拧紧螺钉，则存在端子块无法正确固定到模块上的风险。

对 20 针端子块进行编码

警告
应用程序的意外行为
如上所述对端子块进行编码，可防止端子块安装到其他模块上。
插入错误的连接器可能导致应用程序出现意外行为。
不遵循上述说明可能导致人员伤亡或设备损坏。

小心
模块的损坏
如上所述对端子块进行编码，可防止端子块安装到其他模块上。
插入错误的连接器会导致模块损坏。
不遵循上述说明可能导致人身伤害或设备损坏。

将 20 针端子块安装在专用于此类端子块的模块上后，就可以使用螺栓将该端子块和模块进行编码。这些螺栓的目的是防止将端子块安装到其他模块上。这样，替换模块时就可以避免插入错误。
用户可用 STB XMP 7800 向量螺栓进行编码。您只能装入端子块左侧（从接线端看）中间的 6 个插槽，可以装入模块左侧的 6 个导向插槽。
要将端子块装配到模块上，必须有一个带螺栓的模块插槽与端子块中的空插槽对应，或者有一个带螺栓的端子块与模块中的空插槽对应。您可以根据需要填充最多 6 个（含）可用插槽中的每一个。

35012479 12/2018
下图显示一个导向轮，以及模块上用于对 20 针端子块进行编码的插槽。
一般安装规则

下图显示使端子块可以装配到模块上的编码配置的示例。

下图显示端子块无法装配到模块上的编码配置的示例。
装配 40 针端子块

概览
所有带 40 针端子块的离散量输入/输出模块在装配时都需要将端子块与模块连接起来。下面描述了装配操作（组装和拆卸）。

<table>
<thead>
<tr>
<th>小心</th>
</tr>
</thead>
<tbody>
<tr>
<td>设备损坏</td>
</tr>
<tr>
<td>不要将 AC 端子块插入 DC 模块中。否则会导致损坏模块。</td>
</tr>
<tr>
<td>不遵循上述说明可能导致人身伤害或设备损坏。</td>
</tr>
</tbody>
</table>

安装 40 针端子块

<table>
<thead>
<tr>
<th>危险</th>
</tr>
</thead>
<tbody>
<tr>
<td>电击、爆炸或电弧危险</td>
</tr>
<tr>
<td>连接或断开端子块时，必须关闭传感器和预执行器的电压。</td>
</tr>
<tr>
<td>不遵守这些说明，将会导致死亡或严重伤害。</td>
</tr>
</tbody>
</table>

下表显示将 40 针端子块装配到离散量输入/输出模块的过程。
一般安装规则

装配过程

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>将模块放在机架上的正确位置后，通过将端子块编码器（端子的背部）插入到模块的编码器（模块的前面）来安装端子块。
注意：模块连接器有指示箭头，以显示端子块安装所使用的正确方向。</td>
</tr>
</tbody>
</table>
| 2 | 通过拧紧端子块下半部和上半部的 2 个安装螺钉，将端子块固定在模块上。
拧紧扭矩：0.4 N•m (0.30 lb-ft)。

注意：如果不拧紧螺钉，则存在端子块无法正确固定到模块上的风险。

对 40 针端子块进行编码

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
</table>

应用程序的意外行为
如上所述对端子块进行编码，可防止端子块安装到其他模块上。
插入错误的连接器可能导致应用程序出现意外行为。
不遵循上述说明可能导致人员伤亡或设备损坏。

<table>
<thead>
<tr>
<th>小心</th>
</tr>
</thead>
</table>

模块的损坏
如上所述对端子块进行编码，可防止端子块安装到其他模块上。
插入错误的连接器会导致模块损坏。
不遵循上述说明可能导致人身伤害或设备损坏。

将 40 针端子块安装在专用于此类端子块的模块上后，就可以使用螺栓对该端子块和模块进行编码。这些螺栓的目的是防止将端子块安装到其他模块上。这样，替换模块时就可以避免插入错误。用户可用 STB XMP 7800 导向轮螺栓进行编码。您只能装入端子块左侧（从接线端看）中间的 12 个插槽，可以装入模块左侧的 12 个导向插槽。
要将端子块装配到模块上，必须有一个带螺栓的模块插槽与端子块中的空插槽对应，或者有一个带螺栓的端子块与模块中的空插槽对应。您可以根据需要装入最多 12 个（含）可用插槽中的任一个。
一般安装规则

下图显示一个导向轮，以及模块上用于对 40 针端子块进行编码的插槽。

1 导向轮
2 可拆卸螺栓
3 导向插槽
一般安装规则

下图显示使端子块可以装配到模块上的编码配置的示例。

下图显示端子块无法装配到模块上的编码配置的示例。
传感器和预执行器的电源选择简介

概览
为与离散量输入/输出模块关联的传感器和预执行器选择不同的电源时，要求遵守某些使用注意事项。

外接直流电源

⚠️ 警告

意外的设备操作
使用外部 24 VDC 直流电源时，请使用：
- 调节型电源或
- 具有以下特性的非调节型电源：
 - 通过全波单相整流实现的 1000 μF/A 滤波以及通过三相整流实现的 500 μF/A
 - 最大 5% 的峰到峰波纹率
 - 最大电压波动：-20% 至 +25% 的标称电压（含波纹电压）

禁止使用无滤波功能的整流电源。
不遵循上述说明可能导致人员伤亡或设备损坏。

镍镉电池电源
镍镉电池电源可用于为正常工作电压最大为 30 VDC 的传感器和预执行器以及所有关联输入/输出供电。

在充电时，此类型的电池可以在一小时的持续时间内达到 34 VDC 的电压。因此，工作电压为 24 VDC 的所有输入/输出模块在每 24 小时内最多可以耐受此电压 (34 VDC) 一小时。这种工作类型具有以下限制：
- 电压为 34 VDC 时，输出耐受的最大电流决不可超过为 30 VDC 的电压规定的最大电流。
- 温度降级具有以下限制：
 - 在 1°C 到 30°C，输入/输出降级至 80%
 - 在 1°C 到 60°C，输入/输出降级至 50%

⚠️ 小心

过热危险
安装时应考虑离散量 I/O 模块的温度降额特性，以防止设备过热和/或性能下降。
不遵循上述说明可能导致人身伤害或设备损坏。
一般安装规则

外部交流电源

所有 BMXDAI、BMXDAO、BMXDRA 和 BMXDRC 模块都涉及用在 PLC 标准 IEC 61131-2 和通用 EMC 标准 IEC 61000-6-2 所定义的 A 区和 B 区中，无需任何专门的防电涌保护。

下图显示 PLC 标准 IEC 61131-2 中定义的区域：

A 区 本地配电
B 区 专用配电
C 区 工厂市电电源

1. 保护网络应适于使严重程度从室外到 B 区降低。
2. 保护网络应适于使严重程度从 A 区到 B 区降低。

它还适合根据通用标准 IEC 61000-6-5 对 1 类和 2 类接口的要求安装在发电站/变电站中，无需任何专门的防电涌保护。
针对更恶劣环境的 AC 电源线的防电涌保护

这些模块的设计适用于确保 2 kV 线对地抗电涌级别以及 1 kV 线间抗电涌级别，不需要在 AC 分支线路上使用任何外部保护。

如果它用于将 PLC 及其 AC I/O 安装在 IEC 61131-2 C 区或 IEC 61000-6-5 3 类或 4 类接口中：仅提供一级保护且存在接口耦合不良的风险，系统集成商或客户应负责监管系统，以正确的方式对其进行保护。

可以在使用风险降低措施的情况下，将 PLC 和 I/O 模块安装在这样的环境中。

所有安装要求的相关详情，请参阅“ Schneider Electrical 安装指南”的章节 J - 过压保护。本文档可以从 www.schneider-electric.com 下载。

增设 2 类/II 级电涌保护设备 (SPD)，比如 iQuick PRD20r 电压保护级别 (Up) ≤1.5 kV 的模块化电涌放电器，将能够耐受 4 kV 线对地电涌和 2 kV 线间电涌。
一般安装规则

接线注意事项

概览
离散量输入/输出具有保护措施，确保能够适应极其恶劣的工业环境条件。但是，还必须遵守下述规则。

传感器和预执行器的外接电源
使用速断熔断器保护与离散量输入/输出模块关联的外接传感器和预执行器电源，以防止短路和过载。
对于 40 针连接器离散量输入/输出模块，将传感器/预执行器电源连接到每个连接器（但对应的通道未使用且未分配给任何任务的连接器除外）。

危险

<table>
<thead>
<tr>
<th>接地不当危险</th>
</tr>
</thead>
<tbody>
<tr>
<td>根据适用的规范安装 24V 电源。24V 电源的 0V 端子必须连接到金属地线，并且在尽可能接近电源的位置安全接地。这样，在电源的某一相与 24V 电源接触时，可以确保人员安全。</td>
</tr>
<tr>
<td>如果不遵守这些说明，将会导致死亡或严重伤害。</td>
</tr>
</tbody>
</table>

注意：如果 PLC 上具有输入/输出模块，则将传感器和预执行器电源连接到模块的电源，否则将发生外部电源错误，导致输入/输出 LED 闪烁。

输入
对离散量模块输入的用法建议如下：
- 对于 24 VDC 输入以及与交流电路的线路耦合：

警告

<table>
<thead>
<tr>
<th>意外的设备操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>避免在交流电缆与传递直流输入信号的电缆之间出现过度耦合。</td>
</tr>
<tr>
<td>遵循布线规则。</td>
</tr>
<tr>
<td>不遵循上述说明可能导致人员伤亡或设备损坏。</td>
</tr>
</tbody>
</table>
一般安装规则

这一点（过度耦合）将在下面的电路图中说明。

当输入触点断开时，交流电流可能在输入中产生一个电流，从而造成将其设置为 1。对于 240 VCA/50 Hz 线路耦合，请不要超过在本节末尾的汇总表中给出的线路电容值。对于使用其他电压的耦合，使用以下公式：

\[\text{容许的电容} = \frac{(240\text{VAC} \times \text{电容} \times 240)}{\text{(线电压)}} \]

- **对于 24 至 240 VAC 输入和线路耦合**:
 当控制输入的线路发生开路时，电流根据电缆的耦合电容通过线路（请参见下面的电路图）。

请不要超过下面的汇总表中给出的线路电容值。
下面的汇总表显示可接受的线路电容值。

<table>
<thead>
<tr>
<th>模块</th>
<th>最大耦合电容</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 到 125 VDC 输入</td>
<td></td>
</tr>
<tr>
<td>BMX DD 1602</td>
<td>45 nF (1)</td>
</tr>
<tr>
<td>BMX DD 1603</td>
<td></td>
</tr>
<tr>
<td>BMX DD 1604T</td>
<td></td>
</tr>
<tr>
<td>BMX DDM 16022</td>
<td></td>
</tr>
<tr>
<td>BMX DDM 16025</td>
<td></td>
</tr>
<tr>
<td>BMX DD 3202 K</td>
<td>25 nF (1)</td>
</tr>
<tr>
<td>BMX DD 6402 K</td>
<td></td>
</tr>
<tr>
<td>BMX DDM 3202 K</td>
<td></td>
</tr>
</tbody>
</table>

24 至 140 VAC 输入	
BMX DAI 0805	50 nF
BMX DAI 1615	
BMX DAI 1602	50 nF
BMX DAI 1603	60 nF
BMX DAI 0814	70 nF
BMX DAI 1614	
BMX DAI 1604	

(1) 240 VAC/50 Hz 线路的最大容许耦合电容示例：长度为 1 米的标准电缆的耦合电容介于 100 至 150 pF 之间。

输出

对于离散量 I/O 模块的输出，请遵循以下所述的建议。

警告

意外的设备操作
使用直径足够大的导线以避免电压下降、过热和设备意外操作。
不遵循上述说明可能导致人员伤亡或设备损坏。
电缆布线

警告

意外的设备操作
为系统接线时，请遵守以下注意事项。
不遵循上述说明可能导致人员伤亡或设备损坏。

对于接线系统，应注意的事项如下：
- 为了减少交流耦合的数量，请同时在设备的内部和外部将电路电缆（电源、电开关等）与输入电缆（传感器）和输出电缆（预执行器）分开。
- 在设备的外部，将与输入/输出连接的电缆置于护套中，以便可以轻松地将它们与包含传递高能级的电缆的电缆区分开。将它们置于单独的接地金属管孔中。对这些不同的电缆进行布线时，使它们至少相距 100 毫米（4 英寸）
一般安装规则

如何连接独立 I/O 模块：连接 20 针端子板模块

概览
存在三种类型的 20 针端子块：
- BMX FTB 2010 螺钉夹端子块
- BMX FTB 2000 笼式端子块
- BMX FTB 2020 弹簧端子块

电缆末端装置与触点
每个端子块可连接：
- 柱线
- 具有以下电缆端的线缆:
 - DZ5-CE（包头）型电缆端:
 - AZ5-DE（双包头）型电缆端:

注意：在使用双绞电缆时，Schneider Electric 强烈建议对线缆使用金属包头，这些金属包头用适当的压接工具安装。

20 针端子块描述
下表描述了每种端子块所适用的线缆类型以及相关的线规范围、接线限制和紧固扭矩:

<table>
<thead>
<tr>
<th></th>
<th>螺钉夹端子块</th>
<th>笼式端子块</th>
<th>弹簧端子块</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMX FTB 2010</td>
<td>BMX FTB 2000</td>
<td>BMX FTB 2020</td>
</tr>
</tbody>
</table>

示意图
一般安装规则

<table>
<thead>
<tr>
<th></th>
<th>螺钉夹端子块 BMX FTB 2010</th>
<th>笼式端子块 BMX FTB 2000</th>
<th>弹簧端子块 BMX FTB 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 条实心导线</td>
<td>- AWG：22...16</td>
<td>- AWG：22...18</td>
<td>- AWG：22...18</td>
</tr>
<tr>
<td></td>
<td>- mm²：0.34...1.5</td>
<td>- mm²：0.34...1</td>
<td>- mm²：0.34...1</td>
</tr>
<tr>
<td>2 条实心导线</td>
<td>相同规格的 2 条导线：</td>
<td>只有在使用双金属包头的情况下才可行：</td>
<td>只有在使用双金属包头的情况下才可行：</td>
</tr>
<tr>
<td></td>
<td>- AWG：2 x 22...16</td>
<td>- AWG：2 x 24...20</td>
<td>- AWG：2 x 24...20</td>
</tr>
<tr>
<td></td>
<td>- mm²：2 x 0.34...1.5</td>
<td>- mm²：2 x 0.24...0.75</td>
<td>- mm²：2 x 0.24...0.75</td>
</tr>
<tr>
<td>1 条绞合电缆</td>
<td>- AWG：22...16</td>
<td>- AWG：22...18</td>
<td>- AWG：22...18</td>
</tr>
<tr>
<td></td>
<td>- mm²：0.34...1.5</td>
<td>- mm²：0.34...1</td>
<td>- mm²：0.34...1</td>
</tr>
<tr>
<td>2 条绞合电缆</td>
<td>相同规格的 2 条导线：</td>
<td>只有在使用双金属包头的情况下才可行：</td>
<td>只有在使用双金属包头的情况下才可行：</td>
</tr>
<tr>
<td></td>
<td>- AWG：2 x 22...16</td>
<td>- AWG：2 x 24...20</td>
<td>- AWG：2 x 24...20</td>
</tr>
<tr>
<td></td>
<td>- mm²：2 x 0.34...1.5</td>
<td>- mm²：2 x 0.24...0.75</td>
<td>- mm²：2 x 0.24...0.75</td>
</tr>
<tr>
<td>1 条带金属包头的绞合电缆</td>
<td>- AWG：22...16</td>
<td>- AWG：22...18</td>
<td>- AWG：22...18</td>
</tr>
<tr>
<td></td>
<td>- mm²：0.34...1.5</td>
<td>- mm²：0.34...1</td>
<td>- mm²：0.34...1</td>
</tr>
<tr>
<td>2 条带金属包头的绞合电缆</td>
<td>- AWG：2 x 24...18</td>
<td>- AWG：2 x 24...20</td>
<td>- AWG：2 x 24...20</td>
</tr>
<tr>
<td></td>
<td>- mm²：2 x 0.24...1</td>
<td>- mm²：2 x 0.24...0.75</td>
<td>- mm²：2 x 0.24...0.75</td>
</tr>
<tr>
<td>在不使用金属包头时，绞合电缆中各导线的最小规格</td>
<td>- AWG：30</td>
<td>- AWG：30</td>
<td>- AWG：30</td>
</tr>
<tr>
<td></td>
<td>- mm²：0.0507</td>
<td>- mm²：0.0507</td>
<td>- mm²：0.0507</td>
</tr>
<tr>
<td>接线限制</td>
<td>螺钉夹上的插槽可以接受：</td>
<td>笼式端子块上的插槽可以接受：</td>
<td>弹簧端子块上的插槽可以接受：</td>
</tr>
<tr>
<td></td>
<td>- 直径为 5 mm 的平头螺丝刀。</td>
<td>- 直径为 3 mm 的平头螺丝刀。</td>
<td>- 直径为 3 mm 的平头螺丝刀。</td>
</tr>
<tr>
<td></td>
<td>Pozidriv PZ1 或 Philips PH1 十字螺丝刀。</td>
<td>Pozidriv PZ1 或 Philips PH1 十字螺丝刀。</td>
<td>Pozidriv PZ1 或 Philips PH1 十字螺丝刀。</td>
</tr>
<tr>
<td></td>
<td>螺钉夹端子块带有外加螺钉。</td>
<td>笼式端子块带有外加螺钉。</td>
<td>弹簧端子块带有外加螺钉。</td>
</tr>
<tr>
<td></td>
<td>在所提供端子块上，这些螺钉没有拧紧。</td>
<td>在所提供端子块上，这些螺钉没有拧紧。</td>
<td>在所提供端子块上，这些螺钉没有拧紧。</td>
</tr>
</tbody>
</table>

螺钉紧固扭矩
- 0.5 N•m (0.37 lb-ft)
- 0.4 N•m (0.30 lb-ft)
- 不适用
一般安装规则

危险
存在电击危险
在连接端子块或断开端子块连接前，应先关闭传感器和预执行器设备的所有电源。
如果不遵守这些说明，将会导致死亡或严重伤害。

连接 20 针端子块
下图显示打开 20 针端子块门以便接线的方法。

20 针端子块的连接电缆的长度有三种：
- 3 米：BMX FTW 301
- 5 米：BMX FTW 501
- 10 米：BMX FTW 1001

注意：连接电缆由 20 针端子块下的电缆卡扣安装并固定。
BMX FTW ••1 电缆的连接

下图介绍 BMX FTW ••1 电缆的连接：

20 针端子块的标签

20 针端子块的标签随模块提供。客户会将它们插入到端子块护盖中。

每个标签都有两面：
- 一面在护盖关闭时从外面可见。这一面包含商业产品参考号、模块的简要描述以及用于客户标签的空白部分。
- 另一面在护盖打开时从里面可见。这一面显示端子块的连接图。

BMX FTW pp1
如何连接离散量 I/O 模块：连接 40 针端子块模块

概览
存在两种版本，每种版本有两种类型的 40 针端子块可选：
标准版本
- BMX FTB 4000 笼式端子块
- BMX FTB 4020 弹簧端子块
加强版本
- BMX FTB 4000H 笼式镀金端子块
- BMX FTB 4020H 弹簧镀金端子块
端子块的加强版本仅用于模块的加强版本。
注意：如果在将端子块安装到模块时，混用加强版本和标准版本，则可能导致端子引脚受到侵蚀以及信号发生偏差。

警告
意外的设备操作
- 不得将加强版本的端子块与标准模块一起使用。
- 不得将标准版本的端子块与加强型模块一起使用。
不遵循上述说明可能导致人员伤亡或设备损坏。

电缆末端装置与触点
40 针端子块专门用于一根导线或一个电缆端。
每个端子块可连接：
- 裸线：
 - 实心导线
 - 绞合电缆
- 带包头的接线（DZ5CE••••/DZ5CA••••单头型电缆端）：

注意：在使用双绞电缆时，Schneider Electric 强烈建议对线缆使用金属包头，这些金属包头用适当的压接工具安装。
跳线端子排

为了简化接线，40 针笼式螺旋型端子块 BMX FTB 4000 配有带塑料手柄的 20 针跳线端子排：

下图显示使用跳线端子排对通道 0-2 和 BMX DRC 0805 模块执行非隔离型接线的示例：

小心

意外的设备操作

使用端子块载送整个公共电流时，不得超过端子块的单点最大容量：

- BMXFTB4000 端子块的单点最大容量为 10 A
- BMXFTB4020 端子块的单点最大容量为 8 A

不遵循上述说明可能导致人身伤害或设备损坏。
端子块接线能力

下表概述了每种端子块所适用的线缆类型以及相关的线规范围、接线限制和紧固扭矩。

<table>
<thead>
<tr>
<th>情况描述</th>
<th>笼式端子块 BMX FTB 4000</th>
<th>弹簧端子块 BMX FTB 4020</th>
</tr>
</thead>
</table>
| 1条实心导线 | AWG: 26...18
mm²: 0.13...1 | AWG: 26...18
mm²: 0.13...1 |
| 1条绞合电缆 | AWG: 22...18
mm²: 0.34...1 | AWG: 22...18
mm²: 0.34...1 |
| 1条带金属包头的绞合电缆 | AWG: 22...18
mm²: 0.34...1 | AWG: 22...18
mm²: 0.34...1 |
| 不使用金属包头时，绞合电缆中各条线的最小规格 | AWG: 30
mm²: 0.0507 | AWG: 30
mm²: 0.0507 |
一般安装规则

接线限制

笼式端子块上的插槽可以接受：
● 直径为 3 mm 的平头螺丝刀。
笼式端子块带有外加螺钉。在所提
供端子块上，这些螺钉没有拧紧。

通过按下每个引脚旁边的按钮可
连接接线。
要按下按钮，请使用最大直径为
3 mm 的平头螺丝刀。

接线限制

笼式端子块
BMX FTB 4000

弹簧端子块
BMX FTB 4020

螺钉紧固扭矩

笼式端子块

0.4 N•m (0.30 lb-ft)

弹簧端子块

不适用

注意：连接电缆由端子块下的电缆卡扣安装并固定。

存在电击危险
在连接端子块或断开端子块连接前，应先关闭传感器和预执行器设备的所有电源。
如果不遵守这些说明，将会导致死亡或严重伤害。
一般安装规则

端子块保护盖

下图显示打开端子块保护盖以便接线的方法。

对端子块添加标签

端子块的标签随模块提供。客户会将它们插入到端子块护盖中。

每个标签都有两面：
- 一面在护盖关闭时从外面可见。这一面包含商业产品参考号、模块的简要描述以及用于客户标签的空白部分。
- 另一面在护盖打开时从里面可见。这一面显示端子块的连接图。
BMX FTW ••5 电缆的连接

BMX FTW ••5 电缆包括位于其一端的 BMX FTB 4020 端子块（非镀金弹簧端子块）以及位于其另一端的飞线。这种预先组装的线组仅用于标准模块版本。

<table>
<thead>
<tr>
<th>预先组装的线组有两种不同的长度可选：</th>
</tr>
</thead>
<tbody>
<tr>
<td>● 3 m：BMX FTW 305</td>
</tr>
<tr>
<td>● 5 m：BMX FTW 505</td>
</tr>
</tbody>
</table>

下图显示根据 DIN47100 的连接和颜色编号。

警告

意外的设备操作

不得将 BMX FTW ••5 电缆与加强型模块一起使用。不遵循上述说明可能导致人员伤亡或设备损坏。
一般安装规则

BMX FTW ••5 电缆特性

下表列出了一般特性：

<table>
<thead>
<tr>
<th>特性</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>应用类型</td>
<td>最大电压 300 Vrms</td>
</tr>
<tr>
<td>导线描述</td>
<td>导线数 40</td>
</tr>
<tr>
<td></td>
<td>线规 22 AWG</td>
</tr>
<tr>
<td></td>
<td>材料 镀锡铜</td>
</tr>
<tr>
<td></td>
<td>最大电流 2 A (温度低于 30 °C (86 °F) 时)</td>
</tr>
<tr>
<td></td>
<td>0.8 A (温度低于 70 °C (158 °F) 时)</td>
</tr>
<tr>
<td>电气</td>
<td>耐压性能 2500 V (持续 1 分钟)</td>
</tr>
<tr>
<td>环境</td>
<td>工作温度 -25...70 °C (- 13...158 °F)</td>
</tr>
<tr>
<td>适用标准</td>
<td>DIN47100</td>
</tr>
</tbody>
</table>
如何连接离散输入/输出模块：连接 40 管脚连接器模块

简介

40 针连接器模块采用一种专用电缆与传感器、预执行器或端子相连，这种电缆专为模块的输入/输出在电线之间进行平滑而直接的传输而设计。

危险

存在电击、电弧闪烁或爆炸危险
连接或断开 40 针连接器时，必须关闭传感器和预执行器的电压。
如果不遵守这些说明，将会导致死亡或严重伤害。

下图显示了电缆与模块的连接。

警告

意外的设备操作
在安装过程中，请确保识别连接器，将其用于对应的模块，以免出现不正确的连接。如果将错误的连接器插入模块，则将导致设备异常操作。
不遵循上述说明可能导致人员伤亡或设备损坏。
一般安装规则

BMX FCW • 连接电缆

这些电缆包括：
- 在一端，是一个填满了复合物的 40 针连接器，从中延伸出 1 或 2 个电缆护套，每个护套包含 20 股横截面积为 0.34 平方毫米 (AWG 24) 的接线。
- 另一端为散开的线头，采用了颜色代码。

带 1 个电缆护套（包含 20 股线）的电缆用于将 40 针连接器连接到传感器或预执行器，这种电缆有三种不同的长度：
- 3 米：BMX FCW 301
- 5 米：BMX FCW 501
- 10 米：BMX FCW 1001

下图显示了 BMX FCW •1 电缆。

带 2 根电缆护套（每个护套包含 20 股线）的电缆用于将 40 针连接器连接到传感器或预执行器，这种电缆有三种不同的长度：
- 3 米：BMX FCW 303
- 5 米：BMX FCW 503
- 10 米：BMX FCW 1003
下图显示了 BMX FCW ••3 电缆。

模块上的接口连接到 40 针的连接器

BMX FCW ••3

注意：电缆中加入的一缕尼龙使您能够轻松地剥离电缆护套。

注意：拧紧 BMX FCW…电缆连接螺钉所需的最大扭矩是 0.8 牛米（0.59 磅-英尺）。

警告

请勿超过最大拧紧扭矩。扭矩过大可能造成断线，从而导致连接性能较差或者断断续续。

不遵循上述说明可能导致人员伤亡或设备损坏。
一般安装规则

BMX FCW • 电缆的连接

下图显示 BMX FCW •1 电缆的连接

给定的图片显示了一个电缆连接图，详细列出每个端口的连接编号和颜色。根据图示，具体连接如下:

- 每个端口的颜色编码

根据 DIN7100 进行颜色编码。

未接线
- 已接线
下图显示 BMX FCW ••3 电缆的连接：

根据 DIN47100 进行颜色编码

<table>
<thead>
<tr>
<th>连接器视图</th>
<th>接线视图</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>白色</td>
</tr>
<tr>
<td>A2</td>
<td>棕色</td>
</tr>
<tr>
<td>A3</td>
<td>绿色</td>
</tr>
<tr>
<td>A4</td>
<td>黄色</td>
</tr>
<tr>
<td>A5</td>
<td>灰色</td>
</tr>
<tr>
<td>A6</td>
<td>粉色</td>
</tr>
<tr>
<td>A7</td>
<td>蓝色</td>
</tr>
<tr>
<td>A8</td>
<td>红色</td>
</tr>
<tr>
<td>A9</td>
<td>绿色</td>
</tr>
<tr>
<td>A10</td>
<td>棕色</td>
</tr>
<tr>
<td>A11</td>
<td>灰色-粉色</td>
</tr>
<tr>
<td>A12</td>
<td>红色-蓝色</td>
</tr>
<tr>
<td>A13</td>
<td>白色-绿色</td>
</tr>
<tr>
<td>A14</td>
<td>绿色-绿色</td>
</tr>
<tr>
<td>A15</td>
<td>白色-黄色</td>
</tr>
<tr>
<td>A16</td>
<td>灰色-粉色</td>
</tr>
<tr>
<td>A17</td>
<td>白色-灰色</td>
</tr>
<tr>
<td>A18</td>
<td>灰色-灰色</td>
</tr>
<tr>
<td>A19</td>
<td>白色-粉色</td>
</tr>
<tr>
<td>B1</td>
<td>白色</td>
</tr>
<tr>
<td>B2</td>
<td>棕色</td>
</tr>
<tr>
<td>B3</td>
<td>绿色</td>
</tr>
<tr>
<td>B4</td>
<td>黄色</td>
</tr>
<tr>
<td>B5</td>
<td>灰色</td>
</tr>
<tr>
<td>B6</td>
<td>粉色</td>
</tr>
<tr>
<td>B7</td>
<td>蓝色</td>
</tr>
<tr>
<td>B8</td>
<td>红色</td>
</tr>
<tr>
<td>B9</td>
<td>棕色</td>
</tr>
<tr>
<td>B10</td>
<td>灰色-粉色</td>
</tr>
<tr>
<td>B11</td>
<td>红色-蓝色</td>
</tr>
<tr>
<td>B12</td>
<td>白色-绿色</td>
</tr>
<tr>
<td>B13</td>
<td>绿色-绿色</td>
</tr>
<tr>
<td>B14</td>
<td>白色-黄色</td>
</tr>
<tr>
<td>B15</td>
<td>灰色-粉色</td>
</tr>
<tr>
<td>B16</td>
<td>白色-灰色</td>
</tr>
<tr>
<td>B17</td>
<td>灰色-灰色</td>
</tr>
<tr>
<td>B18</td>
<td>白色-粉色</td>
</tr>
<tr>
<td>B19</td>
<td>棕色-粉色</td>
</tr>
<tr>
<td>B20</td>
<td>灰色-灰色</td>
</tr>
</tbody>
</table>
如何连接离散量输入/输出模块：将 40 针连接器模块连接至 TELEFAST 接口

概览
离散量 40 针连接器模块的输入/输出通过专用于连接 40 针与 HE10 连接器的电缆连接到 TELEFAST 快速布线连接和适配接口。

示意图
下图显示离散量 40 针连接器模块与 TELEFAST 接口的连接。
BMX FCC • 连接电缆

专用于连接 40 针连接器和 1xHE10 的电缆有 6 种不同的长度：
- 0.5 米，20 线：BMX FCC 051
- 1 米，20 线：BMX FCC 101
- 2 米，20 线：BMX FCC 201
- 3 米，20 线：BMX FCC 301
- 5 米，20 线：BMX FCC 501
- 10 米，20 线：BMX FCC 1001

专用于连接 40 针连接器和 2xHE10 的电缆有 6 种不同的长度：
- 0.5 米，20 线：BMX FCC 053
- 1 米，20 线：BMX FCC 103
- 2 米，20 线：BMX FCC 203
- 3 米，20 线：BMX FCC 303
- 5 米，20 线：BMX FCC 503
- 10 米，20 线：BMX FCC 1003
BMX FCC•电缆的连接

下图显示BMX FCC •1电缆的连接。

请按说明DM7/00进行颜色编码。
下图显示了 BMX FCC •3 电缆的连接。

注意：拧紧 BMX FCC • 电缆连接螺钉所需的最大扭矩是 0.5 牛米（0.37 磅-英尺）。

警告

意外的设备操作
请勿超过最大拧紧扭矩。扭矩过大可能造成断线，从而导致连接性能较差或者断断续续。
不遵循上述说明可能导致人员伤亡或设备损坏。
传感器/输入兼容性和预执行器/输出兼容性

概览

传感器与离散量模块输入之间的兼容性取决于所用传感器的类型。

类似地，预执行器与离散量模块输出之间的兼容性取决于所用预执行器的类型。

传感器/输入兼容性

下表列出了 3 线传感器与 24 VDC 及 48 VDC 输入的兼容性。

<table>
<thead>
<tr>
<th>3 线传感器和符合 IEC 61131-2 的 3 型正逻辑 (源极) 输入：工作电压为 24 VDC 和 48 VDC 的所有 3 线 PNP 电感式或电容式接近传感器和光电探测器与所有正逻辑输入兼容。</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 线传感器和负逻辑 (源极) 输入：工作电压为 24 VDC 和 48 VDC 的所有 3 线 NPN 电感式或电容式接近传感器和光电探测器与所有负逻辑输入兼容。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>图片说明</th>
<th>图片说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 线传感器和符合 IEC 61131-2 的 3 型正逻辑 (源极) 输入：工作电压为 24 VDC 和 48 VDC 的所有 3 线 PNP 电感式或电容式接近传感器和光电探测器与所有正逻辑输入兼容。</td>
<td></td>
</tr>
<tr>
<td>3 线传感器和负逻辑 (源极) 输入：工作电压为 24 VDC 和 48 VDC 的所有 3 线 NPN 电感式或电容式接近传感器和光电探测器与所有负逻辑输入兼容。</td>
<td></td>
</tr>
</tbody>
</table>
下表列出了2线传感器与24 VDC以及48 VDC输入的兼容性。

2线传感器和符合IEC 61131-2的1型正逻辑（源极）输入：工作电压为24 VDC和48 VDC且具有下表中所述特性的所有接近传感器或其他2线传感器均与所有正逻辑24 VDC输入兼容。

2线传感器和负逻辑（源极）输入：工作电压为24 VDC的所有接近传感器或其他2线传感器均与所有正逻辑24 VDC输入兼容。

2线传感器与24/48 VDC和120 VAC输入之间的兼容性：

符合IEC 947-5-2且能够耐受100...120 VAC的所有2线AC接近传感器与所有符合IEC 1131-2的2型（可兼容1型和3型）110..120 VAC输入兼容。

下表提供传感器与离散量输入/输出模块输入之间兼容性的摘要。

<table>
<thead>
<tr>
<th>接近传感器的类型</th>
<th>输入类型</th>
<th>24 VDC</th>
<th>48 VDC</th>
<th>24 VDC</th>
<th>24/48 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>所有PNP型3线（DC）接近传感器</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>所有NPN型3线（DC）接近传感器</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>具有以下特性的Telemecanique或其他品牌的2线（DC）接近传感器：</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- 断态电压降 ≤ 7 V</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- 最小开关电流 ≤ 2.5 mA</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- 通态残留电流 ≤ 1.5 mA</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>具有以下特性的Telemecanique或其他品牌的2线（DC）接近传感器：</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- 断态电压降 ≤ 4 V</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- 最小开关电流 ≤ 1 mA</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- 通态残留电流 ≤ 0.5 mA</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
一般安装规则

<table>
<thead>
<tr>
<th>接近传感器的类型</th>
<th>输入类型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 VAC</td>
</tr>
<tr>
<td></td>
<td>类型 1</td>
</tr>
<tr>
<td>2 线 (AC/DC) 接近传感器（请参见注释）</td>
<td>X</td>
</tr>
<tr>
<td>2 线 (AC) 接近传感器</td>
<td>X</td>
</tr>
</tbody>
</table>

注：24 VDC 输入可用于正逻辑（漏极）或负逻辑（源极），但不符合 IEC。

X 兼容
- 不兼容
AC 工作电压为 AC
DC 工作电压为 DC
AC/DC 工作电压为 AC 或 DC

预执行器与输出之间的兼容性

DC 预执行器与输出之间的兼容性：
遵循输出的最大电流和最大切换频率，如模块特性中指定的那样。

注意：在使用低消耗预执行器的地方，必须特别注意空闲输出的泄漏电流，以确保正确计算出最大电流：

I_{最大值} = I_{标称值} + I_{泄漏}

假定：
I_{标称值} = 预执行器操作所要求的电流
I_{泄漏} = 空闲输出状态下的最大泄漏电流

钨丝灯与静态输出 (静态电流) 之间的兼容性：
对于有短路保护的输出，必须遵循模块特性中指示的钨丝灯最大功率。否则，在加电时的起动电流可能会导致跳闸输出。

AC 预执行器与继电器输出之间的兼容性：
电感式 AC 预执行器的起动电流最高可达持续时间为 2/F 秒的保持电流的 10 倍 (F = 交流电频率)。因此，将继电器输出设置为耐受这些条件（AC14 和 AC15）。继电器输出的特性表给出了根据操作次数的最大许可运行功率 (AV)。

小心

缩短继电器的寿命
请确保继电器输出所切换的电流不超过继电器额定值。电流过大将缩短继电器的寿命。
不遵循上述说明可能导致人身伤害或设备损坏。
第3章
离散量输入/输出模块诊断处理

本节主题
本节介绍如何处理检测到的与离散量输入/输出模块相关的硬件故障。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般保护措施</td>
<td>80</td>
</tr>
<tr>
<td>模块和通道状态显示</td>
<td>81</td>
</tr>
<tr>
<td>诊断</td>
<td>85</td>
</tr>
<tr>
<td>检查连接</td>
<td>88</td>
</tr>
</tbody>
</table>
一般保护措施

概览

某些一般保护措施已集成到离散量输入/输出直流模块的通道中。

DC 输出

每个静态输出（专门标有“非保护”的位置除外）都具有保护性设备，这样在输出处于活动状态时可以检测到以下情况：

- 过载或短路。此类事件导致输出被禁用（跳闸）并且模块前端面板显示屏上将显示事件（相应通道的 LED 闪烁，I/O LED 亮起）。
- 极性反接。此类事件导致电源短路，但不会损坏模块。为了获得最佳的保护，必须在电源上安装速断熔断器，并使其位于预执行器之前。
- 电感式过压。每个输出都受到单独的电感式过载保护，并具有快速的电磁去磁电路，该电路使用一个齐纳击穿二极管，允许减小某些快速机器的机械周期。

DC 输入

24 VDC 和 48 VDC 输入属于恒定电流类型。对于高于以下值的电压，输入电流是恒定的：

- 对于 24 VDC 输入，为 15 V
- 对于 48 VDC 输入，为 25 V

此特性具有以下优点：

- 保证最小电流处于活动状态（符合 IEC 标准）
- 在输入电压增加时消耗的电流是有限的，以避免模块不必要地过热
- 减少由 PLC 电源或过程电源供电的电源传感器所消耗的电流
模块和通道状态显示

