# Quantum mit EcoStruxure™ Control Expert

Digitale und analoge E/A Referenzhandbuch

Übersetzung der Originalbetriebsanleitung

09/2020



Die Informationen in der vorliegenden Dokumentation enthalten allgemeine Beschreibungen und/oder technische Leistungsmerkmale der hier erwähnten Produkte. Diese Dokumentation dient keinesfalls als Ersatz für die Ermittlung der Eignung oder Verlässlichkeit dieser Produkte für bestimmte Verwendungsbereiche des Benutzers und darf nicht zu diesem Zweck verwendet werden. Jeder Benutzer oder Integrator ist verpflichtet, angemessene und vollständige Risikoanalysen, Bewertungen und Tests der Produkte im Hinblick auf deren jeweils spezifischen Verwendungszweck vorzunehmen. Weder Schneider Electric noch deren Tochtergesellschaften oder verbundene Unternehmen sind für einen Missbrauch der Informationen in der vorliegenden Dokumentation verantwortlich oder können diesbezüglich haftbar gemacht werden. Verbesserungs- und Änderungsvorschlage sowie Hinweise auf angetroffene Fehler werden jederzeit gern entgegengenommen.

Sie erklären, dass Sie ohne schriftliche Genehmigung von Schneider Electric dieses Dokument weder ganz noch teilweise auf beliebigen Medien reproduzieren werden, ausgenommen zur Verwendung für persönliche nichtkommerzielle Zwecke. Darüber hinaus erklären Sie, dass Sie keine Hypertext-Links zu diesem Dokument oder seinem Inhalt einrichten werden. Schneider Electric gewährt keine Berechtigung oder Lizenz für die persönliche und nichtkommerzielle Verwendung dieses Dokument oder seines Inhalts, ausgenommen die nichtexklusive Lizenz zur Nutzung als Referenz. Das Handbuch wird hierfür "wie besehen" bereitgestellt, die Nutzung erfolgt auf eigene Gefahr. Alle weiteren Rechte sind vorbehalten.

Bei der Montage und Verwendung dieses Produkts sind alle zutreffenden staatlichen, landesspezifischen, regionalen und lokalen Sicherheitsbestimmungen zu beachten. Aus Sicherheitsgründen und um die Übereinstimmung mit dokumentierten Systemdaten besser zu gewährleisten, sollten Reparaturen an Komponenten nur vom Hersteller vorgenommen werden.

Beim Einsatz von Geräten für Anwendungen mit technischen Sicherheitsanforderungen sind die relevanten Anweisungen zu beachten.

Die Verwendung anderer Software als der Schneider Electric-eigenen bzw. einer von Schneider Electric genehmigten Software in Verbindung mit den Hardwareprodukten von Schneider Electric kann Körperverletzung, Schäden oder einen fehlerhaften Betrieb zur Folge haben.

Die Nichtbeachtung dieser Informationen kann Verletzungen oder Materialschäden zur Folge haben!

© 2020 Schneider Electric. Alle Rechte vorbehalten.

# Inhaltsverzeichnis



|           | Sicherheitshinweise                                                     |
|-----------|-------------------------------------------------------------------------|
| Teil I    | Allgemeine Informationen                                                |
| Kapitel 1 | Modulkonfiguration                                                      |
|           | Zuordnung einer lokalen Quantum E/A-Station                             |
|           | Öffnen der Parameterkonfiguration                                       |
| Kapitel 2 | Quantum-Adressierungsmodi2Flat-Adressierung – E/A-Module der Serie 8002 |
|           | Topologische Adressierung – E/A-Module der Serie 800 mit Control Expert |
|           | IODDT-Adressierung                                                      |
|           | Quantum-IODDTs                                                          |
|           | Beispiel für Adressierung                                               |
|           | Digitale E/A-Bit-Nummerierung                                           |
|           | Statusbyte für E/A-Modul                                                |
|           | E/A-Konfiguration für digitale Eingangsmodule                           |
|           | E/A-Konfiguration für digitale Ausgangsmodule                           |
|           | E/A-Konfiguration für digitale Eingangs-/Ausgangsmodule5                |
| Kapitel 3 | Allgemeine Regeln zum Befestigen von Klemmenblöcken                     |
|           | für digitale und analoge Eingangs-/Ausgangsmodule 5                     |
|           | Befestigen von Anschlussblöcken für digitale und analoge Eingangs-      |
| T-31 II   | /Ausgangsmodule:                                                        |
| Teil II   | Analogeingangsmodule                                                    |
| Kapitel 4 | 140 ACI 030 00: Analoges Strom-                                         |
|           | /Spannungseingangsmodul                                                 |
|           | Einführung                                                              |
|           | Anzeigen                                                                |
|           | Verdrahtungsschema                                                      |
|           | Kenndaten                                                               |
|           | Adressierung                                                            |
|           | Parameterkonfiguration                                                  |

35010518 09/2020

35010518 09/2020

| Teil III   | Analogausgangsmodule                          | 127 |
|------------|-----------------------------------------------|-----|
| Kapitel 9  | 140 ACO 020 00: Analoges Stromausgangsmodul   | 129 |
|            | Beschreibung                                  | 130 |
|            | Anzeigen                                      | 131 |
|            | Verdrahtungsschema                            | 132 |
|            | Technische Daten                              | 135 |
|            | Adressierung                                  | 137 |
|            | Parameterkonfiguration                        | 138 |
| Kapitel 10 | 140 ACO 130 00: Analoges Strom-/Spannungs-    |     |
|            | ausgangs-Kombimodul                           | 139 |
|            | Beschreibung                                  | 140 |
|            | Anzeigen                                      | 141 |
|            | Verdrahtungsschema                            | 142 |
|            | Technische Daten                              | 144 |
|            | Adressierung                                  | 146 |
|            | Parameterkonfiguration                        | 147 |
| Kapitel 11 | 140 AVO 020 00: Analoges Spannungsausgangs-   |     |
|            | Kombimodul                                    | 149 |
|            | Beschreibung                                  | 150 |
|            | Anzeigen                                      | 151 |
|            | Verdrahtungsschema                            | 152 |
|            | Technische Daten                              | 155 |
|            | Adressierung                                  | 157 |
|            | Parameterkonfiguration                        | 158 |
| Teil IV    |                                               | 161 |
| Kapitel 12 | 140 AMM 090 00: Analoges Strom-/Spannungsein- |     |
|            | /Ausgangs-Kombimodul                          | 163 |
|            | Einführung                                    | 164 |
|            | Anzeigen                                      | 165 |
|            | Verdrahtungsschema                            | 166 |
|            | Kenndaten                                     | 170 |
|            | Adressierung                                  | 175 |
|            | Parameterkonfiguration                        | 178 |
| Teil V     | Digitaleingangsmodule                         | 181 |
| Kapitel 13 | Allgemeine Informationen                      | 183 |
|            | Digitale E/A-Logikschaltkreise                | 183 |

| Kapitel 14 |                                                     |
|------------|-----------------------------------------------------|
|            | Logik                                               |
|            | Anzeigen                                            |
|            | Verdrahtungsschema                                  |
|            | Technische Daten                                    |
|            | Parameterkonfiguration                              |
| Kapitel 15 | 140 DDI 353 00: Eingangsmodul 24 VDC 4x8 positive   |
| Napitei 13 | Logik                                               |
|            | Beschreibung                                        |
|            | Anzeigen                                            |
|            | Verdrahtungsschema                                  |
|            | Technische Daten                                    |
|            | Parameterkonfiguration                              |
| Kapitel 16 | 140 DDI 353 10: Eingangsmodul 24 VDC 4x8 negative   |
| raphor ro  | Logik                                               |
|            | Überblick                                           |
|            | Anzeigen                                            |
|            | Verdrahtungsschema                                  |
|            | Technische Daten                                    |
|            | Parameterkonfiguration                              |
| Kapitel 17 | 140 DDI 364 00: Telefast Eingangsmodul, 24 VDC 6x16 |
| •          | Überblick                                           |
|            | Anzeigen                                            |
|            | Farbcodes                                           |
|            | Technische Daten                                    |
|            | Parameterkonfiguration                              |
| Kapitel 18 | 140 DDI 673 00: Eingangsmodul 125 VDC 3x8 positive  |
| -          | Logik                                               |
|            | Beschreibung                                        |
|            | Anzeigen                                            |
|            | Verdrahtungsschema                                  |
|            | Technische Daten                                    |
|            | Parameterkonfiguration                              |

35010518 09/2020

| Kapitel 19 | 140 DDI 841 00: Eingangsmodul 10 - 60 VDC<br>8x2 positive Logik | 227 |
|------------|-----------------------------------------------------------------|-----|
|            | Beschreibung                                                    | 228 |
|            | Anzeigen                                                        | 229 |
|            | Verdrahtungsschema                                              | 230 |
|            | Technische Daten                                                | 232 |
|            | Parameterkonfiguration                                          | 234 |
| Kapitel 20 | 140 DDI 853 00: Eingangsmodul 10 - 60 VDC                       | 204 |
| Rapitor 20 | 4x8 positive Logik                                              | 235 |
|            | Beschreibung                                                    | 236 |
|            | Anzeigen                                                        | 237 |
|            | Verdrahtungsschema                                              | 238 |
|            | Kenndaten                                                       | 240 |
|            | Parameterkonfiguration                                          | 242 |
| Kapitel 21 | 140 DAI 340 00: Eingangsmodul 24 VAC 16x1                       | 243 |
|            | Beschreibung                                                    | 244 |
|            | Anzeigen                                                        | 245 |
|            | Verdrahtungsschema                                              | 246 |
|            | Technische Daten                                                | 248 |
|            | Parameterkonfiguration                                          | 250 |
| Kapitel 22 | 140 DAI 353 00: Eingangsmodul 24 VAC 4x8                        | 251 |
| •          | Beschreibung                                                    | 252 |
|            | Anzeigen                                                        | 253 |
|            | Verdrahtungsschema                                              | 254 |
|            | Technische Daten                                                | 256 |
|            | Parameterkonfiguration                                          | 258 |
| Kapitel 23 | 140 DAI 440 00: Eingangsmodul 48 VAC 16x1                       | 259 |
|            | Beschreibung                                                    | 260 |
|            | Anzeigen                                                        | 261 |
|            | Verdrahtungsschema                                              | 262 |
|            | Technische Daten                                                | 264 |
|            | Parameterkonfiguration                                          | 266 |
| Kapitel 24 | 140 DAI 453 00: Eingangsmodul 48 VAC 4x8                        | 267 |
|            | Beschreibung                                                    | 268 |
|            | Anzeigen                                                        | 269 |
|            | Verdrahtungsschema                                              | 270 |
|            | Technische Daten                                                | 272 |
|            | Parameterkonfiguration                                          | 274 |

| Kapitel 25 | 140 DAI 540 00: Eingangsmodul 115 VAC 16x1       | 2 |
|------------|--------------------------------------------------|---|
|            | Beschreibung                                     | 2 |
|            | Anzeigen                                         | 2 |
|            | Verdrahtungsschema                               | 2 |
|            | Technische Daten                                 | 2 |
|            | Parameterkonfiguration                           | 2 |
| Kapitel 26 | 140 DAI 543 00: Eingangsmodul VAC 2x8            | 2 |
| •          | Beschreibung                                     | 2 |
|            | Anzeigen                                         | 2 |
|            | Verdrahtungsschema                               | 2 |
|            | Technische Daten                                 | 2 |
|            | Parameterkonfiguration                           | 2 |
| Kapitel 27 | 140 DAI 553 00: Eingangsmodul 115 VAC 4x8        | 2 |
| raphor 27  | Beschreibung                                     | 2 |
|            | Anzeigen                                         | 2 |
|            | Verdrahtungsschema                               | 2 |
|            | Technische Daten                                 | 2 |
|            | Parameterkonfiguration                           | 2 |
| Kapitel 28 | 140 DAI 740 00: Eingangsmodul 230 VAC 16x1       | 2 |
| Napitei 20 | Beschreibung                                     | 3 |
|            | Anzeigen                                         | 3 |
|            | Verdrahtungsschema                               |   |
|            | <u> </u>                                         | 3 |
|            | Technische Daten                                 | 3 |
|            | Parameterkonfiguration                           | 3 |
| Kapitel 29 | 140 DAI 753 00: Eingangsmodul 230 VAC 4x8        | 3 |
|            | Beschreibung                                     | 3 |
|            | Anzeigen                                         | 3 |
|            | Verdrahtungsschema                               | 3 |
|            | Kenndaten                                        | 3 |
|            | Parameterkonfiguration                           | 3 |
| Kapitel 30 | 140 DSI 353 00: Überwachtes Eingangsmodul 24 VDC |   |
|            | 2x16                                             | 3 |
|            | Beschreibung                                     | 3 |
|            | Anzeigen                                         | 3 |
|            | Verdrahtungsschema                               | 3 |
|            | Technische Daten                                 | 3 |
|            | Adressierung                                     | 3 |
|            | Parameterkonfiguration                           | 3 |

| Teil VI    | Digitalausgangsmodule                             | 3 |
|------------|---------------------------------------------------|---|
| Kapitel 31 | Allgemeine Informationen                          | 3 |
| •          | Digitale E/A-Logikschaltkreise                    | 3 |
| Kapitel 32 | 140 DDO 153 10: Ausgangsmodul 5 VDC 4x8 negative  |   |
|            | Logik                                             |   |
|            | Beschreibung                                      |   |
|            | Anzeigen                                          | • |
|            | Verdrahtungsschema                                | , |
|            | Kenndaten                                         | , |
|            | Maintenance (Wartung)                             | ; |
|            | 140 DDO 153 10 - Parameterkonfiguration           | ; |
| Kapitel 33 | 140 DDO 353 00: Ausgangsmodul 24 VDC 4x8 positive |   |
|            | Logik                                             | ; |
|            | Überblick                                         | ; |
|            | Anzeigen                                          | ; |
|            | Verdrahtungsschema                                | : |
|            | Technische Daten                                  | : |
|            | 140 DDO 353 00 - Parameterkonfiguration           | ; |
| Kapitel 34 | 140 DDO 353 01: Ausgangsmodul 24 VDC 4x8 positive | • |
| Napitei 34 | Logik                                             | ; |
|            | Überblick                                         | , |
|            | Anzeigen                                          | , |
|            | Verdrahtungsschema                                | ; |
|            | Kenndaten                                         |   |
|            | Maintenance (Wartung)                             |   |
|            | 140 DDO 353 01 - Parameterkonfiguration           |   |
| Kapitel 35 | 140 DDO 353 10: Ausgangsmodul 24 VDC 4x8 negative |   |
| р          | Logik                                             |   |
|            | Überblick                                         |   |
|            | Anzeigen                                          |   |
|            | Verdrahtungsschema                                |   |
|            | Technische Daten                                  |   |
|            | Maintenance (Wartung)                             |   |
|            | 140 DDO 353 10 - Parameterkonfiguration           |   |

| Kapitel 36 | 140 DDO 364 00: Telefast Ausgangsmodul 24 VDC 6x16 Überblick | 3 |
|------------|--------------------------------------------------------------|---|
|            | Anzeigen                                                     | 3 |
|            | 140 DDO 364 00 Farbcodes der Kabel                           | 3 |
|            | Technische Daten                                             | 3 |
|            | 140 DDO 364 00 - Parameterkonfiguration                      | 3 |
| Kapitel 37 |                                                              |   |
|            | positive Logik                                               | 3 |
|            | Anzeigen                                                     | 3 |
|            | Verdrahtungsschema                                           | 3 |
|            | Technische Daten                                             | 3 |
|            | Wartung                                                      | 3 |
|            | 140 DDO 843 00 - Parameterkonfiguration                      | 3 |
| Kapitel 38 | 140 DDO 885 00: Ausgangsmodul 24 125 VDC 2x6                 |   |
| •          | positive Logik                                               | 3 |
|            | Überblick                                                    | 3 |
|            | Anzeigen                                                     | 3 |
|            | Verdrahtungsschema                                           | 3 |
|            | Kenndaten                                                    | 3 |
|            | Maintenance (Wartung)                                        | 3 |
|            | 140 DDO 885 00 - Parameterkonfiguration                      | 3 |
| Kapitel 39 | 140 DAO 840 00: Ausgangsmodul 24 230 VAC 16x1 .              | 4 |
| •          | Beschreibung                                                 | 4 |
|            | Anzeigen                                                     | 4 |
|            | Verdrahtungsschema                                           | 4 |
|            | Technische Daten                                             | 4 |
|            | 140 DAO 840 00 - Parameterkonfiguration                      | 4 |
| Kapitel 40 | 140 DAO 840 10: Ausgangsmodul 24 115 VAC 16x1 .              | 4 |
| •          | Beschreibung                                                 | 4 |
|            | Anzeigen                                                     | 4 |
|            | Verdrahtungsschema                                           | 4 |
|            | Technische Daten                                             | 4 |
|            | 140 DAO 840 10 - Parameterkonfiguration                      | 4 |

| Kapitel 41     | 140 DAO 842 10: Ausgangsmodul 100 230 VAC 4x4 Beschreibung |
|----------------|------------------------------------------------------------|
|                | Anzeigen                                                   |
|                | Verdrahtungsschema                                         |
|                | Technische Daten                                           |
|                |                                                            |
|                | Maintenance (Wartung)                                      |
| 17 11 - 1 - 40 | 140 DAO 842 10 - Parameterkonfiguration                    |
| Kapitel 42     | 140 DAO 842 20: Ausgangsmodul 24 48 VAC 4x4                |
|                | Beschreibung                                               |
|                | Anzeigen                                                   |
|                | Verdrahtungsschema                                         |
|                | Kenndaten                                                  |
|                | Maintenance (Wartung)                                      |
|                | 140 DAO 842 20 - Parameterkonfiguration                    |
| Kapitel 43     | 140 DAO 853 00: Ausgangsmodul 230 VAC 4x8 negative         |
|                | Logik                                                      |
|                | Beschreibung                                               |
|                | Anzeigen                                                   |
|                | Verdrahtungsschema                                         |
|                | Kenndaten                                                  |
|                | Maintenance (Wartung)                                      |
|                | 140 DAO 853 00 - Parameterkonfiguration                    |
| Kapitel 44     | 140 DRA 840 00: Relaisausgang-16x1-Schließermodul          |
|                | Beschreibung                                               |
|                | Anzeigen                                                   |
|                | Verdrahtungsschema                                         |
|                | Technische Daten                                           |
|                | 140 DRA 840 00 - Parameterkonfiguration                    |
| Kapitel 45     | 140 DRC 830 00: Ausgangsmodul Relais                       |
| •              | 8x1 Schließer/Öffner                                       |
|                | Überblick                                                  |
|                | Anzeigen                                                   |
|                | Verdrahtungsschema                                         |
|                | Kenndaten                                                  |
|                | 140 DRC 830 00 - Parameterkonfiguration                    |

| Kapitel 46 | 140 DVO 853 00: Ausgangsmodul mit Ausgangsüber-   |
|------------|---------------------------------------------------|
|            | wachung 10 30 VDC 32x1                            |
|            | Überblick                                         |
|            | Anzeigen                                          |
|            | Verdrahtungsschema                                |
|            | Kenndaten                                         |
|            | Maintenance (Wartung)                             |
|            | Adressierung                                      |
|            | Parameterkonfiguration                            |
| Teil VII   | Digitalein-/-ausgangsmodule                       |
| Kapitel 47 | Allgemeine Informationen                          |
| •          | Digitale E/A-Logikschaltkreise                    |
| Kapitel 48 | 140 DDM 390 00: Modul 24 VDC 2x8 stromaufnehmende |
| •          | Eingänge / 2x4 stromliefernde Ausgänge            |
|            | Überblick                                         |
|            | Anzeigen                                          |
|            | Lage der RIO-Station                              |
|            | Verdrahtungsschema                                |
|            | Kenndaten                                         |
|            | Maintenance (Wartung)                             |
|            | 140 DDM 390 00 - Parameterkonfiguration           |
| Kapitel 49 | 140 DDM 690 00: 125 VDC Hochstrom-Ein-            |
| rapitor 10 | /Ausgangsmodul                                    |
|            | Beschreibung                                      |
|            | Anzeigen                                          |
|            | Verdrahtungsschema                                |
|            | Technische Daten                                  |
|            | 140 DDM 690 00 - Parameterkonfiguration           |
| Kapitel 50 | 140 DAM 590 00: Modul 115 VAC 2x8 Eingänge /      |
| Kapitei 50 | 2x4 Ausgänge                                      |
|            | Beschreibung                                      |
|            | Anzeigen                                          |
|            | Lage der RIO-Station                              |
|            | Verdrahtungsschema                                |
|            | -                                                 |
|            | Kenndaten                                         |
|            | Maintenance (Wartung)                             |
|            | 140 DAM 590 00 - Parameterkonfiguration           |

| Teil VIII  | , , , , ,                                        |
|------------|--------------------------------------------------|
| Kapitel 51 | Allgemeine Informationen                         |
|            | Zweck und Betrachtungen                          |
|            | Verdrahtungsmethoden                             |
| Kapitel 52 | 140 All 330 00: Sicheres analoges Eingangsmodul  |
|            | Beschreibung                                     |
|            | Anzeigen                                         |
|            | Verdrahtungsschemata                             |
|            | Kenndaten                                        |
|            | Adressierung                                     |
|            | Parameterkonfiguration                           |
| Kapitel 53 | 140 All 330 10: Sicheres analoges Eingangsmodul  |
|            | Beschreibung                                     |
|            | Anzeigen                                         |
|            | Verdrahtungsschemata                             |
|            | Kenndaten                                        |
|            | Adressierung                                     |
|            | Parameterkonfiguration                           |
| Kapitel 54 | 140 AIO 330 00: Sicheres analoges Ausgangsmodul  |
|            | Beschreibung                                     |
|            | Anzeigen                                         |
|            | Verdrahtungsschemata                             |
|            | Kenndaten                                        |
|            | Adressierung                                     |
|            | Parameterkonfiguration                           |
| Kapitel 55 | 140 DII 330 00: Sicheres digitales Eingangsmodul |
|            | Beschreibung.                                    |
|            | Anzeigen                                         |
|            | Verdrahtungsschemata                             |
|            | Kenndaten                                        |
|            | Parameterkonfiguration                           |
| Kapitel 56 | 140 DIO 330 00: Sicheres digitales Ausgangsmodul |
|            | Überblick                                        |
|            | Anzeigen                                         |
|            | Verdrahtungsschemata                             |
|            | Kenndaten                                        |
|            | 140 DIO 330 00 - Parameterkonfiguration          |

| Teil IX    | Quantum-Sicherheits-E/A-Module                      | 609 |
|------------|-----------------------------------------------------|-----|
| Kapitel 57 | Allgemeine Informationen                            | 611 |
| •          | Allgemeine Informationen zu Sicherheits-E/A-Modulen | 612 |
|            | Diagnose der Sicherheits-E/A-Module                 | 613 |
| Kapitel 58 | 140 SAI 940 00S: Analoges Eingangsmodul             | 615 |
| •          | Beschreibung                                        | 616 |
|            | Anzeigen                                            | 618 |
|            | Verdrahtungsschema                                  | 619 |
|            | Technische Daten                                    | 622 |
|            | Adressierung                                        | 624 |
|            | Parameterkonfiguration                              | 627 |
| Kapitel 59 | 140 SDI 953 00S: Digitales Eingangsmodul            | 629 |
|            | Beschreibung                                        | 630 |
|            | Anzeigen                                            | 631 |
|            | Verdrahtungsschema                                  | 632 |
|            | Technische Daten                                    | 635 |
|            | Adressierung                                        | 637 |
|            | Parameterkonfiguration                              | 640 |
| Kapitel 60 | 140 SDO 953 00S: Digitales Ausgangsmodul            | 641 |
| •          | Beschreibung                                        | 642 |
|            | Anzeigen                                            | 643 |
|            | Verdrahtungsschema                                  | 644 |
|            | Technische Daten                                    | 647 |
|            | Adressierung                                        | 650 |
|            | Parameterkonfiguration                              | 656 |
| Index      |                                                     | 659 |

# Sicherheitshinweise



### Wichtige Informationen

#### **HINWEISE**

Lesen Sie sich diese Anweisungen sorgfältig durch und machen Sie sich vor Installation, Betrieb, Bedienung und Wartung mit dem Gerät vertraut. Die nachstehend aufgeführten Warnhinweise sind in der gesamten Dokumentation sowie auf dem Gerät selbst zu finden und weisen auf potenzielle Risiken und Gefahren oder bestimmte Informationen hin, die eine Vorgehensweise verdeutlichen oder vereinfachen.



Wird dieses Symbol zusätzlich zu einem Sicherheitshinweis des Typs "Gefahr" oder "Warnung" angezeigt, bedeutet das, dass die Gefahr eines elektrischen Schlags besteht und die Nichtbeachtung der Anweisungen unweigerlich Verletzung zur Folge hat.



Dies ist ein allgemeines Warnsymbol. Es macht Sie auf mögliche Verletzungsgefahren aufmerksam. Beachten Sie alle unter diesem Symbol aufgeführten Hinweise, um Verletzungen oder Unfälle mit Todesfälle zu vermeiden.

# **▲** GEFAHR

**GEFAHR** macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, Tod oder schwere Verletzungen **zur Folge hat.** 

# **A** WARNUNG

**WARNUNG** macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, Tod oder schwere Verletzungen **zur Folge haben kann.** 

# VORSICHT

**VORSICHT** macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, leichte Verletzungen **zur Folge haben kann.** 

# **HINWEIS**

HINWEIS gibt Auskunft über Vorgehensweisen, bei denen keine Verletzungen drohen.

#### BITTE BEACHTEN

Elektrische Geräte dürfen nur von Fachpersonal installiert, betrieben, bedient und gewartet werden. Schneider Electric haftet nicht für Schäden, die durch die Verwendung dieses Materials entstehen.

Als qualifiziertes Fachpersonal gelten Mitarbeiter, die über Fähigkeiten und Kenntnisse hinsichtlich der Konstruktion und des Betriebs elektrischer Geräte und deren Installation verfügen und eine Schulung zur Erkennung und Vermeidung möglicher Gefahren absolviert haben.

#### **BEVOR SIE BEGINNEN**

Dieses Produkt nicht mit Maschinen ohne effektive Sicherheitseinrichtungen im Arbeitsraum verwenden. Das Fehlen effektiver Sicherheitseinrichtungen im Arbeitsraum einer Maschine kann schwere Verletzungen des Bedienpersonals zur Folge haben.

# **A** WARNUNG

#### UNBEAUFSICHTIGTE GERÄTE

- Diese Software und zugehörige Automatisierungsgeräte nicht an Maschinen verwenden, die nicht über Sicherheitseinrichtungen im Arbeitsraum verfügen.
- Greifen Sie bei laufendem Betrieb nicht in das Gerät.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Dieses Automatisierungsgerät und die zugehörige Software dienen zur Steuerung verschiedener industrieller Prozesse. Der Typ bzw. das Modell des für die jeweilige Anwendung geeigneten Automatisierungsgeräts ist von mehreren Faktoren abhängig, z. B. von der benötigten Steuerungsfunktion, der erforderlichen Schutzklasse, den Produktionsverfahren, außergewöhnlichen Bedingungen, behördlichen Vorschriften usw. Für einige Anwendungen werden möglicherweise mehrere Prozessoren benötigt, z. B. für ein Backup-/Redundanzsystem.

Nur Sie als Benutzer, Maschinenbauer oder -integrator sind mit allen Bedingungen und Faktoren vertraut, die bei der Installation, der Einrichtung, dem Betrieb und der Wartung der Maschine bzw. des Prozesses zum Tragen kommen. Demzufolge sind allein Sie in der Lage, die Automatisierungskomponenten und zugehörigen Sicherheitsvorkehrungen und Verriegelungen zu identifizieren, die einen ordnungsgemäßen Betrieb gewährleisten. Bei der Auswahl der Automatisierungs- und Steuerungsgeräte sowie der zugehörigen Software für eine bestimmte Anwendung sind die einschlägigen örtlichen und landesspezifischen Richtlinien und Vorschriften zu beachten. Das National Safety Council's Accident Prevention Manual (Handbuch zur Unfallverhütung; in den USA landesweit anerkannt) enthält ebenfalls zahlreiche nützliche Hinweise.

35010518 09/2020

Für einige Anwendungen, z. B. Verpackungsmaschinen, sind zusätzliche Vorrichtungen zum Schutz des Bedienpersonals wie beispielsweise Sicherheitseinrichtungen im Arbeitsraum erforderlich. Diese Vorrichtungen werden benötigt, wenn das Bedienpersonal mit den Händen oder anderen Körperteilen in den Quetschbereich oder andere Gefahrenbereiche gelangen kann und somit einer potenziellen schweren Verletzungsgefahr ausgesetzt ist. Software-Produkte allein können das Bedienpersonal nicht vor Verletzungen schützen. Die Software kann daher nicht als Ersatz für Sicherheitseinrichtungen im Arbeitsraum verwendet werden.

Vor Inbetriebnahme der Anlage sicherstellen, dass alle zum Schutz des Arbeitsraums vorgesehenen mechanischen/elektronischen Sicherheitseinrichtungen und Verriegelungen installiert und funktionsfähig sind. Alle zum Schutz des Arbeitsraums vorgesehenen Sicherheitseinrichtungen und Verriegelungen müssen mit dem zugehörigen Automatisierungsgerät und der Softwareprogrammierung koordiniert werden.

HINWEIS: Die Koordinierung der zum Schutz des Arbeitsraums vorgesehenen mechanischen/elektronischen Sicherheitseinrichtungen und Verriegelungen geht über den Umfang der Funktionsbaustein-Bibliothek, des System-Benutzerhandbuchs oder andere in dieser Dokumentation genannten Implementierungen hinaus.

#### START UND TEST

Vor der Verwendung elektrischer Steuerungs- und Automatisierungsgeräte ist das System zur Überprüfung der einwandfreien Funktionsbereitschaft einem Anlauftest zu unterziehen. Dieser Test muss von qualifiziertem Personal durchgeführt werden. Um einen vollständigen und erfolgreichen Test zu gewährleisten, müssen die entsprechenden Vorkehrungen getroffen und genügend Zeit eingeplant werden.

# **A** WARNUNG

#### **GEFAHR BEIM GERÄTEBETRIEB**

- Überprüfen Sie, ob alle Installations- und Einrichtungsverfahren vollständig durchgeführt wurden.
- Vor der Durchführung von Funktionstests sämtliche Blöcke oder andere vorübergehende Transportsicherungen von den Anlagekomponenten entfernen.
- Entfernen Sie Werkzeuge, Messgeräte und Verschmutzungen vom Gerät.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Führen Sie alle in der Dokumentation des Geräts empfohlenen Anlauftests durch. Die gesamte Dokumentation zur späteren Verwendung aufbewahren.

#### Softwaretests müssen sowohl in simulierten als auch in realen Umgebungen stattfinden.

Sicherstellen, dass in dem komplett installierten System keine Kurzschlüsse anliegen und nur solche Erdungen installiert sind, die den örtlichen Vorschriften entsprechen (z. B. gemäß dem National Electrical Code in den USA). Wenn Hochspannungsprüfungen erforderlich sind, beachten Sie die Empfehlungen in der Gerätedokumentation, um eine versehentliche Beschädigung zu verhindern.

Vor dem Einschalten der Anlage:

- Entfernen Sie Werkzeuge, Messgeräte und Verschmutzungen vom Gerät.
- Schließen Sie die Gehäusetür des Geräts.
- Alle temporären Erdungen der eingehenden Stromleitungen entfernen.
- Führen Sie alle vom Hersteller empfohlenen Anlauftests durch.

#### BETRIEB UND EINSTELLUNGEN

Die folgenden Sicherheitshinweise sind der NEMA Standards Publication ICS 7.1-1995 entnommen (die Englische Version ist maßgebend):

- Ungeachtet der bei der Entwicklung und Fabrikation von Anlagen oder bei der Auswahl und Bemessung von Komponenten angewandten Sorgfalt, kann der unsachgemäße Betrieb solcher Anlagen Gefahren mit sich bringen.
- Gelegentlich kann es zu fehlerhaften Einstellungen kommen, die zu einem unbefriedigenden oder unsicheren Betrieb führen. Für Funktionseinstellungen stets die Herstelleranweisungen zu Rate ziehen. Das Personal, das Zugang zu diesen Einstellungen hat, muss mit den Anweisungen des Anlagenherstellers und den mit der elektrischen Anlage verwendeten Maschinen vertraut sein.
- Bediener sollten nur über Zugang zu den Einstellungen verfügen, die tatsächlich für ihre Arbeit erforderlich sind. Der Zugriff auf andere Steuerungsfunktionen sollte eingeschränkt sein, um unbefugte Änderungen der Betriebskenngrößen zu vermeiden.

# Über dieses Buch



#### Auf einen Blick

#### Ziel dieses Dokuments

Diese Dokumentation ist eine Referenz für die digitale und analoge E/A-Hardware des Quantum-Automatisierungssystems mit EcoStruxure™ Control Expert.

#### Gültigkeitsbereich

Dieses Dokument ist gültig ab EcoStruxure™ Control Expert 15.0.

#### **Verwandte Dokumente**

| Titel der Dokumentation                                                                | Referenznummer                                                                                                                            |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| EcoStruxure™ Control Expert –<br>Programmiersprachen und Struktur,<br>Referenzhandbuch | 35006144 (Englisch), 35006145 (Französisch),<br>35006146 (Deutsch), 35013361 (Italienisch),<br>35006147 (Spanisch), 35013362 (Chinesisch) |
| Quantum mit EcoStruxure™ Control Expert –<br>Hardware, Referenzhandbuch                | 35010529 (Englisch), 35010530 (Französisch),<br>35010531 (Deutsch), 35013975 (Italienisch),<br>35010532 (Spanisch), 35012184 (Chinesisch) |

#### Produktbezogene Informationen



#### UNBEABSICHTIGTER GERÄTEBETRIEB

Die Anwendung dieses Produkts erfordert Fachkenntnisse bezüglich der Entwicklung und Programmierung von Steuerungssystemen. Nur Personen mit solchen Fachkenntnissen sollten dieses Produkt programmieren, installieren, ändern und anwenden.

Befolgen Sie alle lokalen und nationalen Sicherheitsnormen und -vorschriften.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

35010518 09/2020

# Teil I

# Allgemeine Informationen

## Einleitung

Dieser Teil enthält allgemeine Informationen über die digitalen und analogen E/A-Module.

#### Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

| Kapitel | Kapitelname                                                                                           |    |
|---------|-------------------------------------------------------------------------------------------------------|----|
| 1       | Modulkonfiguration                                                                                    | 23 |
| 2       | Quantum-Adressierungsmodi                                                                             | 27 |
| 3       | Allgemeine Regeln zum Befestigen von Klemmenblöcken für digitale und analoge Eingangs-/Ausgangsmodule | 59 |

# Kapitel 1

# Modulkonfiguration

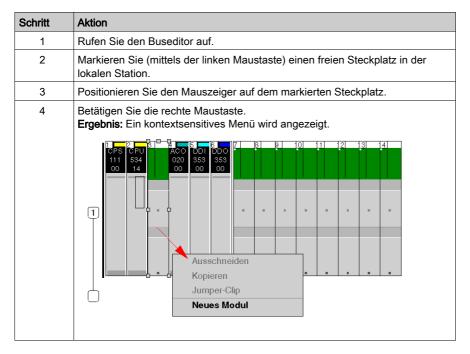
#### Zweck

Dieses Kapitel enthält Informationen über die Softwarekonfiguration des Moduls.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                       |    |
|---------------------------------------------|----|
| Zuordnung einer lokalen Quantum E/A-Station | 24 |
| Öffnen der Parameterkonfiguration           | 26 |


## Zuordnung einer lokalen Quantum E/A-Station

#### Auf einen Blick

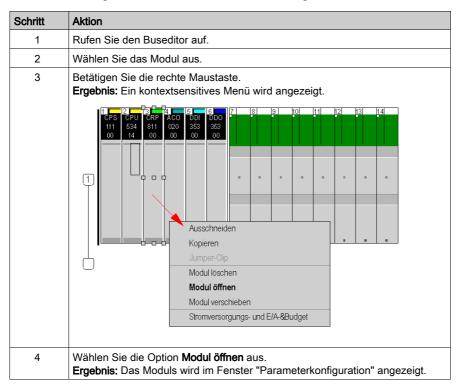
Verwenden Sie das folgende Dialogfeld, um eine bestehende lokale Quantum E/A-Station einem neuen Modul zuzuweisen.

#### Einsetzen eines Moduls (lokal)

Diese Tabelle beschreibt die für das Einsetzen eines Moduls in eine lokale Station erforderlichen Schritte.



| Schritt | Aktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 5       | Wählen Sie <b>Neues Gerät Ergebnis:</b> Es wird ein Dialogfenster angezeigt, in dem verfügbare Module angezeigt werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 6       | Wählen Sie das gewünschte Modul aus der entsprechenden Kategorie im Hardwarekatalog aus.  Ergebnis: Das neue Modul wird im leeren Steckplatz der lokalen Station eingefügt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|         | CPS CPU GRP ACO DDI DOO 7 B P 10 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 1 12 13 14 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 14 11 12 13 14 11 12 13 14 11 12 13 14 14 11 12 13 14 14 11 12 13 |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |


# Öffnen der Parameterkonfiguration

#### Übersicht

Im folgenden Dialogfeld können Sie die Parameterkonfiguration eines Moduls aufrufen. Ein Erklärung der einzelnen Parameter finden Sie in den Kapiteln des entsprechenden Moduls.

#### Öffnen der Parameterkonfiguration

Diese Tabelle zeigt die zum Öffnen der Parameterkonfiguration erforderlichen Schritte.



# Kapitel 2

# Quantum-Adressierungsmodi

#### Inhalt

Dieses Kapitel enthält Informationen zu den drei verschiedenen Modi, mit denen Control Expert die E/A-Daten eines Quantum-E/A-Moduls adressieren kann:

- Flache Adressierung
- Topologische Adressierung
- IODDT-Adressierung

**HINWEIS:** Die Überlappung topologischer Adressen (%IWr.m.c) wird von der Quantum-Anwendung nicht unterstützt. Wenn eine Speicherüberlaufkontrolle erforderlich ist, verwenden Sie eine Flat-Adressierung (%IWx).

**HINWEIS:** Die verschiedenen Adressierungsmodi beziehen sich auf den gleichen physikalischen Speicherort für einen bestimmten Datenpunkt im SPS-Speicher.

Flache und topologische Adressierung sind für alle Quantum-E/A-Module möglich, IODDTs sind nur für solche Module vorhanden, die außer den E/A-Werten noch zusätzliche Informationen liefern (z.B. Fehler und Warnungen).

Zudem erhalten Sie Informationen zu den Statusbytes der E/A-Module und zur Bitfolge.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                                                   | Seite |
|-------------------------------------------------------------------------|-------|
| Flat-Adressierung – E/A-Module der Serie 800                            | 28    |
| Topologische Adressierung – E/A-Module der Serie 800 mit Control Expert | 29    |
| IODDT-Adressierung                                                      | 30    |
| Quantum-IODDTs                                                          | 31    |
| Beispiel für Adressierung                                               | 34    |
| Digitale E/A-Bit-Nummerierung                                           | 35    |
| Statusbyte für E/A-Modul                                                | 36    |
| E/A-Konfiguration für digitale Eingangsmodule                           | 40    |
| E/A-Konfiguration für digitale Ausgangsmodule                           | 46    |
| E/A-Konfiguration für digitale Eingangs-/Ausgangsmodule                 | 54    |

### Flat-Adressierung – E/A-Module der Serie 800

#### **Einführung**

E/A-Module der Serie 800 verwenden das System der Flat-Adressierung in Control Expert. Für den einwandfreien Betrieb benötigt jedes Modul eine bestimmte Anzahl von Bits und/oder Wörtern. Die IEC-Adressierung entspricht der 984LL-Registeradressierung. Verwenden Sie die folgenden Zuweisungen:

- 0x ist jetzt %Mx
- 1x ist jetzt %Ix.
- 3x ist jetzt %IWx.
- 4x ist jetzt %MWx.

Die folgende Tabelle zeigt die Beziehung zwischen der 984LL- und der IEC-Notierung.

| Ausgänge 984LL-Notation |                  | IEC-Notation           |                  |              |
|-------------------------|------------------|------------------------|------------------|--------------|
| und Eingänge            | Registeradressen | Systembits und -wörter | Speicheradressen | E/A-Adressen |
| Ausgang                 | 0x               | Systembit              | %Mx              | %Qx          |
| Eingang                 | 1x               | Systembit              | %lx              | %lx          |
| Eingang                 | 3x               | Systemwort             | %IWx             | %IWx         |
| Ausgang                 | 4x               | Systemwort             | %MWx             | %QWx         |

#### Zugriff auf die E/A-Daten eines Moduls

| Schritt | Aktion                                                       |
|---------|--------------------------------------------------------------|
| 1       | Geben Sie den Adressbereich im Konfigurationsbildschirm ein. |

#### **Beispiele**

Die folgenden Beispiele zeigen die Beziehung zwischen der 984LL-Registeradressierung und der IEC-Adressierung:

000001 ist jetzt %M1.

100101 ist jetzt %I101.

301024 ist jetzt %IW1024.

400010 ist jetzt MW10.

### Topologische Adressierung – E/A-Module der Serie 800 mit Control Expert

#### Auf E/A-Datenwerte zugreifen

Greifen Sie mittels topologischer Adressierung auf E/A-Datenelemente zu. Geben Sie den topologischen Standort eines E/A-Moduls der Serie 800 mit Control Expert über die folgende Notierung an:

%<Exchangetype><Objecttype>[\b.e\]r.m.c[.rank]

#### Erläuterung:

- **b** = Bus
- e = Gerät (Station)
- r = Rack
- m = Modulsteckplatz
- c = Kanal

#### **HINWEIS:** Adressierung

- 1. Der Adressbestandteil [\b.e\] verwendet als Voreinstellung die Position \1.1\ in einem lokalen Rack und muss nicht angegeben werden.
- 2. Der Rang ist ein Index zur Identifizierung verschiedener Eigenschaften eines Objekts mit dem gleichen Datentyp (Wert, Warnebene, Fehlerebene).
- 3. Die Rangnummerierung beginnt bei null und wird, wenn der Rang Null ist, weggelassen.

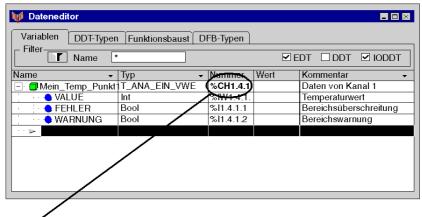
Weitere Informationen zu E/A-Variablen finden Sie im *EcoStruxure* <sup>™</sup> *Control Expert – Programmiersprachen und Struktur, Referenzhandbuch.* 

#### Lesen der Werte: Beispiel

| Lesen                                                                                                           | Action                         |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|
| Eingangswert (Rang = 0) von Kanal 7 eines analogen Moduls im Steckplatz 6 eines lokalen Racks:                  | Eingabetaste<br>%IW1.6.7[.0]   |
| Eingangswert (Rang = 0) von Kanal 7 eines analogen Moduls in Steckplatz 6 von Drop 3 von RIO-Bus 2:             | Eingabetaste %IW\2.3\1.6.7[.0] |
| Wert "außerhalb des Bereichs" (Rang = 1) von Kanal 7 eines analogen Moduls im Steckplatz 6 eines lokalen Racks: | Eingabetaste %I1.6.7.1[.0]     |

#### **IODDT-Adressierung**

#### **IODDT-Adressierung**


Ein IODDT ermöglicht, dass alle Informationen (Bits und Register), die zu einem Kanal gehören, über eine benutzerdefinierte Variable angesprochen werden. Diese Variable wird im Dateneditor von Control Expert ausgewählt, indem Sie den entsprechenden IODDT als einen Datentyp für das Modul auswählen und die topologische Adresse des Moduls mit der folgenden Syntax angeben:

%CH[\b.e\]r.m.c

#### Erläuterung:

- b = Bus
- **e** = Gerät (Station)
- r = Rack
- **m** = Modulsteckplatz
- c = Kanal

Beispiel für einen IODDT für ein Thermokoppler-Eingangsmodul im Steckplatz 4 eines lokalen Racks:



Hinweis: Es muss nur %CH1.4.1 eingegeben werden. Die zu diesem Kanal gehörenden topologischen Adressen (%IW.. und %I..) werden automatisch erzeugt.

#### Variablen im Benutzerprogramm

Sie können alle Informationen mit Bezug zu Kanal 1 des Moduls über die folgenden Variablen ansprechen:

- My Temp Point1.VALUE für den gemessenen Wert
- My Temp Point1.ERROR gibt eine Bedingung außerhalb des zulässigen Bereichs an
- My Temp Point1. WARNING gibt eine Bedingung über dem zulässigen Bereich an

#### Quantum-IODDTs

#### Einführung

Control Expert stellt eine Reihe von IODDTs zur Verfügung, die entweder allgemeingültig sind und für mehrere I/A-Module verwendet werden können, oder zu einem bestimmten Modul gehören.

HINWEIS: Abweichung von der allgemeinen Beschreibung der Datentypen im Kapitel "Direkte Adressierung von Dateninstanzen" im *EcoStruxure™ Control Expert Reference Manual* wird bei Quantum IODDTs für analoge Module und Expert-Module der Datentyp **Bool** für die Referenzen % I und % Q verwendet.

#### T\_ANA\_IN\_VE

T ANA IN VE wird bei allen Kanälen der folgenden E/A-Module verwendet:

- ACI 030 00
- All 330 10
- ACI 040 00
- ACI 040 00

IODDT für analoge Eingangsmodule, die Wert und Fehler unterstützen

| Objekt | Symbol | Rang | Beschreibung   |
|--------|--------|------|----------------|
| %IW    | VALUE  | 0    | Eingangswert   |
| %I     | ERROR  | 1    | Eingangsfehler |

#### T\_ANA\_IN\_VWE

T ANA IN VWE wird bei allen Kanälen der folgenden E/A-Module verwendet:

- ARI 030 10.
- AVI 030 00
- ATI 030 00
- All 330 00
  - und
- Kanal 3 und 4 von AMM 090 00

IODDT für analoge Eingangsmodule, die Wert und Warnung und Fehler unterstützen

| Objekt | Symbol  | Rang | Beschreibung    |
|--------|---------|------|-----------------|
| %IW    | VALUE   | 0    | Eingangswert    |
| %I     | ERROR   | 1    | Eingangsfehler  |
| %I     | WARNING | 2    | Eingangswarnung |

#### T\_ANA\_BI\_VWE

T ANA BI VWE wird mit den folgenden E/A-Modulen verwendet:

• Kanal 1 und 2 von AMM 090 00

IODDT für bidirektionale analoge Module, die Wert, Warnung und Fehler unterstützen

| Objekt | Symbol    | Rang | Beschreibung    |
|--------|-----------|------|-----------------|
| %IW    | VALUE_IN  | 0    | Eingangswert    |
| %QW    | VALUE_OUT | 0    | Ausgangswert    |
| %I     | ERROR_IN  | 1    | Eingangsfehler  |
| %I     | WARNING   | 2    | Eingangswarnung |
| %I     | ERROR_OUT | 3    | Ausgangsfehler  |

T CNT 105 wird bei allen Kanälen der folgenden E/A-Module verwendet:

• EHC 105

Spezieller IODDT für schnelles Zählermodul EHC 105

| Objekt | Symbol        | Rang | Beschreibung                                                     |
|--------|---------------|------|------------------------------------------------------------------|
| %IW    | VALUE_L       | 1    | Eingangswert: Low word                                           |
| %IW    | VALUE_H       | 2    | Eingangswert: High word                                          |
| %I     | ERROR         | 1    | Fehler im Zähler                                                 |
| %I     | SP_FINAL      | 2    | Endabschaltsignal                                                |
| %I     | SP_FIRST      | 3    | Erstes Sollwertsignal                                            |
| %I     | SP_SECOND     | 4    | Zweites Sollwertsignal                                           |
| %QW    | STOP_VALUE    | 1    | Für CNT_DIR="0",<br>Endabschaltsignal                            |
| %QW    | INITIAL_VALUE | 2    | Für CNT_R="1", anfänglicher Sollwert                             |
| %Q     | LS            | 1    | "1", Zähler laden/starten (wird von steigender Flanke gesteuert) |
| %Q     | RSTART        | 2    | "1", Zähler neu starten (wird von steigender Flanke gesteuert)   |
| %Q     | OUT_OFF       | 3    | "1", Zählerausgang ausschalten                                   |
| %Q     | CNT_DIR       | 4    | "0" Zähler zählt aufwärts "1" Zähler zählt abwärts               |
| %Q     | OM1           | 5    | Betriebsmodus-Bit 1                                              |
| %Q     | OM2           | 6    | Betriebsmodus-Bit 2                                              |

| Objekt | Symbol | Rang | Beschreibung        |  |  |  |  |
|--------|--------|------|---------------------|--|--|--|--|
| %Q     | OM3    | 7    | Betriebsmodus-Bit 3 |  |  |  |  |
| %Q     | OM4    | 8    | Betriebsmodus-Bit 4 |  |  |  |  |

### Beispiel für Adressierung

#### Vergleich der drei Adressierungsmodi

Das folgende Beispiel dient zum Vergleich der drei möglichen Adressierungsmodi. Ein 8-Kanal-Thermokopplermodul 140 ATI 030 00 mit den folgenden Konfigurationsdaten wird verwendet:

- eingebaut in Steckplatz 5 des CPU-Racks (lokales Rack)
- Starteingangsadresse ist 201 (Eingangswort %IW201)
- Endeingangsadresse ist 210 (Eingangswort %IW210)

Zum Zugriff auf die E/A-Daten des Moduls können Sie folgende Syntax verwenden:

| Moduldaten                            | Ebene<br>Adressierung | Topologische<br>Adressierung | IODDT-Adressierung              | Concept-<br>Adressierung                                            |
|---------------------------------------|-----------------------|------------------------------|---------------------------------|---------------------------------------------------------------------|
| Kanal 3<br>Temperatur                 | %IW203                | %IW1.5.3                     | My_Temp.VALUE                   | 300203                                                              |
| Kanal 3<br>Bereichsüberschr<br>eitung | %IW209.5              | %I1.5.3.1                    | My_Temp.ERROR                   | 300209<br>Bit 5 soll über<br>Benutzerlogik<br>ausgelesen<br>werden  |
| Kanal 3<br>Bereichswarnung            | %IW209.13             | %I1.5.3.2                    | My_Temp.WARNING                 | 300209<br>Bit 13 soll über<br>Benutzerlogik<br>ausgelesen<br>werden |
| Interne Modul-<br>Temperatur          | %IW210                | %IW1.5.10                    | nicht über IODDT<br>ansprechbar | 300210                                                              |

**HINWEIS:** Für IODDT wird der Datentyp  $T_ANA_IN_VWE$  verwendet und die Variable  $My_Temp$  mit der Adresse CH1.5.10 wurde definiert.

Zum Vergleich wird die in Concept verwendete Registeradressierung in der letzten Spalte hinzugefügt. Da Concept keine direkte Adressierung eines Bits in einem Wort unterstützt, muss das Auslesen einzelner Bits über das Benutzerprogramm erfolgen.

#### Digitale E/A-Bit-Nummerierung

#### **Einführung**

Die Nummerierung der Kanäle eines E/A-Moduls beginnt in der Regel bei 1 und reicht bis zur maximalen Anzahl unterstützter Kanäle. Die Software beginnt bei der Nummerierung des niedrigstwertigen Bits (LSB) in einem Wort jedoch bei 0. Bei den Quantum-E/A-Modulen ist der niedrigste Kanal dem höchstwertigen Bit (MSB) zugeordnet.

Die folgende Abbildung zeigt die Zuordnung von E/A-Kanälen zu den Bits in einem Wort.

| 1  | 2  | 3  | 4  | 5  | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16  | E/A-Kanäle      |
|----|----|----|----|----|----|---|---|---|----|----|----|----|----|----|-----|-----------------|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6  | 5  | 4  | 3  | 2  | 1  | 0   | Bitnummerierung |
| MS | В  |    |    |    |    |   |   |   |    |    |    |    |    |    | LSB |                 |

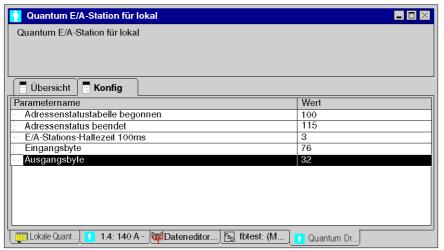
#### Wortadressierung oder Bitadressierung

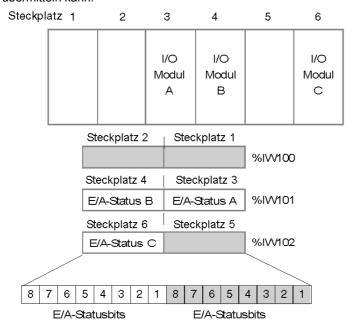
Hauptsächlich digitale E/A-Module können so konfiguriert werden, dass sie ihre E/A-Daten entweder im Wort- oder im Bitformat weitergeben. Dies kann bei der Konfiguration durch Auswahl von %IW (%MW) oder %I (%M) eingestellt werden. Wenn Sie ein einzelnes Bit eines E/A-Moduls benötigen, das für die Verwendung eines E/A-Worts eingerichtet ist, können Sie die Syntax %Wort.Bit nutzen. Die folgende Tabelle zeigt die Verbindung zwischen der Nummer des E/A-Punkts und der zugehörigen E/A-Adresse bei Bit- und Wortadressierung.

Die Tabelle zeigt ein 32-Punkt-Eingangsmodul im Hauptrack. Steckplatz 4 wurde mit der Startadresse %I1 oder %IW1 konfiguriert:

| E/A-<br>Kanal | Bit-Adresse<br>(Flat-<br>Adressierung) | Bit-Adresse<br>(Topologische<br>Adressierung) | Bit-Adresse<br>extrahiert aus Wort<br>(Flat-Adressierung) | Bit-Adresse<br>extrahiert aus Wort<br>(Topologische<br>Adressierung) |  |  |  |  |  |  |
|---------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| 1             | %I1                                    | %I1.4.1[.0]                                   | %IW1.15                                                   | %IW1.4.1.1.15                                                        |  |  |  |  |  |  |
| 2             | %I2                                    | %I1.4.2[.0]                                   | %IW1.14                                                   | %IW1.4.1.1.14                                                        |  |  |  |  |  |  |
| 3             | %I3                                    | %11.4.3[.0]                                   | %IW1.13                                                   | %IW1.4.1.1.13                                                        |  |  |  |  |  |  |
|               | •••                                    |                                               |                                                           |                                                                      |  |  |  |  |  |  |
| 15            | %I15                                   | %I1.4.15[.0]                                  | %IW1.1                                                    | %IW1.4.1.1.1                                                         |  |  |  |  |  |  |
| 16            | %I16                                   | %I1.4.16[.0]                                  | %IW1.0                                                    | %IW1.4.1.1.0                                                         |  |  |  |  |  |  |
| 17            | %117                                   | %I1.4.17[.0]                                  | %IW2.15                                                   | %IW1.4.1.2.15                                                        |  |  |  |  |  |  |
| 18            | %I18                                   | %I1.4.18[.0]                                  | %IW2.14                                                   | %IW1.4.1.2.14                                                        |  |  |  |  |  |  |
| •••           |                                        |                                               |                                                           |                                                                      |  |  |  |  |  |  |
| 31            | %I31                                   | %[1.4.31[.0]                                  | %IW2.1                                                    | %IW1.4.1.2.1                                                         |  |  |  |  |  |  |
| 32            | %I32                                   | %11.4.32[.0]                                  | %IW2.0                                                    | %IW1.4.1.2.0                                                         |  |  |  |  |  |  |

### Statusbyte für E/A-Modul


#### Modulstatusdaten adressieren

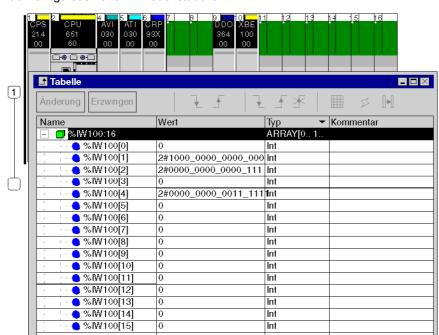

Zusätzlich zu den möglichen kanalbezogenen Diagnosedaten kann ein modulbezogenes Statusbyte verwendet werden. Die Statusinformationen aller Module in einer E/A-Station werden durch eine Tabelle mit % IW-Wörtern verwaltet. Die Startadresse dieser Tabelle kann im Konfigurationsbildschirm für die E/A-Station eingetragen werden.

Diese Information ist über topologische Adressierung nicht erreichbar.

**HINWEIS:** Die Statusinformation ist nur verfügbar, wenn das Modul ein Statusbyte unterstützt. Die Bedeutung des Statusbytes finden Sie bei der Modulbeschreibung.

Beispiel für den Konfigurationsbildschirm einer E/A-Station, in dem die Startadresse der Statustabelle auf den Wert 100 eingestellt wurde:






Die folgende Abbildung zeigt, wie ein Wort der Tabelle die Statusinformation für zwei Module übermitteln kann:

#### **Beispiel**

Das folgende Beispiel zeigt ein Rack und die zugehörigen E/A-Statusbytes in einer animierten Tabelle. Die E/A-Station wurde für eine Belegung von 16 Wörtern konfiguriert, beginnend bei Wort % IW100. Dies stellt das lokale und das Erweiterungsrack dar. Es wird angenommen, dass es sich um Racks mit 16 Steckplätzen handelt.

Wenn einem Modul kein Statusbyte zugewiesen wurde oder der Steckplatz leer ist, erhält das Byte den Wert 0.



#### Rackkonfiguration und Animationstabelle:

Beziehung zwischen Steckplatz, Eingangswort und Statusbyte. Das zum Modul gehörende Byte wurde markiert:

| Steckplatz | Eingangswort | Wert                           | Modul               | Modul                                                            |
|------------|--------------|--------------------------------|---------------------|------------------------------------------------------------------|
| 1          | %IW[0]       | 0                              | Spannungsversorgung | Kein Statusbyte                                                  |
| 2          |              | 0                              | CPU                 | Kein Statusbyte                                                  |
| 3          | %IW[1]       | 2#1000_0000 <b>_0000_0000</b>  | CPU                 | Kein Statusbyte                                                  |
| 4          |              | 2 <b>#1000_0000</b> _0000_0000 | AVI                 | Mindestens ein<br>Kanal weist einen<br>gestörten Betrieb<br>auf. |
| 5          | %IW[2]       | 2#0000_0000 <b>_0000_1111</b>  | ATI                 | Kanäle 1 bis 4<br>weisen einen<br>gestörten Betrieb<br>auf.      |
| 6          |              | 2 <b>#0000_0000</b> _0000_1111 | 140 CRP 93• 00      | Kein Statusbyte                                                  |

| Steckplatz | Eingangswort                                          | Wert                           | Modul          | Modul                                           |
|------------|-------------------------------------------------------|--------------------------------|----------------|-------------------------------------------------|
|            | c ein<br>E/A-Kopfmodul<br>2 00 an Stelle<br>s<br>• 00 | 2#1101_1110_0000_0000          | 140 CRP 312 00 | CRP-Statusbyte <sup>1</sup>                     |
| 7          | %IW[3]                                                | 0                              | Leer           |                                                 |
| 8          |                                                       | 0                              | Leer           |                                                 |
| 9          | %IW[4]                                                | 2#0000_0000_ <b>0011_1111</b>  | DDO            | Alle Kanäle weisen einen gestörten Betrieb auf. |
| 10         |                                                       | 2 <b>#0000_0000</b> _0011_1111 | XBE            | Kein Statusbyte                                 |
|            |                                                       | •••                            |                |                                                 |

<sup>&</sup>lt;sup>1</sup> Wenn Sie im lokalen Rack ein dezentrales E/A-Kopfmodul 140 CRP 312 00 an Stelle eines Moduls 140 CRP 93• 00 installieren, ist das Statusbyte **ETH\_STATUS** (detaillierte Informationen hierzu finden Sie in der Rubrik *Gerätespezifische DDT-Namen* im *Quantum Ethernet I/O – Dezentrale E/A-Module, Installations- und Konfigurationshandbuch.* 

### E/A-Konfiguration für digitale Eingangsmodule

#### Überblick

Dieser Abschnitt enthält Informationen über die Konfiguration von 16-, 24-, 32- und 96-Punkt-Eingangsmodulen.

#### 8-Punkt-Eingangsmodule

8-Punkt-Ausgangsmodule:

• 140 DII 330 00 (eigensicherer DC-Eingang)

#### Flache Adressierung

....

Die oben aufgeführten Eingangsmodule können als 8 aufeinander folgende %I-Referenzen oder als ein %IW-Wort konfiguriert werden. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter *Digitale E/A-Bit-Nummerierung, Seite 35*.

| ľ | MOR |  |  |  |   |   |   |   |   |   |   |   |
|---|-----|--|--|--|---|---|---|---|---|---|---|---|
|   |     |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 8-Punkt-Eingangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt     | E/A-Objekt     | Kommentar |
|-----------|----------------|-----------|
| Eingang 1 | %l[\b.e\]r.m.1 | Wert      |
| Eingang 2 | %l[\b.e\]r.m.2 | Wert      |
|           | •••            |           |
| Eingang 7 | %I[\b.e\]r.m.7 | Wert      |
| Eingang 8 | %l[\b.e\]r.m.8 | Wert      |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### Statusbyte für E/A-Zuordnung

Diesen Modulen wurde kein Statusbyte für die E/A-Zuordnung zugewiesen.

#### 16-Punkt-Eingangsmodule

16-Punkt-Ausgangsmodule:

- 140 DAI 340 00 (AC-Eingang, 24 VAC, 16x1)
- 140 DAI 440 00 (AC-Eingang, 48 VAC, 16x1)
- 140 DAI 540 00 (AC-Eingang, 115 VAC, 16x1)
- 140 DAI 543 00 (AC-Eingang, 115 VAC, 8x2)
- 140 DAI 740 00 (AC-Eingang, 230 VAC, 16x1)
- 140 DDI 841 00 (DC-Eingang, 10 60 VDC, 8x2 stromaufnehmend)
- 140 HLI 340 00 (DC-Eingang, 24 VDC, 16 stromaufnehmend/-liefernd)

#### Flache Adressierung

Die oben aufgeführten Eingangsmodule können als 16 aufeinander folgende %I-Referenzen oder als ein %IW-Wort konfiguriert werden. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter *Digitale E/A-Bit-Nummerierung, Seite 35*.

| MSB |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|-----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 16-Punkt-Eingangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |
|------------|-----------------|-----------|
| Eingang 1  | %I[\b.e\]r.m.1  | Wert      |
| Eingang 2  | %l[\b.e\]r.m.2  | Wert      |
|            | •••             |           |
| Eingang 15 | %I[\b.e\]r.m.15 | Wert      |
| Eingang 16 | %I[\b.e\]r.m.16 | Wert      |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### Statusbyte für E/A-Zuordnung

Diesen Modulen wurde kein Statusbyte für die E/A-Zuordnung zugewiesen.

#### 24-Punkt-Eingangsmodul

Es gibt nur ein Eingangsmodul mit 24 Eingängen:

140 DDI 673 00 (DC-Eingang, 125 VDC, 3x8 stromaufnehmend)

#### Flache Adressierung

Das oben genannte Eingangsmodul kann entweder als 24 aufeinander folgende digitale %I-Eingangsreferenzen oder als 2 aufeinander folgende %IW-Eingangswörter im folgenden Format konfiguriert werden. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter *Digitale E/A-Bit-Nummerierung, Seite 35*.

|                     | MSB | - Ers | tes V   | ort  |   |   |   |   |    |    |    |    |    |    |    |    |
|---------------------|-----|-------|---------|------|---|---|---|---|----|----|----|----|----|----|----|----|
| Eingang<br>Punkt 1  | 1   | 2     | 3       | 4    | 5 | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|                     |     |       |         |      |   |   |   |   |    |    |    |    |    |    |    |    |
|                     | MSB | - Zwe | eites \ | Nort |   |   |   |   |    |    |    |    |    |    |    |    |
| Eingang<br>Punkt 17 |     |       |         |      |   |   |   |   | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 24-Punkt-Eingangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |
|------------|-----------------|-----------|
| Eingang 1  | %I[\b.e\]r.m.1  | Wert      |
| Eingang 2  | %I[\b.e\]r.m.2  | Wert      |
|            | •••             |           |
| Eingang 23 | %I[\b.e\]r.m.23 | Wert      |
| Eingang 24 | %I[\b.e\]r.m.24 | Wert      |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |
| Eingangswort 2 | %IW[\b.e\]r.m.1.2 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

### Statusbyte für E/A-Zuordnung

Diesem Modul wurde kein Statusbyte für die E/A-Zuordnung des Eingangs zugewiesen.

#### 32-Punkt-Eingangsmodule

32-Punkt-Eingangsmodule:

- 140 DAI 353 00 (AC-Eingang, 24 VAC, 4x8)
- 140 DAI 453 00 (AC-Eingang, 48 VAC, 4x8)
- 140 DAI 553 00 (AC-Eingang, 115 VAC, 4x8)
- 140 DAI 753 00 (AC-Eingang, 230 VAC, 4x8)
- 140 DDI 153 10 (DC-Eingang, 5 V, 4x8 stromliefernd)
- 140 DDI 353 00 (DC-Eingang, 24 VDC, 4x8 stromaufnehmend)
- 140 DDI 353 10 (DC-Eingang, 24 VDC, 4x8 stromliefernd)
- 140 DDI 853 00 (DC-Eingang, 10 60 VDC, 4x8 stromaufnehmend)

Adressinformationen zum Modul 140 DSI 353 00 finden Sie unter Adressierung, Seite 322.

#### Flache Adressierung

Das oben genannten Eingangsmodule können entweder als 32 aufeinander folgende digitale % I-Eingangsreferenzen oder als zwei aufeinander folgende % IW-Eingangswörter im folgenden Format konfiguriert werden. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter *Digitale E/A-Bit-Nummerierung, Seite 35*.

|                    | MSB | - Ersi | tes W   | ort  |   |   |   |   |   |    |    |    |    |    |    |    |
|--------------------|-----|--------|---------|------|---|---|---|---|---|----|----|----|----|----|----|----|
| Eingang<br>Punkt 1 | 1   | 2      | 3       | 4    | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|                    |     |        |         |      |   |   |   |   |   |    |    |    |    |    |    |    |
|                    |     | -      |         |      |   |   |   |   |   |    |    |    |    |    |    |    |
|                    | MSB | - Zwe  | eites \ | Vort |   |   |   |   |   |    |    |    |    |    |    |    |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 32-Punkt-Eingangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |
|------------|-----------------|-----------|
| Eingang 1  | %I[\b.e\]r.m.1  | Wert      |
| Eingang 2  | %I[\b.e\]r.m.2  | Wert      |
|            | •••             |           |
| Eingang 31 | %I[\b.e\]r.m.31 | Wert      |
| Eingang 32 | %I[\b.e\]r.m.32 | Wert      |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |
| Eingangswort 2 | %IW[\b.e\]r.m.1.2 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### Statusbyte für E/A-Zuordnung

Diesen Modulen wurde kein Statusbyte für die E/A-Zuordnung zugewiesen.

#### 96-Punkt-Eingangsmodule

Es gibt nur ein 96-Punkt-Eingangsmodul:

• 140DDI36400 - DC-Eingang, 6 x 16 stromaufnehmend

#### Flache Adressierung

Die folgenden Informationen beziehen sich auf das Eingangsmodul 140DDI36400. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter *Digitale E/A-Bit-Nummerierung, Seite 35*.

| MSB                 | - Erst | es V   | ort  |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------|--------|--------|------|----|----|----|----|----|----|----|----|----|----|----|----|
| Eingang<br>Punkt 1  | 2      | 3      | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|                     |        |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
| MSB                 | - Zw   | eites  | Wort |    |    |    |    |    |    |    |    |    |    |    |    |
| Eingang<br>Punkt 17 | 18     | 19     | 20   | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
|                     |        |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
| MSB                 | - Drif | tes V  | Vort |    |    |    |    |    |    |    |    |    |    |    |    |
| Eingang<br>Punkt 33 | 34     | 35     | 36   | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
|                     |        |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
| MSB                 | - Vie  | rtes \ | Vort |    |    |    |    |    |    |    |    |    |    |    |    |
| Eingang<br>Punkt 49 | 50     | 51     | 52   | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
|                     |        |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
| MSB                 | - Für  | iftes  | Wort |    |    |    |    |    |    |    |    |    |    |    |    |
| Eingang<br>Punkt 65 | 66     | 67     | 68   | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
|                     |        |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
| MSB                 | - Se   | chste  | s Wo | rt |    |    |    |    |    |    |    |    |    |    |    |
| Eingang<br>Punkt 81 | 82     | 83     | 84   | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 96-Punkt-Eingangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |
|------------|-----------------|-----------|
| Eingang 1  | %l[\b.e\]r.m.1  | Wert      |
| Eingang 2  | %l[\b.e\]r.m.2  | Wert      |
|            | •••             |           |
| Eingang 95 | %I[\b.e\]r.m.95 | Wert      |
| Eingang 96 | %I[\b.e\]r.m.96 | Wert      |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |
| Eingangswort 2 | %IW[\b.e\]r.m.1.2 | Wert      |
| Eingangswort 3 | %IW[\b.e\]r.m.1.3 | Wert      |
| Eingangswort 4 | %IW[\b.e\]r.m.1.4 | Wert      |
| Eingangswort 5 | %IW[\b.e\]r.m.1.5 | Wert      |
| Eingangswort 6 | %IW[\b.e\]r.m.1.6 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### Statusbyte für E/A-Zuordnung

Diesem Modul wurde kein Statusbyte für die E/A-Zuordnung zugewiesen.

# E/A-Konfiguration für digitale Ausgangsmodule

#### Übersicht

In diesem Abschnitt finden Sie Informationen zur Konfiguration der 8-, 16-, 32- und 96-Punkt-Ausgangsmodule.

#### 8-Punkt-Ausgangsmodule

Nachfolgend ist das 8-Punkt-Ausgangsmodul abgebildet:

- 140 DRC 830 00 (Relais-Ausgang, 8x1 Schließer/Öffner)
- 140 DIO 330 00 (digitales Sicherheitsausgangsmodul)

#### Flache Adressierung

Die oben genannten Ausgangsmodule können entweder als acht aufeinander folgende digitale %M-Ausgangsreferenzen oder als ein %MW-Ausgangswort konfiguriert werden. Eine Beschreibung des Zugriffs auf die Eingangspunkte finden Sie unter: *Digitale E/A-Bit-Nummerierung, Seite 35*.

| MSE | 3 |  |  |  |   |   |   |   |   |   |   |   |
|-----|---|--|--|--|---|---|---|---|---|---|---|---|
|     |   |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 8-Punkt-Ausgangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt     | E/A-Objekt     | Kommentar |
|-----------|----------------|-----------|
| Ausgang 1 | %Q[\b.e\]r.m.1 | Wert      |
| Ausgang 2 | %Q[\b.e\]r.m.2 | Wert      |
|           | •••            |           |
| Ausgang 7 | %Q[\b.e\]r.m.7 | Wert      |
| Ausgang 8 | %Q[\b.e\]r.m.8 | Wert      |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Ausgangswort 1 | %QW[\b.e\]R.S.1.1 | Wert      |

Verwendete Abkürzungen:  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (E/A-Station),  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz.

#### E/A-Zuordnungsstatusbyte

Diesen Modulen ist kein E/A- Zuordnungsstatusbyte zugeordnet.

#### 12-Punkt-Ausgangsmodul

12-Punkt-Ausgangsmodul:

• 140 DDO 885 00

#### Flache Adressierung (Fehlereingänge)

Die oben aufgeführten Fehlereingänge des 140 DDO 885 00 können als 16 aufeinander folgende %I-Referenzen oder als ein %IW-Wort konfiguriert werden. Eine Beschreibung des Zugriffs auf die Eingangspunkte finden Sie unter: *Digitale E/A-Bit-Nummerierung, Seite 35*.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |  |  |  | 1 |
|---|---|---|---|---|---|---|---|---|----|----|----|--|--|--|--|---|
|---|---|---|---|---|---|---|---|---|----|----|----|--|--|--|--|---|

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 12-Punkt-Fehlereingänge. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt          | Kommentar |  |  |
|------------|---------------------|-----------|--|--|
| Eingang 1  | %l[\b.e\]r.m.1      | Wert      |  |  |
| Eingang 2  | %I[\b.e\]r.m.2 Wert |           |  |  |
|            | •••                 |           |  |  |
| Eingang 11 | %I[\b.e\]r.m.11     | Wert      |  |  |
| Eingang 12 | %I[\b.e\]r.m.12     | Wert      |  |  |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### Flache Adressierung (Ausgänge)

Das Modul 140DDO88500 kann als ein %MW-Ausgangswort im folgenden Format konfiguriert werden. Eine Beschreibung des Zugriffs auf die Eingangspunkte finden Sie unter: *Digitale E/A-Bit-Nummerierung, Seite 35*.



#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 12-Punkt-Ausgangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |  |  |  |  |
|------------|-----------------|-----------|--|--|--|--|
| Ausgang 1  | %Q[\b.e\]r.m.1  | Wert      |  |  |  |  |
| Ausgang 2  | %Q[\b.e\]r.m.2  | Wert      |  |  |  |  |
|            | •••             |           |  |  |  |  |
| Ausgang 11 | %Q[\b.e\]r.m.11 | Wert      |  |  |  |  |
| Ausgang 12 | %Q[\b.e\]r.m.12 | Wert      |  |  |  |  |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Ausgangswort 1 | %QW[\b.e\]r.m.1.1 | Wert      |

Verwendete Abkürzungen:  $\mathbf{b} = \text{Bus}$ ,  $\mathbf{e} = \text{Gerät}$  (E/A-Station),  $\mathbf{r} = \text{Rack}$ ,  $\mathbf{m} = \text{Modulsteckplatz}$ .

### E/A-Zuordnungsstatusbyte (Ausgänge)

Das niederwertige Bit des E/A-Zuordnungsstatusbytes (Ausgang) wird wie folgt verwendet. Eine Beschreibung des Zugriffs auf die Eingangspunkte finden Sie unter: *Digitale E/A-Bit-Nummerierung, Seite 35*.

MSB

8 7 6 5 4 3 2 1

Modulfehler (jeder Kanalfehler aktiviert dieses Bit)

#### 16-Punkt-Ausgangsmodule

16-Punkt-Ausgangsmodule:

- 140DAO84000 (AC-Ausgang, 24 bis 230 VAC, 16x1)
- 140DAO84010 (AC-Ausgang, 14 bis 115 VAC, 16x1)
- 140DAO84210 (AC-Ausgang, 100 bis 230 VAC, 4x4)
- 140DAO84220 (AC-Ausgang, 48 VAC, 4x4)
- 140DDO84300 (DC-Ausgang, 10 bis 60 VDC, 2x8 stromliefernd)
- 140DRA84000 (Relaisausgang, 16x1, Schließermodul)

#### Flache Adressierung

Die oben genannten Ausgangsmodule können entweder als 16 aufeinander folgende digitale %M-Ausgangsreferenzen oder als ein %MM-Ausgangswort im folgenden Format konfiguriert werden. Eine Beschreibung des Zugriffs auf die Eingangspunkte finden Sie unter: *Digitale E/A-Bit-Nummerierung, Seite 35.* 

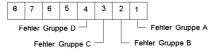
| RΛ | C | E |
|----|---|---|
|    |   |   |

| 4 | 2 | 2 | 1 | E | ء ا | 7 | 8 | ۱ ۵ | 10 | 11  | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|-----|---|---|-----|----|-----|----|----|----|----|----|
| ' | 4 | ٦ | 4 | 9 | ۰   | ′ | • | ا ا | 10 | ''' | 12 | 13 | 14 | 13 | 10 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 16-Punkt-Ausgangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |  |  |  |  |
|------------|-----------------|-----------|--|--|--|--|
| Ausgang 1  | %Q[\b.e\]r.m.1  | Wert      |  |  |  |  |
| Ausgang 2  | %Q[\b.e\]r.m.2  | Wert      |  |  |  |  |
|            | •••             |           |  |  |  |  |
| Ausgang 15 | %Q[\b.e\]r.m.15 | Wert      |  |  |  |  |
| Ausgang 16 | %Q[\b.e\]r.m.16 | Wert      |  |  |  |  |


Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Ausgangswort 1 | %QW[\b.e\]r.m.1.1 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### E/A-Zuordnungsstatusbyte

Das E/A-Zuordnungsstatusbyte wird von den Ausgangsmodulen 140DAO84210 und 140DAO84220 verwendet. Die folgende Abbildung zeigt die Verwendung der Statusbytes der E/A-Zuordnung.



Den Modulen 140DAO84000, 140DAO84010, 140DDO84300 oder 140DRA84000 ist kein E/A-Zuordnungsstatusbyte zugeordnet.

#### 32-Punkt-Ausgangsmodule

Im Folgenden werden die 32-Punkt-Ausgangsmodule aufgeführt:

- 140DAO85300 (AC-Ausgang, 230 VAC, 4x8, Strom ziehend)
- 140DDO15310 (DC-Ausgang, 5 V 4x8, Strom ziehend)
- 140DDO35300 (DC-Ausgang, 24 VDC, 4x8, Strom liefernd)
- 140DDO35301 (DC-Ausgang, 24 VDC, 4x8, Strom liefernd)
- 140DDO35310 (DC-Ausgang, 24 VDC, negative Logik (true low), 4x8, Strom ziehend)

Adressierungsinformationen für das Modul 140DVO85300 finden Sie unter: *Adressierung, Seite 483.* 

#### Flache Adressierung

Die oben genannten Ausgangsmodule können entweder als 32 aufeinander folgende %M-Referenzen oder als 2 %MW-Wörter im folgenden Format konfiguriert werden. Eine Beschreibung des Zugriffs auf die Eingangspunkte finden Sie unter: *Digitale E/A-Bit-Nummerierung, Seite 35*.

|                     | MSB - Erstes Wort |       |         |      |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------|-------------------|-------|---------|------|----|----|----|----|----|----|----|----|----|----|----|----|
| Ausgang<br>Punkt 1  | 1                 | 2     | 3       | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|                     | MSB               | - Zwe | eites V | Vort |    |    |    |    |    |    |    |    |    |    |    |    |
| Ausgang<br>Punkt 17 | 17                | 18    | 19      | 20   | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 32-Punkt-Ausgangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |  |  |  |  |  |  |
|------------|-----------------|-----------|--|--|--|--|--|--|
| Ausgang 1  | %Q[\b.e\]r.m.1  | Wert      |  |  |  |  |  |  |
| Ausgang 2  | %Q[\b.e\]r.m.2  | Wert      |  |  |  |  |  |  |
|            | •••             |           |  |  |  |  |  |  |
| Ausgang 31 | %Q[\b.e\]r.m.31 | Wert      |  |  |  |  |  |  |
| Ausgang 32 | %Q[\b.e\]r.m.32 | Wert      |  |  |  |  |  |  |

Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |  |  |  |
|----------------|-------------------|-----------|--|--|--|
| Ausgangswort 1 | %QW[\b.e\]r.m.1.1 | Wert      |  |  |  |
| Ausgangswort 2 | %QW[\b.e\]r.m.1.2 | Wert      |  |  |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### E/A-Zuordnungsstatusbyte

Das Statusbyte für die E/A-Zuordnung wird von den Modulen wie folgt verwendet:



#### 96-Punkt-Ausgangsmodul

96-Punkt-Ausgangsmodul:

• 140DDO36400 - DC-Ausgangsmodul, 24 VDC, 6x16, Strom liefernd

#### Flache Adressierung

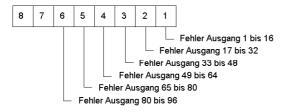
Die folgende Abbildung zeigt das Wortformat für die Wörter 1 bis 6 des Ausgangsmoduls 140DDO36400. Eine Beschreibung des Zugriffs auf die Eingangspunkte finden Sie unter: *Digitale E/A-Bit-Nummerierung, Seite 35*.

| 1                   | MSB                 | - Erst | tes W   | ort   |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------|---------------------|--------|---------|-------|----|----|----|----|----|----|----|----|----|----|----|----|
| Ausgang<br>Punkt 1  | 1                   | 2      | 3       | 4     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|                     |                     |        |         |       |    |    |    |    |    |    |    |    |    |    |    |    |
|                     | MSB                 | - Zw   | eites ¹ | Wort  |    |    |    |    |    |    |    |    |    |    |    |    |
| Ausgang<br>Punkt 17 | 17                  | 18     | 19      | 20    | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
|                     |                     |        |         |       |    |    |    |    |    |    |    |    |    |    |    |    |
|                     | MSB                 | - Drit | tes V   | Vort  |    |    |    |    |    |    |    |    |    |    |    |    |
| Ausgang<br>Punkt 33 | 33                  | 34     | 35      | 36    | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
|                     |                     |        |         |       |    |    |    |    |    |    |    |    |    |    |    |    |
|                     | MSB                 | - Vie  | rtes V  | Vort  |    |    |    |    |    |    |    |    |    |    |    |    |
| Ausgang<br>Punkt 49 | 49                  | 50     | 51      | 52    | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
|                     |                     |        |         |       |    |    |    |    |    |    |    |    |    |    |    |    |
|                     | MSB                 | - Für  | ıftes \ | ∕Vort |    |    |    |    |    |    |    |    |    |    |    |    |
| Ausgang<br>Punkt 65 | 65                  | 66     | 67      | 68    | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
|                     |                     |        |         |       |    |    |    |    |    |    |    |    |    |    |    |    |
|                     | MSB - Sechstes Wort |        |         |       |    |    |    |    |    |    |    |    |    |    |    |    |
| Ausgang<br>Punkt 81 | 81                  | 82     | 83      | 84    | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 |

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 16-Punkt-Ausgangsmodule. Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |  |  |  |  |
|------------|-----------------|-----------|--|--|--|--|
| Ausgang 1  | %Q[\b.e\]r.m.1  | Wert      |  |  |  |  |
| Ausgang 2  | %Q[\b.e\]r.m.2  | Wert      |  |  |  |  |
|            | •••             |           |  |  |  |  |
| Ausgang 95 | %Q[\b.e\]r.m.95 | Wert      |  |  |  |  |
| Ausgang 96 | %Q[\b.e\]r.m.96 | Wert      |  |  |  |  |


#### Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Ausgangswort 1 | %QW[\b.e\]r.m.1.1 | Wert      |
| Ausgangswort 2 | %QW[\b.e\]r.m.1.2 | Wert      |
| Ausgangswort 3 | %QW[\b.e\]r.m.1.3 | Wert      |
| Ausgangswort 4 | %QW[\b.e\]r.m.1.4 | Wert      |
| Ausgangswort 5 | %QW[\b.e\]r.m.1.5 | Wert      |
| Ausgangswort 6 | %QW[\b.e\]r.m.1.6 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### E/A-Zuordnungsstatusbyte

Das Statusbyte für die E/A-Zuordnung wird vom Modul wie folgt verwendet:



### E/A-Konfiguration für digitale Eingangs-/Ausgangsmodule

#### Übersicht

Dieser Abschnitt enthält Informationen über die Konfiguration von Modulen mit 4 Ein-/4 Ausgängen und 16 Ein-/8 Ausgängen.

#### 4-Punkt-Eingangs-/4-Punkt-Ausgangsmodul

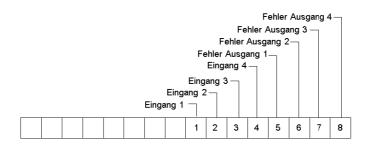
Nachfolgend ist das 4-Punkt-Eingangs-/4-Punkt-Ausgangsmodul abgebildet:

• 140DDM69000 (125-VDC-Eingangs-/Hochstromausgangsmodul)

#### Flat-Adressierung

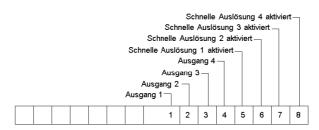
Das Ein-/Ausgangsmodul 140DDM69000 kann entweder als 8 aufeinander folgende %I-Referenzen, oder als ein %IW-Wort und entweder acht aufeinander folgende %M-Referenzen oder ein %MW-Wort konfiguriert werden.

# **▲** VORSICHT


#### UNBEABSICHTIGTER BETRIEB VON GERÄTEN - FALSCHE E/A-ZUORDNUNG

Bei der E/A-Zuordnung der Moduleingänge mittels digitaler %I-Referenzen in dezentralen E/A-Stationen dürfen Sie digitale Wörter nicht zwischen den E/A-Stationen aufteilen. Die geringste digitale Referenz für eine E/A-Station muss an einer Wortgrenze beginnen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.


#### E/A-Zuordnungs-Register (Eingänge)

Die folgende Abbildung zeigt das %IW-Eingangswort.



#### E/A-Map-Zuweisung (Ausgänge)

Die folgende Abbildung zeigt das %MW-Ausgangswort.



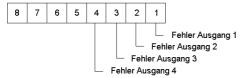
Im Modus Schnellausschalten kann jeder Ausgang durch das Befehlsbit (z.B. Ausgang 1) oder durch das entsprechende Eingangsbit mit dem Bit zur Aktivierung des schnellen Trip-Modus (z.B. der letzte Befehl Eingang 1 steuert direkt Ausgang 1) auf EIN gesetzt werden.

#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für das Ein-/Ausgangsmodul 140 DDM 690 00.

Topologische Adressen im Bitzuordnungsformat:

| Punkt     | E/A-Objekt     | Kommentar |  |  |  |  |
|-----------|----------------|-----------|--|--|--|--|
| Eingang 1 | %I[\b.e\]r.m.1 | Wert      |  |  |  |  |
| Eingang 2 | %l[\b.e\]r.m.2 | Wert      |  |  |  |  |
|           | •••            |           |  |  |  |  |
| Eingang 7 | %I[\b.e\]r.m.7 | Wert      |  |  |  |  |
| Eingang 8 | %I[\b.e\]r.m.8 | Wert      |  |  |  |  |
| Ausgang 1 | %Q[\b.e\]r.m.1 | Wert      |  |  |  |  |
| Ausgang 2 | %Q[\b.e\]r.m.2 | Wert      |  |  |  |  |
| •••       |                |           |  |  |  |  |
| Ausgang 7 | %Q[\b.e\]r.m.7 | Wert      |  |  |  |  |
| Ausgang 8 | %Q[\b.e\]r.m.8 | Wert      |  |  |  |  |


Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |
| Ausgangswort 1 | %QW[\b.e\]r.m.1.1 | Wert      |

Verwendete Abkürzungen:  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (Station),  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz

#### Statusbyte der E/A-Zuordnung (Ausgänge)

Die vier niederwertigsten Bits des E/A-Zuordnungsstatus werden wie folgt verwendet:



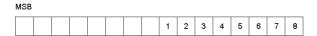
#### 16-Punkt-Eingangs-/8-Punkt-Ausgangsmodule

Die folgenden Informationen beziehen sich auf die Module 140 DAM 590 00 (AC-Eingang 115 VAC 2x8 / AC-Ausgang 115 VAC 2x4) und 140 DDM 390 00 (DC-Eingang 24 VDC 2x8 / DC-Ausgang 24 VDC 2x4).

- 140 DAM 590 00 (AC-Eingang 115 VAC 2x8 / AC-Ausgang 115 VAC 2x4)
- 140 DDM 390 00 (DC-Eingang 24 VDC 2x8 / DC-Ausgang 24 VAC 2x4)

#### Flat-Adressierung

Die oben aufgeführten Eingangsmodule können als 16 aufeinanderfolgende % I-Referenzen oder als ein % IW-Wort und ein % MW-Wort konfiguriert werden.


#### E/A-Zuordnungs-Register (Eingänge)

Die folgende Abbildung zeigt das % IW-Eingangswort. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter *Digitale E/A-Bit-Nummerierung, Seite 35*.

| ı | MSB |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|---|-----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|   | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

#### E/A-Map-Zuweisung (Ausgänge)

Die oben genannten Ausgangsmodule können entweder als 8 %M-Referenzen oder als 1 %MW-Wort im folgenden Format konfiguriert werden. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter *Digitale E/A-Bit-Nummerierung, Seite 35*.

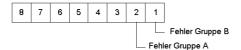


#### **Topologische Adressierung**

Die folgenden Tabellen enthalten die topologischen Adressen für die 16/8-Punkt-Ein-/Ausgangsmodule.

Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |  |  |  |  |
|------------|-----------------|-----------|--|--|--|--|
| Eingang 1  | %I[\b.e\]r.m.1  | Wert      |  |  |  |  |
| Eingang 2  | %I[\b.e\]r.m.2  | Wert      |  |  |  |  |
|            | •••             |           |  |  |  |  |
| Eingang 15 | %I[\b.e\]r.m.15 | Wert      |  |  |  |  |
| Eingang 16 | %I[\b.e\]r.m.16 | Wert      |  |  |  |  |
| Ausgang 1  | %Q[\b.e\]r.m.1  | Wert      |  |  |  |  |
| Ausgang 2  | %Q[\b.e\]r.m.2  | Wert      |  |  |  |  |
| •••        |                 |           |  |  |  |  |
| Ausgang 7  | %Q[\b.e\]r.m.7  | Wert      |  |  |  |  |
| Ausgang 8  | %Q[\b.e\]r.m.8  | Wert      |  |  |  |  |


Topologische Adressen im Wortzuordnungsformat:

| Punkt E/A-Objekt |                   | Kommentar |
|------------------|-------------------|-----------|
| Eingangswort 1   | %IW[\b.e\]r.m.1.1 | Wert      |
| Ausgangswort 1   | %QW[\b.e\]r.m.1.1 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (Station), **r** = Rack, **m** = Modulsteckplatz

# Statusbyte der E/A-Zuordnung (Ausgänge)

Die beiden niederwertigsten Bits des E/A-Map-Statusbytes (Ausgang) werden wie folgt verwendet.



# Kapitel 3

# Allgemeine Regeln zum Befestigen von Klemmenblöcken für digitale und analoge Eingangs-/Ausgangsmodule

Befestigen von Anschlussblöcken für digitale und analoge Eingangs-/Ausgangsmodule:

#### Auf einen Blick

Nachfolgend ist die Befestigung eines Anschlussblocks in einem digitalen/analogen Modul beschrieben.

#### Digitalmodule

# **A** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Ergreifen Sie vor der Montage/dem Entfernen eines digitalen Moduls folgende Maßnahmen:

- unterbrechen Sie die Stromversorgung des Moduls (der Sensoren und Voraktoren) und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

#### Analogmodule

# **A** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Ergreifen Sie vor der Montage/dem Entfernen eines analogen Moduls folgende Maßnahmen:

- Stellen Sie sicher, dass der Anschlussblock weiterhin mit der Erde verbunden ist.
- Unterbrechen Sie die Stromversorgung des Moduls (der Sensoren und Voraktoren).
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

# Verdrahtungsregeln

| mm <sup>2</sup> | 0.141.5 | 0 | .160.75 | 0.142.5 | 0.144 | 0.16 | 1.5 |
|-----------------|---------|---|---------|---------|-------|------|-----|
| AWG             | 2016    | 2 | 018     | 2014    | 2012  | 20   | 16  |
|                 | _       |   |         |         | Nm    |      | 0.6 |

# Teil II

# Analogeingangsmodule

# Einleitung

Der folgende Teil enthält Informationen zu den Quantum-Analogeingangsmodulen.

#### Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

| Kapitel | Kapitelname                                                  | Seite |
|---------|--------------------------------------------------------------|-------|
| 4       | 140 ACI 030 00: Analoges Strom-/Spannungseingangsmodul       | 63    |
| 5       | 140 ACI 040 00: Analoges Strom-/Spannungseingangs-Kombimodul | 75    |
| 6       | 140 ARI 030 10: Analoges RTD-Eingangsmodul                   | 85    |
| 7       | 140 ATI 030 00: Analoges Thermoelement-Eingangsmodul         | 99    |
| 8       | 140 AVI 030 00: Analoges Strom-/Spannungseingangs-Kombimodul | 115   |

# Kapitel 4

# 140 ACI 030 00: Analoges Strom-/Spannungseingangsmodul

# Zu diesem Kapitel

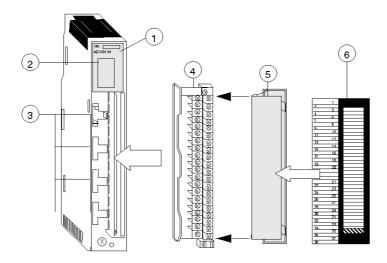
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 ACI 030 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Einführung             | 64    |
| Anzeigen               | 65    |
| Verdrahtungsschema     | 66    |
| Kenndaten              | 69    |
| Adressierung           | 71    |
| Parameterkonfiguration | 73    |

#### **Einführung**


#### **Funktionalität**

Das unipolare 8-Kanal-Analogeingangsmodul akzeptiert gemischte Strom- und Spannungseingänge. Die erforderlichen Brücken zwischen den Eingangs- und Fühlerklemmen zur Messung des Stromeingangs sind im Modul integriert.

**HINWEIS:** Dieses Modul ist HART-konform.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 ACI 030 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Klappe
- 6 Beschriftungsschild (Schild falten und an der Klappeninnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Klappe mit Beschriftungsstreifen.)

# **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 ACI 030 00.



#### **Beschreibung**

Die folgende Tabelle enthält eine Beschreibung der LED-Anzeigen des Moduls 140 ACI 030 00.

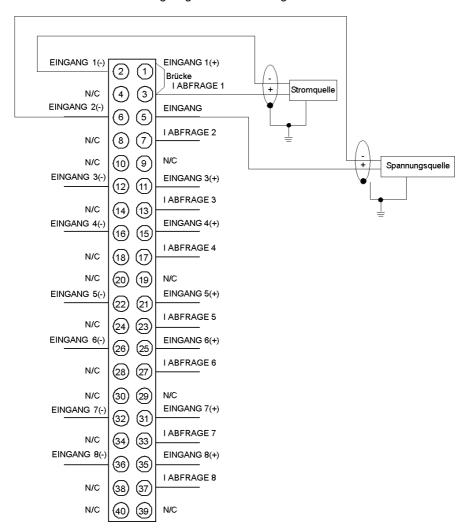
| LED-<br>Anzeigen | Farbe | Anzeige in Zustand EIN                           |
|------------------|-------|--------------------------------------------------|
| Active           | Grün  | Bus-Kommunikation vorhanden.                     |
| F                | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt. |

#### Diagnose

- 1. Nicht verwendete Eingänge können die Aktivierung der F-LED-Anzeige hervorrufen. Um dies zu verhindern, schließen Sie nicht verwendete Kanäle im Spannungsmodus an einen im Betrieb befindlichen Kanal an.
- 2. Dieses Modul gibt ein Fehlersignal F aus, wenn ein Kanal einen Drahtbruch im Bereich 4-20 mA oder eine Unterspannung im Bereich 1-5 V feststellt.

# Verdrahtungsschema

#### **Abbildung**


# **A** VORSICHT

#### NICHT VERKABELTE EINGÄNGE FÜHREN ZU UNGÜLTIGEN MESSWERTEN

Bei Konfiguration für Spannungseingänge (keine Steckbrücke zwischen EINGANG(+) und FÜHLERKLEMMEN installiert) sind die Messwerte bei einem Drahtbruch in der Feldverdrahtung ungleich Null und nicht berechenbar. Die Feldverdrahtungs-Klemmenleiste darf nicht entfernt werden, während das Modul in Betrieb ist.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### Die nachstehende Abbildung zeigt das Verdrahtungsschema für das Modul 140 ACI 030 00:



#### Empfehlungen für externe Verdrahtung

- 1. Die Strom- und Spannungsquellen werden vom Benutzer bereitgestellt (der Benutzer ist ebenfalls verantwortlich für die Installation und Kalibrierung von Sicherungen).
- 2. Es muss ein geschirmtes Signalkabel verwendet werden. In Umgebungen mit hohen Störeinflüssen sollten verdrillte geschirmte Kabel verwendet werden.
- 3. Geschirmte Kabel müssen an die Masse der SPS angeschlossen werden.
- 4. Zum Anschließen des geschirmten Kabels an die Masse (siehe Quantum mit EcoStruxure ™ Control Expert, Hardware, Referenzhandbuch) sollte eine Abschirmungsleiste (STB XSP 3000 und STB XSP 3010/3020) verwendet werden.
- 5. Die maximale Arbeitsspannung Kanal-Kanal darf 30 V DC nicht überschreiten.
- 6. N/C = Nicht angeschlossen

**HINWEIS:** Bei umgekehrter Polarität ändern sich die Analogwerte zu 0 und dem Kanal wird nichts zugeführt. Das Modul richtet sich nach der Polarität und liest in die eine, aber nicht in die andere Richtung. Die Werte verbleiben auf Null.

**HINWEIS:** Bei einer Feldverdrahtung des E/A-Moduls sollte ein maximaler Drahtdurchmesser von 1-14 AWG (1,5 mm²) bzw. 2-16 AWG (2 mm²) verwendet werden. Der Mindestdurchmesser beträgt 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# Kenndaten

# Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp              | 8 Eingangskanäle                                                 |
|-----------------------|------------------------------------------------------------------|
| Externe Spannung      | Nicht erforderlich                                               |
| Stromaufnahme (Modul) | 240 mA                                                           |
| Verlustleistung       | 2 W                                                              |
| E/A-Zuordnung         | 9 Eingangswörter                                                 |
| Fehlererkennung       | Drahtbruch (4-20mA-Modus) oder<br>Unterspannungsbereich (1 - 5V) |

# Spannung/Eingang

# Spannung/Eingang

| Betriebsspannung (Kanal-Kanal) | 30 VDC (max.) |
|--------------------------------|---------------|
| Absolute Spannung (max.)       | 50 VDC        |
| Linearer Messbereich           | 1 bis 5 VDC   |
| Eingangsimpedanz               | > 20 MOhm     |

# Strom/Eingang

# Strom/Eingang

| Absoluter Strom (max.)                     | 25 mA                                         |
|--------------------------------------------|-----------------------------------------------|
| Linearer Messbereich                       | 4 bis 20 mA                                   |
| Eingangsimpedanz                           | 250 Ohm<br>Interner Wandlungswiderstand       |
| Für Eingänge maximal zulässige<br>Überlast | Unfallgeschützt: Verdrahtung -19,2 bis 30 VDC |

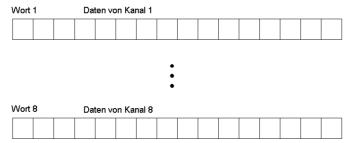
# Auflösung/Konvertierung

# Auflösung/Konvertierung

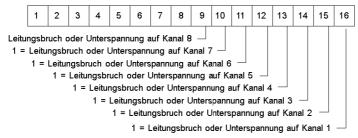
| Auflösung                                               | 12 Bit                                                                                    |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Absoluter Genauigkeitsfehler bei 25 °C (Spannungsmodus) | Typisch: +/-0,05 % der Vollaussteuerung<br>Maximal: +/-0,1 % der Vollaussteuerung         |
| Linearität                                              | +/- 0,04 %                                                                                |
| Temperaturbedingte<br>Genauigkeitsabweichung            | Typisch: +/-0,00 25% der Vollaussteuerung / °C Maximal: 0,005 % der Vollaussteuerung / °C |
| Gleichtaktunterdrückung                                 | < -72 dB bei 60 Hz                                                                        |
| Eingangsfilter                                          | Einpoliger Tiefpass, -3 dB Abschaltung bei 15 Hz, +/-20%                                  |
| Aktualisierungsdauer                                    | 5 ms für alle Kanäle                                                                      |

# Potenzialtrennung

### Potenzialtrennung


| Kanal-Bus | 1000 VDC              |
|-----------|-----------------------|
|           | 3000 Vpp für 1 Minute |

HINWEIS: Für dieses Modul ist keine Kalibrierung erforderlich.


# Adressierung

#### Flache Adressierung

Dieses Modul benötigt neun aufeinanderfolgende 16-Bit-Wörter, davon acht für Eingangsdaten und eines für den Kanalstatus. Die Formate für die Datenwörter werden im Folgenden gezeigt.



Die folgende Abbildung zeigt das Register für Wort 9.



HINWEIS: Zählung stoppt bei 4095.

**HINWEIS:** Die Unterspannung für dieses Modul beträgt 0,5 - 0,7 V.

HINWEIS: Die Drahtbrucherkennung ist auf 2,0 mA eingestellt.

#### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 ACI 030 00:

| Punkt      | E/A-Objekt                                        | Kommentar                           |  |  |
|------------|---------------------------------------------------|-------------------------------------|--|--|
| Eingang 1  | %IW[\b.e\]r.m.1                                   | Wert                                |  |  |
|            | %I[\b.e\]r.m.1.1 Leitungsbruch oder Unterspannung |                                     |  |  |
| •••        |                                                   |                                     |  |  |
| Eingang 8  | %IW[\b.e\]r.m.8                                   | Wert                                |  |  |
|            | %I[\b.e\]r.m.8.1                                  | Leitungsbruch oder<br>Unterspannung |  |  |
| Statuswort | %IW[\b.e\]r.m.9                                   | Status der Eingangskanäle           |  |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (Station), **r** = Rack, **m** = Modulsteckplatz.

#### **IODDT**

Das Eingangsmodul 140 ACI 030 00 verwendet den IODDT T ANA IN VE:

| IODDT-Name  | Objekt          | Datentyp   | Name              |
|-------------|-----------------|------------|-------------------|
| T_ANA_IN_VE | %CH[\b.e\]r.m.c | ANA_IN_VWE | benutzerdefiniert |
|             | %IWr.m.c.0      | Ganzzahl   | .VALUE            |
|             | %lr.m.c.1       | Boolesch   | .ERROR            |

Verwendete Abkürzungen: **r** = Rack, **m** = Modulsteckplatz, **c** = Kanal, **b** = Bus, **e** = Gerät (Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

**HINWEIS:** In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp **Boolesch** für **%I** und **%Q** verwendet.

#### Statusbyte für E/A-Zuordnung

Das Statusbyte für die E/A-Zuordnung wird von dem Eingangsmodul 140 ARI 030 00 wie folgt verwendet.



. 1 = Leitungsbruch/Unterspannung auf einem oder mehreren Eingangskanälen

# Parameterkonfiguration

### Parameter- und Standardwerte

Parameterkonfigurationsfenster



| Name                                                                                   | Standardwert  | Optionen                             | Beschreibung                                                                        |
|----------------------------------------------------------------------------------------|---------------|--------------------------------------|-------------------------------------------------------------------------------------|
| Zuordnung                                                                              | WORT (%IW-3X) | -                                    |                                                                                     |
| Eingangsstartadresse                                                                   | 1             | -                                    |                                                                                     |
| Eingangsendadresse                                                                     | 9             | -                                    | enthält ein<br>Statuswort                                                           |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST          | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet |

# Kapitel 5

# 140 ACI 040 00: Analoges Strom-/Spannungseingangs-Kombimodul

### Zu diesem Kapitel

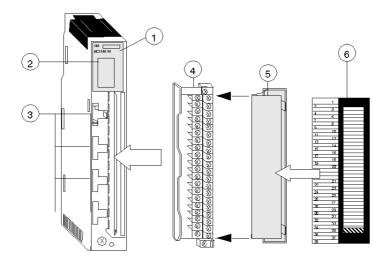
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 ACI 040 00.

### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Einführung             | 76    |
| Anzeigen               | 77    |
| Verdrahtungsschema     | 78    |
| Technische Daten       | 80    |
| Adressierung           | 82    |
| Parameterkonfiguration | 84    |

### **Einführung**


#### **Funktionalität**

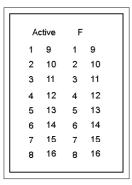
Das Modul 140 ACI 040 00 ist ein Analogeingangsmodul mit 16 Kanälen, das mit gemischten Stromeingängen arbeiten kann.

HINWEIS: Dieses Modul ist HART-konform.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 ACI 040 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Klappe
- **6** Beschriftungsschild (Schild falten und an der Klappeninnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Klappe mit Beschriftungsstreifen.)

### **Anzeigen**

#### **Abbildung**

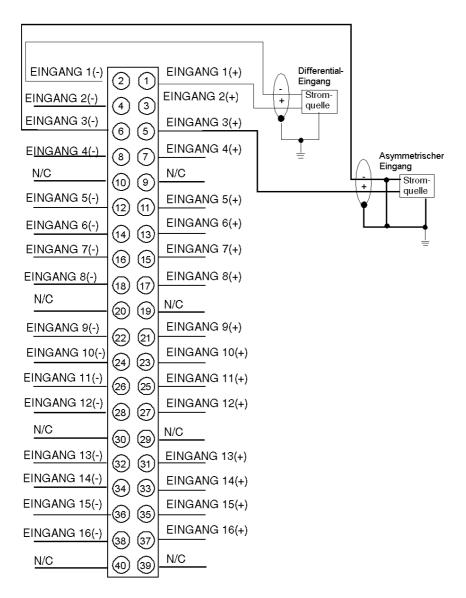
Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 ACI 040 00.



### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 ACI 040 00.

| LEDs   | Farbe | Bedeutung im Zustand EIN                         |
|--------|-------|--------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                      |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt. |


### Diagnose

- 1. Nicht verwendete Eingänge können die Aktivierung der F-LED-Anzeige hervorrufen. Um dies zu verhindern, sollten freie Kanäle im Bereich 0-25 mA konfiguriert werden.
- 2. Dieses Modul generiert das Fehlersignal F, wenn ein Kanal einen Drahtbruch im Bereich von 4-20m A erkennt.

### Verdrahtungsschema

#### **Abbildung**

Verdrahtungsschema für das Modul 140 ACI 040 00:



#### Empfehlungen für externe Verdrahtung

- 1. Die Strom- und Spannungsquellen werden vom Benutzer bereitgestellt (der Benutzer ist ebenfalls verantwortlich für die Installation und Kalibrierung von Sicherungen).
- 2. Es muss ein geschirmtes Signalkabel verwendet werden. In Umgebungen mit hohen Störeinflüssen sollten verdrillte geschirmte Kabel verwendet werden.
- 3. Geschirmte Kabel müssen an die Masse der SPS angeschlossen werden.
- 4. Zum Anschließen des geschirmten Kabels an die Masse (siehe Quantum mit EcoStruxure ™ Control Expert, Hardware, Referenzhandbuch) sollte eine Abschirmungsleiste (STB XSP 3000 und STB XSP 3010/3020) verwendet werden.
- 5. Die maximale Arbeitsspannung Kanal-Kanal darf 30 V DC nicht überschreiten.
- 6. N/C = Nicht angeschlossen

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### **Technische Daten**

### Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp                        | 16 Kanaleingänge (Differential oder externe verbundene asymmetrische Eingänge) |
|---------------------------------|--------------------------------------------------------------------------------|
| Externe Spannung                | Nicht erforderlich                                                             |
| Betriebsspannung (Kanal-Kanal)  | 30 VDC (max.)                                                                  |
| Stromaufnahme (Modul)           | 360 mA                                                                         |
| Verlustleistung                 | 5 W                                                                            |
| E/A-Zuordnung                   | 17 Eingangswörter                                                              |
| Fehlererkennung                 | Drahtbruch (4 bis 20-mA-Modus)                                                 |
| Potentialtrennung (Feld zu Bus) | 1780 VAC für 1 Minute                                                          |

# Strom/Eingang

### Strom/Eingang

| Absoluter Strom (max.) | 30 mA                                                                                                   |
|------------------------|---------------------------------------------------------------------------------------------------------|
| Linearer Messbereich   | 0 25 mA, 0 bis 25.000<br>0 20 mA, 0 bis 20.000<br>4 20 mA, 0 bis 16.000 Impulse<br>4 20 mA, 0 bis 4.095 |
| Eingangsimpedanz       | 250 Ohm nominal                                                                                         |

# Auflösung/Konvertierung

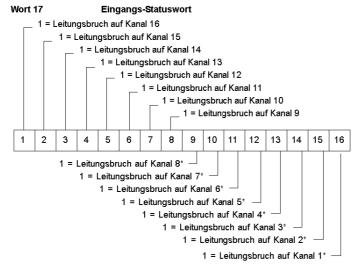
### Auflösung/Konvertierung

| Auflösung                                    | 0 25.000<br>0 20.000<br>0 bis 16.000 Impulse<br>0 4.095                                                                                                |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute Genauigkeitsfehler bei 25 °C        | +/-0,125% vom Skalenendwert                                                                                                                            |
| Linearität (0 bis 60 °C)                     | +/- 12 Mikroampere max., 4 bis 20 mA<br>+/-6 Mikroampere max., 0 bis 25 mA<br>+/-6 Mikroampere max., 0 bis 20 mA<br>+/-6 Mikroampere max., 4 bis 20 mA |
| Temperaturbedingte<br>Genauigkeitsabweichung | Typisch: +/-0,0025% vom Skalenendwert/°C Maximum: +/-0,005% vom Skalenendwert/°C                                                                       |
| Gleichtaktunterdrückung                      | < -90 dB bei 60 Hz                                                                                                                                     |
| Eingangsfilter                               | Einpoliger Tiefpass, -3 dB Begrenzung bei 34 Hz, +/-25%                                                                                                |
| Aktualisierungsdauer                         | 15 ms für alle Kanäle                                                                                                                                  |

### Sicherungen

### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |


### Adressierung

#### Flache Adressierung

Dieses Modul benötigt 17 aufeinanderfolgende 16-Bit-Wörter, davon 16 für Eingangsdaten und eines für den Kanalstatus. Die Formate für die Datenwörter werden im Folgenden gezeigt.

| Wort 1  | Da | ten von Ka | nal 1  |   |  |  |  |  |
|---------|----|------------|--------|---|--|--|--|--|
|         |    |            |        |   |  |  |  |  |
|         |    |            |        |   |  |  |  |  |
|         |    |            |        | • |  |  |  |  |
|         |    |            |        | • |  |  |  |  |
| Wort 16 | Da | ten von Ka | nal 16 | i |  |  |  |  |
|         |    |            |        |   |  |  |  |  |

Die folgende Abbildung zeigt das 17. Wort.



HINWEIS: Die Drahtbrucherkennung ist auf 2,0 mA eingestellt.

#### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 ACI 040 00:

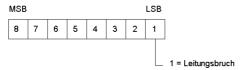
| Punkt                       | E/A-Objekt        | Kommentar                           |  |  |  |  |
|-----------------------------|-------------------|-------------------------------------|--|--|--|--|
| Eingang 1                   | %IW[\b.e\]r.m.1   | Wert                                |  |  |  |  |
|                             | %I[\b.e\]r.m.1.1  | Leitungsbruch oder<br>Unterspannung |  |  |  |  |
|                             | •••               |                                     |  |  |  |  |
| Eingang 16 %IW[\b.e\]r.m.16 |                   | Wert                                |  |  |  |  |
|                             | %I[\b.e\]r.m.16.1 | Leitungsbruch oder<br>Unterspannung |  |  |  |  |
| Statuswort                  | %IW[\b.e\]r.m.17  | Status der Eingangskanäle           |  |  |  |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (Station), **r** = Rack, **m** = Modulsteckplatz.

#### **IODDT**

Das Eingangsmodul 140 ACI 040 00 verwendet den IODDT  ${\tt T}$  ANA IN VE:

| IODDT-Name  | Objekt          | Datentyp   | Name              |  |  |
|-------------|-----------------|------------|-------------------|--|--|
| T_ANA_IN_VE | %CH[\b.e\]r.m.c | ANA_IN_VWE | benutzerdefiniert |  |  |
|             | %IWr.m.c.0      | Ganzzahl   | .VALUE            |  |  |
|             | %lr.m.c.1       | Boolesch   | .ERROR            |  |  |


Verwendete Abkürzungen: **r** = Rack, **m** = Modulsteckplatz, **c** = Kanal, **b** = Bus, **e** = Gerät (Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

HINWEIS: In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp Boolesch für %I und %Q verwendet.

#### Statusbyte für E/A-Zuordnung

Das Statusbyte für die E/A-Zuordnung wird von dem Eingangsmodul 140 ARI 040 00 wie folgt verwendet.



# Parameterkonfiguration

### Parameter- und Standardwerte

Parameterkonfigurationsfenster

| Konfig               |                      |
|----------------------|----------------------|
| Parametername        | Wert                 |
| · · · ZUORDNUNG      | WORT (%IW-3x)        |
| EINGANGSSTARTADRESSE | 1                    |
| EINGANGSENDADRESSE   | 17                   |
| TASK                 | MAST                 |
| KANÄLE               |                      |
| ···KANAL1            | "4 - 20 mA, 0-16000" |
| · - · Kanal2         | "4 - 20 mA, 0-16000" |
| · - · Kanal3         | "4 - 20 mA, 0-16000" |
| ⊡ Kanal4             | "4 - 20 mA, 0-16000" |
| · KANAL5             | "4 - 20 mA, 0-16000" |
| ···KANAL6            | "4 - 20 mA, 0-16000" |
| · · · · KANAL7       | "4 - 20 mA, 0-16000" |
| · KANAL8             | "4 - 20 mA, 0-16000" |
| ' ·KANAL9            | "4 - 20 mA, 0-16000" |
| · · · · KANAL10      | "4 - 20 mA, 0-16000" |
| ·····KANAL11         | "4 - 20 mA, 0-16000" |
| · · · · KANAL12      | "4 - 20 mA, 0-16000" |
| · · · · KANAL13      | "4 - 20 mA, 0-16000" |
| KANAL14              | "4 - 20 mA, 0-16000" |
| · · KANAL15          | "4 - 20 mA, 0-16000" |
| · · · · KANAL16      | "4 - 20 mA, 0-16000" |

| Name                                                                                | Standardwert         | Optionen                                                          | Beschreibung                                                                     |
|-------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Zuordnung                                                                           | WORT (%IW-3X)        | -                                                                 |                                                                                  |
| Eingangsstartadresse                                                                | 1                    | -                                                                 |                                                                                  |
| Eingangsendadresse                                                                  | 17                   | -                                                                 |                                                                                  |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST                 | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3                              | mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet |
| Kanäle                                                                              |                      |                                                                   |                                                                                  |
| Kanal1-Kanal16                                                                      | "4 - 20 mA, 0-16000" | "4 - 20 mA, 0-4095"<br>"0 - 20 mA, 0-20000<br>"0 - 25 mA, 0-25000 |                                                                                  |

# Kapitel 6

# 140 ARI 030 10: Analoges RTD-Eingangsmodul

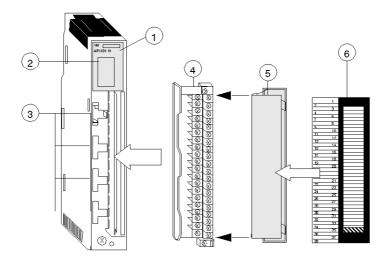
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 ARI 030 10.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                  | Seite |
|----------------------------------------|-------|
| Überblick                              | 86    |
| Anzeigen                               | 87    |
| Verdrahtungsschema                     | 88    |
| EMV-Hinweise                           | 90    |
| Kenndaten für das Modul 140 ARI 030 10 | 92    |
| Adressierung                           | 94    |
| Parameterkonfiguration                 | 97    |


### Überblick

#### **Funktion**

Das analoge 8-Kanal-RTD-Eingangsmodul nimmt Eingangsgrößen von bis zu acht 2-Draht-, 3-Draht- und 4-Draht-Widerstands-Temperaturaufnehmern auf und liefert Temperaturmessdaten an die Quantum-CPU.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 ARI 030 10 mit seinen Komponenten.



- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

### **Anzeigen**

### **Abbildung**

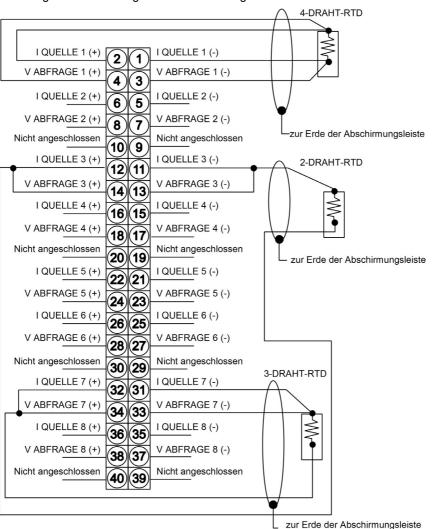
Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 ARI 030 10.

| R | Active      | F |
|---|-------------|---|
|   | 1           |   |
|   | 1<br>2<br>3 |   |
|   | 3           |   |
|   | 4           |   |
|   | 5           |   |
|   | 6           |   |
|   | 7           |   |
|   | 8           |   |
|   |             |   |

### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 ARI 030 10.

| LEDs   | Farbe | Bedeutung im Zustand EIN                                                                                  |
|--------|-------|-----------------------------------------------------------------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                                                                               |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.                                                          |
| R      | Grün  | Das Modul hat die Einschaltdiagnose fehlerfrei bestanden.                                                 |
| 1 8    | Rot   | Am angezeigten Punkt oder Kanal liegt ein erkannter Fehler vor. Gilt auch für Drahtbruch und Kurzschluss. |


### Diagnose

 Beim Einsatz von 2-Draht-Konfigurationen muss das Temperaturäquivalent, das dem zweifachen Leiterwiderstand eines Schenkels entspricht, vom Temperaturwert subtrahiert werden.

### Verdrahtungsschema

#### **Abbildung**

In der folgenden Abbildung ist das Verdrahtungsschema des Moduls 140 ARI 030 10 dargestellt.



#### Empfehlungen für externe Verdrahtung

Das Modul ist kalibriert gemäß:

IEC-Veröffentlichung 751 für Platin-RTDs: 100  $\Omega$  bei 0 °C, TCR (α) = 0,00385  $\Omega/\Omega$ /°C.

DIN 43760 für Nickel-RTDs

RTDs aus amerikanischem Platin: 100  $\Omega$  bei 0 °C, TCR ( $\alpha$ ) = 0,00392  $\Omega/\Omega$ /°C

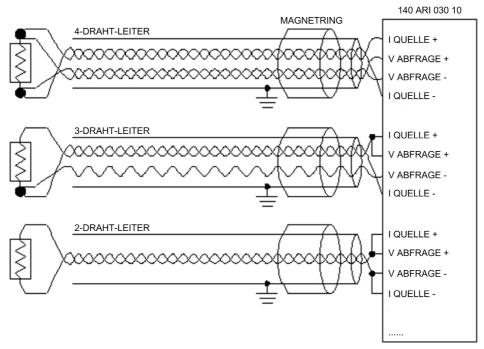
**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße bei 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.


Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

35010518 09/2020

#### **EMV-Hinweise**

### **Abbildung**

Die nachstehende Abbildung zeigt das Verdrahtungsschema für das Modul 140 ARI 030 10 in einem Betriebsumgebung mit hoher elektromagnetischer Störung.



#### Hinweise

- Verwenden Sie in einer Umgebung mit hohem Störpegel ein verdrilltes, geschirmtes Kabelpaar.
- Erden Sie die Kabelschirmung in nächster Nähe zur Modulseite.
- Wir empfehlen, den Magnetring so dicht wie möglich an der Seite des Moduls zu platzieren.
   Wenn die Verwendung eines verdrillten Kabelpaars (insbesondere bei 3-Draht-Leitern)
   Schwierigkeiten bereitet, verwenden Sie den Magnetring.

Halten Sie sich an das Muster in der Tabelle für verdrillte Kabelpaare:

| Schritt | Modus   | Beschreibung                                                                                                                                     |
|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | 4-Draht | ISOURCE+ verdrillt mit ISOURCE-<br>VSENSE+ verdrillt mit VSENSE-                                                                                 |
| 2       | 3-Draht | ISOURCE+/VSENSE+ verdrillt mit ISOURCE-<br>VSENSE+ bleibt allein<br>— oder —<br>ISOURCE+/VSENSE+ verdrillt mit VSENSE-<br>ISOURCE+ bleibt allein |
| 3       | 2-Draht | ISOURCE+/VSENSE+ verdrillt mit ISOURCE-/VSENSE-                                                                                                  |

### Kenndaten für das Modul 140 ARI 030 10

### Allgemeine Kenndaten

| Modultyp                        | 8-Kanal-Eingang (RTD)                                                                |
|---------------------------------|--------------------------------------------------------------------------------------|
| Externe Spannung                | Nicht erforderlich                                                                   |
| Erforderlicher Busstrom (Modul) | 200 mA                                                                               |
| Verlustleistung                 | 1 W                                                                                  |
| E/A-Zuordnung                   | 9 Eingangswörter                                                                     |
| Eingangsimpedanz                | >10 MΩ                                                                               |
| Fehlererkennung                 | Außerhalb des zulässigen Bereichs oder 8 rote LEDs für die Anzeige eines Drahtbruchs |

### RTD-Typen/Bereich

| IEC-Platin:<br>PT 100, PT 200, PT 500, PT 1000            | -200 +850 °C |
|-----------------------------------------------------------|--------------|
| Amerikanisches Platin:<br>PT 100, PT 200, PT 500, PT 1000 | -100 +450 °C |
| Nickel:<br>N 100, N 200, N 500, N 1000                    | -60 +180 °C  |

### Messstrom

| PT 100, PT 200, N100, N200     | 2,5 mA |
|--------------------------------|--------|
| PT 500, PT 1000, N 500, N 1000 | 0,5 mA |

### Auflösung/Konvertierung

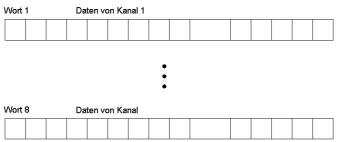
| Auflösung                   | 0,1 °C                                     |
|-----------------------------|--------------------------------------------|
| Absolute Genauigkeitsfehler | +/- 0,5 °C (25 °C)<br>+/- 0,9 °C (0 60 °C) |
| Linearität (0 bis 60 °C)    | +/- 0,01% vom Skalenendwert (0 bis 60 °C)  |

### Potentialtrennung

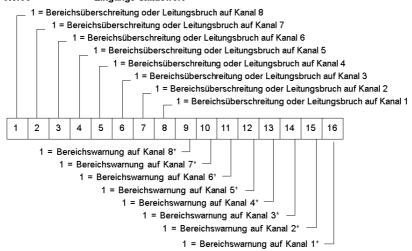
| Kanal-Kanal | 300 Vpp                                        |
|-------------|------------------------------------------------|
| Kanal-Bus   | 1780 VAC bei 47 63 Hz für 1 Minute<br>2500 VDC |

### Aktualisierungsdauer (alle Kanäle)

| 2-Draht<br>4-Draht | 640 ms |
|--------------------|--------|
| 3-Draht            | 1,2 s  |


### Überspannungsschutz

| Maximale Eingangsspannung | Differentialspannung 50 VDC bzw. 30 VAC |
|---------------------------|-----------------------------------------|
| (Zerstörungsgrenze)       |                                         |


### Adressierung

#### Flache Adressierung

Dieses Modul benötigt neun aufeinanderfolgende 16-Bit-Wörter, davon acht für Eingangsdaten und eines für den Kanalstatus. Die Formate für das Datenwort werden im Folgenden gezeigt.



Die folgende Abbildung zeigt das Register für das 9. Wort. Wort 9 Eingangs-Statuswort



\*Eine Warnmeldung wird ausgegeben, falls ein Kanaleingang außerhalb des Nenneingangswertes liegt. Ein Bereichsüberschreitungsbit wird gesetzt, wenn ein Kanal die festgelegten Grenzwerte um mindestens 2,34 % überschreitet oder wenn auf dem Kanal ein Leitungsbruch erkannt wird. Das Warnungsbit wird gelöscht (falls gesetzt), wenn das Bereichsüberschreitungsbit gesetzt wird.

#### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 ARI 030 10:

| Punkt      | E/A-Objekt       | Kommentar                                 |
|------------|------------------|-------------------------------------------|
| Eingang 1  | %IW[\b.e\]r.m.1  | Wert                                      |
|            | %I[\b.e\]r.m.1.1 | Drahtbruch oder<br>Bereichsüberschreitung |
|            | %I[\b.e\]r.m.1.2 | Bereichswarnung                           |
| •••        |                  |                                           |
| Eingang 8  | %IW[\b.e\]r.m.8  | Wert                                      |
|            | %I[\b.e\]r.m.8.1 | Drahtbruch oder<br>Bereichsüberschreitung |
|            | %I[\b.e\]r.m.8.2 | Bereichswarnung                           |
| Statuswort | %IW[\b.e\]r.m.9  | Status der Eingangskanäle                 |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### **IODDT**

Das Eingangsmodul 140 ARI 030 10 verwendet den IODDT T\_ANA\_IN\_VE:

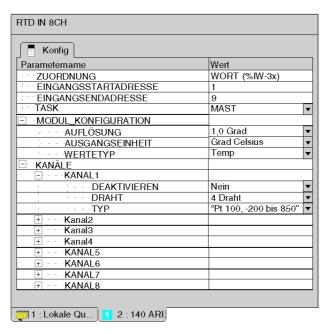
| IODDT-Name  | Objekt          |     | Datentyp   |      | Name              |          |
|-------------|-----------------|-----|------------|------|-------------------|----------|
| T_ANA_IN_VE | %CH[\b.e\]r.m.c |     | ANA_IN_VWE |      | benutzerdefiniert |          |
|             | %IWr.m.         | c.0 |            | Int  |                   | .VALUE   |
|             | %lr.m.c.        | 1   |            | Bool |                   | .ERROR   |
|             | %lr.m.c.:       | 2   |            | Bool |                   | .WARNING |


Verwendete Abkürzungen:  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz,  $\mathbf{c}$  = Kanal,  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (E/A-Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

**HINWEIS:** In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp **Bool** für %1 und %2 verwendet.

#### Statusbyte für E/A-Zuordnung


Das Statusbyte für die E/A-Zuordnung wird von dem Eingangsmodul 140 ARI 030 10 wie folgt verwendet.



### Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                | Standardwert  | Optionen                             | Beschreibung                                                                         |
|-------------------------------------------------------------------------------------|---------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                           | WORT (%IW-3X) | -                                    |                                                                                      |
| Eingangsstartadresse                                                                | 1             | -                                    |                                                                                      |
| Eingangsendadresse                                                                  | 9             | -                                    |                                                                                      |
| Task<br>(Grau unterlegt, wenn sich<br>das Modul nicht im lokalen<br>Modus befindet) | MAST          | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |
| Module_Configuration                                                                |               |                                      |                                                                                      |
| Auflösung                                                                           | 1,0 Grad      | 0,1 Grad                             |                                                                                      |
| Ausgangseinheit                                                                     | Grad Celsius  | Fahrenheit                           |                                                                                      |
| Wertetyp                                                                            | Temp          | Rohwert                              |                                                                                      |

| Name              | Standardwert          | Optionen                                                                                                                                                                                                                                                                  | Beschreibung |
|-------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Kanäle<br>Kanal 1 |                       |                                                                                                                                                                                                                                                                           |              |
| Deaktivieren      | Nein                  | Ja                                                                                                                                                                                                                                                                        |              |
| Draht             | 4-Draht               | 2-Draht<br>3-Draht                                                                                                                                                                                                                                                        |              |
| Тур               | "Pt100, -200 bis 850" | "Pt200, -200 bis 850" "Pt500, -200 bis 850" "Pt1000, -200 bis 850" "Ni 100, -200 bis 850" "Ni200, -200 bis 850" "Ni500, -200 bis 850" "Ni1000, -200 bis 850" "R, 0 bis 766, 66 Ohm" "R, 0 bis 4000 Ohm" "Apt100,-100 bis 450" "Apt500,-100 bis 450" "Apt500,-100 bis 450" |              |
| Kanal2-Kanal8     |                       |                                                                                                                                                                                                                                                                           | Siehe Kanal1 |

# Kapitel 7

# 140 ATI 030 00: Analoges Thermoelement-Eingangsmodul

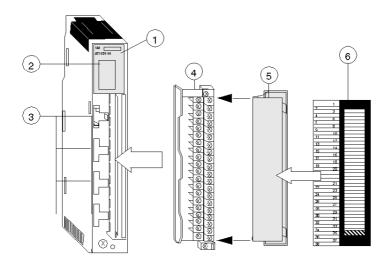
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 ATI 030 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 100   |
| Anzeigen               | 101   |
| Verdrahtungsschema     | 102   |
| Kenndaten              | 105   |
| Adressierung           | 109   |
| Parameterkonfiguration | 112   |


### **Beschreibung**

### **Funktion**

Das 140 ATI 030 00 ist ein 8-Kanal-Thermoelement-Eingangsmodul.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 ATI 030 00 mit seinen Komponenten.



- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

### **Anzeigen**

### **Abbildung**

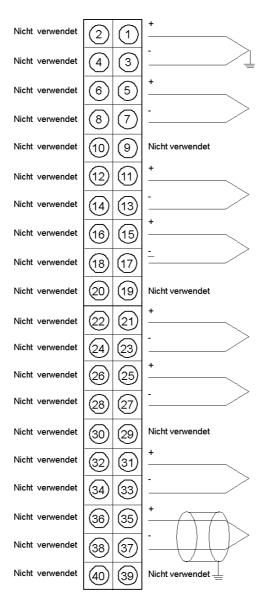
Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 ATI 030 00.

| Ac | tive | F |
|----|------|---|
| 1  | 1    |   |
| 2  | 2    |   |
| 3  | 3    |   |
| 4  | 4    |   |
| 5  | 5    |   |
| 6  | 6    |   |
| 7  | 7    |   |
| 8  | 8    |   |
|    |      |   |

### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 ATI 030 00.

| LEDs   | Farbe | Bedeutung im Zustand EIN                                                               |
|--------|-------|----------------------------------------------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                                                            |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.                                       |
| 1 8    | Grün  | Der angezeigte Punkt oder Kanal ist EINGESCHALTET.                                     |
| 1 8    | Rot   | Der angezeigte Kanal liegt außerhalb des zulässigen Bereichs. Drahtbruch festgestellt. |


### Diagnose

1. Alle Thermoelementbereiche haben eine Thermoelement-Unterbrechungserkennung und einen Ausgang für positive Messwerte. Wenn eine Thermoelement-Unterbrechung festgestellt wird, wird der hexadezimale Messwert 7FFF (dezimal 32767) angezeigt.

### Verdrahtungsschema

#### **Abbildung**

In der folgenden Abbildung ist das Verdrahtungsschema des Moduls 140 ATI 030 00 dargestellt.



#### Empfehlungen für externe Verdrahtung

- Es müssen geschirmte Thermoelemente verwendet werden. (In einer Umgebung mit vielen Störeinflüssen sollten geschirmte Drähte verwendet werden.)
- 2. Geschirmte Typen müssen an die Masse der SPS angeschlossen werden.
- 3. Zum Anschließen des geschirmten Kabels an die Masse (siehe Quantum mit EcoStruxure ™ Control Expert, Hardware, Referenzhandbuch) sollte eine Abschirmungsleiste (STB XSP 3000 und STB XSP 3010/3020) verwendet werden.
- 4. Als Nicht verwendet gekennzeichnete Anschlüsse sind innerhalb des Moduls nicht elektrisch verbunden. Diese Punkte dienen als Wärmeverbindung zur Umgebungsluft. Sie sollten nicht als elektrische Verbindungspunkte eingesetzt werden, da dies die Genauigkeit der Kaltstellenkompensation negativ beeinflussen könnte.
- 5. Die CableFast-Klemmenleiste 140 CFA 040 00 kann verwendet werden. Dadurch kann es allerdings zu Temperaturschwankungen bis zu 2 °C kommen. Weitere Informationen diesbezüglich können Sie dem Hardware-Referenzhandbuch zur Modicon Quantum-Automationsserie entnehmen (840 USE 100).

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

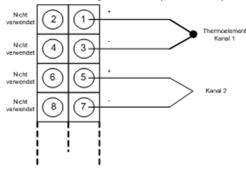
# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Verwendung der Kaltstellenkompensation


Für Temperaturmessungen stellt das Modul 140 ATI 030 00 eine interne Kaltstellenkompensation bereit. Es kann jedoch auch eine dezentrale Kaltestellenkompensation mit den folgenden Thermoelementtypen verwendet werden: J, K und T. Das Thermoelement muss mit Kanal 1 verbunden werden.

#### HINWEIS:

Empfehlungen bei Verwendung einer dezentralen Kaltstellenkompensation:

- Im Hinblick auf optimale Genauigkeit bei Verwendung einer dezentralen Kaltstellenkompensation ist diese so nah wie möglich am Modul 140 ATI 030 00 anzubringen.
- Die Entfernung zwischen der externen Kaltstellenkompensation und dem Modul wirkt sich auf die Genauigkeit der Temperaturmessung aus.
- Die Verwendung von CableFast mit einer dezentralen Kaltstellenkompensation wird nicht empfohlen.

Das nachstehende Schaltbild zeigt den Anschluss einer dezentralen Kaltstellenkompensation unter Verwendung einer Temperaturkompensation am Modul 140 ATI 030 00:



Weitere Informationen zum Modul 140 ATI 030 00 können Sie dem Hardware-Referenzhandbuch zur Modicon Quantum-Automationsserie entnehmen (840 USE 100).

### Kenndaten

### Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp                       | 8-Kanal-Thermoelement-Eingangsmodul                                                                                               |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Externe Spannungsversorgung    | Nicht erforderlich                                                                                                                |
| Betriebsspannung (Kanal-Kanal) | 220 VAC bei 47 bis 63 Hz oder 300 VDC max.                                                                                        |
| Stromaufnahme (Modul)          | 280 mA                                                                                                                            |
| Verlustleistung                | 1,5 W                                                                                                                             |
| E/A-Map                        | 10 Eingangswörter                                                                                                                 |
| Fehlererkennung                | 8 rote LEDs für die Anzeige von Werten, die<br>außerhalb des zulässigen Bereichs liegen oder für<br>die Anzeige eines Drahtbruchs |

### Bereich

### Bereich

| Thermoelement-Typen: J K E T S R                                                                        | Bereich (°C): -210 +760 -270 +1370 -270 +1000 -270 +400 -50 +1665 -50 +1665 +130 +1820 |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Millivolt-Bereiche (Für diese Bereiche kann die Erkennung von offenen Stromkreisen deaktiviert werden.) | -100 mV +100 mV<br>-25 mV +25 mV                                                       |

### Widerstand/Filter

### Widerstand/Filter

| Thermoelement-Widerstand/Max. Quellenwiderstand | 200 Ohm für Nenngenauigkeit                                                  |
|-------------------------------------------------|------------------------------------------------------------------------------|
| Eingangsimpedanz                                | > 1 MOhm                                                                     |
| Eingangsfilter                                  | Einpoliger Tiefpass bei Nennfrequenz 20 Hz, plus<br>Sperrfilter bei 50/60 Hz |

#### Störspannungsunterdrückung/Kaltstellenkompensation

Störspannungsunterdrückung/Kaltstellenkompensation

| Normale Rauschunterdrückung | Mindestens 120 dB bei 50 oder 60 Hz                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kaltstellenkompensation     | Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind in den Kenndaten der Genauigkeit enthalten). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für die Fern-Kaltstellenkompensation werden die Typen J, K und T empfohlen. |

#### **Auflösung**

#### Auflösung

| Thermoelementbereiche | 1 °C (Standard)<br>0,1 °C<br>1 °F<br>0,1 °F                         |
|-----------------------|---------------------------------------------------------------------|
| Millivolt-Bereiche    | Bereich 100 mV, 3,05 μV (16 Bit)<br>Bereich 25 mV, 0,76 μV (16 Bit) |

#### Absolute Genauigkeit, Aktualisierungs- und Konfigurationsdauer

# **A** VORSICHT

#### GEFAHR EINES VORÜBERGEHENDEN UNGÜLTIGEN ANFANGSWERTS FÜR DIE EINGANGSTEMPERATUR

Verzögern Sie die Verarbeitung des Temperatureingangs in der Anwendung um 2 Sekunden:

- nachdem das Funktionsfähigkeit-Bit von 140 ATI 030 00 von 0 zu 1 gewechselt hat
- nach einem Aus- und Wiedereinschalten (Warmstart), wenn sich das 140 ATI 030 00 im lokalen Rack befindet

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

35010518 09/2020

# **A** VORSICHT

#### GEFAHR VORÜBERGEHENDER UNGÜLTIGER INFORMATIONEN FÜR DEN EINGANGSSTATUS

Verzögern Sie die Verarbeitung der Kanalstatus-Informationen in der Anwendung um 2 Sekunden:

- nachdem das Funktionsfähigkeit-Bit von 140 ATI 030 00 von 0 zu 1 gewechselt hat
- nach einem Aus- und Wiedereinschalten (Warmstart), wenn sich das 140 ATI 030 00 im lokalen Rack befindet

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

**HINWEIS:** Zur Konfiguration der Hardware für die 140 ATI 030 00-Temperatureingangsverarbeitung ist eine relativ lange Konfigurationsdauer erforderlich. Dieser Effekt muss in besonderen Fällen berücksichtigt werden:

- Wenn sich die SPS im RUN-Modus befindet und das Modul aus- und wieder eingeschaltet wird,
- wenn sich die SPS im RUN-Modus befindet und das Modul im eingeschalteten Zustand ausgetauscht wird.

In diesen Fällen ist das Modul erst wieder funktionsfähig, wenn die Hardwareinitialisierung des Eingangs abgeschlossen ist. Während dieses Zeitraums werden eventuell ungültige Temperaturwerte und Statusinformationen vom Modul empfangen (siehe Eingangswörter 1-10 und E/A-Map-Statusbyte).

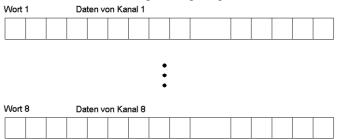
Absolute Genauigkeit, Aktualisierungs- und Konfigurationsdauer

| Absolute Genauigkeit des<br>Thermoelements (siehe Hinweis 1) | Typen J, K, E, T (siehe Hinweis 2):<br>+/- 2 °C plus +/- 0,1% des Messwerts<br>Typen S, R, B (siehe Hinweis 3):<br>+/- 4 °C plus +/- 0,1% des Messwerts |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute Millivolt-Genauigkeit bei 25 °C                     | +/- 20 Mikrovolt +/- 0,1% der Messung                                                                                                                   |
| Temperaturbedingte<br>Genauigkeitsabweichung                 | 0,15 μV/°C + 0,0015% des Messwerts/°C (max.)                                                                                                            |
| Aktualisierungsdauer                                         | 1 s (alle Kanäle)                                                                                                                                       |
| Konfigurationsdauer                                          | 2 s (alle Kanäle)                                                                                                                                       |

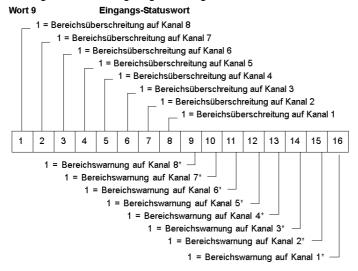
#### Potentialtrennung

#### Potentialtrennung

| Kanal-Bus | 1780 VAC bei 47 bis 63 Hz oder |
|-----------|--------------------------------|
|           | 2500 VDC für 1 Minute          |


#### Hinweise zu den Kenndaten

- Die absolute Genauigkeit schließt Fehler der internen Kaltstellenkompensation, der Thermoelement-Kennlinienkrümmung, des Offset plus Verstärkung bei einer Modultemperatur von 0 bis 60 °C ein. Benutzerspezifische Thermoelement-Fehler nicht einbezogen.
- Für die Typen J und K müssen 1,5 °C Ungenauigkeit für Temperaturen unter -100 °C hinzugerechnet werden.
- Typ B kann nicht für Temperaturen unter 130 °C eingesetzt werden.


## Adressierung

#### Flache Adressierung

Dieses Modul benötigt zehn aufeinanderfolgende 16-Bit-Wörter, davon acht für Eingangsdaten, eines für den Kanalstatus und eines für die Innentemperatur des Moduls. Die Formate für die Datenwörter werden im Folgenden gezeigt.



Die folgende Abbildung zeigt das Register für das 9. Wort.



\*Eine Warnmeldung wird ausgegeben, falls ein Kanaleingang außerhalb des Nenneingangswertes liegt. Ein Bereichsüberschreitungsbit wird gesetzt, wenn ein Kanal die festgelegten Grenzwerte um mindestens 2,4 % überschreitet oder wenn auf dem Kanal ein Leitungsbruch erkannt wird. Das Warnungsbit wird gelöscht (falls gesetzt), wenn das Bereichsüberschreitungsbit gesetzt wird.

Die folgende Abbildung zeigt das Register für das 10. Wort.

| Wort | 10 | Inn | enter | npera | ıtur |  |  |  |  |  |
|------|----|-----|-------|-------|------|--|--|--|--|--|
|      |    |     |       |       |      |  |  |  |  |  |

### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 ATI 030 00:

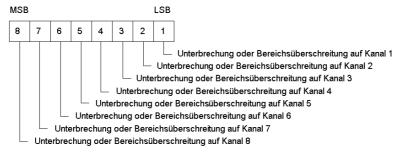
| Punkt           | E/A-Objekt       | Kommentar                  |  |  |  |  |
|-----------------|------------------|----------------------------|--|--|--|--|
| Eingang 1       | %IW[\b.e\]r.m.1  | Wert                       |  |  |  |  |
|                 | %I[\b.e\]r.m.1.1 | Bereichsüberschreitung     |  |  |  |  |
|                 | %I[\b.e\]r.m.1.2 | Bereichswarnung            |  |  |  |  |
|                 | •••              |                            |  |  |  |  |
| Eingang 8       | %IW[\b.e\]r.m.8  | Wert                       |  |  |  |  |
|                 | %I[\b.e\]r.m.8.1 | Bereichsüberschreitung     |  |  |  |  |
|                 | %I[\b.e\]r.m.8.2 | Bereichswarnung            |  |  |  |  |
| Statuswort      | %IW[\b.e\]r.m.9  | Status der Eingangskanäle  |  |  |  |  |
| Innentemperatur | %IW[\b.e\]r.m.10 | Innentemperatur des Moduls |  |  |  |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### **IODDT**

Das Eingangsmodul 140ATI03000 verwendet den IODDT  ${\tt T\_ANA\_IN\_VWE}$ :

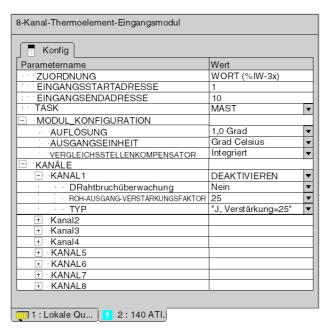
| IODDT-Name   | Objekt |                | Datentyp   |      | Na                | Name     |  |
|--------------|--------|----------------|------------|------|-------------------|----------|--|
| T_ANA_IN_VWE | %C     | :H[\b.e\]r.m.c | ANA_IN_VWE |      | benutzerdefiniert |          |  |
|              |        | %IWr.m.c.0     |            | Int  |                   | .VALUE   |  |
|              |        | %lr.m.c.1      |            | Bool |                   | .ERROR   |  |
|              |        | %lr.m.c.2      |            | Bool |                   | .WARNING |  |


Verwendete Abkürzungen:  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz,  $\mathbf{c}$  = Kanal,  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (E/A-Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

**HINWEIS:** In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp **Bool** für **%I** und **%Q** verwendet.

## Statusbyte für E/A-Zuordnung


Das Statusbyte für die E/A-Zuordnung wird von dem Eingangsmodul 140 ARI 030 00 wie folgt verwendet.



# Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                | Standardwert  | Optionen                             | Beschreibung                                                                               |
|-------------------------------------------------------------------------------------|---------------|--------------------------------------|--------------------------------------------------------------------------------------------|
| Zuordnung                                                                           | WORT (%IW-3X) | -                                    |                                                                                            |
| Eingangsstartadresse                                                                | 1             | -                                    |                                                                                            |
| Eingangsendadresse                                                                  | 10            | -                                    |                                                                                            |
| Task<br>(Grau unterlegt, wenn sich<br>das Modul nicht im lokalen<br>Modus befindet) | MAST          | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden,<br>wenn sich das<br>Modul nicht<br>im lokalen<br>Modus<br>befindet. |
| Module_Configuration                                                                |               |                                      |                                                                                            |
| Auflösung                                                                           | 1,0 Grad      | 0,1 Grad                             |                                                                                            |
| Ausgangseinheit                                                                     | Grad Celsius  | Fahrenheit                           | ·                                                                                          |

| Name                                  | Standardwert          | Optionen                                                                                                         | Beschreibung |
|---------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|--------------|
| Kaltstellenkompensator                | Integriert            | Kanal 1                                                                                                          |              |
| Kanäle                                |                       |                                                                                                                  |              |
| Kanal1                                | DEAKTIVIEREN          | ENABLE                                                                                                           |              |
| Drahtbruchüberwachung                 | Nein                  | Ja                                                                                                               |              |
| Roh-Ausgangsverstärker<br>Verstärkung | 25                    | 100                                                                                                              |              |
| Тур                                   | "J, Verstärkung = 25" | "K, Verstärkung = 25" "E, Verstärkung = 25" "T, Verstärkung = 100" "S, Verstärkung = 100" "R, Verstärkung = 100" |              |
| Kanal2-Kanal8                         |                       |                                                                                                                  | Siehe Kanal1 |

# Kapitel 8

# 140 AVI 030 00: Analoges Strom-/Spannungseingangs-Kombimodul

## Zu diesem Kapitel

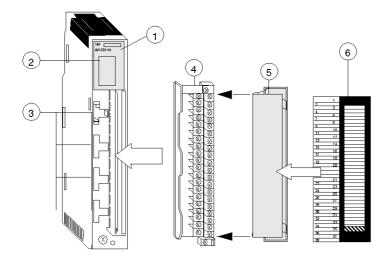
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 AVI 030 00.

## **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Einführung             | 116   |
| Anzeigen               | 117   |
| Verdrahtungsschema     | 118   |
| Kenndaten              | 121   |
| Adressierung           | 124   |
| Parameterkonfiguration | 126   |

## Einführung


#### **Funktionalität**

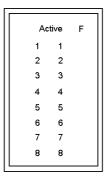
Das bipolare, analoge Achtkanal-Eingangsmodul nimmt eine Kombination aus Strom- und Spannungseingängen auf. Zwischen den Eingangs- und Fühlerklemmen für die Stromaufnahmen sind Brücken erforderlich.

**HINWEIS:** Dieses Modul ist nicht HART-konform.

### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 AVI 030 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Klappe
- 6 Beschriftungsschild (Schild falten und an der Klappeninnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Klappe mit Beschriftungsstreifen.)

# **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 AVI 030 00.



## Beschreibung

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 AVI 030 00.

| LEDs   | Farbe | Bedeutung im Zustand EIN                                                                                             |
|--------|-------|----------------------------------------------------------------------------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                                                                                          |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.                                                                     |
| 1 8    | Rot   | Der angezeigte Kanal liegt außerhalb des zulässigen<br>Bereichs (1 bis 5 V)<br>Drahtbruch festgestellt (4 bis 20 mA) |

## Diagnose

**1.** Um ungenaue Fehleranzeigen zu vermeiden, sollten die + (positiven) und – (negativen) Eingänge verbunden und für einen bipolaren Eingangsbereich konfiguriert werden.

# Verdrahtungsschema

#### **Abbildung**


# **A** VORSICHT

## NICHT VERKABELTE EINGÄNGE FÜHREN ZU UNGÜLTIGEN MESSWERTEN

Bei Konfiguration für Spannungseingänge (keine Steckbrücke zwischen EINGANG(+) und FÜHLERKLEMMEN installiert) sind die Messwerte bei einem Drahtbruch in der Feldverdrahtung ungleich Null und nicht berechenbar. Die Feldverdrahtungs-Klemmenleiste darf nicht entfernt werden, während das Modul in Betrieb ist.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.





#### Empfehlungen für externe Verdrahtung

- 1. Die Strom- und Spannungsquellen werden vom Benutzer bereitgestellt (der Benutzer ist ebenfalls verantwortlich für die Installation und Kalibrierung von Sicherungen).
- 2. Es muss ein geschirmtes Signalkabel verwendet werden. In Umgebungen mit hohen Störeinflüssen sollten verdrillte geschirmte Kabel verwendet werden.
- 3. Geschirmte Kabel müssen an die Masse der SPS angeschlossen werden.
- 4. Zum Anschließen des geschirmten Kabels an die Masse (siehe Quantum mit EcoStruxure™ Control Expert, Hardware, Referenzhandbuch) sollte eine Abschirmungsleiste (STB XSP 3000 und STB XSP 3010/3020) verwendet werden.
- 5. N/C = Nicht angeschlossen

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

## Kenndaten

# Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp                       | 8 Eingangskanäle                                            |
|--------------------------------|-------------------------------------------------------------|
| Externe Spannung               | Nicht erforderlich                                          |
| Betriebsspannung (Kanal-Kanal) | 200 VDC<br>max. 135 VAC quadratischer Mittelwert            |
| Stromaufnahme (Modul)          | 280 mA                                                      |
| Verlustleistung                | 2,2 W                                                       |
| E/A-Zuordnung                  | 9 Eingangswörter                                            |
| Fehlererkennung                | Drahtbruch im Modus 4 bis 20 mA /<br>Bereichsüberschreitung |

## Betriebsbereiche

#### Betriebsbereiche

| Bipolar             | +/- 10 VDC<br>+/- 5VDC<br>+/- 20 mA      |
|---------------------|------------------------------------------|
| Unipolar            | 0 - 10 VDC<br>0 bis 5 VDC<br>0 bis 20 mA |
| Unipolar mit Offset | 1 bis 5 VDC<br>4 bis 20 mA               |

HINWEIS: Die Betriebsbereiche können kanalweise ausgewählt werden.

# Spannung/Eingang

# Spannung/Eingang

| Absolute Spannung (max.) | 50 VDC                    |
|--------------------------|---------------------------|
| Linearer Messbereich     | (Eingangsbereich) x 1,024 |
| Eingangsimpedanz         | > 20 MOhm                 |

# Strom/Eingang

# Strom/Eingang

| Absoluter Strom (max.) | 25 mA                    |
|------------------------|--------------------------|
| Linearer Messbereich   | Eingangsbereich) x 1,024 |
| Eingangsimpedanz       | 250 Ohm +/-0,01%         |

# Auflösung/Konvertierung

# Auflösung/Konvertierung

| 16 Bit                                       | +/-10 VDC, 0 - 10 VDC                                                                                                                                                              |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 Bit                                       | +/- 5 VDC, 05 VDC, +/- 20 mA, 0 bis 20 mA                                                                                                                                          |
| 14 Bit                                       | 1 bis 5 VDC; 4 bis 20 mA                                                                                                                                                           |
| Genauigkeitsfehler bei 25 °C                 | Spannungsmodus:<br>Typisch: +/-0,03 % des Skalenendwerts (+-10 V, 0 bis 10 V)<br>Maximum: +/-0,05 % des Skalenendwerts (+-10 V, 0 bis 10 V)<br>Strommodus:<br>Zusätzlich +/-0,03 % |
| Temperaturbedingte<br>Genauigkeitsabweichung | Typisch: +/-0,0015 % der Vollaussteuerung / °C Maximal: 0,004 % der Vollaussteuerung / °C                                                                                          |
| Linearität                                   | +/- 0,008 %                                                                                                                                                                        |
| Gleichtaktunterdrückung                      | > -80 dB bei 60 Hz                                                                                                                                                                 |
| Eingangsfilter                               | Einpoliger Tiefpass, -3 dB bei 847 Hz, +/- 20 %                                                                                                                                    |
| Aktualisierungsdauer                         | 10 ms für alle Kanäle                                                                                                                                                              |
| Gleichtaktunterdrückung<br>Eingangsfilter    | > -80 dB bei 60 Hz Einpoliger Tiefpass, -3 dB bei 847 Hz, +/- 20 %                                                                                                                 |

# Genauigkeitsfehler bei 25 °C:

| Eingangsbereich                         | Typisch (Absolutwertfehler) | Maximum (Absolutwertfehler) |
|-----------------------------------------|-----------------------------|-----------------------------|
| +/-10 VDC, +/-5 VDC                     | +/-6 mV                     | +/-10 mV                    |
| 0 bis 10 VDC, 0 bis 5 VDC, 1 bis 15 VDC | +/- 3 mV                    | +/- 5 mV                    |
| +/- 20 mA                               | +/- 48 μA                   | +/- 64 μΑ                   |
| 0 bis 20 mA, 4 bis 20 mA                | +/- 24 µA                   | +/- 32 µA                   |

## Potenzialtrennung

## Potenzialtrennung

| Kanal-Bus | 500 V AC effektiv für 1 Minute |
|-----------|--------------------------------|
|           | 750 VDC effektiv für 1 Minute  |

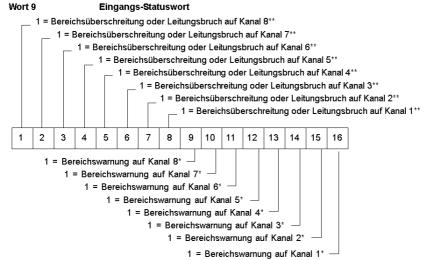
HINWEIS: Für dieses Modul ist keine Kalibrierung erforderlich.

## Tabelle der linearen Messbereiche

Die folgende Tabelle zeigt die linearen Messbereiche für das analoge Eingangsmodul 140 AVI 030 00.

| Datenformat           | Eingang                | Bereichsunter-<br>schreitung | Normal           | Bereichsüber-<br>schreitung |
|-----------------------|------------------------|------------------------------|------------------|-----------------------------|
| 16-Bit-Format         | +/-10 V                | < 768                        | 768 bis 64768    | > 64768                     |
|                       | +/-5 V, +/-20 mA       | < 16768                      | 16768 bis 48768  | > 48768                     |
|                       | 0 bis 10 V             |                              | 0 bis 64000      | > 64000                     |
|                       | 0 bis 5 V, 0 bis 20 mA |                              | 0 bis 32000      | > 32000                     |
|                       | 1 bis 5 V, 4 bis 20 mA | < 6400                       | 6400 bis 32000   | > 32000                     |
| Voltmeter*-<br>Format | +/-10 V                | < -10000                     | -10000 bis 10000 | > 10000                     |
|                       | +/-5 V                 | < -5000                      | -5000 bis 5000   | > 5000                      |
|                       | 0 bis 10 V             |                              | 0 bis 10000      | > 10000                     |
|                       | 0 bis 5 V              |                              | 0 bis 5000       | > 5000                      |
|                       | 1 bis 5 V              | < 1000                       | 1000 bis 5000    | > 5000                      |
|                       | +/- 20 mA              | < 1000                       | -20000 bis 20000 | > 20000                     |
|                       | 0 bis 20 mA            |                              | 0 bis 20000      | > 20000                     |
|                       | 4 bis 20 mA            | < 4000                       | 4000 bis 20000   | > 20000                     |
| 12-Bit-Format         | +/-10 V                | 0                            | 0 bis 4095       | 4095                        |
|                       | +/-5 V, +/-20 mA       | 0                            | 0 bis 4095       | 4095                        |
|                       | 0 bis 10 V             |                              | 0 bis 4095       | 4095                        |
|                       | 0 bis 5 V, 0 bis 20 mA |                              | 0 bis 4095       | 4095                        |
|                       | 1 bis 5 V, 4 bis 20 mA | 0                            | 0 bis 4095       | 4095                        |

<sup>\*</sup> Die Voltmeterbereiche sind im vorzeichenbehafteten Modsoft-Format angegeben.


# Adressierung

#### Flache Adressierung

Dieses Modul benötigt neun aufeinanderfolgende 16-Bit-Wörter, davon acht für Eingangsdaten und eines für den Kanalstatus. Die Formate für die Datenwörter werden im Folgenden gezeigt.

| Wort 1 | Daten von Kanal 1 |
|--------|-------------------|
|        |                   |
|        |                   |
|        | •<br>•            |
|        | •                 |
| Wort 8 | Daten von Kanal 8 |
|        |                   |

Die folgende Abbildung zeigt das Register für das 9. Wort.



\*Eine Warnmeldung wird ausgegeben, falls ein Kanaleingang außerhalb des Nenneingangswertes liegt. Die Warnbits bleiben gesetzt, nachdem die Bits für Bereichsüberschreitung gesetzt wurden.

\*\*Ein Bereichsüberschreitungsbit wird gesetzt, wenn ein Kanal die festgelegten Grenzwerte um mindestens 2,4 % überschreitet oder wenn auf dem Kanal ein Leitungsbruch (4 - 20 mA oder 1 - 5-V-Modus) erkannt wird. Bits für Bereichsüberschreitung werden auch gesetzt, wenn die Eingänge unter den Wert von 0,5 V (1 - 5-V-Modus) oder 2,08 mA (4 - 20-mA-Modus) fallen.

#### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 AVI 030 00:

| Punkt      | E/A-Objekt       | Kommentar                 |  |
|------------|------------------|---------------------------|--|
| Eingang 1  | %IW[\b.e\]r.m.1  | Wert                      |  |
|            | %I[\b.e\]r.m.1.1 | Bereichsüberschreitung    |  |
|            | %I[\b.e\]r.m.1.2 | Bereichswarnung           |  |
| •••        |                  |                           |  |
| Eingang 8  | %IW[\b.e\]r.m.8  | Wert                      |  |
|            | %I[\b.e\]r.m.8.1 | Bereichsüberschreitung    |  |
|            | %I[\b.e\]r.m.8.2 | Bereichswarnung           |  |
| Statuswort | %IW[\b.e\]r.m.9  | Status der Eingangskanäle |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### **IODDT**

Das Eingangsmodul 140AVI03000 verwendet den IODDT T ANA IN VWE:

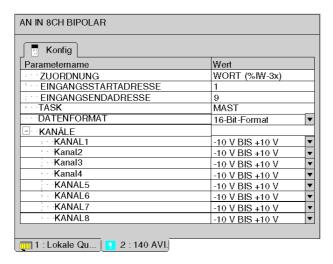
| IODDT-Name   | Objekt          |            | Datentyp   |      | Name              |          |
|--------------|-----------------|------------|------------|------|-------------------|----------|
| T_ANA_IN_VWE | %CH[\b.e\]r.m.c |            | ANA_IN_VWE |      | benutzerdefiniert |          |
|              |                 | %IWr.m.c.0 |            | Int  |                   | .VALUE   |
|              |                 | %lr.m.c.1  |            | Bool |                   | .ERROR   |
|              |                 | %lr.m.c.2  |            | Bool |                   | .WARNING |

Verwendete Abkürzungen:  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz,  $\mathbf{c}$  = Kanal,  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (E/A-Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

**HINWEIS:** In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp **Bool** für **%I** und **%Q** verwendet.

#### Statusbyte für E/A-Zuordnung


Das Statusbyte für die E/A-Zuordnung wird von den Eingangsmodulen 140 AVI 030 00 wie folgt verwendet.



# Parameterkonfiguration

#### Parameter- und Standardwerte

Parameterkonfigurationsfenster



| Name                                                                                | Standardwert    | Optionen                                                                                                | Beschreibung                                                                     |
|-------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Zuordnung                                                                           | WORT (%IW-3X)   | -                                                                                                       |                                                                                  |
| Eingangsstartadresse                                                                | 1               | -                                                                                                       |                                                                                  |
| Eingangsendadresse                                                                  | 9               | -                                                                                                       |                                                                                  |
| Task<br>(Grau unterlegt, wenn sich<br>das Modul nicht im lokalen<br>Modus befindet) | MAST            | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3                                                                    | mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet |
| Datenformat                                                                         | 16-Bit-Format   | Voltmeter<br>12-Bit-Format                                                                              |                                                                                  |
| Kanäle                                                                              |                 |                                                                                                         |                                                                                  |
| Kanal1                                                                              | -10 V BIS +10 V | -10 V BIS +10 V<br>0 V BIS +10 V<br>-5 V BIS +5 V<br>0 V BIS +5 V<br>+1 V BIS +5 V<br>-20 mA BIS +20 mA |                                                                                  |
| Kanal2-Kanal8                                                                       |                 |                                                                                                         | siehe Kanal1                                                                     |

# Teil III

# Analogausgangsmodule

# Einleitung

Der folgende Teil enthält Informationen zu den Quantum-Analogausgangsmodulen.

#### Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

| Kapitel | Kapitelname                                                  | Seite |
|---------|--------------------------------------------------------------|-------|
| 9       | 140 ACO 020 00: Analoges Stromausgangsmodul                  | 129   |
| 10      | 140 ACO 130 00: Analoges Strom-/Spannungsausgangs-Kombimodul | 139   |
| 11      | 140 AVO 020 00: Analoges Spannungsausgangs-Kombimodul        | 149   |

# Kapitel 9

# 140 ACO 020 00: Analoges Stromausgangsmodul

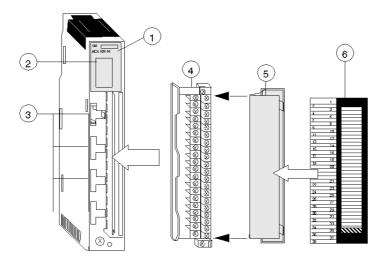
# Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 ACO 020 00.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 130   |
| Anzeigen               | 131   |
| Verdrahtungsschema     | 132   |
| Technische Daten       | 135   |
| Adressierung           | 137   |
| Parameterkonfiguration | 138   |


# **Beschreibung**

#### **Funktion**

Das Vierkanal-Analogausgang-Strommodul steuert und überwacht den Strom in 4 ... 20 mA-Stromkreisen.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 ACO 020 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

35010518 09/2020

# **Anzeigen**

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 ACO 020 00.



#### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 ACO 020 00.

| LEDs   | Farbe | Bedeutung im Zustand EIN                         |
|--------|-------|--------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                      |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt. |
| 1 4    | Grün  | Modulausgänge EINGESCHALTET.                     |
| 1 4    | Rot   | Drahtbruch an den angezeigten Kanälen.           |

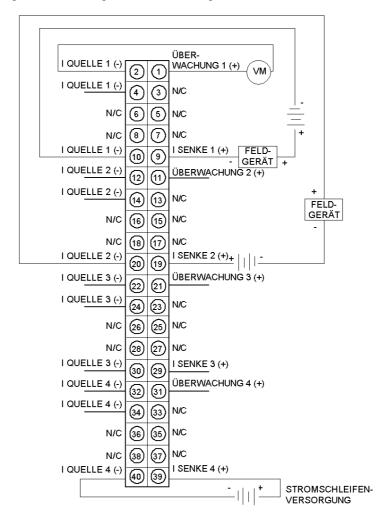
**HINWEIS:** Wenn die grünen LEDs, die den Kanalzustand anzeigen, NICHT leuchten, beträgt der Schleifenstrom 0 mA.

#### Diagnose

 Beim Einschalten sind alle Kanalausgänge deaktiviert (Strom = 0). Die Konfiguration eines Kanals als deaktiviert führt dazu, dass bei einer Unterbrechung der Kommunikation alle Kanäle deaktiviert werden.

# Verdrahtungsschema

## **Abbildung**


# **A** WARNUNG

## UNBEABSICHTIGTER GERÄTEBETRIEB

Unterbrechen Sie vor dem Entfernen des Anschlusses die Feldstromversorgung, oder stellen Sie sicher, dass von der Voraktorverdrahtung als offener Stromkreis keine Gefährdung ausgeht.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

In der folgenden Abbildung ist das Verdrahtungsschema des Moduls 140 ACO 020 00 dargestellt.



#### Empfehlungen für externe Verdrahtung

- 1. Die Strom- und Spannungsquellen werden vom Benutzer bereitgestellt (der Benutzer ist ebenfalls verantwortlich für die Installation und Kalibrierung von Sicherungen).
- 2. Es muss ein geschirmtes Signalkabel verwendet werden. In Umgebungen mit hohen Störeinflüssen sollten verdrillte geschirmte Kabel verwendet werden.
- 3. Geschirmte Kabel müssen an die Masse der SPS angeschlossen werden.
- 4. Zum Anschließen des geschirmten Kabels an die Masse (siehe Quantum mit EcoStruxure ™ Control Expert, Hardware, Referenzhandbuch) sollte eine Abschirmungsleiste (STB XSP 3000 und STB XSP 3010/3020) verwendet werden.
- 5. Nicht verwendete Kanäle weisen auf Drahtbruch hin, wenn sie nicht mit der Stromschleifenversorgung verdrahtet sind, wie bei Kanal 4 gezeigt. In diesem Beispiel muss die Stromschleifenversorgung 30 V oder weniger betragen.
- **6.** Das Verdrahtungsbeispiel zeigt den stromaufnehmenden Kanal 1 und den stromliefernden Kanal 2 für die entsprechenden Feldgeräte.
- 7. N / C = Nicht verbunden (Not Connected).

**HINWEIS:** VM ist ein optionales Voltmeter, das angeschlossen werden kann, um die Spannung als proportionalen Wert des Stroms zu messen. Die Verdrahtungslänge für diese Klemme darf 1 Meter nicht überschreiten.

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

35010518 09/2020

# **Technische Daten**

# Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp              | 4-Kanal-Ausgangsmodul                                                                                                                                      |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Externe Spannung      | Schleifenspannung: 12 bis 30 VDC, bis zu 60 VDC mit externem Schleifenwiderstand                                                                           |
| Stromaufnahme (Modul) | 480 mA                                                                                                                                                     |
| Verlustleistung       | Max. 5,3 W                                                                                                                                                 |
| E/A-Zuordnung         | 4 Ausgangswörter                                                                                                                                           |
| Fehlererkennung       | Unterbrechung in 4 bis 20 mA-Modus. Bei<br>Feststellung einer Unterbrechung des Stromkreises<br>wird der betroffene Kanal durch die rote LED<br>angezeigt. |

# **Spannung**

## Spannung

| Schleifenspannung        | 12 30 VDC, bis zu 60 VDC mit externem Schleifenwiderstand                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schleifenwiderstand      | $R_{MIN}$ * = ( $V_{I\ OOP}$ - 30 VDC) / 0,02 A $R_{MAX}$ = ( $V_{I\ OOP}$ - 7 VDC) / /0,02 A  * Es ist kein $R_{MIN}$ für Schleifenspannung unter 30 VDC erforderlich |
| Interner Spannungsabfall | min. 7 VDC, max. 30 VDC bei 20 mA                                                                                                                                      |

# Auflösung/Konvertierung

# Auflösung

| Auflösung                                    | 12 Bit                                                                       |
|----------------------------------------------|------------------------------------------------------------------------------|
| Genauigkeitsfehler bei 25 °C                 | +/- 0,20% vom Skalenendwert                                                  |
| Temperaturbedingte<br>Genauigkeitsabweichung | Typisch: 0,004% vom Skalenendwert/°C<br>Maximum: 0.007% vom Skalenendwert/°C |
| Linearität                                   | +/- 1 LSB (niederwertigstes Bit)                                             |
| Aktualisierungsdauer                         | 3 ms für alle Kanäle (gleichzeitige Aktualisierung)                          |
| Ausregelzeit                                 | 900 μs auf +/-0,1% des Endwerts                                              |

## Potentialtrennung

## Potentialtrennung

| Kanal-Bus   | 1780 VAC bei 47 bis 63 Hz oder<br>2500 VDC für 1 Minute |
|-------------|---------------------------------------------------------|
| Kanal-Kanal | 500 VAC bei 47 bis 63 Hz oder<br>750 VDC für 1 Minute   |

## Sicherungen

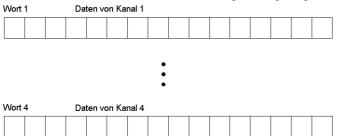
## Sicherungen

| Intern | Nicht erforderlich |
|--------|--------------------|
| Extern | -                  |

**HINWEIS:** Wenn die grünen LEDs, die den Kanalzustand anzeigen, nicht leuchten, beträgt der Schleifenstrom 0 mA.

## Tabelle: Kenndaten Voltmeterüberwachung

Die folgende Tabelle enthält eine Aufstellung der Voltmeter-Überwachungskenndaten.


| Bereich           | 1 5 V (Hauptstromschleife muss aktiv sein) |
|-------------------|--------------------------------------------|
| Skalierung        | $V_{OUT}$ (Volt) = $I_{JOOP}$ (mA) x 0,25  |
| Ausgangsimpedanz  | Typisch 300 Ohm                            |
| Verdrahtungslänge | max. 1 m                                   |

35010518 09/2020

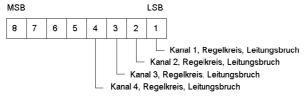
# Adressierung

### Flache Adressierung

Dieses Modul benötigt vier aufeinanderfolgende 16-Bit-Wörter (%MW) für Ausgangsdaten. Die Formate für die Datenwörter werden im Folgenden gezeigt.



#### **Topologische Adressierung**


Topologische Adressen für das Ausgangsmodul 140 ACO 020 00:

| Punkt     | E/A-Objekt      | Kommentar |
|-----------|-----------------|-----------|
| Ausgang 1 | %QW[\b.e\]r.m.1 | Wert      |
| Ausgang 2 | %QW[\b.e\]r.m.2 | Wert      |
| Ausgang 3 | %QW[\b.e\]r.m.3 | Wert      |
| Ausgang 4 | %QW[\b.e\]r.m.4 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

## Statusbyte für E/A-Zuordnung

Das Statusbyte für die E/A-Zuordnung wird von dem Ausgangsmodul 140 ACO 020 00 wie folgt verwendet.



# Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                | Standardwert  | Optionen                             | Beschreibung                                                                  |
|-------------------------------------------------------------------------------------|---------------|--------------------------------------|-------------------------------------------------------------------------------|
| Zuordnung                                                                           | WORT (%MW-4X) | -                                    |                                                                               |
| Ausgangsstartadresse                                                                | 1             | -                                    |                                                                               |
| Ausgangsendadresse                                                                  | 4             | -                                    |                                                                               |
| Task<br>(Grau unterlegt, wenn sich<br>das Modul nicht im lokalen<br>Modus befindet) | MAST          | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im lokalen<br>Modus befindet |
| Kanäle                                                                              |               |                                      |                                                                               |
| ALLE KANÄLE AKTIVIE-<br>REN/DEAKTIVIEREN                                            | AKTIVIEREN    | DEAKTIVIEREN                         | DEAKTIVIEREN aller Kanäle<br>bei Systemausfall oder<br>Timeout                |
| Kanal 1                                                                             | LETZTER WERT  | DEAKTIVIEREN<br>BENUTZERDEFINIERT    | Option DEAKTIVIEREN wird angezeigt, ist aber nicht verfügbar.                 |
| Timeout-Wert                                                                        | 0             | 0-4095                               | Nur aktiviert wenn Kanal = BENUTZERDEFINIERT.                                 |
| Kanal2 - Kanal4                                                                     |               |                                      | Siehe Kanal1                                                                  |

35010518 09/2020

# Kapitel 10

# 140 ACO 130 00: Analoges Strom-/Spannungsausgangs-Kombimodul

## Zu diesem Kapitel

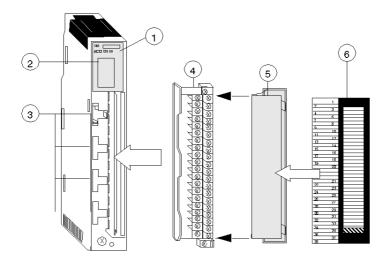
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 ACO 130 00.

## **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 140   |
| Anzeigen               | 141   |
| Verdrahtungsschema     | 142   |
| Technische Daten       | 144   |
| Adressierung           | 146   |
| Parameterkonfiguration | 147   |

## **Beschreibung**


#### **Funktion**

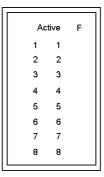
Das 140 ACO 130 00 ist ein analoges Ausgangsmodul mit 8 Kanälen zur Steuerung und Überwachung von Strom in Schleifen von 4-20 mA, 0-20 mA und 0-25 mA.

HINWEIS: Dieses Modul ist nicht HART-konform.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 ACO 130 00 mit seinen Komponenten.




- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Tür
- **6** Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

# **Anzeigen**

## **Abbildung**

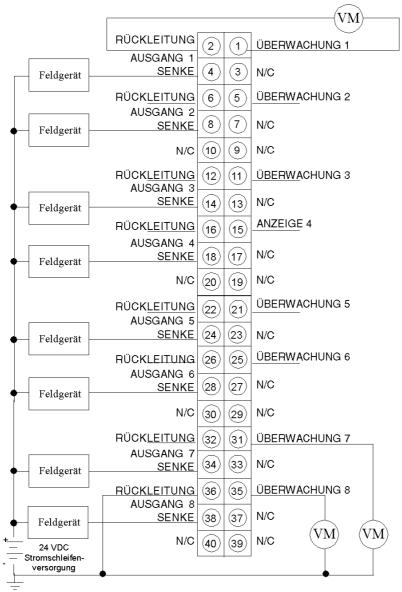
Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 ACO 130 00.



## **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 ACO 130 00.

| LEDs   | Farbe | Bedeutung im Zustand EIN                         |  |
|--------|-------|--------------------------------------------------|--|
| Active | Grün  | Buskommunikation vorhanden.                      |  |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt. |  |
| 1 8    | Grün  | Modulausgänge EINGESCHALTET.                     |  |
| 1 8    | Rot   | Drahtbruch an den angezeigten Kanälen.           |  |


## Diagnose

- 1. Nicht verwendete Ausgänge können die Aktivierung der LED-Anzeige F (Fehler) hervorrufen. Um dies zu verhindern, müssen freie Kanäle im Bereich 0 bis 25 mA konfiguriert werden.
- 2. Beim Einschalten führen alle Kanalausgänge null Strom (0 mA).

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 ACO 130 00:



#### Empfehlungen für externe Verdrahtung

- 1. Die Strom- und Spannungsquellen werden vom Benutzer bereitgestellt (der Benutzer ist ebenfalls verantwortlich für die Installation und Kalibrierung von Sicherungen).
- 2. Es muss ein geschirmtes Signalkabel verwendet werden. In Umgebungen mit hohen Störeinflüssen sollten verdrillte geschirmte Kabel verwendet werden.
- 3. Geschirmte Kabel müssen an die Masse der SPS angeschlossen werden.
- 4. Zum Anschließen des geschirmten Kabels an die Masse (siehe Quantum mit EcoStruxure ™ Control Expert, Hardware, Referenzhandbuch) sollte eine Abschirmungsleiste (STB XSP 3000 und STB XSP 3010/3020) verwendet werden.
- **5.** Alle Klemmen, die als "RETURN" (RÜCKLEITUNG) gekennzeichnet sind, werden im Modul gemeinsam genutzt.
- N/C = Nicht angeschlossen

**HINWEIS:** VM ist ein optionales Voltmeter, das angeschlossen werden kann, um die Spannung als proportionalen Wert des Stroms zu messen. Die Verdrahtungslänge für diese Klemme darf 1 Meter nicht überschreiten.

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

## **Technische Daten**

# Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp              | 8-Kanal-Ausgangsmodul                                                                                                                                                |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Externe Spannung      | Schleifenspannung: 6 30 VDC max.                                                                                                                                     |
| Stromaufnahme (Modul) | 550 mA                                                                                                                                                               |
| Verlustleistung       | Max. 5,0 W                                                                                                                                                           |
| E/A-Zuordnung         | 8 Ausgangswörter                                                                                                                                                     |
| Fehlererkennung       | Unterbrechung in 4 bis 20 mA-Modus. Der offene Kanal wird durch die rote Kanal-LED angezeigt und außerdem im Statusbyte der E/A-Map an die Steuerung zurückgemeldet. |

# Spannung

# Spannung

| Schleifenspannung        | 6 30 VDC max.                     |
|--------------------------|-----------------------------------|
| Interner Spannungsabfall | min. 6 VDC, max. 30 VDC bei 25 mA |

# Bereich/Auflösung

# Bereich/Auflösung

| 0 25 mA | 0 25.000 |
|---------|----------|
| 0 20 mA | 0 20.000 |
| 4 20 mA | 0 16.000 |
| 4 25 mA | 0 4.095  |

# Genauigkeit

# Genauigkeit

| Genauigkeitsfehler bei 25 °C | +/- 0,20% vom Skalenendwert          |
|------------------------------|--------------------------------------|
| Temperaturbedingte           | Typisch: 0,004% vom Skalenendwert/°C |
| Genauigkeitsabweichung       | Maximum: 0,007% vom Skalenendwert/°C |

# Linearität

#### Linearität

| 0 25 mA<br>0 20 mA<br>4 20 mA | +/- 4 μΑ  |
|-------------------------------|-----------|
| 4 25 mA                       | +/- 12 μA |

# Zeiten

# Zeiten

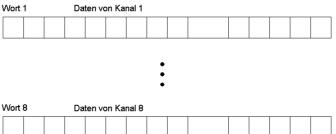
| Aktualisierungsdauer       | 5 ms für alle Kanäle       |
|----------------------------|----------------------------|
| Ausregelzeit Skalenendwert | 1,6 ms bis 5% des Endwerts |
| Schrittänderung            | 3,2 ms bis 5% des Endwerts |

# Potentialtrennung

# Potentialtrennung

| Feld-Bus    | 1780 VAC für 1 Minute |
|-------------|-----------------------|
| Kanal-Kanal | Keine                 |

# Sicherungen


# Sicherungen

| Intern | Keine |
|--------|-------|
| Extern | Keine |

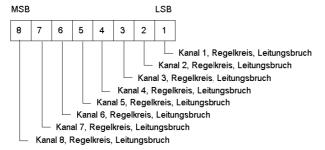
# **Adressierung**

#### Flache Adressierung

Dieses Modul benötigt acht aufeinanderfolgende 16-Bit-Wörter (%MW) für Ausgangsdaten. Die Formate für die Datenwörter werden im Folgenden gezeigt.



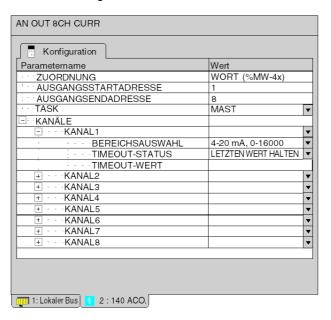
#### **Topologische Adressierung**


Topologische Adressen für das Ausgangsmodul 140 ACO 130 00:

| Punkt     | E/A-Objekt      | Kommentar |
|-----------|-----------------|-----------|
| Ausgang 1 | %QW[\b.e\]r.m.1 | Wert      |
| Ausgang 2 | %QW[\b.e\]r.m.2 | Wert      |
| •••       |                 |           |
| Ausgang 7 | %QW[\b.e\]r.m.7 | Wert      |
| Ausgang 8 | %QW[\b.e\]r.m.8 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### Statusbyte für E/A-Zuordnung


Das Statusbyte für die E/A-Zuordnung wird von dem Ausgangsmodul 140 ACO 130 00 wie folgt verwendet.



# Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                | Standardwert     | Optionen                                                | Beschreibung                                                                  |
|-------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| Zuordnung                                                                           | WORT (%MW-4X)    | -                                                       |                                                                               |
| Ausgangsstartadresse                                                                | 1                | -                                                       |                                                                               |
| Ausgangsendadresse                                                                  | 8                | -                                                       |                                                                               |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST             | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3                    | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet |
| Kanäle<br>KANAL1                                                                    |                  |                                                         |                                                                               |
| Bereichsauswahl                                                                     | 4-20 mA, 0-16000 | 4-20 mA, 0-4095<br>0-20 mA, 0-20000<br>0-25 mA, 0-25000 |                                                                               |

| Name            | Standardwert           | Optionen                                  | Beschreibung                                |
|-----------------|------------------------|-------------------------------------------|---------------------------------------------|
| Timeout-Status  | LETZTEN WERT<br>HALTEN | MINIMALER<br>AUSGANG<br>BENUTZERDEFINIERT |                                             |
| Timeout-Wert    | 0                      | 0-32767                                   | Nur wenn Timeout-Status = BENUTZERDEFINIERT |
| Kanal2 - Kanal8 |                        |                                           | Siehe Kanal1                                |

# Kapitel 11

# 140 AVO 020 00: Analoges Spannungsausgangs-Kombimodul

#### Zu diesem Kapitel

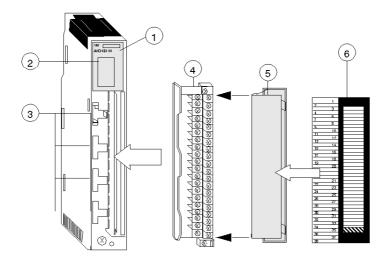
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 AVO 020 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 150   |
| Anzeigen               | 151   |
| Verdrahtungsschema     | 152   |
| Technische Daten       | 155   |
| Adressierung           | 157   |
| Parameterkonfiguration | 158   |

#### **Beschreibung**


#### **Funktion**

Das analoge Vierkanal-Ausgangsmodul akzeptiert Spannungen in gemischten Modi und Spannungspegeln. Die Modi werden mit Hilfe von Brücken auf dem Feldverdrahtungsanschluss ausgewählt.

HINWEIS: Dieses Modul ist nicht HART-konform.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 AVO 020 00 mit seinen Komponenten.



- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Klappe
- 6 Beschriftungsschild (Schild falten und an der Klappeninnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Klappe mit Beschriftungsstreifen.)

# **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 AVO 020 00.



#### **Diagnose**

Während des Normalbetriebs leuchten die LEDs "Active" und 1 bis 4 (grün) auf der Frontseite. Wenn die Buskommunikation mit dem Modul aus irgendeinem Grund unterbrochen wird, erlischt die LED Active, und die Ausgangswerte werden abhängig von der Softwarekonfiguration des Schaltpults gesetzt.

- Wenn die LEDs 1 ... 4 leuchten, entsprechen die Kanal-Ausgangspegel den festgelegten Werten und werden von dem Modul gehalten.
- Wenn die LEDs 1 ... 4 nicht leuchten, werden für jeden Kanal die Master-Override-Pegel ausgegeben.

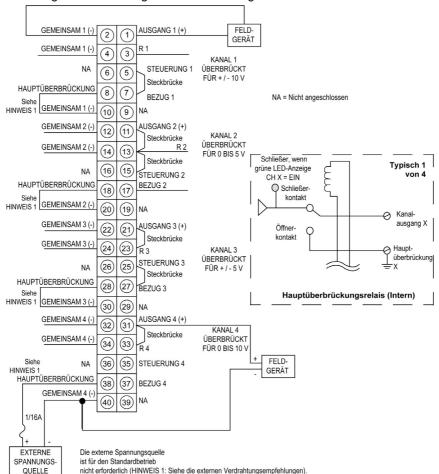
# Verdrahtungsschema

#### **Abbildung**

# **A** WARNUNG

#### UNBEABSICHTIGTER GERÄTEBETRIEB

Unterbrechen Sie vor dem Entfernen des Anschlusses die Feldstromversorgung, oder stellen Sie sicher, dass von der Voraktorverdrahtung als offener Stromkreis keine Gefährdung ausgeht.


Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

# **A** WARNUNG

#### UNBEABSICHTIGTER GERÄTEBETRIEB

Um fehlerhafte Ausgänge in diesem Modul zu vermeiden, muss der Master-Override über eine 1/16-A-Sicherung mit einer externen Quelle oder mit der Masse des Schaltkreises verbunden werden.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.



In der folgenden Abbildung ist das Verdrahtungsschema des Moduls 140 AVO 020 00 dargestellt.

#### Empfehlungen für externe Verdrahtung

- Wenn die grünen LEDs, die den Zustand des Kanals anzeigen, nicht leuchten, erzeugt das Modul keine Ausgänge. Ein Ausgang kann jedoch dennoch vorhanden sein, wenn das Master-Override-Signal verwendet wird.
- 2. Der Master-Override ist ein Eingang, der über einen internen Relaiskontakt an den Ausgang angeschlossen ist, wenn das Modul nicht aktiv ist. Wenn der Master-Override-Eingang mit einer externen Quelle verbunden ist, muss er mit einer 1/16-A-Sicherung geschützt werden.
- Wenn der Master-Override nicht mit einer externen Quelle verbunden ist, muss er mit der Masse dieses Kanals verbunden werden. Die Relaisübertragungszeit für den Master-Override beträgt in der Regel 2 ms.
- 4. Die Master-Override-Eingänge müssen aus einer externen Versorgung mit einer Quellenimpedanz von < 200 Ohm stammen oder mit der Masse des Systems verbunden sein. Die Eingänge für verwendete Kanäle sollten nicht erdfrei sein und können für jeden Kanal unterschiedlich sein.</p>

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Die Ausgangspegel dieses Moduls sind entweder diejenigen, die innerhalb des Moduls auf Grundlage des Dateneingangs vom System erzeugt werden, oder diejenigen, die von den Master-Override-Eingängen in der Feldverdrahtungs-Klemmleiste erzeugt werden.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

# Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp              | 4-Kanal-Ausgangsmodul |
|-----------------------|-----------------------|
| Externe Spannung      | Nicht erforderlich    |
| Stromaufnahme (Modul) | 700 mA                |
| Verlustleistung       | Max. 4,5 W            |
| E/A-Zuordnung         | 4 Ausgangswörter      |
| Fehlererkennung       | Keine                 |
| Verdrahtungslänge     | max. 400 m            |

# Ausgabebereiche\*

# Ausgabebereiche\*

| Spannungen (bipolar)  | +/- 10 VDC (min. Lastwiderstand = 1 kOhm)<br>+/- 5 VDC (min. Lastwiderstand = 500 Ohm) |
|-----------------------|----------------------------------------------------------------------------------------|
| Spannungen (unipolar) | 0 - 10 VDC (min. Lastwiderstand = 1 kOhm)<br>0 5 VDC (min. Lastwiderstand = 500 Ohm)   |
| Ausgangsstrom         | +/- 10 mA max. (jeder Bereich) Die Ausgänge sind ausschaltungssicher.                  |
| Quellenwiderstand     | 0.1 Ohm                                                                                |

HINWEIS: \*Der Bereich wird mittels Steckbrücken festgelegt (siehe Verdrahtungsschema)

#### Auflösung/Genauigkeit

#### Auflösung/Genauigkeit

| Auflösung                    | 12 Bit                           |
|------------------------------|----------------------------------|
| Genauigkeitsfehler bei 25 °C | +/-0,15% vom Skalenendwert       |
| Linearität                   | +/- 1 LSB (niederwertigstes Bit) |

#### Temperaturbedingte Genauigkeitsabweichung

# Temperaturbedingte Genauigkeitsabweichung

| Unipolare Bereiche | Typisch: 0,003% vom Skalenendwert/°C<br>Maximum: 0,005% vom Skalenendwert/°C |
|--------------------|------------------------------------------------------------------------------|
| Bipolare Bereiche  | Typisch: 0,004% vom Skalenendwert/°C Maximum: 0,007% vom Skalenendwert/°C    |

# Zeiten

# Zeiten

| Max. Ausregelzeit    | 700 µs auf +/- 0,1% des Endwerts |
|----------------------|----------------------------------|
| Aktualisierungsdauer | 3 ms für alle Kanäle             |

# Potentialtrennung

# Potentialtrennung

| Kanal-Bus   | 1780 VAC effektiv für 1 Minute |
|-------------|--------------------------------|
| Kanal-Kanal | 500 VAC effektiv für 1 Minute  |

# Sicherungen

# Sicherungen

| Intern | Nicht erforderlich                                                                                                                                                                                                                                                                                                                                           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extern | Wenn es an eine externe Quelle angeschlossen ist, benötigt das Master-Umgehungssignal eine externe Sicherung. Benötigt wird eine 1/16-A- oder 0,063-A-Sicherung: Sicherungstyp: 3 AG Flink 1/16 A, 250 V Sicherungshalter: 3-AG-Sicherung Wenn das Master-Umgehungssignal mit der gemeinsamen Basis verbunden ist, ist keine externe Sicherung erforderlich. |

# Adressierung

#### Flache Adressierung

Dieses Modul benötigt vier aufeinanderfolgende 16-Bit-Wörter (%MW) für Ausgangsdaten. Die Formate für die Datenwörter werden im Folgenden gezeigt.

| Wort 1 | Daten von Kanal 1 |   |  |  |  |
|--------|-------------------|---|--|--|--|
|        |                   |   |  |  |  |
|        |                   |   |  |  |  |
|        |                   | : |  |  |  |
|        |                   | • |  |  |  |
| Wort 4 | Daten von Kanal   |   |  |  |  |
|        |                   |   |  |  |  |

#### **Topologische Adressierung**

Topologische Adressen für das Ausgangsmodul 140 AVO 020 00:

| Punkt     | E/A-Objekt      | Kommentar |
|-----------|-----------------|-----------|
| Ausgang 1 | %QW[\b.e\]r.m.1 | Wert      |
| Ausgang 2 | %QW[\b.e\]r.m.2 | Wert      |
| Ausgang 3 | %QW[\b.e\]r.m.3 | Wert      |
| Ausgang 4 | %QW[\b.e\]r.m.4 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

# Statusbyte für E/A-Zuordnung

Das Ausgangsmodul 140 AVO 020 00 verwendet kein Statusbyte für die E/A-Zuordnung.

# Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert  | Optionen                             | Beschreibung                                                                  |
|----------------------------------------------------------------------------------------|---------------|--------------------------------------|-------------------------------------------------------------------------------|
| Zuordnung                                                                              | WORT (%MW-4X) | -                                    |                                                                               |
| Ausgangsstartadresse                                                                   | 1             | -                                    |                                                                               |
| Ausgangsendadresse                                                                     | 4             | -                                    |                                                                               |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST          | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet |
| Kanäle                                                                                 | l             |                                      |                                                                               |
| ALLE KANÄLE AKTI-<br>VIEREN/DEAKTIVIE-<br>REN                                          | AKTIVIEREN    | DEAKTIVIEREN (1)                     | DEAKTIVIEREN aller Kanäle<br>bei Systemausfall oder<br>Timeout                |
| Kanal 1                                                                                | LETZTER WERT  | DEAKTIVIEREN<br>BENUTZERDEFINIERT    | Option DEAKTIVIEREN wird angezeigt, ist aber nicht verfügbar.                 |
| Timeout-Wert                                                                           | 0             | 0-4095                               | Nur aktiviert wenn Kanal = BENUTZERDEFINIERT.                                 |
| Kanal2 - Kanal4                                                                        |               |                                      | Siehe Kanal1                                                                  |
|                                                                                        |               |                                      |                                                                               |
| Legende                                                                                |               |                                      |                                                                               |

<sup>(1):</sup> Die LEDs der Ausgänge 1 bis 4 erlischen, wenn DEAKTIVIEREN ausgewählt ist, und das Modul geht in den inaktiven Zustand über.

35010518 09/2020

# Teil IV

# Analogeingangs-/-ausgangsmodule

# Kapitel 12

# 140 AMM 090 00: Analoges Strom-/Spannungsein-/Ausgangs-Kombimodul

#### Zu diesem Kapitel

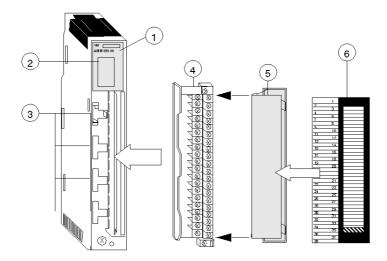
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 AMM 090 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Einführung             | 164   |
| Anzeigen               | 165   |
| Verdrahtungsschema     | 166   |
| Kenndaten              | 170   |
| Adressierung           | 175   |
| Parameterkonfiguration | 178   |

#### Einführung


#### **Funktionalität**

Das analoge, bidirektionale 4/2-Eingangs-/Ausgangsmodul kombiniert vier analoge Eingänge, die eine Mischung aus Strom und Spannung aufnehmen, mit zwei potentialgetrennten, analogen Ausgängen, die den Strom in Stromschleifen im Bereich von 4 bis 20 mA steuern und überwachen.

HINWEIS: Dieses Modul ist HART-konform.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 AMM 090 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Klappe
- **6** Beschriftungsschild (Schild falten und an der Klappeninnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Klappe mit Beschriftungsstreifen.)

35010518 09/2020

# **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 AMM 090 00.



#### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 AMM 090 00.

| LEDs   | Farbe                       | Bedeutung im Zustand EIN                                                                                                           |
|--------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Active | Grün                        | Buskommunikation vorhanden.                                                                                                        |
| F      | Rot                         | Die Ausgangsmodule werden nicht mit Spannung<br>versorgt, oder der Eingangswert befindet sich<br>außerhalb des zulässigen Bereichs |
| 1 2    | Grün<br>(linke<br>Spalte)   | Modulausgänge EINGESCHALTET.                                                                                                       |
| 1 2    | Rot<br>(mittlere<br>Spalte) | Drahtbruch an den angezeigten Ausgangskanälen.                                                                                     |
| 1 4    | Rot<br>(rechte<br>Spalte)   | Weist auf Eingangsstatus hin:<br>Bereichsunterschreitung/Bereichsüberschreitung                                                    |

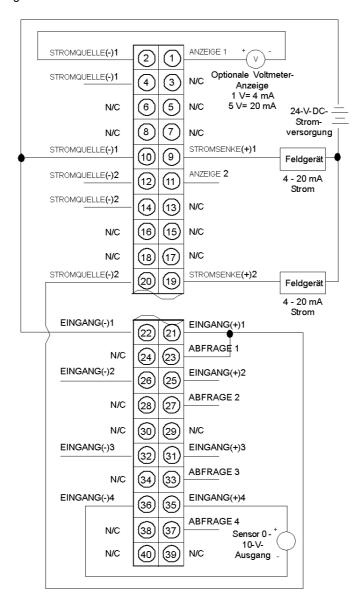
#### Diagnose

Um ungenaue Fehleranzeigen zu vermeiden, sollten die + (positiven) und - (negativen) Eingänge verbunden und für einen bipolaren Eingangsbereich konfiguriert werden.

# Verdrahtungsschema

#### **Abbildung**

# **A** VORSICHT


# NICHT VERKABELTE EINGÄNGE FÜHREN ZU UNGÜLTIGEN MESSWERTEN

Bei Konfiguration für Spannungseingänge (keine Steckbrücke zwischen EINGANG(+) und FÜHLERKLEMMEN installiert) sind die Messwerte bei einem Drahtbruch in der Feldverdrahtung ungleich Null und nicht berechenbar.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

35010518 09/2020

Die folgende Abbildung zeigt das Verdrahtungsschema für das analoge Eingangs-/Ausgangsmodul 140 AMM 090 00.



#### Empfehlungen für externe Verdrahtung

Die folgenden Informationen gelten für das oben abgebildete Verdrahtungsschema.

#### Ausgangsabschnitt 2 Kanäle

| Typische Ausgangsverdrahtung |                                                                                                |  |
|------------------------------|------------------------------------------------------------------------------------------------|--|
| Kanal 1                      | Der Ausgang ist mit einem externen Feldgerät und einem optionalen Überwachungsgerät verbunden. |  |
| Kanal2                       | Der Ausgang ist mit einem externen Feldgerät und dem Eingang von Kanal 1 verbunden.            |  |

#### Eingangsbereich 4 Kanäle

| Typische Eingangsverdrahtung |                                                                                                    |  |
|------------------------------|----------------------------------------------------------------------------------------------------|--|
| Kanal 1                      | Kanal 1 zeigt eine Stromaufnahme von 4-20 mA, die von Kanal 2 des Ausgangsbereichs gesteuert wird. |  |
| Kanal4                       | Der Eingang verfügt über einen Anschluss an einen Spannungsausgangssensor.                         |  |

- Für alle Stromeingangsbereiche sind Brücken zwischen den Eingangs- (+) und Fühlerklemmen erforderlich.
- 2. Die Pins 1 bis 20 sind Ausgänge. Die Pins 21 bis 40 sind Eingänge.
- 3. Es muss ein geschirmtes Signalkabel verwendet werden. In Umgebungen mit hohen Störeinflüssen sollten verdrillte geschirmte Kabel verwendet werden.
- 4. Geschirmte Kabel müssen an die Masse der SPS angeschlossen werden.
- 5. Zum Anschließen des geschirmten Kabels an die Masse (siehe Quantum mit EcoStruxure ™ Control Expert, Hardware, Referenzhandbuch) sollte eine Abschirmungsleiste (STB XSP 3000 und STB XSP 3010/3020) verwendet werden.
- 6. Für Eingänge darf die maximale Arbeitsspannung Kanal-Kanal 30 VDC nicht überschreiten.
- 7. N / C = Nicht verbunden (Not Connected).

**HINWEIS:** V ist ein optionales Voltmeter, das angeschlossen werden kann, um die Spannung als proportionalen Wert des Stroms zu messen. Die Verdrahtungslänge für diese Klemme darf 1 m nicht überschreiten.

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

35010518 09/2020

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# Kenndaten

# Allgemeine Kenndaten

# Allgemeine Kenndaten

| Modultyp              | 4 Eingangskanäle<br>2 Ausgangskanäle (potentialgetrennt)                                                         |
|-----------------------|------------------------------------------------------------------------------------------------------------------|
| Externe Spannung      | Schleifenspannung: Bis 30 VDC, bis zu 60 VDC mit externem Widerstand                                             |
| Stromaufnahme (Modul) | 350 mA                                                                                                           |
| Fehlererkennung       | Offener Stromkreis 4 bis 20 mA oder<br>Bereichsüberschreitung, Bereichsunterschreitung<br>nur in bipolaren Modi. |

#### Betriebsbereiche

#### Betriebsbereiche

| Bipolar             | +/-10 VDC<br>+/-5 VDC<br>+/-20 mA          |
|---------------------|--------------------------------------------|
| Unipolar            | 0 bis 10 VDC<br>0 bis 5 VDC<br>0 bis 20 mA |
| Unipolar mit Offset | 1 bis 5 VDC<br>4 bis 20 mA                 |

# Spannung/Eingang

# Spannung/Eingang

| Betriebsspannung (Kanal-Kanal)             | +/-40 VDC (max.)                           |  |  |  |  |  |
|--------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Absolute Spannung (max.)                   | +/-50 VDC                                  |  |  |  |  |  |
| Linearer Messbereich                       | 2,4 % ober- und unterhalb des Messbereichs |  |  |  |  |  |
| Eingangsimpedanz im Bereich                | > 10 MOhm                                  |  |  |  |  |  |
| Eingangsimpedanz<br>Bereichsüberschreitung | < 0,5 MOhm                                 |  |  |  |  |  |

#### Strom/Eingang

# Strom/Eingang

| Absoluter Strom (max.) | +/-25 mA                                             |
|------------------------|------------------------------------------------------|
| Linearer Messbereich   | 2,4 % oberhalb und -9,6 % unterhalb des Messbereichs |
| Eingangsimpedanz       | 250 Ohm                                              |

Bei einer Konfiguration für Stromeingänge (Steckbrücke zwischen den Klemmen IN(+) und SENSE installiert) führt ein Drahtbruch in der Feldverdrahtung zur Anzeige des Stromwerts Null.

Wenn 4 bis 20 mA ausgewählt ist, leuchten Fehler-LEDs auf und Warnanzeigen für Bereichsüberschreitung werden angezeigt.

#### Auflösung/Konvertierung

# Auflösung/Konvertierung

| 16 Bit                                | +/-10 VDC, 0 bis 10 VDC                                                                       |
|---------------------------------------|-----------------------------------------------------------------------------------------------|
| 15 Bit                                | +/-5 VDC, 0 bis 5 VDC, +/-20 mA, 0 bis 20 mA                                                  |
| 14 Bit                                | 1 bis 5 VDC; 4 bis 20 mA                                                                      |
| Absolute Genauigkeitsfehler bei 25 °C | Spannungsmodus:  Typisch: +/-0,03 % des Skalenendwerts  Maximal: +/-0,05 % des Skalenendwerts |
|                                       | Strommodus:  +/-0,03 % zur Nennspannung hinzufügen                                            |
| Linearität                            | Monoton +/- 1 LSB (niederwertigstes Bit)                                                      |
| Offset 0 bis 60 °C                    | +/- 0,0014 % des Skalenendwerts (max.)                                                        |
| Verstärkungsverschiebung 0 bis 60 °C  | +/- 0,002 % des Skalenendwerts (max.)                                                         |
| Gleichtaktunterdrückung               | Besser als 80 dB bei 50 oder 60 Hz                                                            |
| Eingangsfilter                        | Einpoliger Tiefpass, -3 dB bei 21 Hz, +/-20 %                                                 |
| Aktualisierungsdauer                  | 320 ms für 4 Kanäle                                                                           |

#### Potenzialtrennung

#### Potenzialtrennung

| Kanal-Bus   | 500 VAC effektiv für 1 Minute<br>750 VDC effektiv für 1 Minute |
|-------------|----------------------------------------------------------------|
| Kanal-Kanal | 500 VAC effektiv für 1 Minute<br>750 VDC effektiv für 1 Minute |

#### Tabelle der linearen Messbereiche

Die folgende Tabelle zeigt die linearen Messbereiche für die Eingänge.

| Datenformat           | format Eingang         |          | Normal           | Bereichsüber-<br>schreitung |  |
|-----------------------|------------------------|----------|------------------|-----------------------------|--|
| 16-Bit-Format         | +/-10 V                | < 768    | 768 bis 64768    | > 64768                     |  |
|                       | +/-5 V, +/-20 mA       | < 16768  | 16768 bis 48768  | > 48768                     |  |
|                       | 0 bis 10 V             |          | 0 bis 64000      | > 64000                     |  |
|                       | 0 bis 5 V, 0 bis 20 mA |          | 0 bis 32000      | > 32000                     |  |
|                       | 1 bis 5 V, 4 bis 20 mA | < 6400   | 6400 bis 32000   | > 32000                     |  |
| Voltmeter*-<br>Format | +/-10 V                | < -10000 | -10000 bis 10000 | > 10000                     |  |
|                       | +/-5 V                 | < -5000  | -5000 bis 5000   | > 5000                      |  |
|                       | 0 bis 10 V             |          | 0 10000          | > 10000                     |  |
|                       | 0 bis 5 V              |          | 0 bis 5000       | > 5000                      |  |
|                       | 1 bis 5 V              | < 1000   | 1000 bis 5000    | > 5000                      |  |
|                       | +/-20 mA               | < 1000   | -20000 bis 20000 | > 20000                     |  |
|                       | 0 bis 20 mA            |          | 0 bis 20000      | > 20000                     |  |
|                       | 4 bis 20 mA            | < 4000   | 4000 bis 20000   | > 20000                     |  |
| 12-Bit-Format         | +/-10 V                | 0        | 0 bis 4095       | 4095                        |  |
|                       | +/-5 V, +/-20 mA       | 0        | 0 bis 4095       | 4095                        |  |
|                       | 0 bis 10 V             |          | 0 bis 4095       | 4095                        |  |
|                       | 0 bis 5 V, 0 bis 20 mA |          | 0 bis 4095       | 4095                        |  |
|                       | 1 bis 5 V, 4 bis 20 mA | 0        | 0 bis 4095       | 4095                        |  |

<sup>\*</sup> Die Voltmeterbereiche sind im vorzeichenbehafteten Modsoft-Format angegeben.

# Sicherungen

# Sicherungen

| Intern | Nicht erforderlich                                                                  |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

#### Ausgangskenndaten

#### Ausgangskenndaten

| Schleifenspannung        | bIS 30 VDC, bis zu 60 VDC mit externem<br>Widerstand                                                                                                                |  |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Schleifenwiderstand      | $R_{MIN}$ * = ( $V_{IOOP}$ - 30 V DC) / 0,020 A $R_{MAX}$ = ( $V_{IOOP}$ - 7 V DC) / 0,020 A  * Für Schleifenspannung unter 30 VDC ist kein $R_{MIN}$ erforderlich: |  |  |  |  |  |
| Interner Spannungsabfall | min. 7 VDC, max. 30 VDC bei 20 mA                                                                                                                                   |  |  |  |  |  |
| Fehlererkennung          | Offener Stromkreis 4 bis 20 mA oder<br>Bereichsüberschreitung, Bereichsunterschreitung<br>nur in bipolaren Modi.                                                    |  |  |  |  |  |

#### Auflösung/Konvertierung

#### Auflösung/Konvertierung

| Auflösung                                           | 12 Bit                                                                          |  |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| Genauigkeitsfehler bei 25 °C                        | +/- 0,20 % des Skalenendwerts                                                   |  |  |  |  |  |
| Genauigkeitsfehler bei 0 bis 60 °C (Spannungsmodus) | Typisch: +/-0,004 % des Skalenendwerts<br>Maximal: +/-0,07 % des Skalenendwerts |  |  |  |  |  |
| Linearität                                          | Monoton +/- 1 LSB (niederwertigstes Bit)                                        |  |  |  |  |  |
| Aktualisierungsdauer                                | 15 ms für 2 Kanäle                                                              |  |  |  |  |  |
| Ausregelzeit                                        | 900 Mikrosekunden auf +/-0,1 % des Endwerts                                     |  |  |  |  |  |
| Fehlererkennung                                     | Meldeleuchte für offenen Stromkreis und Statusbyte                              |  |  |  |  |  |

Eine Warnmeldung wird ausgegeben, falls ein Kanaleingang außerhalb des Nenneingangswertes liegt. Die Warnbits bleiben gesetzt, nachdem die Bits für Bereichsüberschreitung gesetzt wurden. Ein Bereichsüberschreitungs-Bit wird gesetzt, wenn ein Kanaleingang den Nenneingangswert um 2,4 % überschreitet. Bereichüberschreitungs-Bits werden ebenfalls gesetzt, wenn Eingänge unter 0,5 V (Modus 1 bis 5 V) bzw. 2,08 mA (Modus 4 bis 20 mA) abfallen.

#### Potenzialtrennung

#### Potenzialtrennung

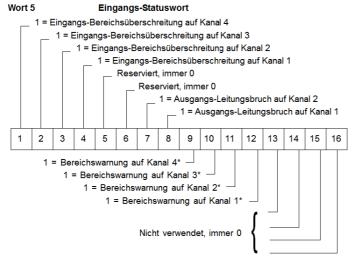
| Kanal-Bus   | 500 VAC effektiv für 1 Minute<br>750 VDC effektiv für 1 Minute |
|-------------|----------------------------------------------------------------|
| Kanal-Kanal | 500 VAC effektiv für 1 Minute<br>750 VDC effektiv für 1 Minute |

# Tabelle: Kenndaten Voltmeterüberwachung

Die folgende Tabelle enthält eine Aufstellung der Kenndaten der Voltmeterüberwachung für das analoge Eingangs-/Ausgangsmodul.

| Bereich             | 1 bis 5 V (Schleifenstrom muss aktiv sein) |  |  |  |  |
|---------------------|--------------------------------------------|--|--|--|--|
| Skalierung          | $I_{OUT}$ (mA) x 0,250 = $V_{OUT}$ (Volt)  |  |  |  |  |
| Ausgangsimpedanz    | Typisch 300 Ohm                            |  |  |  |  |
| Maximale Drahtlänge | 1 m                                        |  |  |  |  |

#### Adressierung


#### Flache Adressierung

Dieses Modul benötigt fünf aufeinanderfolgende 16-Bit-Eingangswörter (%IW), davon vier für Eingangsdaten und eines für den Kanalstatus, sowie zwei aufeinanderfolgende 16-Bit-Ausgangswörter (%QW) für Ausgangsdaten. Die Formate für das Datenwort werden im Folgenden gezeigt.

Die folgende Abbildung zeigt die Eingangswörter 1 - 4:

| Wort 1 | Daten von Kanal 1 |
|--------|-------------------|
|        |                   |
|        |                   |
|        | •                 |
|        | •                 |
| Wort 4 | Daten von Kanal 4 |
|        |                   |
|        |                   |

Die folgende Abbildung zeigt das Eingangswort 5:



\*Eine Warnmeldung wird ausgegeben, falls ein Kanaleingang außerhalb des Nenneingangswertes liegt. Ein Bereichsüberschreitungsbit wird gesetzt, wenn ein Kanal die festgelegten Grenzwerte um mindestens 2,4 % überschreitet oder wenn auf dem Kanal ein Leitungsbruch (4 - 20-mA-Modus) erkannt wird.

Die folgende Abbildung zeigt die Ausgangswörter 1 und 2:

| Wort                     | 1 | Daten von Kanal 1 |  |  |  |  |  |  |  |  |  |  |
|--------------------------|---|-------------------|--|--|--|--|--|--|--|--|--|--|
|                          |   |                   |  |  |  |  |  |  |  |  |  |  |
| Wort 2 Daten von Kanal 2 |   |                   |  |  |  |  |  |  |  |  |  |  |
|                          |   |                   |  |  |  |  |  |  |  |  |  |  |

# **Topologische Adressierung**

Topologische Adressen für das Eingangs-/Ausgangsmodul 140 AMM 090 00:

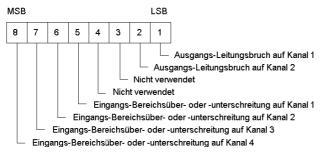
| Punkt      | E/A-Objekt       | Kommentar                               |  |  |
|------------|------------------|-----------------------------------------|--|--|
| Eingang 1  | %IW[\b.e\]r.m.1  | Wert                                    |  |  |
|            | %I[\b.e\]r.m.1.1 | Bereichsüberschreitung                  |  |  |
|            | %I[\b.e\]r.m.1.2 | Bereichswarnung                         |  |  |
| •••        |                  |                                         |  |  |
| Eingang 4  | %IW[\b.e\]r.m.4  | Wert                                    |  |  |
|            | %I[\b.e\]r.m.4.1 | Bereichsüberschreitung                  |  |  |
|            | %I[\b.e\]r.m.4.2 | Bereichswarnung                         |  |  |
| Statuswort | %IW[\b.e\]r.m.5  | Status der Eingangs-<br>/Ausgangskanäle |  |  |
| Ausgang 1  | %QW[\b.e\]r.m.1  | Wert                                    |  |  |
|            | %I[\b.e\]r.m.1.3 | Leitungsbruch                           |  |  |
| Ausgang 2  | %QW[\b.e\]r.m.2  | Wert                                    |  |  |
|            | %I[\b.e\]r.m.2.3 | Leitungsbruch                           |  |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### IODDT

Das Eingang-/Ausgangsmodul 140 AMM 090 00 verwendet den IODDT T\_ANA\_BI\_VWE für die ersten beiden Eingangs- und Ausgangskanäle und den IODDT T\_ANA\_IN\_VWE für die Eingangskanäle 3 und 4:

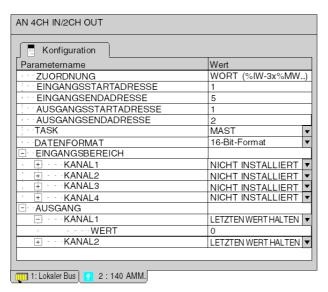
| IODDT-Name   | Objekt          | Datentyp   | Name              |
|--------------|-----------------|------------|-------------------|
| T_ANA_BI_VWE | %CH[\b.e\]r.m.c | ANA_IN_VWE | benutzerdefiniert |
|              | %IWr.m.c.0      | Int        | .VALUE_IN         |
|              | %IQr.m.c.0      | Int        | .VALUE_OUT        |
|              | %lr.m.c.1       | Bool       | .ERROR_IN         |
|              | %lr.m.c.2       | Bool       | .WARNING_IN       |
|              | %lr.m.c.3       | Bool       | .ERROR_OUT        |
| T_ANA_IN_VWE | %CH[\b.e\]r.m.c | ANA_IN_VWE | benutzerdefiniert |
|              | %IWr.m.c.0      | Int        | .VALUE            |
|              | %lr.m.c.1       | Bool       | .ERROR            |
|              | %lr.m.c.2       | Bool       | .WARNING          |


Verwendete Abkürzungen:  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz,  $\mathbf{c}$  = Kanal,  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (E/A-Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

**HINWEIS:** In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp **Bool** für % I und % Q verwendet.

#### Statusbyte für E/A-Zuordnung


Das Statusbyte für die E/A-Zuordnung wird von dem Eingangsmodul 140 AMM 090 00 wie folgt verwendet.



# Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert           | Optionen                             | Beschreibung                                                                  |
|----------------------------------------------------------------------------------------|------------------------|--------------------------------------|-------------------------------------------------------------------------------|
| Zuordnung                                                                              | WORT<br>(%IW-3X%MW-4X) | -                                    |                                                                               |
| Eingangsstartadresse                                                                   | 1                      | -                                    |                                                                               |
| Eingangsendadresse                                                                     | 4                      | -                                    |                                                                               |
| Ausgangsstartadresse                                                                   | 1                      | -                                    |                                                                               |
| Ausgangsendadresse                                                                     | 2                      | -                                    |                                                                               |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST                   | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | mit MAST verbunden, wenn sich<br>das Modul nicht im lokalen Modus<br>befindet |
| Datenformat                                                                            | 16 -Bit-Format         | Voltmeter<br>12 -Bit-Format          |                                                                               |

| Name            | Standardwert      | Optionen                                                                                                                            | Beschreibung                                  |  |  |
|-----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| Eingangsbereich |                   |                                                                                                                                     |                                               |  |  |
| Kanal1          | NICHT INSTALLIERT | -10V BIS +10V<br>0V BIS 10V<br>-5V BIS +5V<br>0V BIS +5V<br>+1V BIS +5V<br>-20 mA BIS +20 mA<br>0 mA BIS +20 mA<br>+4 mA BIS +20 mA |                                               |  |  |
| Kanal2 - Kanal4 |                   |                                                                                                                                     | siehe Kanal1                                  |  |  |
| Ausgang         |                   |                                                                                                                                     |                                               |  |  |
| Kanal1          | LETZTER WERT      | NICHT<br>INSTALLIERT<br>BENUTZERDEFI-<br>NIERT                                                                                      |                                               |  |  |
| Wert            | 0                 | 0-4095                                                                                                                              | Nur aktiviert wenn Kanal = BENUTZERDEFINIERT. |  |  |
| Kanal2          |                   |                                                                                                                                     | siehe Kanal1                                  |  |  |

35010518 09/2020

# Teil V

# Digitaleingangsmodule

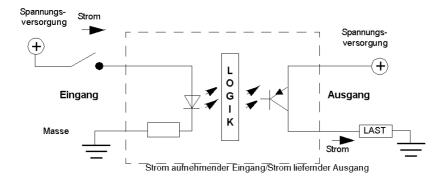
## Einleitung

Der folgende Teil enthält Informationen über die Quantum-Digitaleingangsmodule.

### Inhalt dieses Teils

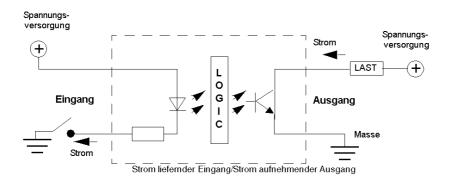
Dieser Teil enthält die folgenden Kapitel:

| Kapitel | Kapitelname                                                  | Seite |
|---------|--------------------------------------------------------------|-------|
| 13      | Allgemeine Informationen                                     | 183   |
| 14      | 140 DDI 153 10: Eingangsmodul 5 VDC 4x8 negative Logik       | 185   |
| 15      | 140 DDI 353 00: Eingangsmodul 24 VDC 4x8 positive Logik      | 193   |
| 16      | 140 DDI 353 10: Eingangsmodul 24 VDC 4x8 negative Logik      | 201   |
| 17      | 140 DDI 364 00: Telefast Eingangsmodul, 24 VDC 6x16          | 209   |
| 18      | 140 DDI 673 00: Eingangsmodul 125 VDC 3x8 positive Logik     | 217   |
| 19      | 140 DDI 841 00: Eingangsmodul 10 - 60 VDC 8x2 positive Logik | 227   |
| 20      | 140 DDI 853 00: Eingangsmodul 10 - 60 VDC 4x8 positive Logik | 235   |
| 21      | 140 DAI 340 00: Eingangsmodul 24 VAC 16x1                    | 243   |
| 22      | 140 DAI 353 00: Eingangsmodul 24 VAC 4x8                     | 251   |
| 23      | 140 DAI 440 00: Eingangsmodul 48 VAC 16x1                    | 259   |
| 24      | 140 DAI 453 00: Eingangsmodul 48 VAC 4x8                     | 267   |
| 25      | 140 DAI 540 00: Eingangsmodul 115 VAC 16x1                   | 275   |
| 26      | 140 DAI 543 00: Eingangsmodul VAC 2x8                        | 283   |
| 27      | 140 DAI 553 00: Eingangsmodul 115 VAC 4x8                    | 291   |
| 28      | 140 DAI 740 00: Eingangsmodul 230 VAC 16x1                   | 299   |
| 29      | 140 DAI 753 00: Eingangsmodul 230 VAC 4x8                    | 307   |
| 30      | 140 DSI 353 00: Überwachtes Eingangsmodul 24 VDC 2x16        | 315   |


# Kapitel 13

## Allgemeine Informationen

## Digitale E/A-Logikschaltkreise


### Abbildung: Digitaler E/A-Versorgungsstromkreis (positive Logik)

In der folgenden Abbildung sind Versorgungsstromkreis (positive Logik)/Strom aufnehmender Eingang und Strom liefernder Ausgang dargestellt.