概览
离散量 I/O 模块配备了带 LED 的显示块，用于显示模块的通道状态和模块总体状态。

示意图
下图显示离散量 I/O 模块的前面板上的通道状态显示 LED 的位置以及 3 (或 4) 个模块状态 LED。

说明
下表说明离散量 I/O 显示块上 LED 的工作方式。

<table>
<thead>
<tr>
<th>LED</th>
<th>常亮</th>
<th>闪烁</th>
<th>熄灭</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN (绿色)</td>
<td>模块正常工作</td>
<td>无</td>
<td>模块不工作或关闭</td>
</tr>
<tr>
<td>ERR (红色)</td>
<td>内部事件：需要模块分析</td>
<td>高离散量模块与 CPU 之间的通讯断开</td>
<td>未检测到内部错误</td>
</tr>
<tr>
<td>I/O (红色)</td>
<td>外部事件：过载、短路、传感器/预执行器电压错误</td>
<td>未检测到外部错误</td>
<td></td>
</tr>
</tbody>
</table>
(1) 在检测到通道状态为开路时，闪烁时间如下：
- 64 ms 亮起
- 64 ms 熄灭
- 64 ms 亮起
- 2000 ms 熄灭
离散量模块：诊断处理

注意：仅 64 通道模块上才配有 +32 LED。通过位于模块顶部的一个按钮来启用/禁用该 LED。默认情况下，显示前 32 个通道。

注意：对于混合输入/输出模块，第一行通道状态 LED 代表输入（例如，对于 16 路输入/16 路输出混合模块，LED 0 到 15 代表输入，而 LED 16 到 31 代表输出）。

注意：在传感器断电后，以下模块的 I/O (红色) LED 将接通，并由输入通道状态 LED 显示最后记录的传感器位置。

下表列出了 24 VDC 模块：
- BMX DDI 1602
- BMX DDI 3202
- BMX DDI 6402
- BMX DDM 16022
- BMX DDM 3202
- BMX DDM 16025

<table>
<thead>
<tr>
<th>LED</th>
<th>常亮</th>
<th>闪烁</th>
<th>熄灭</th>
</tr>
</thead>
<tbody>
<tr>
<td>+32 颜色</td>
<td>选择通道 32 到 63</td>
<td>无</td>
<td>选择通道 0 到 31</td>
</tr>
<tr>
<td>通道状态</td>
<td>通道处于 1</td>
<td>检测到通道错误、过载或开路 (1)</td>
<td>通道处于 0</td>
</tr>
</tbody>
</table>

(1) 在检测到通道状态为开路时，闪烁时间如下：
- 64 ms 亮起
- 64 ms 熄灭
- 64 ms 亮起
- 2000 ms 熄灭

注意：仅 64 通道模块上才配有 +32 LED。通过位于模块顶部的一个按钮来启用/禁用该 LED。默认情况下，显示前 32 个通道。

注意：对于混合输入/输出模块，第一行通道状态 LED 代表输入（例如，对于 16 路输入/16 路输出混合模块，LED 0 到 15 代表输入，而 LED 16 到 31 代表输出）。

注意：在传感器断电后，以下模块的 I/O (红色) LED 将接通，并由输入通道状态 LED 显示最后记录的传感器位置。

下表列出了 24 VDC 模块：
- BMX DDI 1602
- BMX DDI 3202
- BMX DDI 6402
- BMX DDM 16022
- BMX DDM 3202
- BMX DDM 16025

警告：通道 LED 信息与传感器位置不匹配

传感器断电后：
- I/O 错误 LED 亮起
- 不要考虑输入 LED 信息（这些 LED 显示传感器的上次记录位置，而不是其实际位置）
- 检查传感器上的实际位置。

不遵循上述说明可能导致人员伤亡或设备损坏。
显示面板

当输入或输出上存在电压时，相应的 LED 将亮起。

内部或外部事件显示仅在模块经过配置后有效。在通电或冷启动之后，所有 LED 都将闪烁两次（2 秒），以表明模块操作正常。检测到事件后，将记录通道状态，直到消除事件原因之后。

有以下几个显示块，具体取决于离散量 I/O 模块的类型。

<table>
<thead>
<tr>
<th>模块</th>
<th>显示面板示意图</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAI 0805</td>
<td></td>
<td>这些模块具有：</td>
</tr>
<tr>
<td>BMX DAI 0814</td>
<td></td>
<td>• 3 个模块状态 LED：RUN - ERR - I/O</td>
</tr>
<tr>
<td>BMX DRA 0804T</td>
<td></td>
<td>• 8 个通道状态 LED</td>
</tr>
<tr>
<td>BMX DRA 0805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DRA 0815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DRC 0805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDI 1602</td>
<td></td>
<td>这些模块具有：</td>
</tr>
<tr>
<td>BMX DDI 1603</td>
<td></td>
<td>• 3 个模块状态 LED：RUN - ERR - I/O</td>
</tr>
<tr>
<td>BMX DDI 1604T</td>
<td></td>
<td>• 16 个通道状态 LED</td>
</tr>
<tr>
<td>BMX DAI 1602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DAI 1603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DAI 1604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DAI 1614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DAI 1615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDO 1602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDO 1612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDO 1605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DAO 1605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DAO 1615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDI 3202 K</td>
<td></td>
<td>这些模块具有：</td>
</tr>
<tr>
<td>BMX DDO 3202 K</td>
<td></td>
<td>• 3 个模块状态 LED：RUN - ERR - I/O</td>
</tr>
<tr>
<td>BMX DDM 3202 K</td>
<td></td>
<td>• 32 个通道状态 LED</td>
</tr>
<tr>
<td>BMX DDM 16022(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDM 16025(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDM 16022(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMX DDM 16025(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) BMX DDM 16022 和 BMX DDM 16025 混合输入/输出模块具有两个 8 通道组。输入组由通道 0 至 7 表示，输出组由通道 16 至 23 表示。
离散量模块：诊断处理

<table>
<thead>
<tr>
<th>模块</th>
<th>显示面板示意图</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DDI 6402 K</td>
<td></td>
<td>这些模块具有：</td>
</tr>
<tr>
<td>BMX DDO 6402 K</td>
<td></td>
<td>- 3 个模块状态 LED：RUN - ERR - I/O</td>
</tr>
<tr>
<td></td>
<td>+32 LED，用于显示通道 32 到 63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 个通道状态 LED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 个开关，用于显示通道 32 到 63</td>
<td></td>
</tr>
</tbody>
</table>

(1) BMX DDM 16022 和 BMX DDM 16025 混合输入/输出模块具有两个 8 通道组。输入组由通道 0 至 7 表示，输出组由通道 16 至 23 表示。
诊断

概览
诊断功能检测可能影响模块操作的任何运行情况。可以识别的诊断分为以下三组：

- 内部事件
- 外部事件
- 其他事件

内部事件
内部事件包含使离散量输入/输出模块无法正常运行的所有内部模块条件和发生的所有通讯丢失。通讯丢失可能由以下原因所致：

- 机架总线级检测到的硬件故障
- 处理器故障或电力电缆开路或短路
- 电力电缆开路或短路

外部事件
外部事件包括：

- 过载和短路：静态输出模块包含用于检查负载状态的设备。当一个或多个输出发生过载或短路时，则将发生脱扣成为开路。这种状态将显示在模块的前面板中 - 对应于脱扣输出的 LED 将闪烁，红色的 I/O LED 将亮起。
- 传感器电压错误：所有输入模块都包含用于检查所有模块通道的传感器电压的设备。此设备检查传感器和模块电源电压是否具有足够高的电平，使模块的输入通道正常工作。当传感器电压小于或等于定义的阈值时，模块前面板上的 I/O LED 亮起，显示状态。
- 预执行器电压错误：所有 24 VDC 和 48 VDC 晶体管输出模块都包含用于检查所有模块通道的预执行器电压的设备。此设备检查预执行器和模块电源电压是否足够高，使模块的输出通道正常工作。对于具有直流静态输出的模块，此电压必须大于 18 V（24 VDC 电源）或 36 V（48 VDC 电源）。此电压小于或等于此阈值时，模块前面板上的 I/O LED 亮起，表示出错。
- 开路错误：一些模块（比如 BMXDAI1614/DAI1615）能够检查回路中的泄漏电流，从而检测开路错误。为了获得适当的泄漏电流，需要使用外部电阻器。相关详情，请参阅相应模块的特性页面。

注意：传感器/预执行器电压检查是端子块模块所特有的。在 32 或 64 通道连接器模块中，每个连接器都有一个检查设备（无 16 通道组有一个）。传感器或预执行器电压错误导致受此错误影响的组中的所有输入和输出（即端子块模块的 8 或 16 通道组和 32 或 64 通道连接器模块的 16 通道组）都被设置为非活动状态。

注意：继电器输出模块不包含预执行器电压检查设备。
离散量模块：诊断处理

其他事件
其他错误类别包括模块掉电。

说明
可以根据下表中的离散量输入/输出模块显示面板上的 LED 确定模块的状态。

<table>
<thead>
<tr>
<th>模块的状态</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RUN (绿色)</td>
</tr>
<tr>
<td>正常操作</td>
<td>●</td>
</tr>
<tr>
<td>内部事件</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>CPU 通讯中断</td>
</tr>
<tr>
<td>外部事件</td>
<td>过载、短路、传感器/预执行器电压错误、开路</td>
</tr>
<tr>
<td>配置</td>
<td>启动时模块自检</td>
</tr>
<tr>
<td></td>
<td>模块未配置</td>
</tr>
<tr>
<td>其他事件</td>
<td>模块掉电</td>
</tr>
</tbody>
</table>

要点：
- LED 亮起
- LED 闪烁
- LED 熄灭

注意：在传感器断电后，以下模块的 I/O (红色) LED 将接通，并由输入通道状态 LED 显示最后记录的传感器位置。
下表列出了 24 VDC 模块：
- BMX DDI 1602
- BMX DDI 3202
- BMX DDI 6402
- BMX DDM 16022
- BMX DDM 3202
- BMX DDM 16025

⚠️ 警告

通道 LED 信息与传感器位置不匹配
传感器断电后：
- I/O 错误 LED 亮起
- 不要考虑输入 LED 信息（这些 LED 显示传感器的上次记录位置，而不是其实际位置）
- 检查传感器上的实际位置。

不遵循上述说明可能导致人员伤亡或设备损坏。
检查连接

概览
为了检查离散量 I/O 连接，请确保：
- 传感器数据已由相应的输入和处理器注册
- 处理器中的控制顺序已由输出注册，并传输到相应的执行器

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>意外的设备操作</td>
</tr>
<tr>
<td>活动的输出可以激活机器运动。</td>
</tr>
<tr>
<td>在执行此项检查之前，必须关闭所有电源：</td>
</tr>
<tr>
<td>1. 从电机控制装置中移除熔断器</td>
</tr>
<tr>
<td>2. 切断液压和气动设备的电源</td>
</tr>
<tr>
<td>3. 然后对装有其离散量 I/O 模块的 PLC 加电</td>
</tr>
<tr>
<td>不遵循上述说明可能导致人员伤亡或设备损坏。</td>
</tr>
</tbody>
</table>

说明
之后，可以检查离散量 I/O 模块的连接：
- 无终端（每个传感器并检查相应的输入 LED 变化。如果它保持不变，请检查传感器的接线）。
- 有终端（可以对输入/输出的连接进行更深层次的检查）。需要一个已配置 I/O 的应用程序（在这种情况，将不在“FAST 任务”中声明任何模块）。
 - 在 PLC 处于 RUN 模式时，可以用配有 Control Expert 软件（通过它可以访问调试功能）的 PC 执行此检查。
 - 在整个应用程序加载到存储器中时，也可以执行此检查。在这种情况下，通过将系统位 %S30、%S31 和 %S38 设置为 0 来停用 MAST、FAST 和事件 (参见第 336 页)任务，从而停止程序的处理。
输入检查
下表显示检查输入连接的步骤。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>激活每个传感器并检查相应输入的 LED 是否改变了状态。</td>
</tr>
<tr>
<td>2</td>
<td>在终端屏幕上检查对应的输入位 (%I•) 是否也改变了状态。</td>
</tr>
</tbody>
</table>

输出检查
下表显示检查输出连接的步骤。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>在终端上将对应于输出的每个位 (%Q•) 设置为 1，然后设置为 0。</td>
</tr>
<tr>
<td>2</td>
<td>检查对应的输出 LED 是否亮了又灭，以及对应的预执行器是否先激活后停止。</td>
</tr>
</tbody>
</table>
离散量模块：诊断处理
第4章
BMX DDI 1602 输入模块

本节主题
本节介绍 BMX DDI 1602 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>92</td>
</tr>
<tr>
<td>特性</td>
<td>93</td>
</tr>
<tr>
<td>连接模块</td>
<td>95</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDI 1602 模块是一个通过 20 针端子块连接的 24 VDC 离散量模块。它是一个正逻辑 (或漏极) 模块：它的 16 路输入通道从传感器接收电流。

示意图
特性

一般特性

本表介绍 BMX DDI 1602 和 BMX DDI 1602H 模块的一般特性：

<table>
<thead>
<tr>
<th>BMX DDI 1602 模块</th>
<th>24 VDC 正逻辑输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入值</td>
<td>电压 24 VDC</td>
</tr>
<tr>
<td></td>
<td>电流 3.5 mA</td>
</tr>
<tr>
<td>输入阈值</td>
<td>在 1 电压 ≥ 11 V</td>
</tr>
<tr>
<td></td>
<td>电流 > 2 mA (当 U ≥ 11 V 时)</td>
</tr>
<tr>
<td></td>
<td>在 0 电压 5 V</td>
</tr>
<tr>
<td></td>
<td>电流 < 1.5 mA</td>
</tr>
<tr>
<td>传感器电源(含用于标准模块的波纹电压)</td>
<td>19...30 V (最高可达 34 V，每天不超过 1 小时)</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 6.8 千欧姆</td>
</tr>
<tr>
<td>响应时间</td>
<td>典型值 4 毫秒</td>
</tr>
<tr>
<td></td>
<td>最大值 7 毫秒</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为(30°C (86°F) 时连续工作的 MTBF (按小时计算) 738 749</td>
</tr>
<tr>
<td>极性反接</td>
<td>受保护</td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>类型 3</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>电介质强度</td>
<td>实际为 1500 V，50/60 Hz，持续 1 分钟。</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>输入类型</td>
<td>电流漏极</td>
</tr>
<tr>
<td>输入的并联 (1)</td>
<td>是</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>成功 > 18 VDC</td>
</tr>
<tr>
<td></td>
<td>错误 < 14 VDC</td>
</tr>
<tr>
<td>传感器电压：24 V 时的监控响应时间 (-15% ... +20%)</td>
<td>在出现时 1 毫秒 < T < 3 毫秒</td>
</tr>
<tr>
<td></td>
<td>在消失时 8 毫秒 < T < 30 毫秒</td>
</tr>
<tr>
<td>电源消耗 3.3 V</td>
<td>典型值 76 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 107 mA</td>
</tr>
</tbody>
</table>
(1) 此特性用于将多个输入并行连接到同一模块，或者连接到不同模块以实现输入冗余。
注意：对于 BMX DDI 1602H，在 70°C (158°F) 的环境下工作时，传感器电源电压的最大值不得超过 26.4 V。

警告

<table>
<thead>
<tr>
<th>过热模块</th>
</tr>
</thead>
<tbody>
<tr>
<td>传感器电源电压大于 26.4 V 或小于 21.1 V 时，请勿在 70°C (158°F) 的环境下操作 BMX DDI 1602H。</td>
</tr>
<tr>
<td>不遵循上述说明可能导致人员伤亡或设备损坏。</td>
</tr>
</tbody>
</table>

熔断器

| 内部 | 无 |
| 外部 | 0.5 A 的速断熔断器 |

小心

<table>
<thead>
<tr>
<th>丧失输入功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>安装正确额定功率和类型的熔断器。</td>
</tr>
<tr>
<td>不遵循上述说明可能导致人身伤害或设备损坏。</td>
</tr>
</tbody>
</table>
BMX DDI 1602 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输入通道。

下图显示直流输入的电路图（正逻辑）。
模块连接

模块与传感器之间的连接显示如下。

电源: 24 VDC
熔断器: 0.5A 速断熔断器
第5章
BMX DDI 1603 输入模块

本节主题
本节介绍 BMX DDI 1603 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>98</td>
</tr>
<tr>
<td>特性</td>
<td>99</td>
</tr>
<tr>
<td>连接模块</td>
<td>101</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDI 1603 模块是一个通过 20 针端子块连接的 48 VDC 离数量模块。它是一个正逻辑（或漏极）模块：它的 16 路输入通道从传感器接收电流。
特性

一般特性

本表介绍 BMX DDI 1603 和 BMX DDI 1603H 模块的一般特性：

<table>
<thead>
<tr>
<th>BMX DDI 1603 模块</th>
<th>48 VDC 正逻辑输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入值</td>
<td>电压 48 VDC</td>
</tr>
<tr>
<td></td>
<td>电流 2.5 mA</td>
</tr>
<tr>
<td>输入阈值</td>
<td>电压 ≥ 34 V</td>
</tr>
<tr>
<td></td>
<td>电流 > 2 mA (当 U ≥ 34 V 时)</td>
</tr>
<tr>
<td></td>
<td>电压 10 V</td>
</tr>
<tr>
<td></td>
<td>电流 < 0.5 mA</td>
</tr>
<tr>
<td>传感器电源 (含波纹电压)</td>
<td>36...60 V</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 19.2 千欧姆</td>
</tr>
<tr>
<td>响应时间</td>
<td>典型值 4 毫秒</td>
</tr>
<tr>
<td></td>
<td>最大值 7 毫秒</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 (30°C) (86°F) 时连续工作的 MTBF (按小时计算) 738 749</td>
</tr>
<tr>
<td>极性反接</td>
<td>受保护</td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>类型 1</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>电介质强度</td>
<td>实际为 1,500 V，50/60 Hz，持续 1 分钟。</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>输入类型</td>
<td>电流漏极</td>
</tr>
<tr>
<td>输入的并联 (1)</td>
<td>是</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>成功 > 36 VDC</td>
</tr>
<tr>
<td></td>
<td>错误 < 24 VDC</td>
</tr>
<tr>
<td>传感器电压：24 V 时的监控响应时间 (-15% ... +20%)</td>
<td>在出现时 1 毫秒 < T < 3 毫秒</td>
</tr>
<tr>
<td></td>
<td>在消失时 8 毫秒 < T < 30 毫秒</td>
</tr>
<tr>
<td>电源消耗 3.3 V</td>
<td>典型值 76 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 107 mA</td>
</tr>
</tbody>
</table>
(1) 此特性用于将多个输入并行连接到同一模块，或者连接到不同模块以实现输入冗余。

注意：对于 BMX DDI 1603H，在 70°C (158°F) 的环境下工作时，传感器电源电压不得超过 52.8 V。

<table>
<thead>
<tr>
<th>特性</th>
<th>内部</th>
<th>外部</th>
</tr>
</thead>
<tbody>
<tr>
<td>传感器电源消耗</td>
<td>无</td>
<td>0.5 A 的速断熔断器</td>
</tr>
<tr>
<td>功耗</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>BMX DDI 1603 的温度降级</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>

警告
过热模块
传感器电压大于 52.8 V 或小于 42.2 V 时，请勿在 70°C (158°F) 的环境下操作 BMX DDI 1603H。不遵循上述说明可能导致人员伤亡或设备损坏。

小心
丧失输入功能
安装具有正确额定功率的正确类型的熔断器。不遵循上述说明可能导致人身伤害或设备损坏。

危险
存在电击、爆炸或电弧闪炼危险
连接或断开模块连接前，请先关闭传感器和预执行器的电压。不遵循上述说明将导致人员伤亡。
连接模块

概览

BMX DDI 1603 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输入通道。

输入电路图

下图显示直流输入的电路图（正逻辑）。
模块连接

下图显示模块与传感器之间的连接。

电源: 48 VDC
熔断器: 0.5A 速断熔断器
第6章
BMX DDI 1604T 输入模块

本节主题
本节介绍 BMX DDI 1604T 模块及其特性，并说明如何将它连接到不同的传感器。
注意：该模块没有 H 版本。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>104</td>
</tr>
<tr>
<td>特性</td>
<td>105</td>
</tr>
<tr>
<td>连接模块</td>
<td>108</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDI 1604T 模块是一个通过 20 针端子块连接的 125 VDC 离散量模块。它是一个正逻辑（或漏极）模块：它的 16 路输入通道从传感器接收电流。

注意：BMX DDI 1604T 提供了一个扩展的温度范围，列于本章的一般特性（参见第 105 页）主题中。
特性

一般特性

本表介绍 BMX DDI 1604T 模块的一般特性。

<table>
<thead>
<tr>
<th>BMX DDI 1604T 模块</th>
<th>标称输入值</th>
</tr>
</thead>
<tbody>
<tr>
<td>电压</td>
<td>125 VDC</td>
</tr>
<tr>
<td>电流</td>
<td>2.4 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>阈值输入值</th>
<th>电压</th>
<th>电流</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≥ 88 VDC</td>
<td>> 2 mA（当 U ≥ 88 V 时）</td>
</tr>
<tr>
<td>0</td>
<td>36 VDC</td>
<td>< 0.5 mA</td>
</tr>
</tbody>
</table>

传感器电源（含用于标准模块的波纹电压）

<table>
<thead>
<tr>
<th>电压</th>
<th>电流</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...150 V (156 V，含波纹电压)</td>
<td>< 0.5 mA</td>
</tr>
</tbody>
</table>

输入阻抗

在标称 U 50 kΩ

响应时间

典型值 5 毫秒

最大值 9 毫秒

可靠性

环境温度 (30°C) (86°F) 下 MTBF 连续操作几小时 888402

极性反接

受保护

电介质强度

2500 VDC (持续 1 分钟)

绝缘电阻

> 10 MΩ (500 VDC 以下)

输入类型

电流漏极

输入的并联

是

传感器电压：监控阈值

<table>
<thead>
<tr>
<th>类型</th>
<th>电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O LED 熄灭</td>
<td>> 100 VDC</td>
</tr>
<tr>
<td>I/O LED 亮起</td>
<td>< 80 VDC</td>
</tr>
</tbody>
</table>

传感器电压：监控

125 VDC (-20% ... +20%) 时的响应时间

在出现时 8 ms < T < 30 ms

在消失时 1 ms < T < 5 ms

功耗 3.3 V

<table>
<thead>
<tr>
<th>类型</th>
<th>电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>典型值</td>
<td>76 mA</td>
</tr>
<tr>
<td>最大值</td>
<td>107 mA</td>
</tr>
</tbody>
</table>

传感器电源功耗

4 通道/70°C

<table>
<thead>
<tr>
<th>类型</th>
<th>电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>典型值</td>
<td>1.85 W</td>
</tr>
<tr>
<td>最大值</td>
<td>2.85 W</td>
</tr>
</tbody>
</table>

传感器电源功耗

8 通道/60°C

<table>
<thead>
<tr>
<th>类型</th>
<th>电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>典型值</td>
<td>3.07 W</td>
</tr>
<tr>
<td>最大值</td>
<td>4.61 W</td>
</tr>
</tbody>
</table>

传感器电源功耗

12 通道/50°C

<table>
<thead>
<tr>
<th>类型</th>
<th>电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>典型值</td>
<td>4.29 W</td>
</tr>
<tr>
<td>最大值</td>
<td>6.37 W</td>
</tr>
</tbody>
</table>
BMX DDI 1604T

<table>
<thead>
<tr>
<th>传感器电源功耗</th>
<th>典型值</th>
<th>最大值</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 通道/-25...40°C</td>
<td>5.51 W</td>
<td>8.13 W</td>
</tr>
</tbody>
</table>

功耗

- 3.2 W (最大值) /70°C
- 5.0 W (最大值) /60°C
- 6.7 W (最大值) /50°C
- 8.5 W (最大值) /40°C

输入工作电压范围

- 88...150 VDC

最大输入电压

- 156 VDC (含退纹电压)

工作温度范围

- -25°C 到 +70°C

下图所示为 BMX DDI 1604T 的温度降级。

注意：对于 BMX DDI 1604T，在 70°C (158°F) 的环境下工作时，传感器电源电压不得超过 150 V。

警告

过热模块

传感器电源电压大于 150 V 或小于 100 V 时，请勿在 70°C (158°F) 的环境下操作 BMX DDI 1604T。

不遵循上述说明可能导致人员伤亡或设备损坏。
熔断器

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>内部</td>
<td>无</td>
</tr>
<tr>
<td>外部</td>
<td>0.5 A 速断熔断器</td>
</tr>
</tbody>
</table>

获取和安装正确的熔断器。

小心

输入功能缺失
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概述
BMX DDI 1604T 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输入通道。

输入电路图
下图显示直流电输入（正逻辑）的电路图。
模块连接

下图显示模块与传感器之间的连接。

模块连接
第7章
BMX DAI 1602 输入模块

本节主题
本节介绍 BMX DAI 1602 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>112</td>
</tr>
<tr>
<td>特性</td>
<td>113</td>
</tr>
<tr>
<td>连接模块</td>
<td>115</td>
</tr>
</tbody>
</table>
简介

功能

BMX DAI 1602 模块是一个通过 20 针端子块连接的 24 VAC 离散量模块。该模块具有 16 个使用交流电的通道。

此模块还可用于 24 VDC、正逻辑或负逻辑。
特性

一般特性

下表介绍 BMX DAI 1602 和 BMX DAI 1602H 模块的一般特性：

<table>
<thead>
<tr>
<th>BMX DAI 1602 模块</th>
<th>24 VAC 输入</th>
<th>24 VDC 输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入值</td>
<td>电压</td>
<td>24 VAC</td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>3 mA</td>
</tr>
<tr>
<td></td>
<td>频率</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>阈值输入值</td>
<td>在 1</td>
<td>电压</td>
</tr>
<tr>
<td></td>
<td>直流</td>
<td>电流</td>
</tr>
<tr>
<td></td>
<td>在 0</td>
<td>电压</td>
</tr>
<tr>
<td></td>
<td>直流</td>
<td>电流</td>
</tr>
<tr>
<td></td>
<td>频率</td>
<td>47 Hz 到 63 Hz</td>
</tr>
<tr>
<td></td>
<td>传感器电源(包括波纹电压)</td>
<td>20...26 V</td>
</tr>
<tr>
<td></td>
<td>启用时的电流峰值 (在标称 U 时)</td>
<td>5 mA</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 和 f = 55 Hz 时</td>
<td>6 kΩ</td>
</tr>
<tr>
<td>输入类型</td>
<td>电阻式</td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>激活</td>
<td>15 毫秒</td>
</tr>
<tr>
<td></td>
<td>禁用</td>
<td>20 毫秒</td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>类型 1</td>
<td></td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 下 MTBF</td>
<td>1 307 702</td>
</tr>
<tr>
<td></td>
<td>连续操作几小时</td>
<td></td>
</tr>
<tr>
<td>2 线 / 3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
<td></td>
</tr>
<tr>
<td>电介质强度</td>
<td>1500 V (实际值) , 50/60 Hz , 持续 1 分钟</td>
<td></td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
<td></td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>正常</td>
<td>> 18 V</td>
</tr>
<tr>
<td></td>
<td>错误</td>
<td>< 14 V</td>
</tr>
<tr>
<td>传感器电压：监控24 V (15% ... +20%) 时的响应时间</td>
<td>在出现时</td>
<td>20 ms < T < 50 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时</td>
<td>5 ms < T < 15 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值</td>
<td>76 mA</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>107 mA</td>
</tr>
</tbody>
</table>
注意:
- 在其扩展 -25...70°C (-13...158°F) 温度范围之上，BMX DAI 1602H 特性与表内的 BMX DAI 1602 特性相同。
- 如表所示，这些模块可以使用 24 VAC 和 24 VDC 这两种输入。

<table>
<thead>
<tr>
<th>BMX DAI 1602 模块</th>
<th>24 VAC 输入</th>
<th>24 VDC 输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>传感器电源功耗</td>
<td>典型值</td>
<td>1.45 mA</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>1.8 mA</td>
</tr>
<tr>
<td>功耗</td>
<td></td>
<td>3 W(最大值)</td>
</tr>
<tr>
<td>BMX DAI 1602 的温度降额</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>

熔断器

<table>
<thead>
<tr>
<th></th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>内部</td>
<td>无</td>
</tr>
<tr>
<td>外部</td>
<td>0.5 A 速断熔断器</td>
</tr>
</tbody>
</table>

⚠️ 小心

输入功能缺失
安装正确类型和额定值的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概览

BMX DAI 1602 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输入通道。

输入电路图

下图显示交流电输入的电路图。
模块连接（AC电源）
模块与传感器之间的连接（使用AC电源）如下图所示。

电源: 24 VAC
熔断器: 0.5A 速断熔断器
模块连接（DC电源）

此模块还可用于24 VDC、正逻辑或负逻辑。

模块与传感器之间的连接（使用DC电源）如下图所示。

电源：24 VDC
熔断器：0.5A速断熔断器
第8章
BMX DAI 1603 输入模块

本节主题
本节介绍 BMX DAI 1603 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>120</td>
</tr>
<tr>
<td>特性</td>
<td>121</td>
</tr>
<tr>
<td>连接模块</td>
<td>123</td>
</tr>
</tbody>
</table>
BMX DAI 1603

简介

功能

BMX DAI 1603 模块是一个通过 20 针端子块连接的 48 VAC 离散量模块。该模块具有 16 个使用交流电的通道。

示意图
特性

一般特性
下表介绍 BMX DAI 1603 和 BMX DAI 1603H 模块的一般特性：

<table>
<thead>
<tr>
<th>特性</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAI 1603 模块</td>
<td>48 VAC 输入</td>
</tr>
<tr>
<td>标称输入值</td>
<td>电压</td>
</tr>
<tr>
<td></td>
<td>电流</td>
</tr>
<tr>
<td></td>
<td>频率</td>
</tr>
<tr>
<td>突发输入值</td>
<td>到 1</td>
</tr>
<tr>
<td></td>
<td>电流</td>
</tr>
<tr>
<td></td>
<td>到 0</td>
</tr>
<tr>
<td></td>
<td>电流</td>
</tr>
<tr>
<td></td>
<td>频率</td>
</tr>
<tr>
<td></td>
<td>传感器电源（包括波纹电压）</td>
</tr>
<tr>
<td></td>
<td>启用时的电流峰值（在标称 U 时）</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 和 f = 55 Hz 时</td>
</tr>
<tr>
<td>输入类型</td>
<td>容性</td>
</tr>
<tr>
<td>响应时间</td>
<td>激活</td>
</tr>
<tr>
<td></td>
<td>禁用</td>
</tr>
<tr>
<td>IEC 1131-2 遵从性</td>
<td>类型 3</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C (86°F)) 下 MTBF 连续操作几小时</td>
</tr>
<tr>
<td>2 线 / 3 线接近传感器兼容性（参见第 76 页）</td>
<td>IEC 947-5-2</td>
</tr>
</tbody>
</table>
| 电介质强度 | 1500 V 实际，50 / 60 Hz（持续 1 分钟）。
| 绝缘电阻 | >10 MΩ（500 VDC 以下） | |
| 传感器电压：监控额值 | 正常 | > 36 V |
| | 错误 | < 24 V |
| 传感器电压：监控 24 V（-15% ... +20%）时的响应时间 | 出现时 | 20 ms < T < 50 ms |
| | 消失时 | 5 ms < T < 15 ms |
| 功耗 3.3 V | 典型值 | 76 mA |
| | 最大值 | 107 mA |
注意：在其扩展 -25...70°C (-13...158°F) 温度范围之上，BMX DAI 1603H 性能与表内的 BMX DAI 1603 性能相同。

熔断器

<table>
<thead>
<tr>
<th></th>
<th>内部</th>
<th>外部</th>
</tr>
</thead>
<tbody>
<tr>
<td>无</td>
<td>0.5 A 速断熔断器</td>
<td></td>
</tr>
</tbody>
</table>

小心

输入功能缺失
安装正确类型和额定值的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

危险

电击、爆炸或电弧危险
连接或断开模块之前关闭传感器和预执行器电压
如果不遵守这些说明，将会导致死亡或严重伤害。
连接模块

概览
BMX DAI 1603 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输入通道。

输入电路图
下图显示交流电输入的电路图。
模块连接

下图显示模块与传感器之间的连接。

电源：48 VAC
熔断器：0.5A 速断熔断器
第9章
BMX DAI 1604 输入模块

本节主题
本节介绍 BMX DAI 1604 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>126</td>
</tr>
<tr>
<td>特性</td>
<td>127</td>
</tr>
<tr>
<td>连接模块</td>
<td>129</td>
</tr>
</tbody>
</table>
简介

功能

BMX DAI 1604 模块是一个通过 20 针端子块连接的 100...120 VAC 离散量模块。该模块具有 16 个使用交流电的通道。

示意图
特性

一般特性

本表介绍 BMX DAI 1604 和 BMX DAI 1604H 模块的一般特性：

<table>
<thead>
<tr>
<th>参数描述</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAI 1604 模块</td>
<td>100...120 VAC 输入</td>
</tr>
<tr>
<td>标称输入值</td>
<td>电压 100...120 VAC</td>
</tr>
<tr>
<td></td>
<td>电流 5 mA</td>
</tr>
<tr>
<td></td>
<td>频率 50/60Hz</td>
</tr>
<tr>
<td>输入阈值</td>
<td>在 1 电压 ≥ 74 V</td>
</tr>
<tr>
<td></td>
<td>电流 ≥ 2.5 mA</td>
</tr>
<tr>
<td></td>
<td>在 0 电压 ≤ 20 V</td>
</tr>
<tr>
<td></td>
<td>电流 ≤ 1 mA</td>
</tr>
<tr>
<td></td>
<td>频率 47 Hz 至 63 Hz</td>
</tr>
<tr>
<td></td>
<td>传感器电源 (含波纹电压) 85...132 V</td>
</tr>
<tr>
<td></td>
<td>启用时的峰值电流 (在标称 U) 240 mA</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 和 f = 55 Hz 13 千欧姆</td>
</tr>
<tr>
<td>输入类型</td>
<td>电容式</td>
</tr>
<tr>
<td>响应时间</td>
<td>激活 10 毫秒</td>
</tr>
<tr>
<td></td>
<td>禁用 20 毫秒</td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>类型 3</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 (30°C) (86°F) 时连续工作的 MTBF (按小时计算) 1303067</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>电介质强度</td>
<td>实际为 1500 V, 50/60 Hz，持续 1 分钟。</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>成功 > 82 V</td>
</tr>
<tr>
<td></td>
<td>错误 < 40 V</td>
</tr>
<tr>
<td>传感器电压：24 V 时的监控响应时间 (+15% ... +20%)</td>
<td>在出现时 20 毫秒 < T < 50 毫秒</td>
</tr>
<tr>
<td></td>
<td>在消失时 5 毫秒 < T < 15 毫秒</td>
</tr>
<tr>
<td>电源消耗 3.3 V</td>
<td>典型值 76 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 107 mA</td>
</tr>
</tbody>
</table>
注意：超过其扩展的 -25...70°C (-13...158°F) 温度范围时，BMX DAI 1604H 特性与表中的 BMX DAI 1604 特性相同。

熔断器

<table>
<thead>
<tr>
<th></th>
<th>内部</th>
<th>外部</th>
</tr>
</thead>
<tbody>
<tr>
<td>无</td>
<td>0.5 A 速断熔断器</td>
<td></td>
</tr>
</tbody>
</table>

小心

丧失输入功能
安装具有正确额定功率的正确类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

危险

存在电击、爆炸或电弧闪烁危险
连接或断开模块连接前，请先关闭传感器和预执行器的电压。
不遵循上述说明将导致人员伤亡。
连接模块

概览

BMX DAI 1604 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输入通道。

输入电路图

下图显示交流电输入的电路图。
模块连接

模块与传感器之间的连接显示如下。

电源：100...120 VAC
熔断器：0.5A 速断熔断器
第10章
BMX DAI 1614 输入模块

本节主题
本节介绍 BMX DAI 1614 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>132</td>
</tr>
<tr>
<td>特性</td>
<td>133</td>
</tr>
<tr>
<td>连接模块</td>
<td>135</td>
</tr>
</tbody>
</table>
BMX DAI 1614

简介

功能

BMX DAI 1614模块是一个通过40针端子块连接的100...120 VAC离散量模块。该模块具有16个使用交流电的输入隔离型通道。

注意：如要在X80远程子站中使用BMX DAI 1614模块，需要使用固件版本不低于SV2.31的适配器模块BM• CRA 312**。
特性

一般特性

下表介绍 BMX DAI 1614 和 BMX DAI 1614H 模块的一般特性：

<table>
<thead>
<tr>
<th>特性</th>
<th>BMX DAI 1604 模块详情</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入值</td>
<td>电压：100...120 VAC 输入
电流：2...15 mA
频率：50/60 Hz</td>
</tr>
<tr>
<td>频间输入值</td>
<td>在 1：电压≥79 V
电流≥2 mA
在 0：电压≤20 V
电流≤1 mA
频率：47 Hz 到 63 Hz</td>
</tr>
<tr>
<td>启用时的峰值电流(在标称 U)</td>
<td>190 mA</td>
</tr>
<tr>
<td>最大通道输入电压</td>
<td>132 Vrms (63 Hz 时)</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 且 f = 55 Hz 时 14 kΩ</td>
</tr>
<tr>
<td>输入类型</td>
<td>容性</td>
</tr>
<tr>
<td>响应时间</td>
<td>激活：10 毫秒
禁用：20 毫秒</td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>类型 1</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 30°C (86°F) 时连续工作的 MTBF (按小时计算) 970 000</td>
</tr>
<tr>
<td>2 线 / 3 线接近传感器兼容性 (参见第 76 页)</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>电介质强度</td>
<td>通道对 X-bus 总线：1780 V (实际值), 50/60 Hz, 持续 1 分钟
通道对通道：1780 V (实际值), 50/60 Hz, 持续 1 分钟</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>通道对 X-bus 总线：>10 MΩ (500 VDC 以下)
通道对通道：>10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>正常：> 85 V
错误：<40 V</td>
</tr>
<tr>
<td>传感器电压：监控24 V (-15% ... +20%) 时的响应时间</td>
<td>在出现时：20 ms < T < 50 ms
在消失时：5 ms < T < 15 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值：76 mA
最大值：126 mA</td>
</tr>
<tr>
<td>开路检测：电流阈值</td>
<td>良好：> 0.3 mA
错误：< 0.2 mA</td>
</tr>
</tbody>
</table>
注意：在其扩展-25...70°C (-13...158°F) 温度范围之上，BMX DAI 1614H 特性与表内的 BMX DAI 1614 特性相同。