### Abbildung: Digitaler E/A-Massestromkreis (negative Logik)

In der folgenden Abbildung sind Versorgungsstromkreis (negative Logik)/Strom liefernder Eingang und Strom aufnehmender Ausgang dargestellt.



### Strom aufnehmend

Dabei wird eine physikalische Implementierung der E/A-Hardware beschrieben, bei der im Zustand *positive/negative Logik* der Strom der externen Last aufgenommen wird.

### Stromzufuhr

Dabei wird eine physikalische Implementierung der E/A-Hardware beschrieben, bei der im Zustand *negative/positive Logik* die Stromzufuhr zur externen Last erfolgt.

# Kapitel 14

## 140 DDI 153 10: Eingangsmodul 5 VDC 4x8 negative Logik

## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDI 153 10.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 186   |
| Anzeigen               | 187   |
| Verdrahtungsschema     | 188   |
| Technische Daten       | 190   |
| Parameterkonfiguration | 192   |

### **Beschreibung**

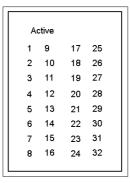
#### **Funktion**

Das stromliefernde Modul, DC-Eingang 5 V 4x8, nimmt 5-VDC-Eingänge auf. Es ist für den Einsatz mit an 0 V angeschlossenem gemeinsamen Eingangsbezugspotenzial gedacht und ist kompatibel mit TTL, -LS, -S und CMOS-Logik.

### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDI 153 10 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

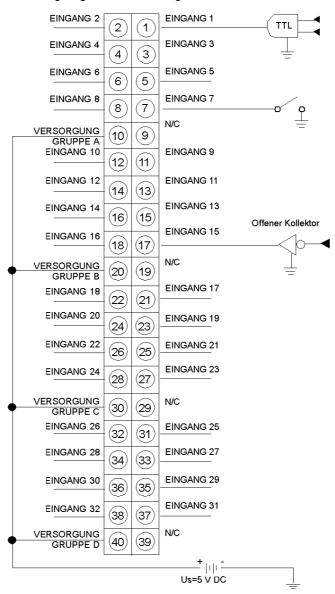
## **Anzeigen**

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDI 153 10.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDI 153 10.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

### Verdrahtungsschema

### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für die 140 DDI 153 10.



**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### **Technische Daten**

## Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp                     | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) |  |
|------------------------------|---------------------------------------------|--|
| Logik                        | Negative Logik (true low)                   |  |
| Externe Stromversorgung (Us) | 4.5 5,5 VDC                                 |  |
| Stromaufnahme (Modul)        | 170 mA                                      |  |
| Verlustleistung              | 5 W                                         |  |
| E/A-Zuordnung                | 2 Eingangswörter                            |  |
| Fehlererkennung              | Keine                                       |  |

### Potentialtrennung

### Potentialtrennung

| Gruppe-Gruppe | 500 VAC effektiv für 1 Minute  |
|---------------|--------------------------------|
| Gruppe-Bus    | 1780 VAC effektiv für 1 Minute |

### Eingangsauslegung

### Eingangsauslegung

| Spannung im eingeschalteten Zustand  | 0,8 VDC max.                                               |
|--------------------------------------|------------------------------------------------------------|
| Strom im eingeschalteten Zustand     | 4,0 mA bei Us = 5,5 V und Uin = 0 V                        |
| Spannung im ausgeschalteten Zustand  | 4 VDC (min.) bei US = 5,5 V<br>3 VDC (min.) bei US = 4,5 V |
| Leckstrom im ausgeschalteten Zustand | 200 μA bei Us = 5,5 V und Uin = 4 VDC                      |
| Interner Pull-up-Widerstand          | 7,5 kOhm                                                   |
| Eingangsschutz                       | Mit Widerstand begrenzt                                    |

### Absolute maximale Eingangsspannung

### Absolute maximale Eingangsspannung

| Kontinuierlich | 5,5 VDC              |
|----------------|----------------------|
| 1,3 ms         | 15 VDC Abklingimpuls |

### Reaktionszeit

### Reaktionszeit

| AUS - EIN | max. 250 µs |
|-----------|-------------|
| EIN - AUS | max. 500 µs |

## Sicherungen

### Sicherungen

| Intern | Nicht erforderlich                                                                  |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

## Tabelle: Logische Zustände

Die folgenden Tabellen enthalten Aufstellungen der logischen Zustände des Moduls DDI 153 10.

| Eingangsspannung                             | Eingangszustand | LED |
|----------------------------------------------|-----------------|-----|
| ≤ 0,8 VDC                                    | EIN             | EIN |
| ≥ 4,0 VDC bei 5,5 Us<br>≥ 3,0 VDC bei 4,5 Us | OFF             | OFF |
| Keine Verbindung                             | OFF             | OFF |

## Parameterkonfiguration

### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 32           | 2                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 43).* 

# Kapitel 15

## 140 DDI 353 00: Eingangsmodul 24 VDC 4x8 positive Logik

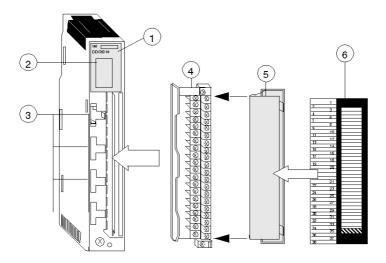
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDI 353 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 194   |
| Anzeigen               | 195   |
| Verdrahtungsschema     | 196   |
| Technische Daten       | 198   |
| Parameterkonfiguration | 200   |


### **Beschreibung**

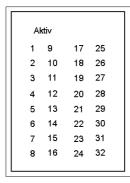
### **Funktion**

Das stromaufnehmende 24-VDC-Eingangsmodul 4x8 nimmt 24-VDC-Eingänge auf und ist für den Einsatz mit an positives Potenzial angeschlossenem gemeinsamen Eingangsbezugspotenzial bestimmt.

### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDI 353 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

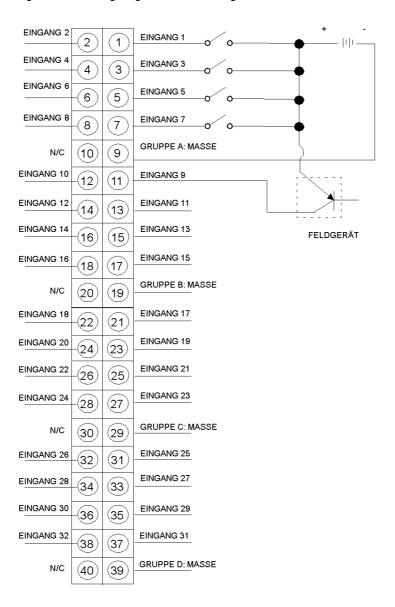
## Anzeigen

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDI 353 00.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDI 353 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für die 140 DDI 353 00.



**HINWEIS:** N/C = Nicht angeschlossen

HINWEIS: Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14

AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp                | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) |
|-------------------------|---------------------------------------------|
| Logik                   | True High                                   |
| Externe Spannung        | Für dieses Modul nicht erforderlich         |
| Verlustleistung         | 1,7 W + 0,36 W x Anzahl der Punkte EIN      |
| Erforderlicher Busstrom | 330 mA                                      |
| E/A-Zuordnung           | 2 Eingangswörter                            |
| Fehlererkennung         | Keine                                       |

## Potentialtrennung

## Potentialtrennung

| Gruppe-Gruppe | 500 VAC effektiv für 1 Minute  |
|---------------|--------------------------------|
| Gruppe-Bus    | 1780 VAC effektiv für 1 Minute |

### Sicherungen

### Sicherungen

| t erforderlich                                                              |
|-----------------------------------------------------------------------------|
| Benutzer gemäß den lokalen und nationalen trotechnischen Normen installiert |
|                                                                             |

## Eingangsauslegung

### Eingangsauslegung

| Spannung im eingeschalteten Zustand | +15 +30 VDC         |
|-------------------------------------|---------------------|
| Spannung im ausgeschalteten Zustand | -3 +5 VDC           |
| Strom im eingeschalteten Zustand    | 2,0 mA (min.)       |
| Strom im ausgeschalteten Zustand    | 0,5 mA (max.)       |
| Innenwiderstand                     | 2,5 kOhm            |
| Eingangsschutz                      | Widerstand begrenzt |

## Absolute maximale Eingangsspannung

## Absolute maximale Eingangsspannung

| Kontinuierlich | 30 VDC               |
|----------------|----------------------|
| 1,3 ms         | 56 VDC Abklingimpuls |

### Reaktionszeit

### Reaktionszeit

| AUS - EIN | 1 ms (max.) |
|-----------|-------------|
| EIN - AUS | 1 ms (max.) |

## Parameterkonfiguration

### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 32           | 2                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 43)*.

# Kapitel 16

## 140 DDI 353 10: Eingangsmodul 24 VDC 4x8 negative Logik

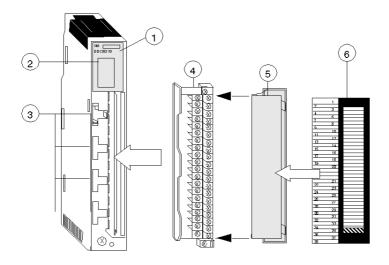
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDI 353 10.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Überblick              | 202   |
| Anzeigen               | 203   |
| Verdrahtungsschema     | 204   |
| Technische Daten       | 206   |
| Parameterkonfiguration | 208   |


### Überblick

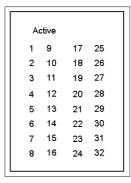
#### **Funktion**

Das stromliefernde 24-VDC-Eingangsmodul 4x8 nimmt 24-VDC-Eingänge auf und ist für den Einsatz mit an 0 V angeschlossenem gemeinsamen Eingangsbezugspotenzial bestimmt.

### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDI 353 10 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- **3** Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

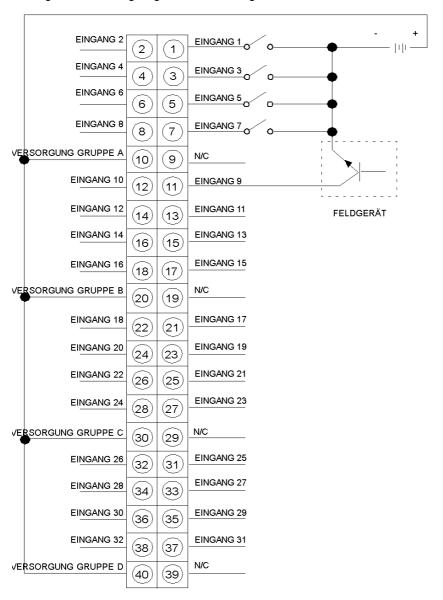
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDI 353 10.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDI 353 10.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für die 140 DDI 353 10.



**HINWEIS:** N/C = Nicht angeschlossen

HINWEIS: Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14

AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### **Technische Daten**

## Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp               | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Logik                  | Negative Logik (true low)                   |
| Externe Spannung       | 19.2 30 VDC                                 |
| Verlustleistung        | 1,5 W + 0,26 W x Anzahl der Punkte EIN      |
| Maximale Stromaufnahme | max. 330 mA                                 |
| E/A-Zuordnung          | 2 Eingangswörter                            |
| Fehlererkennung        | Keine                                       |

### Potentialtrennung

### Potentialtrennung

| Gruppe-Gruppe | 500 VAC effektiv für 1 Minute  |
|---------------|--------------------------------|
| Gruppe-Bus    | 1780 VAC effektiv für 1 Minute |

### Eingangsauslegung

### Eingangsauslegung

| Spannung im eingeschalteten Zustand | -1530 VDC (Referenz von Gruppenversorgung) |
|-------------------------------------|--------------------------------------------|
| Spannung im ausgeschalteten Zustand | 05 VDC (Referenz von Gruppenversorgung)    |
| Strom im eingeschalteten Zustand    | Mind. 2,0 mA, max. 14 mA                   |
| Strom im ausgeschalteten Zustand    | max. 0,5 mA                                |
| Innenwiderstand                     | 2,4 kOhm                                   |
| Eingangsschutz                      | Widerstand begrenzt                        |

## Absolute maximale Eingangsspannung

### Absolute maximale Eingangsspannung

| k | Kontinuierlich | 30 VDC               |
|---|----------------|----------------------|
| 1 | ,3 ms          | 50 VDC Abklingimpuls |

## Reaktionszeit

### Reaktionszeit

| AUS - EIN | max. 1 ms |
|-----------|-----------|
| EIN - AUS | max. 1 ms |

## Sicherungen

## Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

## Parameterkonfiguration

### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Standardwert | Optionen                        | Beschreibung                                                                         |
|--------------|---------------------------------|--------------------------------------------------------------------------------------|
| BIT (%I-1x)  | WORT (%IW-3X)                   |                                                                                      |
| 1            | 1                               |                                                                                      |
| 32           | 2                               |                                                                                      |
| BINÄR        | BCD                             |                                                                                      |
| MAST         | FAST<br>AUX0<br>AUX1<br>AUX2    | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |
|              | BIT (%I-1x)<br>1<br>32<br>BINÄR | BIT (%I-1x) WORT (%IW-3X)  1 1  32 2  BINÄR BCD  MAST FAST AUX0 AUX1                 |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 43).* 

# Kapitel 17

# 140 DDI 364 00: Telefast Eingangsmodul, 24 VDC 6x16

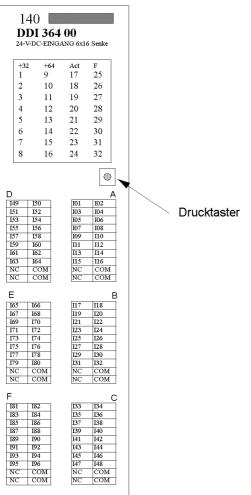
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDI 364 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Überblick              | 210   |
| Anzeigen               | 212   |
| Farbcodes              | 213   |
| Technische Daten       | 214   |
| Parameterkonfiguration | 216   |


### Überblick

### **Funktion**

Das Sink-Modul 140 DDI 364 00 nimmt 24-V-DC-Eingänge auf.

### **Abbildung**

Vorderansicht des Eingangsmoduls 140 DDI 364 00 einschließlich der Anschlussbelegungsnummern



### **Empfohlene Kabel**

Die folgende Tabelle zeigt empfohlene Kabel samt Beschreibung und Längen in Meter.

| Kabel-Teilenummern | Beschreibung                 | Länge (M) |
|--------------------|------------------------------|-----------|
| TSXCDP301          | (1) HE 10 - lose Zuleitungen | 3         |
| TSXCDP501          | (1) HE 10 - lose Zuleitungen | 5         |
| TSXCDP102          | (2) HE 10 - Flachbandkabel   | 1         |
| TSXCDP202          | (2) HE 10 - Flachbandkabel   | 2         |
| TSXCDP302          | (2) HE 10 - Flachbandkabel   | 3         |
| TSXCDP053          | (2) HE 10 - Rundkabel        | 0,5       |
| TSXCDP103          | (2) HE 10 - Rundkabel        | 1         |
| TSXCDP203          | (2) HE 10 - Rundkabel        | 2         |
| TSXCDP303          | (2) HE 10 - Rundkabel        | 3         |
| TSXCDP503          | (2) HE 10 - Rundkabel        | 5         |

### Kompatible Verbindungs-Unterbasen

Die folgende Tabelle zeigt die kompatiblen Verbindungs-Unterbasen.

| Kanäle                                              | Тур                      |  |
|-----------------------------------------------------|--------------------------|--|
| 8                                                   | ABE-7H08Rxx <sup>1</sup> |  |
| 8                                                   | ABE-7H08S21 <sup>1</sup> |  |
| 16                                                  | ABE-7H16Rxx/H16Cxx       |  |
| 16                                                  | ABE-7H16S21              |  |
| 16                                                  | ABE-7H16R23              |  |
| 16                                                  | ABE-7H16S43              |  |
| <sup>1</sup> Mit der Splitter-Unterbasis ABE-7ACC02 |                          |  |

### Kompatible Eingangsadapter-Unterbasis

16 Kanäle, ABE-7S16E2xx/7P16F3xx

## **Anzeigen**

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDI 364 00.

| +32 | +64 | Act |    |
|-----|-----|-----|----|
| 1   | 9   | 17  | 25 |
| 2   | 10  | 18  | 26 |
| 3   | 11  | 19  | 27 |
| 4   | 12  | 20  | 28 |
| 5   | 13  | 21  | 29 |
| 6   | 14  | 22  | 30 |
| 7   | 15  | 23  | 31 |
| 8   | 16  | 24  | 32 |
|     |     |     |    |

## **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDI 364 00.

| LEDs | Farbe | Anzeige in Zustand EIN                       |  |
|------|-------|----------------------------------------------|--|
| Act  | Grün  | Buskommunikation vorhanden.                  |  |
| +32  | Grün  | Punkte 33 bis 64 auf LED-Anzeige dargestellt |  |
| +64  | Grün  | Punkte 65 bis 96 auf LED-Anzeige dargestellt |  |

### **Drucktaster**

Verwenden Sie den Drucktaster, um die Eingänge wie in der folgenden Tabelle einzustellen:

| LED             | +32 | +64 |
|-----------------|-----|-----|
| Ausg. 1 bis 32  | Aus | Aus |
| Ausg. 33 bis 64 | Ein | Aus |
| Ausg. 65 bis 96 | Aus | Ein |

## **Farbcodes**

## Farbcodes für Eingangsgruppen

Tabelle: Kabel-Farbcodes für alle Eingangsgruppen

| 1  | Weiß      | 2  | Braun      |
|----|-----------|----|------------|
| 3  | Grün      | 4  | Gelb       |
| 5  | Grau      | 6  | Rosa       |
| 7  | Blau      | 8  | Rot        |
| 9  | Schwarz   | 10 | Violett    |
| 11 | Grau/Rosa | 12 | Rot/Blau   |
| 13 | Weiß/Grün | 14 | Braun/Grün |
| 15 | Weiß/Gelb | 16 | Gelb/Braun |
| 17 | Weiß/Grau | 18 | Grau/Braun |
| 19 | Weiß/Rosa | 20 | Rosa/Braun |

### **Technische Daten**

## Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp               | 96 Eingänge (6 Gruppen x 16 Anschlusspunkte) |  |
|------------------------|----------------------------------------------|--|
| Verlustleistung        | 1,35 W + 0,13 W x Anzahl der Punkte EIN      |  |
| Maximale Stromaufnahme | 270 mA (max.)                                |  |
| E/A-Zuordnung          | 6 Eingangswörter                             |  |

### Potentialtrennung

### Potentialtrennung

| Gruppe-Gruppe | 500 VAC effektiv für 1 Minute |
|---------------|-------------------------------|
| Gruppe-Bus    | -                             |

## Eingangsauslegung

### Eingangsauslegung

| Spannung im eingeschalteten Zustand | +15 VDC             |
|-------------------------------------|---------------------|
| Spannung im ausgeschalteten Zustand | +5 VDC              |
| Strom im eingeschalteten Zustand    | 2,5 mA (min.)       |
| Strom im ausgeschalteten Zustand    | 0,7 mA              |
| Innenwiderstand                     | 6,7 kOhm            |
| Eingangsschutz                      | Widerstand begrenzt |

## Absolute maximale Eingangsspannung

### Absolute maximale Eingangsspannung

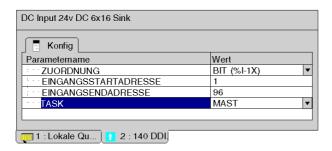
| Kontinuierlich | 30 VDC |
|----------------|--------|
| 1,0 ms         | 50 VDC |

### Reaktionszeit

### Reaktionszeit

| AUS - EIN | 2,0 ms (max.) |
|-----------|---------------|
| EIN - AUS | 3,0 ms (max.) |

## Sicherungen


## Sicherungen

| Intern | -                                                                                   |  |
|--------|-------------------------------------------------------------------------------------|--|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |  |

## Parameterkonfiguration

### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 96           | 6                                    |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 44).

# Kapitel 18

## 140 DDI 673 00: Eingangsmodul 125 VDC 3x8 positive Logik

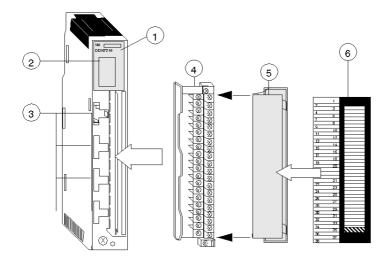
#### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDI 673 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 218   |
| Anzeigen               | 219   |
| Verdrahtungsschema     | 220   |
| Technische Daten       | 222   |
| Parameterkonfiguration | 225   |


#### **Beschreibung**

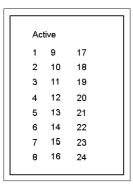
#### **Funktion**

Das stromaufnehmende 125-VDC-Eingangsmodul 3x8 nimmt 125-VDC-Eingänge auf und ist für den Einsatz mit an positives Potenzial angeschlossenem gemeinsamen Eingangsbezugspotenzial bestimmt. Die Reaktionszeit des Moduls kann mittels Software eingestellt werden, um so eine zusätzliche Eingangsfilterung zu ermöglichen.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDI 673 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

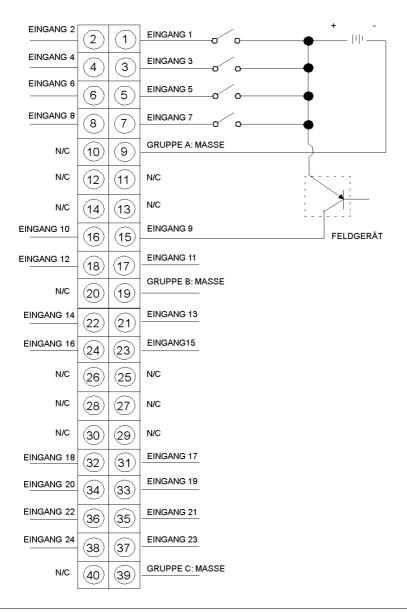
#### **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDI 673 00.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDI 673 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 24  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

#### Verdrahtungsschema

#### **Abbildung**

Auf der folgenden Abbildung sehen Sie das DDI 673 00-Verdrahtungsschema.



**HINWEIS:** N/C = Nicht angeschlossen

HINWEIS: Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14

AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

#### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

#### Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 24 Eingänge (3 Gruppen x 8 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Logik                  | True High                                   |
| Externe Spannung       | Für dieses Modul nicht erforderlich         |
| Verlustleistung        | 1,0 W + 0,62 W x Anzahl der Punkte EIN      |
| Maximale Stromaufnahme | 200 mA (max.)                               |
| E/A-Zuordnung          | 2 Eingangswörter                            |
| Fehlererkennung        | Keine                                       |

#### Potentialtrennung

#### Potentialtrennung

| Gruppe-Gruppe | 1780 VAC effektiv für 1 Minute |
|---------------|--------------------------------|
| Gruppe-Bus    | 2500 VAC effektiv für 1 Minute |

#### Eingangsauslegung

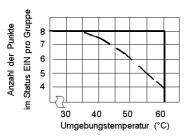
#### Eingangsauslegung

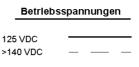
| Spannung im eingeschalteten Zustand | +88 +150 VDC                                                           |
|-------------------------------------|------------------------------------------------------------------------|
| Spannung im ausgeschalteten Zustand | 0 +36 VDC                                                              |
| Strom im eingeschalteten Zustand    | 2,0 mA (min.)                                                          |
| Strom im ausgeschalteten Zustand    | 0,5 mA (max.)                                                          |
| Innenwiderstand                     | AUS-Zustand: 73,8 kOhm (Nennwert)<br>EIN-Zustand: 31,6 kOhm (Nennwert) |
| Eingangsschutz                      | Widerstand begrenzt                                                    |
| Absolute Spannung (max.)            | Kontinuierlich : 156 VDC inklusive Welligkeit                          |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | 0,7 ms (Standardfilter)<br>1,5 ms (kein Standardfilter) |
|-----------|---------------------------------------------------------|
| EIN - AUS | 0,7 ms (Standardfilter)<br>1,5 ms (kein Standardfilter) |


#### Sicherungen


#### Sicherungen

| Intern | Nein                                                                                |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

#### Abbildung: Arbeitskennlinie

Die folgende Abbildung zeigt die Arbeitskennlinie des Moduls 140 DDI 673 00.





**HINWEIS:** Die folgenden Informationen setzen voraus, dass Versionsnummern verwendet werden, die diese Baugruppe unterstützen.

#### Mindestens erforderlicher Versionsstand

Die folgende Tabelle enthält eine Aufstellung des jeweils mindestens erforderlichen Versionsstands der Modulprodukte.

| Produkte      | Mindestens erforderlicher<br>Versionsstand (siehe folgende<br>Darstellung des Aufklebers) | Maßnahme durch den Anwender erforderlich |
|---------------|-------------------------------------------------------------------------------------------|------------------------------------------|
| CPUs und NOMs | < V02.20                                                                                  | Executive-Upgrade auf > V02.10           |
|               | ≥ V02.20                                                                                  | Nein                                     |
| RIOs          | < V02.00                                                                                  | Modul-Upgrade                            |
|               | ≥ V02.00 und < V02.20                                                                     | Executive-Upgrade auf > V02.10           |
|               | > V02.20                                                                                  | Nein                                     |
| DIOs          | < V02.10                                                                                  | Baugruppen-Upgrade                       |
|               | ≥ V02.10                                                                                  | Nein                                     |

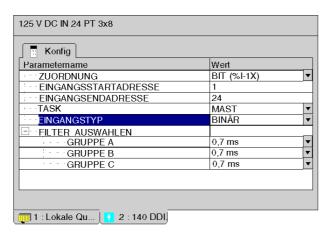
#### **A** VORSICHT

#### SOFTWARE-INKOMPATIBILITÄT FÜHRT ZU UNGÜLTIGEN ABLESEWERTEN DES EINGANGS

Stellen Sie sicher, dass die Mindest-Versionsstände entsprechend der obigen Tabelle eingehalten werden. Wenn beim Einsatz einer DIO-Station die CPU- und die NOM-Executive-Software nicht der Kompatibilitätstabelle entsprechen, werden Kanal 17 ... 24 dieses Moduls in der Steuerung als Null gelesen, wenn sie als digitale Eingänge konfiguriert sind.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Das Aktualisierungsverfahren für den Versionsstand Ihres Moduls ist im Benutzerhandbuch für den OS Loader beschrieben.


# Abbildung: Versionsaufkleber Die folgende Abbildung zeigt den Versionsaufkleber

HINWEIS: Der Versionsaufkleber befindet sich auf der Vorderseite der Baugruppe.

#### Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                      |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|-----------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                   |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                   |
| Eingangsendadresse                                                                     | 24           | 2                                    |                                                                                   |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet. |
| FILTER_AUSWAHLEN                                                                       |              |                                      |                                                                                   |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                   |
| Gruppe A                                                                               | 0,7 ms       | 1,5 ms                               |                                                                                   |
| Gruppe B, Gruppe C                                                                     |              |                                      | siehe Gruppe A                                                                    |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 42).

# Kapitel 19

# 140 DDI 841 00: Eingangsmodul 10 - 60 VDC 8x2 positive Logik

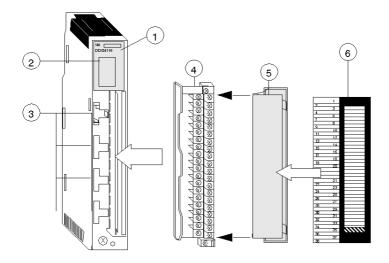
#### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDI 841 00.

#### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 228   |
| Anzeigen               | 229   |
| Verdrahtungsschema     | 230   |
| Technische Daten       | 232   |
| Parameterkonfiguration | 234   |


#### **Beschreibung**

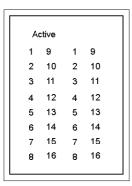
#### **Funktion**

Das stromaufnehmende DC-Eingangsmodul 10 ... 60 VDC 8x2 nimmt 10- ... 60-VDC-Eingänge auf und ist für den Einsatz mit an positives Potenzial angeschlossenem gemeinsamen Eingangsbezugspotenzial bestimmt. Die EIN-AUS-Pegel hängen von der ausgewählten Referenzspannung ab. Für verschiedene Gruppen können verschiedene Referenzspannungen verwendet werden.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDI 841 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

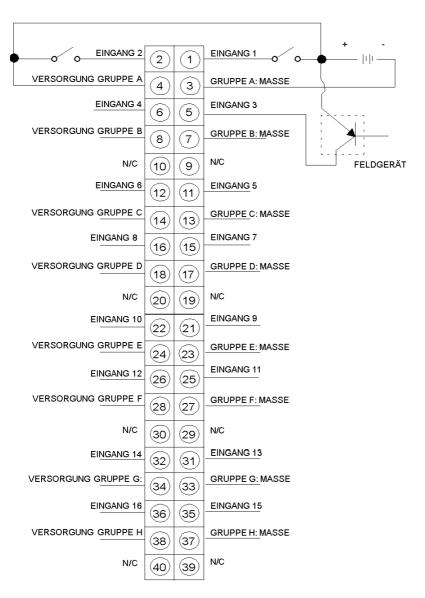
#### **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDI 841 00.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDI 841 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| 1 16   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

#### Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für die 140 DDI 841 00.



**HINWEIS:** N/C = Nicht angeschlossen

**HINWEIS:** Bei einer Umkehrung der Polarität liest das Modul 0 V, d. h. der Digitaleingang ist aus, wenn an Stelle des 24-V-Eingangskanals null Volt angelegt werden.

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

#### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

#### Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 16 Eingänge (8 Gruppen x 2 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Logik                  | Positive Logik (true high)                  |
| Externe Spannung       | 10 60 VDC (Gruppenversorgung)               |
| Verlustleistung        | 1,0 W + 0,25 W x Anzahl der Punkte EIN      |
| Maximale Stromaufnahme | 200 mA                                      |
| E/A-Zuordnung          | 1 Eingangswort                              |

#### Gruppenversorgung/Toleranz

#### Gruppenversorgung/Toleranz

| Gruppenversorgung/Toleranz | EIN*-Zustand | AUS*-Zustand                                                                                                  |
|----------------------------|--------------|---------------------------------------------------------------------------------------------------------------|
| 12 VDC/+/-5%               | 9 12 VDC     | 0 1,8 VDC IEC 57 Klasse 2                                                                                     |
| 24 VDC/+/-15% +20%         | 11 24 VDC    | 0 5 V DC IEC 65A Typ 2                                                                                        |
| 48 VDC/+/-15% +20%         | 34 48 VDC    | 0 10 V DC IEC 65A Typ 1                                                                                       |
| 60 VDC/+/-15% +20%         | 45 60 VDC    | 0 9 VDC IEC 57 Klasse 1 * Die Bereiche für den EIN- /AUS-Zustand sind als Nenn- Referenzspannungen definiert. |

#### Potentialtrennung

#### Isolierung

| Gruppe-Gruppe | 700 VDC für 1 Minute  |
|---------------|-----------------------|
| Gruppe-Bus    | 2500 VDC für 1 Minute |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

#### Eingangsauslegung

#### Eingangsauslegung

| Absoluter Maximaleingangswert | 75 VDC              |
|-------------------------------|---------------------|
| Eingangsschutz                | Widerstand begrenzt |

#### Strom im eingeschalteten Zustand

#### Strom im eingeschalteten Zustand

| bei 12 VDC | 5 10 mA |
|------------|---------|
| bei 24 VDC | 6 30 mA |
| bei 48 VDC | 2 15 mA |
| bei 60 VDC | 1 5 mA  |

#### Antwort-/Schaltfrequenz

#### Antwort-/Schaltfrequenz

| AUS - EIN      | 4 ms     |
|----------------|----------|
| EIN - AUS      | 4 ms     |
| Schaltfrequenz | < 100 Hz |

#### Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                | Standardwert | Optionen                             | Beschreibung                                                                         |
|-------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                  | 16           | 1                                    |                                                                                      |
| Eingangstyp                                                                         | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 41)*.

# Kapitel 20

# 140 DDI 853 00: Eingangsmodul 10 - 60 VDC 4x8 positive Logik

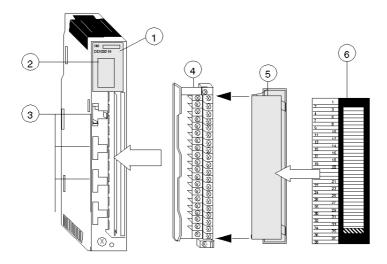
#### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDI 853 00.

#### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 236   |
| Anzeigen               | 237   |
| Verdrahtungsschema     | 238   |
| Kenndaten              | 240   |
| Parameterkonfiguration | 242   |


#### **Beschreibung**

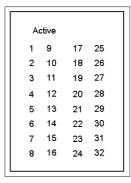
#### **Funktion**

Das stromaufnehmende DC-Eingangsmodul 10 ... 60 VDC 4x8 nimmt 10- bis 60-VDC-Eingänge auf und ist für den Einsatz mit an positives Potenzial angeschlossenem gemeinsamen Eingangsbezugspotenzial bestimmt. Die EIN-AUS-Pegel hängen von der ausgewählten Referenzspannung ab. Für verschiedene Gruppen können verschiedene Referenzspannungen verwendet werden.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDI 853 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

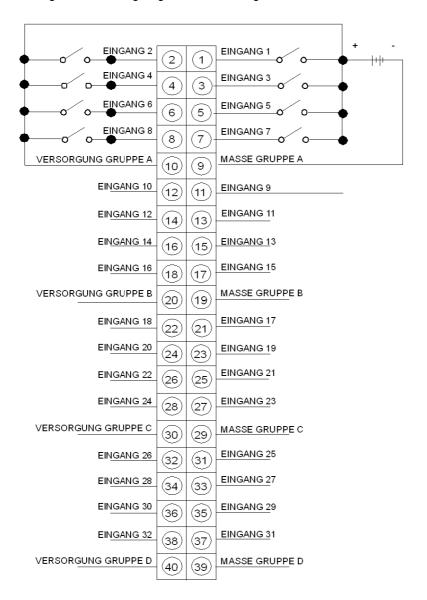
#### **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDI 853 00.



#### Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDI 853 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

#### Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für die 140 DDI 853 00.



**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

#### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Kenndaten

#### Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Logische Funktionen    | True High                                   |
| Externe Spannung       | 10 - 60 VDC (Gruppenversorgung)             |
| Verlustleistung        | 1,0 W + 0,25 W x Anzahl der Punkte EIN      |
| Maximale Stromaufnahme | 300 mA                                      |
| E/A-Zuordnung          | 2 Eingangswörter                            |
| Fehlererkennung        | Keine                                       |

#### Gruppenversorgung/Toleranz

#### Gruppenversorgung/Toleranz

| Gruppenversorgung/Toleranz | EIN*-Zustand | AUS*-Zustand                                                                                        |
|----------------------------|--------------|-----------------------------------------------------------------------------------------------------|
| 12 VDC / +/-5%             | 9 - 12 VDC   | 0 - 1,8 VDC                                                                                         |
| 24 VDC / -15 % - +20 %     | 11 24 VDC    | 0 - 5 VDC nach IEC61131                                                                             |
| 48 VDC / -15 % - +20 %     | 34 - 48 VDC  | 0 - 10 VDC nach IEC61131                                                                            |
| 60 VDC / -15 % - +20 %     | 45 - 60 VDC  | 0 - 12,5 VDC  * Die Bereiche für den EIN- /AUS-Zustand sind als Nenn- Referenzspannungen definiert. |

#### Potentialtrennung

#### Potentialtrennung

| Gruppe-Gruppe | 700 VDC für 1 Minute  |
|---------------|-----------------------|
| Gruppe-Bus    | 2500 VDC für 1 Minute |

#### Eingangsauslegung

#### Eingangsauslegung

| Absolute maximale Eingangsspannung | 75 VDC              |
|------------------------------------|---------------------|
| Eingangsschutz                     | Widerstand begrenzt |

#### Strom im eingeschalteten Zustand

#### Strom im eingeschalteten Zustand

| bei 12 VDC | 5 - 10 mA |
|------------|-----------|
| bei 24 VDC | 6 - 30 mA |
| bei 48 VDC | 2 - 1 mA  |
| bei 60 VDC | 1 - 5 mA  |

#### Antwort-/Schaltfrequenz

#### Antwort-/Schaltfrequenz

| AUS - EIN      | 4 ms          |
|----------------|---------------|
| EIN - AUS      | 4 ms          |
| Schaltfrequenz | < 100 Hz max. |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

#### Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 32           | 2                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 43).

# Kapitel 21

## 140 DAI 340 00: Eingangsmodul 24 VAC 16x1

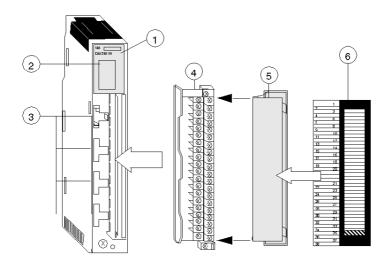
#### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 340 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 244   |
| Anzeigen               | 245   |
| Verdrahtungsschema     | 246   |
| Technische Daten       | 248   |
| Parameterkonfiguration | 250   |


#### **Beschreibung**

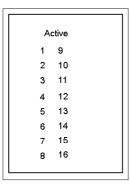
#### **Funktion**

Das Modul, AC-Eingang 24 VAC 16x1, nimmt 24-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 340 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

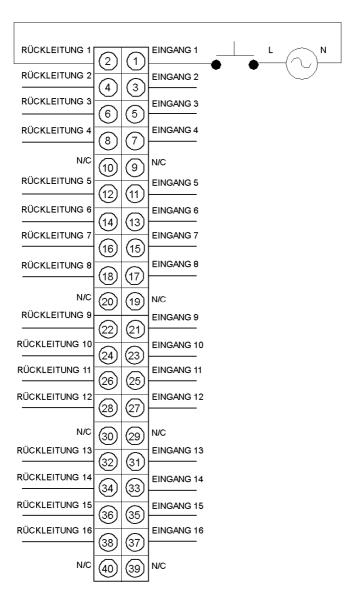
#### **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 340 00.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 340 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 16  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

#### Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 DAI 340 00.



**HINWEIS:** Dieses Modul ist unempfindlich gegen Verpolung.

N / C = Nicht verbunden (Not Connected).

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

#### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

#### Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 16 Eingänge (16 Gruppen x 1 Anschlusspunkt) einzeln potentialgetrennt |
|------------------------|-----------------------------------------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich                                   |
| Verlustleistung        | 5,5 W (max.)                                                          |
| Maximale Stromaufnahme | 180 mA                                                                |
| E/A-Zuordnung          | 1 Eingangswort                                                        |
| Fehlererkennung        | Keine                                                                 |

#### Betriebsspannung und Stromaufnahme\*

#### Betriebsspannung und Stromaufnahme\*

| 47 - 53 Hz                                                                           | EIN: 18 30 VAC (max. 10,7 mA)<br>AUS: 0 5 VAC                                               |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 57 - 63 Hz                                                                           | EIN: 16 30 VAC (max. 12 mA) AUS: 0 6 VAC * Nicht außerhalb des Bereichs 47 63 Hz einsetzen. |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 1,9 mA                                                                                      |

#### Typische Eingangsimpedanz

#### Typische Eingangsimpedanz

| 50 Hz | 3,1 kOhm kapazitiv |
|-------|--------------------|
| 60 Hz | 2,6 kOhm           |

#### Potentialtrennung

#### Isolierung

| Eingang-Eingang | 1780 VAC für 1 Minute |
|-----------------|-----------------------|
| Eingang-Bus     | 1780 VAC für 1 Minute |

#### **Absoluter Maximaleingangswert**

#### Absolute maximale Eingangsspannung

| Kontinuierlich | 30 VAC |
|----------------|--------|
| 10 s           | 32 VAC |
| 1 Zyklus       | 50 VAC |

#### Reaktionszeit

#### Reaktion

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

#### Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 16           | 1                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 41).

# Kapitel 22

## 140 DAI 353 00: Eingangsmodul 24 VAC 4x8

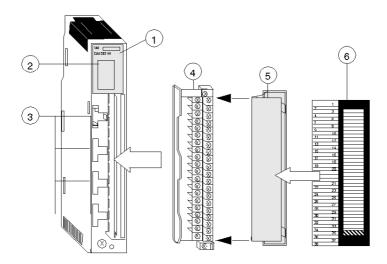
#### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 353 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 252   |
| Anzeigen               | 253   |
| Verdrahtungsschema     | 254   |
| Technische Daten       | 256   |
| Parameterkonfiguration | 258   |


#### **Beschreibung**

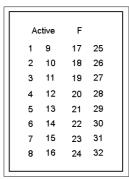
#### **Funktion**

Das Modul, AC-Eingang 24 VAC 4x8, nimmt 24-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 353 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

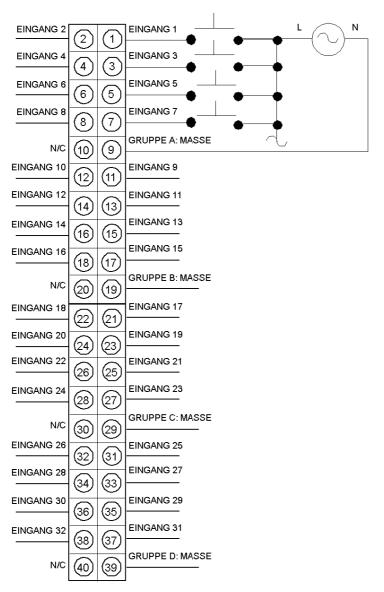
## **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 353 00.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 353 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| F     | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 353 00.



**HINWEIS:** Dieses Modul ist unempfindlich gegen Verpolung.

N / C = Nicht verbunden (Not Connected).

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich         |
| Verlustleistung        | 10,9 W (max.)                               |
| Maximale Stromaufnahme | 250 mA                                      |
| E/A-Zuordnung          | 2 Eingangswörter                            |
| Fehlererkennung        | Keine                                       |

## Betriebsspannung und Stromaufnahme\*

#### Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                | EIN: 14 30 VAC (max. 11,1 mA)<br>AUS: 0 5 VAC                                            |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 60 Hz                                                                                | EIN: 12 30 VAC (max. 13,2 mA)<br>AUS: 0 5 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 1,9 mA                                                                                   |

## Typische Eingangsimpedanz

#### Typische Eingangsimpedanz

| 50 Hz | 3,1 kOhm kapazitiv |  |
|-------|--------------------|--|
| 60 Hz | 2,6 kOhm kapazitiv |  |

#### Potentialtrennung

#### Potentialtrennung

| Gruppe-Gruppe | 1780 VAC für 1 Minute |
|---------------|-----------------------|
| Eingang-Bus   | 1780 VAC für 1 Minute |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

#### **Absoluter Maximaleingangswert**

#### Absoluter Maximaleingangswert

| Kontinuierlich | 30 VAC |
|----------------|--------|
| 10 s           | 32 VAC |
| 1 Zyklus       | 50 VAC |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                | Standardwert | Optionen                             | Beschreibung                                                                         |
|-------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                  | 32           | 2                                    |                                                                                      |
| Eingangstyp                                                                         | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 43)*.

# Kapitel 23

# 140 DAI 440 00: Eingangsmodul 48 VAC 16x1

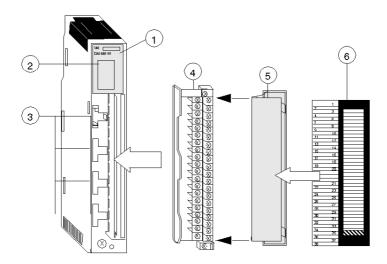
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 440 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 260   |
| Anzeigen               | 261   |
| Verdrahtungsschema     | 262   |
| Technische Daten       | 264   |
| Parameterkonfiguration | 266   |


## **Beschreibung**

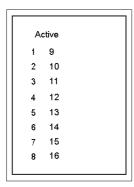
#### **Funktion**

Das Modul, AC-Eingang 48 VAC 16x1, nimmt 48-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 440 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

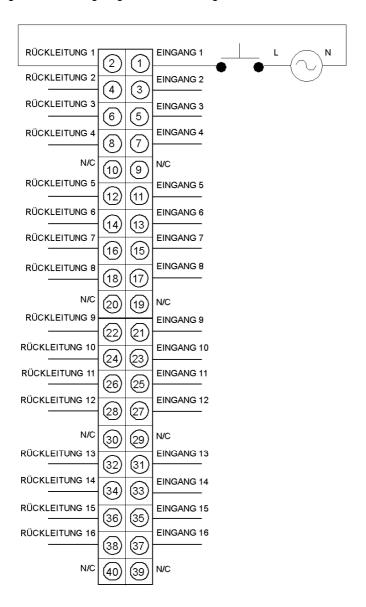
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 440 00.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 440 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 16  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 440 00.



**HINWEIS:** Dieses Modul ist unempfindlich gegen Verpolung.

N/C = Nicht angeschlossen

HINWEIS: Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14

AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 16 einzeln potentialgetrennt        |
|------------------------|-------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich |
| Verlustleistung        | 5,5 W (max.)                        |
| Maximale Stromaufnahme | 180 mA                              |
| E/A-Zuordnung          | 1 Eingangswort                      |
| Fehlererkennung        | Keine                               |

#### Betriebsspannung und Stromaufnahme\*

#### Betriebsspannung und Stromaufnahme\*

| 47 - 53 Hz                                                                           | EIN: 36 56 VAC (max. 9,3 mA)<br>AUS: 0 10 VAC                                                         |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 57 - 63 Hz                                                                           | EIN: 34 56 VAC (max. 11 mA)<br>AUS: 0 10 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz<br>einsetzen. |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 1,7 mA                                                                                                |

## Typische Eingangsimpedanz

#### Typische Eingangsimpedanz

| 50 Hz | 6,8 kOhm kapazitiv |
|-------|--------------------|
| 60 Hz | 5,6 kOhm kapazitiv |

#### Potentialtrennung

#### Isolierung

| Gruppe-Gruppe | 1780 VAC für 1 Minute |
|---------------|-----------------------|
| Eingang-Bus   | 1780 VAC für 1 Minute |

#### **Absoluter Maximaleingangswert**

#### Absolute maximale Eingangsspannung

| Kontinuierlich | 56 VAC  |
|----------------|---------|
| 10 s           | 63 VAC  |
| 1 Zyklus       | 100 VAC |

#### Reaktionszeit

#### Reaktion

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 16           | 1                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 41)*.

# Kapitel 24

# 140 DAI 453 00: Eingangsmodul 48 VAC 4x8

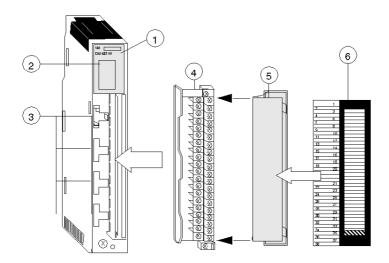
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 453 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 268   |
| Anzeigen               | 269   |
| Verdrahtungsschema     | 270   |
| Technische Daten       | 272   |
| Parameterkonfiguration | 274   |


## **Beschreibung**

#### **Funktion**

Das Modul, AC-Eingang 48 VAC 4x8, nimmt 48-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 453 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

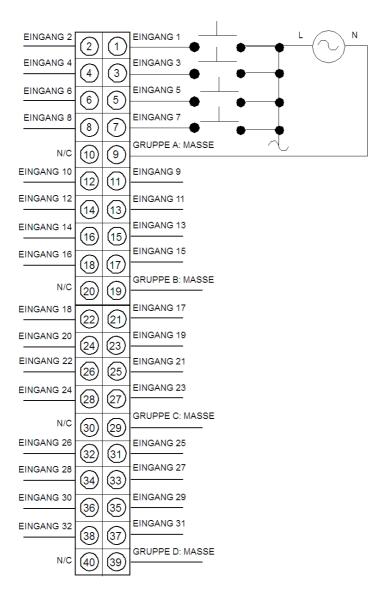
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 453 00.

| Ad | ctive | F  |    |
|----|-------|----|----|
| 1  | 9     | 17 | 25 |
| 2  | 10    | 18 | 26 |
| 3  | 11    | 19 | 27 |
| 4  | 12    | 20 | 28 |
| 5  | 13    | 21 | 29 |
| 6  | 14    | 22 | 30 |
| 7  | 15    | 23 | 31 |
| 8  | 16    | 24 | 32 |
|    |       |    |    |

## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 453 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 453 00.



**HINWEIS:** Dieses Modul ist unempfindlich gegen Verpolung.

N / C = Nicht verbunden (Not Connected).

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich         |
| Verlustleistung        | 10,9 W (max.)                               |
| Maximale Stromaufnahme | 250 mA                                      |
| E/A-Zuordnung          | 2 Eingangswörter                            |
| Fehlererkennung        | Keine                                       |

## Betriebsspannung und Stromaufnahme\*

#### Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                | EIN: 34 56 VAC (max. 9,8 mA)<br>AUS: 0 10 VAC                                             |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 60 Hz                                                                                | EIN: 29 56 VAC (max. 11,7 mA)<br>AUS: 0 10 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 1,7 mA                                                                                    |

#### Typische Eingangsimpedanz

#### Typische Eingangsimpedanz

| 50 Hz | 6,8 kOhm kapazitiv |
|-------|--------------------|
| 60 Hz | 5,6 kOhm kapazitiv |

#### Potentialtrennung

#### Potentialtrennung

| Gruppe-Gruppe | 1780 VAC für 1 Minute |
|---------------|-----------------------|
| Eingang-Bus   | 1780 VAC für 1 Minute |

#### **Absoluter Maximaleingangswert**

#### Absoluter Maximaleingangswert

| Kontinuierlich | 56 VAC  |
|----------------|---------|
| 10 s           | 63 VAC  |
| 1 Zyklus       | 100 VAC |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 32           | 2                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 43).* 

# Kapitel 25

# 140 DAI 540 00: Eingangsmodul 115 VAC 16x1

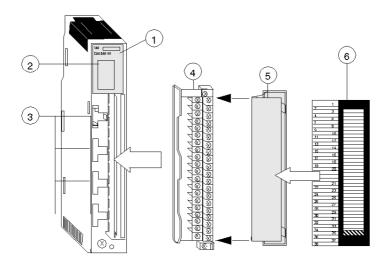
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 540 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 276   |
| Anzeigen               | 277   |
| Verdrahtungsschema     | 278   |
| Technische Daten       | 280   |
| Parameterkonfiguration | 282   |


## **Beschreibung**

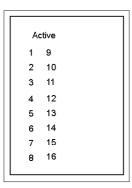
#### **Funktion**

Das Modul, AC-Eingang 115 VAC 16x1, nimmt 115-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 540 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

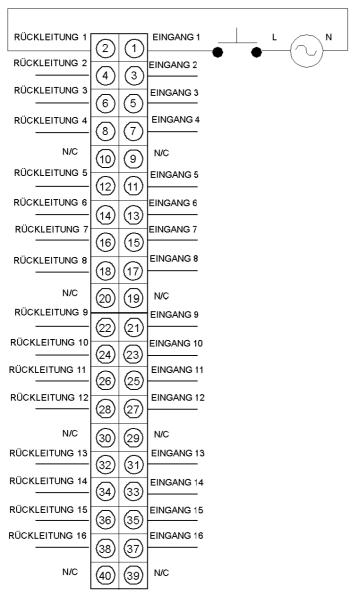
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 540 00.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 540 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 16  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 540 00.



- 1. N / C = Nicht verbunden (Not Connected).
- 2. Dieses Modul ist unempfindlich gegen Verpolung.
- Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

## **▲** WARNUNG

#### UNBEABSICHTIGTER GERÄTEBETRIEB

Stellen Sie sicher, dass alle Eingänge einer Gruppe aus der gleichen Phase der Leitungseingangsspannung stammen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 16 Eingänge (16 Gruppen x 1 Anschlusspunkt) |
|------------------------|---------------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich         |
| Verlustleistung        | 5,5 W (max.)                                |
| Maximale Stromaufnahme | 180 mA                                      |
| E/A-Zuordnung          | 1 Eingangswort                              |
| Fehlererkennung        | Keine                                       |

## Betriebsspannung und Stromaufnahme\*

#### Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                | EIN: 85 132 VAC (max. 11,1 mA)<br>AUS: 0 20 VAC                                            |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 60 Hz                                                                                | EIN: 79 132 VAC (max. 13,2 mA)<br>AUS: 0 20 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 2,1 mA                                                                                     |

#### Typische Eingangsimpedanz

#### Typische Eingangsimpedanz

| 50 Hz | 14,4 kOhm kapazitiv |
|-------|---------------------|
| 60 Hz | 12 kOhm kapazitiv   |

#### Potentialtrennung

#### Potentialtrennung

| Eingang-Eingang | 1780 VAC für 1 Minute |
|-----------------|-----------------------|
| Eingang-Bus     | 1780 VAC für 1 Minute |

#### **Absoluter Maximaleingangswert**

#### Absoluter Maximaleingangswert

| Kontinuierlich | 132 VAC |
|----------------|---------|
| 10 s           | 156 VAC |
| 1 Zyklus       | 200 VAC |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                     | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                            |                                                                                      |
| Eingangsendadresse                                                                     | 16           | 1                            |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                          |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST         | FAST<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 41)*.

# Kapitel 26

# 140 DAI 543 00: Eingangsmodul VAC 2x8

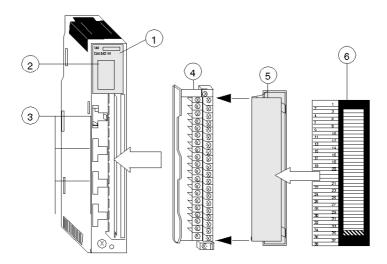
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 543 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 284   |
| Anzeigen               | 285   |
| Verdrahtungsschema     | 286   |
| Technische Daten       | 288   |
| Parameterkonfiguration | 290   |


## **Beschreibung**

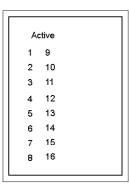
#### **Funktion**

Das Modul, AC-Eingang 115 VAC 2x8, nimmt 115-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 543 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

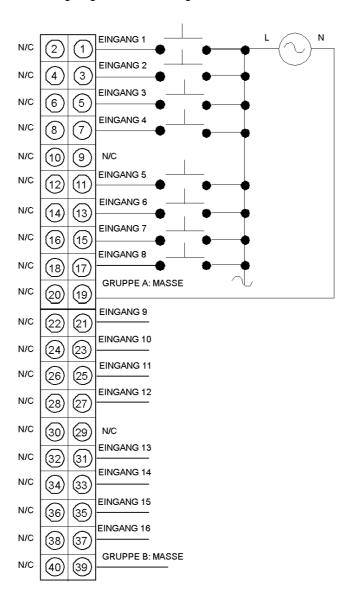
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 543 00.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 543 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 16  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 543 00.



**HINWEIS:** Alle Eingänge einer Gruppe müssen aus der gleichen Phase der Eingangsspannung stammen.

Dieses Modul ist unempfindlich gegen Verpolung.

N / C = Nicht verbunden (Not Connected).

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

## **A** WARNUNG

#### UNBEABSICHTIGTER GERÄTEBETRIEB

Stellen Sie sicher, dass alle Eingänge einer Gruppe aus der gleichen Phase der Leitungseingangsspannung stammen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp               | 16 Eingänge (2 Gruppen x 8 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich         |
| Verlustleistung        | 5,5 W (max.)                                |
| Maximale Stromaufnahme | 180 mA                                      |
| E/A-Zuordnung          | 1 Eingangswort                              |
| Fehlererkennung        | Keine                                       |

## Betriebsspannung und Stromaufnahme\*

#### Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                | EIN: 85 132 VAC (max. 11,1 mA)<br>AUS: 0 20 VAC                                            |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 60 Hz                                                                                | EIN: 79 132 VAC (max. 13,2 mA)<br>AUS: 0 20 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 2,1 mA                                                                                     |

## Typische Eingangsimpedanz

#### Typische Eingangsimpedanz

| 50 Hz | 14,4 kOhm kapazitiv |
|-------|---------------------|
| 60 Hz | 12 kOhm kapazitiv   |

#### Potentialtrennung

#### Potentialtrennung

| Gruppe-Gruppe | 1780 VAC für 1 Minute |
|---------------|-----------------------|
| Eingang-Bus   | 1780 VAC für 1 Minute |

#### **Absoluter Maximaleingangswert**

## Absoluter Maximaleingangswert

| Kontinuierlich | 132 VAC |
|----------------|---------|
| 10 s           | 156 VAC |
| 1 Zyklus       | 200 VAC |
| 1,3 ms         | 276 VAC |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                         |
|--------|-----------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen |
|        | elektrotechnischen Normen installiert         |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 16           | 1                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 41)*.

# Kapitel 27

## 140 DAI 553 00: Eingangsmodul 115 VAC 4x8

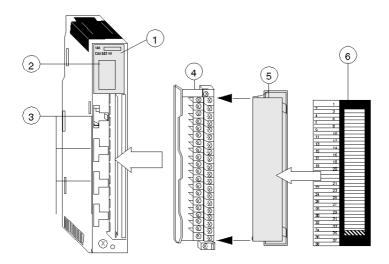
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 553 00.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 292   |
| Anzeigen               | 293   |
| Verdrahtungsschema     | 294   |
| Technische Daten       | 296   |
| Parameterkonfiguration | 298   |


## **Beschreibung**

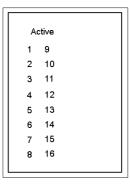
#### **Funktion**

Das Modul, AC-Eingang 115 VAC 4x8, nimmt 115-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 553 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

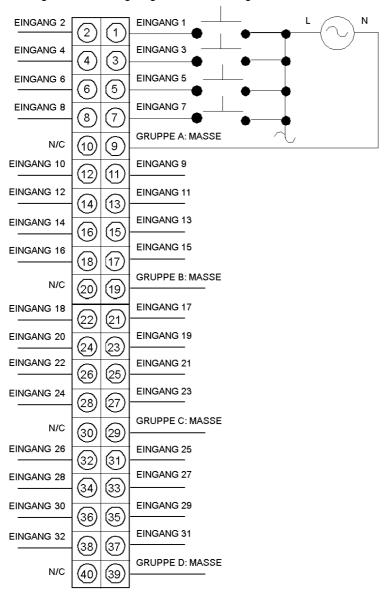
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 553 00.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 553 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 553 00.



- 1. N / C = Nicht verbunden (Not Connected).
- 2. Dieses Modul ist unempfindlich gegen Verpolung.
- Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

## **A** WARNUNG

#### UNBEABSICHTIGTER GERÄTEBETRIEB

Stellen Sie sicher, dass alle Eingänge einer Gruppe aus der gleichen Phase der Leitungseingangsspannung stammen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp               | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) |
|------------------------|---------------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich         |
| Verlustleistung        | 10,9 W (max.)                               |
| Maximale Stromaufnahme | 250 mA                                      |
| E/A-Zuordnung          | 2 Eingangswörter                            |
| Fehlererkennung        | Keine                                       |

## Betriebsspannung und Stromaufnahme\*

## Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                | EIN: 85 132 VAC (max. 11,1 mA)<br>AUS: 0 20 VAC                                            |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 60 Hz                                                                                | EIN: 79 132 VAC (max. 13,2 mA)<br>AUS: 0 20 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 2,1 mA                                                                                     |

## Typische Eingangsimpedanz

## Typische Eingangsimpedanz

| 50 Hz | 14,4 kOhm kapazitiv |  |
|-------|---------------------|--|
| 60 Hz | 12 kOhm kapazitiv   |  |

## Potentialtrennung

## Potentialtrennung

| Gruppe-Gruppe | 1780 VAC für 1 Minute |
|---------------|-----------------------|
| Eingang-Bus   | 1780 VAC für 1 Minute |

#### **Absoluter Maximaleingangswert**

## Absoluter Maximaleingangswert

| Kontinuierlich | 132 VAC |
|----------------|---------|
| 10 s           | 156 VAC |
| 1 Zyklus       | 200 VAC |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

## Sicherungen

## Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 32           | 2                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 43)*.

# Kapitel 28

## 140 DAI 740 00: Eingangsmodul 230 VAC 16x1

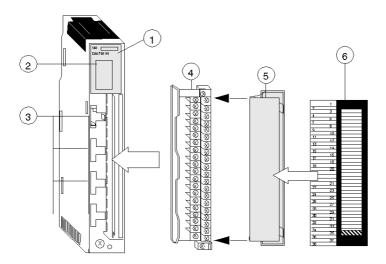
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 740 00.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 300   |
| Anzeigen               | 301   |
| Verdrahtungsschema     | 302   |
| Technische Daten       | 304   |
| Parameterkonfiguration | 306   |


## **Beschreibung**

#### **Funktion**

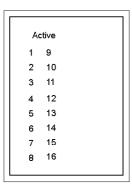
Das Modul, AC-Eingang 230 VAC 16x1, nimmt 230-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 740 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)


**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

35010518 09/2020

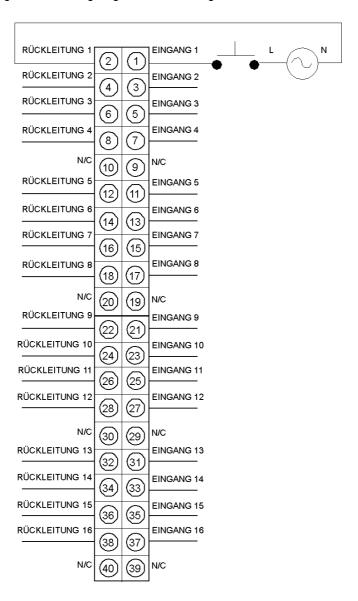
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 740 00.



## **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 740 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |
|-------|-------|-----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |
| 1 16  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 740 00.



**HINWEIS:** Dieses Modul ist unempfindlich gegen Verpolung.

N / C = Nicht verbunden (Not Connected).

HINWEIS: Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14

AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp               | 16 Eingänge (2 Gruppen x 8 Anschlusspunkte) einzeln potentialgetrennt |
|------------------------|-----------------------------------------------------------------------|
| Externe Spannung       | Für dieses Modul nicht erforderlich                                   |
| Verlustleistung        | 5,5 W (max.)                                                          |
| Maximale Stromaufnahme | 180 mA                                                                |
| E/A-Zuordnung          | 1 Eingangswort                                                        |
| Fehlererkennung        | Keine                                                                 |

## Betriebsspannung und Stromaufnahme\*

## Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                | EIN: 175 264 VAC (max. 9,7 mA)<br>AUS: 0 40 VAC                                             |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 60 Hz                                                                                | EIN: 165 264 VAC (max. 11,5 mA)<br>AUS: 0 40 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 2,6 mA                                                                                      |

## Typische Eingangsimpedanz

## Typische Eingangsimpedanz

| 50 Hz | 31,8 kOhm kapazitiv |
|-------|---------------------|
| 60 Hz | 26,5 kOhm kapazitiv |

#### Potentialtrennung

## Potentialtrennung

| Eingang-Eingang | 1780 VAC für 1 Minute |
|-----------------|-----------------------|
| Eingang-Bus     | 1780 VAC für 1 Minute |

35010518 09/2020

#### **Absoluter Maximaleingangswert**

## Absoluter Maximaleingangswert

| Kontinuierlich | 264 VAC |
|----------------|---------|
| 10 s           | 300 VAC |
| 1 Zyklus       | 400 VAC |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

## Sicherungen

## Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                      | Standardwert | Optionen                     | Beschreibung                                                      |
|---------------------------------------------------------------------------|--------------|------------------------------|-------------------------------------------------------------------|
| Zuordnung                                                                 | BIT (%I-1x)  | WORT (%IW-3X)                |                                                                   |
| Eingangsstartadresse                                                      | 1            | 1                            |                                                                   |
| Eingangsendadresse                                                        | 16           | 1                            |                                                                   |
| Eingangstyp                                                               | BINÄR        | BCD                          |                                                                   |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen |
| befindet)                                                                 |              | AUX3                         | Modus befindet.                                                   |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 41)*.

35010518 09/2020

# Kapitel 29

## 140 DAI 753 00: Eingangsmodul 230 VAC 4x8

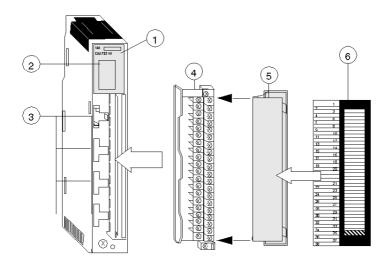
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAI 753 00.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 308   |
| Anzeigen               | 309   |
| Verdrahtungsschema     | 310   |
| Kenndaten              | 312   |
| Parameterkonfiguration | 314   |


## **Beschreibung**

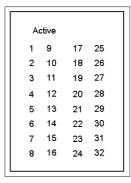
#### **Funktion**

Das Modul, AC-Eingang 230 VAC 4x8, nimmt 230-VAC-Eingänge auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAI 753 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

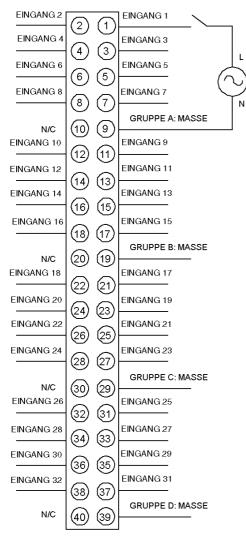
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAI 753 00.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAI 753 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                              |  |
|-------|-------|-----------------------------------------------------|--|
| Aktiv | Grün  | Buskommunikation vorhanden.                         |  |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |  |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAI 753 00.



- 1. N / C = Nicht verbunden (Not Connected).
- Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

## **A** WARNUNG

#### UNBEABSICHTIGTER GERÄTEBETRIEB

Stellen Sie sicher, dass alle Eingänge einer Gruppe aus der gleichen Phase der Leitungseingangsspannung stammen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Kenndaten

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp               | 32 Eingänge (4 Gruppen x 8 Anschlusspunkte) einzeln potentialgetrennt |  |
|------------------------|-----------------------------------------------------------------------|--|
| Externe Spannung       | Für dieses Modul nicht erforderlich                                   |  |
| Verlustleistung        | 9 W (max.)                                                            |  |
| Maximale Stromaufnahme | 250 mA                                                                |  |
| E/A-Zuordnung          | 2 Eingangswörter                                                      |  |
| Fehlererkennung        | Keine                                                                 |  |

## Betriebsspannung und Stromaufnahme\*

## Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                 | EIN: 175 264 VAC (max. 9,7 mA)<br>AUS: 0 40 VAC                                                                         |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 60 Hz                                                                                 | EIN: 165 264 VAC (max. 11,5 mA) AUS: 0 40 VAC * Eine Verwendung außerhalb des Bereichs 47 bis 63 Hz ist nicht zulässig. |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird. | 2,6 mA                                                                                                                  |

## Typische Eingangsimpedanz

## Typische Eingangsimpedanz

| 50 Hz | 32 kOhm kapazitiv |
|-------|-------------------|
| 60 Hz | 27 kOhm kapazitiv |

## Potenzialtrennung

## Potenzialtrennung

| Eingang-Eingang | 1780 VAC für 1 Minute |
|-----------------|-----------------------|
| Eingang-Bus     | 1780 VAC für 1 Minute |

35010518 09/2020

#### Absolute maximale Eingangsspannung

## Absolute maximale Eingangsspannung

| Kontinuierlich | 264 VAC |
|----------------|---------|
| 10 s           | 300 VAC |
| 1 Zyklus       | 400 VAC |

#### **Antwort**

#### Antwort

| AUS - EIN | Min: 4,9 ms. Max: 0,75 Leitungszyklus |
|-----------|---------------------------------------|
| EIN - AUS | Min: 7,3 ms. Max: 12,3 ms             |

## Sicherungen

## Sicherungen

| Intern | Keine                                                                               |  |
|--------|-------------------------------------------------------------------------------------|--|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |  |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von unter 6 % bei einer Frequenz von max. 63 Hz aufweisen.

## Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert | Optionen                             | Beschreibung                                                                         |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                   | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                     | 32           | 2                                    |                                                                                      |
| Eingangstyp                                                                            | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 43).* 

# Kapitel 30

## 140 DSI 353 00: Überwachtes Eingangsmodul 24 VDC 2x16

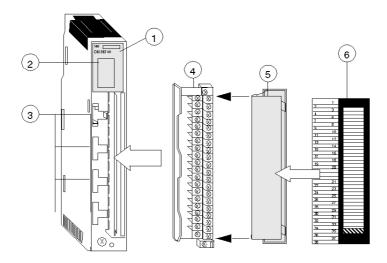
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DSI 353 00.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 316   |
| Anzeigen               | 317   |
| Verdrahtungsschema     | 318   |
| Technische Daten       | 320   |
| Adressierung           | 322   |
| Parameterkonfiguration | 324   |


#### **Beschreibung**

#### **Funktion**

Das Modul 140 DSI 353 00 wird in Verbindung mit Strom liefernden Ausgangsbaugruppen eingesetzt. Es nimmt 24-VDC-Eingänge an. Es hat 32 Eingänge (vier Gruppen zu je 8) und verfügt über Drahtbrucherkennung für jeden Eingang.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DSI 353 00 mit seinen Komponenten.



- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Klappe
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmenleiste (Modicon Nr. 140 XTS 002 00) muss separat bestellt werden. (Zur Klemmenleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

**HINWEIS:** Verwenden Sie das Modul 140 DSI 353 00 in einem DIO-Rack, das ein Modul 140 CRA 211 x0 enthält.

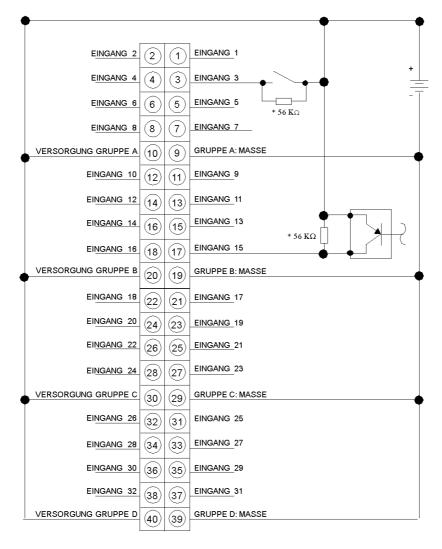
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DSI 353 00.

| Ad | ctive | F  |    |
|----|-------|----|----|
| 1  | 9     | 17 | 25 |
| 2  | 10    | 18 | 26 |
| 3  | 11    | 19 | 27 |
| 4  | 12    | 20 | 28 |
| 5  | 13    | 21 | 29 |
| 6  | 14    | 22 | 30 |
| 7  | 15    | 23 | 31 |
| 8  | 16    | 24 | 32 |
|    |       |    |    |

## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DSI 353 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### Verdrahtungsschema

Verdrahtungsschema für das Modul 140 DSI 353 00:



<sup>\*</sup> Empfohlener Widerstandswert für 24 VDC

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp              | 32 Eingänge (2 Gruppen x 16 Anschlusspunkte) |  |  |
|-----------------------|----------------------------------------------|--|--|
| Externe Spannung      | +20 +30 VDC/20 mA je Gruppe                  |  |  |
| Verlustleistung       | 7 W (alle Punkte ein)                        |  |  |
| Stromaufnahme (Modul) | 250 mA                                       |  |  |

## Betriebsspannung und -strom

## Betriebsspannung und -strom

| Strom im eingeschalteten Zustand    | 2,5 mA (min.)      |  |  |
|-------------------------------------|--------------------|--|--|
| Spannung im ausgeschalteten Zustand | +5 VDC             |  |  |
| Strom im ausgeschalteten Zustand    | min. 0,3 mA 1,2 mA |  |  |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | 2,2 ms |
|-----------|--------|
| EIN - AUS | 3,3 ms |

## Potentialtrennung

## Potentialtrennung

| Gruppe-Gruppe | 500 VAC effektiv für 1 Minute  |
|---------------|--------------------------------|
| Gruppe-Bus    | 1780 VAC effektiv für 1 Minute |

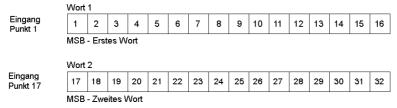
## Unterbrechungsüberwachung

## Unterbrechungsüberwachung

| Drahtbrucherkennung | AUS-Strom < 0,15 mA |
|---------------------|---------------------|
| Shunt-Widerstand    | 56 kOhm empfohlen   |

## Sicherungen

## Sicherungen


| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

## **Adressierung**

#### Flache Adressierung

Dieses Modul benötigt 64 aufeinanderfolgende Eingangsreferenzen (%I), davon 32 für Eingangsdaten und 32 für Signale für Leitungsbrüche oder 4 aufeinanderfolgende Eingangswörter (%IW), davon 2 für Eingangsdaten und 2 für Signale für Leitungsbrüche. Die Formate für das Datenwort werden im Folgenden gezeigt.

#### Eingangswörter (Daten):



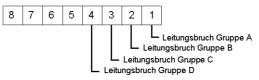
#### Eingangswörter (Lesedraht):

|                     | Wort              | 3     |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------|-------------------|-------|--------|------|----|----|----|----|----|----|----|----|----|----|----|----|
| Eingangsabfr<br>age | 1                 | 2     | 3      | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| Punkt 1             | MSB - Erstes Wort |       |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
|                     | Wort              | 4     |        |      |    |    |    |    |    |    |    |    |    |    |    |    |
| Eingangsabfr<br>age | 17                | 18    | 19     | 20   | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| Punkt 17            | MSB               | - Zwe | ites l | Mort |    |    |    |    |    |    |    |    |    |    |    |    |

#### **Topologische Adressierung**

Topologische Adressen im Bitzuordnungsformat:

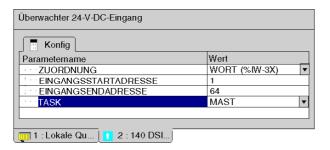
| Punkt            | E/A-Objekt        | Kommentar |  |  |  |  |  |
|------------------|-------------------|-----------|--|--|--|--|--|
| Eingang 1        | %I[\b.e\]r.m.1.1  | Wert      |  |  |  |  |  |
| Eingang 2        | %l[\b.e\]r.m.2.1  | Wert      |  |  |  |  |  |
|                  | •••               |           |  |  |  |  |  |
| Eingang 31       | %I[\b.e\]r.m.31.1 | Wert      |  |  |  |  |  |
| Eingang 32       | %I[\b.e\]r.m.32.1 | Wert      |  |  |  |  |  |
| Leitungsbruch 1  | %l[\b.e\]r.m.1.2  | Wert      |  |  |  |  |  |
| Leitungsbruch 2  | %I[\b.e\]r.m2.2   | Wert      |  |  |  |  |  |
| •••              |                   |           |  |  |  |  |  |
| Leitungsbruch 31 | %l[\b.e\]r.m.31.2 | Wert      |  |  |  |  |  |
| Leitungsbruch 32 | %I[\b.e\]r.m.32.2 | Wert      |  |  |  |  |  |


#### Topologische Adressen im Wortzuordnungsformat:

| Punkt          | E/A-Objekt        | Kommentar          |  |  |
|----------------|-------------------|--------------------|--|--|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert               |  |  |
| Eingangswort 2 | %IW[\b.e\]r.m.1.2 | Wert               |  |  |
| Eingangswort 3 | %IW[\b.e\]r.m.1.3 | Leitungsbruch-Flag |  |  |
| Eingangswort 4 | %IW[\b.e\]r.m.1.4 | Leitungsbruch-Flag |  |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

## Statusbyte für E/A-Zuordnung


Die acht Bits des Statusbytes für die E/A-Zuordnung werden wie folgt verwendet:



## Parameterkonfiguration

#### Parameter- und Standardwerte

Parameterkonfigurationsfenster



| Name                                                                                | Standardwert | Optionen      | Beschreibung                                                                        |
|-------------------------------------------------------------------------------------|--------------|---------------|-------------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%I-1x)  | WORT (%IW-3X) |                                                                                     |
| Eingangsstartadresse                                                                | 1            | 1             |                                                                                     |
| Eingangsendadresse                                                                  | 64           | 4             |                                                                                     |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | Mast         | Fast          | mit Mast<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet |

# Teil VI

# Digitalausgangsmodule

## Einleitung

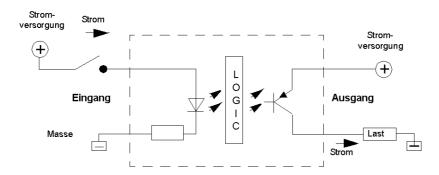
Der folgende Teil enthält Informationen über die Quantum-Digitalausgangsmodule.

#### Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

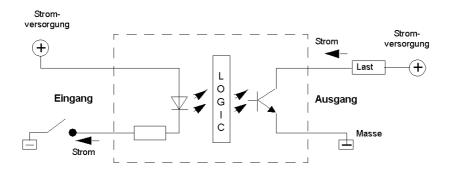
| Kapitel | Kapitelname                                                          | Seite |
|---------|----------------------------------------------------------------------|-------|
| 31      | Allgemeine Informationen                                             | 327   |
| 32      | 140 DDO 153 10: Ausgangsmodul 5 VDC 4x8 negative Logik               | 329   |
| 33      | 140 DDO 353 00: Ausgangsmodul 24 VDC 4x8 positive Logik              | 339   |
| 34      | 140 DDO 353 01: Ausgangsmodul 24 VDC 4x8 positive Logik              | 349   |
| 35      | 140 DDO 353 10: Ausgangsmodul 24 VDC 4x8 negative Logik              | 359   |
| 36      | 140 DDO 364 00: Telefast Ausgangsmodul 24 VDC 6x16                   | 369   |
| 37      | 140 DDO 843 00: Ausgangsmodul 10 60 VDC 2x8 positive Logik           | 379   |
| 38      | 140 DDO 885 00: Ausgangsmodul 24 125 VDC 2x6 positive Logik          | 389   |
| 39      | 140 DAO 840 00: Ausgangsmodul 24 230 VAC 16x1                        | 401   |
| 40      | 140 DAO 840 10: Ausgangsmodul 24 115 VAC 16x1                        | 411   |
| 41      | 140 DAO 842 10: Ausgangsmodul 100 230 VAC 4x4                        | 421   |
| 42      | 140 DAO 842 20: Ausgangsmodul 24 48 VAC 4x4                          | 433   |
| 43      | 140 DAO 853 00: Ausgangsmodul 230 VAC 4x8 negative Logik             | 445   |
| 44      | 140 DRA 840 00: Relaisausgang-16x1-Schließermodul                    | 457   |
| 45      | 140 DRC 830 00: Ausgangsmodul Relais 8x1 Schließer/Öffner            | 465   |
| 46      | 140 DVO 853 00: Ausgangsmodul mit Ausgangsüberwachung 10 30 VDC 32x1 | 475   |

35010518 09/2020


# Kapitel 31

# Allgemeine Informationen

### Digitale E/A-Logikschaltkreise


#### Abbildung: Digitaler E/A-Versorgungsstromkreis (positive Logik)

Auf der folgenden Abbildung sind Versorgungsstromkreis (positive Logik)/Strom aufnehmender Eingang und Strom liefernder Ausgang dargestellt.



#### Abbildung: Digitaler E/A-Massestromkreis (negative Logik)

Auf der folgenden Abbildung sind Massestromkreis (negative Logik)/Eingang Stromzufuhr und Ausgang Strom liefernd dargestellt.



#### stromaufnehmend

Dabei wird eine physikalische Implementierung der E/A-Hardware beschrieben, bei der im Zustand "positive/negative Logik" der Strom der externen Last aufgenommen wird.

#### Stromzufuhr

Dabei wird eine physikalische Implementierung der E/A-Hardware beschrieben, bei der im Zustand "negative/positive Logik" die Stromzufuhr zur externen Last erfolgt.

# Kapitel 32

# 140 DDO 153 10: Ausgangsmodul 5 VDC 4x8 negative Logik

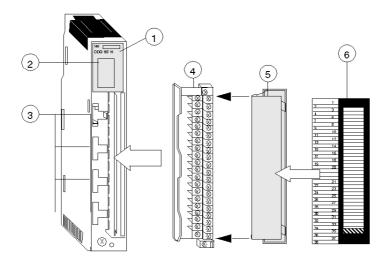
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDO 153 10.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 330   |
| Anzeigen                                | 331   |
| Verdrahtungsschema                      | 332   |
| Kenndaten                               | 334   |
| Maintenance (Wartung)                   | 336   |
| 140 DDO 153 10 - Parameterkonfiguration | 338   |


#### **Beschreibung**

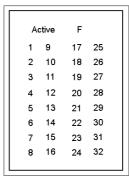
#### **Funktion**

Das stromaufnehmende DC-Ausgangsmodul 5 V 4x8 schaltet 5-VDC-Lasten. Es ist für den Einsatz mit an positives Potenzial angeschlossenem gemeinsamen Ausgangsbezugspotenzial gedacht und ist kompatibel mit TTL, -LS, -S und CMOS-Logik.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDO 153 10 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

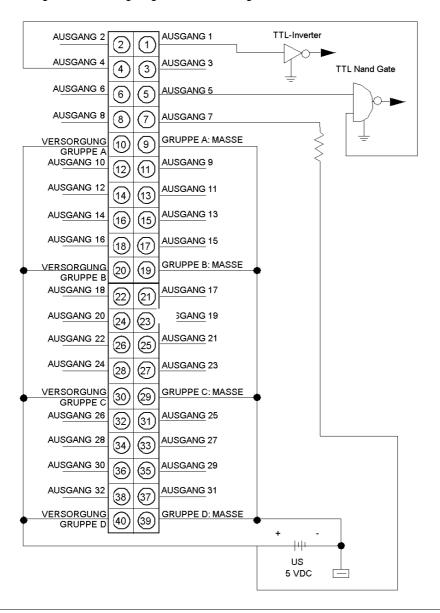
## **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDO 153 10.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDO 153 10.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

#### Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDO 153 10.



**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Kenndaten

## Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp                     | 32 Ausgänge (4 Gruppen x 8 Anschlusspunkte)                                        |  |
|------------------------------|------------------------------------------------------------------------------------|--|
| Logische Funktionen          | Negative Logik ( true low)                                                         |  |
| Externe Stromversorgung (Us) | 4.5 5,5 VDC kontinuierlich                                                         |  |
| Absolute Spannung (Us)       | 15 VDC für 1,3 ms Abklingimpuls                                                    |  |
| Verlustleistung              | 4 W                                                                                |  |
| Versorgungsstrom             | 400 mA + Laststrom pro Punkt                                                       |  |
| Stromaufnahme (Modul)        | 350 mA                                                                             |  |
| E/A-Map                      | 2 Ausgangswörter                                                                   |  |
| Fehlererkennung              | Ausgang: Erkennung durchgebrannter<br>Sicherungen, Ausfall der Feldstromversorgung |  |

## Eingangsauslegung

## Eingangsauslegung

| Spannung im eingeschalteten Zustand | 0,2 VDC (max.) bei 75 mA Stromaufnahme                                          |
|-------------------------------------|---------------------------------------------------------------------------------|
| Spannung im ausgeschalteten Zustand | Vout = Us - 1,25 V bei 1 mA Quelle<br>Vout = 3,2 V (mind.) bei 1 mA, Us = 4,5 V |
| Interner Pull-up-Widerstand         | 440 Ohm                                                                         |

#### Maximaler Laststrom/Stoßstrom

#### Maximaler Laststrom/Stoßstrom

| Jeder Punkt      | 75 mA (Stromaufnahme)                                             |
|------------------|-------------------------------------------------------------------|
| Jede Gruppe      | 600 mA                                                            |
| Pro Modul        | 2,4 A                                                             |
| Stoßstrom (max.) | Jeder Punkt: 75 mA bei Dauer 500 ms (nicht mehr als 6 pro Minute) |

#### Potentialtrennung/Schutz

#### Potentialtrennung/Schutz

| Gruppe-Gruppe  | 500 VAC effektiv für 1 Minute               |
|----------------|---------------------------------------------|
| Gruppe-Bus     | 1780 VAC effektiv für 1 Minute              |
| Ausgangsschutz | Unterdrückung der Spannungsspitzen (intern) |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | 250 μs (max) - (ohmsche Last) |
|-----------|-------------------------------|
| EIN - AUS | 250 μs (max) - (ohmsche Last) |

## Maintenance (Wartung)

#### Sicherungen

#### Sicherungen

| Intern | 1-A-Sicherung für jede Gruppe. Die Abbildung zeigt die Lage der Sicherungen. |
|--------|------------------------------------------------------------------------------|
| Extern | Keine                                                                        |

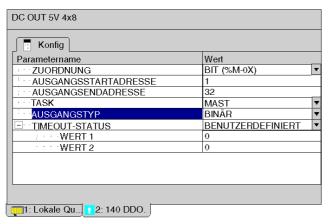
# **A** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS


Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (der Sensoren und Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


#### **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DDO 153 10.



## 140 DDO 153 10 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                      |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|-----------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                   |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                   |
| Ausgangsendadresse                                                                     | 32                | 2                                    |                                                                                   |
| Ausgangstyp                                                                            | BINÄR             | BCD                                  |                                                                                   |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet. |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | Letzten Wert halten                  |                                                                                   |
| Wert 1, Wert 2                                                                         | 0                 | 0-65535                              | Nur wenn Timeout-<br>Status =<br>Benutzerdefiniert                                |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 50)*.

# Kapitel 33

# 140 DDO 353 00: Ausgangsmodul 24 VDC 4x8 positive Logik

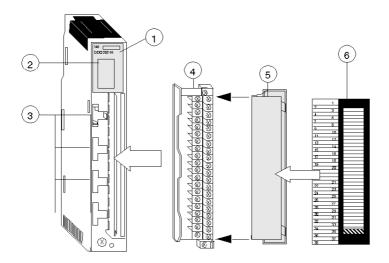
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDO 353 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 340   |
| Anzeigen                                | 341   |
| Verdrahtungsschema                      | 342   |
| Technische Daten                        | 344   |
| Maintenance (Wartung)                   | 346   |
| 140 DDO 353 00 - Parameterkonfiguration |       |


#### Überblick

#### **Funktion**

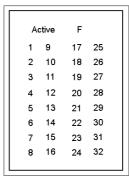
Das 24-VDC-Ausgangsmodul 4x8, positive Logik, schaltet 24-VDC-Lasten und ist für den Einsatz mit an 0 V angeschlossenem gemeinsamen Ausgangsbezugspotenzial bestimmt.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDO 353 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)


**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

35010518 09/2020

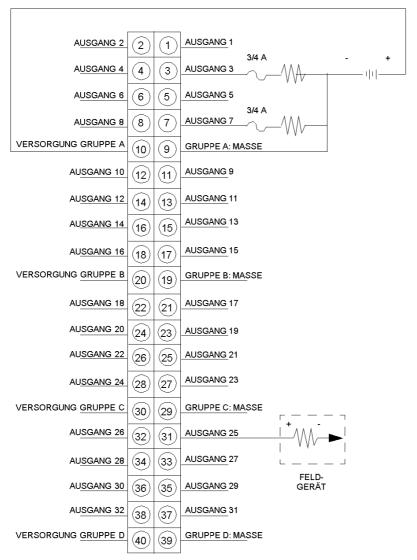
## **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDO 353 00.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDO 353 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDO 353 00.



# **▲** VORSICHT

#### ÜBERSTROM AN DEN AUSGÄNGEN

Schützen Sie jeden Punkt mit einer ¾-A, 250-V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine technische Daten

#### Allgemeine technische Daten

| Modultyp              | 32 Ausgänge (4 Gruppen x 8 Anschlusspunkte)                                        |
|-----------------------|------------------------------------------------------------------------------------|
| Logische Funktionen   | Positive Logik (true high)                                                         |
| Externe Spannung      | 19,2 - 30 V DC                                                                     |
| Verlustleistung       | 1,75 W + 0,4 V x gesamte Modul-Laststrom                                           |
| Stromaufnahme (Modul) | 330 mA                                                                             |
| E/A-Map               | 2 Ausgangswörter                                                                   |
| Fehlererkennung       | Ausgang: Erkennung durchgebrannter<br>Sicherungen, Ausfall der Feldstromversorgung |

#### **Spannung**

#### Spannung

| Betriebsspannung (max.)  | 19,2 - 30 V DC                 |
|--------------------------|--------------------------------|
| Absolute Spannung (max.) | 56 V DC für 1 ms Abklingimpuls |
| Abfall EIN-Zustand/Punkt | 0,4 V DC bei 0,5 A             |

#### Maximaler Laststrom/Stoßstrom

#### Maximaler Laststrom/Stoßstrom

| Jeder Punkt                    | 0,5 A                                                            |
|--------------------------------|------------------------------------------------------------------|
| Jede Gruppe                    | 4 A                                                              |
| Pro Modul                      | 16 A                                                             |
| Stoßstrom (max.)               | Jeder Punkt: 5 mA bei Dauer 500 ms (nicht mehr als 6 pro Minute) |
| Leckstrom im AUS-Zustand/Punkt | 0,4 mA bei 30 V DC                                               |

#### Potentialtrennung/Schutz

#### Potentialtrennung/Schutz

| Gruppe-Gruppe  | 500 V AC effektiv für 1 Minute              |
|----------------|---------------------------------------------|
| Gruppe-Bus     | 1780 V AC effektiv für 1 Minute             |
| Ausgangsschutz | Unterdrückung der Spannungsspitzen (intern) |

35010518 09/2020

#### Reaktionszeit (ohmsche Lasten)

## Reaktionszeit (ohmsche Lasten)

| AUS - EIN | 1 ms (max.) |
|-----------|-------------|
| EIN - AUS | 1 ms (max.) |

## Induktivität der Last/Kapazität (max.)

Induktivität der Last/Kapazität (max.)

| Induktivität der Last (max.) | 0,5 Henry bei 4 Hz Schaltfrequenz oder:                                                                      |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                              | L = $\frac{0,5}{I^2 F}$ wobel: L = Induktivität der Last (Henry)  I = Laststrom (A)  F = Schaltfrequenz (Hz) |  |
| Kapazität der Last (max.)    | 50 μF                                                                                                        |  |

#### Maintenance (Wartung)

#### Sicherungen

#### Sicherungen

| Intern | 5-A-Sicherung für jede Gruppe. (Teilenummer 043502405 oder gleichwertig). Die Abbildung zeigt die Lage der Sicherungen.                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extern | Die interne Sicherung schützt eine Gruppe, aber nicht jeden Ausgangsschalter vor allen möglichen Überlastbedingungen. Der Benutzer muss jeden Punkt mit einer ¾-A, 250-V-Sicherung schützen. |

# **▲** VORSICHT

#### ÜBERSTROM AN DEN AUSGÄNGEN

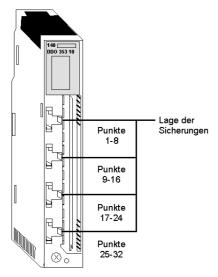
Schützen Sie jeden Punkt mit einer ¾-A, 250-V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

# **▲** GEFAHR

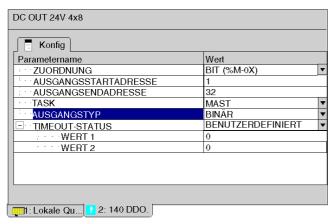
# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen


- die Stromversorgung des Moduls (Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

35010518 09/2020


#### **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DDO 353 00.



# 140 DDO 353 00 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                | Standardwert      | Optionen                             | Beschreibung                                                                      |
|-------------------------------------------------------------------------------------|-------------------|--------------------------------------|-----------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                   |
| Ausgangsstartadresse                                                                | 1                 | 1                                    |                                                                                   |
| Ausgangsendadresse                                                                  | 32                | 2                                    |                                                                                   |
| Ausgangstyp                                                                         | BINÄR             | BCD                                  |                                                                                   |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet. |
| Timeout-Status                                                                      | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                   |
| Wert 1, Wert 2                                                                      | 0                 | 0-65535                              | Nur wenn Timeout-<br>Status =<br>Benutzerdefiniert                                |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 50).* 

35010518 09/2020

# Kapitel 34

# 140 DDO 353 01: Ausgangsmodul 24 VDC 4x8 positive Logik

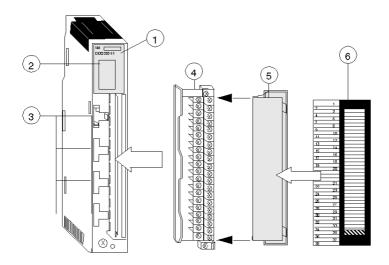
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDO 353 01.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 350   |
| Anzeigen                                | 351   |
| Verdrahtungsschema                      | 352   |
| Kenndaten                               | 354   |
| Maintenance (Wartung)                   | 356   |
| 140 DDO 353 01 - Parameterkonfiguration | 358   |


#### Überblick

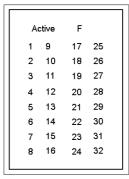
#### **Funktion**

Das Quellmodul 140 DDO 353 01, positive Logik, schaltet 24-V-DC-Lasten und ist gegen Kurzschluss und Überlast geschützt.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDO 353 01 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

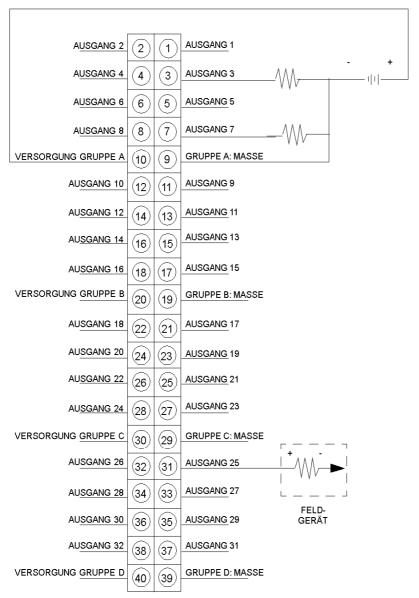
## **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDO 353 01.



## Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDO 353 01.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

# Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDO 353 01.



# **▲** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren) und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Kenndaten

## Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp              | 32 Ausgänge (4 Gruppen x 8 Anschlusspunkte) |
|-----------------------|---------------------------------------------|
| Externe Spannung      | 19.2 30 VDC                                 |
| Verlustleistung       | 5 W (alle Punkte ein)                       |
| Stromaufnahme (Modul) | 250 mA (max.)                               |
| E/A-Map               | 2 Ausgangswörter                            |
| Fehlererkennung       | Gruppenanzeige: Verlust der Feldspannung.   |

#### **Spannung**

#### Spannung

| Betriebsspannung (max.)  | 19.2 30 VDC       |
|--------------------------|-------------------|
| Abfall EIN-Zustand/Punkt | 0,5 VDC bei 0,5 A |

#### Maximaler Laststrom/Stoßstrom

#### Maximaler Laststrom/Stoßstrom

| Jeder Punkt                    | 0,5 A                             |
|--------------------------------|-----------------------------------|
| Jede Gruppe                    | 4 A                               |
| Pro Modul                      | 16 A                              |
| Stoßstrom (max.)               | 2 A jeder Punkt (intern begrenzt) |
| Leckstrom im AUS-Zustand/Punkt | <0,1 mA bei 24 VDC                |

#### Potentialtrennung/Schutz

#### Potentialtrennung/Schutz

| Gruppe-Gruppe           | 500 VAC effektiv für 1 Minute       |  |
|-------------------------|-------------------------------------|--|
| Ausgang-Bus             | 500 VAC effektiv für 1 Minute       |  |
| Ausgangsschutz (intern) | Thermische Überlast und Kurzschluss |  |

35010518 09/2020

#### Reaktionszeit (ohmsche Lasten)

## Reaktionszeit (ohmsche Lasten)

| AUS - EIN | <0,1 ms |
|-----------|---------|
| EIN - AUS | <0,1 ms |

## Induktivität der Last/Kapazität (max.)

Induktivität der Last/Kapazität (max.)

| Induktivität der Last (max.) | 0,5 Henry bei 4 Hz Schaltfrequenz oder:                                                                       |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
|                              | L = $\frac{0.5}{I^2  F}$ wobei: L = Induktivität der Last (Henry)  I = Laststrom (A)  F = Schaltfrequenz (Hz) |  |  |  |
| Kapazität der Last (max.)    | 50 μF                                                                                                         |  |  |  |

## Maintenance (Wartung)

#### Sicherungen

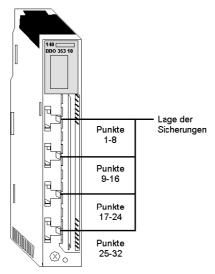
#### Sicherungen

| Intern | 5-A-Sicherung für jede Gruppe. (Teilenummer 043502405 oder gleichwertig). Die Abbildung zeigt die Lage der Sicherungen. |
|--------|-------------------------------------------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert                                     |

# **▲** GEFAHR

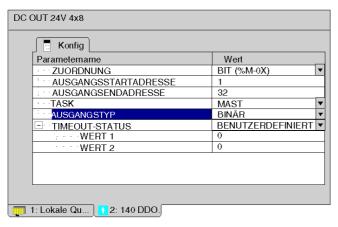
# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen


- die Stromversorgung des Moduls (Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

35010518 09/2020


#### **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DDO 353 00.



# 140 DDO 353 01 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                      |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|-----------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                   |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                   |
| Ausgangsendadresse                                                                     | 32                | 2                                    |                                                                                   |
| Ausgangstyp                                                                            | BINÄR             | BCD                                  |                                                                                   |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet. |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                   |
| Wert 1, Wert 2                                                                         | 0                 | 0-65535                              | Nur wenn Timeout-<br>Status =<br>BENUTZERDEFINIERT                                |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 50)*.

# Kapitel 35

# 140 DDO 353 10: Ausgangsmodul 24 VDC 4x8 negative Logik

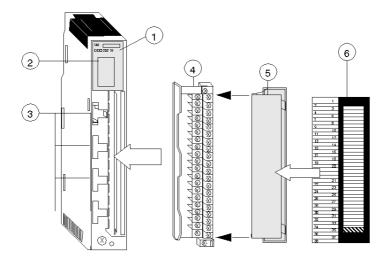
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDO 353 10.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   |     |
|-----------------------------------------|-----|
| Überblick                               | 360 |
| Anzeigen                                | 361 |
| Verdrahtungsschema                      | 362 |
| Technische Daten                        | 364 |
| Maintenance (Wartung)                   | 366 |
| 140 DDO 353 10 - Parameterkonfiguration | 368 |


#### Überblick

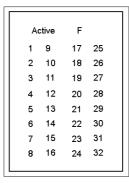
#### **Funktion**

Das stromaufnehmende 24-VDC-Ausgangsmodul 4x8 schaltet 24-VDC-Lasten und kann für den Betrieb von Anzeigen, Logik und andere Lasten mit einem an positives Potenzial angeschlossenem gemeinsamen Ausgangsbezugspotenzial bis zu 500 mA, im EIN-Zustand, eingesetzt werden.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDO 353 10 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

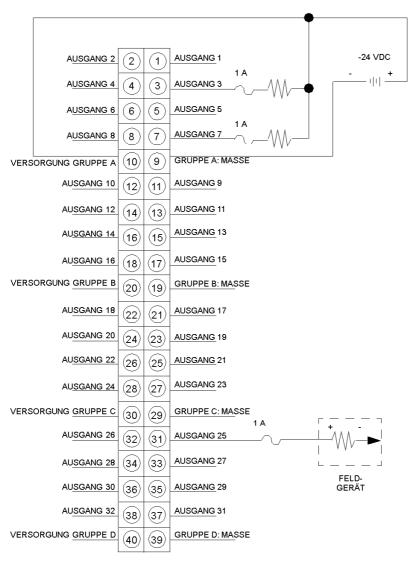
# **Anzeigen**

# **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDO 353 10.



# Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDO 353 10.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

# Verdrahtungsschema

### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDO 353 10.



# **▲** VORSICHT

#### ÜBERSTROM AN DEN AUSGÄNGEN

Schützen Sie jeden Punkt mit einer ¾-A, 250-V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### **Technische Daten**

# Allgemeine technische Daten

# Allgemeine technische Daten

| Modultyp              | 32 Ausgänge (4 Gruppen x 8 Anschlusspunkte)                            |
|-----------------------|------------------------------------------------------------------------|
| Logische Funktionen   | Negative Logik (true low)                                              |
| Externe Spannung      | 19,2 - 30 V DC                                                         |
| Verlustleistung       | 2,0 W + (0,4 V x gesamte Laststrom)                                    |
| Stromaufnahme (Modul) | 330 mA (max.)                                                          |
| E/A-Map               | 2 Ausgangswörter                                                       |
| Fehlererkennung       | Erkennung durchgebrannter Sicherungen, Ausfall der Feldstromversorgung |

# **Spannung**

# Spannung

| Betriebsspannung (max.)  | 19,2 - 30 V DC        |
|--------------------------|-----------------------|
| 1,0 ms                   | 50 V DC Abklingimpuls |
| Abfall EIN-Zustand/Punkt | 0,4 V DC bei 0,5 A    |

### Maximaler Laststrom/Stoßstrom

### Maximaler Laststrom/Stoßstrom

| Jeder Punkt                    | 0,5 A                                            |
|--------------------------------|--------------------------------------------------|
| Jede Gruppe                    | 4 A                                              |
| Pro Modul                      | 16 A                                             |
| Stoßstrom (max.)               | 5 A bei Dauer 1 ms (nicht mehr als 6 pro Minute) |
| Leckstrom im AUS-Zustand/Punkt | 0,4 mA bei 30 V DC                               |

# Potentialtrennung/Schutz

# Potentialtrennung/Schutz

| Gruppe-Gruppe           | 500 V AC effektiv für 1 Minute           |
|-------------------------|------------------------------------------|
| Ausgang-Bus             | 1780 V AC effektiv für 1 Minute          |
| Ausgangsschutz (intern) | Unterdrückung von Spannungsspitzen: 36 V |

35010518 09/2020

# Reaktionszeit (ohmsche Lasten)

# Reaktionszeit (ohmsche Lasten)

| AUS - EIN | 1 ms (max.) |
|-----------|-------------|
| EIN - AUS | 1 ms (max.) |

# Induktivität der Last/Kapazität (max.)

# Induktivität der Last/Kapazität (max.)

| Induktivität der Last (max.) | 0,5 Henry bei 4 Hz Schaltfrequenz oder:                                                                              |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|                              | L = $\frac{0,5}{1^2  \text{F}}$ wobei: L = Induktivität der Last (Henry)  I = Laststrom (A)  F = Schaltfrequenz (Hz) |  |
| Kapazität der Last (max.)    | 50 μF                                                                                                                |  |
| Wolfram-Last (max.)          | 12 W bei 24 V                                                                                                        |  |

# Maintenance (Wartung)

### Sicherungen

### Sicherungen

| Intern | 5-A-Sicherung für jede Gruppe. Die Abbildung zeigt die Lage der Sicherungen.                                                                                                                 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extern | Die interne Sicherung schützt eine Gruppe, aber nicht jeden Ausgangsschalter vor allen möglichen Überlastbedingungen. Der Benutzer muss jeden Punkt mit einer ¾-A, 250-V-Sicherung schützen. |

# **A** VORSICHT

### BESCHÄDIGUNG DER MODULAUSGÄNGE

Schützen Sie jeden Punkt mit einer ¾-A, 250-V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

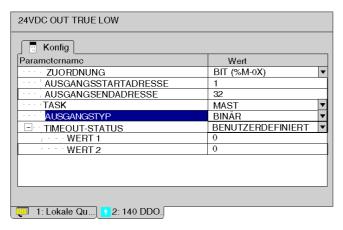
# **▲** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


# Abbildung: Lage der Sicherungen

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DDO 353 10.



# 140 DDO 353 10 - Parameterkonfiguration

### Fenster der Parameterkonfiguration



### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                      |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|-----------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                   |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                   |
| Ausgangsendadresse                                                                     | 32                | 2                                    |                                                                                   |
| Ausgangstyp                                                                            | BINÄR             | BCD                                  |                                                                                   |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit Mast verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet. |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                   |
| Wert 1, Wert 2                                                                         | 0                 | 0-65535                              | Nur aktiviert, wenn<br>Timeout-Status =<br>Benutzerdefiniert                      |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 50).* 

# Kapitel 36

# 140 DDO 364 00: Telefast Ausgangsmodul 24 VDC 6x16

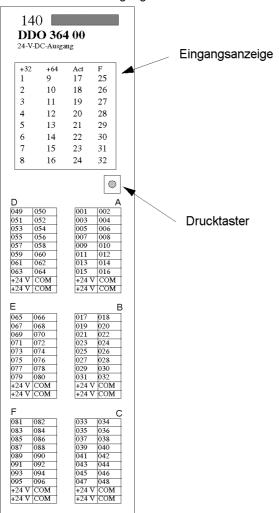
# Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDO 364 00.

# Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 370   |
| Anzeigen                                | 372   |
| 140 DDO 364 00 Farbcodes der Kabel      | 373   |
| Technische Daten                        |       |
| 140 DDO 364 00 - Parameterkonfiguration | 376   |


# Überblick

### **Funktion**

Das Modul 140 DDO 364 00 schaltet 24-V-DC-Lasten. Die Ausgänge sind thermisch geschützt.

### **Abbildung**

Vorderansicht des Ausgangsmoduls 140 DDO 364 00



### **Empfohlene Kabel**

Die folgende Tabelle zeigt empfohlene Kabel samt Beschreibung und Längen in Meter.

| Kabel-Teilenummern | Beschreibung                 | Länge (M) |
|--------------------|------------------------------|-----------|
| TSXCDP301          | (1) HE 10 - lose Zuleitungen | 3         |
| TSXCDP501          | (1) HE 10 - lose Zuleitungen | 5         |
| TSXCDP053          | (2) HE 10 - Rundkabel        | 0,5       |
| TSXCDP103          | (2) HE 10 - Rundkabel        | 1         |
| TSXCDP203          | (2) HE 10 - Rundkabel        | 2         |
| TSXCDP303          | (2) HE 10 - Rundkabel        | 3         |
| TSXCDP503          | (2) HE 10 - Rundkabel        | 5         |

# Kompatible Ausgangsadapter-Unterbasen

Die folgende Tabelle zeigt die kompatiblen Ausgangsadapter-Unterbasen.

| Kanäle                                              | Тур                                |  |
|-----------------------------------------------------|------------------------------------|--|
| 8                                                   | ABE-7S08S2xx <sup>1</sup>          |  |
| 8                                                   | ABE-7R08Sxxx/7P08T330 <sup>1</sup> |  |
| 16                                                  | ABE-7R16Sxxx                       |  |
| 16                                                  | ABE-7R16Txxx/7P16Txxx              |  |
| <sup>1</sup> Mit der Splitter-Unterbasis ABE-7ACC02 |                                    |  |

# **Anzeigen**

# **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDO 364 00.

| 133 | +64   | A a t | F  |
|-----|-------|-------|----|
| +32 | . +04 | ACI   |    |
| 1   | 9     | 17    | 25 |
| 2   | 10    | 18    | 26 |
| 3   | 11    | 19    | 27 |
| 4   | 12    | 20    | 28 |
| 5   | 13    | 21    | 29 |
| 6   | 14    | 22    | 30 |
| 7   | 15    | 23    | 31 |
| 8   | 16    | 24    | 32 |
|     |       |       |    |

# Beschreibung

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDO 364 00.

| LEDs | Farbe | Anzeige in Zustand EIN                            |  |
|------|-------|---------------------------------------------------|--|
| Act  | Grün  | Buskommunikation vorhanden.                       |  |
| F    | Rot   | Gruppenspannung fehlt, Kurzschluss oder Überlast. |  |
| +32  | Grün  | Punkte 33 bis 64 auf LED-Anzeige dargestellt      |  |
| +64  | Grün  | Punkte 65 bis 96 auf LED-Anzeige dargestellt      |  |

### **Drucktaster**

Verwenden Sie den Drucktaster, um die Ausgänge wie in der folgenden Tabelle einzustellen:

| LED             | +32 | +64 |  |
|-----------------|-----|-----|--|
| Ausg. 1 bis 32  | Aus | Aus |  |
| Ausg. 33 bis 64 | Ein | Aus |  |
| Ausg. 65 bis 96 | Aus | Ein |  |

# 140 DDO 364 00 Farbcodes der Kabel

# Kabel-Farbcodes für alle Gruppen

| 1. Weiß       | 2. Braun       |
|---------------|----------------|
| 3. Grün       | 4. Gelb        |
| 5. Grau       | 6. Rosa        |
| 7. Blau       | 8. Rot         |
| 9. Schwarz    | 10. Violett    |
| 11. Grau/Rosa | 12 Rot/Blau    |
| 13. Weiß/Grün | 14. Braun/Grün |
| 15. Weiß/Gelb | 16. Gelb/Braun |
| 17. Weiß/Grau | 18. Grau/Braun |
| 19. Weiß/Rosa | 20. Rosa/Braun |

### **Technische Daten**

# Allgemeine Kenndaten

# Allgemeine Kenndaten

| Modultyp              | 96 Ausgänge (6 Gruppen x 16 Anschlusspunkte)                                |  |
|-----------------------|-----------------------------------------------------------------------------|--|
| Externe Spannung      | 19.2 30 VDC 19,2 A max. (lastbestimmt)                                      |  |
| Verlustleistung       | 7,0 W                                                                       |  |
| Stromaufnahme (Modul) | 250 mA (max.)                                                               |  |
| E/A-Zuordnung         | 6 Ausgangswörter                                                            |  |
| Fehlererkennung       | Gruppenanzeige des Verlusts der Feldspannung,<br>Kurzschluss oder Überlast. |  |

# **Spannung**

# Spannung

| Betriebsspannung (max.)   | 19.2 30 VDC       |
|---------------------------|-------------------|
| Station EIN-Zustand/Punkt | 0,5 VDC bei 0,5 A |

### Maximaler Laststrom/Stoßstrom

### Maximaler Laststrom/Stoßstrom

| Jeder Punkt                                   | 0,5 A                             |
|-----------------------------------------------|-----------------------------------|
| Jede Gruppe                                   | 3,2 A                             |
| Pro Modul                                     | 19,2 A                            |
| Stoßstrom (max.)                              | 2 A jeder Punkt (intern begrenzt) |
| Leckstrom im ausgeschalteten Zustand je Punkt | < 1 mA bei 24 VDC                 |

# Potenzialtrennung/Schutz

# Potenzialtrennung/Schutz

| Ausgang-zu-Bus          | 500 VAC effektiv für 1 Minute       |  |
|-------------------------|-------------------------------------|--|
| Ausgangsschutz (intern) | Thermische Überlast und Kurzschluss |  |

# Antwort (ohmsche Lasten)

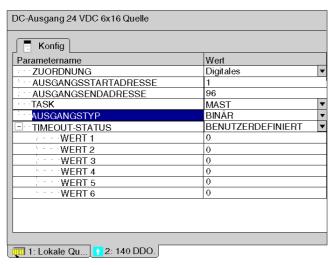
# Antwort (ohmsche Lasten)

| AUS - EIN | < 1 ms |
|-----------|--------|
| EIN - AUS | < 1 ms |

# Induktiver Blindwiderstand/Kapazität (max.)

Induktiver Blindwiderstand/Kapazität (max.)

| Induktiver Blindwiderstand (max.) | 0,5 Henry bei 4 Hz Schaltfrequenz oder:                                                                              |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|                                   | L = 0.5   Erlauterung: L = induktiver Blindwiderstand der Last (Henry)   I = Laststrom (A)   F = Schaltfrequenz (Hz) |  |
| Kapazität der Last (max.)         | 50 μF                                                                                                                |  |


# Sicherungen

# Sicherungen

| Intern | -                                                                                   |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

# 140 DDO 364 00 - Parameterkonfiguration

# Fenster der Parameterkonfiguration



### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | Digital           | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadress e                                                                  | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                     | 96                | 6                                    |                                                                                |
| Ausgangstyp                                                                            | BINÄR             | _                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden,<br>wenn sich das Modul nicht<br>im lokalen Modus befindet. |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert 1, Wert 2 usw.                                                                    | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

# E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 51).* 

# Kapitel 37

# 140 DDO 843 00: Ausgangsmodul 10 ... 60 VDC 2x8 positive Logik

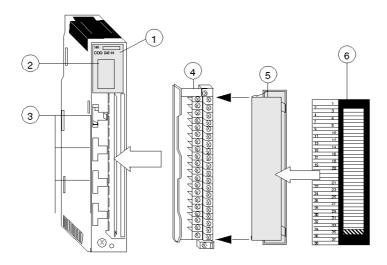
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDO 843 00.

### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 380   |
| Anzeigen                                | 381   |
| Verdrahtungsschema                      | 382   |
| Technische Daten                        | 384   |
| Wartung                                 | 386   |
| 140 DDO 843 00 - Parameterkonfiguration | 388   |


# Überblick

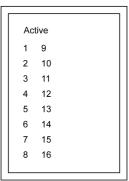
#### **Funktion**

Das DC-Ausgangsmodul 10 - 60 VDC 2x8, positive Logik, schaltet 10 - 60-VDC-Lasten und ist für den Einsatz mit an 0 V angeschlossenem gemeinsamen Ausgangsbezugspotenzial bestimmt. Externe Spannungsversorgungen können unter den Gruppen gemischt werden.

### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDO 843 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

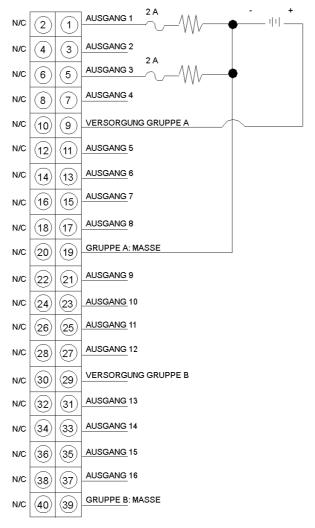
# **Anzeigen**

# **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDO 843 00.



# **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDO 843 00.

| Spannung | Elektronikmodul-<br>Versorgung minus<br>Spannungsabfall für<br>Kurzschlussschutz | Anzeige in Zustand EIN                              |
|----------|----------------------------------------------------------------------------------|-----------------------------------------------------|
| Aktiv    | Grün                                                                             | Buskommunikation vorhanden                          |
| 1 16     | Grün                                                                             | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

# Verdrahtungsschema

### **Beschreibung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDO 843 00.



HINWEIS: N/C = Nicht angeschlossen

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

Wenn die Spannungsversorgungen der Gruppe A und B (GROUP A SUPPLY und GROUP B SUPPLY) gespeist werden und die gemeinsamen Leitungen der Gruppe A und B (GROUP A COMMON und GROUP B COMMON) nicht angeschlossen sind, können die digitalen Ausgangskanäle der entsprechenden Gruppe den Status 1 aufweisen, ungeachtet des über das Benutzerprogramm vorgegebenen Status.

# **A** WARNUNG

### UNBEABSICHTIGTER GERÄTEBETRIEB

- Stellen Sie sicher, dass GROUP A COMMON und GROUP B COMMON immer ordnungsgemäß angeschlossen sind.
- Vergewissern Sie sich, dass die Klemmen für GROUP A COMMON und GROUP B COMMON mit einem Anzugsmoment von 7,0 N.m. festgezogen sind.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Jede Ausgangsgruppe ist mit einer internen, austauschbaren 8-A-Sicherung ausgestattet (250 V, 5x20 mm, Zeitverzögerung/Träge).

Die einzelnen Ausgänge müssen separat mit einer Sicherung versehen werden.

# **▲** VORSICHT

### UNZUTREFFENDE ODER FEHLENDE SICHERUNG

Statten Sie jeden Ausgang mit einer separaten, externen 2-A-Sicherung aus.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

### **Technische Daten**

# Allgemeine Kenndaten

# Allgemeine Kenndaten

| Modultyp              | 16 Ausgänge (2 Gruppen x 8 Anschlusspunkte) |
|-----------------------|---------------------------------------------|
| Logik                 | Positive Logik (true high)                  |
| Externe Spannung      | 10 60 VDC                                   |
| Verlustleistung       | 1,0 W +1 V x gesamter Modul-Laststrom       |
| Stromaufnahme (Modul) | Max. 160 mA                                 |
| E/A-Zuordnung         | 1 Ausgangswort                              |

# **Spannung**

# Spannung

| Betriebsspannung (max.)   | 10.2 72 VDC             |
|---------------------------|-------------------------|
| Absolute max. Spannung    | 72 VDC (kontinuierlich) |
| Station EIN-Zustand/Punkt | 1 VDC bei 2 A           |

### Maximaler Laststrom/Stoßstrom

### Maximaler Laststrom/Stoßstrom

| Jeder Punkt                    | 2 A                                                               |
|--------------------------------|-------------------------------------------------------------------|
| Jede Gruppe                    | 6 A                                                               |
| Pro Modul                      | 12 A                                                              |
| Stoßstrom (max.)               | 7,5 A bei Dauer 50 ms (nicht mehr als 20 pro<br>Minute) pro Punkt |
| Leckstrom im AUS-Zustand/Punkt | 1 mA bei 60 VDC                                                   |

# Potentialtrennung/Schutz

# Potentialtrennung/Schutz

| Gruppe-Gruppe           | 700 VDC für 1 Minute      |
|-------------------------|---------------------------|
| Gruppe-Bus              | 2500 VDC für 1 Minute     |
| Ausgangsschutz (intern) | Überspannung (Löschdiode) |

# Reaktionszeit (ohmsche Lasten)

# Reaktionszeit (ohmsche Lasten)

| OFF - ON | 1 ms |
|----------|------|
| OFF - ON | 1 ms |

### Wartung

### Sicherungen

### Sicherungen

| Intern  | Träge 8-A-Sicherung für jede Gruppe.                                                                                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Externe | Die interne Sicherung schützt eine Gruppe, jedoch nicht jeden<br>Ausgangsschalter gegen eventuelle Überlastbedingungen. Der Anwender<br>muss jeden Kanal mit einer Sicherung (250 V, 2 A, flink) absichern |

# **A** VORSICHT

### BESCHÄDIGUNG DER MODULAUSGÄNGE

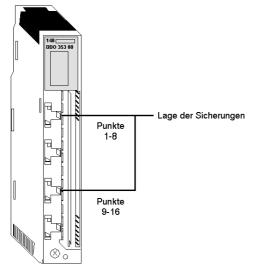
Sichern Sie jeden Kanal mit einer Sicherung (250 V, 2 A, flink) ab

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

# **A** GEFAHR

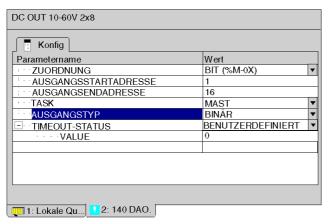
# GEFAHR EINES ELEKTRISCHEN SCHLAGES, EINER EXPLOSION ODER EINES LICHTBOGENS

Vor allen Arbeiten an Sicherungen:


- Trennen Sie das Modul (den Aktuator) von der Spannungsversorgung und
- nehmen Sie den Klemmenblock ab.
- Prüfen Sie mit einem geeigneten Spannungsprüfer alle Leitungen und Lastsicherungen auf Spannungsfreiheit.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

35010518 09/2020


# **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen beim Modul 140 DDO 843 00.



# 140 DDO 843 00 - Parameterkonfiguration

### Fenster der Parameterkonfiguration



### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                     | 16                | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im lokalen<br>Modus befindet. |
| Ausgangstyp                                                                            | BINÄR             | BCD                                  |                                                                                |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                   | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 49).

# Kapitel 38

# 140 DDO 885 00: Ausgangsmodul 24 ... 125 VDC 2x6 positive Logik

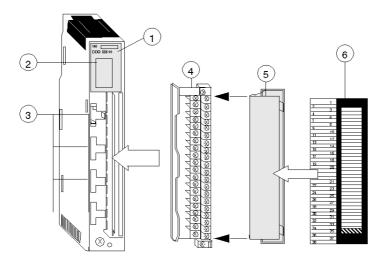
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDO 885 00.

### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 390   |
| Anzeigen                                | 391   |
| Verdrahtungsschema                      | 392   |
| Kenndaten                               | 394   |
| Maintenance (Wartung)                   | 397   |
| 140 DDO 885 00 - Parameterkonfiguration | 399   |


# Überblick

### **Funktion**

Das DC-Ausgangsmodul 24 - 125 VDC 2x6, positive Logik, schaltet 24- ... 125-VDC-Lasten und ist für den Einsatz mit an 0 V angeschlossenem gemeinsamen Eingangsbezugspotenzial bestimmt.

### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DDO 885 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

35010518 09/2020

# **Anzeigen**

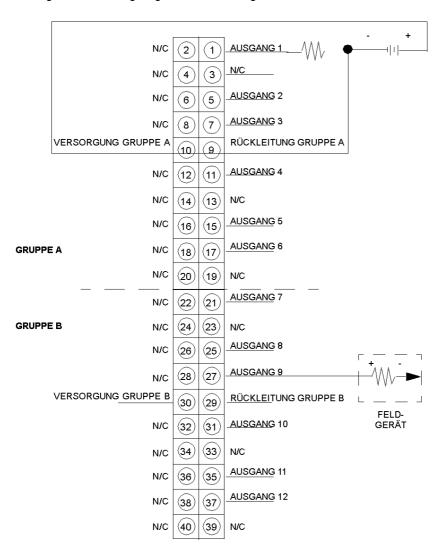
### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDO 885 00 mit Statusanzeige.

|        | Active | F |    |
|--------|--------|---|----|
| 1      | 9      | 1 | 9  |
| 2      | 10     | 2 | 10 |
| 2<br>3 | 11     | 3 | 11 |
| 4      | 12     | 4 | 12 |
| 5      |        | 5 |    |
| 6      |        | 6 |    |
| 7      |        | 7 |    |
| 8      |        | 8 |    |
|        |        |   |    |

# **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDO 885 00.


| LEDs   | Farbe | Anzeige in Zustand EIN                                              |  |
|--------|-------|---------------------------------------------------------------------|--|
| Active | Grün  | Buskommunikation vorhanden.                                         |  |
| F      | Rot   | Eine Stromüberlastbedingung wurde an jedem Punkt erkannt.           |  |
| 1 12   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET.                 |  |
| 1 12   | Rot   | Der angezeigte Ausgangspunkt weist eine Stromüberlastbedingung auf. |  |

**HINWEIS:** Um eine Fehleranzeige zu löschen, muss der Punkt mittels Benutzerlogik in den AUS-Zustand gebracht werden.

# Verdrahtungsschema

### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDO 885 00.



# **A** VORSICHT

### BESCHÄDIGUNG DER MODULAUSGÄNGE

Dieses Modul ist nicht gegen Verpolung geschützt. Befolgen Sie diese Sicherheitsvorkehrungen, um einen Materialschaden zu vermeiden:

- Kehren Sie nicht die Polarität der Feldstromversorgung um.
- Wenn Sie das Modul gegen Verpolung durch falsche Verdrahtung schützen möchten, schalten Sie eine externe Diode mit jeder Gruppen-Stromversorgung in Serie. Diese Diode muss für den Laststrom der Gruppe ausgelegt sein.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

**HINWEIS:** N / C = Nicht verbunden (Not Connected).

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# Kenndaten

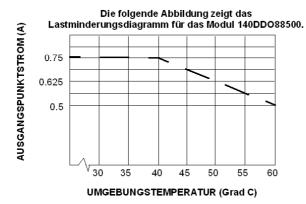
# Allgemeine Kenndaten

# Allgemeine Kenndaten

| Modultyp                    | 12 Ausgänge (2 Gruppen x 6 Anschlusspunkte)   |
|-----------------------------|-----------------------------------------------|
| Externe Spannungsversorgung | Keine                                         |
| Verlustleistung             | 1,0 W + 0,77 W x Punkte EIN                   |
| Stromaufnahme               | 6 Punkte EIN: 375 mA<br>12 Punkte EIN: 650 mA |
| E/A-Zuordnung               | 1 Eingangswort<br>1 Ausgangswort              |
| Fehlererkennung             | Überstrom (siehe Hinweis unten)               |

# Spannung

# Spannung


| Betriebsspannung (max.)   | 19.2 156.2 VDC inklusive Welligkeit |
|---------------------------|-------------------------------------|
| Station EIN-Zustand/Punkt | 0,75 VDC bei 0,5 A                  |

35010518 09/2020

### Maximaler Laststrom/Stoßstrom

### Maximaler Laststrom/Stoßstrom

| Jeder Punkt                                   | 0,75 A < 40 °C (siehe Arbeitskennlinie)                 |
|-----------------------------------------------|---------------------------------------------------------|
| Jede Gruppe                                   | 3 A, 0 60 °C                                            |
| Pro Modul                                     | 6 A, 0 60 °C                                            |
| Stoßstrom (max.)                              | 4 A bei Dauer von 1 ms (nicht mehr als 6 pro<br>Minute) |
| Spitzenlaststrom                              | 4 A für T ≤ 1 ms                                        |
| Leckstrom im ausgeschalteten Zustand je Punkt | 0,5 mA bei 150 VDC                                      |



HINWEIS: Jede Gruppe: 3 A, 0 ... 60 °C. Pro Modul: 6 A, 0 ... 60 °C

### Maximale Wolfram-Last

#### Maximale Wolfram-Last

| bei 130 VDC | 46 W pro Punkt |
|-------------|----------------|
| bei 115 VDC | 41 W pro Punkt |
| bei 24 VDC  | 8 W pro Punkt  |

# Induktivität und Schaltfrequenz

### Induktivität und Schaltfrequenz

| Induktivität   | Geschützt über interne Diode, kein Grenzwert der Induktivität |
|----------------|---------------------------------------------------------------|
| Schaltfrequenz | 50 Hz (max.)                                                  |

### Potentialtrennung/Schutz

### Potentialtrennung/Schutz

| Feld-Bus                | 2500 VAC effektiv für 1 Minute                             |
|-------------------------|------------------------------------------------------------|
| Gruppe-Gruppe           | 1200 VAC effektiv für 1 Minute                             |
| Ausgangsschutz (intern) | Gruppenvaristor und Erkennung von Überstrom an jedem Punkt |

### Reaktionszeit (ohmsche Lasten)

Reaktionszeit (ohmsche Lasten)

| AUS - EIN | 1 ms |
|-----------|------|
| EIN - AUS | 1 ms |

HINWEIS: Jeder Ausgangspunkt ist durch eine Schaltung zur Erkennung von Überströmen geschützt. Wenn ein Überstromzustand festgestellt wird, wird der Punkt ausgeschaltet, die LED-Fehleranzeige leuchtet, und im Fehlerregister des Moduls wird das entsprechende Bit gesetzt. Beim Feststellen eines Kurzschlusses wird der Ausgangspunkt ausgeschaltet. Bei einem Fehler über 9,4 A wird der Ausgangspunkt auf jeden Fall ausgeschaltet und im AUS-Zustand verriegelt. Um einen Fehler zu beseitigen, muss der Punkt mittels Anwenderprogramm in den AUS-Zustand gebracht werden.

35010518 09/2020

## Maintenance (Wartung)

#### Sicherungen

#### Sicherungen

| Intern | 4 A für 3 Ausgänge, 250 V (die nachstehende Abbildung zeigt die Position der Sicherungen). |
|--------|--------------------------------------------------------------------------------------------|
| Extern | Erforderlich für den Schutz jedes Ausgangs.                                                |

# **▲** VORSICHT

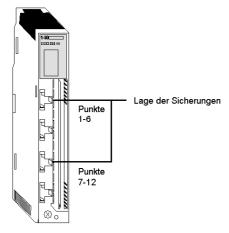
#### BESCHÄDIGUNG DER MODULAUSGÄNGE

Schützen Sie jeden Ausgang mit einer 1-A-Sicherung, 250 V.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

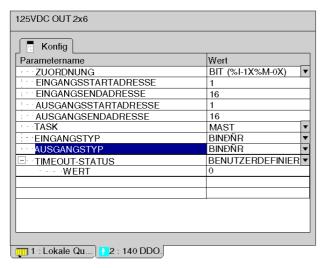
# **▲** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS


Vor dem Zugriff auf die Sicherungen:

- Unterbrechen Sie die Spannungsversorgung des Moduls (Voraktoren).
- Trennen Sie die Klemmenleiste.
- Verwenden Sie stets ein geeignetes Spannungsmessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


## **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DDO 885 00.



## 140 DDO 885 00 - Parameterkonfiguration

## Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                | Standardwert      | Optionen                             | Beschreibung                                                                      |
|-------------------------------------------------------------------------------------|-------------------|--------------------------------------|-----------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%I-1X%M-0X)  | WORT (%IW-<br>3X%MW-4X)              |                                                                                   |
| Eingangsstartadresse                                                                | 1                 | 1                                    |                                                                                   |
| Eingangsendadresse                                                                  | 16                | 1                                    |                                                                                   |
| Ausgangsstartadresse                                                                | 1                 | 1                                    |                                                                                   |
| Ausgangsendadresse                                                                  | 16                | 1                                    |                                                                                   |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen Modus<br>befindet. |
| Eingangstyp                                                                         | BINÄR             | BCD                                  |                                                                                   |
| Ausgangstyp                                                                         | BINÄR             | BCD                                  |                                                                                   |
| Timeout-Status                                                                      | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                   |
| Wert                                                                                | 0                 | 0-65535                              | Nur wenn Timeout-<br>Status =<br>BENUTZERDEFINIERT                                |

## E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 47).* 

# Kapitel 39

# 140 DAO 840 00: Ausgangsmodul 24 ... 230 VAC 16x1

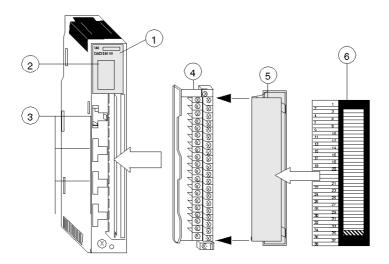
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAO 840 00.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 402   |
| Anzeigen                                | 403   |
| Verdrahtungsschema                      | 404   |
| Technische Daten                        | 407   |
| 140 DAO 840 00 - Parameterkonfiguration | 410   |


## **Beschreibung**

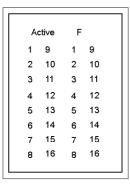
#### **Funktion**

Das Modul, AC-Ausgang 24 ... 230 VAC 16x1, schaltet 24 ... 230 VAC gespeiste Lasten.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAO 840 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

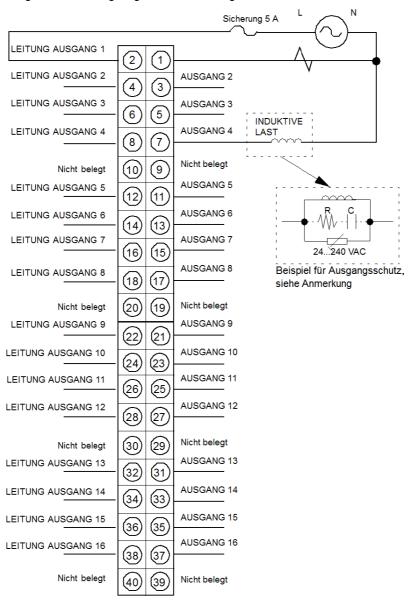
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAO 840 00.



## **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAO 840 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                                |
|--------|-------|-------------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                           |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.      |
| 1 16   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET.   |
| 1 16   | Rot   | Am angezeigten Punkt oder Kanal liegt ein Fehler vor. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAO 840 00.



- 1. Dieses Modul ist unempfindlich gegen Verpolung.
- 2. N / C = Nicht verbunden (Not Connected).
- 3. Spannungen bis 133 V können verschiedene Phasen an benachbarten Ausgangspunkten sein.
- Spannungen über 133 V von verschiedenen Phasen müssen zwischen sich eine Ausgangspunkttrennung haben. Beispiel: Ausgang 1 und 2 - Phase A, Sprung Ausgang 3, Ausgang 4 - Phase B.
- Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# **A** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren) und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

# **▲** VORSICHT

#### **MATERIAL SCHADEN**

Sichern Sie jeden Ausgangspunkt mit einer externen Sicherung ab. Schneider Electric empfiehlt eine 5-A-Sicherung mit einem I2T-Rating von weniger als 87.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

# **A** VORSICHT

#### BESCHÄDIGUNG DER MODULAUSGÄNGE

- Stellen Sie sicher, dass der Wechselstrom, mit dem jede Gruppe versorgt wird, aus einer gemeinsamen Einphasenwechselstromquelle stammt.
- Schützen Sie den Modulausgang, wenn ein externer Schalter zur Steuerung einer induktiven Last parallel zum Modulausgang verwendet wird. Verwenden Sie einen externen Varistor (Harris V390ZA05 oder gleichwertig) parallel zum Schalter.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### **HINWEIS:**

Der Ausgangsschutz besteht aus einem RC-Filter (Überspannungsfilter) und einem Varistor:

- Der Überspannungsfilter ist optional. Die R- und C-Werte werden nicht angegeben, da diese vom verwendeten Gerät abhängig sind.
- Wählen Sie einen Varistor mit geeigneten elektronischen Eigenschaften in Übereinstimmung mit der für das verwendete Gerät erforderlichen Spannung.

## **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp              | 16 Ausgänge potenzialgetrennt            |
|-----------------------|------------------------------------------|
| Externe Spannung      | Für dieses Modul nicht erforderlich      |
| Verlustleistung       | 1,85 W +1,1 V x gesamter Modul-Laststrom |
| Stromaufnahme (Modul) | 350 mA                                   |
| E/A-Zuordnung         | 1 Ausgangswort                           |

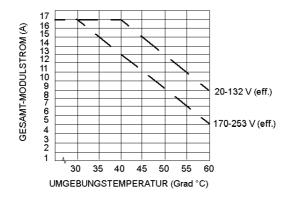
## **Absoluter Maximaleingangswert**

## Absolute maximale Eingangsspannung

| 10 s     | 300 VAC |
|----------|---------|
| 1 Zyklus | 400 VAC |

## **Spannung**

## Spannung


| Betriebsspannung (max.)   | 20 253 VAC |
|---------------------------|------------|
| Station EIN-Zustand/Punkt | 1,5 VAC    |

#### **Maximaler Laststrom**

#### Maximaler Laststrom

| Jeder Punkt                               | 24 bis 115 VAC, 4 Ampere pro Ausgang<br>200 bis 230 VAC, 3 Ampere pro Ausgang |
|-------------------------------------------|-------------------------------------------------------------------------------|
| Beliebige vier zusammenhängende<br>Punkte | Max. 4,0 A kontinuierlich für die Summe der vier Punkte                       |
| Pro Modul                                 | 16 A kontinuierlich (siehe Diagramm unten)                                    |





<sup>\*</sup> Das UL/CSA-Zulassungsverfahren für die angegebenen Kenndaten ist im Gange. Diese Baugruppe wurde ursprünglich für 2 A / Punkt, 12 A / Baugruppe (0 - 50° C (115 V AC) und 0 - 50° C (230 V AC) genehmigt.

#### Frequenz und Mindest-Laststrom

Frequenz und Mindest-Laststrom

| Frequenz          | 47 63 Hz |
|-------------------|----------|
| Mindest-Laststrom | 5 mA     |

#### Leckstrom im AUS-Zustand/Punkt (max.)

Leckstrom im AUS-Zustand/Punkt (max.)

|   | 2,5 mA bei 230 VAC<br>2 mA bei 115 VAC |
|---|----------------------------------------|
| , | 1 mA bei 48 VAC                        |
|   | 1 mA bei 24 VAC                        |

#### Stoßstrom (max. effektiv)

Stoßstrom (max. effektiv)

| Eine Netzperiode  | 30 A pro Punkt |
|-------------------|----------------|
| Zwei Netzperioden | 20 A pro Punkt |
| Drei Netzperioden | 10 A pro Punkt |
| Angelegt DV/DT    | 400 V / μs     |

#### Potenzialtrennung/Schutz

## Potenzialtrennung/Schutz

| Ausgang-Ausgang         | 1500 VAC effektiv für 1 Minute |
|-------------------------|--------------------------------|
| Ausgang-zu-Bus          | 1780 VAC effektiv für 1 Minute |
| Ausgangsschutz (intern) | RC-Überspannungsunterdrückung  |

#### Reaktionszeit

#### Reaktion

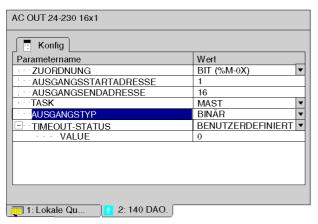
| AUS - EIN | Max. 0,5 einer Netzperiode |
|-----------|----------------------------|
| EIN - AUS | Max. 0,5 einer Netzperiode |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------|
| Extern | Schützen Sie jeden Ausgangs mit einer externen 5 A-Sicherung mit einem I2T-Rating von weniger als 87. |

# **A** VORSICHT


#### ÜBERSTROM AN DEN AUSGÄNGEN

Schützen Sie jeden Punkt mit einer 5 A, 250 V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

## 140 DAO 840 00 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                | Standardwert      | Optionen                             | Beschreibung                                                             |
|-------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                          |
| Ausgangsstartadresse                                                                | 1                 | 1                                    |                                                                          |
| Ausgangsendadresse                                                                  | 16                | 1                                    |                                                                          |
| Ausgangstyp                                                                         | BINÄR             | BCD                                  |                                                                          |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn sich das Modul nicht im lokalen Modus befindet. |
| Timeout-Status                                                                      | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                          |
| Wert                                                                                | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                              |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 49).* 

# Kapitel 40

# 140 DAO 840 10: Ausgangsmodul 24 ... 115 VAC 16x1

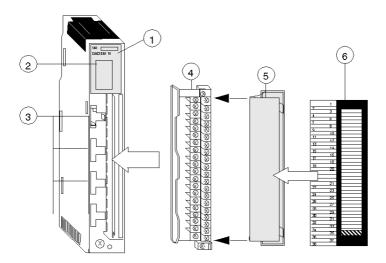
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAO 840 10.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 412   |
| Anzeigen                                | 413   |
| Verdrahtungsschema                      | 414   |
| Technische Daten                        | 417   |
| 140 DAO 840 10 - Parameterkonfiguration | 420   |


## **Beschreibung**

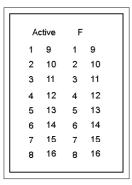
#### **Funktion**

Das Modul, AC-Ausgang 24 ... 115 VAC 16x1, schaltet 24 ... 115 VAC gespeiste Lasten.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAO 840 10 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

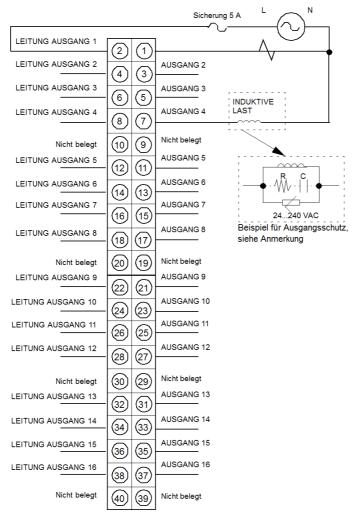
## **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAO 840 10.



## **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAO 840 10.

| LEDs   | Farbe | Anzeige in Zustand EIN                                |
|--------|-------|-------------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                           |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.      |
| 1 16   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET.   |
| 1 16   | Rot   | Am angezeigten Punkt oder Kanal liegt ein Fehler vor. |

## Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAO 840 10.



- 1. Dieses Modul ist unempfindlich gegen Verpolung.
- 2. N / C = Nicht verbunden (Not Connected).
- Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# **A** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren) und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

# **▲** VORSICHT

#### BESCHÄDIGUNG DER MODULAUSGÄNGE

Schützen Sie jeden Ausgang mit einer externen 5 A-Sicherung mit einem I2T-Rating von weniger als 87.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

# **A** VORSICHT

#### BESCHÄDIGUNG DER MODULAUSGÄNGE

- Stellen Sie sicher, dass der Wechselstrom, mit dem jede Gruppe versorgt wird, aus einer gemeinsamen Einphasenwechselstromquelle stammt.
- Schützen Sie den Modulausgang, wenn ein externer Schalter zur Steuerung einer induktiven Last parallel zum Modulausgang verwendet wird. Verwenden Sie einen externen Varistor (Harris V390ZA05 oder gleichwertig) parallel zum Schalter.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### **HINWEIS:**

Der Ausgangsschutz besteht aus einem RC-Filter (Überspannungsfilter) und einem Varistor:

- Der Überspannungsfilter ist optional. Die R- und C-Werte werden nicht angegeben, da diese vom verwendeten Gerät abhängig sind.
- Wählen Sie einen Varistor mit geeigneten elektronischen Eigenschaften in Übereinstimmung mit der für das verwendete Gerät erforderlichen Spannung.

## **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp              | 16 Ausgänge potentialgetrennt            |
|-----------------------|------------------------------------------|
| Externe Spannung      | Für dieses Modul nicht erforderlich      |
| Verlustleistung       | 1,85 W +1,1 V x gesamter Modul-Laststrom |
| Stromaufnahme (Modul) | 350 mA                                   |
| E/A-Zuordnung         | 1 Ausgangswort                           |

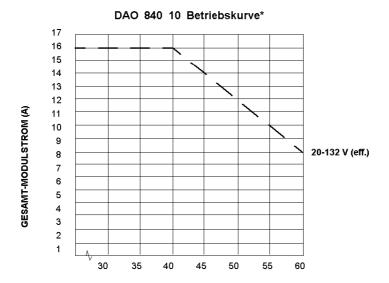
## **Absoluter Maximaleingangswert**

## Absoluter Maximaleingangswert

| 10 s     | 156 VAC |
|----------|---------|
| 1 Zyklus | 200 VAC |

## **Spannung**

## Spannung


| Betriebsspannung (max.)   | 20 132 VAC |
|---------------------------|------------|
| Station EIN-Zustand/Punkt | 1,5 VAC    |

#### **Maximaler Laststrom**

#### Maximaler Laststrom

| Jeder Punkt                               | 4,0 A kontinuierlich 20 132 VAC (effektiv)              |
|-------------------------------------------|---------------------------------------------------------|
| Beliebige vier zusammenhängende<br>Punkte | Max. 4,0 A kontinuierlich für die Summe der vier Punkte |
| Pro Modul                                 | 16 A kontinuierlich (siehe Diagramm unten)              |

Auf der folgenden Abbildung ist die Betriebskurve des Moduls 140 DAO 840 10 dargestellt.



#### Frequenz und Mindest-Laststrom

| Frequenz          | 47 63 Hz |
|-------------------|----------|
| Mindest-Laststrom | 5 mA     |

## Leckstrom im AUS-Zustand/Punkt (max.)

Leckstrom im AUS-Zustand/Punkt (max.)

| Leckstrom im AUS-Zustand/Punkt | 2,5 mA bei 230 VAC |
|--------------------------------|--------------------|
| (max.)                         | 2 mA bei 115 VAC   |
|                                | 1 mA bei 48 VAC    |
|                                | 1 mA bei 24 VAC    |

#### Stoßstrom (max. effektiv)

Stoßstrom (max. effektiv)

| Eine Netzperiode  | 30 A pro Punkt |
|-------------------|----------------|
| Zwei Netzperioden | 20 A pro Punkt |
| Drei Netzperioden | 10 A pro Punkt |
| Angelegt dV/dT    | 400 V / μs     |

#### Potenzialtrennung/Schutz

## Potenzialtrennung/Schutz

| Ausgang-Ausgang         | 1500 VAC effektiv für 1 Minute |
|-------------------------|--------------------------------|
| Ausgang-zu-Bus          | 1780 VAC effektiv für 1 Minute |
| Ausgangsschutz (intern) | RC-Überspannungsunterdrückung  |

#### Reaktionszeit

#### Reaktionszeit

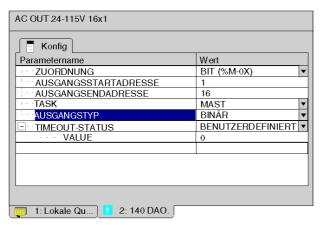
| AUS - EIN | Max. 0,5 einer Netzperiode |
|-----------|----------------------------|
| EIN - AUS | Max. 0,5 einer Netzperiode |

#### Sicherungen

## Sicherungen

| Intern | Keine                                                                                                |
|--------|------------------------------------------------------------------------------------------------------|
|        | Schützen Sie jeden Ausgang mit einer externen 5 A-Sicherung mit einem I2T-Rating von weniger als 87. |

# **A** VORSICHT


#### ÜBERSTROM AN DEN AUSGÄNGEN

Schützen Sie jeden Punkt mit einer 5 A, 250 V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

## 140 DAO 840 10 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                | Standardwert      | Optionen                             | Beschreibung                                                                   |
|-------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadresse                                                                | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                  | 16                | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Ausgangstyp                                                                         | BINÄR             | BCD                                  |                                                                                |
| Timeout-Status                                                                      | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 49).* 

# Kapitel 41

# 140 DAO 842 10: Ausgangsmodul 100 ... 230 VAC 4x4

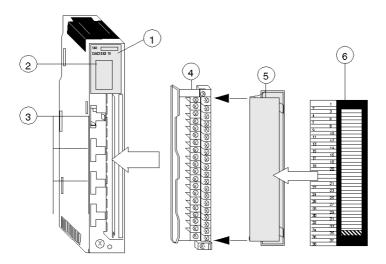
## Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAO 842 10.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 422   |
| Anzeigen                                | 423   |
| Verdrahtungsschema                      | 424   |
| Technische Daten                        | 426   |
| Maintenance (Wartung)                   | 429   |
| 140 DAO 842 10 - Parameterkonfiguration | 431   |


## **Beschreibung**

#### **Funktion**

Das Modul, AC-Ausgang 100 ... 230 VAC 4x4, schaltet 100 ... 230 VAC gespeiste Lasten.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAO 842 10 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

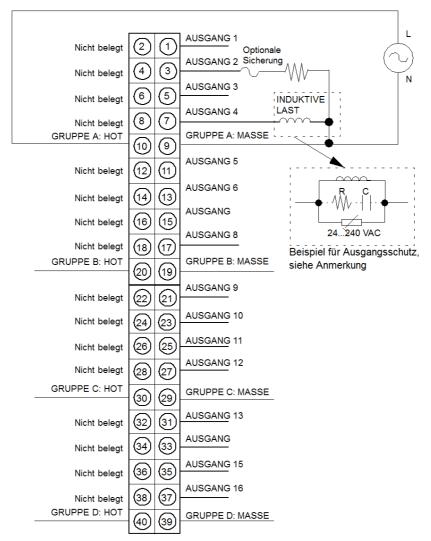
# **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAO 842 10.