熔断器

<table>
<thead>
<tr>
<th>功能</th>
<th>200 KΩ (1W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>开路分流电阻器建议</td>
<td>注意：只有在传感器的泄漏电流（OFF 状态下）小于 0.3 mA 时，才需要使用外部分流电阻器。有关电阻器阻值计算的详细信息，请参阅开路检测功能 (参见第 137 页) —节。</td>
</tr>
<tr>
<td>功耗</td>
<td>4.3 W (最大值)</td>
</tr>
</tbody>
</table>

注意：在扩展-25...70°C (-13...158°F) 温度范围之上，BMX DAI 1614H 特性与表内的 BMX DAI 1614 特性相同。

危险

电击、爆炸或电弧危险

- 连接或断开模块之前关闭传感器和预执行器电压
- 在接触分流电阻器以检查开路时，应先切断传感器和预执行器的电压。

如果不遵守这些说明，将会导致死亡或严重伤害。

小心

输入功能缺失

安装正确类型和额定值的熔断器。

不遵循上述说明可能导致人身伤害或设备损坏。

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>0.25 A 速断熔断器</td>
</tr>
</tbody>
</table>
连接模块

概览

BMX DAI 1614 模块装配了一个可拆卸的 40 针端子块，用于连接 16 路输入通道。

输入电路图

下图显示交流电输入的电路图。
模块连接

下图显示传感器与模块之间的连接。

1 用于开路检测外部电阻器（详情见下文）
2 0.25 A 的速断熔断器
AC+ 用于对通道 15 执行 IO 电源监控的输入引脚（详情见下文）
NC 未连接
电源： 100...120 Vac

注意：最大输入电压为 132 Vrms（63 Hz 下）。任何过压都会损坏模块。
开路检测功能

开路检测功能通过检测传感器的泄漏电流来指示开路错误。检测阈值见一般特性表（参见第 133 页）。

如果传感器的泄漏电流（OFF 状态下）小于允许阈值（0.3 mA），则即使线路未发生开路，也会报告开路错误。为避免这种情况，需要增设外部电阻器，将其与传感器并联。请参阅模块连接（参见第 136 页）。

外部分流电阻器的推荐阻值为 200 kΩ（1 W）。

无论怎样，都可以根据以下方法计算外部电阻器允许的最大和最小值：

\[
R_{EXT_{MAX}} = \frac{U_{MIN}}{I_{DETECT_OK}} - Z_{DAI_{MAX}}
\]

\[
R_{EXT_{MIN}} = \frac{U_{MAX} - I_{THRESHOLD_{OFF}} \times Z_{DAI_{MIN}}}{I_{THRESHOLD_{OFF}} - I_{LEAKAGE_{MAX}}}
\]

注意：

- 如果外部电阻的阻值大于最大计算电阻 \(R_{EXT_{MAX}} \)，则即使线路未发生开路，也会报告开路错误。
- 如果外部电阻的阻值小于最小计算电阻 \(R_{EXT_{MIN}} \)，则即使传感器状态为 0，相应的数字量输入通道也可能将传感器状态视为 1。
- 如果电源监控功能（参见第 137 页）处于激活状态且丢失 IO 电源，则 Control Expert 中的开路检测故障不刷新。

电源监控功能

BMXDAI1614 模块是一个通道间隔离型模块，16 个通道拥有 16 个公共引脚。

模块端子块只有一个电源监控输入（AC+），其公共引脚同时也被通道 15 使用。

为了将电源监控功能扩展至其他通道，通道 15 的公共引脚需要连接到其他通道的公共引脚。因此，通道间隔离将被放弃。

缺省情况下，电源监控功能处于未激活状态。有关详细信息，请参阅章节配置（参见第 325 页）。

IO 电源状态的监控方式如下：

- IO 电源高于 85 Vac 时，EXT_PSFLT 位为 0，表示 IO 电源良好。
- IO 电源低于 40 Vac 时，EXT_PSFLT 位为 1，表示在 IO 电源上检测到错误。所有通道输入值都将被强制为 0。
第11章
BMX DAI 1615 输入模块

本节主题
本节介绍 BMX DAI 1615 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>140</td>
</tr>
<tr>
<td>特性</td>
<td>141</td>
</tr>
<tr>
<td>连接模块</td>
<td>143</td>
</tr>
</tbody>
</table>
简介

功能

BMX DAI 1615模块是一个通过40针端子块连接的200...240 VAC离散量模块。该模块具有16个隔离型输入通道，依靠交流电工作。

注意：如果要在X80远程子站中使用BMX DAI 1615模块，需要使用固件版本不低于SV2.31的适配器模块BM• CRA 312**。

示意图
特性

一般特性

下表介绍 BMX DAI 1615 和 BMX DAI 1615 和 BMX DAI 1615H 模块的一般特性:

<table>
<thead>
<tr>
<th>特性</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAI 1615 模块</td>
<td></td>
</tr>
<tr>
<td>标称输入值</td>
<td>电压：200...240 VAC</td>
</tr>
<tr>
<td></td>
<td>电流：3...15 mA</td>
</tr>
<tr>
<td></td>
<td>频率：50/60 Hz</td>
</tr>
<tr>
<td>空值输入值</td>
<td>在 1 电压 ≥ 164 V</td>
</tr>
<tr>
<td></td>
<td>电流 ≥ 3 mA</td>
</tr>
<tr>
<td></td>
<td>在 0 电压 ≤ 40 V</td>
</tr>
<tr>
<td></td>
<td>电流 ≤ 2 mA</td>
</tr>
<tr>
<td></td>
<td>频率：47 Hz 到 63 Hz</td>
</tr>
<tr>
<td>启用时的峰值电流</td>
<td>在标称 U 380 mA</td>
</tr>
<tr>
<td>启用输入阻抗值</td>
<td>在标称 U 且 f = 55 Hz 30 kΩ</td>
</tr>
<tr>
<td>最大通道输入电压</td>
<td>264 Vrms（63 Hz 时）</td>
</tr>
<tr>
<td>输入类型</td>
<td>容性</td>
</tr>
<tr>
<td>响应时间</td>
<td>激活：10 毫秒</td>
</tr>
<tr>
<td></td>
<td>禁用：20 毫秒</td>
</tr>
<tr>
<td>符合 IEC 61131-2</td>
<td>类型 1</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 30°C (86°F) 时连续工作的 MTBF (按小时计算) 970 000</td>
</tr>
<tr>
<td>2 线 / 3 线接近传感器兼容性 (参见第 76 页)</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>电介质强度</td>
<td>通道对 X-bus 总线 1780 Vrms 总线，50/60 Hz，持续 1 分钟</td>
</tr>
<tr>
<td></td>
<td>通道对通道 >10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>通道对 X-bus 总线 1780 Vrms 总线，50/60 Hz，持续 1 分钟</td>
</tr>
<tr>
<td></td>
<td>通道对通道 >10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>正常：> 170 V</td>
</tr>
<tr>
<td></td>
<td>错误：< 80 V</td>
</tr>
<tr>
<td>传感器电压：监控响应时间</td>
<td>在出现时 20 ms < T < 50 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时 5 ms < T < 15 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值：76 mA</td>
</tr>
<tr>
<td></td>
<td>最大值：126 mA</td>
</tr>
<tr>
<td>开路检测：电流阈值</td>
<td>良好：> 0.3 mA</td>
</tr>
<tr>
<td></td>
<td>错误：< 0.2 mA</td>
</tr>
</tbody>
</table>
注意：超过其扩展的\(-25...70°C (-13...158°F)\)温度范围时，BMX DAI 1615H 特性与 BMX DAI 1615特性相同。

熔断器

<table>
<thead>
<tr>
<th>开路分流电阻器建议</th>
<th>200 KΩ (1W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>注意：只有在传感器的泄漏电流 (OFF状态下) 小于 0.3 mA 时，才需要使用外部分流电阻器。有关电阻器阻值计算的详细信息，请参阅开路检测功能 (参见第 145 页)一节。</td>
<td></td>
</tr>
<tr>
<td>功耗</td>
<td>4.3 W (最大值)</td>
</tr>
</tbody>
</table>

危险

电击、爆炸或电弧危险
- 连接或断开模块之前关闭传感器和预执行器电压
- 在触碰分流电阻器以检查开路时，应先切断传感器和预执行器的电压。

如果不遵守这些说明，将会导致死亡或严重伤害。

小心

输入功能缺失
安装正确类型和额定值的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>0.25 A 速断熔断器</td>
</tr>
</tbody>
</table>
连接模块

概览

BMX DAI 1615 模块装配了一个可拆卸的 40 针端子块，用于连接输入通道。

输入电路图

下图显示交流电输入的电路图。
模块连接

下图显示传感器与模块之间的连接。

1 用于开路检测外部电阻器（详情见下文）
2 0.5 A 的速断熔断器
AC+ 用于对通道 15 执行 IO 电源监控的输入引脚（详情见下文）
NC 未连接
电源：220...240 Vac

注意：最大输入电压为 264 Vrms（63 Hz 下）。任何过压都会损坏模块。
开路检测功能

开路检测功能通过检测传感器的泄漏电流来指示开路错误。检测阈值见一般特性表（参见第 141 页）。

如果传感器的泄漏电流（OFF 状态下）小于允许阈值（0.3 mA），则即使线路未发生开路，也会报告开路错误。为避免这种情况，需要增设外部电阻器，将其与传感器并联。请参阅模块连接（参见第 144 页）。

外部分流电阻器的推荐阻值为 200 kΩ (1 W)。

无论怎样，都可以根据以下方法计算外部电阻器允许的最大和最小值：

$$ R_{EXT_MAX} = \frac{U_{MIN}}{I_{DETECT_OK}} - Z_{DAI_MAX} $$

U_{MIN} 是根据 IEC 标准的标称电压的 85%。

$I_{DETECT_OK} = 0.3 \text{ mA}$

$Z_{DAI_MAX} = 39 \text{ kΩ (对于 47 Hz) 或 32 kΩ (对于 57 Hz)}$

$$ R_{EXT_MIN} = \frac{U_{MAX} - I_{THRESHOLD_OFF} \times Z_{DAI_MIN}}{I_{THRESHOLD_OFF} - I_{LEAKAGE_MAX}} $$

U_{MAX} 是根据 IEC 标准的标称电压的 110%。

$I_{THRESHOLD_OFF} = 2 \text{ mA (它是数字量输入通道为 0 时的最大阈值电流)}$。

$Z_{DAI_MIN} = 28 \text{ kΩ (对于 53 Hz) 或 24 kΩ (对于 63 Hz)}$

$I_{LEAKAGE_MAX}$ 是 OFF 状态下传感器的最大泄漏电流。

注意：

开路检测限制：

- 如果外部电阻的阻值大于最大计算电阻 R_{EXT_MAX}，则即使线路未发生开路，也会报告开路错误。
- 如果外部电阻的阻值小于最小计算电阻 R_{EXT_MIN}，则即使传感器状态为 0，相应的数字输入通道也可能将传感器状态视为 1。
- 如果电源监控功能（参见第 145 页）处于激活状态且丢失 IO 电源，则 Control Expert 中的开路检测故障不刷新。

电源监控功能

BMXDAI1615 模块是一个通道间隔离型模块，16 个通道拥有 16 个公共引脚。

模块端子块只有一个电源监控输入 (Ac+)，其公共引脚同时也被通道 15 使用。

为了将电源监控功能扩展至其他通道，通道 15 的公共引脚需要连接到其他通道的公共引脚。因此，通道间隔离将被放弃。

缺省情况下，电源监控功能处于未激活状态。有关详细信息，请参阅章节配置（参见第 325 页）。

IO 电源状态的监控方式如下：

- IO 电源高于 170 Vac 时，EXT_PS_FLT 位为 0，表示 IO 电源良好。
- IO 电源低于 80 Vac 时，EXT_PS_FLT 位为 1，表示在 IO 电源上检测到错误。所有通道输入值都被强制为 0。
第12章
BMX DAI 0805 输入模块

本节主题
本节介绍 BMX DAI 0805 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>148</td>
</tr>
<tr>
<td>特性</td>
<td>149</td>
</tr>
<tr>
<td>连接模块</td>
<td>151</td>
</tr>
</tbody>
</table>

简介

功能

BMX DAI 0805 模块是一个通过 20 针端子块连接的 200...240 VAC 离散量模块。该模块具有 8 个使用交流电的通道。

示意图
一般特性

本表介绍 BMX DAI 0805 和 BMX DAI 0805H 模块的一般特性：

<table>
<thead>
<tr>
<th>特性</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAI 0805 模块</td>
<td>200 到 240 VAC 输入</td>
</tr>
<tr>
<td>标称输入值</td>
<td>电压 200 到 240 VAC</td>
</tr>
<tr>
<td></td>
<td>电流 10.40 mA (U=220 V, 50 Hz)</td>
</tr>
<tr>
<td></td>
<td>频率 50/60Hz</td>
</tr>
<tr>
<td>输入阈值</td>
<td>在 1 电压 ≥ 159 V</td>
</tr>
<tr>
<td></td>
<td>当前值 > 6 mA (U=159)</td>
</tr>
<tr>
<td></td>
<td>在 0 电压 ≤ 40 V</td>
</tr>
<tr>
<td></td>
<td>当前值 ≤ 4 mA</td>
</tr>
<tr>
<td></td>
<td>频率 47 Hz 至 63 Hz</td>
</tr>
<tr>
<td></td>
<td>传感器电源（含波纹电压） 170 到 264 V</td>
</tr>
<tr>
<td></td>
<td>启用时的峰值电流（在标称 U） 480 mA</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 和 f = 55 Hz 时 21 kΩ</td>
</tr>
<tr>
<td>输入类型</td>
<td>电容式</td>
</tr>
<tr>
<td>响应时间</td>
<td>激活 10 毫秒</td>
</tr>
<tr>
<td></td>
<td>禁用 20 毫秒</td>
</tr>
<tr>
<td>符合 IEC 61131</td>
<td>类型 2</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 (30°C) (86°F) 时连续工作的 MTBF（按小时计算） 1 730 522</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>电介质强度</td>
<td>1500 V 有效值，50/60 Hz，持续 1 分钟</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>成功 > 164 V</td>
</tr>
<tr>
<td></td>
<td>错误 < 80 V</td>
</tr>
<tr>
<td>传感器电压：监控响应时间</td>
<td>在出现时 20 毫秒 < T < 50 毫秒</td>
</tr>
<tr>
<td></td>
<td>在消失时 5 毫秒 < T < 15 毫秒</td>
</tr>
<tr>
<td>电源消耗 3.3 V</td>
<td>典型值 76 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 126 mA</td>
</tr>
</tbody>
</table>
注意：超过其扩展的 -25…70°C (-13…158°F) 温度范围时，BMX DAI 0805H 特性与 BMX DAI 0805 特性相同。

熔断器

<table>
<thead>
<tr>
<th>传感器电源消耗</th>
<th>典型值</th>
<th>93.60 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最大值</td>
<td>154.80 mA</td>
</tr>
<tr>
<td>功耗</td>
<td></td>
<td>4.73 W (最大值)</td>
</tr>
<tr>
<td>BMXDAI0805 的温度降级</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>

小心

丧失输入功能
安装具有正确额定功率的正确类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

危险

存在电击、爆炸或电弧闪烁危险
连接或断开模块连接前，请先关闭传感器和预执行器的电压。
不遵循上述说明将导致人员伤亡。

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>0.5 A 的速断熔断器</td>
</tr>
</tbody>
</table>
连接模块

概览

BMX DAI 0805 模块配备了一个可插拔的 20 针端子块，可连接 8 个输入通道。

输入电路图

下图显示交流电输入的电路图。
模块连接

下图显示模块与传感器之间的连接。

电源：200...240 VAC
熔断器：0.5A 速断熔断器
第13章
BMX DAI 0814 输入模块

本节主题
本节介绍 BMX DAI 0814 模块及其特性，以及说明该模块是如何与不同传感器连接的。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>154</td>
</tr>
<tr>
<td>特性</td>
<td>155</td>
</tr>
<tr>
<td>连接模块</td>
<td>157</td>
</tr>
</tbody>
</table>
简介

功能

BMX DAI 0814 模块是一个 100...120 Vac 离散量模块。该模块具有 8 路绝缘输入通道，依靠交流电工作。

示意图
特性

一般特性

下表介绍 BMX DAI 0814 模块的一般特性：

<table>
<thead>
<tr>
<th>特性</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入电压</td>
<td>100...120 Vac</td>
</tr>
<tr>
<td>当前值</td>
<td>5 毫安</td>
</tr>
<tr>
<td>频率</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>输入阈值</td>
<td>在 1 电压 74 V</td>
</tr>
<tr>
<td></td>
<td>电流 2.5 mA</td>
</tr>
<tr>
<td></td>
<td>在 0 电压 20 V</td>
</tr>
<tr>
<td></td>
<td>电流 1 mA</td>
</tr>
<tr>
<td></td>
<td>频率 47 Hz 到 63 Hz</td>
</tr>
<tr>
<td>传感器电源（含纹波电压）</td>
<td>85...132 V</td>
</tr>
<tr>
<td>启用时的峰值电流（在标称 U）</td>
<td>240 毫安</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U, f = 55 Hz</td>
</tr>
<tr>
<td></td>
<td>13 kΩ</td>
</tr>
<tr>
<td>输入类型</td>
<td>电容式</td>
</tr>
<tr>
<td>响应时间</td>
<td>激光</td>
</tr>
<tr>
<td></td>
<td>10 毫秒</td>
</tr>
<tr>
<td></td>
<td>禁用</td>
</tr>
<tr>
<td></td>
<td>20 毫秒</td>
</tr>
<tr>
<td>符合 IEC 61131-2</td>
<td>类型 3</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 (30°C) (86°F) 时连续工作的 MTBF 范围 (按小时计算)</td>
</tr>
<tr>
<td></td>
<td>1700000</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值</td>
</tr>
<tr>
<td></td>
<td>61 毫安</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
</tr>
<tr>
<td></td>
<td>112 毫安</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>电介质强度</td>
<td>通道到总线实际为 1780V，50/60Hz - 1 分钟</td>
</tr>
<tr>
<td></td>
<td>通道到通道实际为 1780V，50/60Hz - 1 分钟</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>通道到总线 >10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td></td>
<td>通道到通道 >10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>功耗</td>
<td>2.35 W (最大值)</td>
</tr>
<tr>
<td>BMX DAI 0814 的温度降级</td>
<td>无</td>
</tr>
</tbody>
</table>
熔断器

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>内部</td>
<td>无</td>
</tr>
<tr>
<td>外部</td>
<td>0.25 A 的速断熔断器</td>
</tr>
</tbody>
</table>

小心
丧失输入功能
安装具有正确额定功率的正确类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

危险
存在电击、爆炸或电弧闪炼危险
连接或断开模块连接前，请先关闭传感器和预执行器的电压。
如果不遵守这些说明，将会导致死亡或严重伤害。
连接模块

概览

BMX DAI 0814 模块装配了一个可拆卸的 20 针端子块，用于连接 8 路输入通道。

输入电路图

下图显示交流电输入的电路图。
模块连接

下图显示传感器与模块之间的连接。

电源：100...120 VAC
熔断器：0.25A 的速断熔断器
NC 未连接
第14章
BMX DDI 3202 K 输入模块

本节主题
本节介绍 BMX DDI 3202 K 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>160</td>
</tr>
<tr>
<td>特性</td>
<td>161</td>
</tr>
<tr>
<td>连接模块</td>
<td>163</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDI 3202 K 模块是一个通过 40 针连接器连接的 24 VDC 离散量模块。它是一个正逻辑（或漏极）模块：它的 32 路输入通道从传感器接收电流。
特性

一般特性

下表介绍 BMX DDI 3202 K 和 BMX DDI 3202 KH 模块的一般特性。

<table>
<thead>
<tr>
<th>特性</th>
<th>BMX DDI 3202 K 模块</th>
<th>24 VDC 正逻辑输入</th>
<th>电压</th>
<th>24 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>电流</td>
<td>2.5 mA</td>
</tr>
<tr>
<td>题值输入值</td>
<td>在 1</td>
<td>电压</td>
<td>≥11 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>> 2 mA (当 U ≥ 11 V 时)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>在 0</td>
<td>电压</td>
<td>5 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>< 0.5 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>传感器电源（含波纹电压）</td>
<td>19...30 V (最高可达 34 V，每天不超过 1 小时)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U</td>
<td>9.6 kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>典型值</td>
<td>4 毫秒</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>7 毫秒</td>
<td></td>
<td></td>
</tr>
<tr>
<td>极性反接</td>
<td>受保护</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>类型 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性 (参见第 76 页)</td>
<td>IEC 947-5-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>电介质强度</td>
<td>初级线圈/次级线圈</td>
<td>1500 V (实际值)</td>
<td></td>
<td>50/60 Hz，持续 1 分钟</td>
</tr>
<tr>
<td></td>
<td>通道组之间</td>
<td>500 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MO (500 VDC 以下)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入类型</td>
<td>电流源</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入的并联</td>
<td>否</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 下，以小时为单位的 MTBF</td>
<td>696 320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>传感器电压：监控阈值</td>
<td>正常</td>
<td>> 18 VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>错误</td>
<td>< 14 VDC</td>
<td></td>
</tr>
<tr>
<td>传感器电压：监控 24 V (-15% ... +20%) 时的响应时间</td>
<td>在出现时</td>
<td>1 ms < T < 3 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>在消失时</td>
<td>8 ms < T < 30 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值</td>
<td>121 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>160 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>功耗</td>
<td>典型值</td>
<td>92 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>145 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注意: 对于 BMX DDI 3202 KH，在60...70 °C (140...158 °F) 的环境下工作时，传感器电源电压最大值不得超过 26.4 V，最小值不得低于 21.1 V。

警告

警告模块

传感器电源电压大于 26.4 V 或小于 21.1 V 时，请勿在 60...70 °C (140...158 °F) 的环境下操作 BMX DDI 3202 KH。

不遵循上述说明可能导致人员伤亡或设备损坏。

熔断器

<table>
<thead>
<tr>
<th>部位</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>内部</td>
<td>外部</td>
</tr>
<tr>
<td>16 个通道为一组，每组都有一个 0.5 A 速断熔断器</td>
<td></td>
</tr>
</tbody>
</table>

小心

输入功能缺失

安装具有正确额定值和类型的熔断器。

不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概述

BMX DDI 3202 K 模块配备了一个 40 针连接器，可用于连接 32 个输入通道。

输入电路图

下图显示直流输入的电路图（正逻辑）。
模块连接
模块与传感器之间的连接显示如下。

电源：24 VDC
熔断器：16 个通道为一组，每组一个 0.5 A 速断熔断器
SPS：传感器电源
第15章
BMX DDI 6402 K 输入模块

本节主题
本节介绍 BMX DDI 6402 K 模块及其特性，并说明如何将它连接到不同的传感器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>166</td>
</tr>
<tr>
<td>特性</td>
<td>167</td>
</tr>
<tr>
<td>连接模块</td>
<td>169</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDI 6402 K 模块是一个通过两个 40 针连接器连接的 24 VDC 离散量模块。它是一个正逻辑 (或漏极) 模块：它的 64 路输入通道从传感器接收电流。
特性

一般特性

下表介绍 BMX DDI 6402 K 和 BMX DDI 6402 KH 模块的一般特性。

<table>
<thead>
<tr>
<th>BMX DDI 6402 K 模块</th>
<th>24 VDC 正逻辑输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入值</td>
<td>电压 24 VDC</td>
</tr>
<tr>
<td></td>
<td>电流 1 mA</td>
</tr>
<tr>
<td>极值输入值</td>
<td>在 1 电压 ≥ 15 V</td>
</tr>
<tr>
<td></td>
<td>在 0 电压 4 V</td>
</tr>
<tr>
<td></td>
<td>传感器电源（包括波纹电压） 19...30 V (最高可达 34 V，每天不超过 1 小时)</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 24 kΩ</td>
</tr>
<tr>
<td>响应时间</td>
<td>典型值 4 ms</td>
</tr>
<tr>
<td></td>
<td>最大值 7 ms</td>
</tr>
<tr>
<td>极性反接</td>
<td>受保护</td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>不符合 IEC</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性（参见第 76 页）</td>
<td>不兼容（每个传感器只允许一个触点）</td>
</tr>
<tr>
<td>电介质强度</td>
<td>初级线圈/次级线圈 1500 V（实际值），50/60 Hz，持续 1 分钟</td>
</tr>
<tr>
<td></td>
<td>通道组之间 500 VDC</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>输入类型</td>
<td>电流漏极</td>
</tr>
<tr>
<td>输入的并联</td>
<td>否</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30 °C) (86 °F) 下 MTBF 连续操作几小时 342 216</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>正常 > 18 V</td>
</tr>
<tr>
<td></td>
<td>错误 < 14 V</td>
</tr>
<tr>
<td>传感器电压：监控 24 V (-15% ... +20%) 时的响应时间</td>
<td>在出现时 1 ms < T < 3 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时 8 ms < T < 30 ms</td>
</tr>
<tr>
<td>功耗</td>
<td>3.3 V 典型值 160 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 226 mA</td>
</tr>
</tbody>
</table>

35012479 12/2018
167
注意：在其扩展 -25...70 °C (-13...158 °F) 温度范围之上，BMX DDI 6402 KH 特性与表内的 BMX DDI 6402 K 特性相同。

熔断器

<table>
<thead>
<tr>
<th></th>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>16 路通道为一组，每组一个 0.5 A 速断熔断器</td>
<td></td>
</tr>
</tbody>
</table>

小心

输入功能缺失
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概览

BMX DDI 6402 K 模块配备了两个 40 针连接器，可用于连接 64 个输入通道。

输入电路图

下图显示直流输入的电路图（正逻辑）。

BMX DDI 6402 K
模块连接

模块与传感器之间的连接显示如下。

电源：24 VDC
熔断器：16 个通道为一组，每组一个 0.5 A 速断熔断器
SPS：传感器电源
第16章
BMX DDO 1602 静态输出模块

本节主题
本节介绍 BMX DDO 1602 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>172</td>
</tr>
<tr>
<td>特性</td>
<td>173</td>
</tr>
<tr>
<td>连接模块</td>
<td>175</td>
</tr>
</tbody>
</table>
BMX DDO 1602

简介

功能

BMX DDO 1602 模块是一个通过 20 针端子块连接的 24 VDC 离散量模块。它是一个正逻辑（或源极）模块：它的 16 个输出通道向执行器提供电流。

示意图
特性

一般特性

本表介绍 BMX DDO 1602 和 BMX DDO 1602H 模块的一般特性：

<table>
<thead>
<tr>
<th>BMX DDO 1602 模块</th>
<th>24 VDC 正逻辑静态输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称值</td>
<td>电压</td>
</tr>
<tr>
<td></td>
<td>电流</td>
</tr>
<tr>
<td>极值</td>
<td>电压 (包括脉动)</td>
</tr>
<tr>
<td></td>
<td>电流/通道</td>
</tr>
<tr>
<td></td>
<td>电流/模块</td>
</tr>
<tr>
<td>热丝灯的功率</td>
<td>最大值</td>
</tr>
<tr>
<td>热漏电流</td>
<td>在 0</td>
</tr>
<tr>
<td></td>
<td>在 1</td>
</tr>
<tr>
<td>负载阻抗</td>
<td>最小值</td>
</tr>
<tr>
<td>响应时间 (1)</td>
<td>1.2 毫秒</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 下 MTBF 连续操作几小时</td>
</tr>
<tr>
<td>切换至感性负载的频率</td>
<td>0.5 / LI² Hz</td>
</tr>
<tr>
<td>输出端的并联</td>
<td>是 (最大值为 2)</td>
</tr>
<tr>
<td>与 IEC 1131-2 DC 直接输入端的兼容性</td>
<td>是 (与 3 类而非 IEC 输入端兼容)</td>
</tr>
<tr>
<td>内置保护</td>
<td>防止过电压</td>
</tr>
<tr>
<td></td>
<td>防止反转</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载</td>
</tr>
<tr>
<td>预执行器电压：监控阈值</td>
<td>正常</td>
</tr>
<tr>
<td></td>
<td>错误</td>
</tr>
<tr>
<td>预执行器电压：监控响应时间</td>
<td>在出现时</td>
</tr>
<tr>
<td></td>
<td>在消失时</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
</tr>
<tr>
<td>24 V 预执行器消耗 (不包括负载电流)</td>
<td>典型值</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
</tr>
</tbody>
</table>
(1) 所有输出均配有快速的电磁去磁电路。电磁铁放电时间 < L/R。
(2) 为 +24 V 预执行器电源装上熔断器

注意：对于 BMX DDO 1602H，在 70°C (158°F) 的环境下，最大预执行器电源电压不得超过 26.4 V，输出电流值不得超过 0.55 A。

熔断器

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>内部</td>
<td>无</td>
</tr>
<tr>
<td>外部</td>
<td>1 个 6.3 A 的速断熔断器</td>
</tr>
</tbody>
</table>

小心

丧失输出功能
安装具有正确额定值和类型的保险丝。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概览

BMX DDO 1602 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输出通道。

输出电路图

下图显示直流输出的电路图（正逻辑）。
模块连接

模块与预执行器之间的连接显示如下。

电源：24 VDC
熔断器：6.3 A 的速断熔断器
预执行器：预执行器
第17章
BMX DDO 1612 静态输出模块

本节主题
本节介绍 BMX DDO 1612 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>178</td>
</tr>
<tr>
<td>特性</td>
<td>179</td>
</tr>
<tr>
<td>连接模块</td>
<td>181</td>
</tr>
</tbody>
</table>
BMX DDO 1612

简介

功能

BMX DDO 1612 模块是一个通过 20 针端子块连接的 24 VDC 离散量模块。它是一个负逻辑 (或漏极) 模块：它的 16 个输出通道从预执行器接收电流。
特性

一般特性

本表介绍 BMX DDO 1612 和 BMX DDO 1612H 模块的一般特性:

<table>
<thead>
<tr>
<th>功能项目</th>
<th>定义</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DDO 1612 模块</td>
<td>24 VDC 负逻辑静态输出</td>
</tr>
<tr>
<td>标称值</td>
<td>电压</td>
</tr>
<tr>
<td></td>
<td>电流</td>
</tr>
<tr>
<td>阈值</td>
<td>电压（包含纹波电压）</td>
</tr>
<tr>
<td></td>
<td>电流/通道</td>
</tr>
<tr>
<td></td>
<td>电流/模块</td>
</tr>
<tr>
<td>钨丝灯的功率</td>
<td>最大值</td>
</tr>
<tr>
<td>泄漏电流</td>
<td>在 0</td>
</tr>
<tr>
<td></td>
<td>在 1</td>
</tr>
<tr>
<td>残余电压</td>
<td>最小值</td>
</tr>
<tr>
<td>响应时间 (1)</td>
<td></td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 下 MTBF 连续操作几小时</td>
</tr>
<tr>
<td>切换至感性负载的频率</td>
<td></td>
</tr>
<tr>
<td>输出端的并联</td>
<td>是（最多可有 3 个输出端并联）</td>
</tr>
<tr>
<td>与直流输入的兼容性</td>
<td>是（源和不符合 IEC 的输入）</td>
</tr>
<tr>
<td>内置保护 (2)</td>
<td>防止过电压</td>
</tr>
<tr>
<td></td>
<td>防极性反接</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载</td>
</tr>
<tr>
<td>预执行器电压：监控阈值</td>
<td>正常</td>
</tr>
<tr>
<td></td>
<td>错误</td>
</tr>
<tr>
<td>预执行器电压：监控响应时间</td>
<td>在出现时</td>
</tr>
<tr>
<td></td>
<td>在消失时</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
</tr>
<tr>
<td>24 V 预执行器消耗（不包括负载电流）</td>
<td>典型值</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
</tr>
</tbody>
</table>
(1) 所有输出均配有快速的电磁去磁电路。电磁铁放电时间 < L/R。
(2) 为 +24 V 预执行器电源装上熔断器。

注意: 对于 BMX DDO 1612H, 在 70°C (158°F) 的环境下，最大预执行器电源电压不得超过 26.4 V, 输出电流值不得超过 0.55 A。

熔断器

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>1 个 6.3 A 的速断熔断器</td>
</tr>
</tbody>
</table>

小心

丧失输出功能
安装具有正确额定值和类型的保险丝。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概览

BMX DDO 1612 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个输出通道。

输出电路图

下图显示直流输出的电路图（负逻辑）。

![电路图](image)
模块连接

模块与预执行器之间的连接显示如下。

电源：24 VDC
熔断器：6.3 A 的速断熔断器
预执行器：预执行器

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
熔断器
- +
第18章
BMX DRA 0804T 继电器输出模块

本节主题
本节介绍 BMX DRA 0804T 模块及其特性，并说明如何将它连接到预执行器。
注意：该模块没有 H 版本。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>184</td>
</tr>
<tr>
<td>特性</td>
<td>185</td>
</tr>
<tr>
<td>连接模块</td>
<td>187</td>
</tr>
</tbody>
</table>
简介

功能

BMX DRA 0804T 模块是一个通过 20 针端子块连接的 125 VDC 离散量继电器模块。其 8 个继电器输出通道可以使用直流电。

注意：BMX DRA 0804T 提供了一个扩展的温度范围，列于本章的一般特性 (参见第 185 页) 主题中。
特性

一般特性
本表介绍 BMX DRA 0804T 模块的一般特性。

<table>
<thead>
<tr>
<th>BMX DRA 0804T 模块</th>
<th>用于直流电的继电器输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>额定电压</td>
<td>直流 125 VDC</td>
</tr>
<tr>
<td>电压范围</td>
<td>直流 100...150 VDC</td>
</tr>
<tr>
<td>最大开关电流</td>
<td>0.3 A</td>
</tr>
<tr>
<td>响应时间</td>
<td>激活 < 10 ms</td>
</tr>
<tr>
<td></td>
<td>禁用 < 10 ms</td>
</tr>
<tr>
<td>最大冲击电流</td>
<td>10 A，容性 t = 10 ms</td>
</tr>
<tr>
<td>内置保护</td>
<td>防直流模式下的电感式过压无。对于每路输出，装上一个放电二极管。</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载无。在每个通道或通道组上安装速断熔断器。</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 30 °C (86 °F) 时连续工作的 MTBF（按小时计算） 2 683 411</td>
</tr>
<tr>
<td>功耗</td>
<td>最大 3.17 W</td>
</tr>
<tr>
<td>现场对总线（电介质强度）</td>
<td>2000 V（实际值）</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>(500 VDC 时) >10 MΩ</td>
</tr>
<tr>
<td>电源消耗</td>
<td>3.3 V 典型值 40 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 75 mA</td>
</tr>
<tr>
<td></td>
<td>24 V（所有通路保持为 1）典型值 101 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 137 mA</td>
</tr>
<tr>
<td>BMX DRA 0804T 的温度降额</td>
<td>无</td>
</tr>
<tr>
<td>点对点隔离</td>
<td>1780 VAC 有效值</td>
</tr>
<tr>
<td>输出电流</td>
<td>0.3 A/125 VDC（阻性负载）100,000 次操作（最小值）</td>
</tr>
<tr>
<td></td>
<td>0.1 A（L/R = 10 毫秒）100,000 次操作（最小值）</td>
</tr>
<tr>
<td>工作温度范围</td>
<td>-25°C 到 +70°C</td>
</tr>
<tr>
<td>机械操作次数</td>
<td>最少 20,000,000 次</td>
</tr>
</tbody>
</table>
熔断器

<table>
<thead>
<tr>
<th></th>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>外部</td>
<td>每个继电器配备一个 0.5 A、250 VDC 速断熔断器</td>
</tr>
</tbody>
</table>

为各个继电器线路获取和安装正确的熔断器。

⚠️ 小心

丧失输出功能
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

⚠️ ⚠️ 危险

电击、爆炸或电弧危险
连接或断开模块之前关闭传感器和预执行器电压
如果不遵守这些说明，将会导致死亡或严重伤害。
连接模块

概览

BMX DRA 0804T 模块配备了一个可插拔的 20 针端子块，可用于连接 8 个继电器输出通道。

输出电路图

下图显示了继电器输出的电路图。请注意预执行器的放大作用。建议为所有预执行器的端子安装此类保护机制。
模块连接

模块与预执行器之间的连接显示如下。

电源: 125 VDC (100...150 VDC)

熔断器: 每个继电器配备一个 0.5 A、250 VDC 速断熔断器

NC: 未连接

注意: 建议的齐纳二极管电压为 47V 或稍高。

建议在每个预执行器的端子上安装这种类型的保护机制。
第19章
BMX DRA 0805 继电器输出模块

本节主题
本节介绍 BMX DRA 0805 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>190</td>
</tr>
<tr>
<td>特性</td>
<td>191</td>
</tr>
<tr>
<td>连接模块</td>
<td>194</td>
</tr>
</tbody>
</table>
简介

功能
BMX DRA 0805 模块是一个通过 20 针端子块连接的 24 VDC 或 24...240 VAC 离散量模块。它的 8 个继电器输出通道既可以使用交流电，也可以使用直流电。
特性