## **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAO 842 10.

| LEDs                        | Farbe | Anzeige in Zustand EIN                                                                                    |
|-----------------------------|-------|-----------------------------------------------------------------------------------------------------------|
| Aktiv                       | Grün  | Buskommunikation vorhanden.                                                                               |
| F                           | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.                                                          |
| 1 16                        | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET.                                                       |
| 1 4<br>5 8<br>9 12<br>13 16 | Rot   | Bei der angezeigten Gruppe ist eine Sicherung durchgebrannt oder sie wird nicht mit Feldenergie versorgt. |

## Verdrahtungsschema

#### **Abbildung**

In der folgenden Abbildung ist das Verdrahtungsschema des Moduls 140 DAO 842 10 dargestellt.



- 1. N/C = Nicht angeschlossen
- 2. Dieses Modul ist unempfindlich gegen Verpolung.
- Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# **A** VORSICHT

#### SCHADEN AM MODULAUSGANG

- Stellen Sie sicher, dass der Wechselstrom, mit dem jede Gruppe versorgt wird, aus einer gemeinsamen Einphasenwechselstromquelle stammt.
- Schützen Sie den Modulausgang, wenn ein externer Schalter zur Steuerung einer induktiven Last parallel zum Modulausgang verwendet wird. Verwenden Sie einen externen Varistor (Harris V390ZA05 oder gleichwertig) parallel zum Schalter.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### HINWEIS:

Der Ausgangsschutz besteht aus einem RC-Filter (Überspannungsfilter) und einem Varistor:

- Der Überspannungsfilter ist optional. Die R- und C-Werte werden nicht angegeben, da diese vom verwendeten Gerät abhängig sind.
- Wählen Sie einen Varistor mit geeigneten elektronischen Eigenschaften in Übereinstimmung mit der für das verwendete Gerät erforderlichen Spannung.

#### **Technische Daten**

## Allgemeine technische Daten

## Allgemeine technische Daten

| Modultyp              | 16 Ausgänge (4 Gruppen x 4 Anschlusspunkte)                            |
|-----------------------|------------------------------------------------------------------------|
| Externe Spannung      | 85 - 253 V AC                                                          |
| Verlustleistung       | 1,85 W +1,1 V x gesamter Modul-Laststrom                               |
| Stromaufnahme (Modul) | 350 mA                                                                 |
| E/A-Map               | 1 Ausgangswörter                                                       |
| Fehlererkennung       | Erkennung durchgebrannter Sicherungen, Ausfall der Feldstromversorgung |

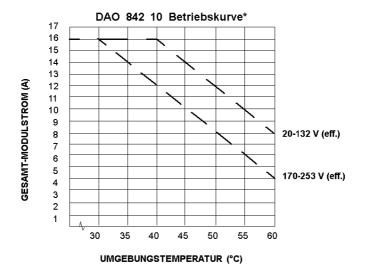
## Absolute maximale Eingangsspannung

## Absolute maximale Eingangsspannung

| 10 s     | 300 V AC |
|----------|----------|
| 1 Zyklus | 400 V AC |

## **Spannung**

## Spannung


| Betriebsspannung (max.)  | 85 - 253 V AC |
|--------------------------|---------------|
| Abfall EIN-Zustand/Punkt | 1,5 V AC      |

#### **Maximaler Laststrom**

#### Maximaler Laststrom

| Jeder Punkt | 4,0 A kontinuierlich 85 - 132 V AC (effektiv)<br>3,0 A kontinuierlich 170 - 253 V AC (effektiv) |
|-------------|-------------------------------------------------------------------------------------------------|
| Jede Gruppe | 4,0 A kontinuierlich                                                                            |
| Pro Modul   | 16 A kontinuierlich (siehe Diagramm unten)                                                      |





\* Das UL/CSA-Zulassungsverfahren für die angegebenen Kenndaten ist im Gange. Diese Baugruppe wurde ursprünglich für 2 A / Punkt, 12 A / Baugruppe 0 - 50° C (115 V AC) und 0 - 50° C (230 V AC) genehmigt.

## Frequenz und Mindest-Laststrom

| Frequenz          | 47 - 63 Hz |
|-------------------|------------|
| Mindest-Laststrom | 5 mA       |

#### Leckstrom im AUS-Zustand/Punkt (max.)

Leckstrom im AUS-Zustand/Punkt (max.)

| Leckstrom im AUS-Zustand/Punkt | 2,5 mA bei 230 V AC |
|--------------------------------|---------------------|
| (max.)                         | 2 mA bei 115 V AC   |

## Stoßstrom (max. effektiv)

## Stoßstrom (max. effektiv)

| Eine Netzperiode  | 30 A je Punkt, 45 A je Gruppe |  |
|-------------------|-------------------------------|--|
| Zwei Netzperioden | 20 A je Punkt, 30 A je Gruppe |  |
| Drei Netzperioden | 10 A je Punkt, 25 A je Gruppe |  |
| Angelegt dV/dT    | 400 V/μs                      |  |

## Potentialtrennung/Schutz

## Potentialtrennung/Schutz

| Gruppe-Gruppe           | 1000 V AC effektiv, Dauer 1 Minute, galvanisch potentialgetrennt |  |
|-------------------------|------------------------------------------------------------------|--|
| Ausgang-Bus             | 1780 V AC effektiv für 1 Minute                                  |  |
| Ausgangsschutz (intern) | RC-Überspannungsunterdrückung                                    |  |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Max. 0,5 einer Netzperiode |
|-----------|----------------------------|
| EIN - AUS | Max. 0,5 einer Netzperiode |

## Maintenance (Wartung)

#### Sicherungen

#### Sicherungen

| Intern | Keine                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------|
| Extern | Sichern Sie jeden Ausgangspunkt mit einer externen Sicherung ab.                                      |
|        | Schneider Electric empfiehlt eine 5-A-Sicherung mit einem   <sup>2</sup> T-Rating von weniger als 87. |

# **▲** GEFAHR

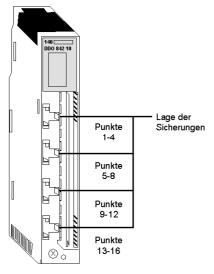
# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

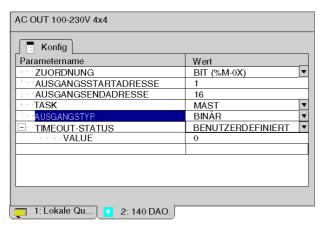
# **▲** VORSICHT


#### ÜBERSTROM AN DEN AUSGÄNGEN

Schützen Sie jeden Punkt mit einer 5 A, 250 V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

## **Abbildung**


Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DAO 842 10.



35010518 09/2020

# 140 DAO 842 10 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                | Standardwert      | Optionen                             | Beschreibung                                                                   |
|-------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadresse                                                                | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                  | 16                | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Ausgangstyp                                                                         | BINÄR             | BCD                                  |                                                                                |
| Timeout-Status                                                                      | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 49).

# Kapitel 42

# 140 DAO 842 20: Ausgangsmodul 24 ... 48 VAC 4x4

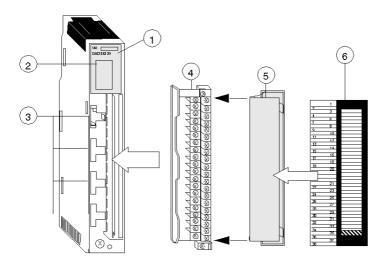
# Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAO 842 20.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 434   |
| Anzeigen                                | 435   |
| Verdrahtungsschema                      | 436   |
| Kenndaten                               | 438   |
| Maintenance (Wartung)                   | 441   |
| 140 DAO 842 20 - Parameterkonfiguration |       |


# **Beschreibung**

#### **Funktion**

Das Modul, AC-Ausgang 24 ... 48 VAC 4x4, schaltet 24 ... 48 VAC gespeiste Lasten.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAO 842 20 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

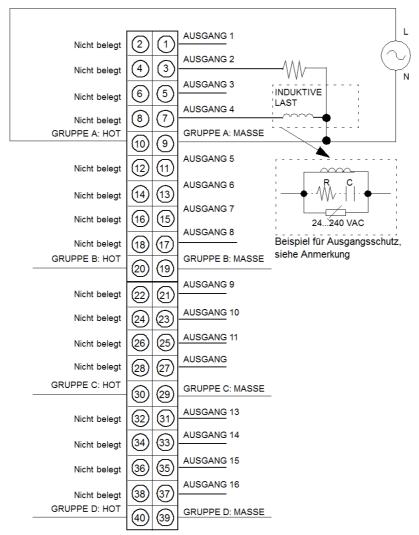
# **Anzeigen**

# **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAO 842 20.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAO 842 20.

| LEDs                        | Farbe | Anzeige in Zustand EIN                                                                                          |
|-----------------------------|-------|-----------------------------------------------------------------------------------------------------------------|
| Aktiv                       | Grün  | Buskommunikation vorhanden.                                                                                     |
| F                           | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.                                                                |
| 1 16                        | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET.                                                             |
| 1 4<br>5 8<br>9 12<br>13 16 | Rot   | Bei der angezeigten Gruppe ist eine Sicherung<br>durchgebrannt oder sie wird nicht mit Feldenergie<br>versorgt. |

#### Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAO 842 20.



- 1. N/C = Nicht angeschlossen
- 2. Dieses Modul ist unempfindlich gegen Verpolung.
- 3. Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1 bis 14 AWG oder 2 bis 16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# **A** VORSICHT

#### BESCHÄDIGUNG DER MODULAUSGÄNGE

- Stellen Sie sicher, dass der Wechselstrom, mit dem jede Gruppe versorgt wird, aus einer gemeinsamen Einphasenwechselstromquelle stammt.
- Schützen Sie den Modulausgang, wenn ein externer Schalter zur Steuerung einer induktiven Last parallel zum Modulausgang verwendet wird. Verwenden Sie einen externen Varistor (Harris V390ZA05 oder gleichwertig) parallel zum Schalter.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### HINWEIS:

Der Ausgangsschutz besteht aus einem RC-Filter (Überspannungsfilter) und einem Varistor:

- Der Überspannungsfilter ist optional. Die R- und C-Werte werden nicht angegeben, da diese vom verwendeten Gerät abhängig sind.
- Wählen Sie einen Varistor mit geeigneten elektronischen Eigenschaften in Übereinstimmung mit der für das verwendete Gerät erforderlichen Spannung.

#### Kenndaten

# Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp                                                       | 16 Ausgänge (4 Gruppen x 4 Anschlusspunkte) |  |
|----------------------------------------------------------------|---------------------------------------------|--|
| Externe Spannung                                               | 20 56 VAC                                   |  |
| Verlustleistung                                                | 1,85 W +1,1 V x gesamte Modul-Laststrom     |  |
| Stromaufnahme (Modul)                                          | 350 mA                                      |  |
| E/A-Map                                                        | 1 Ausgangswörter                            |  |
| Erkennung durchgebrannter Sicherungen, der Feldstromversorgung |                                             |  |

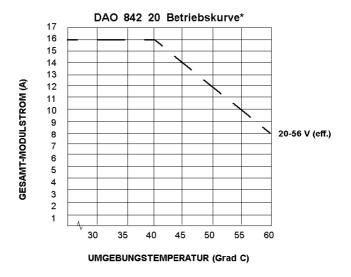
# Absolute maximale Eingangsspannung

# Absolute maximale Eingangsspannung

| 10 s     | 63 VAC         |
|----------|----------------|
| 1 Zyklus | 100 VAC        |
| 1,3 ms   | 111 VAC Spitze |

# Spannung

#### Spannung


| Betriebsspannung (max.)  | 20 56 VAC |
|--------------------------|-----------|
| Abfall EIN-Zustand/Punkt | 1,5 VAC   |

#### **Maximaler Laststrom**

#### Maximaler Laststrom

| Jeder Punkt 4,0 A kontinuierlich 20 56 VAC (effekti |                                            |  |
|-----------------------------------------------------|--------------------------------------------|--|
| Jede Gruppe 4,0 A kontinuierlich                    |                                            |  |
| Pro Modul                                           | 16 A kontinuierlich (siehe Diagramm unten) |  |

Auf der folgenden Abbildung ist die Betriebskurve des Moduls 140 DAO 842 20 dargestellt.



#### Frequenz und Mindest-Laststrom

| Frequenz          | 47 63 Hz |
|-------------------|----------|
| Mindest-Laststrom | 5 mA     |

#### Stoßstrom (max. effektiv)/Leckstrom

Stoßstrom (max. effektiv)/Leckstrom

| Eine Netzperiode               | 30 A je Punkt, 45 A je Gruppe |  |
|--------------------------------|-------------------------------|--|
| Zwei Netzperioden              | 20 A je Punkt, 30 A je Gruppe |  |
| Drei Netzperioden              | 10 A je Punkt, 25 A je Gruppe |  |
| Angelegt dV/dT                 | 400 V/μs                      |  |
| Leckstrom im AUS-Zustand/Punkt | max. 1 mA                     |  |

# Potentialtrennung/Schutz

# Potentialtrennung/Schutz

| Gruppe-Gruppe           | 1000 VAC effektiv, Dauer 1 Minute, galvanisch potentialgetrennt |
|-------------------------|-----------------------------------------------------------------|
| Ausgang-Bus             | 1780 VAC effektiv für 1 Minute                                  |
| Ausgangsschutz (intern) | RC-Überspannungsunterdrückung                                   |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | Max. 0,5 einer Netzperiode |
|-----------|----------------------------|
| EIN - AUS | Max. 0,5 einer Netzperiode |

# Maintenance (Wartung)

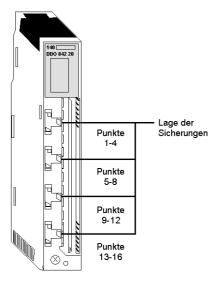
#### Sicherungen

#### Sicherungen

| Intern | 5-A-Sicherung für jede Gruppe. Die Abbildung zeigt die Lage der Sicherungen.        |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

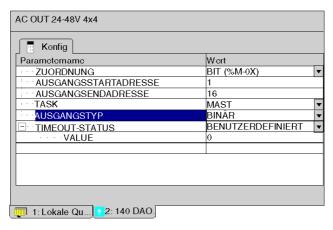
# **▲** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS


Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


#### **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des DAO 842 20.



# 140 DAO 842 20 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                     | 16                | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Ausgangstyp                                                                            | BINÄR             | BCD                                  |                                                                                |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                   | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 49).

# Kapitel 43

# 140 DAO 853 00: Ausgangsmodul 230 VAC 4x8 negative Logik

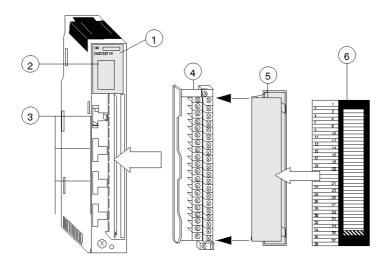
#### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAO 853 00.

#### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 446   |
| Anzeigen                                | 447   |
| Verdrahtungsschema                      | 448   |
| Kenndaten                               | 450   |
| Maintenance (Wartung)                   | 453   |
| 140 DAO 853 00 - Parameterkonfiguration | 455   |


# **Beschreibung**

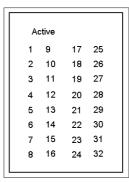
#### **Funktion**

Das Modul, AC-Ausgang 230 VAC 4x8, nimmt 230-VAC-Lasten auf.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DAO 853 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

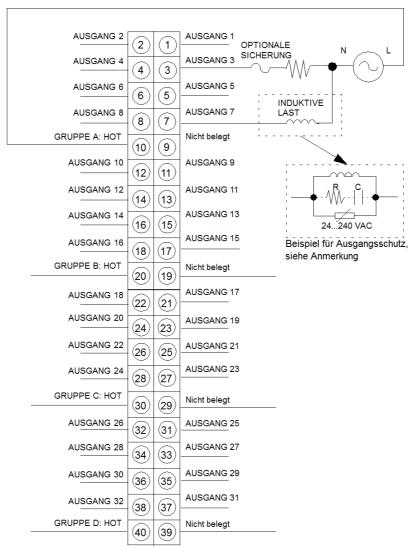
# **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAO 853 00.



# Beschreibung


Die folgende Tabelle enthält eine Beschreibung der LED-Anzeigen des Moduls 140 DAO 853 00.

| LEDs  | Farbe | Anzeige in Zustand EIN                             |
|-------|-------|----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden                         |
| 1 32  | Grün  | Der angezeigte Punkt oder Kanal ist eingeschaltet. |

# Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAO 853 00.



- 1. N/C = Nicht angeschlossen
- 2. Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1 bis 14 AWG oder 2 bis 16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# **A** VORSICHT

#### BESCHÄDIGUNG DER MODULAUSGÄNGE

- Stellen Sie sicher, dass der Wechselstrom, mit dem jede Gruppe versorgt wird, aus einer gemeinsamen Einphasenwechselstromquelle stammt.
- Schützen Sie den Modulausgang, wenn ein externer Schalter zur Steuerung einer induktiven Last parallel zum Modulausgang verwendet wird. Verwenden Sie einen externen Varistor (Harris V390ZA05 oder gleichwertig) parallel zum Schalter.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### HINWFIS:

Der Ausgangsschutz besteht aus einem RC-Filter (Überspannungsfilter) und einem Varistor:

- Der Überspannungsfilter ist optional. Die R- und C-Werte werden nicht angegeben, da diese vom verwendeten Gerät abhängig sind.
- Wählen Sie einen Varistor mit geeigneten elektronischen Eigenschaften in Übereinstimmung mit der für das verwendete Gerät erforderlichen Spannung.

#### Kenndaten

# Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp                        | 32 Ausgänge (4 Gruppen x 8 Anschlusspunkte) |
|---------------------------------|---------------------------------------------|
| Logik                           | True High                                   |
| Externe Spannung                | Für dieses Modul nicht erforderlich         |
| Verlustleistung                 | 1,60 W +1,0 V x gesamter Modul-Laststrom    |
| Erforderlicher Busstrom (Modul) | 320 mA                                      |
| E/A-Zuordnung                   | 2 Ausgangswörter                            |

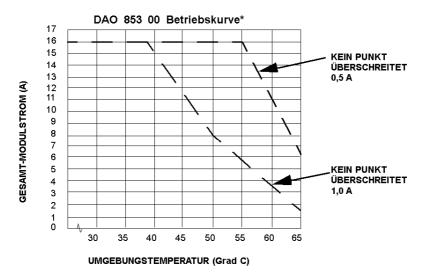
#### Absolute maximale Eingangsspannung

#### Absolute maximale Eingangsspannung

| 10 s     | 300 VAC |
|----------|---------|
| 1 Zyklus | 400 VAC |

# **Spannung**

# Spannung


| Betriebsspannung (max.)  | 20 253 VAC |
|--------------------------|------------|
| Abfall EIN-Zustand/Punkt | 1,5 VAC    |

#### **Maximaler Laststrom**

#### Maximaler Laststrom

| Jeder Punkt | 1,0 A kontinuierlich 20 253 VAC (effektiv) |
|-------------|--------------------------------------------|
| Jede Gruppe | 4,0 A (max.)                               |
| Pro Modul   | 16 A kontinuierlich (siehe Diagramm unten) |





### Frequenz und Mindest-Laststrom

| Frequenz          | 47 63 Hz |
|-------------------|----------|
| Mindest-Laststrom | 30 mA    |

#### Leckstrom im AUS-Zustand/Punkt (max.)

Leckstrom im AUS-Zustand/Punkt (max.)

| Leckstrom im AUS-Zustand/Punkt | 0,88 mA bei 230 VAC |
|--------------------------------|---------------------|
| (max.)                         | 0,44 mA bei 115 VAC |
|                                | 0,18 mA bei 48 VAC  |
|                                | 0,06 mA bei 24 VAC  |

#### Stoßstrom (max. effektiv)

Stoßstrom (max. effektiv)

| Ein Zyklus     | 30 A pro Punkt |
|----------------|----------------|
| Zwei Zyklen    | 20 A pro Punkt |
| Drei Zyklen    | 10 A pro Punkt |
| Angelegt dV/dT | 400 V / μs     |

# Potentialtrennung/Schutz

# Potentialtrennung/Schutz

| Gruppe-Gruppe           | 1780 VAC effektiv für eine Minute |
|-------------------------|-----------------------------------|
| Ausgang zum Bus         | 1780 VAC effektiv für eine Minute |
| Ausgangsschutz (intern) | RC-Überspannungsschutz            |

#### **Antwort**

#### Antwort

| OFF - ON  | Max. 0,5 eines Zyklus |
|-----------|-----------------------|
| AUS - EIN | Max. 0,5 eines Zyklus |

# Maintenance (Wartung)

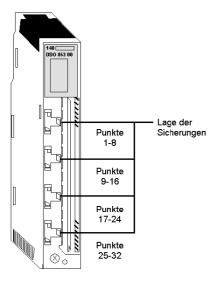
# Sicherungen

#### Sicherungen

| Intern | 4 A, 250 V-Sicherung. Die Abbildung zeigt die Lage der Sicherungen.                 |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

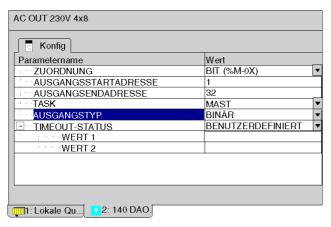
# **▲** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS


Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


#### **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls DAO 853 00.



# 140 DAO 853 00 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen            | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|---------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)       |                                                                                |
| Ausgangsstartadresse                                                                   | 1                 | 1                   |                                                                                |
| Ausgangsendadresse                                                                     | 32                | 2                   |                                                                                |
| Ausgangstyp                                                                            | BINÄR             | BCD                 |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | Mast              | Fast                | Mit Mast verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Timeout-Status                                                                         | Benutzerdefiniert | Letzten Wert halten |                                                                                |
| Wert 1, Wert 2                                                                         | 0                 | 0-65535             | Nur wenn Timeout-Status =<br>Benutzerdefiniert                                 |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 50).

# Kapitel 44

# 140 DRA 840 00: Relaisausgang-16x1-Schließermodul

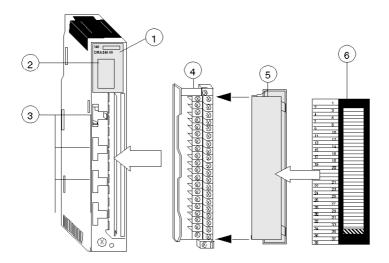
# Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DRA 840 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 458   |
| Anzeigen                                | 459   |
| Verdrahtungsschema                      | 460   |
| Technische Daten                        | 462   |
| 140 DRA 840 00 - Parameterkonfiguration |       |


# **Beschreibung**

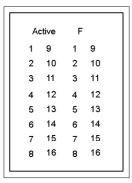
#### **Funktion**

Das Relaisausgang-16x1-Schließermodul wird eingesetzt, um mit Hilfe von 16 Relais mit Schließkontakten eine Spannungsquelle zu schalten.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DRA 840 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

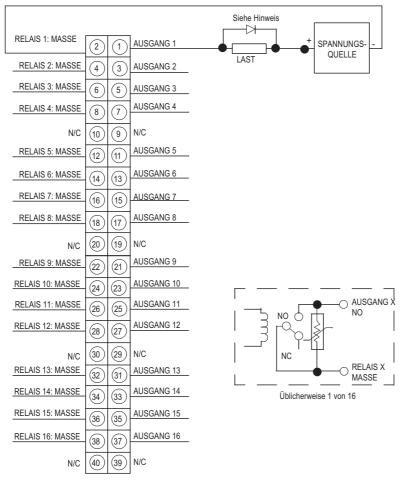
# **Anzeigen**

#### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DRA 840 00.



#### **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DRA 840 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| 1 16   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

# Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 DRA 840 00.



#### Hinweise zum Verdrahtungsschema

- Um die Lebensdauer der Relaiskontakte für induktive 125-VDC-Lasten zu verlängern, wird eine externe Begrenzung empfohlen (1N 4004 oder gleichwertig).
- N / C = Nicht verbunden (Not Connected).
- N.O. = Normally Open (Schließer)
- N.C. = Normally Closed (Öffner)

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

# Allgemeine Kenndaten

#### Allgemeine Kenndaten

| Modultyp              | 16 Ausgänge (Schließer)             |  |
|-----------------------|-------------------------------------|--|
| Externe Spannung      | Für dieses Modul nicht erforderlich |  |
| Verlustleistung       | 5,5 W + 0,5 W x Eingangspunkte EIN  |  |
| Stromaufnahme (Modul) | 1100 mA                             |  |
| E/A-Zuordnung         | 1 Ausgangswort                      |  |

#### Betriebsspannung

#### Betriebsspannung

| AC | 20 250 VAC                                     |  |
|----|------------------------------------------------|--|
| DC | 5 30 VDC<br>30 150 VDC (reduzierter Laststrom) |  |

#### **Maximaler Laststrom**

#### Maximaler Laststrom

| Jeder Punkt                | Max. 2 Ampere pro Punkt bei 250 VAC, 30 VDC<br>bei 60 Umgebungstemperatur (Grad C).<br>1-A-Last Wolframlampe<br>1 A bei einem Leistungsfaktor von 0,4<br>1/8 PS bei 125/250 VAC |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jeder Punkt (30 - 150 VDC) | 300 mA (ohmsche Last)<br>100 mA (L/R = 10 ms)                                                                                                                                   |
| Stoßstrom (max.)           | 10 A kapazitive Last mit t = 10 ms                                                                                                                                              |

#### Mindest-Laststrom

#### Mindest-Laststrom

| Jeder Punkt           | 50 mA<br>Hinweis: Mindest-Laststrom, wenn der Kontakt mit<br>Nennlasten von 5 - 150 VDC oder 20 - 250 VDC |
|-----------------------|-----------------------------------------------------------------------------------------------------------|
| Leckstrom AUS-Zustand | < 100 μA                                                                                                  |

#### Potentialtrennung

#### Isolierung

| Ausgang-Ausgang | 1780 VAC effektiv, Dauer 1 Minute                      |  |
|-----------------|--------------------------------------------------------|--|
| Feld-Bus        | 1780 VAC effektiv, Dauer 1 Minute<br>2500 für 1 Minute |  |

#### Reaktionszeit

#### Reaktion

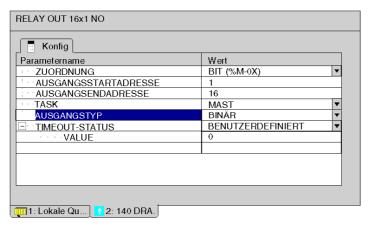
| AUS - EIN | 10 ms (max.) |
|-----------|--------------|
| EIN - AUS | 20 ms (max.) |

#### Relais

#### Relais

| Relaistyp                                                           | Form A                                                                                                                                                                                             |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Kontaktschutz                                                       | Varistor, 275 V (intern)                                                                                                                                                                           |  |
| Mechanische Operationen                                             | 10,000,000                                                                                                                                                                                         |  |
| Elektrische Operationen                                             | 200.000 (ohmsche Last bei max. Spannung und Strom)                                                                                                                                                 |  |
| Elektrische Operationen (30 -<br>150 VDC) (siehe folgender Hinweis) | 100.000 bei 300 mA (ohmsche Last) 50.000 bei 500 mA (ohmsche Last) 100.000 bei 100 mA (L/R = 10 ms) 100.000 Koppelrelais (Westinghouse-Stil 606B, Westinghouse-Typ SG, Struthers Dunn 219 x 13 XP) |  |
| Schaltvermögen                                                      | 500 VA (ohmsche Last)                                                                                                                                                                              |  |

#### Sicherungen


#### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

**HINWEIS:** Die Lebensdauer der Relaiskontakte bei induktiven Lasten kann durch den Einsatz eines externen Kontaktschutzes (z.B. einer Begrenzungsdiode über der Last) erheblich verlängert werden.

# 140 DRA 840 00 - Parameterkonfiguration

#### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                     | 16                | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Ausgangstyp                                                                            | BINÄR             | BCD                                  |                                                                                |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                   | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 49).* 

# Kapitel 45

# 140 DRC 830 00: Ausgangsmodul Relais 8x1 Schließer/Öffner

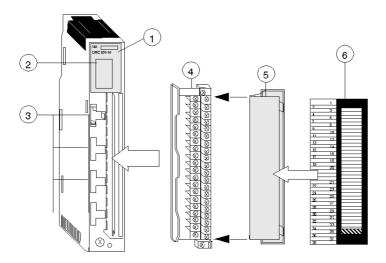
# Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DRC 830 00.

#### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 466   |
| Anzeigen                                | 467   |
| Verdrahtungsschema                      | 468   |
| Kenndaten                               | 470   |
| 140 DRC 830 00 - Parameterkonfiguration | 473   |


#### Überblick

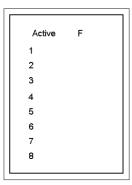
#### **Funktion**

Die Relaisausgang-8x1-Schließer-/Öffnerbaugruppe wird eingesetzt, um mit Hilfe von acht Relais mit Schließ- und Öffnungskontakten Spannungsquellen zu schalten.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DRC 830 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

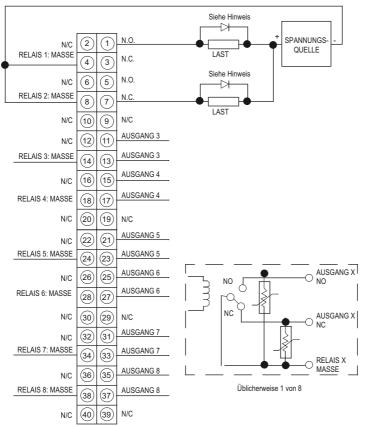
# **Anzeigen**

# **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DRC 830 00.



# Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DRC 830 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 8    | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

# Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 DRC 830 00.



#### Hinweise zum Verdrahtungsschema

- Für das Schalten von DC-Spannungen wird empfohlen, die Quelle an den gemeinsamen Stift und die Last an den Schließer-/Öffnerkontakt anzuschließen.
- Um die Lebensdauer der Relaiskontakte für induktive 125-VDC-Lasten zu verlängern, wird eine externe Begrenzung empfohlen (1N 4004 oder gleichwertig).
- N / C = Nicht verbunden (Not Connected).
- N.O. = Normally Open (Schließer)
- N.C. = Normally Closed (Öffner)

**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

### **HINWEIS**

### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### Kenndaten

### Allgemeine Kenndaten

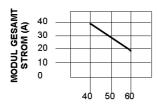
### Allgemeine Kenndaten

| Modultyp              | 8 OUT (Normalerweisen offen/normalerweise geschlossen) |
|-----------------------|--------------------------------------------------------|
| Externe Spannung      | Für dieses Modul nicht erforderlich                    |
| Verlustleistung       | 2,75 W + 0,5 W x Eingangspunkte EIN                    |
| Stromaufnahme (Modul) | 560 mA                                                 |
| E/A-Zuordnung         | 0,5 Ausgangswort                                       |

### Betriebsspannung

### Betriebsspannung

| AC | 20 bis 250 VAC                         |
|----|----------------------------------------|
| DC | 5 bis 30 VDC                           |
|    | 30 bis 150 VDC (reduzierter Laststrom) |


### **Maximaler Laststrom**

### Maximaler Laststrom

| Jeder Punkt                  | 2 A max. bei 250 VAC bei 60 °C<br>Umgebungstemperatur, ohmsche Last, 5 A bei 40 °C:<br>siehe folgende Leistungsminderungskennlinie<br>2-A-Last Wolframlampe<br>3 A bei einem Leistungsfaktor von 0,4<br>1/4 PS bei 125/250 VAC |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jeder Punkt (30 bis 150 VDC) | 300 mA (ohmsche Last)<br>100 mA (L/R = 10 ms)                                                                                                                                                                                  |
| Maximaler Modulstrom         | 40 A (siehe folgende Leistungsminderungskennlinie)                                                                                                                                                                             |
| Stoßstrom (max.)             | 20 A kapazitive Last mit t = 10 ms                                                                                                                                                                                             |

Die folgende Abbildung zeigt die Relais-Leistungsminderungskennlinie.

### Relais-Leistungsminderungskurve



UMGEBUNGSTEMPERATUR (°C)

### Mindest-Laststrom

### Mindest-Laststrom

| Mindest-Laststrom     | 50 mA<br>Hinweis: Mindest-Laststrom, falls der Kontakt mit<br>Bemessungslast von 5 bis 150 VDC oder 20 bis<br>250 VAC genutzt wird |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Leckstrom AUS-Zustand | < 100 µA                                                                                                                           |

### Potenzialtrennung

### Potenzialtrennung

| Ausgang-Ausgang | 1780 VAC effektiv, Dauer 1 Minute |
|-----------------|-----------------------------------|
| Feld-Bus        | 1780 VAC effektiv, Dauer 1 Minute |
|                 | 2500 für 1 Minute                 |

### **Antwort**

### Antwort

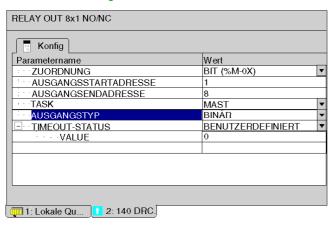
| AUS – EIN | 10 ms (max.) |
|-----------|--------------|
| EIN – AUS | 20 ms (max.) |

### Relais

### Relais

| Relaistyp                                                          | Form C, Schließer-/Öffnerkontakte                                                                                                                                                                  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kontaktschutz                                                      | Varistor, 275 V (intern)                                                                                                                                                                           |
| Mechanische Operationen                                            | 10.000.000                                                                                                                                                                                         |
| Elektrische Operationen                                            | 200.000 (ohmsche Last bei max. Spannung und Strom)                                                                                                                                                 |
| Elektrische Operationen (30 bis 150 VDC) (siehe folgender Hinweis) | 100.000 bei 300 mA (ohmsche Last) 50.000 bei 500 mA (ohmsche Last) 100.000 bei 100 mA (L/R = 10 ms) 100.000 Koppelrelais (Westinghouse-Stil 606B, Westinghouse-Typ SG, Struthers Dunn 219 x 13 XP) |
| Schaltvermögen                                                     | 500 VA (ohmsche Last)                                                                                                                                                                              |

### Sicherungen


### Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

**HINWEIS:** Die Lebensdauer der Relaiskontakte bei induktiven Lasten kann durch den Einsatz eines externen Kontaktschutzes (zum Beispiel einer Begrenzungsdiode über der Last) erheblich verlängert werden.

### 140 DRC 830 00 - Parameterkonfiguration

### Fenster der Parameterkonfiguration



### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                     | 8                 | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Ausgangstyp                                                                            | BINÄR             | _                                    |                                                                                |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                   | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi (siehe Seite 46).

# Kapitel 46

# 140 DVO 853 00: Ausgangsmodul mit Ausgangsüberwachung 10 ... 30 VDC 32x1

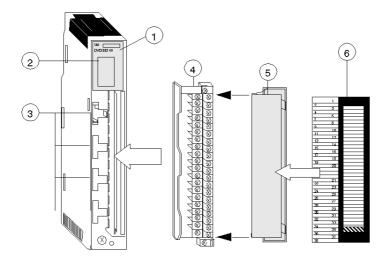
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DVO 853 00.

### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Überblick              | 476   |
| Anzeigen               | 477   |
| Verdrahtungsschema     | 478   |
| Kenndaten              | 480   |
| Maintenance (Wartung)  | 482   |
| Adressierung           | 483   |
| Parameterkonfiguration | 485   |


### Überblick

#### **Funktion**

Das Quantum-Modul 140 DVO 853 00 ist ein 10 - 30-V-DC-Ausgangsmodul mit 32 Anschlusspunkten mit Diagnosefunktion. Das Modul erkennt und meldet den Ausgangszustand an den Feldanschlüssen und prüft, je nach eingestellter Konfiguration, ob sich der Ausgang in dem von der Steuerung angewiesenen Zustand befindet. Das Modul ist in vier Gruppen mit acht Ausgängen konfiguriert.

### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DVO 853 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

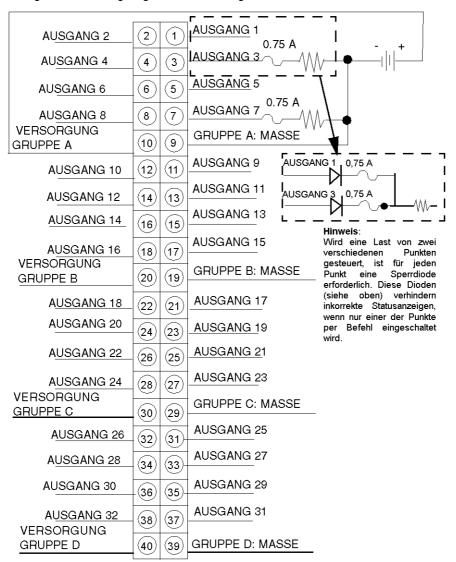
### **Anzeigen**

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DVO 853 00.



### Beschreibung


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DVO 853 00.

| LEDs   | Farbe | Anzeige in Zustand EIN                              |
|--------|-------|-----------------------------------------------------|
| Active | Grün  | Buskommunikation vorhanden.                         |
| F      | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.    |
| 1 32   | Grün  | Der angezeigte Punkt oder Kanal wird EINGESCHALTET. |

### Verdrahtungsschema

### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 DVO 853 00.



**HINWEIS:** Bei der Feldverdrahtung des E/A-Moduls liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

### **HINWEIS**

### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### Kenndaten

### Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp              | 32 Ausgänge (4 Gruppen x 8 Anschlusspunkte)                                            |
|-----------------------|----------------------------------------------------------------------------------------|
| Externe Spannung      | 10 30 VDC                                                                              |
| Verlustleistung       | 2,5 W + 0,1 W x Eingangspunkte EIN + 0,4 V x Gesamt-Lastströme                         |
| Stromaufnahme (Modul) | 500 mA                                                                                 |
| E/A-Map               | 2 Eingangswort<br>2 Ausgangswörter                                                     |
| Fehlererkennung       | Erkennung durchgebrannte Sicherung, Verlust der Feldspannung, falscher Ausgangszustand |

### Spannung

### Spannung

| Betriebsspannung (max.)  | 10 30 VDC                                         |
|--------------------------|---------------------------------------------------|
| Absolute Spannung (max.) | 50 VDC für 1,0 ms abklingender<br>Spannungsimpuls |
| Abfall EIN-Zustand/Punkt | 0,4 VDC bei 0,5 A                                 |

### **Maximaler Laststrom**

### Maximaler Laststrom

| Jeder Punkt                    | 0,5 A                                                           |
|--------------------------------|-----------------------------------------------------------------|
| Jede Gruppe                    | 4,0 A                                                           |
| Pro Modul                      | 16 A                                                            |
| Leckstrom im AUS-Zustand/Punkt | 0,4 mA bei 30 VDC                                               |
| Stoßstrom (max.)               | Jeder Punkt: 2,5 A bei Dauer 1 ms (nicht mehr als 6 pro Minute) |

### Induktivität der Last/Kapazität (max.)

Induktivität der Last/Kapazität (max.)

| Induktivität der Last (max.) | 0,5 Henry bei 4 Hz Schaltfrequenz oder: $L = \frac{0.5}{l^2  F} \frac{\text{wobei: L = Induktivität der Last (Henry)}}{l = \text{Laststrom (A)}}$ $F = \text{Schaltfrequenz (Hz)}$ |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kapazität der Last (max.)    | 75 mF                                                                                                                                                                              |
| Wolfram-Last (max.)          | 2,5 W bei 10 VDC<br>3 W bei 12 VDC<br>6 W bei 24 VDC                                                                                                                               |

### Potentialtrennung/Schutz

### Potentialtrennung/Schutz

| Gruppe-Gruppe  | 500 VAC effektiv für 1 Minute                                                  |  |
|----------------|--------------------------------------------------------------------------------|--|
| Gruppe-Bus     | 1780 VAC effektiv für 1 Minute                                                 |  |
| Ausgangsschutz | Unterdrückung von Spannungsspitzen (intern),<br>Überlast- (Kurzschluss-)schutz |  |

### Reaktionszeit

### Reaktionszeit

| AUS - EIN | 1 ms (typisch), 2 mA (max.) |  |  |  |
|-----------|-----------------------------|--|--|--|
| EIN - AUS | 1 ms (typisch), 2 mA (max.) |  |  |  |

### Maintenance (Wartung)

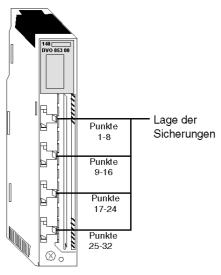
### Sicherungen

### Sicherungen

| Intern | 5,0 A-Sicherung pro Gruppe                |
|--------|-------------------------------------------|
| Extern | Wenn gewünscht, eine ¾-A, 250-V-Sicherung |

# **A** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS


Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

### **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DVO 853 00.



### Adressierung

### Flat-Adressierung

Dieses Modul benötigt 32 aufeinanderfolgende Ausgangsreferenzen (%M) oder 2 aufeinanderfolgende Ausgangswörter (%MW) für Ausgangsdaten und 32 aufeinanderfolgende Eingangsreferenzen (%I) oder 2 aufeinanderfolgende Eingangswörter (%IW) zur Überprüfung der Eingangsdaten. Eine Beschreibung der Zugriffsweise auf die Eingangspunkte finden Sie unter Digitale E/A-Bit-Nummerierung, Seite 35.

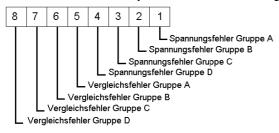
### Ausgangswörter:

|                             | MSB   | - Ers | tes   | Wort   |      |      |    |    |    |    |    |    |    |    |    |    |    |
|-----------------------------|-------|-------|-------|--------|------|------|----|----|----|----|----|----|----|----|----|----|----|
| Ausgang<br>Punkt 1          | 1     | 2     | 3     | 4      | : ا  | 5    | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|                             |       |       |       |        |      |      |    |    |    |    |    |    |    |    |    |    |    |
|                             | MSB   | - Zw  | eites | s Wo   | rt   |      |    |    |    |    |    |    |    |    |    |    |    |
| Ausgang<br>Punkt 17         | 17    | 18    | 19    | 2      | 0 2  | 21 : | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
|                             |       |       |       |        |      |      |    |    |    |    |    |    |    |    |    |    |    |
| Eingangswi                  | örtei | r:    |       |        |      |      |    |    |    |    |    |    |    |    |    |    |    |
|                             | М     | SB-   | Erst  | es W   | ort  |      |    |    |    |    |    |    |    |    |    |    |    |
| Eingangsabfrag<br>Punkt 1   | е     | 1     | 2     | 3      | 4    | 5    | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|                             |       |       |       |        |      |      |    |    |    |    |    |    |    |    |    |    |    |
|                             | М     | SB-   | Zwe   | ites \ | Vort |      |    |    |    |    |    |    |    |    |    |    |    |
| Eingangsabfrage<br>Punkt 17 | • [   | 17    | 18    | 19     | 20   | 21   | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

### **Topologische Adressierung**

Topologische Adressen im Bitzuordnungsformat:

| Punkt      | E/A-Objekt      | Kommentar |  |  |  |  |
|------------|-----------------|-----------|--|--|--|--|
| Eingang 1  | %I[\b.e\]r.m.1  | Wert      |  |  |  |  |
| Eingang 2  | %I[\b.e\]r.m.2  | Wert      |  |  |  |  |
|            | •••             |           |  |  |  |  |
| Eingang 31 | %I[\b.e\]r.m.31 | Wert      |  |  |  |  |
| Eingang 32 | %I[\b.e\]r.m.32 | Wert      |  |  |  |  |
| Ausgang 1  | %Q[\b.e\]r.m.1  | Wert      |  |  |  |  |
| Ausgang 2  | %Q[\b.e\]r.m.2  | Wert      |  |  |  |  |
| •••        |                 |           |  |  |  |  |
| Ausgang 31 | %Q[\b.e\]r.m.31 | Wert      |  |  |  |  |
| Ausgang 32 | %Q[\b.e\]r.m.32 | Wert      |  |  |  |  |


| Topologische Adressen | im Wortz | zuordnungsformat: |
|-----------------------|----------|-------------------|
|-----------------------|----------|-------------------|

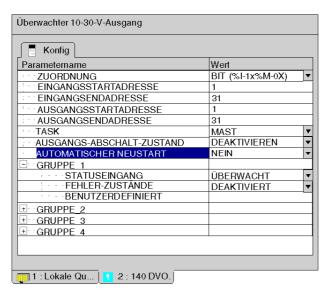
| Punkt          | E/A-Objekt        | Kommentar |
|----------------|-------------------|-----------|
| Eingangswort 1 | %IW[\b.e\]r.m.1.1 | Wert      |
| Eingangswort 2 | %IW[\b.e\]r.m.1.2 | Wert      |
| Ausgangswort 1 | %QW[\b.e\]r.m.1.1 | Wert      |
| Ausgangswort 2 | %QW[\b.e\]r.m.1.2 | Wert      |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (Station), **r** = Rack, **m** = Modulsteckplatz

### Statusbyte für E/A-Zuordnung

Die acht Bits des Statusbytes für die E/A-Zuordnung werden wie folgt verwendet:




Das Spannungsfehlerbit wird gesetzt, wenn die Feldeinspeisung nicht vorhanden ist oder die Gruppensicherung durchgebrannt ist.

Das Vergleichsfehlerbit wird gesetzt, wenn irgendein Punkt in der Gruppe nicht mit seinem angewiesenen Zustand übereinstimmt.

### Parameterkonfiguration

### Parameter- und Standardwerte

Parameterkonfigurationsfenster



| Name                                                                                | Standardwert     | Optionen                             | Beschreibung                                                                  |
|-------------------------------------------------------------------------------------|------------------|--------------------------------------|-------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%I-1x%M-0x) | WORT (%MW-4X)                        |                                                                               |
| Eingangsstartadresse                                                                | 1                | 1                                    |                                                                               |
| Eingangsendadresse                                                                  | 31               | 2                                    |                                                                               |
| Ausgangsstartadresse                                                                | 1                | 1                                    |                                                                               |
| Ausgangsendadresse                                                                  | 31               | 2                                    |                                                                               |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST             | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet |
| Ausgangs-Abschalt-<br>Zustand                                                       | DEAKTIVIEREN     | FEHLER-ZUSTÄNDE                      |                                                                               |
| Automatischer Neustart                                                              | Nein             | Ja                                   |                                                                               |
| Gruppe_1                                                                            | ·                | ·                                    |                                                                               |

| Name                             | Standardwert                     | Optionen                                        | Beschreibung                                   |
|----------------------------------|----------------------------------|-------------------------------------------------|------------------------------------------------|
| Statuseingang                    | ÜBERPRÜFTE<br>FUNKTIONSFÄHIGKEIT | ÜBERPRÜFTER<br>FEHLER<br>NUR EINGANG<br>AKTUELL |                                                |
| Fehler-Zustände                  | DEAKTIVIEREN                     | LETZTER WERT<br>BENUTZERDEFINIERT               |                                                |
| Benutzerdefiniert                | 0                                | 0-255                                           | nur wenn Fehler-<br>Zustände=benutzerdefiniert |
| Gruppe_2<br>Gruppe_3<br>Gruppe_4 |                                  |                                                 | siehe Gruppe_1                                 |

# Teil VII

### Digitalein-/-ausgangsmodule

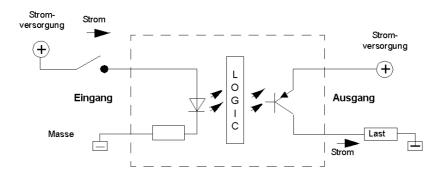
### Einleitung

Der folgende Teil enthält Informationen über die Quantum Digitalein-/-ausgangsmodule.

### Inhalt dieses Teils

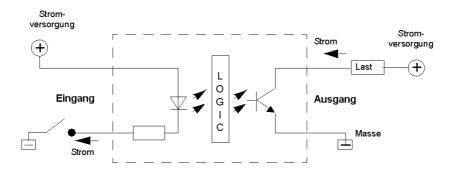
Dieser Teil enthält die folgenden Kapitel:

| Kapitel | Kapitelname                                                                              | Seite |
|---------|------------------------------------------------------------------------------------------|-------|
| 47      | Allgemeine Informationen                                                                 | 489   |
| 48      | 140 DDM 390 00: Modul 24 VDC 2x8 stromaufnehmende Eingänge / 2x4 stromliefernde Ausgänge | 491   |
| 49      | 140 DDM 690 00: 125 VDC Hochstrom-Ein-/Ausgangsmodul                                     | 505   |
| 50      | 140 DAM 590 00: Modul 115 VAC 2x8 Eingänge / 2x4 Ausgänge                                | 517   |


# Kapitel 47

### Allgemeine Informationen

### Digitale E/A-Logikschaltkreise


### Abbildung: Digitaler E/A-Versorgungsstromkreis (positive Logik)

Auf der folgenden Abbildung sind Versorgungsstromkreis (positive Logik)/Strom aufnehmender Eingang und Strom liefernder Ausgang dargestellt.



### Abbildung: Digitaler E/A-Massestromkreis (negative Logik)

Auf der folgenden Abbildung sind Massestromkreis (negative Logik)/Eingang Stromzufuhr und Ausgang Strom liefernd dargestellt.



### stromaufnehmend

Dabei wird eine physikalische Implementierung der E/A-Hardware beschrieben, bei der im Zustand "positive/negative Logik" der Strom der externen Last aufgenommen wird.

### Stromzufuhr

Dabei wird eine physikalische Implementierung der E/A-Hardware beschrieben, bei der im Zustand "negative/positive Logik" die Stromzufuhr zur externen Last erfolgt.

# Kapitel 48

# 140 DDM 390 00: Modul 24 VDC 2x8 stromaufnehmende Eingänge / 2x4 stromliefernde Ausgänge

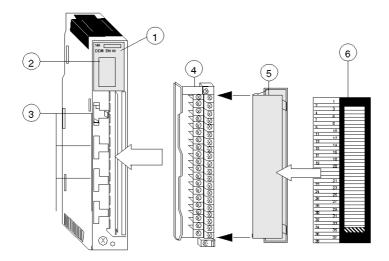
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDM 390 00.

### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 492   |
| Anzeigen                                | 493   |
| Lage der RIO-Station                    | 495   |
| Verdrahtungsschema                      | 496   |
| Kenndaten                               | 498   |
| Maintenance (Wartung)                   | 500   |
| 140 DDM 390 00 - Parameterkonfiguration | 502   |


### Überblick

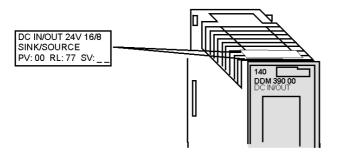
#### **Funktion**

Das 24-Sink-Eingangsmodul 2x8/24-Sink-Ausgangsmodul 2x4 nimmt 24-V-DC-Eingänge/Ausgänge auf und schaltet diese; es ist für den Einsatz mit Strom aufnehmenden Eingangs- und Strom liefernden Ausgangsbaugruppen bestimmt.

### **Abbildung**

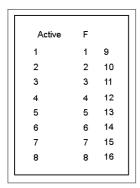
Dieser Abschnitt enthält eine Fotografie der Frontplatte des Moduls 140 DDM 390 00. Auf der folgenden Abbildung sind das E/A-Modul und seine Komponenten dargestellt.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

### **Anzeigen**


### Abbildung: Versionsaufkleber

Die folgende Abbildung zeigt die Lage des Versionsaufklebers.

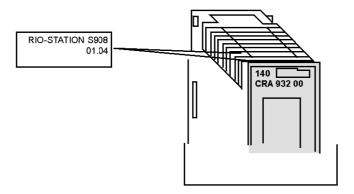


### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDM 390 00.



### **Beschreibung**

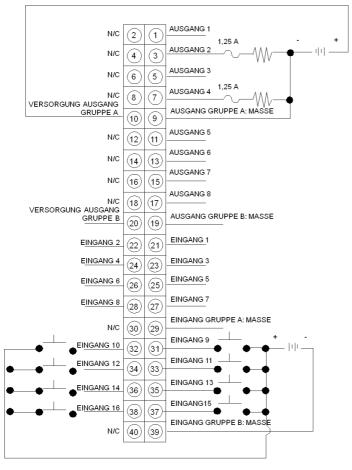

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDM 390.

| LEDs                         | Farbe | Anzeige in Zustand EIN                                      |
|------------------------------|-------|-------------------------------------------------------------|
| Aktiv                        | Grün  | Buskommunikation vorhanden.                                 |
| F                            | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.            |
| 1 8 (linke Spalten)          | Grün  | Der angezeigte Ausgangspunkt und -kanal wird EINGESCHALTET. |
| 1 16 (beide rechten Spalten) | Grün  | Der angezeigte Eingangspunkt und -kanal wird EINGESCHALTET. |

### Lage der RIO-Station

### Abbildung: Lage der RIO-Station

Die folgende Abbildung zeigt die Lage der RIO-Station.




**HINWEIS:** Wenn das Modul 140 DDM 390 00 in einer RIO-Station eingesetzt wird, muss die RIO-Station 140 CRA 93X 00 mindestens Version 1.04 sein. Überprüfen Sie die Versionsnummer auf dem Aufkleber (siehe oben) vorne auf der Oberseite des Moduls 140 CRA 93X 00.

### Verdrahtungsschema

### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDM 390 00.



- 1. N/C = Nicht angeschlossen
- Bei der Feldverdrahtung der E/A-Module liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### **A** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (Voraktoren) und
- trennen Sie die Klemmenleiste.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

### **▲** VORSICHT

### BESCHÄDIGUNG DER MODULAUSGÄNGE

Schützen Sie jeden Punkt mit einer 1,25-A-Sicherung (Littlefuse 3121.25, 1,25 A, 250 V).

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

### Kenndaten

### Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp              | 16 Eingänge (2 Gruppen x 8 Anschlusspunkte)<br>8 Ausgänge (2 Gruppen x 4 Anschlusspunkte)            |
|-----------------------|------------------------------------------------------------------------------------------------------|
| Externe Spannung      | Für dieses Modul nicht erforderlich                                                                  |
| Verlustleistung       | 1,75 W + 0,36 x Eingangspunkte EIN + 1,1 V x Gesamt-Lastströme aller Ausgänge                        |
| Stromaufnahme (Modul) | 330 mA                                                                                               |
| E/A-Map               | 1 Eingangswort<br>0,5 Ausgangswörter                                                                 |
| Fehlererkennung       | Eingang: Keine<br>Ausgang: Erkennung durchgebrannter<br>Sicherungen, Ausfall der Feldstromversorgung |

### Eingangsauslegung

### Eingangsauslegung

| Spannung im eingeschalteten Zustand | +15 +30 VDC    |
|-------------------------------------|----------------|
| Strom im eingeschalteten Zustand    | 2,0 mA (mind.) |
| Spannung im ausgeschalteten Zustand | +3 +5 VDC      |
| Strom im ausgeschalteten Zustand    | 0,5 mA (max.)  |
| Innenwiderstand                     | 2,5 kOhm       |

### Absolute maximale Eingangsspannung

### Absolute maximale Eingangsspannung

| Kontinuierlich | 30 VAC               |
|----------------|----------------------|
| 1,3 ms         | 56 VAC Abklingimpuls |

### Spannung (Ausgang)

### Spannung (Ausgang)

| Betriebsspannung (max.)  | 19.2 30 VDC                                       |
|--------------------------|---------------------------------------------------|
| Absolute Spannung (max.) | 56 VDC für 1,3 ms abklingender<br>Spannungsimpuls |
| Abfall EIN-Zustand/Punkt | 0,4 VDC bei 0,5 A                                 |

### **Maximaler Laststrom**

### Maximaler Laststrom

| Jeder Punkt                    | 0,5 A                                                           |
|--------------------------------|-----------------------------------------------------------------|
| Jede Gruppe                    | 2,0 A                                                           |
| Pro Modul                      | 4 A                                                             |
| Leckstrom im AUS-Zustand/Punkt | 0,4 mA bei 30 VDC                                               |
| Stoßstrom (max.)               | Jeder Punkt: 5 A bei Dauer 500 ms (nicht mehr als 6 pro Minute) |

### Induktivität der Last/Kapazität (max.)

Induktivität der Last/Kapazität (max.)

| Induktivität der Last (max.) | 0,5 Henry bei 4 Hz Schaltfrequenz oder:                                                    |
|------------------------------|--------------------------------------------------------------------------------------------|
|                              | L = 0.5 wobei: L = Induktivität der Last (Henry) I = Laststrom (A) F = Schaltfrequenz (Hz) |
| Kapazität der Last (max.)    | 50 microF                                                                                  |

### Potentialtrennung

### Potentialtrennung

| Gruppe-Gruppe | 500 VAC effektiv für 1 Minute  |
|---------------|--------------------------------|
| Gruppe-Bus    | 1780 VAC effektiv für 1 Minute |

### Reaktionszeit (Eingang und Ausgang)

Reaktionszeit (Eingang und Ausgang)

| AUS - EIN | 1 ms (max.) - (ohmsche Last Ausgang) |
|-----------|--------------------------------------|
| EIN - AUS | 1 ms (max.) - (ohmsche Last Ausgang) |

### Modulschutz

### Modulschutz

| Eingangsschutz | Widerstand begrenzt                         |
|----------------|---------------------------------------------|
| Ausgangsschutz | Unterdrückung der Spannungsspitzen (intern) |

### Maintenance (Wartung)

### Sicherungen

### Sicherungen

| Eingang | Intern - Keine<br>Extern - Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen<br>Normen installiert                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Output  | Intern - 5-A-Sicherung für jede Gruppe. Die Abbildung zeigt die Lage der Sicherungen. Extern - 1,25 A-Sicherung (Littlefuse 3121.25, 1,25 A, 250 V) |

## **▲** GEFAHR

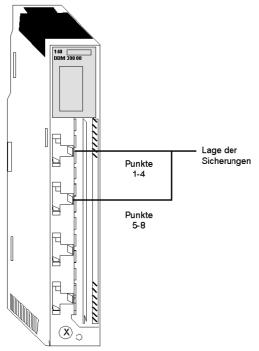
# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (der Sensoren und Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

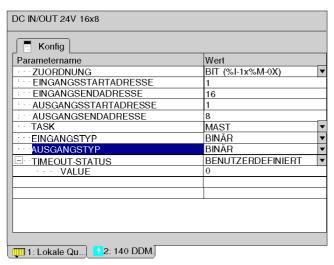
Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

### **A** VORSICHT


### BESCHÄDIGUNG DER MODULAUSGÄNGE

Schützen Sie jeden Punkt mit einer 1,25 A, 250 V-Sicherung.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.


### **Abbildung**

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DDM 390 00.



### 140 DDM 390 00 - Parameterkonfiguration

### Fenster der Parameterkonfiguration



### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                             |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x%M-0x)  | WORT (%IW-<br>3x%MW-4X)              |                                                                          |
| Eingangsstartadresse                                                                   | 1                 | 1                                    |                                                                          |
| Eingangsendadresse                                                                     | 16                | 1                                    |                                                                          |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                          |
| Ausgangsendadresse                                                                     | 8                 | 1                                    |                                                                          |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn sich das Modul nicht im lokalen Modus befindet. |
| Eingangstyp                                                                            | BINÄR             | BCD                                  |                                                                          |
| Ausgangstyp                                                                            | BINÄR             | BCD                                  |                                                                          |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                          |
| Wert                                                                                   | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                              |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 56).* 

# Kapitel 49

# 140 DDM 690 00: 125 VDC Hochstrom-Ein-/Ausgangsmodul

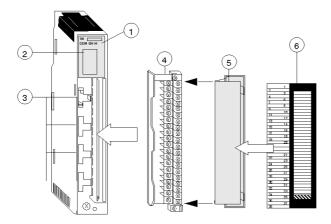
# Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DDM 690 00.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 506   |
| Anzeigen                                | 507   |
| Verdrahtungsschema                      | 509   |
| Technische Daten                        | 511   |
| 140 DDM 690 00 - Parameterkonfiguration | 514   |


### **Beschreibung**

#### **Funktion**

Das 125-VDC-Hochstrom-Ein-/Ausgangsmodul verfügt über vier potentialgetrennte Ausgänge und vier zu einer Gruppe zusammengefasste Eingänge. Die Ausgänge schalten Lasten, die mit 24 bis 125 VDC gespeist werden; sie sind für den Einsatz mit stromaufnehmenden und –liefernden Geräten bestimmt. Die Ausgänge verfügen ebenfalls über Kurzschlusserkennung und -anzeige sowie eine Schaltung zum Abschalten. Die Eingänge nehmen 125-VDC-Eingänge auf und sind für den Einsatz mit Strom liefernden Ausgangsbaugruppen bestimmt. Die Reaktionszeit der Eingänge kann mittels Software ausgewählt werden, um so eine zusätzliche Eingangsfilterung zu ermöglichen.

#### **Abbildung**

Dieser Abschnitt enthält eine Fotografie der Frontplatte des Moduls 140 DDM 690 00. Auf der folgenden Abbildung sind das E/A-Modul und seine Komponenten dargestellt.



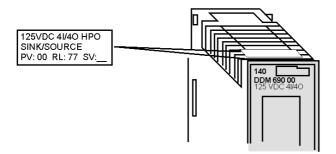
- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- **6** Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

**HINWEIS:** Die folgenden Informationen setzen Mindest-Versionsstände voraus, die diese Baugruppe unterstützen.

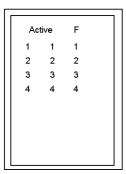
# **Anzeigen**

#### Tabelle: Versionsstände


Die folgende Tabelle enthält eine Aufstellung des jeweils mindestens erforderlichen Versionsstands für die jeweiligen Modultypen.

| Produkte      | Mindestens erforderlicher<br>Versionsstand (siehe folgende<br>Darstellung des Aufklebers) | Maßnahme durch den Anwender erforderlich |
|---------------|-------------------------------------------------------------------------------------------|------------------------------------------|
| CPUs und NOMs | < V02.20                                                                                  | Executive-Upgrade auf ≥ V02.10           |
|               | ≥ V02.20                                                                                  | Keine                                    |
| RIOs          | < V02.00                                                                                  | Modul-Upgrade                            |
|               | ≥ V02.00 und < V02.20                                                                     | Executive-Upgrade auf ≥ V01.10           |
|               | ≥ V02.20                                                                                  | Keine                                    |
| DIOs          | < V02.10                                                                                  | Modul-Upgrade                            |
|               | ≥ V02.20                                                                                  | Keine                                    |

**HINWEIS:** Der Versionsaufkleber (siehe Abbildung) befindet sich vorne auf der Oberseite des Moduls.


### Abbildung: Versionsaufkleber

Die folgende Abbildung zeigt die Lage des Aufklebers mit der Versionsnummer.

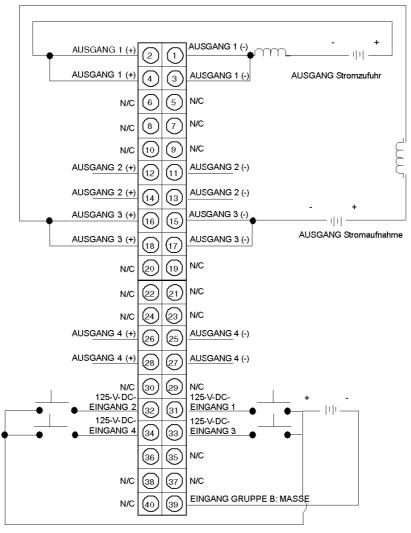


## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DDM 690 00.



## **Beschreibung**


Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DDM 690.

| LEDs                        | Farbe | Anzeige in Zustand EIN                                              |
|-----------------------------|-------|---------------------------------------------------------------------|
| Aktiv                       | Grün  | Buskommunikation vorhanden.                                         |
| F                           | Rot   | Stromüberlastbedingungen an jedem Punkt.                            |
| 1 - 4 (linke Spalten)       | Grün  | Der angezeigte Ausgangspunkt wird EINGESCHALTET.                    |
| 1 - 4 (mittlere Spalten)    | Rot   | Der angezeigte Eingangspunkt weist eine Stromüberlastbedingung auf. |
| 1 und 4 (rechte<br>Spalten) | Grün  | Der angezeigte Eingangspunkt wird EINGESCHALTET.                    |

# Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DDM 690 00.



- 1. N / C = Nicht verbunden (Not Connected).
- 2. Jeder Ausgang verfügt über zwei Klemmen für den Anschluss mehrerer Drähte.
- Bei der Feldverdrahtung der E/A-Module liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

# **A** WARNUNG

#### UNBEABSICHTIGTER GERÄTEBETRIEB

Vertauschen Sie nicht die Pole der Ausgangspunkte. Eine Verpolung schaltet einen Ausgangspunkt EIN.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

### **Technische Daten**

# Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp              | 4 Eingänge (4 Gruppen x 1 Anschlusspunkt) 4 Ausgänge potentialgetrennt                |
|-----------------------|---------------------------------------------------------------------------------------|
| Externe Spannung      | Für dieses Modul nicht erforderlich                                                   |
| Verlustleistung       | 0,4 W x (1,0) x Anzahl der Eingangspunkte EIN + (0,75) x gesamte Modul-Ausgangsströme |
| Stromaufnahme (Modul) | 350 mA                                                                                |
| E/A-Zuordnung         | 1 Eingangswort<br>1 Ausgangswort                                                      |
| Fehlererkennung       | Eingang: Keine<br>Überspannung - jeder Punkt                                          |

## Eingangsauslegung

### Eingangsauslegung

| Spannung im eingeschalteten Zustand | +88 +156 VDC inklusive Welligkeit              |
|-------------------------------------|------------------------------------------------|
| Strom im eingeschalteten Zustand    | 2,0 mA (min.)                                  |
| Spannung im ausgeschalteten Zustand | 0 +36 VDC                                      |
| Strom im ausgeschalteten Zustand    | 1,2 mA (max.)                                  |
| Innenwiderstand                     | 24 kOhm (Nennwert)                             |
| Absolute Spannung (max.)            | Kontinuierlich: 156,2 VDC inklusive Welligkeit |

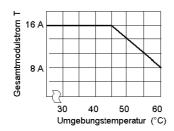
# Reaktionszeit des Eingangs (AUS-EIN, EIN-AUS)

Reaktionszeit des Eingangs (AUS-EIN, EIN-AUS)

| Standardfilter      | 0,5 ms |
|---------------------|--------|
| Kein Standardfilter | 1,5 ms |

## Spannung (Ausgang)

## Spannung (Ausgang)


| Betriebsspannung (max.)   | 19.2 156,2 VDC inklusive Welligkeit |
|---------------------------|-------------------------------------|
| Station EIN-Zustand/Punkt | 0,75 VDC bei 4 A                    |

#### **Maximaler Laststrom**

#### Maximaler Laststrom

| Jeder Punkt                                       | 4 A kontinuierlich                                          |
|---------------------------------------------------|-------------------------------------------------------------|
| Pro Modul                                         | 16 A kontinuierlich (siehe<br>Leistungsminderungskennlinie) |
| Leckstrom im ausgeschalteten Zustand je Punkt     | 1,2 mA bei 150 VDC                                          |
| Stoßstrom (max.)                                  | Jeder Punkt: 30 A bei einer Dauer von 500 ms                |
| Reaktionszeit des Ausgangs (AUS-<br>EIN, EIN-AUS) | 0,2 ms (max.) (ohmsche Last Ausgang)                        |

Die folgende Abbildung zeigt die Leistungsminderungskennlinie des Moduls 140 DDM 690 00.



## Induktiver Blindwiderstand/Kapazität (max.)

Induktiver Blindwiderstand/Kapazität (max.)

|                                   | 1                                                                                             |
|-----------------------------------|-----------------------------------------------------------------------------------------------|
| Induktiver Blindwiderstand (max.) | Für Schaltintervalle ≥ 15 Sekunden gemäß ANSI/IEEE C37.90- 1978/1989):                        |
|                                   | $L \le \frac{9}{ ^2}$                                                                         |
|                                   | Für wiederholtes Schalten:                                                                    |
|                                   | L≤ <sup>9</sup> / <sub>12</sub> F                                                             |
|                                   | Erläuterung: L = Induktivität der Last (Henry).<br>I = Laststrom (A). F = Schaltfrequenz (Hz) |
| Kapazität der Last (max.)         | 0,1 microF bei 150 VDC<br>0,6 microF bei 24 VDC                                               |

# Potentialtrennung

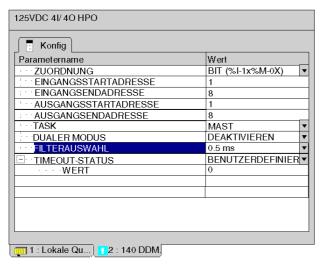
# Potentialtrennung

| Eingang Gruppe-Ausgang | 1780 VAC effektiv für 1 Minute |
|------------------------|--------------------------------|
| Ausgang-Ausgang        | 2500 VAC effektiv für 1 Minute |

### Modulschutz

### Modulschutz

| Eingangsschutz | Mit Widerstand begrenzt                     |
|----------------|---------------------------------------------|
| Ausgangsschutz | Unterdrückung der Spannungsspitzen (intern) |


# Sicherungen

# Sicherungen

| Eingang | Intern - Keine<br>Extern - Vom Benutzer gemäß den lokalen und<br>nationalen elektrotechnischen Normen installiert                                                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output  | Jeder Ausgang ist durch elektronisches Abschalten abgesichert. Bei Ausgangsstromstößen zwischen 4 A und 30 A schaltet der Eingangspunkt nach 0,5 Sekunden ab. Bei Stromstößen von mehr als 30 A schaltet der Ausgang sofort ab. |

# 140 DDM 690 00 - Parameterkonfiguration

## Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%I-1x%M-0x)  | WORT<br>(%IW-3x%MW-4X)               |                                                                                |
| Eingangsstartadresse                                                                   | 1                 | 1                                    |                                                                                |
| Eingangsendadresse                                                                     | 8                 | 1                                    |                                                                                |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                     | 8                 | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Dualer Modus                                                                           | DEAKTIVIEREN      | ENABLE                               |                                                                                |
| Filter-Auswahl                                                                         | 0.5 ms            | 1.5 ms                               |                                                                                |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                   | 0                 | 0 - 15                               | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

## E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 54).* 

# Kapitel 50

140 DAM 590 00: Modul 115 VAC 2x8 Eingänge / 2x4 Ausgänge

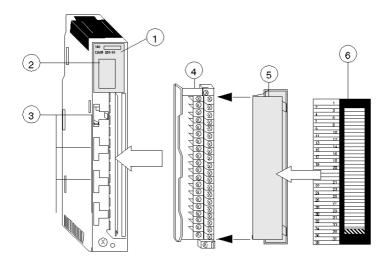
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DAM 590 00.