一般特性

本表介绍 BMX DRA 0805 和 BMX DRA 0805H 模块的一般特性：

<table>
<thead>
<tr>
<th>BMX DRA 0805 和 BMX DRA 0805H 模块</th>
<th>用于交流电和直流电的继电器输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>额定电压</td>
<td>直流 24 VDC</td>
</tr>
<tr>
<td></td>
<td>交流 24...240 VAC</td>
</tr>
<tr>
<td>电压范围</td>
<td>直流 10...34 VDC</td>
</tr>
<tr>
<td></td>
<td>交流 19...264 VAC (47...63 Hz)</td>
</tr>
<tr>
<td>热电流</td>
<td>3 A</td>
</tr>
<tr>
<td>最小开关负载</td>
<td>5 VDC / 10 mA</td>
</tr>
</tbody>
</table>

电阻模式下的交流电负载 (AC12)

<table>
<thead>
<tr>
<th>电压</th>
<th>功率</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VAC</td>
<td>50 VA(5)</td>
</tr>
<tr>
<td>48 VAC</td>
<td>50 VA(6)</td>
</tr>
<tr>
<td>100...120 VAC</td>
<td>110 VA(4)</td>
</tr>
<tr>
<td>200...240 VAC</td>
<td>220 VA(4)</td>
</tr>
</tbody>
</table>

70°C (158°F) 时加强型模块的最大功率

<table>
<thead>
<tr>
<th>电压</th>
<th>功率</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VAC</td>
<td>30 VA(5)</td>
</tr>
<tr>
<td>48 VAC</td>
<td>30 VA(6)</td>
</tr>
<tr>
<td>100...120 VAC</td>
<td>66 VA(4)</td>
</tr>
<tr>
<td>200...240 VAC</td>
<td>132 VA(6)</td>
</tr>
</tbody>
</table>

电感模式下的交流电负载 (AC15)

<table>
<thead>
<tr>
<th>电压</th>
<th>功率</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VAC</td>
<td>24 VA(4)</td>
</tr>
<tr>
<td>48 VAC</td>
<td>10 VA(10)</td>
</tr>
<tr>
<td>100...120 VAC</td>
<td>10 VA(11)</td>
</tr>
<tr>
<td>200...240 VAC</td>
<td>10 VA(11)</td>
</tr>
</tbody>
</table>

70°C (158°F) 时加强型模块的最大功率

<table>
<thead>
<tr>
<th>电压</th>
<th>功率</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VAC</td>
<td>14.4 VA(4)</td>
</tr>
<tr>
<td>48 VAC</td>
<td>6 VA(10)</td>
</tr>
<tr>
<td>100...120 VAC</td>
<td>6 VA(11)</td>
</tr>
<tr>
<td>200...240 VAC</td>
<td>6 VA(11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>电压</th>
<th>功率</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VDC</td>
<td>24 W(6)</td>
</tr>
<tr>
<td>40 W(3)</td>
<td></td>
</tr>
</tbody>
</table>

70°C (158°F) 时加强型模块的最大功率

<table>
<thead>
<tr>
<th>电压</th>
<th>功率</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VDC</td>
<td>14.4 W(6)</td>
</tr>
</tbody>
</table>

(1): 0.1 x 10^6 次操作，(2): 0.15 x 10^6 次操作，(3): 0.3 x 10^6 次操作，(4): 0.5 x 10^6 次操作，(5): 0.7 x 10^6 次操作，(6): 1 x 10^6 次操作，(7): 1.5 x 10^6 次操作，(8): 2 x 10^6 次操作，(9): 3 x 10^6 次操作，(10): 5 x 10^6 次操作，(11): 10 x 10^6 次操作，(12): 每个通道为 1 时。
电感模式下的直流电负载
(DC13) (L/R=60 毫秒)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>电压</td>
<td>24 VDC</td>
<td></td>
</tr>
<tr>
<td>功率</td>
<td>10 W(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 W(6)</td>
<td></td>
</tr>
<tr>
<td>70°C (158°F) 时加强型模块的最大功率</td>
<td>6 W(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.4 W(6)</td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>激活</td>
<td>< 10 ms</td>
</tr>
<tr>
<td></td>
<td>禁用</td>
<td>< 8 毫秒</td>
</tr>
<tr>
<td>内置保护</td>
<td>防交流模式下的电感式过压</td>
<td>无。对于每个与所使用的电压对应的输出，并联装上 RC 电路或 ZNO 型过压限制器。</td>
</tr>
<tr>
<td></td>
<td>防直流模式下的电感式过压</td>
<td>无。对于每路输出，装上一个放电二极管。</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载</td>
<td>无。在每个通道或通道组上安装快速断路器。</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 30°C (86°F) 时连续工作的 MTBF (按小时计算)</td>
<td>2 119 902</td>
</tr>
<tr>
<td>功耗</td>
<td>2.7 W (最大值)</td>
<td></td>
</tr>
<tr>
<td>电介质强度</td>
<td>(50/60 Hz 下，持续 1 分钟)</td>
<td>2000 V (实际值)</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>(500 VDC 时)</td>
<td>>10 MΩ</td>
</tr>
<tr>
<td>电源消耗</td>
<td>3.3 V</td>
<td>典型值 79 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最大值 111 mA</td>
</tr>
<tr>
<td>24 V 继电器(12)</td>
<td>典型值 51 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>最大值 56 mA</td>
<td></td>
</tr>
<tr>
<td>BMX DRA 0805 的温度降额</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>

(1) : 0.1 x 10^8 次操作，(2) : 0.15 x 10^6 次操作，(3) : 0.3 x 10^8 次操作，(4) : 0.5 x 10^8 次操作，(5) : 0.7 x 10^8 次操作，(6) : 1 x 10^6 次操作，(7) : 1.5 x 10^6 次操作，(8) : 2 x 10^6 次操作，(9) : 3 x 10^6 次操作，(10) : 5 x 10^6 次操作，(11) : 10 x 10^6 次操作，(12) : 每个通道为 1 时。
熔断器

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>每个继电器配备一个 3 A 速断熔断器</td>
</tr>
</tbody>
</table>

小心
丧失输出功能
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

危险
电击、爆炸或电弧危险
连接或断开模块之前关闭传感器和预执行器电压
如果不遵守这些说明，将会导致死亡或严重伤害。
连接模块

概览

BMX DRA 0805 模块配备了一个可插拔的 20 针端子块，可用于连接 8 个继电器输出通道。

输出电路图

下图显示了继电器输出的电路图。
模块连接

模块与预执行器之间的连接显示如下。

电源：24 VDC 或 24...240 VAC
熔断器：每个继电器配备一个 3 A 速断熔断器
NC：未连接

建议在每个预执行器的端子上安装这种类型的保护机制。
第20章
BMX DRA 0815 继电器输出模块

本节主题
本节介绍 BMX DRA 0815 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>198</td>
</tr>
<tr>
<td>特性</td>
<td>199</td>
</tr>
<tr>
<td>连接模块</td>
<td>202</td>
</tr>
</tbody>
</table>
简介

功能

BMX DRA 0815 模块是一个通过 20 针端子块连接的 5...125 VDC 或 24...240 VAC 高散量模块。它的 8 个继电器输出通道既可以使用交流电，也可以使用直流电。
特性

一般特性

本表介绍 BMX DRA 0815 和 BMX DRA 0815H 模块的一般特性：

<table>
<thead>
<tr>
<th>BMX DRA 0815 和 BMX DRA 0815H 模块</th>
<th>用于交流电和直流电的继电器输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>额定范围</td>
<td>交流</td>
</tr>
<tr>
<td></td>
<td>直流</td>
</tr>
<tr>
<td>电压范围</td>
<td>交流</td>
</tr>
<tr>
<td></td>
<td>直流</td>
</tr>
<tr>
<td>工作温度</td>
<td>BMX DRA 0815</td>
</tr>
<tr>
<td></td>
<td>BMX DRA 0815H</td>
</tr>
<tr>
<td>热电流</td>
<td>将以下降额曲线应用到热电流 (A) 与环境温度 (°C)：</td>
</tr>
</tbody>
</table>

![热电流图](image)

<table>
<thead>
<tr>
<th>最小开关负载</th>
<th>5 Vdc/10 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>电阻模式下的交流电负载（AC12）</td>
<td>电压</td>
</tr>
<tr>
<td></td>
<td>低于 60 °C (140 °F) 时的开关功率</td>
</tr>
<tr>
<td></td>
<td>60...70 °C (140...158 °F) 时加强型模块的开关功率</td>
</tr>
</tbody>
</table>

(1) : 0.04 x 10^6 次操作；(2) : 0.05 x 10^6 次操作；(3) : 0.06 x 10^6 次操作；(4) : 0.07 x 10^6 次操作；
(5) : 0.1 x 10^6 次操作；(6) : 0.15 x 10^6 次操作；(7) : 0.2 x 10^6 次操作；(8) : 0.3 x 10^6 次操作；
(9) : 0.5 x 10^6 次操作；(10) : 0.7 x 10^6 次操作；(11) : 1 x 10^6 次操作；
(12) : 所有通道都为 1；(13) : 低于 50 °C (122 °F)
电感模式下的交流电
负载 (AC15)
(功率因数 = 0.4)

<table>
<thead>
<tr>
<th>电压</th>
<th>24 Vac</th>
<th>48 Vac</th>
<th>100...120 Vac</th>
<th>200...250 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>电感模式下的交流电</td>
<td>24 VA(10)</td>
<td>48 VA(6)</td>
<td>72 VA(4)(13)</td>
<td>96 VA(5)</td>
</tr>
<tr>
<td>低于 60 °C (140 °F) 时的开关功率</td>
<td>10 VA(12)</td>
<td>24 VA(9)</td>
<td>110 VA(7)</td>
<td>110 VA(7)</td>
</tr>
<tr>
<td>60...70 °C (140...158 °F) 时加强型模块的最大开关功率</td>
<td>6 VA(10)</td>
<td>14.4 VA(9)</td>
<td>28.8 VA(6)</td>
<td>57.6 VA(5)</td>
</tr>
</tbody>
</table>

电阻模式下的交流电
负载 (DC12)
(L:R = 1 毫秒)

<table>
<thead>
<tr>
<th>电压</th>
<th>24 Vac</th>
<th>48 Vac</th>
<th>100...125 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>电阻模式下的交流电</td>
<td>24 W(7)</td>
<td>48 W(6)</td>
<td>45 W(6)</td>
</tr>
<tr>
<td>低于 60 °C (140 °F) 时的开关功率</td>
<td>14.4 W(7)</td>
<td>28.8 W(6)</td>
<td>24 W(6)</td>
</tr>
</tbody>
</table>

电感模式下的直流电
负载 (DC13)
(L:R = 15 毫秒)

<table>
<thead>
<tr>
<th>电压</th>
<th>24 Vdc</th>
<th>48...60 Vdc</th>
<th>110...125 Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>电感模式下的直流电</td>
<td>24 W(3)</td>
<td>48 W(1)</td>
<td>15 W(1)</td>
</tr>
<tr>
<td>低于 60 °C (140 °F) 时的开关功率</td>
<td>10 W(5)</td>
<td>14 W(3)</td>
<td>24 W(1)</td>
</tr>
<tr>
<td>60...70 °C (140...158 °F) 时加强型模块的最大开关功率</td>
<td>6 W(5)</td>
<td>14.4 W(3)</td>
<td>28.8 W(1)</td>
</tr>
</tbody>
</table>

机械操作次数
最少 20,000,000 次

响应时间
激活 < 10 毫秒
禁用 < 13 毫秒

最大冲击电流
10 A 电容式负载
t = 10 毫秒

内置保护
- 防交流模式下的电感式过压：无。对于每个与所使用的电压适应的输出通道，并联安装 RC 电路或 ZNO 型过压限制器。
- 防直流模式下的电感式过压：无。在每个输出通道上安装放电二极管。
- 防止短路和过载：无。在每个输出通道或通道组上安装速断熔断器。

可靠性
环境温度为 30 °C (86 °F) 时连续工作的 MTBF（按小时计算）：2,683,411

(1): 0.04 x 10^6 次操作，(2): 0.05 x 10^6 次操作，(3): 0.06 x 10^6 次操作，(4): 0.07 x 10^6 次操作，(5): 0.1 x 10^6 次操作，(6): 0.15 x 10^6 次操作，(7): 0.2 x 10^6 次操作，(8): 0.3 x 10^6 次操作，(9): 0.5 x 10^6 次操作，(10): 0.7 x 10^6 次操作，(11): 1 x 10^6 次操作，(12): 所有通道都为 1，(13): 低于 50 °C (122 °F)
熔断器

警告

电击、爆炸或电弧危险
连接或断开模块连接前，请先关闭传感器和预执行器的电压。
如果不遵守这些说明，将会导致死亡或严重伤害。

小心

丧失输出功能
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>每个输出通道一个速断熔断器</td>
</tr>
<tr>
<td></td>
<td>熔断器电流容量取决于最大开关负载。</td>
</tr>
</tbody>
</table>

耗损(13)

功耗(12) 3.6 W + 0.03 x (I1² + I2² + ... + I8²)
其中 I1, I2...I8 是每个通道的负载电流。

电介质强度（50/60 Hz 下，持续 1 分钟）
- 通道对 X-bus 总线 3000 Vac
- 通道对通道 2000 Vac
- 通道对保护性接地点 (PE) 2000 Vac

绝缘电阻（500 Vdc 时）
- 通道对 X-bus 总线 > 10 MΩ
- 通道对通道 > 10 MΩ

电源消耗
- 3.3 V 典型值 40 mA
- 最大值 75 mA
- 24 V(12) 典型值 101 mA
- 最大值 137 mA

(1): 0.04 x 10^6 次操作，(2): 0.05 x 10^6 次操作，(3): 0.06 x 10^6 次操作，(4): 0.07 x 10^6 次操作，
(5): 0.1 x 10^6 次操作，(6): 0.15 x 10^6 次操作，(7): 0.2 x 10^6 次操作，(8): 0.3 x 10^6 次操作，
(9): 0.5 x 10^6 次操作，(10): 0.7 x 10^6 次操作，(11): 1 x 10^6 次操作，
(12): 所有通道都为 1，(13): 低于 50 °C (122 °F)
连接模块

概述
BMX DRA 0815 模块配备了一个可插拔的 20 针端子块，可用于连接 8 个继电器输出通道。

输出电路图
下图显示了继电器输出的电路图。

BMX DRA 0815
模块连接

模块与预执行器之间的连接显示如下。

电源: 24...125 VDC 或 24...240 VAC
熔断器: 为每个继电器使用合适的速断熔断器。
NC: 未连接
第21章
BMX DRA 1605 继电器输出模块

本节主题
本节介绍 BMX DRA 1605 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页数</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>206</td>
</tr>
<tr>
<td>特性</td>
<td>207</td>
</tr>
<tr>
<td>连接模块</td>
<td>209</td>
</tr>
</tbody>
</table>
简介

功能

BMX DRA 1605 模块是一个通过 20 针端子块连接的 24 VDC 或 24...240 VAC 离散量模块。它的 16 个非隔离继电器输出通道既可以使用交流电，也可以使用直流电。

示意图
特性

一般特性

本表介绍 BMX DRA 1605 和 BMX DRA 1605H 模块的一般特性：

<table>
<thead>
<tr>
<th>特性</th>
<th>BMX DRA 1605 和 BMX DRA 1605H 模块</th>
<th>用于交流电和直流电的继电器输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>额定电压</td>
<td>直流</td>
<td>24 VDC</td>
</tr>
<tr>
<td>交流</td>
<td>24...240 VAC / 2 A，Cos φ = 1</td>
<td></td>
</tr>
<tr>
<td>电压范围</td>
<td>直流</td>
<td>24 VDC/2 A (电阻式负载)</td>
</tr>
<tr>
<td>交流</td>
<td>19...264 VAC / 2 A，Cos φ = 1</td>
<td></td>
</tr>
<tr>
<td>最小开关负载</td>
<td>5 VDC/1 mA</td>
<td></td>
</tr>
<tr>
<td>最大开关负载</td>
<td>264 VAC/125 VDC</td>
<td></td>
</tr>
<tr>
<td>机械寿命</td>
<td>开关次数</td>
<td>2 千万或更多</td>
</tr>
<tr>
<td>电阻模式下的交流电</td>
<td>电压</td>
<td>24 VAC</td>
</tr>
<tr>
<td>负载 (AC12)</td>
<td>功率</td>
<td>48 VAC</td>
</tr>
<tr>
<td>电压</td>
<td></td>
<td>100...120 VAC</td>
</tr>
<tr>
<td>交流</td>
<td></td>
<td>200...240 VAC</td>
</tr>
<tr>
<td>功率</td>
<td>50 VA(2)</td>
<td>50 VA(1)</td>
</tr>
<tr>
<td>80 VA(2)</td>
<td>80 VA(1)</td>
<td>200 VA(2)</td>
</tr>
<tr>
<td>电感模式下的交流电</td>
<td>电压</td>
<td>24 VAC</td>
</tr>
<tr>
<td>负载 (AC15)</td>
<td>功率</td>
<td>48 VAC</td>
</tr>
<tr>
<td>电压</td>
<td></td>
<td>100...120 VAC</td>
</tr>
<tr>
<td>交流</td>
<td></td>
<td>200...240 VAC</td>
</tr>
<tr>
<td>功率</td>
<td>36 VA(1)</td>
<td>36 VA(1)</td>
</tr>
<tr>
<td>72 VA(1)</td>
<td>72 VA(1)</td>
<td>72 VA(1)</td>
</tr>
<tr>
<td>120 VA(2)</td>
<td>120 VA(2)</td>
<td>120 VA(2)</td>
</tr>
<tr>
<td>阻抗模式下的直流电</td>
<td>电压</td>
<td>24 VDC</td>
</tr>
<tr>
<td>负载 (DC12)</td>
<td>功率</td>
<td>48 VDC</td>
</tr>
<tr>
<td>电压</td>
<td></td>
<td></td>
</tr>
<tr>
<td>交流</td>
<td>功率</td>
<td>24 W(2)</td>
</tr>
<tr>
<td>48 VDC</td>
<td>24 W(4)</td>
<td></td>
</tr>
<tr>
<td>电感模式下的直流电</td>
<td>功率 (L/R = 7 毫秒)</td>
<td>3 W(1)</td>
</tr>
<tr>
<td>负载 (DC13)</td>
<td>功率 (L/R = 20 毫秒)</td>
<td>24 W(3)</td>
</tr>
<tr>
<td>电压</td>
<td>24 VDC</td>
<td>10 W(2)</td>
</tr>
<tr>
<td>交流</td>
<td>10 W(2)</td>
<td></td>
</tr>
<tr>
<td>功率</td>
<td>24 W(3)</td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>激活</td>
<td>< 8 毫秒</td>
</tr>
<tr>
<td>停用</td>
<td></td>
<td>< 10 ms</td>
</tr>
<tr>
<td>在线模块更改</td>
<td>可以</td>
<td></td>
</tr>
<tr>
<td>内置保护</td>
<td>防交流电感式过压</td>
<td>无。对于每个与所使用的电压对应的输出，并联装上 RC 电路或 ZNO 型过压限制器。</td>
</tr>
<tr>
<td>防直流电感式过压</td>
<td>无。对于每路输出，装上一个放电二极管。</td>
<td></td>
</tr>
<tr>
<td>防止短路和过载</td>
<td>无。在每个通道或通道组上安装短路熔断器。</td>
<td></td>
</tr>
<tr>
<td>最大开关频率</td>
<td>每小时 3600 个循环</td>
<td></td>
</tr>
</tbody>
</table>

(1) : 3 x 10^5 次操作，(2) : 1 x 10^5 次操作，(3) : 7 x 10^3 次操作，(4) : 5 x 10^4 次操作，(5) : 每个通道为 1 次。
注意: 在 -25...60°C (-13...140°F) 的温度范围内，这些特性也适用于 BMX DRA 1605H。在 70°C (158°F) 的环境下，每个通道的最大功率不得超过 24 VA。

熔断器

<table>
<thead>
<tr>
<th>部位</th>
<th>内部</th>
<th>外部</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>无</td>
<td>8 个通道为一组，每组一个 12 A 速断熔断器</td>
</tr>
</tbody>
</table>

小心

丧失输出功能
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

危险

电击、爆炸或电弧危险
连接或断开模块之前关闭传感器和预执行器电压
如果不遵循这些说明，将会导致死亡或严重伤害。
连接模块

概览

BMX DRA 1605 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个非隔离继电器输出通道。

输出电路图

下图显示了继电器输出的电路。
模块连接
模块与预执行器之间的连接显示如下。

电源：24 VDC 或 24…240 VAC
熔断器：8 个通道为一组，每组一个 12 A 速断熔断器

建议在每个预执行器的箱子上安装这种类型的保护机制。
第22章
BMX DRC 0805 继电器输出模块

本节主题
本节介绍 BMX DRC 0805 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>212</td>
</tr>
<tr>
<td>特性</td>
<td>213</td>
</tr>
<tr>
<td>连接模块</td>
<td>216</td>
</tr>
</tbody>
</table>
BMX DRC 0805

简介

功能
BMX DRC 0805 模块是一个通过 40 针端子块连接的 5...125 Vdc 机票 24...240 Vac 离散量模块。它的 8 个继电器输出通道 (NO/NC) 既可以使用交流电，也可以使用直流电。
特性

一般特性

本表介绍 BMX DRC 0805 和 BMX DRC 0805H 模块的一般特性:

<table>
<thead>
<tr>
<th>特性</th>
<th>BMX DRC 0805 和 BMX DRC 0805H 模块</th>
<th>用于交流电和直流电的 NO/NC 继电器输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>额定范围</td>
<td>交流</td>
<td>24...240 Vac</td>
</tr>
<tr>
<td></td>
<td>直流</td>
<td>24...125 Vdc</td>
</tr>
<tr>
<td>电压范围</td>
<td>交流</td>
<td>19...264 Vac (47...63 Hz)</td>
</tr>
<tr>
<td></td>
<td>直流</td>
<td>5...150 Vdc</td>
</tr>
<tr>
<td>工作温度</td>
<td>BMX DRC 0805</td>
<td>0 °C 至 60 °C (32 °F to 140 °F)，涉及降额 (见下文)</td>
</tr>
<tr>
<td></td>
<td>BMX DRC 0805H</td>
<td>-25 °C 至 70 °C (-13 °F to 158 °F)，涉及降额 (见下文)</td>
</tr>
<tr>
<td>热电流</td>
<td>将以下降额曲线应用到热电流 (A) 与环境温度 (°C)：</td>
<td></td>
</tr>
</tbody>
</table>

最小开关负载 5 Vdc/10 mA

电阻模式下的交流电负载 (AC12)

<table>
<thead>
<tr>
<th>电压</th>
<th>24 Vac</th>
<th>48 Vac</th>
<th>100...120 Vac</th>
<th>200...250 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>低于 60 °C (140 °F) 时的开关功率</td>
<td>48 VA(7)</td>
<td>48 VA(8)</td>
<td>110 VA(8)</td>
<td>220 VA(8)</td>
</tr>
<tr>
<td>60...70 °C (140...158 °F) 时的开关功率</td>
<td>28.8 VA(7)</td>
<td>28.8 VA(8)</td>
<td>66 VA(8)</td>
<td>132 VA(8)</td>
</tr>
<tr>
<td></td>
<td>96 VA(6)</td>
<td>57.6 VA(6)</td>
<td>132 VA(6)</td>
<td>300 VA(6)</td>
</tr>
</tbody>
</table>

(1): 0.04 x 10^6 次操作，(2): 0.05 x 10^6 次操作，(3): 0.06 x 10^6 次操作，(4): 0.07 x 10^6 次操作，
(5): 0.1 x 10^6 次操作，(6): 0.15 x 10^6 次操作，(7): 0.2 x 10^6 次操作，(8): 0.3 x 10^6 次操作，
(9): 0.5 x 10^6 次操作，(10): 0.7 x 10^6 次操作，(11): 1 x 10^6 次操作，
(12): 所有通道都为 1，(13): 低于 50 °C (122 °F)
电感模式下的交流电负载 (AC15) (功率因数 = 0.4)

<table>
<thead>
<tr>
<th>电压</th>
<th>24 Vac</th>
<th>48 Vac</th>
<th>100...120 Vac</th>
<th>200...250 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>低于 60 °C (140 °F) 时的开关功率</td>
<td>10 VA(10)</td>
<td>10 VA(10)</td>
<td>10 VA(11)</td>
<td>10 VA(11)</td>
</tr>
<tr>
<td></td>
<td>24 VA(9)</td>
<td>24 VA(9)</td>
<td>50 VA(8)</td>
<td>50 VA(8)</td>
</tr>
<tr>
<td></td>
<td>48 VA(8)</td>
<td>48 VA(8)</td>
<td>110 VA(7)</td>
<td>110 VA(7)</td>
</tr>
<tr>
<td></td>
<td>96 VA(5)</td>
<td>96 VA(5)</td>
<td>220 VA(4)</td>
<td>220 VA(4)</td>
</tr>
<tr>
<td></td>
<td>144 VA(3)(13)</td>
<td>360 VA(2)(13)</td>
<td>500 VA(3)</td>
<td>750 VA(1)(13)</td>
</tr>
<tr>
<td>60...70 °C (140...158 °F) 时加强型模块的最大开关功率</td>
<td>6 VA(10)</td>
<td>6 VA(10)</td>
<td>6 VA(11)</td>
<td>6 VA(11)</td>
</tr>
<tr>
<td></td>
<td>14.4 VA(9)</td>
<td>14.4 VA(9)</td>
<td>30 VA(8)</td>
<td>30 VA(8)</td>
</tr>
<tr>
<td></td>
<td>28.8 VA(8)</td>
<td>28.8 VA(8)</td>
<td>66 VA(7)</td>
<td>66 VA(7)</td>
</tr>
<tr>
<td></td>
<td>57.6 VA(5)</td>
<td>57.6 VA(5)</td>
<td>132 VA(4)</td>
<td>132 VA(4)</td>
</tr>
</tbody>
</table>

电阻模式下的直流电负载 (DC12) (L:R = 1 毫秒)

<table>
<thead>
<tr>
<th>电压</th>
<th>24 Vdc</th>
<th>48...60 Vdc</th>
<th>100...125 Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>低于 60 °C (140 °F) 时的开关功率</td>
<td>24 W(7)</td>
<td>40 W(6)</td>
<td>45 W(5)</td>
</tr>
<tr>
<td></td>
<td>48 W(6)</td>
<td>48 W(6)</td>
<td>48 W(6)</td>
</tr>
<tr>
<td>60...70 °C (140...158 °F) 时加强型模块的最大开关功率</td>
<td>14.4 W(7)</td>
<td>24 W(6)</td>
<td>45 W(3)</td>
</tr>
</tbody>
</table>

电感模式下的直流电负载 (DC13) (L:R = 15 毫秒)

<table>
<thead>
<tr>
<th>电压</th>
<th>24 Vdc</th>
<th>48...60 Vdc</th>
<th>110...125 Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>低于 60 °C (140 °F) 时的开关功率</td>
<td>10 W(5)</td>
<td>40 W(1)</td>
<td>15 W(5)</td>
</tr>
<tr>
<td></td>
<td>24 W(3)</td>
<td>24 W(3)</td>
<td>24 W(3)</td>
</tr>
<tr>
<td>60...70 °C (140...158 °F) 时加强型模块的最大开关功率</td>
<td>6 W(5)</td>
<td>14.4 W(3)</td>
<td>15 W(1)</td>
</tr>
<tr>
<td></td>
<td>28.8 W(1)</td>
<td>28.8 W(1)</td>
<td>28.8 W(1)</td>
</tr>
</tbody>
</table>

机械操作次数

最少 20,000,000 次

响应时间

激活（至 NO）<10 毫秒
禁止（至 NC）<13 毫秒

最大冲击电流

10 A 电容式负载 t = 10 毫秒

内置保护

防交流模式下的电感式过压
无。对于每个与所使用的电压适应的输出通道，并联安装 RC 电路或 ZNO 型过压限制器。

防直流模式下的电感式过压
无。在每个输出通道上安装放电二极管。

防止短路和过载
无。每个输出通道或通道组上安装速断熔断器。

可靠性

环境温度为 30 °C (86 °F) 时连续工作的 MTBF (按小时计算) 2,683,411

(1): 0.04 x 10^6 次操作, (2): 0.05 x 10^6 次操作, (3): 0.06 x 10^6 次操作, (4): 0.07 x 10^6 次操作,
(5): 0.1 x 10^6 次操作, (6): 0.15 x 10^6 次操作, (7): 0.2 x 10^6 次操作, (8): 0.3 x 10^6 次操作,
(9): 0.5 x 10^6 次操作, (10): 0.7 x 10^6 次操作, (11): 1 x 10^6 次操作,
(12): 所有通道都为 1. (13): 低于 50 °C (122 °F)
熔断器

危险
电击、爆炸或电弧危险
连接或断开模块连接前，请先关闭传感器和预执行器的电压。
如果不遵守这些说明，将会导致死亡或严重伤害。

小心
丧失输出功能
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>每个输出通道一个速断熔断器
熔断器电流容量取决于最大开关负载。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>功耗(12)</th>
<th>$3.6\ W + 0.03\times(\ I_1^2 + \ I_2^2 + \ldots + \ I_8^2)$
其中 I_1, I_2, \ldots, I_8 是每个通道的负载电流。</th>
</tr>
</thead>
<tbody>
<tr>
<td>电介质强度（50/60 Hz 下，持续 1 分钟）</td>
<td>通道对 X-bus 总线
通道对通道
通道对保护性接地点 (PE)</td>
</tr>
<tr>
<td>绝缘电阻（500 Vdc 时）</td>
<td>通道对 X-bus 总线
通道对通道</td>
</tr>
<tr>
<td>电源消耗</td>
<td>3.3 V
24 V(12)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1): 0.04 x 10^6 次操作，(2): 0.05 x 10^6 次操作，(3): 0.06 x 10^6 次操作，(4): 0.07 x 10^6 次操作，
(5): 0.1 x 10^6 次操作，(6): 0.15 x 10^6 次操作，(7): 0.2 x 10^6 次操作，(8): 0.3 x 10^6 次操作，
(9): 0.5 x 10^6 次操作，(10): 0.7 x 10^6 次操作，(11): 1 x 10^6 次操作，
(12): 所有通道都为 1，(13): 低于 50 °C (122 °F)
连接模块

概览

BMX DRC 0805 模块配备了一个可插拔的 40 针端子块，可用于连接 8 个继电器输出通道。

输出电路图

下图显示了继电器输出的电路图。

<table>
<thead>
<tr>
<th>模块</th>
<th>输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>常开输出</td>
</tr>
<tr>
<td>NC</td>
<td>常闭输出</td>
</tr>
</tbody>
</table>

图中显示的电路图包括 NO、NC 和 COM 端子，以及预执行器和电源连接。
模块连接

模块与预执行器之间的连接显示如下。

电源: 24...125 Vdc 或 24...240 Vac
熔断器: 为每个继电器使用合适的速断熔断器。
N/C: 未连接

我们建议在每个预执行器的端子上安装此类型的保护装置。
第23章
BMX DDO 3202 K 静态输出模块

本节主题
本节介绍 BMX DDO 3202 K 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>220</td>
</tr>
<tr>
<td>特性</td>
<td>221</td>
</tr>
<tr>
<td>连接模块</td>
<td>223</td>
</tr>
</tbody>
</table>
BMX DDO 3202 K

简介

功能
BMX DDO 3202 K 模块是一个通过 40 针连接器连接的 24 VDC 离散量模块。它是一个正逻辑（或源极）模块：它的 32 个输出通道向预执行器提供电流。
特性

一般特性

下表介绍 BMX DDO 3202 K 和 BMX DDO 3202 KC 模块的一般特性。

<table>
<thead>
<tr>
<th>特性</th>
<th>BMX DDO 3202 K 模块</th>
<th>24 VDC 正逻辑静态输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称值</td>
<td>电压</td>
<td>24 VDC</td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>0.1 A</td>
</tr>
<tr>
<td>额定值</td>
<td>电压 (含波纹电压)</td>
<td>19...30 V (每天可能有 1 小时达到 34 V)</td>
</tr>
<tr>
<td></td>
<td>电流/通道</td>
<td>0.125 A</td>
</tr>
<tr>
<td></td>
<td>电流/模块</td>
<td>3.2 A</td>
</tr>
<tr>
<td>钨丝灯的功率</td>
<td>最大值</td>
<td>1.2 W</td>
</tr>
<tr>
<td>漏泄电流</td>
<td>在 0</td>
<td>当 U = 30 V 时, 为 100 μA</td>
</tr>
<tr>
<td></td>
<td>在 1</td>
<td>当 I = 0.1 A, 为 1.5 V</td>
</tr>
<tr>
<td>阈值</td>
<td>最小值</td>
<td>220 Ω</td>
</tr>
<tr>
<td>响应时间 (1)</td>
<td></td>
<td>1.2 毫秒</td>
</tr>
<tr>
<td>内部损坏之前的最大过载时间</td>
<td></td>
<td>15 毫秒</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 30 °C (86 °F)时连续工作的 MTBF (按小时计算)</td>
<td>312 254</td>
</tr>
<tr>
<td>切换至感性负载的频率</td>
<td></td>
<td>0.5 / LI2 Hz</td>
</tr>
<tr>
<td>输出端的并联</td>
<td>是 (最多可有 3 个输出端并联)</td>
<td></td>
</tr>
<tr>
<td>与 IEC 1131-2 DC 直接输入端的兼容性</td>
<td>是 (3 型或不符合 IEC)</td>
<td></td>
</tr>
<tr>
<td>内置保护</td>
<td>防止过压</td>
<td>是，利用 Transil 二极管</td>
</tr>
<tr>
<td></td>
<td>防止反转</td>
<td>是，利用反向二极管 (2)</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载</td>
<td>是，利用电流限制器和电气断路器 0.125 A < Id < 0.185 A</td>
</tr>
<tr>
<td>预执行器电压：监控阈值</td>
<td>正常</td>
<td>> 18 V</td>
</tr>
<tr>
<td></td>
<td>错误</td>
<td>< 14 V</td>
</tr>
<tr>
<td>预执行器电压：监控响应时间</td>
<td>在出现时</td>
<td>1 ms < T < 3 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时</td>
<td>8 ms < T < 30 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值</td>
<td>125 mA</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>166 mA</td>
</tr>
<tr>
<td>24 V 预执行器消耗</td>
<td>典型值</td>
<td>46 mA</td>
</tr>
<tr>
<td>(不包括负载电流)</td>
<td>最大值</td>
<td>64 mA</td>
</tr>
</tbody>
</table>

(1) 所有输出端都装有电磁铁快速消磁电路，电磁铁放电时间 < L/R。
(2) 为 +24 V 预执行器电源装上熔断器
<table>
<thead>
<tr>
<th>功耗</th>
<th>3.6 W（最大值）</th>
</tr>
</thead>
<tbody>
<tr>
<td>电介质强度</td>
<td>输出/接地或输出/内部逻辑</td>
</tr>
<tr>
<td></td>
<td>1500 V（实际值），50/60 Hz，持续1分钟</td>
</tr>
<tr>
<td></td>
<td>通道组之间</td>
</tr>
<tr>
<td></td>
<td>500 VDC</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ（500 VDC 以下）</td>
</tr>
<tr>
<td>温度降额</td>
<td>应用温度降额曲线（参见第33页）</td>
</tr>
</tbody>
</table>

(1) 所有输出端都装有电磁铁快速消磁电路。电磁铁放电时间 < L/R。
(2) 为+24 V预执行器电源装上熔断器

<table>
<thead>
<tr>
<th>熔断器</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>内部</td>
<td>无</td>
</tr>
<tr>
<td>外部</td>
<td>16个通道为一组，每组都有一个2 A速断熔断器</td>
</tr>
</tbody>
</table>

小心

输入功能缺失
安装具有正确额定值和类型熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概览

BMX DDO 3202 K 模块配备了一个 40 针连接器，可用于连接 32 个输出通道。

输出电路图

下图显示直流输出的电路图（正逻辑）。
模块连接

模块与预执行器之间的连接显示如下。

电源：24 VDC

熔断器：16 个通道为一组，每组一个 2 A 速断熔断器

预执行器：预执行器

PPS：预执行器电源
第24章
BMX DDO 6402 K 静态输出模块

本节主题
本节介绍 BMX DDO 6402 K 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>226</td>
</tr>
<tr>
<td>特性</td>
<td>227</td>
</tr>
<tr>
<td>连接模块</td>
<td>229</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDO 6402 K 模块是一个通过两个 40 针连接器连接的 24 VDC 离散量模块。它是一个正逻辑 (或源极) 模块：它的 64 个输出通道向预执行器提供电流。

示意图
特性

一般特性

下表介绍 BMX DDO 6402 K 和 BMX DDO 6402 KC 模块的一般特性。

<table>
<thead>
<tr>
<th>BMX DDO 6402 K 模块。</th>
<th>24 VDC 正逻辑静态输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称值</td>
<td>电压: 24 VDC</td>
</tr>
<tr>
<td></td>
<td>电流: 0.1 A</td>
</tr>
<tr>
<td>极值</td>
<td>电压 (包括脉动): 19 到 30 V (在 1 小时/天内可能为 34 V)</td>
</tr>
<tr>
<td></td>
<td>电流/通道: 0.125 A</td>
</tr>
<tr>
<td></td>
<td>电流/模块: 6.4 A</td>
</tr>
<tr>
<td>钨丝灯的功率</td>
<td>最大值: 1.2 W</td>
</tr>
<tr>
<td>泄漏电流</td>
<td>在 0: 当 U = 30 V 时, 为 100 μA</td>
</tr>
<tr>
<td>压降</td>
<td>在 1: 当 I = 0.1 A, 为 1.5 V</td>
</tr>
<tr>
<td>负载阻抗</td>
<td>最小值: 220 Ω</td>
</tr>
<tr>
<td>响应时间 (1)</td>
<td>1.2 毫秒</td>
</tr>
<tr>
<td>内部损坏之前的最大过载时间</td>
<td>15 毫秒</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度为 30 ℃ (86 °F) 时连续工作的 MTBF (按小时计算)</td>
</tr>
<tr>
<td>切换至感性负载的频率</td>
<td>0.5 / LI² Hz</td>
</tr>
<tr>
<td>输出端的并联</td>
<td>是 (最多可有 3 个输出端并联)</td>
</tr>
<tr>
<td>与 IEC 1131-2 DC 直接输入端的兼容性</td>
<td>是 (与 3 类而非 IEC 输入端兼容)</td>
</tr>
<tr>
<td>内置保护</td>
<td>防止过电压: 是，利用 Transil 二极管</td>
</tr>
<tr>
<td></td>
<td>防止反转: 是，利用反向二极管 (2)</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载: 是，利用电流限制器和电气断路器</td>
</tr>
<tr>
<td></td>
<td>0.125 A < Id < 0.185 A</td>
</tr>
<tr>
<td>预执行器电压: 监控阈值</td>
<td>正常: > 18 V</td>
</tr>
<tr>
<td></td>
<td>错误: < 14 V</td>
</tr>
<tr>
<td>预执行器电压: 监控响应时间</td>
<td>在出现时: 8 ms < T < 30 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时: 1 ms < T < 3 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值: 160 mA</td>
</tr>
<tr>
<td></td>
<td>最大值: 226 mA</td>
</tr>
<tr>
<td>24 V 预执行器消耗</td>
<td>(不包括负载电流)</td>
</tr>
<tr>
<td></td>
<td>典型值: 92 mA</td>
</tr>
<tr>
<td></td>
<td>最大值: 127 mA</td>
</tr>
<tr>
<td>功耗</td>
<td>最大值: 6.85 W (最大值)</td>
</tr>
</tbody>
</table>

(1) 所有输出端都装有电磁铁快速消磁电路。电磁铁放电时间 < L/R。
(2) 为 +24 V 预执行器电源装上一个 2 A 熔断器。
熔断器

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>16 个通道为一组，每组都有一个 2 A 速断熔断器</td>
</tr>
</tbody>
</table>

小心

输入功能缺失
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概述

BMX DDO 6402 K 模块配备了两个 40 针连接器，可用于连接 64 个输出通道。

输出电路图

下图显示直流输出的电路图（正逻辑）。

![电路图](image)
模块连接
模块与预执行器之间的连接显示如下。

电源: 24 VDC
熔断器: 16 个通道为一组，每组一个 2 A 速断熔断器
预执行器: 预执行器
PPS: 预执行器电源
第25章
BMX DAO 1605 三端双向可控硅输出模块

本节主题
本节介绍 BMX DAO 1605 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>232</td>
</tr>
<tr>
<td>特性</td>
<td>233</td>
</tr>
<tr>
<td>连接模块</td>
<td>235</td>
</tr>
</tbody>
</table>
简介

功能

BMX DAO 1605 模块是一个通过 20 针端子块连接的 100...240 VAC 离散量模块。它的 16 个三端双向可控硅输出通道使用交流电。

示意图
特性

一般特性

本表介绍 BMX DAO 1605 和 BMX DAO 1605H 模块的一般特性:

<table>
<thead>
<tr>
<th>参数</th>
<th>详情</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAO 1605 模块</td>
<td>100...240 VAC 三端双向可控硅输出</td>
</tr>
<tr>
<td>标称值</td>
<td>电压 100...240 VAC</td>
</tr>
<tr>
<td></td>
<td>电流 0.6 A/点</td>
</tr>
<tr>
<td>额定值</td>
<td>电压 100 mA (24 VAC)</td>
</tr>
<tr>
<td></td>
<td>25 mA (100...240 VAC)</td>
</tr>
<tr>
<td></td>
<td>电流/通道 0.6 A</td>
</tr>
<tr>
<td></td>
<td>电流/模块 2.4 A 最大值/公共端 (对于所有公共端, 最大值为 4.8 A)</td>
</tr>
<tr>
<td>最大突波电流</td>
<td>20 A/循环或更低</td>
</tr>
<tr>
<td>漏电流</td>
<td>在状态 0 ≤ 3 mA (对于 240 VAC, 60 Hz)</td>
</tr>
<tr>
<td></td>
<td>≤ 1.5 mA (对于 120 VAC, 60 Hz)</td>
</tr>
<tr>
<td>残留电压</td>
<td>在状态 1 ≤ 1.5 mA</td>
</tr>
<tr>
<td>响应时间</td>
<td>1 毫秒 + 1/(2xF)</td>
</tr>
<tr>
<td>内置保护</td>
<td>防交流模式下的电磁式过压 无。对于每个与所使用的电压对应的输出，并联装上 RC 电路或 ZNO 型过压限制器</td>
</tr>
<tr>
<td></td>
<td>防止电磁式过压 无。对于每路输出,装上一个放电二极管。</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载 无。在每个通道或通道组上安装断电断电器。</td>
</tr>
<tr>
<td>命令类型</td>
<td>零交叉</td>
</tr>
<tr>
<td>输出保护</td>
<td>无保护</td>
</tr>
<tr>
<td>电介质最大电压</td>
<td>2830 VAC 有效值/3 个循环 (海拔高度：2000 米 = 6557.38 英尺)</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>≥ 10 MΩ (由绝缘电阻计测量)</td>
</tr>
<tr>
<td>抗扰度</td>
<td>通过噪声模拟器模拟噪声电压，1 微秒噪声宽度和 1500 Vp-p 25...60 Hz 噪声频率</td>
</tr>
<tr>
<td>电源消耗 3.3 V</td>
<td>典型值 79 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 111 mA</td>
</tr>
<tr>
<td>BMX DAO 1605 的温度降级</td>
<td>应用温度降级曲线 (参见第 33 页)</td>
</tr>
</tbody>
</table>

注意： 在温度范围 -25...60°C (-13...140°F) 内，此表中的特性也适用于 BMX DAO 1605H。在 70°C (158°F) 的环境下，每个通道的最大电流值不得超过 0.24 A，模块的最大电流不得超过 1.9 A。
熔断器

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>内部</td>
<td>无</td>
</tr>
<tr>
<td>外部</td>
<td>4 路通道为一组，每组一个 3 A 速断熔断器</td>
</tr>
</tbody>
</table>

小心

丧失输出功能
安装正确额定功率和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

危险

存在电击、爆炸或电弧闪烁危险
连接或断开模块连接前，请先关闭传感器和预执行器的电压。
不遵循上述说明将导致人员伤亡。
连接模块

概览

BMX DAO 1605 模块配备了一个可插拔的 20 针端子块，可用于连接 16 个三端双向可控硅输出通道。

输出电路图

下图显示了交流电三端双向可控硅输出的电路图。
模块连接

模块与预执行器之间的连接显示如下。

电源：100...240 VAC
熔断器：4个通道为一组，每组一个3 A速断熔断器
第26章
BMX DAO 1615 三端双向可控硅隔离型输出模块

本节主题
本节介绍 BMX DAO 1615 模块及其特性，并说明如何将它连接到预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>238</td>
</tr>
<tr>
<td>特性</td>
<td>239</td>
</tr>
<tr>
<td>连接模块</td>
<td>242</td>
</tr>
</tbody>
</table>
BMX DAO 1615

简介

功能

BMX DAO 1615 模块是通过 40 针端子块连接的一个 24...240 Vac 离散量模块。它的 16 个三端双向可控硅隔离型输出通道使用交流电。

示意图
特性

一般特性

本表介绍 BMX DAO 1615 和 BMX DAO 1615H 模块的一般特性：

<table>
<thead>
<tr>
<th>BMX DAO 1615 模块</th>
<th>24...240 Vac 16 通道隔离型三端双向可控硅输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>参数</td>
<td>值</td>
</tr>
<tr>
<td>标称值</td>
<td>电压 24...240 Vac</td>
</tr>
<tr>
<td></td>
<td>电流 每个通道 3 A。</td>
</tr>
<tr>
<td>工作范围</td>
<td>电压 20...264 Vac</td>
</tr>
<tr>
<td></td>
<td>频率 47...63 Hz</td>
</tr>
<tr>
<td>最大电压和最小电压</td>
<td>状态 1 下的压降 ≤ 1.55 Vac</td>
</tr>
<tr>
<td></td>
<td>最大输入电压 10 秒内 300 Vac</td>
</tr>
<tr>
<td></td>
<td>一个周期内 400 Vac</td>
</tr>
<tr>
<td>最大电流和最小电流</td>
<td>负载电流 (最小值) 5 mA 最小值。</td>
</tr>
<tr>
<td></td>
<td>电流 / 4 个连续通道 4 个通道的总和为 4 A (连续)</td>
</tr>
<tr>
<td></td>
<td>电流/模块 10 A (最大值,连续)</td>
</tr>
<tr>
<td></td>
<td>最大突发电流 (rms) 1 个周期内每个通道 30 A</td>
</tr>
<tr>
<td></td>
<td>2 个周期内每个通道 20 A</td>
</tr>
<tr>
<td></td>
<td>3 个周期内每个通道 10 A</td>
</tr>
<tr>
<td>状态 0 下的泄漏电流</td>
<td>240 Vac 时 ≤ 2.5 mA</td>
</tr>
<tr>
<td></td>
<td>115 Vac 时 ≤ 2 mA</td>
</tr>
<tr>
<td></td>
<td>48 Vac 时 ≤ 1 mA</td>
</tr>
<tr>
<td></td>
<td>24 Vac 时 ≤ 1 mA</td>
</tr>
<tr>
<td>响应时间</td>
<td>≤ 0.5 x (1/F)</td>
</tr>
<tr>
<td>内置保护</td>
<td>防止对式过压 无。对于每个与所使用的电压适应的预执行器，并联安装 RC 电路或 ZNO 型过压限制器。</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载 无。在每个通道上安装 4 A 速断熔断器。</td>
</tr>
<tr>
<td>输出保护 (内部)</td>
<td>RC 缓冲器抑制。</td>
</tr>
<tr>
<td>电介质强度</td>
<td>通道对 X-bus 总线 1780 Vac, 50/60 Hz, 1 分钟</td>
</tr>
<tr>
<td></td>
<td>通道对通道 1500 Vac, 50/60 Hz, 1 分钟</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>通道对 X-bus 总线 >10 MΩ (500 Vdc 以下)</td>
</tr>
<tr>
<td></td>
<td>通道对通道 >10 MΩ (500 Vdc 以下)</td>
</tr>
</tbody>
</table>
施加的 dV/dt 400 V/μs

背板消耗
<table>
<thead>
<tr>
<th>电压</th>
<th>典型值</th>
<th>最大值</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V</td>
<td>50 mA</td>
<td>60 mA</td>
</tr>
<tr>
<td>3.3 V</td>
<td>61 mA</td>
<td>87 mA</td>
</tr>
</tbody>
</table>

小心

过热危险

安装时应考虑离散量 I/O 模块的温度降额特性，以防止设备过热和/或性能下降。

不遵循上述说明可能导致人身伤害或设备损坏。

温度降额

应用以下降额曲线（总模块输出电流 (A) 与环境温度 (°C)）：

注意：曲线在 0...60 °C (32 °F...140 °F) 的温度范围内适用于 BMX DAO 1615，并且在 -25...70 °C (-13...158 °F) 的温度范围内适用于 BMX DAO 1615H。
熔断器

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **危险** | 电击、爆炸或电弧危险
连接或断开模块连接前，请先关闭传感器和执行器的电压。
如果不遵守这些说明，将会导致死亡或严重伤害。 | |
| **小心** | 丧失输出功能
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。 | |
| 内部 | 无 | |
| 外部 | 每个通道上的 4 A 速断熔断器。 | |
连接模块

概览
BMX DAO 1615 模块配备了一个可插拔的 40 针端子块，可用于连接 16 个三端双向可控硅隔离型输出通道。

输出电路图

下图显示了交流电三端双向可控硅隔离型输出的电路图：

![电路图](image1)
模块连接

NC：未连接。
1 4 A 速断熔断器。
2 感性负载。
3 阻性负载。
2a 和 3a 推荐的输出保护（参见下面的注释）。
注意：感性负载和阻性负载的推荐的输出保护由一个变阻器 (GMOV 24…240 Vac) 组成。变阻器的电子特性取决于在用设备所需要的电压。
对于感性负载，除变阻器外，建议还选配一个 RC 滤波器（缓冲器）。电阻器和电容器的值取决于所使用的设备。

每个电子的容量为一条 22…18 AWG (0,34…1 mm²) 的线。有关更多详细信息，请参阅 端子块接线能力 (参见第 62 页)。

输出使用原则

输出与不同相的配合使用取决于电源电压：
- 在 24…133 Vac 的范围内，可以使用相邻通道输出。
- 在 133…240 Vac 的范围内，需要将所使用的通道输出与未使用的通道输出隔离开（例如，Q1 和包含相 A 的 Q2，跳过 Q3，然后是包含相 B 的 Q4）。

小心

对模块输出造成损坏
- 确保为每个组供电的 AC 电源为通用的单相 AC 电源。
- 采用与模块输出并联的方式连接一个外部开关来控制电感式负载时，需要保护模块输出。将外部变阻器与开关并联。

不遵循上述说明可能导致人身伤害或设备损坏。
第27章
BMX DDM 16022 混合静态输入/输出模块

本节主题

本节介绍 BMX DDM 16022 模块及其特性，并说明如何将它连接到传感器和执行器。

本章包含了哪些内容?

本章包含了以下主题:

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>246</td>
</tr>
<tr>
<td>特性</td>
<td>247</td>
</tr>
<tr>
<td>连接模块</td>
<td>251</td>
</tr>
</tbody>
</table>
简介

功能
BMX DDM 16022 模块是一个通过 20 针端子块连接的 24 VDC 离散量模块。它是一个正逻辑模块：它的 8 个输入通道从传感器（漏极）接收电流，它的 8 个输出通道为预执行器（源极）提供电流。
特性

一般输入特性

下表显示 BMX DDM 16022 和 BMX DDM 16022H 模块输入的一般特性：

<table>
<thead>
<tr>
<th>特性</th>
<th>BMX DDM 16022 模块</th>
<th>24 VDC 正逻辑输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入值</td>
<td>电压</td>
<td>24 VDC</td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>3.5 mA</td>
</tr>
<tr>
<td>阈值输入值</td>
<td>在 1</td>
<td>电压 ≥11 V</td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>> 3 mA (当 U ≥ 11 V 时)</td>
</tr>
<tr>
<td></td>
<td>在 0</td>
<td>电压 5 V</td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>≤ 1.5 mA</td>
</tr>
<tr>
<td></td>
<td>传感器电源 (包括波纹电压)</td>
<td>19...30 V (最高可达 34 V，每天不超过 1 小时)</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U</td>
<td>6.8 kΩ</td>
</tr>
<tr>
<td>响应时间</td>
<td>典型值</td>
<td>4 毫秒</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>7 毫秒</td>
</tr>
<tr>
<td>IEC 1131-2 遵从性</td>
<td>类型 3</td>
<td></td>
</tr>
<tr>
<td>极性反接</td>
<td>受保护</td>
<td></td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
<td></td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 每小时连续工作的 MTBF 小时数</td>
<td>427 772</td>
</tr>
<tr>
<td>电介质强度</td>
<td>初级线圈/次级线圈</td>
<td>实际为 1500 V, 50/60 Hz, 持续 1 分钟</td>
</tr>
<tr>
<td></td>
<td>在输入/输出组之间</td>
<td>500 VCC</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
<td></td>
</tr>
<tr>
<td>输入类型</td>
<td>电流漏极</td>
<td></td>
</tr>
<tr>
<td>输入的并联</td>
<td>否</td>
<td></td>
</tr>
<tr>
<td>传感器电压：监控阈值：正常</td>
<td></td>
<td>> 18 V</td>
</tr>
<tr>
<td>传感器电压：监控阈值：错误</td>
<td></td>
<td>< 14 V</td>
</tr>
<tr>
<td>传感器电压：监控 24 V（-15% ... +20%）时的响应时间</td>
<td>在出现时</td>
<td>8 ms < T < 30 ms</td>
</tr>
<tr>
<td>失效 3.3 V</td>
<td>典型值</td>
<td>79 mA</td>
</tr>
<tr>
<td></td>
<td>最大值</td>
<td>111 mA</td>
</tr>
</tbody>
</table>
注意：在 -25...60°C (-13...140°F) 的温度范围内，这些特性也适用于 BMX DDM 16022H。在 +70°C (158°F) 的环境下，输入传感器电源的最大电压值不得超过 26.4 V。

<table>
<thead>
<tr>
<th>24 V 预执行器消耗 (不包括负载电流)</th>
<th>典型值</th>
<th>59 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大值</td>
<td>67 mA</td>
<td></td>
</tr>
<tr>
<td>功耗</td>
<td>3.7 W（最大值）</td>
<td></td>
</tr>
<tr>
<td>应用温度降额曲线 (参见第 33 页)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

警告

输入功能缺失
传感器电源电压大于 29.0 V 或小于 21.1 V 时，请勿在 70°C (158°F) 的环境下操作 BMX DDM 16022H。模块过热会导致丧失输入功能。
不遵循上述说明可能导致人员伤亡或设备损坏。

输入熔断器

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>输入组配备一个 0.5 A 的速断熔断器</td>
</tr>
</tbody>
</table>

小心

输入功能缺失
安装具有正确额定值和类型的保险丝。
不遵循上述说明可能导致人员伤亡或设备损坏。
一般输出特征

下表显示 BMX DDM 16022 和 BMX DDM 16022H 模块输出的一般特性。

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>电压</td>
<td>24 VDC</td>
</tr>
<tr>
<td>电流</td>
<td>0.5 A</td>
</tr>
<tr>
<td>阈值电压 (包括脉动)</td>
<td>19...30 V (每周可能有 1 小时达到 34 V)</td>
</tr>
<tr>
<td>电流/通道</td>
<td>0.625 A</td>
</tr>
<tr>
<td>电流/模块</td>
<td>5 A</td>
</tr>
<tr>
<td>钨丝灯的功率</td>
<td>最大值 6 W</td>
</tr>
<tr>
<td>泄漏电流</td>
<td>在 0 < 0.5 mA</td>
</tr>
<tr>
<td>压降</td>
<td>在 1 < 1.2 V</td>
</tr>
<tr>
<td>负载阻抗</td>
<td>最小值 48 Ω</td>
</tr>
<tr>
<td>响应时间 (1)</td>
<td>1.2 毫秒</td>
</tr>
<tr>
<td>内部损坏之前的最大过载时间</td>
<td>15 毫秒</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 条件下连续工作的 MTBF 小时数 427772</td>
</tr>
<tr>
<td>切换至感性负载的频率</td>
<td>0.5 / LI2 Hz</td>
</tr>
<tr>
<td>输出端的并联</td>
<td>是 (最大值为 2)</td>
</tr>
<tr>
<td>与 IEC 1131-2 DC 直接输入端的兼容性</td>
<td>是 (与 3 类而非 IEC 输入端兼容)</td>
</tr>
<tr>
<td>内置保护</td>
<td>防止过电压是，利用 Transil 二极管</td>
</tr>
<tr>
<td></td>
<td>防止反转是，利用反向二极管 (2)</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载是，通过限流器和断路器 1.5 In < Id < 2 In</td>
</tr>
<tr>
<td>预执行器电压：监控阈值</td>
<td>正常 > 18 V</td>
</tr>
<tr>
<td></td>
<td>错误 < 14 V</td>
</tr>
<tr>
<td>预执行器电压：24 V (-15% ... +20%) 时的监控响应时间</td>
<td>在出现时 8 ms < T < 30 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时 1 ms < T < 3 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值 79 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 111 mA</td>
</tr>
<tr>
<td>24 V 预执行器消耗 (不包括负载电流)</td>
<td>典型值 59 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 67 mA</td>
</tr>
</tbody>
</table>
(1) 所有输出均配有快速的电磁去磁电路。电磁铁放电时间 < L/R。
(2) 为 +24 V 预执行器电源装上一个 2 A 熔断器

注意：在 -25...60°C (-13...140°F) 的温度范围内，此表中的特性也适用于 BMX DDM 16022H。
在 70°C (140°F) 的环境下:
- 预执行器电源的最大电压不得超过 26.4 V。
- 最大输出电流不得超过 0.55 A。

功耗	3.7 W（最大值）
电介质强度	输出/接地或输出/内部逻辑 实际为 1500 V, 50/60 Hz, 持续 1 分钟
绝缘电阻	>10 MΩ (500 VDC 以下)
BMX DDM 16022 的温度等级	无

警告

丧失输出功能

预执行器电源电压大于 29.0 V 或小于 21.1 V 时，请勿在 70°C (158°F) 的环境下操作 BMX DDM 16022H。模块过热会导致丧失输出功能。
不遵循上述说明可能导致人员伤亡或设备损坏。

输出熔断器

| 内部 | 无 |
| 外部 | 输出组配备一个 6.3 A 的速断熔断器 |

小心

丧失输出功能

安装具有正确额定值和类型的保险丝。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概览
BMX DDM 16022 模块配备了一个可插拔的 20 针端子块，可用于连接 8 个输入通道和 8 个输出通道。

输入电路图
下图显示直流输入的电路图（正逻辑）。
输出电路图

下图显示直流输出的电路图（正逻辑）。

![电路图](image-url)
模块连接
模块与传感器和预执行器之间的连接显示如下。

电源：24 VDC
输入熔断器：0.5 A 的速断熔断器
输出熔断器：6.3 A 的速断熔断器
预执行器：预执行器
第28章
BMX DDM 16025 混合继电器输入/输出模块

本节主题
本节介绍 BMX DDM 16025 模块及其特性，并说明如何将它连接到传感器和预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>256</td>
</tr>
<tr>
<td>特性</td>
<td>257</td>
</tr>
<tr>
<td>连接模块</td>
<td>261</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDM 16025 模块是一个通过 20 针端子块连接的 24 VDC 离散量模块。它是一个正逻辑模块：它的 8 个输入通道从传感器(漏极)接收电流。8 个隔离的继电器既可以在直流电 (24 VDC) 下运行，也可以在交流电 (24...240 VAC) 下运行。

示意图
特性

一般输入特性

下表显示 BMX DDM 16025 和 BMX DDM 16025H 模块输入的一般特性：

<table>
<thead>
<tr>
<th>BMX DDM 16025 模块</th>
<th>8 路 24 VDC 正逻辑输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>规格输入值</td>
<td>电压 24 VDC</td>
</tr>
<tr>
<td></td>
<td>电流 3.5 mA</td>
</tr>
<tr>
<td>规格输入值</td>
<td>电压 ≥11 V</td>
</tr>
<tr>
<td></td>
<td>电流 ≥2 mA（当 U ≥11V 时）</td>
</tr>
<tr>
<td>规格输入值</td>
<td>电压 5 V</td>
</tr>
<tr>
<td></td>
<td>电流 <1.5 mA</td>
</tr>
<tr>
<td>传感器电源（含波纹电压）</td>
<td>19...30 V（最高可达 34 V，每天不超过1小时）</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 6.8 kΩ</td>
</tr>
<tr>
<td>响应时间</td>
<td>典型值 4 ms</td>
</tr>
<tr>
<td></td>
<td>最大值 7 ms</td>
</tr>
<tr>
<td>IEC 1131-2 遵从性</td>
<td>类型 3</td>
</tr>
<tr>
<td>极性反接</td>
<td>受保护</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C)（86°F）下 MTBF 835 303</td>
</tr>
<tr>
<td></td>
<td>连续操作几小时</td>
</tr>
<tr>
<td>电介质强度</td>
<td>初级线圈/次级线圈实际为1500 V，50/60 Hz，持续1分钟</td>
</tr>
<tr>
<td></td>
<td>在输入/输出组之间 500 VDC</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MO（500 VDC以下）</td>
</tr>
<tr>
<td>输入类型</td>
<td>电流漏极</td>
</tr>
<tr>
<td>输入的并联</td>
<td>否</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>正常 >18 V</td>
</tr>
<tr>
<td></td>
<td>错误 <14 V</td>
</tr>
<tr>
<td>传感器电压：24V（-15% ... +20%）时的监控响应时间</td>
<td>在出现时 8 ms < T < 30 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时 1 ms < T < 3 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值 35 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 50 mA</td>
</tr>
</tbody>
</table>
注意：对于 BMX DDM 16025H，在 70°C (158°F) 的环境下，预执行器的最大电源电压不得超过 26.4 V。

<table>
<thead>
<tr>
<th>输入熔断器</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>输入功能缺失</td>
<td></td>
<td></td>
</tr>
<tr>
<td>传感器电源电压大于 29.0 V 或小于 21.1 V 时，请勿在 70°C (158°F) 的环境下操作 BMX DDI 16025H。模块过热会导致丧失输入功能。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>不遵循上述说明可能导致人员伤亡或设备损坏。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

输入熔断器 | | |
| 内部 | 无 | |
| 外部 | 输入组配备一个 0.5 A 的速断熔断器 | |

警告

输入功能缺失

安装具有正确额定值和类型的保险丝。

不遵循上述说明可能导致人身伤害或设备损坏。
一般输出特征

下表显示 BMX DDM 16025 和 BMX DDM 16025H 模块输出的一般特性：

<table>
<thead>
<tr>
<th>BMX DDM 16025 模块</th>
<th>8 路 24 VDC/24-240 VAC 继电器输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称值</td>
<td>开关直流电压 24 VDC 电阻式负载</td>
</tr>
<tr>
<td></td>
<td>开关直流电流 2 A 电阻式负载</td>
</tr>
<tr>
<td></td>
<td>开关交流电压 220 VAC, Cos Φ = 1</td>
</tr>
<tr>
<td></td>
<td>开关交流电流 2 A, Cos Φ = 1</td>
</tr>
<tr>
<td>最小开关负载</td>
<td>电压/电流 5 VDC/1 mA</td>
</tr>
<tr>
<td>最大开关负载</td>
<td>电压 264 VAC/125 VDC</td>
</tr>
<tr>
<td>在线模块更改</td>
<td>可能性</td>
</tr>
<tr>
<td>响应时间</td>
<td>激活 ≤ 8 毫秒</td>
</tr>
<tr>
<td></td>
<td>禁用 ≤ 10 毫秒</td>
</tr>
<tr>
<td>机械寿命</td>
<td>开关次数 2 千或更多</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 下 MTBF 连续操作几小时</td>
</tr>
<tr>
<td></td>
<td>835 303</td>
</tr>
<tr>
<td>最大开关频率</td>
<td>每小时循环数 3 600</td>
</tr>
<tr>
<td>电气设备寿命</td>
<td>开关电压/电流</td>
</tr>
<tr>
<td></td>
<td>200 VAC / 1.5 A, 240 VAC / 1 A, Cos Φ = 0.7 (1)</td>
</tr>
<tr>
<td></td>
<td>200 VAC / 0.4 A, 240 VAC / 0.3 A, Cos Φ = 0.7 (2)</td>
</tr>
<tr>
<td></td>
<td>200 VAC / 1 A, 240 VAC / 0.5 A, Cos Φ = 0.35 (1)</td>
</tr>
<tr>
<td></td>
<td>200 VAC / 0.3 A, 240 VAC / 0.15 A, Cos Φ = 0.35 (2)</td>
</tr>
<tr>
<td></td>
<td>200 VAC / 1.5 A, 240 VAC / 1 A, Cos Φ = 0.7 (1)</td>
</tr>
<tr>
<td></td>
<td>200 VAC / 0.4 A, 240 VAC / 0.3 A, Cos Φ = 0.7 (2)</td>
</tr>
<tr>
<td>抗扰度</td>
<td>在噪声仿真情况下，实际值为 1500 V，宽度为 1 秒，频率为 25 到 60 Hz</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值 79 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 111 mA</td>
</tr>
<tr>
<td>24 V 预执行器消耗</td>
<td>典型值 36 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 58 mA</td>
</tr>
</tbody>
</table>
BMX DDM 16025

<table>
<thead>
<tr>
<th>功耗</th>
<th>3.1 W（最大值）</th>
</tr>
</thead>
<tbody>
<tr>
<td>电介质强度</td>
<td>最大电压</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>10 MΩ</td>
</tr>
<tr>
<td>BMX DDM 16025 的温度降级</td>
<td>无</td>
</tr>
</tbody>
</table>

(1) 1 x 10⁵ 个循环
(2) 3 x 10⁵ 个循环

注意： 对于 BMX DDM 16025H，在 70°C (158°F) 的环境下，预执行器的最大电源不得超过 24 VA。

警告

丧失输出功能
预执行器电源电压大于 28.8 V 或小于 19.2 V 时，请勿在 70°C (158°F) 的环境下操作 BMX DDI 16025H。模块过热会导致丧失输入功能。

不遵循上述说明可能导致人员伤亡或设备损坏。

输出熔断器

<table>
<thead>
<tr>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>外部</td>
<td>输出组配备一个 12 A 的速断熔断器</td>
</tr>
</tbody>
</table>

小心

输入功能缺失
安装具有正确额定值和类型的保险丝。

不遵循上述说明可能导致人身伤害或设备损坏。

危险

电击、爆炸或电弧危险
连接或断开模块之前关闭传感器和预执行器电压。
如果不遵守这些说明，将会导致死亡或严重伤害。
连接模块

概览

BMX DDM 16025 模块配备了一个可插拔的 20 针端子块，可用于连接 8 个输入通道和 8 个隔离的继电器输出通道。

输入电路图

下图显示直流输入的电路图（正逻辑）。

![电路图](image-url)
输出电路图

下图显示了继电器输出的电路。
模块连接
模块与传感器和预执行器之间的连接显示如下。

输入电源: 24 VDC
输出电源: 24 VDC 或 24...240 VAC
输入熔断器: 1 个 0.5 A 的速断熔断器
输出熔断器: 1 个 12 A 的速断熔断器
预执行器: 预执行器
第29章
BMX DDM 3202 K 混合静态输入/输出模块

本节主题
本节介绍 BMX DDM 3202 K 模块及其特性，并说明如何将它连接到传感器和预执行器。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>简介</td>
<td>266</td>
</tr>
<tr>
<td>特性</td>
<td>267</td>
</tr>
<tr>
<td>连接模块</td>
<td>270</td>
</tr>
</tbody>
</table>
简介

功能

BMX DDM 3202 K 模块是一个通过 40 针连接器连接的 24 VDC 离散量模块。它是一个正逻辑模块：它的 16 个输入通道从传感器（漏极）接收电流，它的 16 个输出通道为预执行器（源极）提供电流。
特性

一般输入特性

下表显示 BMX DDM 3202 K 模块输入的一般特性:

<table>
<thead>
<tr>
<th>特性</th>
<th>24 VDC 正逻辑输入</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称输入值</td>
<td>24 VDC</td>
</tr>
<tr>
<td>电流</td>
<td>2.5 mA</td>
</tr>
<tr>
<td>阈值输入值</td>
<td>在 1</td>
</tr>
<tr>
<td>电压 ≥11 V</td>
<td>电流 > 2 mA (当 U ≥ 11 V 时)</td>
</tr>
<tr>
<td>电压 5 V</td>
<td>电流 < 0.5 mA</td>
</tr>
<tr>
<td>传感器电源（含波纹电压）</td>
<td>19...30 V (最高可达 34 V，每天不超过 1 小时)</td>
</tr>
<tr>
<td>输入阻抗</td>
<td>在标称 U 9.6 kΩ</td>
</tr>
<tr>
<td>响应时间</td>
<td>典型值 4 毫秒</td>
</tr>
<tr>
<td></td>
<td>最大值 7 毫秒</td>
</tr>
<tr>
<td>符合 IEC 1131-2</td>
<td>类型 1</td>
</tr>
<tr>
<td>极性反接</td>
<td>受保护</td>
</tr>
<tr>
<td>2 线/3 线接近传感器兼容性</td>
<td>IEC 947-5-2</td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F) 条件下连续工作的 MTBF 小时数 650 614</td>
</tr>
<tr>
<td>电介质强度</td>
<td>初级线圈/次级线圈 1500 V (实际值)，50/60 Hz，持续 1 分钟</td>
</tr>
<tr>
<td></td>
<td>在输入/输出组之间 500 VDC</td>
</tr>
<tr>
<td>绝缘电阻</td>
<td>>10 MΩ (500 VDC 以下)</td>
</tr>
<tr>
<td>输入类型</td>
<td>电流漏极</td>
</tr>
<tr>
<td>输入的并联</td>
<td>否</td>
</tr>
<tr>
<td>传感器电压：监控阈值</td>
<td>正常 > 18 V</td>
</tr>
<tr>
<td></td>
<td>错误 < 14 V</td>
</tr>
<tr>
<td>传感器电压：监控 24 V(-15% ... +20%) 时的响应时间</td>
<td>在出现时 8 ms < T < 30 ms</td>
</tr>
<tr>
<td></td>
<td>在消失时 1 ms < T < 3 ms</td>
</tr>
<tr>
<td>功耗 3.3 V</td>
<td>典型值 125 mA</td>
</tr>
<tr>
<td></td>
<td>最大值 166 mA</td>
</tr>
<tr>
<td>24 V 预执行器消耗</td>
<td>典型值 69 mA</td>
</tr>
<tr>
<td>(不包括负载电流)</td>
<td>最大值 104 mA</td>
</tr>
<tr>
<td>功耗</td>
<td>4 W (最大值)</td>
</tr>
<tr>
<td>温度降额</td>
<td>应用温度降额曲线 (参见第 32 页)</td>
</tr>
</tbody>
</table>

BMX DDM 3202 K 模块。
输入熔断器

内部 无
外部 输入组配备一个 0.5 A 的速断熔断器

小心
输入功能缺失
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。

一般输出特征
下表显示 BMX DDM 3202 K 模块输出的一般特性。

<table>
<thead>
<tr>
<th>BMX DDM 3202 K 模块。</th>
<th>24 VDC 正逻辑静态输出</th>
</tr>
</thead>
<tbody>
<tr>
<td>标称值</td>
<td>电压</td>
</tr>
<tr>
<td></td>
<td>电流</td>
</tr>
<tr>
<td>阈值</td>
<td>电压（含波纹电压）</td>
</tr>
<tr>
<td></td>
<td>电流/通道</td>
</tr>
<tr>
<td></td>
<td>电流/模块</td>
</tr>
<tr>
<td>钨丝灯的功率</td>
<td>最大值</td>
</tr>
<tr>
<td>漏泄电流</td>
<td>在 0</td>
</tr>
<tr>
<td>压降</td>
<td>在 1</td>
</tr>
<tr>
<td>负载阻抗</td>
<td>最小值</td>
</tr>
<tr>
<td>响应时间 (1)</td>
<td></td>
</tr>
<tr>
<td>内部损坏之前的最大过载时间</td>
<td></td>
</tr>
<tr>
<td>可靠性</td>
<td>环境温度 (30°C) (86°F)条件下连续工作的MTBF小时数</td>
</tr>
<tr>
<td>切换至感性负载的频率</td>
<td></td>
</tr>
<tr>
<td>输出端的并联</td>
<td>是（最多可有 3 个输出端并联）</td>
</tr>
<tr>
<td>与 IEC 1131-2 DC 直接输入端的兼容性</td>
<td>是（与 3 类而非 IEC 输入端兼容）</td>
</tr>
<tr>
<td>内置保护</td>
<td>防止过电压</td>
</tr>
<tr>
<td></td>
<td>防止反转</td>
</tr>
<tr>
<td></td>
<td>防止短路和过载</td>
</tr>
</tbody>
</table>
所有输出端都装有电磁铁快速消磁电路。电磁铁放电时间 $< L/R$。

为 $+24$ V 预执行器电源装上一个 2 A 熔断器。

输出熔断器

<table>
<thead>
<tr>
<th></th>
<th>内部</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>外部</td>
<td>输出组配备一个 2 A 的速断熔断器</td>
</tr>
</tbody>
</table>

小心

输入功能缺失
安装具有正确额定值和类型的熔断器。
不遵循上述说明可能导致人身伤害或设备损坏。
连接模块

概述

BMX DDM 3202 K 模块配备了一个 40 针连接器，可用于连接 16 个输入通道和 16 个输出通道。

输入电路图

下图显示直流输入的电路图（正逻辑）。
输出电路图

下图显示直流输出的电路图（正逻辑）。

![电路图](image-url)
模块连接

模块与传感器和预执行器之间的连接显示如下。

电源：24 VDC
输入熔断器：0.5 A 的速断熔断器
输出熔断器：2 A 的速断熔断器
预执行器：预执行器
SPS：传感器电源
PPS：预执行器电源
第30章
用于离散量 I/O 模块的 TELEFAST 2 连接接口链路

本章目标
本章描述了用于离散量输入/输出模块的 TELEFAST 2 接口链路。

本章包含了哪些内容？
本章包含了以下部分：

| 节 | 主题 | 页
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30.1</td>
<td>离散量 I/O 的 TELEFAST 2 连接接口简介</td>
<td>274</td>
</tr>
<tr>
<td>30.2</td>
<td>离散量 I/O 的 TELEFAST 2 接口的连接原理</td>
<td>284</td>
</tr>
<tr>
<td>30.3</td>
<td>TELEFAST 2 ABE-7H08R10/08R11 和 ABE-7H16R10/16R11 连接本体</td>
<td>290</td>
</tr>
<tr>
<td>30.4</td>
<td>TELEFAST 2 ABE-7H12R10/12R11 连接本体</td>
<td>292</td>
</tr>
<tr>
<td>30.5</td>
<td>TELEFAST 2 ABE-7H08R21 和 ABE-7H16R20/16R21/16R23 连接本体</td>
<td>294</td>
</tr>
<tr>
<td>30.6</td>
<td>TELEFAST 2 ABE-7H12R20/12R21 连接本体</td>
<td>296</td>
</tr>
<tr>
<td>30.7</td>
<td>TELEFAST 2 ABE-7H08S21/16S21 连接本体</td>
<td>298</td>
</tr>
<tr>
<td>30.8</td>
<td>TELEFAST 2 ABE-7H12S21 连接本体</td>
<td>300</td>
</tr>
<tr>
<td>30.9</td>
<td>TELEFAST 2 ABE-7H16R30/16R31 连接本体</td>
<td>302</td>
</tr>
<tr>
<td>30.10</td>
<td>TELEFAST 2 ABE-7H12R50 连接本体</td>
<td>304</td>
</tr>
<tr>
<td>30.11</td>
<td>TELEFAST 2 ABE-7H16R50 连接本体</td>
<td>306</td>
</tr>
<tr>
<td>30.12</td>
<td>TELEFAST 2 ABE-7H16F43 连接本体</td>
<td>308</td>
</tr>
<tr>
<td>30.13</td>
<td>TELEFAST 2 ABE-7H16S43 连接本体</td>
<td>310</td>
</tr>
<tr>
<td>30.14</td>
<td>TELEFAST 2 连接基板附件</td>
<td>312</td>
</tr>
</tbody>
</table>
第30.1节
离散量 I/O 的 TELEFAST 2 连接接口简介