### **Inhalt dieses Kapitels**

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Beschreibung                            | 518   |
| Anzeigen                                | 519   |
| Lage der RIO-Station                    | 520   |
| Verdrahtungsschema                      | 521   |
| Kenndaten                               | 524   |
| Maintenance (Wartung)                   | 527   |
| 140 DAM 590 00 - Parameterkonfiguration | 529   |


### **Beschreibung**

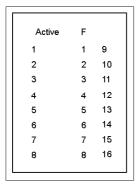
#### **Funktion**

Das Modul, AC-Eingang 115 VAC 2x8/AC-Ausgang 115 VAC 2x4, nimmt 115 VAC Eingänge auf und schaltet 115-VAC-Lasten.

#### **Abbildung**

Dieser Abschnitt enthält eine Fotografie der Frontplatte des Moduls 140 DAM 590 00. Die folgende Abbildung zeigt das Modul 140 DAM 590 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- **6** Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Die Feldverdrahtungs-Klemmleiste (Modicon Nr. 140 XTS 002 00) muss getrennt bestellt werden. (Zur Klemmleiste gehört eine abnehmbare Tür mit Beschriftungsstreifen.)

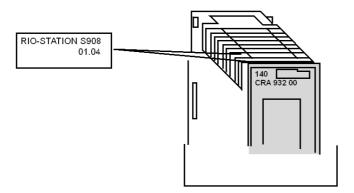
# **Anzeigen**

## **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DAM 590 00.



## **Beschreibung**

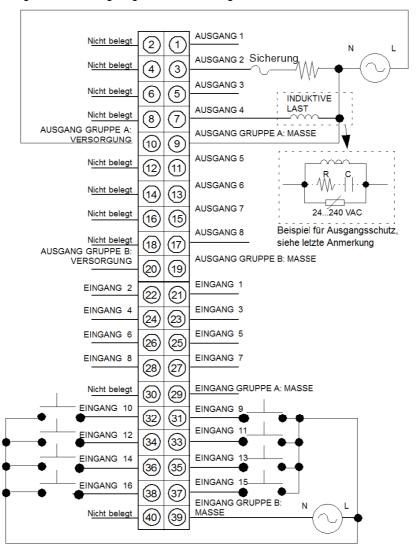

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DAM 590.

| LEDs                         | Farbe | Anzeige in Zustand EIN                                      |
|------------------------------|-------|-------------------------------------------------------------|
| Aktiv                        | Grün  | Buskommunikation vorhanden.                                 |
| F                            | Rot   | Ein Fehler (außerhalb des Moduls) wurde erkannt.            |
| 1 8 (linke Spalten)          | Grün  | Der angezeigte Ausgangspunkt und -kanal wird EINGESCHALTET. |
| 1 16 (beide rechten Spalten) | Grün  | Der angezeigte Eingangspunkt und -kanal wird EINGESCHALTET. |

# Lage der RIO-Station

### Abbildung: Lage der RIO-Station

Die folgende Abbildung zeigt die Lage der RIO-Station.




**HINWEIS:** Wenn das Modul 140 DAM 590 00 in einer RIO-Station eingesetzt wird, muss die RIO-Station 140 CRA 93X 00 mindestens Version 1.04 sein. Überprüfen Sie die Versionsnummer auf dem Aufkleber (siehe unten) vorne auf der Oberseite des Moduls 140 CRA 93X 00.

# Verdrahtungsschema

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das 140 DAM 590 00.



# **▲** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

- die Stromversorgung des Moduls (der Sensoren und Aktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

# **A** VORSICHT

#### BESCHÄDIGUNG DER MODULAUSGÄNGE

Schützen Sie den Modulausgang, wenn ein externer Schalter zur Steuerung einer induktiven Last parallel zum Modulausgang verwendet wird. Verwenden Sie einen externen Varistor (Harris V390ZA05 oder gleichwertig) parallel zum Schalter.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

**HINWEIS:** Bei der Feldverdrahtung der E/A-Module liegt die maximale Drahtgröße zwischen 1-14 AWG oder 2-16 AWG und die minimale Größe bei 20 AWG.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

# **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **HINWEIS:**

Der Ausgangsschutz besteht aus einem RC-Filter (Überspannungsfilter) und einem Varistor:

- Der Überspannungsfilter ist optional. Die R- und C-Werte werden nicht angegeben, da diese vom verwendeten Gerät abhängig sind.
- Wählen Sie einen Varistor mit geeigneten elektronischen Eigenschaften in Übereinstimmung mit der für das verwendete Gerät erforderlichen Spannung.

### Kenndaten

# Allgemeine Kenndaten

### Allgemeine Kenndaten

| Modultyp               | 16 Eingänge (2 Gruppen x 8 Anschlusspunkte)<br>8 Ausgänge (2 Gruppen x 4 Anschlusspunkte)            |
|------------------------|------------------------------------------------------------------------------------------------------|
| Externe Spannung       | 85 132 VAC erforderlich für Ausgangsgruppen                                                          |
| Verlustleistung        | 5,5 W +1,1 V x gesamte Modul-Laststrom                                                               |
| Maximale Stromaufnahme | 250 mA                                                                                               |
| Е/А-Мар                | 1 Eingangswort<br>0,5 Ausgangswörter                                                                 |
| Fehlererkennung        | Eingang: Keine<br>Ausgang: Erkennung durchgebrannter<br>Sicherungen, Ausfall der Feldstromversorgung |

## Betriebsspannung und Stromaufnahme\*

## Betriebsspannung und Stromaufnahme\*

| 50 Hz                                                                                | EIN: 85 132 VAC (max. 11,1 mA)<br>AUS: 0 20 VAC                                                          |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 60 Hz                                                                                | EIN: 79 132 VAC (max. 13,2 mA)<br>AUS: 0 20 VAC<br>* Nicht außerhalb des Bereichs 47 63 Hz<br>einsetzen. |
| Maximal zulässiger Leckstrom eines externen Geräts, der als AUS-Zustand erkannt wird | 2,1 mA                                                                                                   |

## Typische Eingangsimpedanz

### Typische Eingangsimpedanz

| 5 | 50 Hz | 14,4 kOhm kapazitiv |
|---|-------|---------------------|
| 6 | 60 Hz | 12 kOhm kapazitiv   |

## Absolute maximale Eingangsspannung

## Absolute maximale Eingangsspannung

| Kontinuierlich | 132 VAC |
|----------------|---------|
| 10 s           | 156 VAC |
| 1 Zyklus       | 200 VAC |

### Reaktionszeit (Eingänge)

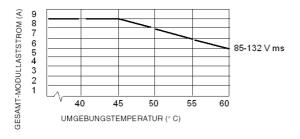
### Reaktionszeit (Eingänge)

| AUS - EIN | Mind.: 4,9 ms, max.: 0,75 Netzzyklus |
|-----------|--------------------------------------|
| EIN - AUS | Mind.: 7,3 ms, max.: 12,3 ms         |

**HINWEIS:** Eingangssignale müssen sinusförmig sein sowie einen Oberschwingungsgehalt von weniger als 6 % und eine maximale Frequenz von 63 Hz aufweisen.

### Maximale Spannung (Ausgang)

### Maximale Spannung (Ausgang)


| Kontinuierlich           | 85 132 VDC |
|--------------------------|------------|
| 10 s                     | 156 VDC    |
| 1 Zyklus                 | 200 VDC    |
| Abfall EIN-Zustand/Punkt | 1,5 VDC    |

#### Maximaler Laststrom/Leckstrom im ausgeschalteten Zustand

Maximaler Laststrom/Leckstrom im ausgeschalteten Zustand

| Jeder Punkt                    | 4 A kontinuierlich                                                                                |
|--------------------------------|---------------------------------------------------------------------------------------------------|
| Jede Gruppe                    | 4 A kontinuierlich                                                                                |
| Pro Modul                      | 8 A kontinuierlich (siehe nachfolgendes<br>Lastminderungsdiagramm für Temperaturen über<br>50 °C) |
| Leckstrom im AUS-Zustand/Punkt | 2 mA bei 115 VDC                                                                                  |

Die folgende Abbildung zeigt die Arbeitskennlinie des Moduls 140 DAM 590 00.



## Maximaler Stoßstrom/Minimaler Laststrom

## Maximaler Stoßstrom/Minimaler Laststrom

| Eine Netzperiode | 30 A je Punkt, 45 A je Gruppe |
|------------------|-------------------------------|
| Zwei Zyklen      | 20 A je Punkt, 30 A je Gruppe |
| Drei Zyklen      | 10 A je Punkt, 25 A je Gruppe |
| Min. Laststrom   | 5 mA                          |

## Reaktionszeit

#### Reaktionszeit

| AUS - EIN/EIN - AUS | Max. 0,5 einer Netzperiode |
|---------------------|----------------------------|
| Angelegt DV /DT     | 400 V/Mikrosekunde         |

## Potentialtrennung

# Potentialtrennung

| Gruppe-Gruppe                | 1000 V AC für 1 Minute |
|------------------------------|------------------------|
| Eingang oder Ausgang zum Bus | 1780 V AC für 1 Minute |

## Maintenance (Wartung)

#### Sicherungen

#### Sicherungen

| Eingang | Intern - Keine Extern - Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert                                                                        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output  | Intern - 5-A-Sicherung für jede Gruppe. Die Abbildung zeigt die Lage der Sicherungen. Extern - Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

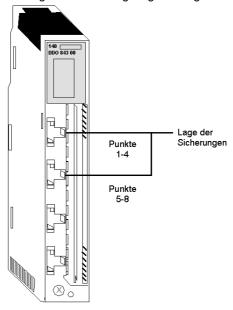
# **▲** GEFAHR

# GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

Unterbrechen Sie vor dem Austausch der Sicherungen

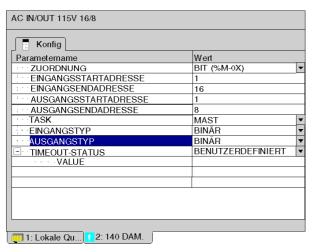
- die Stromversorgung des Moduls (der Sensoren und Voraktoren), und
- trennen Sie den Anschlussblock.
- Verwenden Sie stets ein geeignetes Strommessgerät an allen Leitungs- und Lastsicherungsklemmen, um sicherzugehen, dass keine Spannung anliegt.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.


# **▲** VORSICHT

#### BESCHÄDIGUNG DER MODULAUSGÄNGE

Schützen Sie jede Gruppe mit einer 5 A, 250 V-Sicherung.


Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Die folgende Abbildung zeigt die Lage der Sicherungen des Moduls 140 DAM 590 00.



# 140 DAM 590 00 - Parameterkonfiguration

## Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                | Standardwert      | Optionen                             | Beschreibung                                                                   |
|-------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%I-1x%M-0x)  | WORT<br>(%IW-3x%MW-4X)               |                                                                                |
| Eingangsstartadresse                                                                | 1                 | 1                                    |                                                                                |
| Eingangsendadresse                                                                  | 16                | 1                                    |                                                                                |
| Ausgangsstartadresse                                                                | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                  | 8                 | 1                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Eingangstyp                                                                         | BINÄR             | _                                    |                                                                                |
| Ausgangstyp                                                                         | BINÄR             | _                                    |                                                                                |
| Timeout-Status                                                                      | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                | 0                 | 0-65535                              | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 56)*.

# Teil VIII

# Quantum-Module, eigensicher, analog/digital

## **Einleitung**

Der folgende Teil enthält Informationen über die eigensicheren analogen/digitalen Quantum-Module.

### Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

| Kapitel | Kapitelname                                      |     |
|---------|--------------------------------------------------|-----|
| 51      | Allgemeine Informationen                         |     |
| 52      | 140 All 330 00: Sicheres analoges Eingangsmodul  |     |
| 53      | 140 All 330 10: Sicheres analoges Eingangsmodul  |     |
| 54      | 140 AIO 330 00: Sicheres analoges Ausgangsmodul  |     |
| 55      | 140 DII 330 00: Sicheres digitales Eingangsmodul | 589 |
| 56      | 140 DIO 330 00: Sicheres digitales Ausgangsmodul | 599 |

35010518 09/2020

# Kapitel 51

# Allgemeine Informationen

### Zweck

Dieses Kapitel enthält allgemeine Informationen über eigensichere Module.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                   |     |
|-------------------------|-----|
| Zweck und Betrachtungen | 534 |
| Verdrahtungsmethoden    | 536 |

### Zweck und Betrachtungen

#### **Funktion**

Mit der Technik der Eigensicherheit soll sichergestellt werden, dass die elektrische Energie zur Versorgung der Stromkreise in gefährdeten Bereichen zu gering ist, um flüchtige Gase durch Zündfunken oder Wärmebildung zu entzünden. Eigensichere Stromkreise arbeiten mit energiesparenden Geräten, die als eigensichere Sperren verhindern, dass überschüssige elektrische Energie zur Versorgung elektrischer Geräte im gefährdeten Bereich freigesetzt wird.

#### Modulposition

Die Familie der eigensicheren Quantum-Module ist für die Installation in sicheren Bereichen zertifiziert, um eigensichere Geräte in gefährdeten Bereichen zu überwachen/steuern.

#### Eigensichere Sperren

Alle eigensicheren Quantum-Module verwenden galvanische Trennungen, um für eine eigensichere Sperre untereinander und zwischen den in gefährdeten Bereichen befindlichen Feldgeräten zu sorgen. Für galvanische Trennung in Form eines Optokopplers und eines DC/DC-Konverters ist zwischen dem feldseitigen Ausgangsstromkreis und dem Quantum-Busstromkreis gesorgt. Die maximalen behördlich festgelegten eigensicheren Parameter sind:

 $V_{oc} \le 28 \text{ VDC}$  und  $I_{sc} \le 100 \text{ mA}$ 

#### Eigensichere Spannungsversorgung

DC/DC-Konverter in eigensicheren Quantum-Modulen gewährleisten eine eigensichere Stromversorgung von Feldgeräten, die sich in gefährdeten Bereichen befinden. Es ist kein externer Feldstrom bei diesen installierten Modulen erforderlich.

### Installation von eigensicheren Quantum-Modulen

Eigensichere Quantum-Module sind so konzipiert, dass sie in einen Standard-Baugruppenträger 140 XBP OXX 00 von Quantum passen. Die Module können in jeden Steckplatz des Racks eingebaut werden. (Der erste Steckplatz ist normalerweise für die Versorgungsbaugruppe reserviert.)

#### Austausch im eingeschalteten Zustand

# **A** WARNUNG

### SICHERHEITSFUNKTIONEN KÖNNEN NICHT MEHR AUSGEFÜHRT WERDEN

Versuchen Sie nicht, ein eigensicheres Quantum-Modul im eingeschalteten Zustand auszutauschen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

## Verdrahtungsmethoden

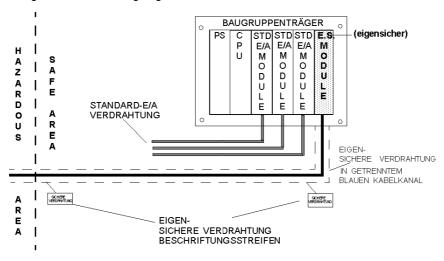
#### Verdrahtung sicherer Bereiche

Die eigensichere Verdrahtung zwischen eigensicheren Quantum-Modulen und Feldgeräten in gefährdeten Bereichen muss separat von jeder anderen Verdrahtung vorgenommen werden. Dies kann durch folgende Methoden geschehen.

- Verwenden Sie getrennte blaue Kabelkanäle und Leitungen.
- Verwenden Sie geerdetes Metall oder isolierte Aufteilungen zwischen eigensicheren und nicht eigensicheren Verdrahtungen.
- Sorgen Sie für eine Trennung von 50 mm Abstand zwischen der eigensicheren und nicht eigensicheren Verdrahtung. Bei dieser Methode müssen die eigensicheren und nicht eigensicheren Drähte in getrennten Bündeln fixiert werden, um die erforderliche Trennung aufrechtzuerhalten.

#### Identifikation und Beschriftung

Eigensichere Verdrahtung muss korrekt identifiziert und markiert werden. Für jede eigensichere Verdrahtung muss eine hellblaue Farbcodierung verwendet werden. Der Klemmleisten-Verdrahtungsanschluss an allen eigensicheren Quantum-Modulen ist blau gefärbt, um ihn von allen nicht eigensicheren Modulen zu unterscheiden.


Alle Kabelkanäle, Kabelrinnen und offene Verdrahtungen müssen als "eigensichere Verdrahtung" mit einem Maximalabstand von ca. 7,5 m zwischen den Markierungen markiert werden.

#### Verdrahtungstyp und Erdung

Zum Anschluss an jedes der Eingangs- bzw. Ausgangsklemmenpaare auf der blauen Klemmleiste müssen paarweise verdrillte, abgeschirmte Kabel verwendet werden. Die Leiterstärke kann zwischen AWG 20 und AWG 12 liegen. Die Abschirmung von jeder paarweise verdrillten Leitung muss SPS-seitig direkt an eine der Masseschrauben des Baugruppenträgers aufgelegt werden und am Leitungsende auf Seite des Feldgerätes im gefährdeten Bereich offen sein. Das jedem eigensicheren Quantum-Modul beiliegende Anweisungsblatt enthält ein auf diesen Modultyp anwendbares Verdrahtungsschema.

#### Eigensicheres Verdrahtungsschema

Auf folgendem Schema ist ein eigensicheres Quantum-Modul mit einem getrennten Kabelkanal zur Trennung der externen Verdrahtung im gefährdeten Bereich dargestellt. Dies ist nur eine Möglichkeit einer Feldverdrahtung des Moduls. Bei anderen Methoden wird die eigensichere Verdrahtung gebündelt und im selben Kabelkanal mit den gebündelten, nicht eigensicheren Drähten gelegt, wobei jedes Bündel fixiert und durch einen minimalen Abstand von 5 cm entlang des gesamten Kabelweges getrennt wird.



#### Fragen zur eigensicheren Verdrahtung

Die Informationen zur eigensicheren Verdrahtung sind sehr allgemein gehalten. Es ist nicht beabsichtigt, Installationsanforderungen für spezielle Bereiche abzudecken. Fragen zur eigensicheren Verdrahtung in Bezug auf Ihre speziellen Anforderungen sollten an die aufgelisteten Zulassungsbehörden gerichtet werden.

# Kapitel 52

# 140 All 330 00: Sicheres analoges Eingangsmodul

# Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 All 330 00.

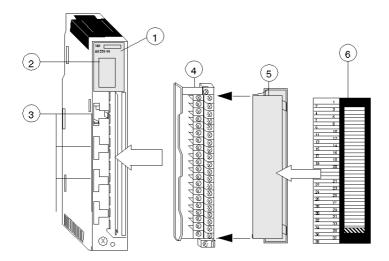
## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  |     |
|------------------------|-----|
| Beschreibung           | 540 |
| Anzeigen               | 541 |
| Verdrahtungsschemata   | 542 |
| Kenndaten              | 552 |
| Adressierung           | 555 |
| Parameterkonfiguration | 558 |

### Beschreibung

#### **Funktion**

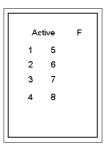

Das eigensichere analoge Eingangsmodul Quantum 140 All 330 00 bildet eine Schnittstelle mit 8 eigensicheren analogen Eingängen, die pro Modulsbasis als RTD/Widerstand oder Thermoelement/Millivolt-Eingänge per Software konfiguriert werden können.

Wenn es als RTD/Widerstand-Eingangsmodul konfiguriert wurde, unterstützt es 100W, 200W, 500W und 1000W Platin- (Amerik. oder Europäisch) und Nickel-Sensoren. Das Modul ermöglicht auch jede Mischung und Kombination von Sensortyp oder Widerstand-Eingängen, die über die Software konfiguriert werden können.

Wenn es als Thermoelement/Millivolt-Eingangsmodul konfiguriert ist, erkennt es Thermoelemente des Typs B, J, K, E, R, S und T. Das Modul ermöglicht auch jede Mischung und Kombination von Thermoelement oder Millivolt-Eingängen, die über die Software konfiguriert werden können.

#### **Abbildung**

Die folgende Abbildung zeigt das eigensichere Modul 140 All 330 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

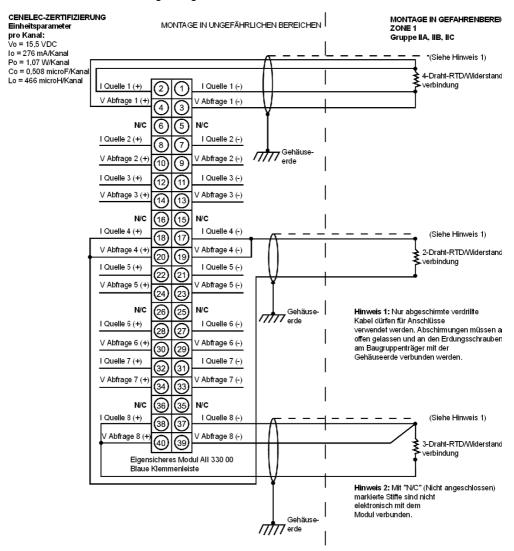
## **Anzeigen**

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 All 330 00.



### **Beschreibung**

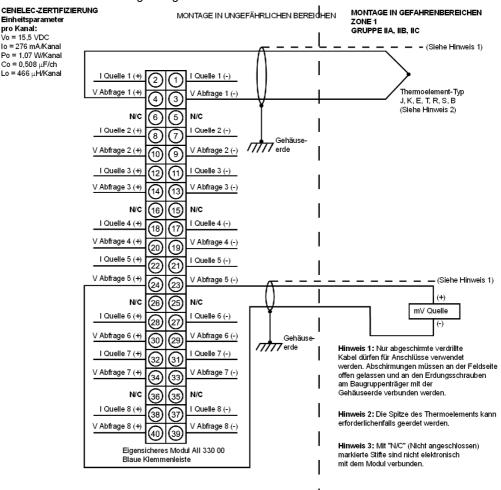

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 All 330 00.

| LEDs  | Farbe | Leuchtet, wenn eingeschaltet                                                         |
|-------|-------|--------------------------------------------------------------------------------------|
| Aktiv | Grün  | Mit der Steuerung kommunizieren                                                      |
| F     | Rot   | Drahtbruch (4 nur 20 mA), außerhalb des Messbereichs oder Kurzschluss an jedem Kanal |
| 1 8   | Rot   | Drahtbruch, außerhalb des Messbereichs oder Kurzschluss am angezeigten Kanal         |

### Verdrahtungsschemata

### Cenelec-zugelassene Verdrahtungsschemata

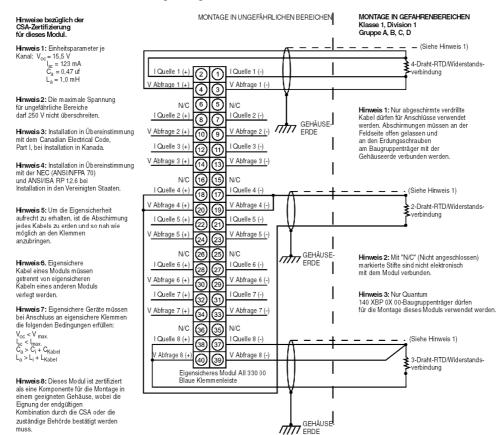
Es folgt ein Cenelec-zugelassenes Verdrahtungsschema für dieses Modul, das mit einer RTD/Widerstands-Verbindung konfiguriert ist.



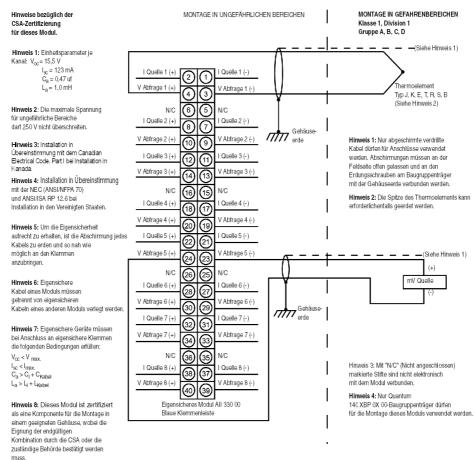

Es folgt ein Cenelec-zugelassenes Verdrahtungsschema für dieses Modul, das mit einer Thermoelement-Verbindung konfiguriert ist.

pro Kanal:

Vo = 15.5 VDC Io = 276 mA/Kanal


Co =  $0,508 \mu F/ch$ Lo = 466 uH/Kanal




543 35010518 09/2020

### CSA-zugelassene Verdrahtungsschemata

Es folgt ein CSA-zugelassenes Verdrahtungsschema für dieses Modul, das mit einer RTD/Widerstands-Verbindung konfiguriert ist.



# Es folgt ein CSA-zugelassenes Verdrahtungsschema für dieses Modul, das mit einer Thermoelement-Verbindung konfiguriert ist.



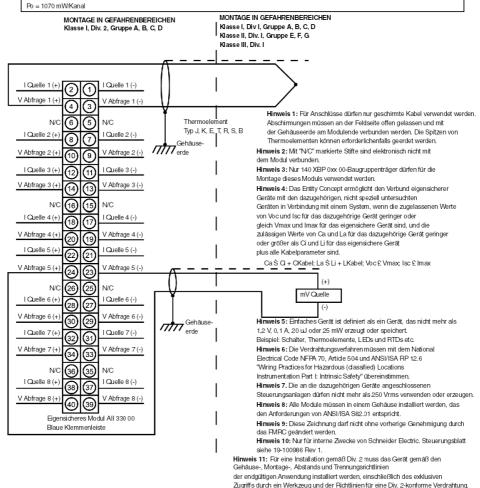
#### FM-zugelassene Verdrahtungsschemata

Es folgt ein FM-zugelassenes Verdrahtungsschema für dieses als eine RTD/Widerstands-Verbindung konfiguriertes Modul.

#### Hinweise bezüglich der FM-Zertifizierung Dieses eigensichere Feldgerät muss Hinweis 5 entsprechen oder FM-zugelassen sein, wobei das in Hinweis 4 beschriebene Entity Concept für den Anschluss an RTD/TC-Eingangsmodule mit den unten aufgeführten Concept-Parametern geeignet sein muss. Die Parameter der Einheit gelten je Kanal. Voc = 15.5 VDC Isc = 276 mA/Kana Ca = 500 nf/Kanal La = 0.3 mH/KanalPo = 1070 mW/Kanal MONTAGE IN GEFAHRENBEREICHEN MONTAGE IN GEFAHRENBEREICHEN Klasse I, Div. 2, Gruppe A, B, C, D Klasse I, Div I, Gruppe A, B, C, D Klasse II, Div. I, Gruppe E, F, G Klasse III, Div. I Hinweis 1: Für Anschlüsse dürfen nur geschirmte Kabel verwendet werden. Abschirmungen müssen an der Feldseite offen gelassen und mit der Gehäuseerde am Modulende verbunden werden. Hinweis 2: Mit "N/C" markierte Stifte sind elektronisch nicht mit V Abfrage 1 V Abfrage 1 (-) dem Modul verbunden. 4-Draht-Hinweis 3: Nur 140 XBP 0xx 00-Baugruppenträger dürfen für die RTD/Widerstands-Montage dieses Moduls verwendet werden. verbinduna I Quelle 2 (+ l Quelle 2 (-) Gehäuse-Hinweis 4: Das Entity Concept ermöglicht den Verbund eigensicherer V Abfrage 2 (+) V Abfrage 2 (-) erde Geräte mit den dazugehörigen, nicht speziell untersuchten Geräten in Verbindung mit einem System, wenn die zugelassenen Werte LOuelle 3/+ LQuelle 3 (-) von Voc und Isc für das dazugehörige Gerät geringer oder gleich Vmax und Imax für das eigensichere Gerät sind, und die V Abfrage 3 (+ V Abfrage 3 (-) zulässigen Werte von Ca und La für das dazugehörige Gerät geringer oder größer als Ci und Li für das eigensichere Gerät (15 (16) plus alle Kabelparameter sind. LQuelle 4 (+ I Quelle 4 (-) Ca S Ci + CKabel; La S Li + LKabel; Voc £ Vmax; Isc £ Imax V Abfrage 4 (+ V Abfrage 4 (-) Quelle 5 (-) I Quelle 5 (+ 2-Draht-Hinweis 5: Finfaches Gerät ist definiert als ein Gerät, das nicht mehr als V Abfrage 5 (+ V Abfrage 5 (-) RTD/Widerstands-1.2 V. 0.1 A. 20 uJ oder 25 mW erzeugt oder speichert. Beispiel: Schalter, Thermoelemente, LEDs und RTDs etc. verbindung (26) (25 Hinweis 6: Die Verdrahtungsverfahren müssen mit dem National I Quelle 6 (+) I Quelle 6 (-) Electrical Code NFPA 70, Article 504 und ANSI/ISA RP 12.6 Gehäuse "Wiring Practices for Hazardous (classified) Locations erde V Abfrage 6 (+) V Abfrage 6 (-) Instrumentation Part I: Intrinsic Safety" übereinstimmen. Hinweis 7: Die an die dazugehörigen Geräte angeschlossenen Quelle 7 (-) I Quelle 7 (+ Steuerungsanlagen dürfen nicht mehr als 250 Vrms verwenden oder erzeugen. Hinweis 8: Alle Module müssen in einem Gehäuse installiert werden, das V Abfrage 7 (+ V Abfrage 7 (-) den Anforderungen von ANSI/ISA S82.01 entspricht. Hinweis 9: Diese Zeichnung darf nicht ohne vorherige Genehmigung (36) (35) durch das FMRC geändert werden. I Quelle 8 (+) I Quelle 8 (-) (38) Hinweis 10: Nur für interne Zwecke von Schneider Electric. Steuerblatt , siehe 19-100986 Rev.D. Abfrage 8 (+) V Abfrage 8 (-) (39) Eigensicheres Modul All 330 00 Blaue Klemmenleiste 3-Draht-Hinweis 11: Für eine Installation gemäß Div. 2 muss das Gerät gemäß den RTD/Widerstands-verbindung Gehäuse-, Montage-, Abstands- und Trennungsrichtlinien der endgültigen Anwendung installiert werden, einschließlich des exklusiven Zugriffs durch ein Werkzeug und der Richtlinien für eine Gehäuse

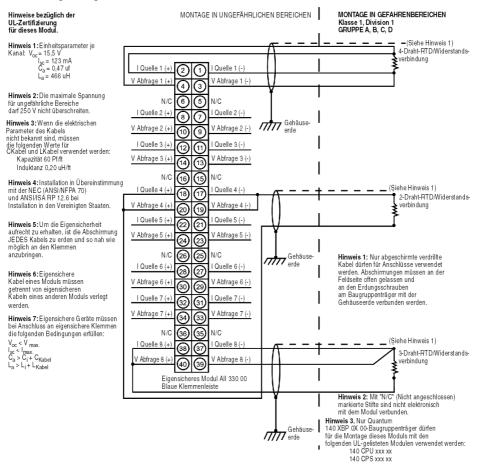
546 35010518 09/2020

Divi. 2-konforme Verdrahtung.

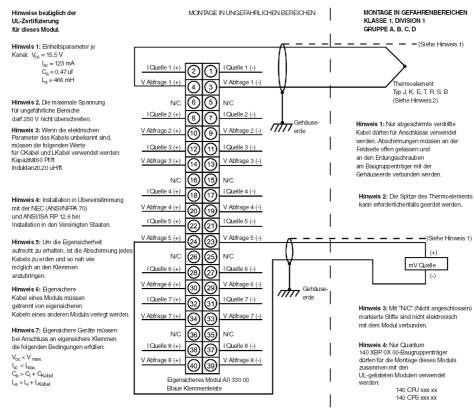

///// erde

## Es folgt ein FM-zugelassenes Verdrahtungsschema für dieses Modul, das mit einer Thermoelement-Verbindung konfiguriert ist.

#### Hinweise bezüglich der FM-Zertifizierung


Dieses eigensichere Gerät muss Hinweis 5 entsprechen oder FM-zugelassen sein, wobei das in Hinweis 4 beschriebene Entity Concept für den Anschluss an eigensichere RTD/TC-Eingangsmodule mit den unten aufgeführten Concept-Parametern geeignet sein muss. Die Parameter der Einheit gelten je Kanal. Voc = 15,5 VDC lsc = 276 mA/Kanal

Ca = 500 nf/Kanal La = 0,3 mH/Kanal




### **UL-zugelassene Verdrahtungsschemata**

Es folgt ein UL-zugelassenes Verdrahtungsschema für dieses mit einer RTD/Widerstands-Verbindung konfigurierte Modul.



## Es folgt ein UL-zugelassenes Verdrahtungsschema für dieses Modul, das mit einer Thermoelement-Verbindung konfiguriert ist.



#### Feldverdrahtung

Die Feldverdrahtung zum Modul muss aus getrennten, abgeschirmten und paarweise verdrillten Drähten bestehen. Ein akzeptabler Drahtquerschnitt muss zwischen AWG 20 und AWG 12 liegen. Bei einer 2-Draht Feldkonfiguration dient die maximale Felddrahtlänge als Funktion der erforderlichen Genauigkeit. Die Verdrahtung zwischen dem Modul und dem eigensicheren Feldgerät muss nach eigensicheren Verdrahtungsmethoden erfolgen, um die Übertragung unzulässig hoher Energien in den gefährdeten Bereich zu vermeiden.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

### RTD/Widerstand-Eingangsverdrahtung

Wenn das universale Eingangsmodul als RTD/Widerstand-Eingangsmodul konfiguriert ist, beträgt die maximale Drahtlänge (Abstand zum Sensor) einer 3- oder 4-Draht Konfiguration 200 Meter.

### Thermoelement/Millivolt-Eingangsverdrahtung

Wenn das Modul als Thermoelement/Millivolt-Eingangsmodul konfiguriert ist, darf die Summe der Thermoelementquellen- oder Spannungsquellen-Impedanz und des Drahtwiderstands 200 Ohm für die angegebenen Genauigkeit nicht überschreiten.

#### Festgelegtes Verdrahtungssystem

Das eigensichere analoge Eingangsmodul Quantum140 All 330 00 ist ausgelegt für ein festgelegtes Verdrahtungssystem, wobei die Feldverbindungen zu einer blauen, 40-Pin-Klemmenleiste mit festgelegter Position hergestellt werden, die in das Modul eingebaut wird.

### Klemmenleistenfarbe und Codierung

Die Feldverdrahtungs-Klemmenleiste des Moduls 140 XTS 332 00 weist eine blaue Farbcodierung auf, um sie als eigensicheren Anschluss zu identifizieren.

Die Klemmenleiste ist codiert, um zu verhindern, dass ein falscher Steckverbinder am Modul angebracht wird. Die folgende Tabelle gibt einen Überblick über diese Codierungen.

| Modulklasse | Teilenummer des<br>Moduls | Modulcodierung | Klemmenleisten-<br>Codierung |
|-------------|---------------------------|----------------|------------------------------|
| Eigensicher | 140 AII 330 00            | CDF            | ABE                          |

### Kenndaten

### Kenndaten des RTD/Widerstand-Moduls

Es folgen die Kenndaten für das als eigensicheres RTD/Widerstand-Eingangsmodul konfigurierte Modul Quantum 140 All 330 00:

| Anzahl Kanäle                                                       | 9 Finaënas                                                               |
|---------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                     | 8 Eingänge                                                               |
| RTD-Typen (konfigurierbar)                                          |                                                                          |
| Platin (Amerik. und<br>Europäisch) - PT100, PT200,<br>PT500, PT1000 | -200 °C bis +850 °C                                                      |
| Nickel – N100, N200, N500,<br>N1000                                 | -60 °C bis +180 °C                                                       |
| Messstrom                                                           |                                                                          |
| PT100, PT200, N100, N200<br>PT500, PT1000, N500,<br>N1000           | 2,5 mA 0,5 mA                                                            |
| Eingangsimpedanz                                                    | >10M Ohm                                                                 |
| Linearität                                                          | +/-0,003% vom Skalenendwert (0 60 °C)                                    |
| Auflösung                                                           | 12 Bits Plus-Vorzeichen (0,1 °C)                                         |
| Absolute Genauigkeit                                                | +/- 0,5 °C (25 °C) +/- 0,9 °C (0 60 °C)                                  |
| Genauigkeitsfehler bei 25 °C                                        | Typisch: +/- 0,05 % vom Skalenendwert Maximum: +/-0,1% vom Skalenendwert |
| Potentialtrennung                                                   |                                                                          |
| Kanal-Kanal                                                         | Keine                                                                    |
| Kanal-Bus                                                           | > 100 dB bei 50/60 Hz                                                    |
| Eingangsfilter                                                      | 1780 VAC bei 47-63 Hz oder 2500 VDC für<br>1 min.                        |
| Aktualisierungsdauer (alle Kai                                      | näle)                                                                    |
| 3-Draht 2- oder 4-Draht                                             | 1,35 s<br>750 ms                                                         |
| Maximale Stromaufnahme                                              | 400 mA                                                                   |
| Verlustleistung                                                     | 2 W                                                                      |
| Externe Spannung                                                    | Für dieses Modul nicht erforderlich                                      |
| Fehlererkennung                                                     | Außerhalb des Messbereichs oder<br>Drahtbruch                            |
| Austausch im eingeschalteten Zustand                                | Nicht zulässig bei eigensicheren Standards                               |
| Sicherungen                                                         | Intern - dem Benutzer nicht zugänglich                                   |

### Kenndaten des Thermoelement/Millivolt-Moduls

In der folgenden Tabelle sind Kenndaten des Thermoelement/Millivolt-Moduls aufgeführt.

| Thermoelementtypen und -bereiche  Typen J K E T S R B  Bereiche (°C) -210 +760 -270 +1370 -270 +1000 -270 +1665 -50 +1665 +130 +1820  Millivoltbereiche  -100 mV +25 mV* * Für diese Bereiche kann die Erkennung von offenen Stromkreisen deaktiviert werden  Thermoelement-Stromkreis-Widerstand/Max. Quellen-Widerstand/Max. Quellen-Widerstand  Eingangsimpedanz  -1M Ohm  Eingangsfilter  Einzelner Tiefpass bei Nennfrequenz 20 Hz, plus Sperrfilter bei 50/60 Hz  Normale Rauschunterdrückung  Kaltstellenkompensation  Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T empfohlen.  Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/- 100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Typen J, K, E, T (siehe Hinweis 4)  +/-2°C +/- 0,1 % der Messung                                                             |                                    |                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Typen J K E T S R B  Bereiche (°C) -210 +760 -270 +1370 -270 +1000 -50 +1665 -50 +1665 +130 +1820  Millivoltbereiche  -100 mV +100 mV* -25 mV +25 mV* * Für diese Bereiche kann die Erkennung von offenen Stromkreisen deaktiviert werden  Thermoelement-Stromkreis-Widerstand/Max. Quellen-Widerstand  Eingangsimpedanz  -1M Ohm  Einzelner Tiefpass bei Nennfrequenz 20 Hz, plus Sperrfilter bei 50/60 Hz  Normale Rauschunterdrückung  Mindestens 120 dB bei 50 oder 60 Hz  Normale Rauschunterdrückung  Mindestens 120 dB bei 50 oder 60 Hz  Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und Tempfohlen.  Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/- 100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit) Typen J, K, E, T (siehe Hinweis 4)  */-2°C +/- 0,1 % der Messung | Anzahl Kanäle                      | 8 Eingänge                                                                                                                                                                                                                                                                                                                                          |
| -270 +1370 -270 +1000 -270 +400 -50 +1665 -50 +1665 +130 +1820  Millivoltbereiche  -100 mV +100 mV* -25 mV +25 mV* * Für diese Bereiche kann die Erkennung von offenen Stromkreisen deaktiviert werden  Thermoelement-Stromkreis-Widerstand/Max. Quellen-Widerstand Eingangsimpedanz  Eingangsfilter  Einzelner Tiefpass bei Nennfrequenz 20 Hz, plus Sperrfilter bei 50/60 Hz  Normale Rauschunterdrückung  Mindestens 120 dB bei 50 oder 60 Hz  Normale Rauschunterdrückung  Kaltstellenkompensation  Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und Tempfohlen.  Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/-100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit) Typen J, K, E, T (siehe Hinweis +/-2°C +/- 0,1 % der Messung                                               | Thermoelementtypen und -berei      | che                                                                                                                                                                                                                                                                                                                                                 |
| -25 mV +25 mV* * Für diese Bereiche kann die Erkennung von offenen Stromkreisen deaktiviert werden  Thermoelement-Stromkreis- Widerstand/Max. Quellen- Widerstand  Eingangsimpedanz  Eingangsfilter  Einzelner Tiefpass bei Nennfrequenz 20 Hz, plus Sperrfilter bei 50/60 Hz  Normale Rauschunterdrückung  Kaltstellenkompensation  Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern- Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T empfohlen.  Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/- 100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit) Typen J, K, E, T (siehe Hinweis 2)                                                                                                                                                                                                                                         | Typen J K E T S R B                | -270 +1370<br>-270 +1000<br>-270 +400<br>-50 +1665<br>-50 +1665                                                                                                                                                                                                                                                                                     |
| Widerstand/Max. Quellen-Widerstand  Eingangsimpedanz >1M Ohm  Eingangsfilter Einzelner Tiefpass bei Nennfrequenz 20 Hz, plus Sperrfilter bei 50/60 Hz  Normale Rauschunterdrückung Mindestens 120 dB bei 50 oder 60 Hz  Kaltstellenkompensation Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T empfohlen.  Auflösung  Thermoelementbereiche Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche Bereich +/-100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis 2)                                                                                                                                                                                                                                                                                                                 | Millivoltbereiche                  | -25 mV +25 mV* * Für diese Bereiche kann die Erkennung von offenen Stromkreisen deaktiviert                                                                                                                                                                                                                                                         |
| Eingangsfilter  Einzelner Tiefpass bei Nennfrequenz 20 Hz, plus Sperrfilter bei 50/60 Hz  Normale Rauschunterdrückung  Mindestens 120 dB bei 50 oder 60 Hz  Kaltstellenkompensation  Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T empfohlen.  Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/- 100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis +/-2°C +/- 0,1 % der Messung 2)                                                                                                                                                                                                                                                                                                                                            | Widerstand/Max. Quellen-           | Max. 200 Ohm für gemessene Genauigkeit                                                                                                                                                                                                                                                                                                              |
| plus Sperrfilter bei 50/60 Hz  Normale Rauschunterdrückung  Mindestens 120 dB bei 50 oder 60 Hz  Kaltstellenkompensation  Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T empfohlen.  Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/-100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis +/-2°C +/- 0,1 % der Messung 2)                                                                                                                                                                                                                                                                                                                                                                                                        | Eingangsimpedanz                   | >1M Ohm                                                                                                                                                                                                                                                                                                                                             |
| Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Wabsolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis 2)  Die interne Kaltstellenkompensation arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T empfohlen.  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/-100 mV, 3,05 Mikrovolt (16 Bit)  Bereich +/-25 mV, 0,76 Mikrovolt (16 Bit)  Typen J, K, E, T (siehe Hinweis 2)                                                                                                                                                                                                                                                                                                                                                                                     | Eingangsfilter                     |                                                                                                                                                                                                                                                                                                                                                     |
| arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T empfohlen.  Auflösung  Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/-100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Normale Rauschunterdrückung        | Mindestens 120 dB bei 50 oder 60 Hz                                                                                                                                                                                                                                                                                                                 |
| Thermoelementbereiche  Wahlmöglichkeiten: 1 °C (Standard) 0,1 °C 1 °F 0,1 °F  Millivoltbereiche  Bereich +/- 100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis +/-2°C +/- 0,1 % der Messung 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kaltstellenkompensation            | arbeitet im Bereich von 0 60 °C (Fehler sind bei den Genauigkeitskenndaten einbezogen). Die Anschlusstür muss geschlossen sein. Eine Fern-Kaltstellenkompensation kann erzielt werden, indem ein Thermoelement (das die externe Temperatur der Lötstelle misst) an Kanal 1 angeschlossen wird. Für optimale Genauigkeit werden die Typen J, K und T |
| or F 0,1 or F  Millivoltbereiche  Bereich +/-100 mV, 3,05 Mikrovolt (16 Bit) Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis +/-2°C +/- 0,1 % der Messung 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auflösung                          |                                                                                                                                                                                                                                                                                                                                                     |
| Bereich +/- 25 mV, 0,76 Mikrovolt (16 Bit)  Absolute Genauigkeit des Thermoelements (siehe Hinweis 1)  Typen J, K, E, T (siehe Hinweis 2)  +/-2°C +/- 0,1 % der Messung 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thermoelementbereiche              |                                                                                                                                                                                                                                                                                                                                                     |
| Typen J, K, E, T (siehe Hinweis 2) +/-2°C +/- 0,1 % der Messung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Millivoltbereiche                  | 1                                                                                                                                                                                                                                                                                                                                                   |
| 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Absolute Genauigkeit des Therm     | noelements (siehe Hinweis 1)                                                                                                                                                                                                                                                                                                                        |
| Typen S, R, B (siehe Hinweis 3) +/- 4 °C +/- 0,1 % der Messung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Typen J, K, E, T (siehe Hinweis 2) | +/-2°C +/- 0,1 % der Messung                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Typen S, R, B (siehe Hinweis 3)    | +/- 4 °C +/- 0,1 % der Messung                                                                                                                                                                                                                                                                                                                      |

| Absolute Genauigkeit in Millivolt                    |                                                     |
|------------------------------------------------------|-----------------------------------------------------|
| bei 25 °C                                            | +/- 20 Mikrovolt +/- 0,1 % der Messung              |
| Genauigkeitsabweichung<br>bezogen auf die Temperatur | 0,15 Mikrovolt/°C + 0,0015 % der<br>Messung/°C max. |
| Potentialtrennung                                    |                                                     |
| Kanal-Kanal                                          | Keine                                               |
| Kanal-Bus                                            | 1780 VAC bei 47-63 Hz oder 2500 VDC für<br>1 min.   |
| Aktualisierungsdauer                                 | 1 Sek. (alle Kanäle)                                |
| Fehlererkennung                                      | Außerhalb des Messbereichs oder<br>Drahtbruch       |
| Maximale Stromaufnahme                               | 400 mA                                              |
| Verlustleistung                                      | 2 W                                                 |
| Externe Spannung                                     | Für dieses Modul nicht erforderlich                 |
| Austausch im eingeschalteten Zustand                 | Nicht zulässig bei eigensicheren Standards          |
| Sicherungen                                          | Intern - dem Benutzer nicht zugänglich              |

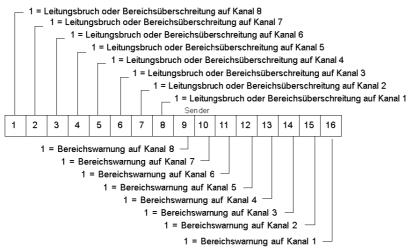
**HINWEIS:** 1. Absolute Genauigkeit schließt auch Fehler der internen Kaltstellenkompensation, der Thermoelement-Kennlinienkrümmung, des Offset plus Verstärkung bei einer Modultemperatur von 0 ... 60 °C ein. Benutzerspezifische Thermoelement-Fehler nicht einbezogen.

2. Für die Typen J und K müssen 1,5 °C Ungenauigkeit für Temperaturen unter -100 °C hinzugerechnet werden.

Typ B kann nicht für Temperaturen unter 130 °C eingesetzt werden.

4. Alle Thermoelementbereiche haben eine Thermoelement-Unterbrechungserkennung und einen Ausgang für positive Messwerte. Dies führt zu einer Messung von 7FFFh oder 32767 Dezimalzahlen, wenn eine Thermoelement-Unterbrechung erkannt wird.

### Adressierung


#### Flache Adressierung

Dieses Modul benötigt zehn aufeinanderfolgende 16-Bit-Eingangswörter (%IW), davon acht für Eingangsdaten, eines für den Kanalstatus und eines für die Temperatur der dezentralen kalten Verbindung. Die Formate für die Datenwörter werden im Folgenden gezeigt.

| Wort 1 | Dat | ten vo | on Ka | nal 1 |   |  |  |  |  |
|--------|-----|--------|-------|-------|---|--|--|--|--|
|        |     |        |       |       |   |  |  |  |  |
|        |     |        |       |       |   |  |  |  |  |
|        |     |        |       |       | : |  |  |  |  |
|        |     |        |       |       | • |  |  |  |  |
| Wort 8 | Dat | ten vo | on Ka | nal 8 |   |  |  |  |  |
|        |     |        |       |       |   |  |  |  |  |

Die folgende Abbildung zeigt das Register für das 9. Wort.

Wort 9 Eingangs-Statuswort



Die folgende Abbildung zeigt das Register für das 10. Wort.

| Wort 10 | Ter | Temperatur der dezentralen kalten Verbindung |  |  |  |  |  |  |  |  |  |  |
|---------|-----|----------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|         |     |                                              |  |  |  |  |  |  |  |  |  |  |

### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 All 330 00:

| Punkt                               | E/A-Objekt        | Kommentar                                    |  |  |  |  |  |
|-------------------------------------|-------------------|----------------------------------------------|--|--|--|--|--|
| Eingang 1                           | %IW[\b.e\]r.m.1   | Wert                                         |  |  |  |  |  |
|                                     | %I[\b.e\]r.m.1.1  | Bereichsüberschreitung                       |  |  |  |  |  |
|                                     | %I[[\b.e\]r.m.1.2 | Bereichswarnung                              |  |  |  |  |  |
|                                     | •••               |                                              |  |  |  |  |  |
| Eingang 8                           | %IW[\b.e\]r.m.8   | Wert                                         |  |  |  |  |  |
|                                     | %I[\b.e\]r.m.8.1  | Bereichsüberschreitung                       |  |  |  |  |  |
|                                     | %I[\b.e\]r.m.8.2  | Bereichswarnung                              |  |  |  |  |  |
| Statuswort                          | %IW[\b.e\]r.m9    | Status der Eingangskanäle                    |  |  |  |  |  |
| Temperatur der kalten<br>Verbindung | %IW[\b.e\]r.m.10  | Temperatur der dezentralen kalten Verbindung |  |  |  |  |  |

Verwendete Abkürzungen: **b** = Bus, **e** = Gerät (E/A-Station), **r** = Rack, **m** = Modulsteckplatz.

#### **IODDT**

Das Eingangsmodul 140 All 330 00 verwendet den IODDT T ANA IN VWE:

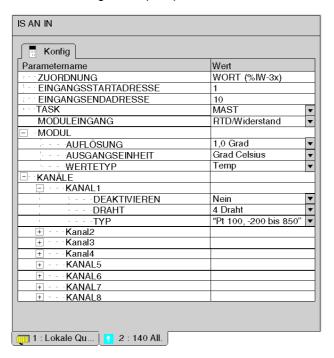
| IODDT-Name   | Obj | ekt            | Dat | tentyp   | Na | me              |
|--------------|-----|----------------|-----|----------|----|-----------------|
| T_ANA_IN_VWE | %C  | :H[\b.e\]r.m.c | ΑN  | A_IN_VWE | be | nutzerdefiniert |
|              |     | %IWr.m.c.0     |     | Int      |    | .VALUE          |
|              |     | %lr.m.c.1      |     | Bool     |    | .ERROR          |
|              |     | %lr.m.c.2      |     | Bool     |    | .WARNING        |


Verwendete Abkürzungen:  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz,  $\mathbf{c}$  = Kanal,  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (E/A-Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

**HINWEIS:** In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp **Bool** für %I und %Q verwendet.

### Statusbyte für E/A-Zuordnung

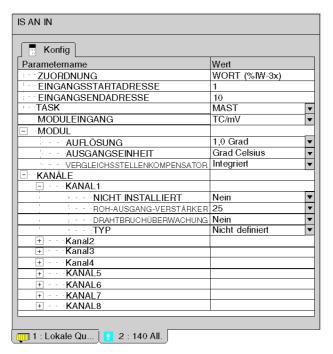

Das Statusbyte für die E/A-Zuordnung wird von dem Eingangsmodul 140 All 330 00 wie folgt verwendet.



### Parameterkonfiguration

### Parameter- und Standardwerte (RTD)

Fenster der Parameterkonfiguration (RTD)




| Name                                                                                | Standardwert  | Optionen                             | Beschreibung                                                                   |
|-------------------------------------------------------------------------------------|---------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                           | WORT (%IW-3X) | -                                    |                                                                                |
| Eingangsstartadresse                                                                | 1             | -                                    |                                                                                |
| Eingangsendadresse                                                                  | 10            | -                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST          | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden,<br>wenn sich das Modul nicht<br>im lokalen Modus befindet. |

| Name            | Standardwert          | Optionen                                                                                                                                                                                                                                                              | Beschreibung                                                                            |
|-----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Moduleingang    | RTD/Widerstand        | TC/mV                                                                                                                                                                                                                                                                 | Für Moduleingang =<br>TC/mV siehe <i>Parameter-und Standardwerte (TC),</i><br>Seite 560 |
| Modul           | ·                     | ·                                                                                                                                                                                                                                                                     |                                                                                         |
| Auflösung       | 1,0 Grad              | 0,1 Grad                                                                                                                                                                                                                                                              |                                                                                         |
| Ausgangseinheit | Grad Celsius          | Fahrenheit                                                                                                                                                                                                                                                            |                                                                                         |
| Wertetyp        | Temp                  | Rohwert                                                                                                                                                                                                                                                               |                                                                                         |
| Kanal 1         |                       |                                                                                                                                                                                                                                                                       |                                                                                         |
| Deaktivieren    | Nein                  | Ja                                                                                                                                                                                                                                                                    |                                                                                         |
| Draht           | 4-Draht               | 2-Draht<br>3-Draht                                                                                                                                                                                                                                                    |                                                                                         |
| Тур             | "Pt100, -200 bis 850" | "Pt200, -200 bis 850" "Pt500, -200 bis 850" "Pt1000, -200 bis 850" "Ni 100, -60 bis 180" "Ni500, -60 bis 180" "Ni500, -60 bis 180" "Ni1000, -60 bis 180" "R, 0 bis 766, 66 Ohm" "R, 0 bis 4000 Ohm" "Apt100,-100 bis 450" "Apt500,-100 bis 450" "Apt500,-100 bis 450" |                                                                                         |
| Kanal2-Kanal8   |                       |                                                                                                                                                                                                                                                                       | Siehe Kanal1                                                                            |

### Parameter- und Standardwerte (TC)

Parameterkonfigurationsfenster (TC)



| Name                   | Standardwert    | Optionen                                                                                                                                                         | Beschreibung                                                                                                                    |
|------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Moduleingang           | RTD/Widerstand  | TC/mV                                                                                                                                                            | Für Moduleingang<br>= RTD/Widerstand<br>siehe <i>Parameter-</i><br><i>und Standardwerte</i><br>( <i>RTD</i> ), <i>Seite 558</i> |
| Modul                  |                 |                                                                                                                                                                  |                                                                                                                                 |
| Auflösung              | 1,0 Grad        | 0,1 Grad                                                                                                                                                         |                                                                                                                                 |
| Ausgangseinheit        | Grad Celsius    | Fahrenheit                                                                                                                                                       |                                                                                                                                 |
| Kaltstellenkompensator | Integriert      | Kanal 1                                                                                                                                                          |                                                                                                                                 |
| Kanal 1                |                 |                                                                                                                                                                  |                                                                                                                                 |
| Nicht belegt           | Nein            | Ja                                                                                                                                                               |                                                                                                                                 |
| Roh-Ausgangsverstärker | 25              | 100                                                                                                                                                              |                                                                                                                                 |
| Drahtbruchüberwachung  | Nein            | Ja                                                                                                                                                               |                                                                                                                                 |
| Тур                    | Nicht definiert | J, Verstärkung = 25<br>K, Verstärkung = 25<br>E, Verstärkung = 25<br>T, Verstärkung = 100<br>S, Verstärkung = 100<br>R, Verstärkung = 100<br>B,Verstärkung = 100 |                                                                                                                                 |
| Kanal2-Kanal8          |                 |                                                                                                                                                                  | Siehe Kanal1                                                                                                                    |

35010518 09/2020

## Kapitel 53

## 140 All 330 10: Sicheres analoges Eingangsmodul

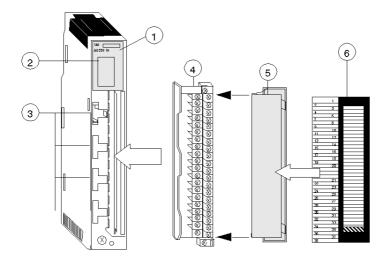
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 All 330 10.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 564   |
| Anzeigen               | 565   |
| Verdrahtungsschemata   | 566   |
| Kenndaten              | 571   |
| Adressierung           | 572   |
| Parameterkonfiguration | 574   |


### Beschreibung

#### **Funktion**

Das eigensichere Stromeingangsmodul Quantum 140 All 330 10 verfügt über 8 eigensichere analoge Eingänge, die per Software konfiguriert werden können. Das Modul akzeptiert 0 ... 20 mA, 0 ... 25 mA- und 4 ... 20 mA Eingänge. Das Modul ermöglicht jede Mischung und Kombination von Stromeingangs-Messbereichen, die über die Software konfiguriert werden können. Das Modul liefert Strom für eigensichere Transmitter, die sich in gefährdeten Bereichen befinden.

### **Abbildung**

Die folgende Abbildung zeigt das eigensichere Modul 140 All 330 10 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

## **Anzeigen**

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 All 330 10.

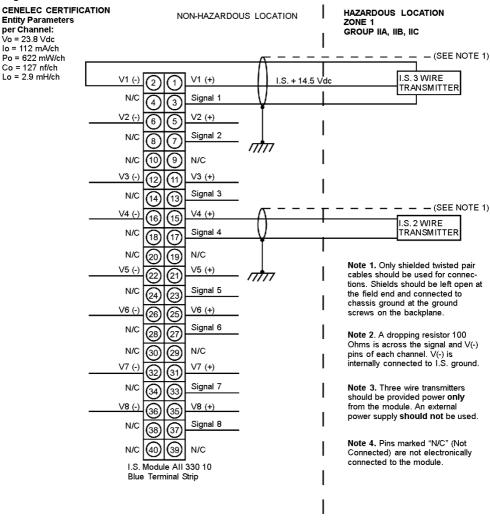


### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 AlI 330 10.

| LEDs  | Farbe | Leuchtet, wenn eingeschaltet                                               |
|-------|-------|----------------------------------------------------------------------------|
| Aktiv | Grün  | Mit der Steuerung kommunizieren                                            |
| F     | Rot   | Drahtbruch (4 nur 20 mA) oder außerhalb des<br>Messbereichs an jedem Kanal |
| 1 8   | Rot   | Drahtbruch oder außerhalb des Messbereichs am angezeigten Kanal            |

### Verdrahtungsschemata


per Channel:

Vo = 23.8 Vdc Io = 112 mA/ch

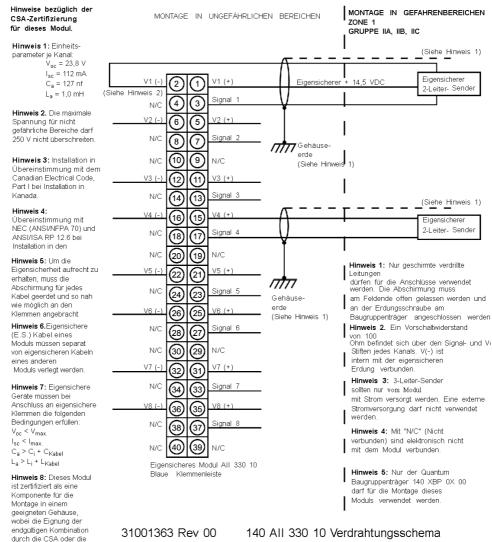
Co = 127 nf/ch

### Cenelec-zugelassene Verdrahtungsschemata

Es folgt ein Cenelec-zugelassenes Verdrahtungsschema für das eigensichere Stromeingangsmodul 140 All 330 10.



31001363 Rev 00


140 All 330 10 Wiring Diagram

566 35010518 09/2020

#### CSA-zugelassenes Verdrahtungsschemata

zuständige Behörde bestätigt werden muss

Es folgt ein CSA-zugelassenes Verdrahtungsschema für dieses Modul.



140 All 330 10 Verdrahtungsschema

567 35010518 09/2020

#### FM-zugelassene Verdrahtungsschemata

Es folgt ein FM-zugelassenes Verdrahtungsschema für dieses Modul.

#### Hinweise bezüglich der FM-Zertifizierung

Dieses eigensichere Gerät muss Hinweis 6 entsprechen oder FM-zugelassen sein, wobei das in Hinweis 5 beschriebene Entity Concept für den Anschluss an eigensichere analoge Stromeingangsmodule mit den unten aufgeführten Concept-Parametern geeignet sein muss. Die Parameter der Einheit gelten je Kanal. Voc = 23,8 VDC lsc = 112 mA/Kanal

Isc = 112 mA/Kanal Ca = 127 nf/Kanal La = 2,9 mH/Kanal Po = 622 mW/Kanal

MONTAGE IN GEFAHRENBEREICHEN MONTAGE IN GEFAHRENBEREICHEN Klasse I, Div. 2, Gruppe A, B, C, D Klasse I. Div I. Gruppe A. B. C. D Klasse II, Div I, Gruppe E, F, G Klasse III. Div I Eigensicherer + 14,5 VDC bei 25 mA Eigensichere V1 (+) 3-Leiter-Sende Signal 1 3 Hinweis 1: Für Anschlüsse sollten nur geschirmte Kabel verwendet werden V2 (-) V2 (+) 5 Abschirmungen sollten an der Feldseite offen gelassen und mit der Gehäuseerdung am Modulende verbunder werden Signal 2 N/C Gehäuse-Hinweis 2: Mit "N/C" markierte Stifte sind elektronisch nicht mit ///// <sub>erde</sub> dem Modul verbunden. N/C 10 9 N/C Hinweis 3: Nur Baugruppenträger 140 XBP 0xx 00 dürfen für die V3 (-) V3 (+) Montage dieses Moduls verwendet werden. Hinweis 4: Dreiadrige Sender sollten nur vom Modul Signal 3 N/C mit Strom versorgt werden. Es darf keine externe Stromversorgung verwendet werden. 14 V4 (-) V4 (+) Eigensicherer Signal 4 N/C 2-Leiter-Sender (17 Hinweis 5: Das Entity Concept ermöglicht den Verbund eigensicherer Geräte N/C N/C (19) Geräte mit den dazugehörigen, nicht speziell untersuchten V5 (-) V5 (+) Geräten in Verbindung mit einem System, wenn die zugelassenen Werte Gehäusevon Voc und Isc für das dazugehörige Gerät geringer oder ///// erde N/C Signal 5 gleich Vmax und Imax für das eigensichere Gerät sind und die zulässigen Werte von Ca und La für das dazugehörige Gerät geringer V6 (+) V6 (-) oder größer als Ci und Li für das eigensichere Gerät plus aller Kabelparameter sind Signal 6 N/C Ca ≥ Ci + CKabel: La ≥ Li + LKabel: Voc ≤ Vmax: Isc ≤ Imax Hinweis 6: Einfaches Gerät ist definiert als en Gerät, dass nicht mehr als N/C N/C 1.2 V. 0.1 A. 20 uJ oder 25 mW generiert oder speichert. V7 (-) V7 (+) Beispiel: Schalter, Thermoelemente, LEDs und RTDs etc Hinweis 7. Die Verdrahtungsverfahren müssen mit dem National N/C Signal 7 Electrical Code NFPA 70, Article 504 und ANSI/ISA RP 12.6 V8 (-) V8 (+) "Wiring Practices for Hazardous (classified) Locations Instrumentation Part I: Intrinsic Safety" übereinstimmen Signal 8 Hinweis 8. Die an die dazugehörigen Geräte angeschlossenen Steuerungsanlagen dürfen nicht mehr als 250 Vrms verwenden oder generieren. N/C (39) Hinweis 9: Alle Module müssen in einem Gehäuse installiert werden dass den Anforderungen von ANSI/ISA S82.01 entspricht. Eigensicheres Modul All 330 10 Hinweis 10: Diese Zeichnung darf nicht ohne vorherige Genehmigung durch Blaue Klemmenleiste das FMRC geändert werden.

Hinweis 11: For Schneider Electric internal use only. Steuerblatt siehe 19-100986 Rev 1. Hinweis 12: Für eine Installation gemäß Division 2 muss das Gerät gemäß den 31001363 Rev 01 Gehäuse-, Montage-, Abstands- und Trennungsrichtlinien der endgültigen Äpplikation einschließlich dem exklusiven Zugriff 140 All 330 10 Verdrahtungsschema durch ein Werkzeug und den Richtlinien für eine Division 2-konforme Verdrahtung entsprechen.

#### **UL-zugelassenes Verdrahtungsschema**

Es folgt ein UL-zugelassenes Verdrahtungsschema für dieses Modul.



31001363 Rev 00 140 All 330 10 Verdrahtungsschema

#### Feldverdrahtung

Die Feldverdrahtung zum Modul besteht aus getrennten, abgeschirmten und paarweise verdrillten Drähten. Ein akzeptabler Drahtquerschnitt liegt zwischen AWG 20 und AWG 12. Die Verdrahtung zwischen dem Modul und dem eigensicheren Feldgerät muss nach eigensicheren Verdrahtungsmethoden erfolgen, um die Übertragung unzulässig hoher Energien in den gefährdeten Bereich zu vermeiden.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Festgelegtes Verdrahtungssystem

Das eigensichere Stromeingangsmodul Quantum 140 All 330 10 ist ausgelegt für ein festgelegtes Verdrahtungssystem, wobei die Feldverbindungen zu einer blauen, 40-Pin-Klemmenleiste mit festgelegter Position hergestellt werden, die in das Modul eingebaut wird.

#### Klemmenleistenfarbe und Codierung

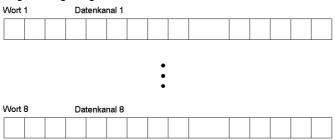
Die Feldverdrahtungs-Klemmenleiste des Moduls 140 XTS 332 00 weist eine blaue Farbcodierung auf, um sie als eigensicheren Anschluss zu identifizieren.

Die Klemmenleiste ist codiert, um zu verhindern, dass der falsche Anschluss am Modul angebracht wird. Die Codierung ist unten angegeben.

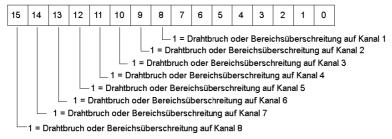
| Modulklasse | Teilenummer des<br>Moduls | Modulcodierung | Klemmenleisten-<br>Codierung |
|-------------|---------------------------|----------------|------------------------------|
| Eigensicher | 140 All 330 10            | CEF            | ABD                          |

### Kenndaten

### Allgemeine Kenndaten


Es folgen die Kenndaten für das eigensichere Quantum-Stromeingangsmodul 140 All 330 10:

| Anzahl Kanäle                            | 8 IN                                                                                                                                               |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Eingangsstrom                            |                                                                                                                                                    |  |  |
| Linearer Messbereich                     | 4 bis 20 mA<br>0 bis 20 mA<br>0 bis 25 mA                                                                                                          |  |  |
| Absolute maximale<br>Eingangsspannung    | 25 mA intern begrenzt                                                                                                                              |  |  |
| Eingangsimpedanz                         | 100 Ohm +/- 0,1 % zwischen V- und Signalklemmen                                                                                                    |  |  |
| Auflösung                                | 4 bis 20 mA, 0 bis 4095 Schritte<br>4 bis 20 mA, 0 bis 16 000 Schritte<br>0 bis 20 mA, 0 bis 20 000 Schritte<br>0 bis 25 mA, 0 bis 25 000 Schritte |  |  |
| Verfügbare Spannung                      | Anschlüsse V+, V-:~ 14,5 VDC bei 25 mA<br>Anschlüsse V+, Signal:~ 13,6 VDC bei 20 mA                                                               |  |  |
| Genauigkeitsfehler bei 25 °C             | Typisch: +/-0,05 % des Skalenendwerts Maximal: +/-0,1 % des Skalenendwerts                                                                         |  |  |
| Linearität                               | + 0,003 % des Skalenendwerts                                                                                                                       |  |  |
| Genauigkeitsabweichung mit<br>Temperatur | Typisch: +/-0,0025 % des Skalenendwerts / °C Maximal: 0,005 % des Skalenendwerts / °C                                                              |  |  |
| Gleichtaktunterdrückung                  | > 100 dB bei 50/60 Hz                                                                                                                              |  |  |
| Eingangsfilter                           | Einpoliger Tiefpass, -3 dB Begrenzung bei 15 Hz, +/- 20 %                                                                                          |  |  |
| Potentialtrennung                        |                                                                                                                                                    |  |  |
| Kanal-Kanal                              | Ohne                                                                                                                                               |  |  |
| Kanal-Bus                                | 1780 VAC bei 47 bis 63 Hz oder 2500 VDC für 1 Min.                                                                                                 |  |  |
| Aktualisierungsdauer                     | 750 ms für alle Kanäle                                                                                                                             |  |  |
| Fehlererkennung                          | Drahtbruch (Modus 4 bis 20 mA)                                                                                                                     |  |  |
| Erforderlicher Busstrom                  | 1,5 A                                                                                                                                              |  |  |
| Verlustleistung                          | 7,5 W                                                                                                                                              |  |  |
| Externe Spannung                         | Nicht erforderlich                                                                                                                                 |  |  |
| Hot-Swapping                             | Nicht zulässig bei eigensicheren Standards                                                                                                         |  |  |
| Sicherungen                              | Intern, nicht zugänglich                                                                                                                           |  |  |


### Adressierung

### Flat-Adressierung

Dieses Modul benötigt neun aufeinanderfolgende 16-Bit-Eingangswörter (%IW), davon acht für Eingangsdaten und eines für den Kanalstatus. Die Formate für die Datenwörter werden im Folgenden gezeigt.



Die folgende Abbildung zeigt das Register für das 9. Wort.



**HINWEIS:** Das Register für das 9. Wort ist der Status der Eingangskanäle. Dieser Status gilt für alle Konfigurationen, die mit PV04 beginnen, und für jede Version (PV) mit Konfiguration 4 - 20 mA. Der Status funktioniert nicht für PV<04 mit 0 - 20 mA- oder 0 - 25 mA-Konfigurationen.

### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 All 030 10:

| Punkt      | E/A-Objekt           | Kommentar                                    |  |
|------------|----------------------|----------------------------------------------|--|
| Eingang 1  | %IW[\b.e\]r.m.1      | Wert  Drahtbruch oder Bereichsüberschreitung |  |
|            | %I[\b.e\]r.m.1.1     |                                              |  |
| •••        |                      |                                              |  |
| Eingang 8  | %IW[\b.e\]r.m.8 Wert |                                              |  |
|            | %I[\b.e\]r.m.8.1     | Drahtbruch oder<br>Bereichsüberschreitung    |  |
| Statuswort | %IW[\b.e\]r.m.9      | Status der Eingangskanäle                    |  |

Verwendete Abkürzungen: b = Bus, e = Gerät (E/A-Station), r = Rack, m = Modulsteckplatz

#### **IODDT**

Das Eingangsmodul 140 All 030 10 verwendet den IODDT  $\mathtt{T}$  ANA IN  $\mathtt{VE}$ :

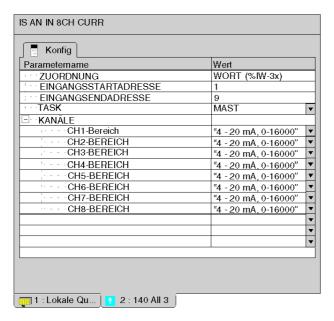
| IODDT-Name  | Objekt          | Datentyp   | Name              |  |
|-------------|-----------------|------------|-------------------|--|
| T_ANA_IN_VE | %CH[\b.e\]r.m.c | ANA_IN_VWE | benutzerdefiniert |  |
|             | %IWr.m.c.0      | Int        | .VALUE            |  |
|             | %lr.m.c.1       | Bool       | .ERROR            |  |

Verwendete Abkürzungen:  $\mathbf{r}$  = Rack,  $\mathbf{m}$  = Modulsteckplatz,  $\mathbf{c}$  = Kanal,  $\mathbf{b}$  = Bus,  $\mathbf{e}$  = Gerät (E/A-Station).

Die Vorgabewerte für Bus und Gerät sind 1, falls nicht anders angegeben, und können weggelassen werden.

**HINWEIS:** In Quantum IODDTs für analoge Module und Expert-Module wird der Datentyp **Bool** für % I und % Q verwendet.