本节目标
本节描述各种 TELEFAST 2 产品，这些产品可以将离散量输入和输出模块迅速连接到操作部件。

本节包含哪些内容？
本节包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>离散量 I/O 模块的 TELEFAST 2 连接接口概述</td>
<td>275</td>
</tr>
<tr>
<td>TELEFAST 2 连接基板目录</td>
<td>276</td>
</tr>
<tr>
<td>离散量 I/O 模块和 TELEFAST 2 连接基板的组合</td>
<td>283</td>
</tr>
</tbody>
</table>
离散量 I/O 模块的 TELEFAST 2 连接接口概述

概览

TELEFAST 2 系统是一组产品，可以将离散量输入和输出模块快速连接到运行组件。它可以替代 20 针端子块，因而消除了单线连接。

TELEFAST 2 系统由连接接口基板和连接电缆构成，只能与配备有 40 针连接器的模块相连。

以下为多种基板类型：

- 8/12/16 通道离散量输入/输出的连接接口基板
- 与输入 (带 16 个隔离通道) 有关的适配和连接接口基板
- 与静态输出 (带 8 通道和 16 通道) 有关的适配和连接接口基板
- 与继电器输出 (带 8 通道和 16 通道) 有关的适配和连接接口基板
- 将 16 通道拆分为 2 个 8 通道的适配器基板
- 与输出有关的适配接口和连接基板 (带或不带可拆装机电继电器或静态继电器，16 通道)
- 12.5 毫米宽静态继电器的输入基板
用于离散量 I/O 的 TELEFAST 2

TELEFAST 2 连接基板目录

概览
下面显示用于离散输入/输出模块的 TELEFAST 2 基板的目录。

目录
下表显示 8/12/16 通道离散量 I/O 的连接接口基板的目录。

<table>
<thead>
<tr>
<th>参考号 ABE-7H**</th>
<th>08R10</th>
<th>08R11</th>
<th>08R21</th>
<th>12R50</th>
<th>16R50</th>
<th>12R10</th>
<th>12R20</th>
<th>12R21</th>
<th>16R10</th>
<th>16R11</th>
<th>16R20</th>
<th>16R21</th>
<th>16R23</th>
<th>16R30</th>
<th>16R31</th>
<th>12S21</th>
<th>16S21</th>
<th>16S43 (1)</th>
<th>16F43 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板类型</td>
<td>用于 8/12/16 通道离散量 I/O 的连接接口基板。</td>
<td></td>
</tr>
<tr>
<td>子组</td>
<td>8 通道基板</td>
<td>一体型 12 通道和 16 通道基板</td>
<td></td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
<td>TELEFAST 2 基板</td>
<td></td>
</tr>
<tr>
<td>描述</td>
<td>-</td>
<td>带 1 个隔离器/通道</td>
<td>-</td>
<td>-</td>
<td>带 1 个隔离器/通道</td>
<td>带 1 个熔断器和 1 个隔离器/通道</td>
<td></td>
</tr>
</tbody>
</table>

(1) 用于输入
(2) 用于输出
用于离散量 I/O 的 TELEFAST 2

示意图

8/12/16 通道离散量 I/O 的连接接口基板的标识原则如下。

描述

下表描述用于标识用于 8/12/16 通道离散量 I/O 的连接接口基板的各个组成部分。

<table>
<thead>
<tr>
<th>编号</th>
<th>描述</th>
</tr>
</thead>
</table>
| (1) | 08 = 8 通道基板
 | 12 = 12 通道基板
 | 16 = 16 通道基板 |
| (2) | 主要功能：
 | • R = 简单连接
 | • S = 隔离器/通道
 | • F = 断路器/通道 |
| (3) | 1 = 1 层，每通道 1 个螺钉端子
 | 2 = 2 层，每通道 2 个螺钉端子
 | 3 = 3 层，每通道 3 个螺钉端子
 | 4 = 1 层，每通道 2 个螺钉端子
 | 5 = 2 层，每通道 1 个螺钉端子 |
| (4) | 偶数 = 通道均无 LED 显示
 | 奇数 = 通道均有 LED 显示 |
目录

下表显示了与输入（带 16 个隔离通道）有关的适配和连接接口基板的目录。

<table>
<thead>
<tr>
<th>ABE-7S•• 系列</th>
<th>16E2B1</th>
<th>16E2E1</th>
<th>16E2E0</th>
<th>16E2F0</th>
<th>16E2M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板类型</td>
<td>与输入（带 16 个隔离通道）有关的适配和连接接口基板。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 描述 | 16 路 24 VDC 输入 | 16 路 48 VDC 输入 | 16 路 48 VAC 输入 | 16 路 110...120 VAC 输入 | 16 路 220...240 VAC 输入 |

下表显示了与静态输出（带 8 通道和 16 通道）有关的适配和连接接口基板的目录。

<table>
<thead>
<tr>
<th>ABE-7S•• 系列</th>
<th>08S2B0</th>
<th>08S2B1</th>
<th>16S2B0</th>
<th>16S2B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>子组</td>
<td>8 通道基板</td>
<td>16 通道基板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

描述	8 路静态 24 VDC/0.5A 输出，可向 PLC 传输错误检测结果。
描述	8 路静态 24 VDC/2A 输出，可向 PLC 传输错误检测结果。
描述	16 路静态 24 VDC/0.5A 输出，可向 PLC 传输错误检测结果。
描述	16 路静态 24 VDC/0.5A 输出，不能向 PLC 传输错误检测结果。
下表显示了与继电器输出（带8通道和16通道）有关的适配和连接接口基板的目录。

<table>
<thead>
<tr>
<th>ABE-7R** 系列</th>
<th>08S111</th>
<th>08S210</th>
<th>16S111</th>
<th>16S210</th>
<th>16S212</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板类型</td>
<td>与继电器输出（带8通道和16通道）有关的适配和连接接口基板。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>子组</td>
<td>8通道基板</td>
<td>16通道基板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
<td>TELEFAST 2 基板</td>
<td>TELEFAST 2 基板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>描述</td>
<td>8路继电器输出，1个熔断器，正极或极性可变。</td>
<td>8路继电器输出，1个熔断器，电压自由触点。</td>
<td>16路继电器输出，1个熔断器，电压自由触点。</td>
<td>16路继电器输出，1个熔断器，使用2个电极，每组8通道。</td>
<td></td>
</tr>
</tbody>
</table>

下表列出的目录项显示了将16通道拆分为2个8通道的适配器的连接基板。

<table>
<thead>
<tr>
<th>ABE-7A** 系列</th>
<th>CC02</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板类型</td>
<td>将16通道拆分为2个8通道的适配器基板。</td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
</tr>
</tbody>
</table>
| 描述 | 允许：
| | • 将16通道拆分为2个8通道
| | • 将12通道拆分为8通道和4通道 |

下表显示带或不带插拔机电继电器或静态继电器（16通道）的输出适配接口基板的目录。
用于离散量 I/O 的 TELEFAST 2

<table>
<thead>
<tr>
<th>ABE-7** 系列</th>
<th>R16T210</th>
<th>P16T210</th>
<th>P16T214</th>
<th>R16T212</th>
<th>P16T212</th>
<th>P16T215</th>
<th>P16T318</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板类型</td>
<td>带或不带可插拔机电继电器或静态继电器 (16 通道) 的输出适配接口基板的目录</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 子组 | 输出基板，1 个熔断器，电压自由触点。 输出基板，1 个熔断器，2 个电极，每组 8 通道。
| | 输出基板，1 个熔断器，2 个电极，每组 4 通道。 |
| 描述 | 带 10 毫米宽的机电继电器 未提供 10 毫米宽继电器，1 个熔断器/通道 带 10 毫米宽的机电继电器 未提供 10 毫米宽继电器，1 个熔断器/通道 未提供 12.5 毫米宽继电器，1 个熔断器和 1 个隔离器/通道 |

示意图 TELEFAST 2 基板

![TELEFAST 2 基板示意图](image)
下表显示带或不带可插拔机电继电器或静态继电器（16 通道）的输出适配接口基板的目录（续）。

<table>
<thead>
<tr>
<th>ABEB-7**系列</th>
<th>R16T230</th>
<th>R16T330</th>
<th>P16T330</th>
<th>P16T334</th>
<th>R16T231</th>
<th>R16T332</th>
<th>P16T332</th>
<th>R16T370</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板类型</td>
<td>带或不带可插拔机电继电器或静态继电器（16 通道）的输出适配接口基板的目录（续）。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>子组</td>
<td>输出基板，1 OF，电压自由触点。</td>
<td>输出基板，1 OF，8 通道组共享。</td>
<td>输出基板，1 OF，2 个电极，每组 8 通道。</td>
<td>输出基板，2 OF，电压自由触点。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>描述</td>
<td>带 10 毫米宽的机电继电器</td>
<td>带 12.5 毫米宽的机电继电器</td>
<td>未提供 12.5 毫米宽的机电继电器</td>
<td>1 个熔断器/通道</td>
<td>带 10 毫米宽的机电继电器</td>
<td>带 12.5 毫米宽的机电继电器</td>
<td>未提供 12.5 毫米宽的机电继电器</td>
<td>带 12.5 毫米宽的机电继电器</td>
</tr>
</tbody>
</table>
下表显示 12.5 毫米宽静态继电器的输入基板目录。

<table>
<thead>
<tr>
<th>ABE-7P** 系列</th>
<th>16F310</th>
<th>16F312</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板类型</td>
<td>12.5 毫米宽静态继电器的输入基板</td>
<td></td>
</tr>
<tr>
<td>示意图</td>
<td>TELEFAST 2 基板</td>
<td></td>
</tr>
<tr>
<td>描述</td>
<td>电压自由</td>
<td>2 个电极，每组 8 通道</td>
</tr>
</tbody>
</table>
用于离散量 I/O 的 TELEFAST 2

离散量 I/O 模块和 TELEFAST 2 连接基板的组合

兼容性表

下表概括了离散量 I/O 模块和 TELEFAST 2 连接基板之间的兼容性。

<table>
<thead>
<tr>
<th>连接基板</th>
<th>BMX DDI 3202 K</th>
<th>BMX DDI 6402 K</th>
<th>BMX DDO 3202 K</th>
<th>BMX DDO 6402 K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 个连接器</td>
<td>2 个连接器</td>
<td>1 个连接器</td>
<td>2 个连接器</td>
</tr>
</tbody>
</table>

连接基板

<table>
<thead>
<tr>
<th>连接基板</th>
<th>8 个通道</th>
<th>12 个通道</th>
<th>16 个通道</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM-7H08**</td>
<td>X (1)</td>
<td>X (1)</td>
<td>X (1)</td>
</tr>
<tr>
<td>ABM-7H08S21</td>
<td>X (1)</td>
<td>X (1)</td>
<td>X (1)</td>
</tr>
<tr>
<td>ABM-7H12R**</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ABM-7H12S21</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ABM-7H16R**</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABM-7H16S21</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABM-7H16R23</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>ABM-7H16F43</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>ABM-7H16S43</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

输入适配器连接基板

<table>
<thead>
<tr>
<th>连接基板</th>
<th>16 个通道</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM-7S16E2**</td>
<td>X</td>
</tr>
<tr>
<td>ABM-7P16F3**</td>
<td>X</td>
</tr>
</tbody>
</table>

输出适配器连接基板

<table>
<thead>
<tr>
<th>连接基板</th>
<th>8 个通道</th>
<th>16 个通道</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM-7R08S2**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ABM-7R08S2**</td>
<td>-</td>
<td>X (1)</td>
</tr>
<tr>
<td>ABM-7R16S**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ABM-7R16T**</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>ABM-7P16T**</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

(1) 适用于 16 到 2 x 8 通道适配器 ABE-7ACC02

- 兼容
- 不兼容
第30.2节
离散量 I/O 的 TELEFAST 2 接口的连接原理

本节目标
本节描述离散量输入/输出模块的 TELEFAST 2 产品的连接原理。

本节包含了哪些内容？
本节包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>将离散量输入/输出模块连接到 TELEFAST 2 本体接口</td>
<td>285</td>
</tr>
<tr>
<td>TELEFAST 2 连接基板的尺寸和安装</td>
<td>287</td>
</tr>
</tbody>
</table>
用于离散量 I/O 的 TELEFAST 2

将离散量输入/输出模块连接到 TELEFAST 2 本体接口

概览
带有 40 针连接器的离散量输入/输出模块可通过连接电缆连接到 TELEFAST 2 连接本体。

示意图
下图显示将带有 40 针连接器的离散量输入/输出模块连接到 TELEFAST 2 连接本体的方法。
示意图

下图显示的示例专用于说明通过 ABE-7ACC02 适配器本体连接 2 x 8 通道组中的 16 个通道。
TELEFAST 2 连接基板的尺寸和安装

概览

本节概述不同 TELEFAST 2 连接产品的尺寸及其安装方法。

示意图

下图显示了以下产品的尺寸（单位为毫米）：ABE-7H••R1•、ABE-7H••R5•、ABE-7H••R2•、ABE-7H••S21、ABE-7H16R3•、ABE-7S08S2B0、ABE-7R••S1••、ABE-7R08S210。

下图显示了以下产品的尺寸（单位为毫米）：ABE-7H16S43、ABE-7S16E2••、ABE-7S08S2B1、ABE-7S16S2B•、ABE-7H16F43•、ABE-7R16S21。

(1) 带附加分流端子块 ABE-7BV20 或 ABE-7BV10 的尺寸。
下图显示了产品 ABE-7ACC02 的尺寸（单位为毫米）。

下图显示了以下产品的尺寸（单位为毫米）：ABE-7R16T2** 和 ABE-7P16T2**。

参考尺寸 211 x 88 毫米（所显示的产品具有可拆装继电器并且未安装螺钉）。

(1) 带附加分流端子块 ABE-7BV20 或 ABE-7BV10 的尺寸。
下图显示了以下产品的尺寸（单位为毫米）：ABE-7R16T3** 和 ABE-7P16T3**。

![尺寸图](image)

参考尺寸 272 x 88 毫米（所显示的产品具有可拆装继电器，并且未安装螺钉）。

(1) 带附加分流端子块 ABE-7BV20 或 ABE-7BV10 的尺寸。

安装

TELEFAST 2 基板安装在 35 毫米宽的 DIN 安装滑轨上。

⚠️ 警告

意外的设备操作

以纵向和水平方向安装输入适配基板 ABE-7S16E2E1 和静态输出适配基板 ABE-7S••S2B•，以防止设备过热和出现意外操作。

不遵循上述说明可能导致人员伤亡或设备损坏。
第30.3节
TELEFAST 2 ABE-7H08R10/08R11 和 ABE-7H16R10/16R11 连接本体

ABE-7H08R10/R11 和 ABE-7H16R10/R11 基板上的传感器和预执行器连接

概览

本节概述 TELEFAST 2 基板上的传感器和预执行器连接。

注意：基板制造时配备有额定值为 6.3 A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。

基板应配备以下熔断器类型和额定值：
- 输入功能：0.5 A 快速熔断器
- 输出功能：
 - 对于 ABE-7H16R•• 基板，2 A 快速熔断器
 - 对于 ABE-7H08R•• 基板，6.3 A 快速熔断器

示意图

连接端子块的描述。
示意图

输入和输出功能的连接。

连接传感器公共端：
- 连接到端子 1 或 2 上：传感器连接到电源的“+”极（正逻辑输入）

连接预执行器的公共端：
- 连接到端子 3 或 4 上：预执行器连接到电源的“-”极（正逻辑输出）
第30.4节
TELEFAST 2 ABE-7H12R10/12R11 连接本体

ABE-7H12R10/R11 基板上的传感器和执行器连接

概览
本节概述 TELEFAST 2 基板上的传感器和预执行器连接。

注意：基板制造时配備有額定值为 6.3 A 的通用快速熔断器。但为了确保提供最佳的保护，应根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。

基板应配备以下熔断器类型和額定值：
- 输入功能：0.5 A 快速熔断器
- 输出功能：对于 ABE-7H12R** 基板，6.3 A 快速熔断器

示意图
连接端子块的描述。
用于离散量 I/O 的 TELEFAST 2

示意图

输入和输出功能的连接。

连接传感器公共端：
- 连接到端子 1 或 2 上：传感器连接到电源的“+”极（正逻辑输入）

连接预执行器的公共端：
- 多个端子（3、4、200、201、202 和 203）连接到“-”极，允许 4 通道或 2 通道为一组共享（正逻辑输出）
第30.5节
TELEFAST 2 ABE-7H08R21 和 ABE-7H16R20/16R21/16R23 连接本体

ABE-7H08R21 和 ABE-7H16R20/R21/R23 基板上的传感器和预执行器连接（针对 2 型输入）

概述
本节概述 TELEFAST 2 基板上的传感器和预执行器连接。

注意：基板制造时配备有额定值为 2 A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。

基板应配备以下熔断器类型和额定值：
- 输入功能：0.5 A 快速熔断器
- 输出功能：
 - 对于 ABE-7H16R•• 基板，2 A 快速熔断器
 - 对于 ABE-7H08R•• 基板，6.3 A 快速熔断器

示意图
连接端子块的描述。
示意图

输入和输出功能的连接。

连接传感器公共端：
- 为建立共享的传感器电源，在端子 1 和 2 上定位跳线 (1)：端子 200 至 215 将位于电源的“+”极（正逻辑输入）上。

连接预执行器的公共端：
- 为建立共享的预执行器电源，在端子 3 和 4 上定位跳线 (2)：端子 200 至 215 将位于电源的“-”极（正逻辑输出）上。
第30.6节
TELEFAST 2 ABE-7H12R20/12R21 连接本体

ABE-7H12R20/12R21 基板上的传感器和预执行器连接

概览
本节概述 TELEFAST 2 基板上的传感器和预执行器连接。

注意：基板制造时配备有额定值为 6.3 A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。
基板应配备以下熔断器类型和额定值：
- 输入功能：0.5 A 快速熔断器
- 输出功能：对于 ABE-7H12R•• 基板，6.3 A 快速熔断器

示意图
连接端子块的描述。
示意图
输入和输出功能的连接。

连接传感器公共端：
● 为建立共享的传感器电源，在端子 1 和 2 上定位跳线 (1)：端子 200 至 215 将位于电源的“+”极（正逻辑输入）上。
端子 216、217、218 和 219 连接到“-”极。

连接预执行器的公共端：
● 为建立共享的预执行器电源，在端子 3 和 4 上定位跳线 (2)：端子 200 至 215 将位于电源的“-”极（正逻辑输出）上。
端子 216、217、218 和 219 连接到“-”极。
第30.7节
TELEFAST 2 ABE-7H08S21/16S21 连接本体

ABE-7H08S21/16S21 基板上的传感器和预执行器连接（每个通道一个隔离器）

概览
本节概述 TELEFAST 2 基板上的传感器和预执行器连接。

注意：基板制造时配备有额定值为 2A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。基板应配备以下熔断器类型和额定值：
- 输入功能：0.5 A 快速熔断器
- 输出功能：
 - 对于 ABE-7H16S21 基板，2 A 快速熔断器
 - 对于 ABE-7H08S21 基板，6.3 A 快速熔断器

示意图
连接端子块的描述。
用于离散量 I/O 的 TELEFAST 2

示意图

输入和输出功能的连接。

连接传感器公共端：
- 为建立共享的传感器电源，在端子 1 和 2 上定位跳线 (1)：端子 200 至 215 将位于电源的“+”极（正逻辑输入）上。

连接执行器公共端：
- 为建立共享的执行器电源，在端子 3 和 4 上定位跳线 (2)：端子 200 至 215 将位于电源的“-”极（正逻辑输出）上。
第30.8节
TELEFAST 2 ABE-7H12S21 连接本体

ABE-7H12S21 基板上的传感器和预执行器连接（每个通道一个隔离器）

概览
本节概述 TELEFAST 2 基板上的传感器和执行器连接。

注意：基板在制造时配备有额定值为 6.3 A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。

基板应配备以下熔断器类型和额定值：
- 输入功能：0.5 A 快速熔断器
- 输出功能：对于 ABE-7H12S21 基板，6.3 A 快速熔断器

示意图
连接端子块的描述。
用于离散量 I/O 的 TELEFAST 2

示意图

输入和输出功能的连接。

连接传感器公共端：
- 为建立共享的传感器电源，在端子 1 和 2 上定位跳线 (1)：端子 200 至 215 将位于电源的“+”极（正逻辑输入）上。
 端子 216、217、218 和 219 连接到“-”极。

连接预执行器的公共端：
- 为建立共享的预执行器电源，在端子 3 和 4 上定位跳线 (2)：端子 200 至 215 将位于电源的“-”极（正逻辑输出）上。
 端子 216、217、218 和 219 连接到“-”极。
第30.9节
TELEFAST 2 ABE-7H16R30/16R31 连接本体

ABE-7H16R30/R31 基板上的传感器和预执行器连接

概览
本节概述 TELEFAST 2 基板上的传感器连接。

注意：基板制造时配备有额定值为 6.3A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用以及基板的最大允许电流来选择此熔断器的额定值。

基板应配备以下熔断器类型和额定值：
- 输入功能：0.5 A 快速熔断器

示意图
连接端子块的描述。
用于离散量 I/O 的 TELEFAST 2

示意图

输入功能连接。

连接传感器公共端：

- 为建立共享的传感器电源：
 - 在端子 1 和 2 上定位跳线 (1)：端子块 200 至 215 将位于电源的"+"极
 - 端子 4 连接到第三级的一个 C 端子 (2)：端子块 300 至 315 将位于电源的"-"极

注意：ABE-7H16R30/R31 基板还可用于连接执行器。
第30.10节
TELEFAST 2 ABE-7H12R50 连接本体

ABE-7H12R50 基板上的传感器和预执行器连接

概览
本节概述 TELEFAST 2 基板上的传感器和预执行器连接。

注意：基板在制造时配备有额定值为 6.3 A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。
基板应配备以下熔断器类型和额定值：
- 输入功能：0.5 A 快速熔断器
- 输出功能：对于 ABE-7H12R50 基板，6.3 A 快速熔断器

示意图
连接端子块的描述。
示意图

输入和输出功能的连接。

连接传感器公共端：
- 连接到端子 1 或 2 上：传感器连接到电源的“+”极（正逻辑输入）。
 端子 200、201、202 和 203 连接到“-”极

连接预执行器的公共端：
- 连接到“-”极的几个端子（3、4、200、202 和 203）可供 4 通道组或 2 通道组共用（正逻辑输出）
第30.11节
TELEFAST 2 ABE-7H16R50 连接本体

ABE-7H16R50 基板上的传感器和执行器连接

概览
本节概述 TELEFAST 2 基板上的传感器和执行器连接。

注意：基板在制造时配备有额定值为 6.3 A 的通用快速熔断器。但为了确保提供最佳的保护，应当根据具体应用（连接到输入或输出功能）以及基板的最大允许电流来选择此熔断器的额定值。
基板应配备以下熔断器类型和额定值：
● 输入功能：0.5A 快速熔断器
● 输出功能：对于 ABE-7H16R50 基板，2A 快速熔断器

示意图
连接端子块的描述。
示意图

输入和输出功能的连接。

连接传感器公共端:
- 连接到端子 1 或 2 上：传感器连接到电源的“+”极 (正逻辑输入)
连接执行器公共端:
- 连接到端子 3 或 4 上：执行器连接到电源的“-”极 (正逻辑输出)
第30.12节
TELEFAST 2 ABE-7H16F43 连接本体

ABE-7H16F43输出基板上的执行器连接（每个通道一个熔断器和一个隔离器）

概览
本节概述TELEFAST 2基板上的执行器连接。

示意图
连接端子块的描述。
示意图

输出连接功能。

每个通道的功能：
- 最初配备有 0.125 A 熔断器
- 隔离器同时切断“+”极和通道信号

注意：端子 200..215 连接到电源的“-”极。
第30.13节
TELEFAST 2 ABE-7H16S43 连接本体

ABE-7H16S43 输出基板上的传感器连接（每个通道一个熔断器和一个隔离器）

概览

本节概述 TELEFAST 2 基板上的传感器连接。

示意图

连接端子块的描述。
示意图
输入功能连接。

每个通道的功能：
● 制造时配备了 0.125 A 熔断器
● 隔离器同时切断“+”极和通道信号

注意：端子 200...215 连接到电源的“+”极。
第30.14节
TELEFAST 2 连接基板附件

本节的目标
本节介绍 TELEFAST 2 连接基板的各种附件。

本节包含了哪些内容？
本节包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELEFAST 2 连接基板附件目录</td>
<td>313</td>
</tr>
<tr>
<td>ABE-7R16Txxx、ABE-7P16Txxx 和 ABE-7P16Fxxx 基板上的继电器的关联表</td>
<td>316</td>
</tr>
<tr>
<td>可拆装 ABR-7xxx 机电输出继电器的特性</td>
<td>318</td>
</tr>
<tr>
<td>可拆装 ABS-7Exx 静态输入继电器的特性</td>
<td>319</td>
</tr>
<tr>
<td>可拆装 ABS-7Sxx 静态输出继电器的特性</td>
<td>320</td>
</tr>
</tbody>
</table>
TELEFAST 2 连接基板附件目录

概览

以下概述离散量 I/O 模块的 TELEFAST 2 连接基板附件目录。

目录

下表显示了 TELEFAST 2 连接基板附件目录。

<table>
<thead>
<tr>
<th>产品参考号</th>
<th>示意图</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE-7BV10</td>
<td></td>
<td>端子块配备有 10 个螺钉端子块</td>
</tr>
<tr>
<td>ABE-7BV20</td>
<td></td>
<td>端子块配备有 20 个螺钉端子块</td>
</tr>
</tbody>
</table>

适配器基板

<table>
<thead>
<tr>
<th>产品参考号</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE-7ACC02</td>
<td>支持以 2 个 8 通道组方式连接 16 个通道</td>
</tr>
</tbody>
</table>

安装套件

<table>
<thead>
<tr>
<th>产品参考号</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE-7ACC01</td>
<td>支持将基板安装在单块安装板上</td>
</tr>
</tbody>
</table>

密封电缆贯穿引线

<table>
<thead>
<tr>
<th>产品参考号</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE-7ACC84</td>
<td>允许贯穿机柜，而无需截断电缆</td>
</tr>
</tbody>
</table>

贯穿机柜

<table>
<thead>
<tr>
<th>产品参考号</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE-7ACC83</td>
<td>适用于 8/12 通道的 40 针连接器 -> M23 圆柱形连接器</td>
</tr>
<tr>
<td>ABE-7ACC82</td>
<td>适用于 16 通道的 40 针连接器 -> M23 圆柱形连接器</td>
</tr>
<tr>
<td>产品参考号</td>
<td>示例图</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>ABE-7ACC80</td>
<td></td>
</tr>
<tr>
<td>ABE-7ACC81</td>
<td></td>
</tr>
<tr>
<td>ABE-7ACC20</td>
<td></td>
</tr>
<tr>
<td>ABE-7ACC21</td>
<td></td>
</tr>
<tr>
<td>ABE-7LOGV10</td>
<td>-</td>
</tr>
<tr>
<td>ABE-7FU012</td>
<td>0.125 A</td>
</tr>
<tr>
<td>ABE-7FU050</td>
<td>0.5 A</td>
</tr>
<tr>
<td>ABE-7FU100</td>
<td>1 A</td>
</tr>
<tr>
<td>ABE-7FU200</td>
<td>2 A</td>
</tr>
<tr>
<td>ABE-7FU630</td>
<td>6.3 A</td>
</tr>
<tr>
<td>AR1-SB3</td>
<td></td>
</tr>
<tr>
<td>ABE-7FU012</td>
<td>0.125 A</td>
</tr>
</tbody>
</table>
有关电气特性，请参见可拆装 ABR-7xxx 机电输出继电器的特性, 第 318 页。
有关电气特性，请参见可拆装 ABS-7Sxx 静态输出继电器的特性, 第 320 页。
有关电气特性，请参见可拆装 ABS-7Exx 静态输入继电器的特性, 第 319 页。
有关基板继电器的关联表，请参见 ABE-7R16Txxx、ABE-7P16Txxx 和 ABE-7P16Fxxx 基板上的继电器的关联表, 第 316 页。

<table>
<thead>
<tr>
<th>产品参考号</th>
<th>示例图</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>用于 ABE-7R16T***、ABE-7P16T*** 和 ABE-7P16F*** 基板的继电器</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABR-7S***（1）</td>
<td>ABE-7S3** 和 ABE-7S2**</td>
<td>输出机电继电器 (4)</td>
</tr>
<tr>
<td>ABS-7S***（2）</td>
<td></td>
<td>输出静态继电器 (4)</td>
</tr>
<tr>
<td>ABS-7E***（3）</td>
<td></td>
<td>输入静态继电器 (4)</td>
</tr>
</tbody>
</table>

(1) 有关电气特性，请参见 可拆装 ABR-7xxx 机电输出继电器的特性, 第 318 页。
(2) 有关电气特性，请参见 可拆装 ABS-7Sxx 静态输出继电器的特性, 第 320 页。
(3) 有关电气特性，请参见 可拆装 ABS-7Exx 静态输入继电器的特性, 第 319 页。
(4) 有关基板继电器的关联表，请参见 ABE-7R16Txxx、ABE-7P16Txxx 和 ABE-7P16Fxxx 基板上的继电器的关联表, 第 316 页。
用于离散量 I/O 的 TELEFAST 2

ABE-7R16Txxx、ABE-7P16Txxx 和 ABE-7P16Fxxx 基板上的继电器的关联表

概览
下表对 TELEFAST 2 ABE-7R16T***, ABE-7P16T*** 和 ABE-7P16F*** 链路基板进行了比较，并列出了其上的电磁继电器或静态继电器。

兼容性表
下表显示了 TELEFAST 2 基板上的电磁继电器或静态继电器的关联可能性。

<table>
<thead>
<tr>
<th>基板 ABE-7**</th>
<th>配备有电磁继电器</th>
<th>未配备继电器</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R16T21+</td>
<td>R16T23+</td>
</tr>
<tr>
<td>来自 ABR-7*** 输出的电磁继电器</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 毫米</td>
<td>S21 1F</td>
<td>X</td>
</tr>
<tr>
<td>12.5 毫米</td>
<td>S23 1OF</td>
<td>X (1)</td>
</tr>
<tr>
<td>来自 ABS-S** 输出的静态继电器</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 毫米</td>
<td>C2E</td>
<td>X (1)</td>
</tr>
<tr>
<td></td>
<td>A2M</td>
<td>X (1)</td>
</tr>
<tr>
<td>12.5 毫米</td>
<td>C3BA</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C3E</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A3M</td>
<td>-</td>
</tr>
<tr>
<td>来自 ABS-7E** 输入的静态继电器</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 毫米</td>
<td>C3AL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C3B2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C3E2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A3E5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A3F5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A3F6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A3M5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A3M6</td>
<td>-</td>
</tr>
</tbody>
</table>
对于离散量 I/O 的 TELEFAST 2

<table>
<thead>
<tr>
<th>基板 ABE-7**</th>
<th>配备有电磁继电器</th>
<th>未配备继电器</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R16T21••</td>
<td>R16T23••</td>
</tr>
<tr>
<td>ABE-7*** 连续性块</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 毫米 ACC20</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>12.5 毫米 ACC21</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) 继电器可以是内置的
(2) ABE-7P16T334 除外

X 兼容
- 不兼容
可拆装 ABR-7xxx 机电输出继电器的特性

概览

本节描述 TELEFAST 2 基板的可拆装 ABR-7xxx 机电输出继电器的一般特性。

一般特性

下表显示了 ABR-7xxx 继电器的一般特性。

<table>
<thead>
<tr>
<th>参数</th>
<th>S21</th>
<th>S23</th>
<th>S33</th>
<th>S37</th>
</tr>
</thead>
<tbody>
<tr>
<td>继电器宽度</td>
<td>10 毫米</td>
<td>12.5 毫米</td>
<td></td>
<td></td>
</tr>
<tr>
<td>触点的组成</td>
<td>1 F</td>
<td>1 OF</td>
<td>2 OF</td>
<td></td>
</tr>
<tr>
<td>最大工作电压（根据 IEC 947-5-1）</td>
<td>交流</td>
<td>250 V</td>
<td>264 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直流</td>
<td>125 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>热电流</td>
<td>4 A</td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>所用电流的频率</td>
<td>50/60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交流电负载</td>
<td>电阻式负载 AC12</td>
<td>电压</td>
<td>230 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>电流</td>
<td>1.5 A</td>
<td>1.2 A</td>
</tr>
<tr>
<td></td>
<td>电感式负载 AC15</td>
<td>电压</td>
<td>230 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>电流</td>
<td>0.9 A</td>
<td>0.7 A</td>
</tr>
<tr>
<td>直流电负载</td>
<td>电阻式负载 DC12</td>
<td>电压</td>
<td>24 VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>电流</td>
<td>1.5 A</td>
<td>1.2 A</td>
</tr>
<tr>
<td></td>
<td>电感式负载 DC13, L/R = 10 毫秒</td>
<td>电压</td>
<td>24 VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>电流</td>
<td>0.6 A</td>
<td>0.45 A</td>
</tr>
<tr>
<td>最小开关电流</td>
<td>电压</td>
<td>10 mA</td>
<td>100 mA</td>
<td></td>
</tr>
<tr>
<td>最小开关电压</td>
<td>电压</td>
<td>5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>状态 0 到 1</td>
<td>10 毫秒</td>
<td>13 毫秒</td>
<td>15 毫秒</td>
</tr>
<tr>
<td></td>
<td>状态 1 到 0</td>
<td>5 毫秒</td>
<td>13 毫秒</td>
<td>20 毫秒</td>
</tr>
<tr>
<td>最大功能加载速度</td>
<td>0.5 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>隔离器电压分配</td>
<td>线圈/触点</td>
<td>300 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗冲击性电压分配 (1.2/50)</td>
<td>线圈/触点</td>
<td>2.5 kV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) 可进行 0.5×10^6 次动作
可拆装 ABS-7Exx 静态输入继电器的特性

概览

本节描述 TELEFAST 2 基板的可拆装 ABS-7Exx 静态输入继电器的一般特性。

一般特性

下表显示了 ABS-7Exx 继电器的一般特性。

<table>
<thead>
<tr>
<th>ABS-7Exx 参考</th>
<th>C3AL</th>
<th>C3B2</th>
<th>C3E2</th>
<th>A3E5</th>
<th>A3F5</th>
<th>A3M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>继电器宽度</td>
<td>12.5 毫米</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>命令特性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分配的工作电压 (Us)</td>
<td>直流</td>
<td>5 V</td>
<td>24 V</td>
<td>48 V</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>交流</td>
<td>-</td>
<td>48 V</td>
<td>110..130 V</td>
<td>230..240 V</td>
<td></td>
</tr>
<tr>
<td>最大工作电压（含波纹电压）</td>
<td>6 V</td>
<td>30 V</td>
<td>60 V</td>
<td>53 V</td>
<td>143 V</td>
<td>264 V</td>
</tr>
<tr>
<td>最大电流 (Us)</td>
<td>13.6 mA</td>
<td>15 mA</td>
<td>12 mA</td>
<td>8.3 mA</td>
<td>8 mA</td>
<td></td>
</tr>
<tr>
<td>保证状态 1</td>
<td>电压</td>
<td>3.75 V</td>
<td>11 V</td>
<td>30 V</td>
<td>32 V</td>
<td>79 V</td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>4.5 mA</td>
<td>6 mA</td>
<td>5 mA</td>
<td>4.5 mA</td>
<td></td>
</tr>
<tr>
<td>保证状态 0</td>
<td>电压</td>
<td>2 V</td>
<td>5 V</td>
<td>10 V</td>
<td>30 V</td>
<td>40 V</td>
</tr>
<tr>
<td></td>
<td>电流</td>
<td>0.09 mA</td>
<td>2 mA</td>
<td>1.5 mA</td>
<td>2 mA</td>
<td></td>
</tr>
<tr>
<td>最大开关频率（循环报告 50%）</td>
<td>1000 Hz</td>
<td>25 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>遵从 IEC1131-2</td>
<td>-</td>
<td>类型 2</td>
<td>类型 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>状态 0 到 1</td>
<td>0.05 毫秒</td>
<td>20 毫秒</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>状态 1 到 0</td>
<td>0.4 毫秒</td>
<td>20 毫秒</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>隔离器电压分配</td>
<td>输入/输出</td>
<td>300 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗冲击电阻的电压分配 (1.2/50)</td>
<td>输入/输出</td>
<td>2.5 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
可拆装 ABS-7Sxx 静态输出继电器的特性

一般特性

<table>
<thead>
<tr>
<th>ABS-7Sxx 参考</th>
<th>C2E</th>
<th>A2M</th>
<th>C3BA</th>
<th>C3E</th>
<th>A3M</th>
</tr>
</thead>
<tbody>
<tr>
<td>继电器宽度</td>
<td>10 毫米</td>
<td>12.5 毫米</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电路特性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>工作电压分配</td>
<td>直流</td>
<td>5.48 V</td>
<td>-</td>
<td>24 V</td>
<td>5.48 V</td>
</tr>
<tr>
<td></td>
<td>交流</td>
<td>-</td>
<td>24-240 V</td>
<td>-</td>
<td>24-240 V</td>
</tr>
<tr>
<td>最大电压</td>
<td>57.6 VDC</td>
<td>264 VAC</td>
<td>30 VDC</td>
<td>60 VDC</td>
<td>264 VAC</td>
</tr>
<tr>
<td>交流电负载</td>
<td>电阻式负载 AC12</td>
<td>电流</td>
<td>-</td>
<td>0.5 A</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>电感式负载 DC12</td>
<td>电流</td>
<td>0.5 A</td>
<td>-</td>
<td>2 A</td>
</tr>
<tr>
<td></td>
<td>电感式负载 DC13</td>
<td>电流</td>
<td>-</td>
<td>-</td>
<td>0.3 A</td>
</tr>
<tr>
<td></td>
<td>钨丝灯负载 DC6</td>
<td>电流</td>
<td>-</td>
<td>-</td>
<td>10 W</td>
</tr>
<tr>
<td>状态 0 下的泄漏电流</td>
<td><= 0.5 mA</td>
<td><= 2 mA</td>
<td><= 0.3 mA</td>
<td><= 2 mA</td>
<td></td>
</tr>
<tr>
<td>状态 1 下的击穿电压</td>
<td><= 1 V</td>
<td><= 1.1 V</td>
<td><= 0.3 V</td>
<td><= 1.3 V</td>
<td></td>
</tr>
<tr>
<td>响应时间</td>
<td>状态 0 到 1</td>
<td>0.1 毫秒</td>
<td>10 毫秒</td>
<td>0.1 毫秒</td>
<td>10 毫秒</td>
</tr>
<tr>
<td></td>
<td>状态 1 到 0</td>
<td>0.6 毫秒</td>
<td>10 毫秒</td>
<td>0.02 毫秒</td>
<td>0.6 毫秒</td>
</tr>
<tr>
<td>电感式负载上的开关频率</td>
<td>-</td>
<td>-</td>
<td><= 0.5 LI^2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>隔离器电压分配</td>
<td>输入/输出</td>
<td>300 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>抗冲击电阻的电压分配 (12/50)</td>
<td>输入/输出</td>
<td>2.5 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第II部分
离散量输入/输出模块的软件实现

本部分主题
本部分介绍用于 Mx80 PLC 的应用专用离散量功能，并描述如何使用 Control Expert 软件来实施这些功能。

本部分包含哪些内容？
本部分包括以下各章：

<table>
<thead>
<tr>
<th>章</th>
<th>章节标题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>应用专用离散量功能概述</td>
<td>323</td>
</tr>
<tr>
<td>32</td>
<td>配置</td>
<td>325</td>
</tr>
<tr>
<td>33</td>
<td>应用专用离散量模块语言对象</td>
<td>341</td>
</tr>
<tr>
<td>34</td>
<td>调试</td>
<td>361</td>
</tr>
<tr>
<td>35</td>
<td>模块诊断</td>
<td>369</td>
</tr>
</tbody>
</table>
应用专用离散量模块
第31章
应用专用离散量功能概述

概述

简介
应用专用模块的软件安装是通过不同 Control Expert 编辑器（处于在线和离线模式下）完成的。如果没有可以连接的处理器，Control Expert 会允许您使用仿真器执行初始测试。在这种情况下，安装（参见第 324 页）是有所不同的。

建议采用下面的安装阶段顺序，但可以更改某些阶段的顺序（例如，从配置阶段开始）。

存在处理器情况下的安装阶段

下表说明存在处理器情况下的各个安装阶段。

<table>
<thead>
<tr>
<th>相关</th>
<th>描述</th>
<th>模式</th>
</tr>
</thead>
<tbody>
<tr>
<td>变量声明</td>
<td>应用专用模块的 IODDT 类型变量和项目变量的声明</td>
<td>离线/在线</td>
</tr>
<tr>
<td>编程</td>
<td>项目编程</td>
<td>离线/在线</td>
</tr>
<tr>
<td>配置</td>
<td>模块声明</td>
<td>离线</td>
</tr>
<tr>
<td></td>
<td>模块通道配置</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输入配置参数</td>
<td></td>
</tr>
<tr>
<td>关联</td>
<td>IODDT 与已配置通道的关联（变量编辑器）</td>
<td>离线/在线</td>
</tr>
<tr>
<td>生成</td>
<td>生成项目（分析和编辑链路）</td>
<td>离线</td>
</tr>
<tr>
<td>传输</td>
<td>将项目传输到 PLC</td>
<td>在线</td>
</tr>
<tr>
<td>调整/调试</td>
<td>从调试屏幕、动态数据表进行项目调试</td>
<td>在线</td>
</tr>
<tr>
<td></td>
<td>修改程序和调整参数</td>
<td></td>
</tr>
<tr>
<td>文档</td>
<td>生成文档文件以及打印与项目相关的其他信息</td>
<td>离线/在线</td>
</tr>
<tr>
<td>操作/诊断</td>
<td>显示项目的监督控制所必需的其他信息</td>
<td>在线</td>
</tr>
<tr>
<td></td>
<td>项目和模块的诊断</td>
<td></td>
</tr>
</tbody>
</table>
针对仿真器的实施阶段

下表显示了针对仿真器的各安装阶段。

<table>
<thead>
<tr>
<th>相关</th>
<th>描述</th>
<th>模式</th>
</tr>
</thead>
<tbody>
<tr>
<td>变量声明</td>
<td>应用专用模块的 IODDT 类型变量和项目变量的声明</td>
<td>离线/在线</td>
</tr>
<tr>
<td>编程</td>
<td>项目编程</td>
<td>离线/在线</td>
</tr>
<tr>
<td>配置</td>
<td>模块声明</td>
<td>离线</td>
</tr>
<tr>
<td></td>
<td>模块通道配置</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输入配置参数</td>
<td></td>
</tr>
<tr>
<td>关联</td>
<td>IODDT 与已配置模块的关联（变量编辑器）</td>
<td>离线/在线</td>
</tr>
<tr>
<td>生成</td>
<td>生成项目（分析和编辑链路）</td>
<td>离线</td>
</tr>
<tr>
<td>传输</td>
<td>将项目传输到仿真器</td>
<td>在线</td>
</tr>
<tr>
<td>仿真</td>
<td>编程仿真（无输入/输出）</td>
<td>在线</td>
</tr>
<tr>
<td>调整</td>
<td>从调试屏幕、动态数据表进行项目调试</td>
<td>在线</td>
</tr>
<tr>
<td>调试</td>
<td>修改程序和调整参数</td>
<td></td>
</tr>
</tbody>
</table>

注：仿真器仅用于离散量或模拟量模块。
第32章
配置

本节主题
本节描述用于实施的应用专用离散量模块的配置。

本章包含哪些内容？
本章包含了以下部分：

<table>
<thead>
<tr>
<th>节</th>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.1</td>
<td>离散量模块的配置：一般事项</td>
<td>326</td>
</tr>
<tr>
<td>32.2</td>
<td>离散量输入和输出通道参数</td>
<td>331</td>
</tr>
<tr>
<td>32.3</td>
<td>离散量模块参数的配置</td>
<td>335</td>
</tr>
</tbody>
</table>
第32.1节
离散量模块的配置：一般事项

本节主题
本节介绍Modicon X80离散量模块配置所需的基本操作。

本节包含了哪些内容？
本节包含了以下主题:

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modicon Mx80本地机架中的离散量模块配置屏幕</td>
<td>327</td>
</tr>
<tr>
<td>X80子站中的离散量模块配置屏幕</td>
<td>329</td>
</tr>
</tbody>
</table>
Modicon Mx80 本地机架中的离散量模块配置屏幕

概述
配置屏幕是一个图形工具，专用于配置在机架中选择的模块。它显示为此模块的通道定义的参数，并使这些参数的修改能够应用于离线模式和在线模式。
它还提供对调试屏幕的访问（仅限在线模式）。

注意：通过使用直接语言对象 %KW（参见第354页）进行编程来配置模块是不可能的；这些字可以按只读格式进行访问。

注意：使用2.4或更高版本的模块固件，可以通过拓扑地址或状态RAM地址访问这些模块。请参阅“存储器”选项卡（参见EcoStruxure™ControlExpert,操作模式）和Modicon X80离散量模块的拓扑状态RAM寻址（参见第375页）。

示意图
使用此屏幕可以在离线模式下显示和修改参数，还可在在线模式下调试。
说明

下表显示配置屏幕的各个元素及其功能。

<table>
<thead>
<tr>
<th>地址</th>
<th>元素</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>选项卡</td>
<td>前景中的选项卡指示当前模式（此示例中为配置）。使用各选项卡可以选择相应的模式。调试模式只能在在线模式下访问。</td>
</tr>
<tr>
<td>2</td>
<td>模块区域</td>
<td>指定模块的缩写标题。在在线模式下，此区域还包含三个 LED：Run、Err 和 IO。</td>
</tr>
</tbody>
</table>
| 3 | 通道区域 | 允许您：
| | | - 通过单击参考号，显示选项卡：
| | | - 描述，提供设备的特征
| | | - I/O 对象（参见 EcoStruxure™ Control Expert，操作模式），用于预先表示输入/输出对象
| | | - 故障，显示设备状态（在线模式）
| | | - 选择通道
| | | - 显示符号，即用户使用变量编辑器定义的通道名 |
| 4 | 常规参数区域 | 允许您选择 8 通道组中的关联功能和任务：
| | | - 功能：定义所选通道组（组 0 至 7 除外）的配置/取消配置
| | | - 任务：定义将在其中交换通道的交换对象的任务（MAST、FAST）
| | | 电源监控复选框定义外部电源监控的活动或停用状态（仅在某些离散量模块上可用）。通过复位和故障预置模式下拉菜单，您可以配置输出复位和输出故障预置模式（仅在某些离散量模块上可用）。 |
| 5 | 配置区域 | 用于配置各个通道的参数。此字段包括根据所选离散量模块显示的各个项目。符号列显示与通道关联的、用户使用变量编辑器定义的符号。 |
X80 子站中的离散量模块配置屏幕

概览
离散量模块具有多种可访问屏幕，包括：
- 配置屏幕
- 类型

示意图
此屏幕显示配置屏幕：

![配置屏幕示意图](image-url)
说明

下表显示配置屏幕的各个元素及其功能。

<table>
<thead>
<tr>
<th>地址</th>
<th>元素</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>选项卡</td>
<td>前景中的选项卡指示当前模式（此示例中为 配置）。使用各选项卡可以选择相应的模式：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 概述</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 配置</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 设备 DDT，提供设备的设备 DDT (参见第 356 页) 名称和类型</td>
</tr>
<tr>
<td>2</td>
<td>模块区域</td>
<td>指定模块的缩写标题。</td>
</tr>
<tr>
<td>3</td>
<td>通道区域</td>
<td>允许您：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 通过单击参考号，显示选项卡：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 描述，提供设备的特征</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 选择通道</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 显示符号，即用户使用变量编辑器定义的通道名</td>
</tr>
<tr>
<td></td>
<td></td>
<td>注意：所有通道已激活且通道无法停用为无。</td>
</tr>
<tr>
<td>4</td>
<td>常规参数区域</td>
<td>允许您选择 8 通道组中的关联功能和任务：</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 功能：定义所选通道组（组 0 至 7 除外）的配置/取消配置</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 任务：定义将在其中交换通道缺省交换对象的 (MAST) 任务</td>
</tr>
</tbody>
</table>
| | | 电源监控复选框定义选定的 16 通道组的外部电源监控的活动或停用状态 (仅在 16、32 和 64 通道离散量模块上可用)。
| | | 在用户应用程序中，(XBO 子站中的) WRITE_CMD 或 (EIO 子站中的) WRITE_CMD_QX 也可定义外部电源监控的活动或停用状态并覆盖电源监控设置。
| | | WRITE_CMD_QX 只对 16 路通道组的前 8 路通道 (0...7、16...23、32...39 和 48...55) 起作用，但会影响该组的所有 16 路通道。
| | | WRITE_CMD 对通道组全部 16 个通道中的任意一个起作用，并影响该组的所有 16 个通道。
| | | WRITE_CMD 还允许重新激活输出。 |
| | | 重新激活和故障预置模式下拉菜单用于配置输出复位和输出故障预置模式 (仅在某些离散量模块上可用)。 |
| 5 | 配置区域 | 用于配置每个通道的参数。此字段包括根据所选离散量模块显示的各个项目。 |
| | | 符号列显示与通道关联的用户使用变量编辑器定义的符号。 |

330
第32.2节
离散量输入和输出通道参数

本节主题
本节描述用于离散量模块的输入和输出通道的各种参数。

本节包含哪些内容？
本节包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>机架上的离散量输入参数</td>
<td>332</td>
</tr>
<tr>
<td>机架中 8 通道模块的离散量输出参数</td>
<td>333</td>
</tr>
</tbody>
</table>
机架上的离散量输入参数

概览
离散量输入模块的每个通道包含不同的参数。这些通道划分为由 8 或 16 个连续通道组成的块。

参数
下表显示用于每个机架内离散量输入模块的参数。

<table>
<thead>
<tr>
<th>参考模块</th>
<th>输入数</th>
<th>关联任务</th>
<th>功能</th>
<th>电源监控</th>
<th>接线检查</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DDI 1602</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDI 1604</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAI 0805</td>
<td>8</td>
<td>MAST / FAST</td>
<td>高电平输入</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAI 0814</td>
<td>8</td>
<td>MAST / FAST</td>
<td>高电平输入</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAI 1604</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDI 3202 K</td>
<td>32</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDI 6402 K</td>
<td>64</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDM 16022</td>
<td>8（输入）</td>
<td>MAST / FAST</td>
<td>高电平输入</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDM 16025</td>
<td>8（输入）</td>
<td>MAST / FAST</td>
<td>高电平输入</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDM 3202 K</td>
<td>16（输入）</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDI 1603</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAI 1602</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAI 1603</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平/无</td>
<td>活动/停用</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAI 1614</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>停用/活动</td>
<td>停用/活动</td>
</tr>
<tr>
<td>BMX DAI 1615</td>
<td>16</td>
<td>MAST / FAST</td>
<td>高电平输入/无</td>
<td>停用/活动</td>
<td>停用/活动</td>
</tr>
</tbody>
</table>

注意：以粗体字符显示的参数是缺省配置的一部分。
注意：BMX DDM 16022 和 BMX DDM 16025 离散量混合输入/输出模块具有两个 8 通道组。输入组由通道 0 至 7 表示，输出组由通道 16 至 23 表示。
机箱中 8 通道模块的离散量输出参数

概览

离散量输出模块的每个通道包含多个参数。这些通道划分为由 8 或 16 个连续通道组成的块。

参数

下表显示可用于每个离散量输出模块的参数。

<table>
<thead>
<tr>
<th>参考模块</th>
<th>输出数</th>
<th>复位</th>
<th>关联任务</th>
<th>故障预置模式</th>
<th>功能</th>
<th>电源监控</th>
<th>故障预置值</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAO 1605</td>
<td>16</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DAO 1615</td>
<td>16</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DDM 16022</td>
<td>8 (输出)</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DDM 16025</td>
<td>8 (输出)</td>
<td>-</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DDM 3202 K</td>
<td>16 (输出)</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DDO 1602</td>
<td>16</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DDO 1612</td>
<td>16</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DDO 3202 K</td>
<td>32</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DDO 6402 K</td>
<td>64</td>
<td>已编程/自动</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出/无</td>
<td>活动/停用</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DRA 0804T</td>
<td>8</td>
<td>-</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出</td>
<td>-</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DRA 0805</td>
<td>8</td>
<td>-</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出</td>
<td>-</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DRA 0815</td>
<td>8</td>
<td>-</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>高散量输出</td>
<td>-</td>
<td>0 / 1</td>
</tr>
</tbody>
</table>
配置

<table>
<thead>
<tr>
<th>参考模块</th>
<th>输出数</th>
<th>复位</th>
<th>关联任务</th>
<th>故障预置模式</th>
<th>功能</th>
<th>电源监控</th>
<th>故障预留值</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DRA 1605</td>
<td>16</td>
<td>-</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>离散量输出/无</td>
<td>-</td>
<td>0 / 1</td>
</tr>
<tr>
<td>BMX DRC 0805</td>
<td>8</td>
<td>-</td>
<td>MAST / FAST</td>
<td>故障预置/维护</td>
<td>离散量输出</td>
<td>-</td>
<td>0 / 1</td>
</tr>
</tbody>
</table>

注意：粗体参数对应于缺省情况下配置的参数。

注意：BMX DDM 16022 和 BMX DDM 16025 离散量混合输入/输出模块具有两个 8 通道组。输入组由通道 0 至 7 表示，输出组由通道 16 至 23 表示。
第32.3节
离散量模块参数的配置

本节主题
本节介绍执行离散量输入/输出通道的各种配置参数需遵循的一般规则。

本节包含了哪些内容？
本节包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>如何修改任务参数</td>
<td>336</td>
</tr>
<tr>
<td>如何修改外部电源错误监控参数</td>
<td>337</td>
</tr>
<tr>
<td>如何修改故障预置模式参数</td>
<td>338</td>
</tr>
<tr>
<td>如何修改输出复位参数</td>
<td>339</td>
</tr>
</tbody>
</table>
如何修改任务参数

概览
此参数定义其中执行输入采集和输出更新的处理器任务。对于机架上的离散量模块，任务是为 8 个连续的通道定义的。可能的选择如下：
- MAST 任务
- FAST 任务

注意：只能在离线模式下修改任务参数。

过程
下表显示如何为模块通道分配的任务类型。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>打开所需的模块配置屏幕。</td>
</tr>
<tr>
<td>2</td>
<td>单击下拉菜单的 MAST 任务将任务分配给所需的组。 结果：将出现以下列表。</td>
</tr>
<tr>
<td>3</td>
<td>选择所需的任务。</td>
</tr>
<tr>
<td>4</td>
<td>使用 编辑 → 验证 菜单命令确认所做的修改。</td>
</tr>
</tbody>
</table>
如何修改外部电源错误监控参数

概览
此参数定义外部电源错误监控的状态（激活或禁用）。
它以 16 个连续通道所组成的组来运行。
缺省情况下，监控处于活动状态（框是选中的）。

过程
下表显示如何禁用或启用外部电源监控功能。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>打开所需的模块配置屏幕。</td>
</tr>
<tr>
<td>2</td>
<td>在常规参数区域中，选中电源监控框。结果：显示 I/O 编辑器窗口。单击确定。</td>
</tr>
<tr>
<td>3</td>
<td>单击编辑 → 验证以验证所做的更改。</td>
</tr>
</tbody>
</table>
如何修改故障预置模式参数

概览

此参数定义当 PLC 由于以下原因切换为停止模式时输出所采取的故障预置模式:
- 处理器错误
- 机架连接错误
- 机架间电缆连接错误

模式如下:

<table>
<thead>
<tr>
<th>模式</th>
</tr>
</thead>
<tbody>
<tr>
<td>故障预置</td>
</tr>
<tr>
<td>维护</td>
</tr>
</tbody>
</table>

根据为对应的 8 通道组定义的故障预置值，将通道设置为 0 或 1。输出仍然保持切换到停止之前所处的状态。

过程

下表显示定义要分配给通道组的故障预置模式的步骤。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>打开所需的模块配置屏幕。</td>
</tr>
<tr>
<td>2</td>
<td>对于所需的通道组，单击故障预置模式下拉菜单的箭头。结果：将出现以下列表。</td>
</tr>
<tr>
<td>3</td>
<td>选择所需的故障预置模式。</td>
</tr>
<tr>
<td>4</td>
<td>在故障预置模式下，配置所选组的每个通道。要进行此操作，请单击要配置的通道的下拉菜单箭头（位于故障预置值列中）。</td>
</tr>
<tr>
<td>5</td>
<td>单击所需的值（0 或 1）。</td>
</tr>
<tr>
<td>6</td>
<td>使用编辑 → 验证菜单命令确认所做的修改。</td>
</tr>
</tbody>
</table>
如何修改输出复位参数

概览
此参数定义重新激活已断开连接的输出的模式。

模式如下。

<table>
<thead>
<tr>
<th>模式</th>
<th>含义</th>
</tr>
</thead>
</table>
| 已编程 | 重新激活是使用 PLC 应用程序中的命令或通过相应的调试屏幕执行的。
注释：为了避免重复的重新激活，模块自动确保两次重置之间有 10 秒的延迟。 |
| 自动 | 每隔 10 秒自动执行重新激活，直到错误消失为止。 |

重新激活模式是为 8 通道组定义的。

过程
下表显示了定义模块输出通道复位模式的步骤。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>打开所需的模块配置屏幕。</td>
</tr>
</tbody>
</table>
| 2 | 对于所需的通道组，单击“重新激活”下拉菜单的箭头。
结果：将出现以下列表。 |
| 3 | 选择所需的重新激活模式。 |
| 4 | 单击“编辑 → 确认”来确认修改。 |
第33章
应用专用离散量模块语言对象

本节主题
本章描述不同 IODDT 中与应用专用离散量模块关联的语言对象。

本章包含了哪些内容？
本章包含了以下部分：

<table>
<thead>
<tr>
<th>节</th>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1</td>
<td>语言对象和 IODDT</td>
<td>342</td>
</tr>
<tr>
<td>33.2</td>
<td>离散量模块 IODDT 和设备 DDT</td>
<td>343</td>
</tr>
</tbody>
</table>
第33.1节
语言对象和 IODDT

离散量功能对象语言的描述

一般信息
离散量模块具有不同的关联 IODDT。IODDT 是由制造商预定义的。它们包括属于特定应用模块的某个通道的输入/输出语言对象。

离散量模块有四种 IODDT 类型：
- T_DIS_IN_GEN
- T_DIS_IN_STD
- T_DIS_OUT_GEN
- T_DIS_OUT_STD

注意：IODDT 变量可以通过以下两种方式创建：
- 使用 I/O 对象（参见 EcoStruxure™ Control Expert, 操作模式)选项卡
- 使用数据编辑器

语言对象类型
每种 IODDT 都包含用于对其进行控制和检查其操作的一组语言对象。

语言对象有两种类型：
- 隐式交换对象，在与模块关联的任务的每个循环中自动交换这些对象
- 显式交换对象，在使用显式交换指令时，根据需要通过应用程序交换这些对象

隐式交换涉及模块输入/输出的：测量、信息和运行结果。

显式交换启用模块配置和诊断。

注意：为了避免同一通道同时发生多个显式交换，在使用此通道调用 EF 之前，需要测试与该通道关联的 IODDT 的 EXCH_STS 字的值。
第33.2节
离散量模块 IODDT 和设备 DDT

本节主题
本节介绍与离散量输入/输出模块和设备 DDT 相关的不同 IODDT 语言对象。

本节包含了哪些内容？
本节包含了以下主题:

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>IODDT 关联</td>
<td>344</td>
</tr>
<tr>
<td>有关 T_DIS_IN_GEN 类型 IODDT 隐式对象交换的详细信息</td>
<td>345</td>
</tr>
<tr>
<td>有关 T_DIS_IN_STD 类型 IODDT 隐式对象交换的详细信息</td>
<td>346</td>
</tr>
<tr>
<td>T_DIS_IN_STD 类型 IODDT 显式对象交换的相关详情</td>
<td>347</td>
</tr>
<tr>
<td>有关 T_DIS_OUT_GEN 类型 IODDT 隐式对象交换的详细信息</td>
<td>349</td>
</tr>
<tr>
<td>有关 T_DIS_OUT_STD 类型 IODDT 隐式对象交换的详细信息</td>
<td>350</td>
</tr>
<tr>
<td>T_DIS_OUT_STD 类型 IODDT 显式对象交换的相关详情</td>
<td>351</td>
</tr>
<tr>
<td>类型 T_GEN_MOD 的 IODDT 语言对象的详细信息</td>
<td>353</td>
</tr>
<tr>
<td>Modicon X80 离散量 I/O 模块配置常量</td>
<td>354</td>
</tr>
<tr>
<td>离散量设备 DDT 名称</td>
<td>356</td>
</tr>
<tr>
<td>MOD_FLT 字节描述</td>
<td>360</td>
</tr>
</tbody>
</table>
IODDT 关联

IODDT 关联表

下表介绍与每个离散量输入/输出模块关联的 IODDT:

<table>
<thead>
<tr>
<th>模块参考</th>
<th>与离散量模块关联的 IODDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_DIS_IN_GEN</td>
</tr>
<tr>
<td>BMX DDI 1602</td>
<td>x</td>
</tr>
<tr>
<td>BMX DDI 1603</td>
<td>x</td>
</tr>
<tr>
<td>BMX DDI 1604T</td>
<td>x</td>
</tr>
<tr>
<td>BMX DDI 3202K</td>
<td>x</td>
</tr>
<tr>
<td>BMX DDI 6402K</td>
<td>x</td>
</tr>
<tr>
<td>BMX DAI 1602</td>
<td>x</td>
</tr>
<tr>
<td>BMX DAI 1603</td>
<td>x</td>
</tr>
<tr>
<td>BMX DAI 1604</td>
<td>x</td>
</tr>
<tr>
<td>BMX DAI 1614</td>
<td>x</td>
</tr>
<tr>
<td>BMX DAI 1615</td>
<td>x</td>
</tr>
<tr>
<td>BMX DAI 0805</td>
<td>x</td>
</tr>
<tr>
<td>BMX DAI 0814</td>
<td>x</td>
</tr>
<tr>
<td>BMX DDO 1602</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDO 1612</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDO 3202K</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDO 6402 K</td>
<td>-</td>
</tr>
<tr>
<td>BMX DRA 0804T</td>
<td>-</td>
</tr>
<tr>
<td>BMX DRA 0805</td>
<td>-</td>
</tr>
<tr>
<td>BMX DRA 0815</td>
<td>-</td>
</tr>
<tr>
<td>BMX DRA 1605</td>
<td>-</td>
</tr>
<tr>
<td>BMX DRC 0805</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAO 1605</td>
<td>-</td>
</tr>
<tr>
<td>BMX DAO 1615</td>
<td>-</td>
</tr>
<tr>
<td>BMX DDM 16022</td>
<td>x</td>
</tr>
<tr>
<td>BMX DDM 16025</td>
<td>x</td>
</tr>
<tr>
<td>BMX DDM 3202K</td>
<td>x</td>
</tr>
</tbody>
</table>

X：已关联
-：未关联
有关 T_DIS_IN_GEN 类型 IODDT 隐式对象交换的详细信息

概览
本节描述适用于所有离散量输入模块的 T_DIS_IN_GEN 类型 IODDT 隐式对象交换。

输入标志
下表显示 VALUE (%Ir.m.c) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>EBOOL</td>
<td>R</td>
<td>指示控制输入通道 c 的传感器的状态。</td>
<td>%Ir.m.c</td>
</tr>
</tbody>
</table>

错误位
下表显示 CH_ERROR (%Ir.m.c.ERR) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_ERROR</td>
<td>BOOL</td>
<td>R</td>
<td>指示 c 输入通道出现错误。</td>
<td>%Ir.m.c.ERR</td>
</tr>
</tbody>
</table>
语言对象

有关 T_DIS_IN_STD 类型 IODDT 隐式对象交换的详细信息

概览

本节介绍适用于离散量输入模块的 T_DIS_IN_STD 类型的 IODDT 隐式交换对象。

输入标志

下表显示了 VALUE (%Ir.m.c) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>EBOOL</td>
<td>R</td>
<td>指示控制输入通道 c 的传感器的状态。</td>
<td>%Ir.m.c</td>
</tr>
</tbody>
</table>

错误位

下表显示 CH_ERROR (%Ir.m.c.ERR) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_ERROR</td>
<td>BOOL</td>
<td>R</td>
<td>指示 c 输入通道出现错误。</td>
<td>%Ir.m.c.ERR</td>
</tr>
</tbody>
</table>
T_DIS_IN_STD 类型 IODDT 显式对象交换的相关详情

概览

本节将介绍适用于离散输入模块的 T_DIS_IN_STD 类型的 IODDT 显式交换对象。本节还将提及其位具有特定含义的字类型对象。以下是对这些对象的详细说明。

变量声明示例:

T_DIS_INT_STD 类型的 IODDT_VAR1

注意: 通常情况下,位含义是针对位状态为 1 给出的。特定情况下,会针对位的每个状态给出解释。

注意: 不是所有位都会用到。

显式交换的执行指示灯：EXCH_STS

下表显示了通道 EXCH_STS (%MWrm.c.0) 的交换控制位含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS_IN_PROGR</td>
<td>BOOL</td>
<td>R</td>
<td>正在读取通道状态字</td>
<td>%MWrm.c.0.0</td>
</tr>
<tr>
<td>CMD_IN_PROGR</td>
<td>BOOL</td>
<td>R</td>
<td>正在交换命令参数</td>
<td>%MWrm.c.0.1</td>
</tr>
</tbody>
</table>

显式交换的执行报告：EXCH_RPT

下表显示了 EXCH_RPT 交换报告位 (%MWrm.c.1) 的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS_ERR</td>
<td>BOOL</td>
<td>R</td>
<td>读取通道状态字时出错 (1 = 错误)</td>
<td>%MWrm.c.1.0</td>
</tr>
<tr>
<td>CMD_ERR</td>
<td>BOOL</td>
<td>R</td>
<td>交换命令参数时出错 (1 = 错误)</td>
<td>%MWrm.c.1.1</td>
</tr>
</tbody>
</table>

标准通道状态：CHFLT

下表显示了 CHFLT 状态字 (%MWrm.c.2) 各个位的含义。读取由 READ_STS (IODDT_VAR1) 执行。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIP</td>
<td>BOOL</td>
<td>R</td>
<td>外部事件：已脱扣</td>
<td>%MWrm.c.2.0</td>
</tr>
<tr>
<td>FUSE</td>
<td>BOOL</td>
<td>R</td>
<td>外部事件：熔断</td>
<td>%MWrm.c.2.1</td>
</tr>
<tr>
<td>BLK</td>
<td>BOOL</td>
<td>R</td>
<td>端子块接线错误</td>
<td>%MWrm.c.2.2</td>
</tr>
<tr>
<td>EXT_PS_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>外部电源事件</td>
<td>%MWrm.c.2.3</td>
</tr>
<tr>
<td>INTERNAL_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>内部事件模块不工作</td>
<td>%MWrm.c.2.4</td>
</tr>
<tr>
<td>CONF_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>硬件或软件配置错误</td>
<td>%MWrm.c.2.5</td>
</tr>
<tr>
<td>COM_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>通讯中断</td>
<td>%MWrm.c.2.6</td>
</tr>
</tbody>
</table>

(1) 仅适用于 BMX DAI 1614 和 BMX DAI 1615 模块
语言对象

下表显示了 CH_CMD（%MWm.c.3）状态字各个位的含义。该命令由 WRITE_CMD（IODDT_VAR1）执行。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT_CIRCUIT</td>
<td>BOOL</td>
<td>R</td>
<td>外部事件：通道短路</td>
<td>%MWm.c.2.8</td>
</tr>
<tr>
<td>LINEFLT</td>
<td>BOOL</td>
<td>R</td>
<td>开路检测（1）</td>
<td>%MWm.c.2.9</td>
</tr>
</tbody>
</table>

（1）仅适用于 BMX DAI 1614 和 BMX DAI 1615 模块

注意：处于管理状态下的外部电源控制用于从 PLC 应用程序并通过寻找 16 通道组中第 1 个通道
（即通道 0、16、32 或 46）地址的一条 WRITE_CMD 指令启用或禁用一个 16 通道组。但是，此命令并不适用于 16 通道组的后 8 个通道（即通道 8 到 15、24 到 31、40 到 47 或 56 到 63）。

状态字：CH_CMD

下表显示了 CH_CMD（%MWm.c.3）状态字各个位的含义。该命令由 WRITE_CMD（IODDT_VAR1）执行。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS_CTRL_DIS</td>
<td>BOOL</td>
<td>R/W</td>
<td>禁用外部电源控制。</td>
<td>%MWm.c.3.1</td>
</tr>
<tr>
<td>PS_CTRL_EN</td>
<td>BOOL</td>
<td>R/W</td>
<td>启用外部电源控制。</td>
<td>%MWm.c.3.2</td>
</tr>
</tbody>
</table>
有关 T_DIS_OUT_GEN 类型 IODDT 隐式对象交换的详细信息

概览

本节描述适用于离散量输出模块的 T_DIS_OUT_GEN 类型 IODDT 隐式对象交换。

输出标志

下表描述 VALUE (%Qr.m.c) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>EBOOL</td>
<td>读/写</td>
<td>指示 c 输出通道的状态</td>
<td>%Qr.m.c</td>
</tr>
</tbody>
</table>

错误位

下表显示 CH_ERROR (%Ir.m.c.ERR) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_ERROR</td>
<td>BOOL</td>
<td>R</td>
<td>指示 c 输出通道出现错误</td>
<td>%Ir.m.c.ERR</td>
</tr>
</tbody>
</table>
有关 T_DIS_OUT_STD 类型 IODDT 隐式对象交换的详细信息

概览

本节描述适用于离散量输出模块的 T_DIS_OUT_STD 类型 IODDT 隐式对象交换。

输出标志

下表描述 VALUE (%Qr.m.c) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>EBOOL</td>
<td>读/写</td>
<td>指示 c 输出通道的状态</td>
<td>%Qr.m.c</td>
</tr>
</tbody>
</table>

错误位

下表显示 CH_ERROR (%Ir.m.c.ERR) 位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_ERROR</td>
<td>BOOL</td>
<td>R</td>
<td>指示 c 输入通道出现错误</td>
<td>%Ir.m.c.ERR</td>
</tr>
</tbody>
</table>
T_DIS_OUT_STD 类型 IODDT 显示对象交换的相关详情

概览
本节将介绍适用于离散输出模块的 T_DIS_OUT_STD 类型 IODDT 显示对象交换对象。本节还将提及位具有特定含义的字类型对象。以下是对这些对象的详细说明。

变量声明示例:
T_DIS_OUT_STD 类型的 IODDT_VAR1

注意: 通常情况下，位含义是针对位状态为 1 给出的。特定情况下，会针对位的每个状态给出解释。

注意: 不是所有位都会用到。

显式交换的执行指示灯：EXCH_STS
下表介绍 EXCH_STS 通道 (%MWr.m.c.0) 中各个通道交换控制位的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS_IN_PROGR</td>
<td>BOOL</td>
<td>R</td>
<td>正在读取通道状态字</td>
<td>%MWr.m.c.0.0</td>
</tr>
<tr>
<td>CMD_IN_PROGR</td>
<td>BOOL</td>
<td>R</td>
<td>正在交换命令参数</td>
<td>%MWr.m.c.0.1</td>
</tr>
</tbody>
</table>

显式交换报告: EXCH_RPT
下表显示了 EXCH_RPT 交换报告位 (%MWr.m.c.1) 的含义。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS_ERR</td>
<td>BOOL</td>
<td>R</td>
<td>读取通道状态字时出错 (1 = 错误)</td>
<td>%MWr.m.c.1.0</td>
</tr>
<tr>
<td>CMD_ERR</td>
<td>BOOL</td>
<td>R</td>
<td>交换命令参数时出错 (1 = 错误)</td>
<td>%MWr.m.c.1.1</td>
</tr>
</tbody>
</table>

标准通道状态: CH_FLT
下表显示了 CH_FLT 状态字 (%MWr.m.c.2) 各个位的含义。读取由 READ_STS (IODDT_VAR1) 执行。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>编号</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIP</td>
<td>BOOL</td>
<td>R</td>
<td>外部事件：已脱扣</td>
<td>%MWr.m.c.2.0</td>
</tr>
<tr>
<td>FUSE</td>
<td>BOOL</td>
<td>R</td>
<td>外部事件：熔断</td>
<td>%MWr.m.c.2.1</td>
</tr>
<tr>
<td>BLK</td>
<td>BOOL</td>
<td>R</td>
<td>端子块接线错误</td>
<td>%MWr.m.c.2.2</td>
</tr>
<tr>
<td>EXT_PS_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>外部电源事件</td>
<td>%MWr.m.c.2.3</td>
</tr>
<tr>
<td>INTERNAL_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>内部事件模块不工作</td>
<td>%MWr.m.c.2.4</td>
</tr>
<tr>
<td>CONF_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>硬件或软件配置错误</td>
<td>%MWr.m.c.2.5</td>
</tr>
<tr>
<td>COM_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>通讯中断</td>
<td>%MWr.m.c.2.6</td>
</tr>
<tr>
<td>SHORT_CIRCUIT</td>
<td>BOOL</td>
<td>R</td>
<td>外部事件：通道短路</td>
<td>%MWr.m.c.2.8</td>
</tr>
<tr>
<td>LINE_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>为开发预留</td>
<td>%MWr.m.c.2.9</td>
</tr>
</tbody>
</table>
语言对象

状态字：CH_CMD

下表显示了 CH_CMD (%MWm.m.c.3) 状态字各个位的含义。该命令由 WRITE_CMD (IODDT_VAR1) 执行。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAC_OUT</td>
<td>BOOL</td>
<td>R/W</td>
<td>已脱扣输出的重新激活（保护输出）</td>
<td>%MWm.m.c.3.0</td>
</tr>
<tr>
<td>PS_CTRL_DIS</td>
<td>BOOL</td>
<td>R/W</td>
<td>禁用外部电源控制</td>
<td>%MWm.m.c.3.1</td>
</tr>
<tr>
<td>PS_CTRL_EN</td>
<td>BOOL</td>
<td>R/W</td>
<td>验证外部电源控制</td>
<td>%MWm.m.c.3.2</td>
</tr>
</tbody>
</table>

注意：此对象是具有重新激活功能的输出断块所特有的。

注意：处于管理状态下的外部电源控制用于从 PLC 应用程序并通过寻找 16 通道组中第 1 个通道（即通道 0、16、32 或 46）地址的一条 WRITE_CMD 指令启用或禁用一个 16 通道组。但是，此命令并不适用于 16 通道组的后 8 个通道（即通道 8 到 15、24 到 31、40 到 47 或 56 到 63）。
语言对象

类型 T_GEN_MOD 的 IODDT 语言对象的详细信息

简介
Modicon X80 模块具有类型 T_GEN_MOD 的关联 IODDT。

注意
通常情况下，位含义是针对位状态为 1 给出的。特定情况下，会针对位的每个状态给出解释。某些位未使用。

对象列表
下表显示 IODDT 的对象。

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>访问</th>
<th>含义</th>
<th>地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD_ERROR</td>
<td>BOOL</td>
<td>R</td>
<td>检测的模块错误位</td>
<td>%Ir.m.MOD.ERR</td>
</tr>
<tr>
<td>EXCH_STS</td>
<td>INT</td>
<td>R</td>
<td>模块交换控制字</td>
<td>%MWr.m.MOD.0</td>
</tr>
<tr>
<td>STS_IN_PROGR</td>
<td>BOOL</td>
<td>R</td>
<td>正在读取模块的状态字</td>
<td>%MWr.m.MOD.0.0</td>
</tr>
<tr>
<td>EXCH_RPT</td>
<td>INT</td>
<td>R</td>
<td>交换报告字</td>
<td>%MWr.m.MOD.1</td>
</tr>
<tr>
<td>STS_ERR</td>
<td>BOOL</td>
<td>R</td>
<td>读取模块状态字时发生事件</td>
<td>%MWr.m.MOD.1.0</td>
</tr>
<tr>
<td>MOD_FLT</td>
<td>INT</td>
<td>R</td>
<td>内部检测到的模块字错误</td>
<td>%MWr.m.MOD.2</td>
</tr>
<tr>
<td>MOD_FAIL</td>
<td>BOOL</td>
<td>R</td>
<td>模块不能操作</td>
<td>%MWr.m.MOD.2.0</td>
</tr>
<tr>
<td>CH_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>故障通道</td>
<td>%MWr.m.MOD.2.1</td>
</tr>
<tr>
<td>BLK</td>
<td>BOOL</td>
<td>R</td>
<td>端子块接线错误</td>
<td>%MWr.m.MOD.2.2</td>
</tr>
<tr>
<td>CONF_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>硬件或软件配置异常</td>
<td>%MWr.m.MOD.2.5</td>
</tr>
<tr>
<td>NO_MOD</td>
<td>BOOL</td>
<td>R</td>
<td>模块缺失不工作</td>
<td>%MWr.m.MOD.2.6</td>
</tr>
<tr>
<td>EXT_MOD_FLT</td>
<td>BOOL</td>
<td>R</td>
<td>内部检测到的模块字错误 (仅限 Fipio 扩展)</td>
<td>%MWr.m.MOD.2.7</td>
</tr>
<tr>
<td>MOD_FAIL_EXT</td>
<td>BOOL</td>
<td>R</td>
<td>内部检测到的错误，模块无法使用 (仅限 Fipio 扩展)</td>
<td>%MWr.m.MOD.2.8</td>
</tr>
<tr>
<td>CH_FLT_EXT</td>
<td>BOOL</td>
<td>R</td>
<td>故障通道 (仅限 Fipio 扩展)</td>
<td>%MWr.m.MOD.2.9</td>
</tr>
<tr>
<td>BLK_EXT</td>
<td>BOOL</td>
<td>R</td>
<td>端子块接线错误 (仅限 Fipio 扩展)</td>
<td>%MWr.m.MOD.2.10</td>
</tr>
<tr>
<td>CONF_FLT_EXT</td>
<td>BOOL</td>
<td>R</td>
<td>硬件或软件配置异常 (仅限 Fipio 扩展)</td>
<td>%MWr.m.MOD.2.13</td>
</tr>
<tr>
<td>NO_MOD_EXT</td>
<td>BOOL</td>
<td>R</td>
<td>模块缺失不工作 (仅限 Fipio 扩展)</td>
<td>%MWr.m.MOD.2.14</td>
</tr>
</tbody>
</table>

35012479 12/2018 353
Modicon X80 离散量 I/O 模块配置常量

模块级常量

下表列出了该模块各通道组的 %KW 公共端:

<table>
<thead>
<tr>
<th>对象</th>
<th>类型</th>
<th>详细信息</th>
<th>通道组</th>
</tr>
</thead>
<tbody>
<tr>
<td>%KWr.m.c.0</td>
<td>INT</td>
<td>对于每个通道组</td>
<td>0-7 第1组 8-15 第2组 16-23 第3组 24-31 第4组 32-39 第5组 40-47 第6组 48-55 第7组 56-63 第8组</td>
</tr>
<tr>
<td>c = 0, 8, 16, 24, 32, 40, 48, 56.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>对于通道的故障预设值 (输出) 或传感器类型 (输入):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 0: 验证输入功能 = 1 位 1: 验证输出功能 = 1 位 2: 故障预设策略: 1 = 获取值, 0 = 保持当前值 位 3: 输入过滤 (1 = 快速, 0 = 正常), 固定为 0 位 4: 输出保护 (1 = 是, 0 = 否) 位 5: 重置输入: 1 = 自动, 0 = 藉由命令 位 6: 未使用 位 7: 电源控制禁用 (1 = 是, 0 = 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%KWr.m.c.1</td>
<td>INT</td>
<td>验证通道的输入/输出开路控制:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>字节 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 0</td>
<td>0 8 16 24 32 40 48 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 1</td>
<td>1 9 17 25 33 41 49 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 2</td>
<td>2 10 18 26 34 42 50 58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 3</td>
<td>3 11 19 27 35 43 51 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 4</td>
<td>4 12 20 28 36 44 52 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 5</td>
<td>5 13 21 29 37 45 53 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 6</td>
<td>6 14 22 30 38 46 54 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位 7</td>
<td>7 15 23 31 39 47 55 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>对象</td>
<td>类型</td>
<td>详细信息</td>
<td>通道组</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>字符 1</td>
<td>字节</td>
<td>验证通道的值记忆：</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 8 0 8 16 24 32 40 48 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 9 1 9 17 25 33 41 49 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 10 2 10 18 26 34 42 50 58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 11 3 11 19 27 35 43 51 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 12 4 12 20 28 36 44 52 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 13 5 13 21 29 37 45 53 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 14 6 14 22 30 38 46 54 62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>位 15 7 15 23 31 39 47 55 63</td>
<td></td>
</tr>
<tr>
<td>%KWr.m.c.2</td>
<td>INT</td>
<td>字节 0 未使用</td>
<td></td>
</tr>
<tr>
<td>字符 0</td>
<td>字节</td>
<td>未使用</td>
<td></td>
</tr>
<tr>
<td>字符 1</td>
<td>字节</td>
<td>未使用</td>
<td></td>
</tr>
</tbody>
</table>

FB_type 中每个组的所有通道都具有一个 %KWr.m.c.0 公共端、一个 %KWr.m.c.1 公共端和一个 %KWr.m.c.2 公共端。

注意：通过使用直接语言对象 %KW 进行编程来配置模块是不可能的，这些字可以按只读格式进行访问。
离散量设备 DDT 名称

简介
本主题介绍 Control Expert 离散量设备 DDT。有关实例缺省命名的描述见设备 DDT 实例命名规则（参见 EcoStruxure™ Control Expert, 程序语言和结构, 参考手册）。就设备 DDT 而言，其名称包含以下信息：
 ● 具有以下特点的平台：
 ◦ U 表示 Modicon X80 模块与 Quantum 之间的统一结构
 ● 设备类型 (DIS 表示离散量)
 ● 功能 (STD 表示标准)
 ● 方向：
 ◦ IN
 ◦ OUT
 ● 最大通道 (1, 2, 4 …64)
示例
对于具有 16 路标准输入/输出的 Modicon X80 模块：T_U_DIS_STD_IN_16_OUT_16

隐式设备 DDT 的列表
下表列出了设备 DDT 及其 X80 模块：

<table>
<thead>
<tr>
<th>设备 DDT 类型</th>
<th>Modicon X80 设备</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_U_DIS_STD_IN_8</td>
<td>BMX DAI 0805</td>
</tr>
<tr>
<td></td>
<td>BMX DAI 0814</td>
</tr>
<tr>
<td>T_U_DIS_STD_IN_16</td>
<td>BMX DAI 1602</td>
</tr>
<tr>
<td></td>
<td>BMX DAI 1603</td>
</tr>
<tr>
<td></td>
<td>BMX DAI 1604</td>
</tr>
<tr>
<td></td>
<td>BMX DAI 1614</td>
</tr>
<tr>
<td></td>
<td>BMX DAI 1615</td>
</tr>
<tr>
<td></td>
<td>BMX DDI 1602</td>
</tr>
<tr>
<td></td>
<td>BMX DDI 1603</td>
</tr>
<tr>
<td></td>
<td>BMX DDI 1604</td>
</tr>
<tr>
<td>T_U_DIS_STD_IN_32</td>
<td>BMX DDI 3202K</td>
</tr>
<tr>
<td>T_U_DIS_STD_IN_64</td>
<td>BMX DDI 6404K</td>
</tr>
<tr>
<td>T_U_DIS_STD_OUT_8</td>
<td>BMX DRA 0804</td>
</tr>
<tr>
<td></td>
<td>BMX DRA 0805</td>
</tr>
<tr>
<td></td>
<td>BMX DRA 0815</td>
</tr>
<tr>
<td></td>
<td>BMX DRC 0805</td>
</tr>
</tbody>
</table>
隐式设备 DDT 描述

下表显示 T_U_DIS_STD_IN_x 和 T_U_DIS_STD_OUT_y 状态字位：

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>含义</th>
<th>访问</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD_HEALTH</td>
<td>BOOL</td>
<td>0 = 模块有检测到的错误 1 = 模块运行正常</td>
<td>读取</td>
</tr>
<tr>
<td>MOD_FLT</td>
<td>BYTE</td>
<td>模块的内部检测到的错误字节 (参见第 360 页)</td>
<td>读取</td>
</tr>
<tr>
<td>DIS_CH_IN</td>
<td>ARRAY</td>
<td>T_U_DIS_STD_CH_IN 结构数组</td>
<td></td>
</tr>
<tr>
<td>DIS_CH_OUT</td>
<td>ARRAY</td>
<td>T_U_DIS_STD_CH_OUT 结构数组</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 模块状态通过 MOD_FLT 字段隐式交换</td>
<td></td>
</tr>
</tbody>
</table>

下表显示 T_U_DIS_STD_IN_x_OUT_y 状态字位：

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>含义</th>
<th>访问</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD_HEALTH</td>
<td>BOOL</td>
<td>0 = 模块有检测到的错误 1 = 模块运行正常</td>
<td>读取</td>
</tr>
<tr>
<td>MOD_FLT</td>
<td>BYTE</td>
<td>模块的内部检测到的错误字节 (参见第 360 页)</td>
<td>读取</td>
</tr>
<tr>
<td>DIS_CH_IN</td>
<td>ARRAY</td>
<td>T_U_DIS_STD_CH_IN 结构数组</td>
<td></td>
</tr>
<tr>
<td>DIS_CH_OUT</td>
<td>ARRAY</td>
<td>T_U_DIS_STD_CH_OUT 结构数组</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 模块状态通过 MOD_FLT 字段隐式交换</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>项目</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>357</td>
<td></td>
</tr>
</tbody>
</table>
下表显示 T_U_DIS_STD_CH_IN[0...x-1] 和 T_U_DIS_STD_CH_OUT[x...(x+y-1)] 结构含义:

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>含义</th>
<th>访问</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_HEALTH</td>
<td>BOOL</td>
<td>0 = 通道已检测到错误</td>
<td>读取</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 通道运行正常</td>
<td></td>
</tr>
<tr>
<td>VALUE</td>
<td>EBOOL</td>
<td>指示控制输入通道 c 的传感器的状态</td>
<td>读取1</td>
</tr>
</tbody>
</table>

1 VALUE of the T_U_DIS_STD_CH_OUT 结构可以在读取/写入时进行访问

显式 DDT 实例描述

显示交换 (读取状态或写入命令) —— 仅适用于 Modicon X80 I/O 通道 —— 通过 READ_STS_QX 或 WRITE_CMD_QX EFB 实例 (对于 Modicon Quantum) 以及通过 READ_STS_MX 或 WRITE_CMD_MX EFB 实例 (Modicon M580) 进行管理。

- 目标通道地址 (ADDR) 可以通过 ADDMX EF (将 ADDMX OUT 连接到 ADDR) 进行管理
- READ_STS_QX 或 READ_STS_MX 输出参数 (STS) 可以连接到 "T_M_xxx_yyy_CH_STS" DDT 实例 (手动创建变量)，其中：
 - xxx 表示设备类型
 - yyy 表示功能
 示例：T_M_DIS_STD_CH_STS

- WRITE_CMD_QX 或 WRITE_CMD_MX 输入参数 (CMD) 可以连接到 "T_M_DIS_STD_xxx_yyy_CMD" DDT 实例
 其中：
 - xxx 表示设备类型
 - yyy 表示方向
 示例：T_M_DIS_STD_CH_IN_CMD

关于 EF 和 EFB 的更多详情，请参阅 EcoStruxure™ Control Expert I/O 管理功能块库和 EcoStruxure™ Control Expert 通讯功能块库。
下表显示 T_M_DIS_STD_CH_STS 结构状态字位：

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>位</th>
<th>含义</th>
<th>访问</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_FLT</td>
<td>BOOL</td>
<td>0</td>
<td>外部检测到错误脱扣</td>
<td>读取</td>
</tr>
<tr>
<td>FUSE</td>
<td>BOOL</td>
<td>1</td>
<td>外部检测到的错误：熔断器</td>
<td>读取</td>
</tr>
<tr>
<td>BLK</td>
<td>BOOL</td>
<td>2</td>
<td>端子块检测到的错误</td>
<td>读取</td>
</tr>
<tr>
<td>EXT_PS_FLT</td>
<td>BOOL</td>
<td>3</td>
<td>内部检测到的错误：模块出现故障</td>
<td>读取</td>
</tr>
<tr>
<td>INTERNAL_FLT</td>
<td>BOOL</td>
<td>4</td>
<td>外部电源检测到的故障</td>
<td>读取</td>
</tr>
<tr>
<td>CONF_FLT</td>
<td>BOOL</td>
<td>5</td>
<td>配置检测到故障：不同的硬件和软件配置</td>
<td>读取</td>
</tr>
<tr>
<td>COM_FLT</td>
<td>BOOL</td>
<td>6</td>
<td>与 PLC 通讯时检测到问题。</td>
<td>读取</td>
</tr>
<tr>
<td>--</td>
<td>BOOL</td>
<td>7</td>
<td>保留</td>
<td>读取</td>
</tr>
<tr>
<td>SHORT_CIRCUIT</td>
<td>BOOL</td>
<td>8</td>
<td>外部检测到的错误：通道上出现短路</td>
<td>读取</td>
</tr>
<tr>
<td>LINE_FLT</td>
<td>BOOL</td>
<td>9</td>
<td>开路检测(1)</td>
<td>读取</td>
</tr>
</tbody>
</table>

(1) 仅适用于 BMX DAI 1614 和 BMX DAI 1615 模块。

下表显示 T_M_DIS_STD_CH_IN_CMD 状态字位：

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>位</th>
<th>含义</th>
<th>访问</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_CMD [INT]</td>
<td>PS_CTRL_DIS</td>
<td>BOOL</td>
<td>禁用外部电源控制</td>
<td>读/写</td>
</tr>
<tr>
<td></td>
<td>PS_CTRL_EN</td>
<td>BOOL</td>
<td>启用外部电源控制</td>
<td>读/写</td>
</tr>
</tbody>
</table>

下表显示 T_M_DIS_STD_CH_OUT_CMD 结构状态字位：

<table>
<thead>
<tr>
<th>标准符号</th>
<th>类型</th>
<th>位</th>
<th>含义</th>
<th>访问</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_CMD [INT]</td>
<td>REAC_OUT</td>
<td>BOOL</td>
<td>已脱扣输出的重新激活（保护输出）</td>
<td>读/写</td>
</tr>
<tr>
<td></td>
<td>PS_CTRL_DIS</td>
<td>BOOL</td>
<td>禁用外部电源控制</td>
<td>读/写</td>
</tr>
<tr>
<td></td>
<td>PS_CTRL_EN</td>
<td>BOOL</td>
<td>启用外部电源控制</td>
<td>读/写</td>
</tr>
</tbody>
</table>

注意：在用户应用程序中，WRITE_CMD_QX (在 EIO 子站中) 还可以定义外部电源监控的激活或停用状态，并覆盖电源监控设置。
WRITE_CMD_QX 只对 16 路通道组的前 8 路通道（0...7、16...23、32...39 和 48...55）起作用，但会影响该组的所有 16 路通道。
MOD_FLT 字节描述

MOD_FLT 字节 (设备 DDT 中)

MOD_FLT 字节结构:

<table>
<thead>
<tr>
<th>位</th>
<th>符号</th>
<th>说明</th>
</tr>
</thead>
</table>
| 0 | MOD_FAIL | ● 1: 检测到内部错误或模块故障。
 ● 0: 未检测到错误 |
| 1 | CH_FLT | ● 1: 通道故障。
 ● 0: 通道正常。 |
| 2 | BLK | ● 1: 检测到端子块错误。
 ● 0: 未检测到错误。
 注意: 此位有可能不受管理。 |
| 3 | – | ● 1: 模块正在自检。
 ● 0: 模块不在自检状态。
 注意: 此位有可能不受管理。 |
| 4 | – | 未使用。 |
| 5 | CONF_FLT | ● 1: 检测到硬件或软件配置错误。
 ● 0: 未检测到错误。 |
| 6 | NO_MOD | ● 1: 模块缺失或不工作。
 ● 0: 模块正在工作。
 注意: 此位仅由位于具有 BME CRA 312 10 配器块的远程机架的模块管理。本地机架的模块不管理此位，它保持为 0。 |
| 7 | – | 未使用。 |
第34章
调试

本节主题
本节描述用于实施的应用专用离散量模块的调试。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>离散量模块的调试功能简介</td>
<td>362</td>
</tr>
<tr>
<td>调试屏幕</td>
<td>363</td>
</tr>
<tr>
<td>如何访问强制/取消强制功能</td>
<td>365</td>
</tr>
<tr>
<td>如何访问 SET 和 RESET 命令</td>
<td>366</td>
</tr>
<tr>
<td>如何访问重新激活输出命令</td>
<td>367</td>
</tr>
<tr>
<td>离散量模块应用的输出</td>
<td>368</td>
</tr>
</tbody>
</table>
离散量模块的调试功能简介

简介

对于每个离散量输入/输出模块，调试功能支持：

- 显示模块每个通道的参数（通道状态、过滤值等）
- 访问所选通道的诊断和调整功能（通道强制、通道屏蔽等）

在检测到错误时，使用此功能还可以访问模块诊断信息。

注意：此功能仅在在线模式下可用。
调试

概览

“调试”屏幕（参见EcoStruxure™ControlExpert, 操作模式）实时显示所选模块的每个通道的值和状态。它还允许访问通道命令（强制输入值或输出值，重新激活输出等）。

示意图

下图显示了一个示例调试屏幕。
调试

说明

下表显示“调试”屏幕的各个部分及其功能。

<table>
<thead>
<tr>
<th>编号</th>
<th>元素</th>
<th>功能</th>
</tr>
</thead>
</table>
| 1 | 选项卡 | 前端的选项卡指示当前模式（此示例中为调试）。使用各选项卡可以选择相应的模式。
- **调试**，只能在线模式下访问
- 配置 |
| 2 | 模块区域 | 包含模块的缩写标题。
在各个区域中，包含 3 个指示模块操作模式的 LED：
- **RUN**，指示模块的操作状态
- **ERR**，指示模块中的内部事件
- **I/O**，指示模块外部事件或应用问题 |
| 3 | 通道区域 | 允许您：
- 通过单击参考号，显示选项卡：
 - **描述**，提供设备的特征
 - **I/O** 对象（参见 EcoStruxure™ Control Expert, 操作模式），用来预先用符号表示输入/输出对象
 - **故障**，显示设备状态（在线模式）
- 选择通道
- 显示符号，即用户使用变量编辑器定义的通道名 |
| 4 | 常规参数区域 | 指定通道的参数：
- **功能**：指定配置的功能。此标题不可更改。**全局取消强制**按钮用于直接访问通道的全局取消强制功能。
- **任务**：指定配置的 MAST 或 FAST 任务。此标题不可更改。 |
| 5 | 正在运行的参数字段 | 此字段显示输入和输出的状态以及各种当前参数。
- **符号**显示通道关联的符号（当通道已由用户使用变量编辑器定义时）
- **值**显示模块的每个通道的状态
- **错误**：在通道出现故障（由内置于诊断访问中的 LED 指示，该 LED 将变红）时，可用来直接对每个通道进行诊断 |
如何访问强制/取消强制功能

概览

使用此功能可以修改模块的全部或部分通道的状态。

注意：被强制的输出其状态是冻结的，只能在取消强制之后由应用程序进行修改。但如果因检测到错误而引起输出故障预置，则这些输出的状态会假设在配置故障预置模式（参见第338页）中定义了相应值。

可用的各种命令如下：
- 对于一个或多个通道：
 - 强制为 1
 - 强制为 0
 - 取消强制（在强制所选的一个或多个通道后）
- 对于模块中的所有通道（在强制至少一个通道后）：
 - 全局取消强制通道

过程

下表显示强制或取消强制模块的全部或部分通道的步骤。

<table>
<thead>
<tr>
<th>步骤</th>
<th>适用于一个通道的操作</th>
<th>适用于所有通道的操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>访问模块的调试屏幕。</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>在值一列中，右键单击所需通道的单元格。</td>
<td>单击常规参数字段中的全局取消强制按钮。</td>
</tr>
<tr>
<td>3</td>
<td>选择所需的功能：</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 强制为 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 强制为 1</td>
<td></td>
</tr>
</tbody>
</table>
如何访问 SET 和 RESET 命令

概述

这些命令用于将模块输出的状态更改为 0 (RESET) 或 1 (SET)。

注意：受这些命令之一影响的输出状态是暂时的，在 PLC 处于运行时可以由应用程序随时修改。

过程

下表显示将值 0 或 1 分配给模块的全部或部分通道的步骤。

<table>
<thead>
<tr>
<th>步骤</th>
<th>适用于一个通道的操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>访问模块的调试屏幕。</td>
</tr>
<tr>
<td>2</td>
<td>在值列中，右键单击所需通道的单元格。</td>
</tr>
<tr>
<td>3</td>
<td>选择所需的功能。</td>
</tr>
<tr>
<td></td>
<td>• 设置</td>
</tr>
<tr>
<td></td>
<td>• 复位</td>
</tr>
</tbody>
</table>
如何访问重新激活输出命令

概览
当事件导致跳闸输出时，可以使用此命令重新激活输出（如果其端子上已没有错误）。
复位是由 8 通道组定义的。它对停用通道或没有检测到错误的通道没有影响。

过程
下表显示重新激活跳闸输出的步骤。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>访问模块的调试屏幕。</td>
</tr>
<tr>
<td>2</td>
<td>对于所选的通道组，单击常规参数字段中的复位按钮。</td>
</tr>
</tbody>
</table>
离散量模块应用的输出

概览

此项检查（红色停止 LED 亮起）向用户通知 PLC 没有正确应用给定的一组输出通道（故障预置状态）。

可能的原因为：
- 处理器错误
- 机架连接错误
- 机架间链路连接错误
第35章
模块诊断

本节主题
本节描述应用专用离散量模块实现过程中的诊断环节。

本章包含了哪些内容？
本章包含了以下主题：

<table>
<thead>
<tr>
<th>主题</th>
<th>页</th>
</tr>
</thead>
<tbody>
<tr>
<td>如何访问诊断功能</td>
<td>370</td>
</tr>
<tr>
<td>如何访问离散量模块的通道诊断功能</td>
<td>372</td>
</tr>
</tbody>
</table>
如何访问诊断功能

概览

模块诊断功能显示当前的错误和出现这些错误的位置，并根据类别对故障分类。

- **内部事件**:
 - 模块无法操作
 - 自检运行

- **外部事件**

- **其他事件**:
 - 配置错误
 - 模块缺失或关闭
 - 故障通道

当特定的 LED 变红时，指示模块状态，例如：

- 在机架级的配置编辑器中：
 - 机架编号的 LED
 - 机架上模块的插槽编号的 LED

- 在模块级的配置编辑器中：
 - 按照事件类型的 I/O LED
 - 通道字段中的通道 LED
 - 故障选项卡
下表说明访问模块状态屏幕的过程。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>访问模块的调试屏幕。</td>
</tr>
</tbody>
</table>
| 2 | 单击通道区域中的模块参考，然后选择 故障 命令。
结果：将出现模块错误列表。 |

图示：

附注：如果发生配置错误、主要中断错误或模块缺失错误，则不能访问模块诊断屏幕。此时屏幕上显示以下消息：模块不存在或与此位置配置的模块不同。
如何访问离散量模块的通道诊断功能

概览
通道诊断功能显示当前错误和出现这些错误的位置。并根据类别对故障分类：

- 内部事件：
 - 故障通道
- 外部事件：
 - 链路或传感器电源故障
- 其他事件：
 - 端子块接线错误
 - 配置错误
 - 通讯中断

当错误列中的 LED 变红时，调试选项卡中将出现通道错误。

过程
下表说明访问通道错误屏幕的过程。

<table>
<thead>
<tr>
<th>步骤</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>访问模块的调试屏幕。</td>
</tr>
<tr>
<td>2</td>
<td>1. 单击位于故障通道的错误列中的按钮。
2. 结果：将出现通道错误列表。
3. 品牌：正常
4. 内部错误
5. 外部错误
6. 其他错误
7. 正常
注：还可以通过程序使用 READ_STS 指令访问通道诊断信息。</td>
</tr>
</tbody>
</table>
附录
ModiconX80 离散量模块的拓扑/状态 RAM 寻址

离散量模块

使用 2.4 或更高版本的固件，可以通过拓扑地址或状态 RAM 地址访问这些模块。另请参阅 “存储器”选项卡 (参见 EcoStruxure™ Control Expert, 操作模式)。

下表显示可以映射到拓扑或状态 RAM 地址的 Modicon X80 离散量模块对象。

<table>
<thead>
<tr>
<th>模块型号</th>
<th>拓扑地址</th>
<th>状态 RAM 地址</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMX DAI 0805</td>
<td>%I 机架.插槽.通道, 通道 [0,7]</td>
<td>%I起始地址...%I起始地址 + 7, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAI 0814</td>
<td>%I 机架.插槽.通道, 通道 [0,7]</td>
<td>%I起始地址...%I起始地址 + 7, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAI 1602</td>
<td>%I 机架.插槽.通道, 通道 [0,15]</td>
<td>%I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAI 1603</td>
<td>%I 机架.插槽.通道, 通道 [0,15]</td>
<td>%I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAI 1604</td>
<td>%I 机架.插槽.通道, 通道 [0,15]</td>
<td>%I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAI 0804</td>
<td>%I 机架.插槽.通道, 通道 [0,7]</td>
<td>%I起始地址...%I起始地址 + 7, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAI 1614</td>
<td>%I 机架.插槽.通道, 通道 [0,15]</td>
<td>%I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAI 1615</td>
<td>%I 机架.插槽.通道, 通道 [0,15]</td>
<td>%I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DAO 1605</td>
<td>%Q 机架.插槽.通道, 通道 [0,15]</td>
<td>%M起始地址...%M起始地址 + 15, 每个 %M 一个通道 或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DAO 1615</td>
<td>%Q 机架.插槽.通道, 通道 [0,15]</td>
<td>%M起始地址...%M起始地址 + 15, 每个 %M 一个通道 或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DAO 0805</td>
<td>%Q 机架.插槽.通道, 通道 [0,7]</td>
<td>%M起始地址...%M起始地址 + 7, 每个 %M 一个通道 或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>模块型号</td>
<td>拓扑地址</td>
<td>状态 RAM 地址</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>BMX DDI 1602</td>
<td>%I 机架.插槽.通道.通道 [0,15] %Q 机架.插槽.通道.通道 [16,23]</td>
<td>- %I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 - %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DDI 1603</td>
<td>%I 机架.插槽.通道.通道 [0,15] %Q 机架.插槽.通道.通道 [16,23]</td>
<td>- %I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 - %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DDI 1604</td>
<td>%I 机架.插槽.通道.通道 [0,15] %Q 机架.插槽.通道.通道 [16,23]</td>
<td>- %I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 - %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DDI 0804</td>
<td>%I 机架.插槽.通道.通道 [0,7] %Q 机架.插槽.通道.通道 [16,23]</td>
<td>- %I起始地址...%I起始地址 + 7, 每个 %I 一个通道 或 - %IW起始地址, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DDI 3202K</td>
<td>%I 机架.插槽.通道.通道 [0,31] %Q 机架.插槽.通道.通道 [16,31]</td>
<td>- %I起始地址...%I起始地址 + 31, 每个 %I 一个通道 或 - %IW起始地址...%IW起始地址 + 1, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DDI 6402K</td>
<td>%I 机架.插槽.通道.通道 [0,63] %Q 机架.插槽.通道.通道 [16,63]</td>
<td>- %I起始地址...%I起始地址 + 63, 每个 %I 一个通道 或 - %IW起始地址...%IW起始地址 + 3, 每个 %IW 位一个通道</td>
</tr>
<tr>
<td>BMX DDM 16022</td>
<td>%I 机架.插槽.通道.通道 [0,7] %Q 机架.插槽.通道.通道 [16,23]</td>
<td>- %I起始地址...%I起始地址 + 7, 每个 %I 一个通道 或 - %M起始地址...%M起始地址 + 7, 每个 %M 一个通道 或 - %IW起始地址, 每个 %IW 位一个通道 或 - %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DDM 16025</td>
<td>%I 机架.插槽.通道.通道 [0,7] %Q 机架.插槽.通道.通道 [16,23]</td>
<td>- %I起始地址...%I起始地址 + 7, 每个 %I 一个通道 或 - %M起始地址...%M起始地址 + 7, 每个 %M 一个通道 或 - %IW起始地址, 每个 %IW 位一个通道 或 - %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DDM 3202K</td>
<td>%I 机架.插槽.通道.通道 [0,15] %Q 机架.插槽.通道.通道 [16,31]</td>
<td>- %I起始地址...%I起始地址 + 15, 每个 %I 一个通道 或 - %M起始地址...%M起始地址 + 15, 每个 %M 一个通道 或 - %IW起始地址, 每个 %IW 位一个通道, 和 - %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DDO 1602</td>
<td>%Q 机架.插槽.通道.通道 [0,15]</td>
<td>- %M起始地址...%M起始地址 + 15, 每个 %M 一个通道 或 - %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>模块型号</td>
<td>拓扑地址</td>
<td>状态 RAM 地址</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>BMX DDO 1612</td>
<td>%Q 机架,插槽,通道,通道 [0,15]</td>
<td>%M起始地址...%M起始地址 + 15, 每个 %M 一个通道或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DDO 3202 K</td>
<td>%Q 机架,插槽,通道,通道 [0,31]</td>
<td>%M起始地址...%M起始地址 + 31, 每个 %M 一个通道或 %MW起始地址...%MW起始地址 + 1, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DDO 6402 K</td>
<td>%Q 机架,插槽,通道,通道 [0,63]</td>
<td>%M起始地址...%M起始地址 + 63, 每个 %M 一个通道或 %MW起始地址...%MW起始地址 + 3, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DRA 0804</td>
<td>%Q 机架,插槽,通道,通道 [0,7]</td>
<td>%M起始地址...%M起始地址 + 7, 每个 %M 一个通道或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DRA 0805</td>
<td>%Q 机架,插槽,通道,通道 [0,7]</td>
<td>%M起始地址...%M起始地址 + 7, 每个 %M 一个通道或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DRA 0815</td>
<td>%Q 机架,插槽,通道,通道 [0,7]</td>
<td>%M起始地址...%M起始地址 + 7, 每个 %M 一个通道或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DRC 0805</td>
<td>%Q 机架,插槽,通道,通道 [0,7]</td>
<td>%M起始地址...%M起始地址 + 7, 每个 %M 一个通道或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
<tr>
<td>BMX DRA 1605</td>
<td>%Q 机架,插槽,通道,通道 [0,15]</td>
<td>%M起始地址...%M起始地址 + 15, 每个 %M 一个通道或 %MW起始地址, 每个 %MW 位一个通道</td>
</tr>
</tbody>
</table>

有关其他信息，请参阅 Compact I/O 模块的特殊转换（参见 EcoStruxure™ Control Expert, Concept 应用程序转换器, 用户手册)。
术语

离散量模块
离散量输入/输出

通道组
具有共同参数的同类型通道。此概念涉及某些针对特定应用的模块，如离散量模块。

CPU
中央处理单元：Schneider Electric 处理器的通用名称。

DDT
导出的数据类型（具有相同类型（array）或不同类型（结构）的一组元素）。

IODDT
从输入/输出量导出的数据类型（输入/输出量导出的数据类型）。

IP20
所有设备标签上存在此索引。它说明设备的保护等级：
- 防止固体和灰尘进入，防止接触通电零件（在我们的应用中，IP2•：针对大于 12 毫米的固定提供保护）；
- 防止液体渗入（在我们的应用中，IP•0：可忽略水的存在）。

PLC
控制工业过程的专用计算机类型（可编程逻辑控制器）

TELEFAST 2
启用要快速连接操作组件的离散量输入和输出模块的一组产品。此系统由接口连接主体和连接电缆构成，仅可与配备有 40 针连接器的模块相连。
<table>
<thead>
<tr>
<th>索引</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE-7H08R10, 290</td>
<td>BMXDDM3202K, 266</td>
<td></td>
</tr>
<tr>
<td>ABE-7H08R11, 290</td>
<td>BMXDDO1602, 172</td>
<td></td>
</tr>
<tr>
<td>ABE-7H08R21, 294</td>
<td>BMXDDO1612, 178</td>
<td></td>
</tr>
<tr>
<td>ABE-7H08S21, 296</td>
<td>BMXDDO3202K, 220</td>
<td></td>
</tr>
<tr>
<td>ABE-7H12R10, 292</td>
<td>BMXDDO6402K, 226</td>
<td></td>
</tr>
<tr>
<td>ABE-7H12R11, 292</td>
<td>BMXDRA0804T, 184</td>
<td></td>
</tr>
<tr>
<td>ABE-7H12R20, 296</td>
<td>BMXDRA0805, 190</td>
<td></td>
</tr>
<tr>
<td>ABE-7H12R21, 296</td>
<td>BMXDRA0815, 198</td>
<td></td>
</tr>
<tr>
<td>ABE-7H12R50, 304</td>
<td>BMXDRA1605, 206</td>
<td></td>
</tr>
<tr>
<td>ABE-7H12S21, 300</td>
<td>BMXRC0805, 212</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16F43, 308</td>
<td>BMXFTB2000, 56</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R10, 290</td>
<td>BMXFTB2010, 56</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R11, 290</td>
<td>BMXFTB2020, 56</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R20, 294</td>
<td>BMXFTB4000, 60</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R21, 294</td>
<td>BMXFTB4000H, 60</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R23, 294</td>
<td>BMXFTB4020, 60</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R30, 302</td>
<td>BMXFTB4020H, 60</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R31, 302</td>
<td>MOD_FLT, 380</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16R50, 306</td>
<td>T_DIS_IN_GEN, 345</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16S21, 298</td>
<td>T_DIS_IN_STD, 346, 347</td>
<td></td>
</tr>
<tr>
<td>ABE-7H16S43, 310</td>
<td>T_DIS_OUT_GEN, 349</td>
<td></td>
</tr>
<tr>
<td>ABR-7xxx 继电器，318</td>
<td>T_DIS_OUT_STD, 350, 351</td>
<td></td>
</tr>
<tr>
<td>ABS-7Exx 继电器，319</td>
<td>T_GEN_MOD, 353</td>
<td></td>
</tr>
<tr>
<td>BMX FTW ••1 连接线 . 59</td>
<td>T_U_DIS_STD_IN_16, 356</td>
<td></td>
</tr>
<tr>
<td>BMX FTW ••5 连接电缆，65</td>
<td>T_U_DIS_STD_IN_16_OUT_16, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDA0805, 148</td>
<td>T_U_DIS_STD_IN_32, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDA0814, 154</td>
<td>T_U_DIS_STD_IN_64, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDA1602, 112</td>
<td>T_U_DIS_STD_IN_8, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDA1603, 120</td>
<td>T_U_DIS_STD_IN_8_OUT_8, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDA1604, 126</td>
<td>T_U_DIS_STD_OUT_16, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDA1614, 132</td>
<td>T_U_DIS_STD_OUT_32, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDA1615, 140</td>
<td>T_U_DIS_STD_OUT_64, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDAO1605, 232</td>
<td>T_U_DIS_STD_OUT_8, 356</td>
<td></td>
</tr>
<tr>
<td>BMXDAO1615, 238</td>
<td>TELEFAST 2, 273</td>
<td></td>
</tr>
<tr>
<td>BMXDD1602, 92</td>
<td>X80 离散量模块的拓扑/状态 RAM 寻址, 375</td>
<td></td>
</tr>
<tr>
<td>BMXDD1603, 98</td>
<td>X80 离散量模块的状态 RAM/拓扑寻址, 375</td>
<td></td>
</tr>
<tr>
<td>BMXDD1604T, 104</td>
<td>任务参数, 336</td>
<td></td>
</tr>
<tr>
<td>BMXDD3202K，160</td>
<td>仿真器, 323</td>
<td></td>
</tr>
<tr>
<td>BMXDD6402K，166</td>
<td>参数设置, 341, 342</td>
<td></td>
</tr>
<tr>
<td>BMXDM16022, 246</td>
<td>复位, 366</td>
<td></td>
</tr>
<tr>
<td>BMXDM16025, 256</td>
<td>应用的输出, 368</td>
<td></td>
</tr>
</tbody>
</table>
强制, 365
所有模块的通道数据结构
 T_DIS_IN_STD, 347
 T_DIS_OUT_STD, 351
接线注意事项, 52
故障预置模式, 338
标准, 35
温度降级, 33
用于所有模块的通道数据结构
 T_DIS_IN_GEN, 345
 T_DIS_IN_STD, 346
 T_DIS_OUT_GEN, 349
 T_DIS_OUT_STD, 350
 T_GEN_MOD, 353
端子块
 BMXFTB4000, 60
 BMXFTB4000H, 60
 BMXFTB4020, 60
 BMXFTB4020H, 60
 安装, 37, 38, 60, 67, 72
端子板
 BMXFTB2000, 56
 BMXFTB2010, 56
 BMXFTB2020, 56
 安装, 56
继电器, 312, 320
认证, 35
设置, 366
诊断, 369, 372
调试, 361
输入参数, 332
输出参数, 333
输出复位, 339
连接基板, 273
连接电缆
 BMXFCCxxx, 72
 BMXFCWxxx, 67
重新激活输出, 367