### Statusbyte für E/A-Zuordnung


Das Statusbyte für die E/A-Zuordnung wird von dem Eingangsmodul 140 All 030 10 wie folgt verwendet.



### Parameterkonfiguration

#### Parameter- und Standardwerte

Parameterkonfigurationsfenster



| Name                                                                                   | Standardwert         | Optionen                                                            | Beschreibung                                                                     |
|----------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Zuordnung                                                                              | WORT (%IW-3X)        | -                                                                   |                                                                                  |
| Eingangsstartadresse                                                                   | 1                    | -                                                                   |                                                                                  |
| Eingangsendadresse                                                                     | 9                    | -                                                                   |                                                                                  |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST                 | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3                                | mit MAST verbunden,<br>wenn sich das Modul<br>nicht im lokalen<br>Modus befindet |
| Kanäle                                                                                 |                      |                                                                     |                                                                                  |
| CH1-Bereich                                                                            | "4 - 20 mA, 0-16000" | "0 - 25 mA, 0-25000"<br>"0 - 20 mA, 0-20000"<br>"4 - 20 mA, 0-4095" |                                                                                  |
| CH2-Bereich - CH8-<br>Bereich                                                          |                      |                                                                     | siehe CH1-Bereich                                                                |

# Kapitel 54

## 140 AIO 330 00: Sicheres analoges Ausgangsmodul

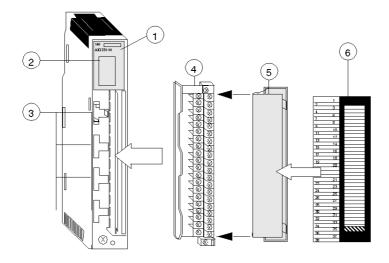
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 AIO 330 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 578   |
| Anzeigen               | 579   |
| Verdrahtungsschemata   | 580   |
| Kenndaten              | 585   |
| Adressierung           | 586   |
| Parameterkonfiguration | 587   |

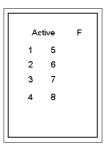

### **Beschreibung**

#### **Funktion**

Das eigensichere analoge Ausgangsmodul Quantum 140 AlO 330 00 steuert und überwacht Stromschleifen in eigensicheren Anwendungen. Das Modul verfügt über 8 symmetrische Ausgangskanäle, die über Fühlerwiderstände auf eine gemeinsame Masse bezogen werden. Die Ausgangsbereiche sind 4 ... 20 mA, 0 ... 20 mA- und 0 ... 25 mA. Dieses Modul identifiziert Drahtbrüche auf Einzel-Kanalbasis, zeigt deren Position an den LEDs der Gerätevorderseite an und übermittelt den Status an die Steuerung.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 AIO 330 00 mit seinen Komponenten.




- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

## **Anzeigen**

### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 AIO 330 00.



### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 AlO 330 00.

| LEDs  | Farbe | Leuchtet, wenn eingeschaltet                                               |
|-------|-------|----------------------------------------------------------------------------|
| Aktiv | Grün  | Mit der Steuerung kommunizieren                                            |
| F     | Rot   | Drahtbruch (4 nur 20 mA) oder außerhalb des<br>Messbereichs an jedem Kanal |
| 1 8   | Rot   | Drahtbruch oder außerhalb des Messbereichs am angezeigten Kanal            |

### Verdrahtungsschemata

Notes related to

for this module.

not exceed 250 V

as possible.

V<sub>cc</sub> < V<sub>max</sub>

Ca > Ci + Ccable

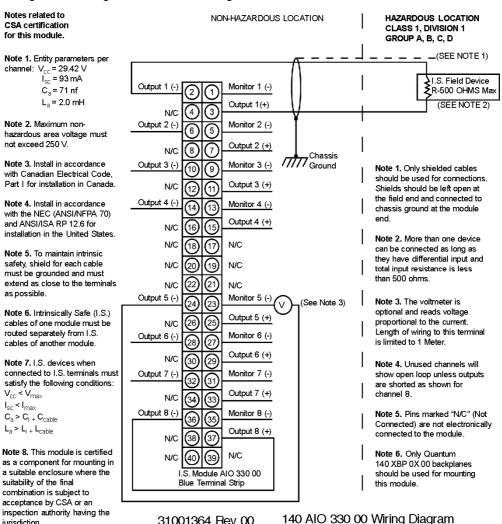
La > Li + Lcable

suitability of the final

jurisdiction.

I<sub>sc</sub> < I<sub>max</sub>

CSA certification


#### CSA-zugelassenes Verdrahtungsschemata

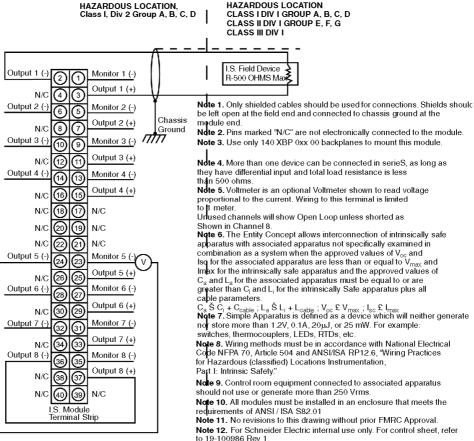
 $I_{SC} = 93 \, \text{mA}$ 

 $C_a = 71 \text{ nf}$ 

 $L_a = 2.0 \text{ mH}$ 

Es folgt ein CSA-zugelassenes Verdrahtungsschema für dieses Modul.




580 35010518 09/2020

#### FM-zugelassenes Verdrahtungsschema

Es folgt ein FM-zugelassenes Verdrahtungsschema für dieses Modul.

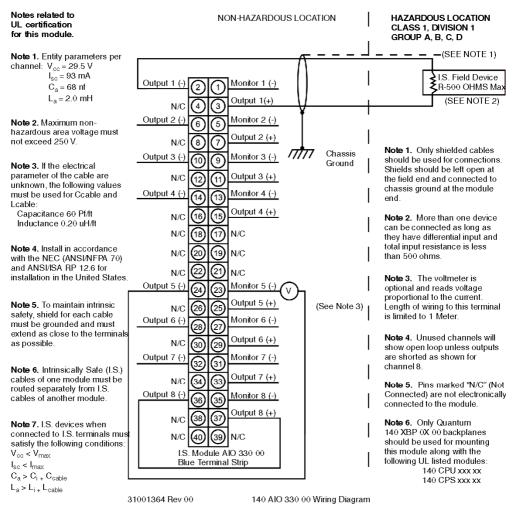
#### Notes Related to FM Certification

This IS field device should meet Note 7 or should be FM approved with entity concept in Note 6 appropriate for connection with IS RTD/TC IN Module with concept parameters listed below. The entity parameters listed are per channel. Voc = 29.5 VDCIsc = 94 mA/Ch Ca = 68 nf/ChLa = 4.2 mH/ChPo = 520 mW/Ch



140 AIO 330 00 Wiring Diagram 31001364 Rev 01

Note 11. No revisions to this drawing without prior FMRC Approval.


Note 12. For Schneider Electric internal use only. For control sheet, refer to 19-100986 Rev 1

Note 13. For Division 2 installation, the apparatus shall be installed in compliance with the enclosure, mounting, spacing, and segregation requirements of the ultimate application, including access only by the use of a tool and provision for Division 2 wiring methods.

581 35010518 09/2020

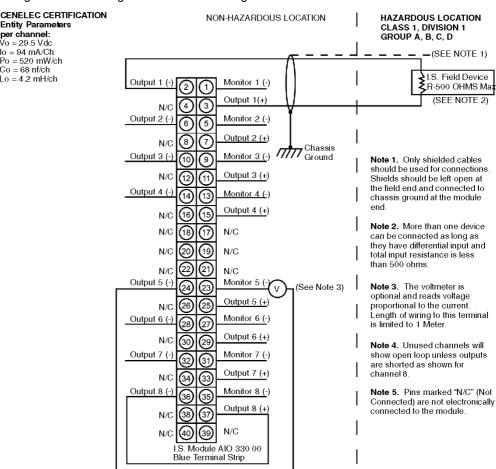
#### **UL-zugelassene Verdrahtungsschemata**

Es folgt ein UL-zugelassenes Verdrahtungsschema für dieses Modul.



#### Cenelec-zugelassenes Verdrahtungsschema

**Entity Parameters** 


per channel:

Vo = 29.5 Vdclo = 94 mA/Ch

Po = 520 mW/ch Co = 68 nf/ch

Lo = 4.2 mH/ch

Es folgt ein Cenelec-zugelassenes Verdrahtungsschema für dieses Modul.



31001364 Rev 00 AIO 330 00 Wiring Diagram (Analog Output)

583 35010518 09/2020

#### Feldverdrahtung

Die Feldverdrahtung zum Modul muss aus getrennten, abgeschirmten und paarweise verdrillten Drähten bestehen. Ein akzeptabler Drahtquerschnitt muss zwischen AWG 30 und AWG 18 liegen. Die Verdrahtung zwischen dem Modul und dem eigensicheren Feldgerät muss nach eigensicheren Verdrahtungsmethoden erfolgen, um die Übertragung unsicherer Energien in den gefährdeten Bereich zu vermeiden.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Festgelegtes Verdrahtungssystem

Das eigensichere analoge Ausgangsmodul Quantum 140 AlO 330 00 ist ausgelegt für ein festgelegtes Verdrahtungssystem, wobei die Feldverbindungen zu einer blauen, 40-Pin-Klemmenleiste mit festgelegter Position hergestellt werden, die in das Modul eingebaut wird.

#### Klemmenleistenfarbe und Codierung

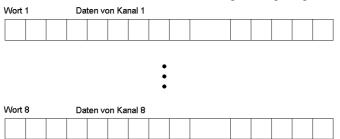
Die Feldverdrahtungs-Klemmenleiste des Moduls 140 XTS 332 00 weist eine blaue Farbcodierung auf, um sie als eigensicheren Anschluss zu identifizieren.

Die Klemmenleiste ist codiert, um zu verhindern, dass der falsche Anschluss am Modul angebracht wird. Die Codierung ist unten angegeben.

| Modulklasse | Teilenummer des<br>Moduls | Modulcodierung | Klemmenleisten-<br>Codierung |
|-------------|---------------------------|----------------|------------------------------|
| Eigensicher | 140 AIO 330 00            | CEF            | ABD                          |

### Kenndaten

### Allgemeine Kenndaten


Es folgen die Kenndaten für das eigensichere Quantum Analogausgangsmodul 140 AIO 330 00:

| Anzahl Kanäle                            | 8 Ausgänge                                                                                |  |
|------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Reglerwiderstand                         | 500 Ohm maximal                                                                           |  |
| Messbereiche                             | 4 20 mA (0 bis 4095) 4 20 mA (0 bis 16000)<br>0 20 mA (0 bis 20000) 0 25 mA (0 bis 25000) |  |
| Auflösung                                | 15 Bits innerhalb 4 20 mA                                                                 |  |
| Genauigkeitsabweichung<br>mit Temperatur | Normalwert: 40 PPM/°C.<br>Höchstens: 70 PPM/°C                                            |  |
| Genauigkeitsfehler bei 25 °C             | +/-0,2 % vom Skalenendwert                                                                |  |
| Linearität                               | +/- 1 LSB                                                                                 |  |
| Potentialtrennung                        |                                                                                           |  |
| Kanal-Kanal                              | Keine                                                                                     |  |
| Kanal-Bus                                | 1780 VAC (effektiv) für 1 Minute                                                          |  |
| Aktualisierungsdauer                     | 4 ms - für alle Kanäle                                                                    |  |
| Ausregelzeit                             | 1 ms bis +/- 0,1 % des Endwerts                                                           |  |
| Erforderlicher Busstrom                  | 2,5 A                                                                                     |  |
| Verlustleistung                          | 12.5 W                                                                                    |  |
| Externe<br>Spannungsversorgung           | Für dieses Modul nicht erforderlich                                                       |  |
| Fehlererkennung                          | Unterbrechung im Bereich 4 20 mA                                                          |  |
| Kenndaten der Voltmeter-Übe              | erwachung                                                                                 |  |
| Bereich                                  | 0.250 1,250 V                                                                             |  |
| Skalierung                               | $V_{OUT}$ (Volt) = $I_{LCOP}$ (mA) x 0.0625                                               |  |
| Ausgangsimpedanz                         | 62,5 W Normal                                                                             |  |
| Drahtlänge                               | Max. 1 m                                                                                  |  |
| Austausch im eingeschalteten Zustand     | Nicht zulässig gemäß eigensicheren Standards                                              |  |
| Sicherungen                              | Intern – nicht zugänglich für Benutzer                                                    |  |

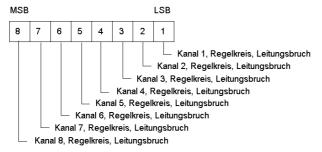
### Adressierung

### Flache Adressierung

Dieses Modul benötigt acht aufeinanderfolgende 16-Bit-Wörter (%MW) für Ausgangsdaten. Die Formate für die Datenwörter werden im Folgenden gezeigt.



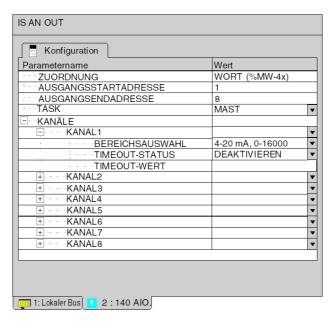
### **Topologische Adressierung**


Topologische Adressen für das Ausgangsmodul 140AIO33000:

| Punkt     | E/A-Objekt      | Kommentar |  |
|-----------|-----------------|-----------|--|
| Ausgang 1 | %QW[\b.e\]r.m.1 | Wert      |  |
| Ausgang 2 | %QW[\b.e\]r.m.2 | Wert      |  |
| •••       |                 |           |  |
| Ausgang 7 | %QW[\b.e\]r.m.7 | Wert      |  |
| Ausgang 8 | %QW[\b.e\]r.m.8 | Wert      |  |

Verwendete Abkürzungen: b = Bus, e = Gerät (E/A-Station), r = Rack, m = Modulsteckplatz.

### Statusbyte für E/A-Zuordnung


Das Statusbyte für die E/A-Zuordnung wird von dem Ausgangsmodul 140AlO33000 wie folgt verwendet.



### Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                   | Standardwert     | Optionen                                                | Beschreibung                                                                  |
|----------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| Zuordnung                                                                              | WORT (%MW-4X)    | -                                                       |                                                                               |
| Ausgangsstartadresse                                                                   | 1                | -                                                       |                                                                               |
| Ausgangsendadresse                                                                     | 8                | -                                                       |                                                                               |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus<br>befindet) | MAST             | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3                    | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet |
| Kanäle<br>Kanal 1                                                                      |                  |                                                         |                                                                               |
| Bereichsauswahl                                                                        | 4-20 mA, 0-16000 | 4-20 mA, 0-4095<br>0-20 mA, 0-20000<br>0-25 mA, 0-25000 |                                                                               |

| Name           | Standardwert | Optionen                                        | Beschreibung                                |
|----------------|--------------|-------------------------------------------------|---------------------------------------------|
| Timeout-Status | DEAKTIVIEREN | LETZTEN WERT<br>HALTEN<br>BENUTZERDEFINIER<br>T |                                             |
| Timeout-Wert   | 0            | 0-32767                                         | Nur wenn Timeout-Status = BENUTZERDEFINIERT |
| Kanal2-Kanal8  |              |                                                 | Siehe Kanal1                                |

# Kapitel 55

## 140 DII 330 00: Sicheres digitales Eingangsmodul

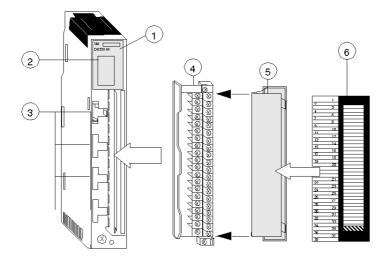
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DII 330 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 590   |
| Anzeigen               | 591   |
| Verdrahtungsschemata   | 592   |
| Kenndaten              | 597   |
| Parameterkonfiguration | 598   |


### **Beschreibung**

#### **Funktion**

Das eigensichere digitale Eingangsmodul Quantum 140 DII 330 00 sorgt für eine eigensichere Stromversorgung von Schaltkontakten wie Drucktastern, Wahlschaltern, Niveauschaltern, Flusswächtern, Endschaltern usw. in gefährdeten Bereichen nicht zu überlasten, und empfängt Proportionalstrom zur Anzeige eines Ein/Aus-Zustands. Der zugeführte Strom wird in digitale Signale umgewandelt, die zur Steuerung übertragen werden.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DII 330 00 mit seinen Komponenten.



- 1 Modellnummer, Modul-Beschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

## **Anzeigen**

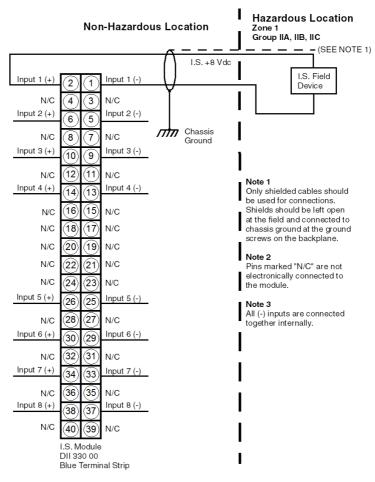
### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DII 330 00.



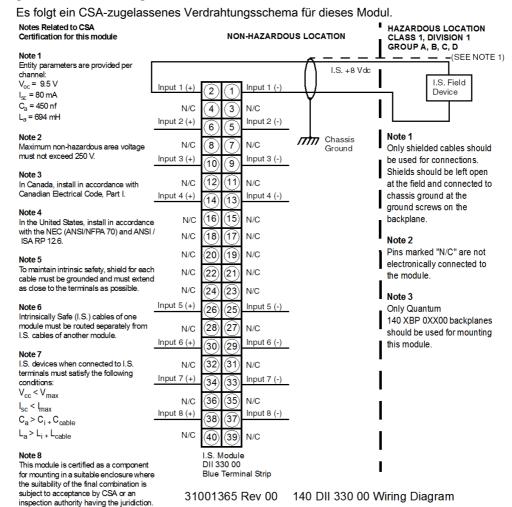
### **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DII 330 00.


| LEDs  | Farbe | Leuchtet, wenn eingeschaltet                       |  |
|-------|-------|----------------------------------------------------|--|
| Aktiv | Grün  | Buskommunikation vorhanden                         |  |
| 18    | Grün  | Der angezeigte Punkt oder Kanal ist eingeschaltet. |  |

### Verdrahtungsschemata

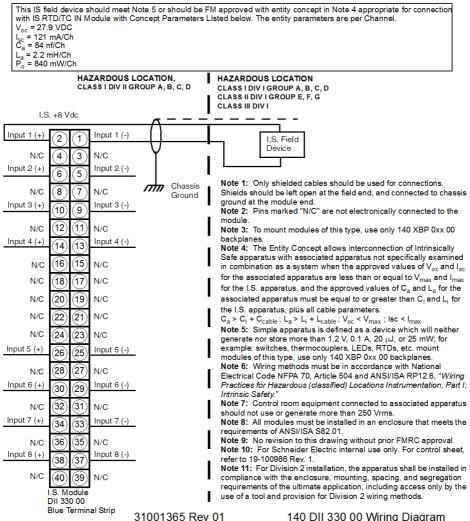
#### Celenec-zugelassenes Verdrahtungsschema


Es folgt ein Celenec-zugelassenes Verdrahtungsschema für dieses Modul.

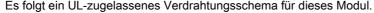
CENELEC
CERTIFICATION
Entity Parameters
per Channel:
Vo = 9.6 Vdc
lo = 80 mA/ch
Po = 192 mW/ch
Co = 450 nf/ch
Lo = 694 µH/ch

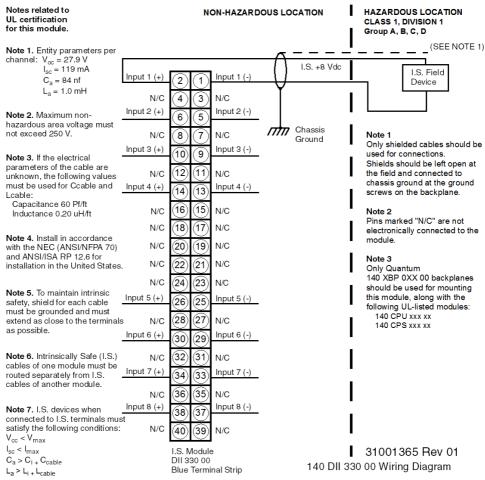


140 DII 330 00 Wiring Diagram


#### CSA-zugelassenes Verdrahtungsschemata




#### FM-zugelassenes Verdrahtungsschema


Es folgt ein FM-zugelassenes Verdrahtungsschema für dieses Modul.

#### Notes Related to FM Certification



#### **UL-zugelassenes Verdrahtungsschema**





#### Festgelegtes Verdrahtungssystem

Das eigensichere digitale Eingangsmodul Quantum 140 DII 330 00 ist ausgelegt für ein festgelegtes Verdrahtungssystem, wobei die Feldverbindungen zu einer blauen, 40-Pin-Klemmenleiste mit festgelegter Position hergestellt werden, die in das Modul eingebaut wird.

#### Feldverdrahtung

Die Feldverdrahtung zum Modul besteht aus getrennten, abgeschirmten und paarweise verdrillten Drähten. Ein akzeptabler Drahtquerschnitt liegt zwischen AWG 20 und AWG 12. Die Verdrahtung zwischen dem Modul und dem eigensicheren Feldgerät muss nach eigensicheren Verdrahtungsmethoden erfolgen, um die Übertragung unzulässig hoher Energien in den gefährdeten Bereich zu vermeiden.

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

### **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Klemmenleistenfarbe und Codierung

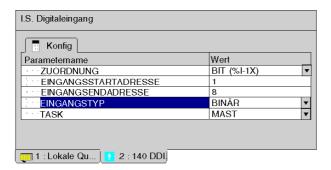
Die Feldverdrahtungs-Klemmenleiste des Moduls 140 XTS 332 00 weist eine blaue Farbcodierung auf, um sie als eigensicheren Anschluss zu identifizieren.

Die Klemmenleiste ist codiert, um zu verhindern, dass der falsche Anschluss am Modul angebracht wird. Die Codierung ist unten angegeben.

| Modulklasse | Teilenummer des<br>Moduls | Modulcodierung | Klemmenleisten-<br>Codierung |
|-------------|---------------------------|----------------|------------------------------|
| Eigensicher | 140 DII 330 00            | CDE            | ABF                          |

### Kenndaten

### Allgemeine Kenndaten


Es folgen die Kenndaten für das eigensichere digitale Eingangsmodul Quantum 140 DII 330 00:

| Anzahl Eingangspunkte                                     | 8 Eingänge                                  |  |  |
|-----------------------------------------------------------|---------------------------------------------|--|--|
| Betriebsspannungen und -ströme                            |                                             |  |  |
| Leerlaufspannung<br>(zwischen Eingang + und<br>Eingang -) | 8 VDC                                       |  |  |
| Kurzschlussstrom                                          | 8 mA                                        |  |  |
| Umschaltpunkt                                             | 1,2 mA 2,1 mA                               |  |  |
| Umschalt-Hysterese                                        | 0,2 mA                                      |  |  |
| Schaltfrequenz                                            | Max. 100 Hz                                 |  |  |
| Reaktionszeit                                             |                                             |  |  |
| AUS - EIN                                                 | 1 ms                                        |  |  |
| EIN - AUS                                                 | 1 ms                                        |  |  |
| Potentialtrennung                                         |                                             |  |  |
| Kanal-Kanal                                               | Keine                                       |  |  |
| Kanal-Bus                                                 | 1780 VAC, 47-63 Hz oder 2500 VDC für 1 min. |  |  |
| Innenwiderstand                                           | 2,5 K Ohm                                   |  |  |
| Eingangsschutz                                            | Widerstand begrenzt                         |  |  |
| Fehlererkennung                                           | Keine                                       |  |  |
| Maximale Stromaufnahme                                    | 400 mA                                      |  |  |
| Verlustleistung                                           | 2 W                                         |  |  |
| Externe Spannung                                          | Nicht erforderlich                          |  |  |
| Austausch im eingeschalteten Zustand                      | Nicht zulässig bei eigensicheren Standards  |  |  |
| Sicherungen                                               | Intern - dem Benutzer nicht zugänglich      |  |  |

### Parameterkonfiguration

#### Parameter- und Standardwerte

Fenster der Parameterkonfiguration



| Name                                                                                | Standardwert | Optionen                             | Beschreibung                                                                         |
|-------------------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Zuordnung                                                                           | BIT (%I-1x)  | WORT (%IW-3X)                        |                                                                                      |
| Eingangsstartadresse                                                                | 1            | 1                                    |                                                                                      |
| Eingangsendadresse                                                                  | 8            | 1                                    |                                                                                      |
| Eingangstyp                                                                         | BINÄR        | BCD                                  |                                                                                      |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet) | MAST         | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST<br>verbunden, wenn<br>sich das Modul<br>nicht im lokalen<br>Modus befindet. |

### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 40).* 

# Kapitel 56

## 140 DIO 330 00: Sicheres digitales Ausgangsmodul

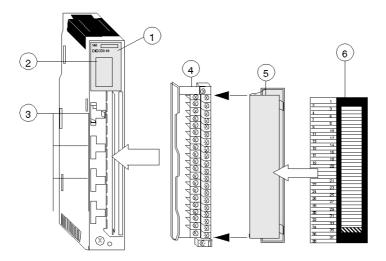
### Zu diesem Kapitel

Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 DIO 330 00.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                   | Seite |
|-----------------------------------------|-------|
| Überblick                               | 600   |
| Anzeigen                                | 601   |
| Verdrahtungsschemata                    | 602   |
| Kenndaten                               | 607   |
| 140 DIO 330 00 - Parameterkonfiguration | 608   |


### Überblick

#### **Funktion**

Das eigensichere Quantum-Digitalausgangsmodul 140 DIO 330 00 gewährleistet die eigensichere Stromversorgung für eine Reihe von Feldkomponenten in Gefahrenbereichen wie Magnetventile, LEDs usw. Dieses Modul ist nur mit Sink-Geräten zu verwenden.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 DIO 330 00 mit seinen Komponenten.



- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Sicherungs-Aussparungen (Cutouts)
- 4 Feldverdrahtungs-Klemmenleiste
- 5 Abnehmbare Tür
- 6 Beschriftungsschild (Schild falten und an der Türinnenseite anbringen)

## **Anzeigen**

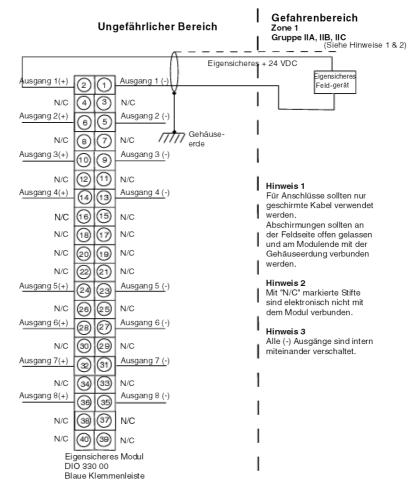
### **Abbildung**

Die folgende Tabelle enthält die LED-Anzeigen des Moduls 140 DIO 330 00.



### **Beschreibung**

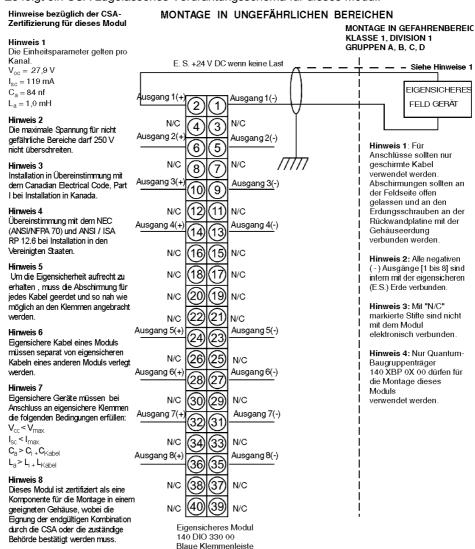
Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 DIO 330 00.


| LEDs  | Farbe | Leuchtet, wenn eingeschaltet                       |
|-------|-------|----------------------------------------------------|
| Aktiv | Grün  | Buskommunikation vorhanden                         |
| 18    | Grün  | Der angezeigte Punkt oder Kanal ist eingeschaltet. |

### Verdrahtungsschemata

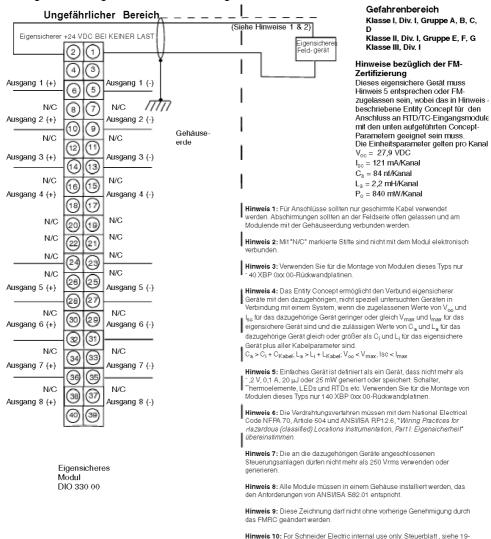
#### Celenec-zugelassenes Verdrahtungsschema

Es folgt ein Celenec-zugelassenes Verdrahtungsschema für dieses Modul.


CENELEC CERTIFICATION Einheitsparameter pro Kanal: Vo = 27,9 VDC Io = 121 mA/Kanal Po = 840 mW/Kanal Co = 84 nf/Kanal Lo = 2,2 mH/Kanal

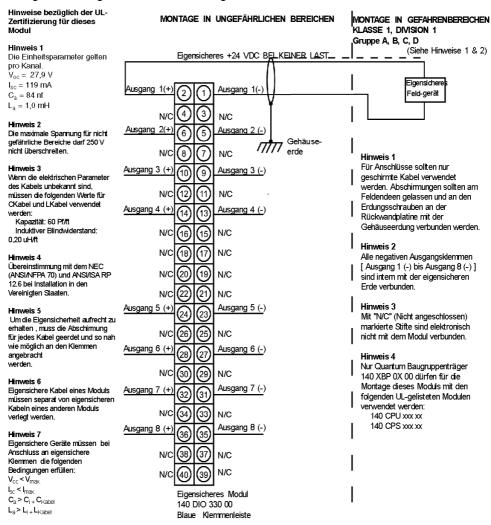


140 DIO 330 00 Verdrahtungsschema


#### CSA-zugelassenes Verdrahtungsschemata

Es folgt ein CSA-zugelassenes Verdrahtungsschema für dieses Modul.




#### FM-zugelassenes Verdrahtungsschema

Es folgt ein FM-zugelassenes Verdrahtungsschema für dieses Modul.



#### **UL-zugelassenes Verdrahtungsschema**

Es folgt ein UL-zugelassenes Verdrahtungsschema für dieses Modul.



31001366 Rev 00 140 DIO 330 00 Verdrahtungsschema

#### Festgelegtes Verdrahtungssystem

Das eigensichere digitale Ausgangsmodul Quantum 140 DIO 330 00 ist ausgelegt für ein festgelegtes Verdrahtungssystem, wobei die Feldverbindungen zu einer blauen, 40-Pin-Klemmenleiste mit festgelegter Position hergestellt werden, die in das Modul eingebaut wird.

### Feldverdrahtung

Die Feldverdrahtung zum Modul besteht aus getrennten, abgeschirmten und paarweise verdrillten Drähten. Ein akzeptabler Drahtquerschnitt liegt zwischen AWG 20 und AWG 12. Die Verdrahtung zwischen dem Modul und dem eigensicheren Feldgerät muss nach eigensicheren Verdrahtungsmethoden erfolgen, um die Übertragung unzulässig hoher Energien in den gefährdeten Bereich zu vermeiden.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

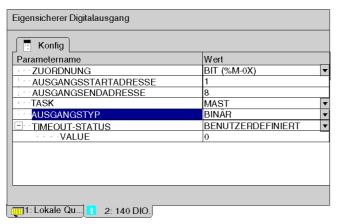
#### Klemmenleistenfarbe und Codierung

Die Feldverdrahtungs-Klemmenleiste des Moduls 140 XTS 332 00 weist eine blaue Farbcodierung auf, um sie als eigensicheren Anschluss zu identifizieren.

Die Klemmenleiste ist codiert, um zu verhindern, dass der falsche Anschluss am Modul angebracht wird. Die Codierung ist unten angegeben.

| Modulklasse | Teilenummer des<br>Moduls | Modulcodierung | Klemmenleisten-<br>Codierung |
|-------------|---------------------------|----------------|------------------------------|
| Eigensicher | 140 DIO 330 00            | CDE            | ABF                          |

### Kenndaten


### Tabelle der Kenndaten

Es folgen die Kenndaten für das eigensichere Quantum Digitalausgangsmodul 140 DIO 330 00:

| Anzahl der Ausgangspunkte            | 8 Ausgänge                                             |  |
|--------------------------------------|--------------------------------------------------------|--|
| Ausgangsspannung                     | 24 V (offen)                                           |  |
| Maximaler Laststrom                  |                                                        |  |
| Jeder Punkt                          | 45 mA                                                  |  |
| Pro Modul                            | 360 mA                                                 |  |
| Leckstrom im AUS-<br>Zustand/Punkt   | 0,4 mA                                                 |  |
| Reaktionszeit (ohmsche Lasten)       |                                                        |  |
| AUS - EIN                            | 1 ms                                                   |  |
| EIN - AUS                            | 1 ms                                                   |  |
| Ausgangsschutz (Intern)              | Unterdrückung von Spannungsspitzen                     |  |
| Potentialtrennung                    |                                                        |  |
| Kanal-Kanal                          | Keine                                                  |  |
| Kanal-Bus                            | 1780 VAC, 47-63 Hz oder 2500 VDC für 1 min.            |  |
| Fehlererkennung                      | Keine                                                  |  |
| Maximale Stromaufnahme               | 2,2 Amp (Volllast)                                     |  |
| Verlustleistung                      | 5 W (Volllast)                                         |  |
| Externe Spannung                     | Nicht erforderlich                                     |  |
| Austausch im eingeschalteten Zustand | Nicht zulässig bei wirklichen Sicherheitsanforderungen |  |
| Sicherungen                          | Intern - dem Benutzer nicht zugänglich                 |  |

## 140 DIO 330 00 - Parameterkonfiguration

### Fenster der Parameterkonfiguration



#### Parameter und Standardwerte

| Name                                                                                   | Standardwert      | Optionen                             | Beschreibung                                                                   |
|----------------------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Zuordnung                                                                              | BIT (%M-0x)       | WORT (%MW-4X)                        |                                                                                |
| Ausgangsstartadresse                                                                   | 1                 | 1                                    |                                                                                |
| Ausgangsendadresse                                                                     | 8                 | 1                                    |                                                                                |
| Ausgangstyp                                                                            | BINÄR             | _                                    |                                                                                |
| Task<br>(Grau unterlegt, wenn<br>sich das Modul nicht<br>im lokalen Modus<br>befindet) | MAST              | FAST<br>AUX0<br>AUX1<br>AUX2<br>AUX3 | Mit MAST verbunden, wenn<br>sich das Modul nicht im<br>lokalen Modus befindet. |
| Timeout-Status                                                                         | BENUTZERDEFINIERT | LETZTEN WERT<br>HALTEN               |                                                                                |
| Wert                                                                                   | 0                 | 0-255                                | Nur wenn Timeout-Status = BENUTZERDEFINIERT                                    |

#### E/A-Zuordnung

Weitere Informationen zur E/A-Zuordnung finden Sie in den allgemeinen Informationen zu den Quantum-Adressierungsmodi *(siehe Seite 46).* 

# Teil IX

## Quantum-Sicherheits-E/A-Module

### **Einleitung**

Der folgende Teil enthält Informationen zu den analogen/digitalen Quantum-Sicherheits-E/A-Modulen.

### Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

| Kapitel | Kapitelname                              | Seite |
|---------|------------------------------------------|-------|
| 57      | Allgemeine Informationen                 | 611   |
| 58      | 140 SAI 940 00S: Analoges Eingangsmodul  | 615   |
| 59      | 140 SDI 953 00S: Digitales Eingangsmodul | 629   |
| 60      | 140 SDO 953 00S: Digitales Ausgangsmodul | 641   |

# Kapitel 57

## Allgemeine Informationen

#### **Zweck**

Dieses Kapitel enthält allgemeine Informationen über Sicherheitsmodule. Lesen Sie das *Sicherheitshandbuch - Quantum-Sicherheits-SPS* (Teilenummer 33003879) aufmerksam durch, um eine Sicherheits-SPS gemäß den Sicherheitszertifikationen zu erstellen.

### Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                                               | Seite |
|-----------------------------------------------------|-------|
| Allgemeine Informationen zu Sicherheits-E/A-Modulen | 612   |
| Diagnose der Sicherheits-E/A-Module                 | 613   |

### Allgemeine Informationen zu Sicherheits-E/A-Modulen

#### **Einleitung**

Die drei folgenden 3 Quantum-Sicherheits-E/A-Module sind für die Verwendung in Sicherheitsanwendungen zertifiziert:

- 140 SAI 940 00S (Analogeingang)
- 140 SDI 953 00S (Digitaleingang)
- 140 SDO 953 00S (Digitalausgang)

Die drei Sicherheits-E/A-Module ermöglichen Ihnen den Anschluss der Sicherheits-SPS an die Sensoren und Aktoren, die Teil der Sicherheitsschleife sind. Sie bestehen alle aus zwei Mikrosteuerungssystemen, die dasselbe Programm ausführen, dieselben Informationen austauschen und sich gegenseitig periodisch überprüfen. Sie können diese E/A-Module im lokalen Baugruppenträger oder in dezentralen E/A-Stationen installieren.

### Beschreibung der Kommunikation zwischen CPU und E/A

Im Allgemeinen verarbeitet die Quantum-Sicherheits-CPU alle Datenaustauschvorgänge des Baugruppenträgers, während die anderen Module Slaves sind. Daten zwischen einer Sicherheits-CPU und Sicherheits-E/A werden über ein RAM mit einem dualen Port ausgetauscht, der sich im E/A-Modul befindet.

Für die Kommunikation zwischen CPU und dezentralen E/A (RIOs) müssen Sie die beiden folgenden nicht störenden Module verwenden:

- 140 CRP 932 00 (RIO-Kopfadapter) im lokalen Rack
- 140 CRA 932 00 (RIO-Stationsadapter) in der RIO-Station

Optional können Sie auch Glasfaser-Repeater-Module (140 NRP 954 00, 140 NRP 954 01C) verwenden. Diese Module sorgen für verbesserte Störfestigkeit des dezentralen E/A-Netzwerks und unterstützen längere Kabelstrecken, gleichzeitig bleiben der volle Dynamikbereich des Netzwerks und die Sicherheitsintegritätsebene gewährleistet.

Das Kommunikationsprotokoll zwischen Sicherheits-E/A und CPU gewährleistet den Datenaustausch. Das Protokoll ermöglicht das Prüfen der empfangenen Daten auf ihre Richtigkeit und erkennt Fehler am Sender bzw. während der Übertragung. Dementsprechend kann eine Sicherheitsschleife nicht störende RIO-Adapter und einen Baugruppenträger enthalten. Einzelheiten zu diesem Thema finden Sie unter Safety I/O Modules Diagnostics (siehe Seite 613).

Die Sicherheits-E/A-Module bieten Funktionen für die Leitungswartung, siehe Safety I/O Modules Diagnostics (siehe Seite 613).

**HINWEIS:** Verwenden Sie die im Lieferumfang der Quantum-Sicherheits-E/A-Module enthaltenen roten Aufkleber, um die Sicherheitsmodule eindeutig zu kennzeichnen.

## Diagnose der Sicherheits-E/A-Module

#### Beschreibung der Diagnose der E/A

Die folgende Tabelle zeigt die Felddiagnose der Sicherheits-E/A-Module.

| Diagnose               | Analogeingang | Digitaleingang | Digitalausgang |
|------------------------|---------------|----------------|----------------|
| Bereichsüberschreitung | Ja            | _              | _              |
| Drahtbruch             | Ja            | Ja             | _              |
| Feldspannung           | _             | Ja             | Ja             |
| Überlast               | _             | _              | Ja             |

**HINWEIS:** Es wird kein Kurzschluss der Verdrahtung für die Eingangsmodule erkannt. Sie sind verantwortlich für eine korrekte Verdrahtung der Module.

Außerdem führt die Quantum-Sicherheits-SPS eine Diagnose der Kommunikation zwischen Sicherheits-CPU und Sicherheits-E/A-Modulen durch (z.B. durch eine zyklische Redundanzprüfung). Sie überprüft also nicht nur, ob die empfangenen Daten identisch mit den gesendeten Daten sind, sondern auch, ob die Daten aktualisiert werden. Um Störungen (wie beispielsweise elektromagnetische Störungen) zu vermeiden, die zu einer temporären Beschädigung Ihrer Daten führen, können Sie einen maximal akzeptierten konsekutiven CRC-Fehler für jedes Modul (von 1 bis 3) konfigurieren. Das Verfahren wird ausführlich im Kapitel "Konfigurieren von E/A-Modulen für Sicherheitsprojekte" im *Handbuch - Unity Pro XLS Betriebsarten* beschrieben.

**HINWEIS:** Unity Pro ist der alte Name von Control Expert für Versionen ≤ V13.1.

#### Diagnose beim Hochfahren

Beim Hochfahren führen die E/A-Module einen erweiterten Selbsttest von etwa 30 Sekunden Länge aus. Wenn diese Tests nicht erfolgreich sind, werden die Module als funktionsunfähig betrachtet und nicht gestartet. Die Ein- und Ausgänge werden dann auf 0 gesetzt.

Wenn die externe 24-VDC-Spannungsversorgung nicht an die digitalen Ein- oder -Ausgangsmodule angeschlossen ist, werden die Selbsttests beim Hochfahren nicht durchgeführt und die Module starten nicht.

#### Diagnose während des Betriebs

Während des Betriebs führen die E/A-Module Selbsttests aus. Die Eingangsmodule überprüfen, ob sie im gesamten Bereich Daten von den Sensoren lesen können. Die Ausgangsmodule führen Impulstests an ihren Schaltern mit einer Dauer unter 1 ms durch.

#### Beschreibung der allgemeinen Überspannungsdiagnose

Da die Elektronik eventuell nicht bis zur theoretisch maximalen Ausgangsspannung der Stromversorgungen arbeitet, müssen die E/A-Module die Spannungsversorgung des Baugruppenträgers überwachen.

Die folgende Tabelle beschreibt die Überwachung der Stromversorgung.

| Die<br>Spannungsversorgung                                                                                                  | wird überwacht durch                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| den Baugruppenträger,<br>der über eine theoretisch<br>maximale<br>Ausgangsspannung von<br>18,5 V verfügt,                   | zwei Überspannungswächter, d.h. einen für jedes Mikroprozessorsystem. Jeder Wächter kann eine mögliche Überspannung bewältigen, indem er seinen Leistungsschalter öffnet und seinen Reset-Block auslöst, der die Übergänge zwischen den Zuständen "Ein" und "Aus" verwaltet und beide Prozessoren zurücksetzt, wenn diese aktiv sind. |
| der Feldseite, die von<br>DC-zu-DC-Wandlern<br>generiert wird,                                                              | zwei Über- und Unterspannungswächtern, d.h. einem für jedes Mikroprozessorsystem. Wenn bei den beiden isolierten DC-zu-DC-Wandlern, die die Stromversorgung für die feldseitige Elektronik gewährleisten, ein Fehler auftritt, signalisieren die Wächter den Ausfall mittels eines Isolators ihrem jeweiligen Prozessor.              |
| des Prozesses, bei dem<br>es sich um einen PELV-<br>Prozess mit einer<br>maximalen<br>Ausgangsspannung von<br>60 V handelt, | zwei Überspannungswächter, d.h. einen für jedes Mikroprozessorsystem, auf gleiche Weise wie sie die DC-zu-DC-Wandler überwachen. Bei einem Fehler signalisieren die Wächter der Benutzerlogik diesen Zustand, indem sie ein Statusbit setzen, um das System vor möglichen inkonsistenten Eingängen zu warnen.                         |

# **▲** GEFAHR

## VERLUST DER FÄHIGKEIT, SICHERHEITSFUNKTIONEN AUSZUFÜHREN

Verwenden Sie die richtige Prozessstromversorgung. Hierbei handelt es sich um eine PELV-Versorgung mit einer maximalen Ausgangsspannung von 60 V.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

# Kapitel 58

## 140 SAI 940 00S: Analoges Eingangsmodul

## Zu diesem Kapitel

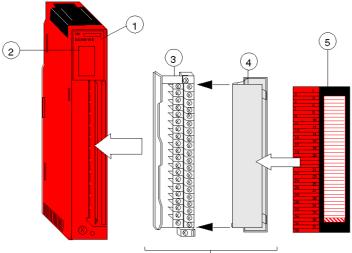
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 SAI 940 00S.

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 616   |
| Anzeigen               | 618   |
| Verdrahtungsschema     | 619   |
| Technische Daten       | 622   |
| Adressierung           | 624   |
| Parameterkonfiguration | 627   |

#### **Beschreibung**


#### **Funktion**

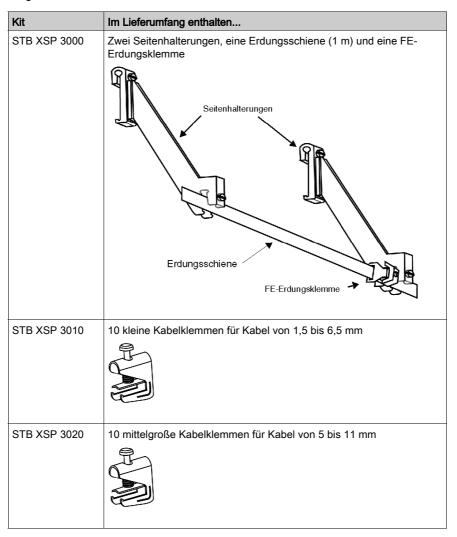
Das 140 SAI 940 00S ist ein analoges Stromeingangsmodul mit 8 Kanälen, 16 Bit und 4-20 mA.

**HINWEIS:** Wird beim Selbsttest während des Anlaufs ein Fehler erkannt, kann das Modul keine Kommunikation mit dem Host aufbauen, bis der Fehler behoben ist.

#### **Abbildung**

In der folgenden Abbildung ist das Modul 140 SAI 940 00S mit seinen Komponenten dargestellt.




140 XTS 002 00 wiring terminal block

- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Klemmenleiste für Feldverdrahtung (nicht im Lieferumfang des Moduls enthalten)
- 4 Abnehmbare Tür (nicht im Lieferumfang des Moduls enthalten)
- 5 Rotes Beschriftungsschild (mitgeliefertes Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Das Gehäuse der Sicherheitsmodule ist rot, und im Lieferumfang der Quantum-Sicherheits-E/A-Module ist ein rotes Beschriftungsschild enthalten. Es muss auf der Klemmenleiste angebracht werden.

#### **Erdungs-Kit**

Nach Möglichkeit sollten das Erdungs-Kit STB XSP 3000 und die Erdungsclips (STB XSP 3010 oder STB XSP 3020) verwendet werden. In der folgenden Abbildung sind diese Elemente dargestellt.



## **Anzeigen**

## **Abbildung**

Die folgende Tabelle zeigt die LED-Anzeigen des Moduls 140 SAI 940 00S.



HINWEIS: Das Modul 140 SAI 940 00S nutzt die roten und grünen Kanal-LEDs 9 bis 16 nicht.

## **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 SAI 940 00S.

| LED-Typ          | LED-<br>Kennung | Farbe | Zustand | Bedeutung                                                                            |  |
|------------------|-----------------|-------|---------|--------------------------------------------------------------------------------------|--|
| System-          | R               | Grün  | EIN     | Power ON                                                                             |  |
| zustands-<br>LED |                 |       | AUS     | Power OFF                                                                            |  |
| LLD              | Active          | Grün  | EIN     | Das Modul kommuniziert mit dem Host.                                                 |  |
|                  |                 |       | AUS     | Das Modul kommuniziert nicht mit dem Host.                                           |  |
|                  | F               | Rot   | EIN     | Es wurde ein interner Diagnosefehler erkannt.                                        |  |
|                  |                 |       | AUS     | Es wurde kein interner Diagnosefehler erkannt.                                       |  |
| Kanal-<br>LED    | 18              | Grün  | EIN     | Der Eingangsstrom am Kanal ist im Bereich 3,75 bis 20,25 mA eingestellt.             |  |
|                  |                 |       | AUS     | Der Eingangsstrom am Kanal ist außerhalb des Bereichs 3,75 bis 20,25 mA eingestellt. |  |
|                  |                 | Rot   | EIN     | Der Kanal ist nicht betriebsbereit.                                                  |  |
|                  |                 |       | AUS     | Der Kanal ist betriebsbereit.                                                        |  |

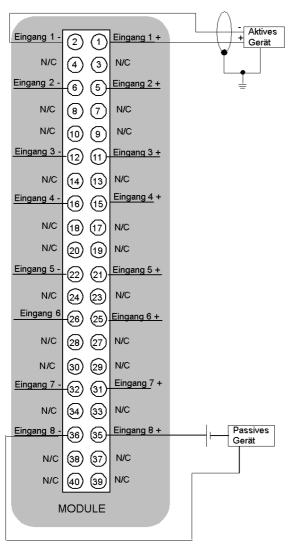
HINWEIS: Das Modul 140 SAI 940 00S hat nur 8 Kanäle. Die LEDs 9 bis 16 leuchten nie auf.

## Verdrahtungsschema

#### Vorsichtsmaßnahmen

#### Erdung:

Schließen Sie jedes Ende der Kabelabschirmung wie folgt an:


- Auf Sensorseite: Schließen Sie die Schirmungsaufnahmeklemmen (Erdungsklemmen) an.
- Auf Modulseite: Klemmen Sie die Schirmung mithilfe der Erdungsvorrichtung STB XSP 3000 (siehe Seite 617) und der Erdungsklemmen (STB XSP 3010 oder STB XSP 3020) an Erde an.

#### Feldverdrahtung:

Die Feldverdrahtung zum Modul besteht aus getrennten, abgeschirmten und paarweise verdrillten Drähten.

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 SAI 940 00S.



N/C: Keine Verbindung

Interne Eingangsimpedanz: 287 Ohm Rmin (des passiven Geräts): 913 Ohm Rmax (des passiven Geräts): 7713 Ohm

**HINWEIS:** Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem höheren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp                        | 8 Eingangskanäle                                                                                                          |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Externe Spannung                | Nicht erforderlich                                                                                                        |  |
| Stromaufnahme (Modul)           | 400 mA                                                                                                                    |  |
| Verlustleistung                 | 3,5 W max.                                                                                                                |  |
| E/A-Zuordnung                   | 13 Eingangswörter                                                                                                         |  |
| Fehlererkennung                 | <ul> <li>Außerhalb des Bereichs von 4 bis 20 mA</li> <li>Interner Kanal ungültig</li> <li>System ausgeschaltet</li> </ul> |  |
| Potentialtrennung (Kanal-Bus)   | 1500 VAC effektiv für 1 Minute                                                                                            |  |
| Potentialtrennung (Kanal-Kanal) | 500 VAC effektiv für 1 Minute                                                                                             |  |

## Strom/Eingang

## Strom/Eingang

| Absoluter Strom (max.)   | 35 mA                 |
|--------------------------|-----------------------|
| Linearer Messbereich     | 0 25 mA, 0 bis 64.800 |
| Interne Eingangsimpedanz | 287 Ohm nominal       |

#### Tabelle der linearen Messbereiche

#### Linearer Messbereich

| Datenformat   | Eingang | Normal                            | Warnung                                  |
|---------------|---------|-----------------------------------|------------------------------------------|
| 16-Bit-Format | 0 25 mA | 0 64.800 Impulse<br>(2.592 pt/mA) | < 9 720 (3,75 mA)<br>> 52 488 (20,25 mA) |

35010518 09/2020

## Auflösung/Konvertierung

## Auflösung/Konvertierung

| Auflösung                   | 16 Bits (0 bis 65.536 Impulse)                                      |
|-----------------------------|---------------------------------------------------------------------|
| Absolute Genauigkeitsfehler | +/- 0,3% bei 25 Grad C (77 F)<br>+/- 0,35% voller Temperaturbereich |
| Linearität (0 bis 60 °C)    | +/- 2 μA                                                            |
| Gleichtaktunterdrückung     | ?                                                                   |
| Eingangsfilter              | Einzelner Tiefpass, -3 dB Abschaltung bei 15 Hz                     |
| Aktualisierungsdauer        | 15 ms für alle Kanäle                                               |

## Sicherungen

## Sicherungen

| Intern | Keine                                                                               |
|--------|-------------------------------------------------------------------------------------|
| Extern | Vom Benutzer gemäß den lokalen und nationalen elektrotechnischen Normen installiert |

## **Adressierung**

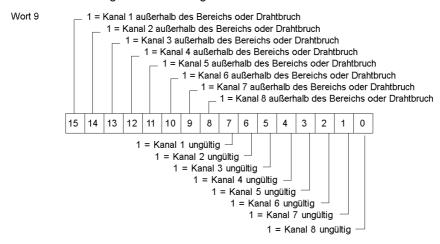
#### Übersicht

Im Folgenden wird beschrieben, wie die zwischen dem Modul 140 SAI 940 00S und dem Prozessormodul ausgetauschten Daten zugeordnet werden.

Mit Ausnahme des Funktionsfähigkeitsworts werden die hier beschriebenen Daten vom Modul 140 SAI 940 00S mittels der globalen Baugruppenträgerkommunikation in Quantum übertragen. Diese Methode wird von allen Quantum-Modulen genutzt.

#### **HINWEIS:**

13 Wörter sind für dieses Modul erforderlich:


- 8 Wörter sind für die Kanalwerte vorgesehen; zum Erhalt eines Skalenendwerts muss jeder Analogwert einer UINT-Variable zugeordnet werden.
- 1 Wort speziell für Fehler und Warnungen
- 3 Wörter, die vom Modul genutzt werden (Modulstatus, Austauschnummer, CRC)
- 1 Funktionsfähigkeitswort (auf dieses Wort kann nur das Prozessormodul zugreifen)

#### Flache Adressierung

Die folgende Abbildung zeigt das Register der Wörter 1 bis 8. Im Wort 1 lesen Sie den von Kanal 1 abgefragten Analogwert usw.

| Wort 1 | Datenkanal 1 |   |  |   |   |  |
|--------|--------------|---|--|---|---|--|
|        |              |   |  |   |   |  |
|        |              |   |  | · | • |  |
|        |              | : |  |   |   |  |
| Wort 8 | Datenkanal 8 |   |  |   |   |  |
|        |              |   |  |   |   |  |

Die folgende Abbildung zeigt die Register von Wort 9. Wenn Bit 15 auf 1 gesetzt ist, ist Kanal 1 außerhalb des Bereichs. Wenn Bit 7 auf 1 gesetzt ist, ist Kanal 1 ungültig. Die anderen Kanäle finden Sie in der folgenden Abbildung.



Bit 15 bis Bit 8: Diese 8 Bits werden auf 1 gesetzt, wenn der Eingangsstrom des entsprechenden Kanals außerhalb der Funktionsgrenzen liegt (unter 3,75 mA oder über 20,25 mA).

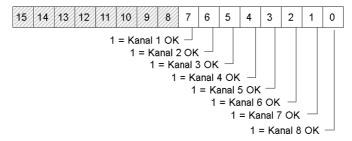
Bit 7 bis Bit 0: Diese 8 Bits werden auf 1 gesetzt, wenn die interne Diagnose einen ungültigen Kanal im Modul erkennt.

Die Wörter 10, 11 und 12 werden vom Modul für interne Prüfungen genutzt.

- Modulstatus: für zukünftigen Gebrauch reserviert
- Austauschnummer: serielle Nummer des Datensatzes
- Zyklische Blockprüfung (Cyclic Redundancy Check CRC): Funktion zum Feststellen von Fehlern nach der Übermittlung

#### Funktionsfähigkeitswort

Das Funktionsfähigkeitswort ist eine zusätzliche Systemsteuerung vom Prozessormodul. Es nutzt die aus dem Eingangsmodul gelesenen Daten.


Die folgenden Fehler aktivieren das Funktionsfähigkeitswort:

- Ungültiger Kanal (aktiviert nur das entsprechende Bit des Funktionsfähigkeitsworts)
- Strom am Kanal außerhalb des Bereichs (aktiviert nur das entsprechende Bit)
- CRC
- Austauschnummer nicht korrekt

Wenn ein gestörter Eingang erkannt wird (wenn ein Bit in Wort 13 auf 0 gesetzt wird), wird der Wert des entsprechenden Kanals auf 0 gesetzt (Wort 1 bis 8). Dies gilt nicht bei einer Bereichsüberschreitung (der außerhalb des gültigen Bereichs liegende Wert wird nicht auf Null zurückgesetzt).

Die folgende Abbildung zeigt die Register von Wort 13.

Wort 13



Bit 15 bis Bit 8: Diese Bits werden in Wort 13 nicht verwendet. Bit 7 bis Bit 0: Diese 8 Bits werden auf 1 gesetzt, wenn kein Fehler erkannt wird.

#### **Topologische Adressierung**

Topologische Adressen für das Eingangsmodul 140 SAI 940 00S:

| Punkt                              | E/A-Objekt | Kommentar                                              |
|------------------------------------|------------|--------------------------------------------------------|
| Eingang 1                          | %IWr.m.1   | Analogwert                                             |
|                                    | %lr.m.1.1  | Ungültiger Kanal                                       |
|                                    | %lr.m.1.2  | Außerhalb des Messbereichs oder<br>Drahtbruch          |
|                                    | %lr.m.1.3  | Funktionsfähigkeitsbit                                 |
|                                    | •••        |                                                        |
| Eingang 8                          | %IWr.m.8   | Analogwert                                             |
|                                    | %lr.m.8.1  | Ungültiger Kanal                                       |
|                                    | %lr.m.8.2  | Außerhalb des Messbereichs oder<br>Drahtbruch          |
|                                    | %lr.m.8.3  | Funktionsfähigkeitsbit                                 |
| Modulstatus und<br>Austauschnummer | %IWr.m.9.2 | (interne Nutzung)                                      |
| CRC LSW                            | %IWr.m.9.3 | Niederwertigstes Wort von 32-Bit-CRC (interne Nutzung) |
| CRC MSW                            | %IWr.m.9.4 | Höchstwertiges Wort von 32-Bit-CRC (interne Nutzung)   |
| Funktionsfähigkeitswort            | %IWr.m.9.5 |                                                        |

Verwendete Abkürzungen: **r** = Rack, **m** = Modulsteckplatz.

## Parameterkonfiguration

#### **Betriebsarten**

Das Modul 140 SAI 940 00S ist konfigurierbar.

Die Konfiguration umfasst:

Maximale konsekutive CRC-Fehler, bevor das Modul als gestört erklärt wird

#### Parameter und Standardwerte

Parameter-Konfigurationsfenster



| Name                            | Standardwert  | Optionen | Beschreibung                                                                                                         |
|---------------------------------|---------------|----------|----------------------------------------------------------------------------------------------------------------------|
| Zuordnung                       | WORT (%IW-3x) | -        | -                                                                                                                    |
| Eingangsstartadresse            | 1             | -        | Je nach Anzahl der Module                                                                                            |
| Eingangsendadresse              | 13            | -        |                                                                                                                      |
| Task                            | MAST          | -        | -                                                                                                                    |
| Max. konsekutive CRC-<br>Fehler | 1             | -        | Definiert die Anzahl der<br>Kommunikationsfehler, die<br>erforderlich sind, um das Modul<br>als gestört zu erklären. |

# Kapitel 59

## 140 SDI 953 00S: Digitales Eingangsmodul

## Zu diesem Kapitel

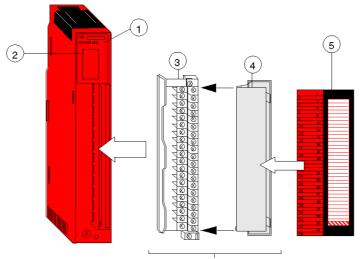
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 SDI 953 00S

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 630   |
| Anzeigen               | 631   |
| Verdrahtungsschema     | 632   |
| Technische Daten       | 635   |
| Adressierung           | 637   |
| Parameterkonfiguration | 640   |

#### **Beschreibung**


#### **Funktion**

Das 140 SDI 953 00S ist ein digitales 16-kanaliges 24-VDC-Eingangsmodul.

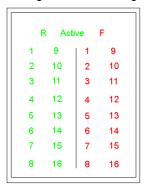
HINWEIS: Wird beim Selbsttest während des Anlaufs ein Fehler erkannt, kann das Modul keine Kommunikation mit dem Host aufbauen, bis der Fehler behoben ist. Wenn die externe 24-V-Spannungsversorgung nicht an das Modul angeschlossen ist, wird an den Kanälen ein Fehler erkannt und das Modul kann nicht anlaufen.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 SDI 953 00S mit seinen Komponenten.



140 XTS 002 00 wiring terminal block


- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Klemmenleiste für Feldverdrahtung (nicht im Lieferumfang des Moduls enthalten)
- 4 Abnehmbare Tür (nicht im Lieferumfang des Moduls enthalten)
- 5 Rotes Beschriftungsschild (mitgeliefertes Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Das Gehäuse der Sicherheitsmodule ist rot, und im Lieferumfang der Quantum-Sicherheits-E/A-Module ist ein rotes Beschriftungsschild enthalten. Es muss auf der Klemmenleiste angebracht werden.

## **Anzeigen**

## **Abbildung**

Die folgende Tabelle zeigt die LED-Anzeigen des Moduls 140 SDI 953 00S.



## **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 SDI 953 00S.

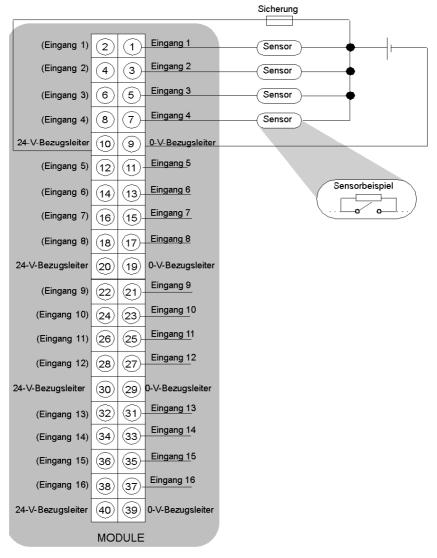
| LED-Typ            | LED-<br>Kennung | Farbe | Zustand | Bedeutung                                             |
|--------------------|-----------------|-------|---------|-------------------------------------------------------|
| Systemzustands-LED | R               | Grün  | EIN     | Power ON                                              |
|                    |                 |       | AUS     | Power OFF                                             |
|                    | Active          | Grün  | EIN     | Das Modul kommuniziert mit dem Host.                  |
|                    |                 |       | AUS     | Das Modul kommuniziert nicht mit dem Host.            |
|                    | F               | Rot   | EIN     | Es wurde ein interner Diagnosefehler erkannt.         |
|                    |                 |       | AUS     | Es wurde kein interner Diagnosefehler erkannt.        |
| Kanal-LED          | 1 16            | Grün  | EIN     | Der Kanal ist eingeschaltet.                          |
|                    |                 |       | AUS     | Der Kanal ist ausgeschaltet.                          |
|                    |                 | Rot   | EIN     | Nicht betriebsbereiter Kanal oder Drahtbruch erkannt. |
|                    |                 |       | AUS     | Betriebsbereiter Kanal und Draht.                     |

## Verdrahtungsschema

#### Vorsichtsmaßnahmen

Es ist empfehlenswert, eine Prozessspannungsversorgung zu nutzen, die nach einer Trennung nicht automatisch wieder hergestellt wird. Nutzen Sie z.B. 24VDC 10A ABL8 RPS24100 im manuellen Modus.

## **A** VORSICHT


#### ÜBERSTROM AN DEN EINGÄNGEN

Verwenden Sie flinke Sicherungen, um die elektronischen Komponenten des Moduls vor Überspannung zu schützen. Die Auswahl einer falschen Sicherung kann zur Beschädigung des Moduls führen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 SDI 953 00S.



**Spannungsversorgung:** 24 VDC **Sicherung:** Flinke 1 A-Sicherung

Pullup-Widerstand (z.B. im Sensor): 15 kOhm

**HINWEIS:** Es gibt nur eine Gruppe mit 16 Eingängen. Alle 24-V-Bezugsleiter sind intern angeschlossen, und alle 0-V-Bezugsleiter sind ebenfalls intern angeschlossen. Die zwei Pins desselben Eingangs (z. B. Pin 1 und 2 für Eingang 1) sind ebenfalls intern verbunden, sodass Sie entweder den rechten oder den linken Pin verwenden können.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

#### Beschreibung und Nutzung der Drahtbrucherkennung

Wenn der Strom zwischen dem Eingang und dem Sensor mehr als 1 mA beträgt, wird der Draht als nicht gebrochen betrachtet. Wenn dieser Strom unter 1 mA liegt, wird der Draht als gebrochen erkannt, und die rote LED des entsprechenden Eingangs leuchtet.

Wenn Sie Schwachstromsensoren installieren, leuchtet die rote LED des entsprechenden Eingangs immer dann, wenn der Kontakt geöffnet ist und der Strom 0 mA beträgt. Um dieses Problem zu umgehen und um die Drahtbrucherkennung ordnungsgemäß zu verwenden, empfiehlt Schneider Electric die Installation eines Pullup-Widerstands an den Sensoren, sodass der Minimalstrom von 1 mA erreicht wird. Sie können einen 15 kOhm Pullup-Widerstand verwenden oder den erforderlichen Wert erarbeiten. Siehe Sensorbeispiel in der Abbildung oben.

35010518 09/2020

## **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp                | 16 Eingänge (1 Gruppe x 16 Punkte)                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------|
| Logik                   | True High                                                                                              |
| Externe Spannung        | 24 VDC (19,2 bis 30 VDC)                                                                               |
| Verlustleistung         | 2,75 W + 0,25 W x Anzahl der Eingangspunkte EIN                                                        |
| Erforderlicher Busstrom | 550 mA                                                                                                 |
| E/A-Zuordnung           | 7 Eingangswörter                                                                                       |
| Fehlererkennung         | <ul><li>Drahtbruch (unter 1 mA)</li><li>Interner Kanal ungültig</li><li>System ausgeschaltet</li></ul> |
| Aktualisierungsdauer    | 15 ms für alle Kanäle                                                                                  |

## Potentialtrennung

## Potentialtrennung

| Gruppe-Gruppe | i                               |
|---------------|---------------------------------|
| Gruppe-Bus    | 1 500 VAC effektiv für 1 Minute |

## Eingangsauslegung

#### Eingangsauslegung

| Spannung im eingeschalteten Zustand | +11 +30 VDC                  |
|-------------------------------------|------------------------------|
| Spannung im ausgeschalteten Zustand | -3 +5 VDC                    |
| Strom im eingeschalteten Zustand    | 3,0 mA (min.)                |
| Strom im ausgeschalteten Zustand    | 1.5 mA (max.)                |
| Interne Eingangsimpedanz            | 3.675 kOhm                   |
| Eingangsschutz                      | Durch internen Gleichrichter |

## Absolute maximale Eingangsspannung

#### Absolute maximale Eingangsspannung

| ٠ | Kontinuierlich | 30 VDC |  |
|---|----------------|--------|--|
|   | Kontinulenich  | 30 VDC |  |

#### Reaktionszeit

#### Reaktionszeit

| AUS - EIN | 25 ms (max.) |
|-----------|--------------|
| EIN - AUS | 25 ms (max.) |

#### Sicherungen

#### Sicherungen

| Intern | Keine                                      |
|--------|--------------------------------------------|
| Extern | Flinke 1 A-Sicherung zwingend erforderlich |

## **A** VORSICHT

#### ÜBERSTROM AN DEN EINGÄNGEN

Verwenden Sie flinke Sicherungen, um die elektronischen Komponenten des Moduls vor Überspannung zu schützen. Die Auswahl einer falschen Sicherung kann zur Beschädigung des Moduls führen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

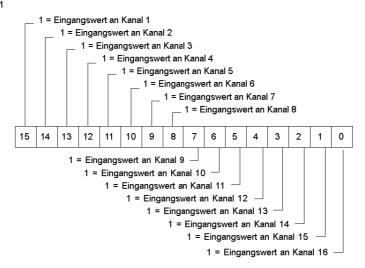
#### Adressierung

#### Übersicht

Im Folgenden wird beschrieben, wie die zwischen dem Modul 140 SDI 953 00S und dem Prozessormodul ausgetauschten Daten zugeordnet werden.

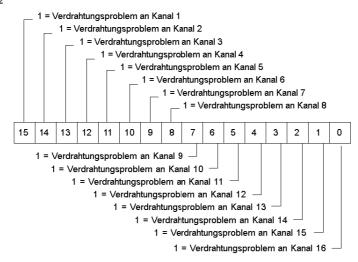
Mit Ausnahme des Funktionsfähigkeitsworts werden die hier beschriebenen Daten vom Modul 140 SDI 953 00S mittels der globalen Baugruppenträgerkommunikation in Quantum übertragen. Diese Methode wird von allen Quantum-Modulen genutzt.

#### **HINWEIS:**


7 Wörter sind für dieses Modul erforderlich:

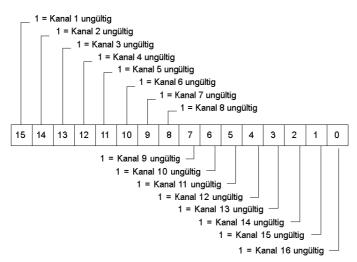
- 1 Wort speziell für Kanalwerte
- 1 Wort speziell für Verdrahtungsprobleme
- 1 Wort speziell für den Kanalzustand (gültiger/ungültiger Kanal)
- 1 Wort speziell für den Spannungsversorgungszustand (und die vom Modul genutzte Austauschnummer)
- 2 Wörter, die vom Modul genutzt werden (CRC)
- 1 Funktionsfähigkeitswort (auf dieses Wort kann nur das Prozessormodul zugreifen)

#### Flat-Adressierung


Die folgende Abbildung zeigt die Register von Wort 1. In Bit 15 lesen Sie den Eingangswert von Kanal 1, in Bit 14 lesen Sie den Eingangswert von Kanal 2 usw.

Wort 1




Die folgende Abbildung zeigt die Register von Wort 2. Bit 15 wird auf 1 gesetzt, wenn am Sensor von Kanal 1 kein Leckstrom erkannt wird, Bit 14 ist für Kanal 2 usw.

#### Wort 2



Die folgende Abbildung zeigt die Register von Wort 3. Wenn Bit 15 auf 1 gesetzt ist, hat Kanal 1 einen ungültigen Kanal erkannt, Bit 14 ist für Kanal 2 usw.

#### Wort 3



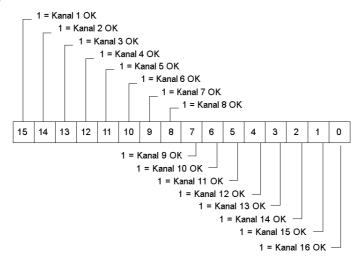
Im Wort 4 ist Bit 15 für den **Status der Prozessstromversorgung** reserviert. Wenn es auf 1 gesetzt ist, wird die externe Stromversorgung nicht mehr erkannt.

Die anderen Bits im Wort 4 und in den Wörtern 5 und 6 werden vom Modul für interne Prüfungen genutzt:

- Austauschnummer: serielle Nummer des Datensatzes
- Zyklische Redundanzprüfung (CRC): Funktion zum Erkennen von Fehlern nach der Übertragung

#### Funktionsfähigkeitswort

Das Funktionsfähigkeitswort ist eine zusätzliche Systemsteuerung vom Prozessormodul. Es nutzt die aus dem Eingangsmodul gelesenen Daten.


Die folgenden Fehler aktivieren das Funktionsfähigkeitswort:

- Drahtbruch (aktiviert nur das entsprechende Bit des Funktionsfähigkeitsworts)
- Ungültiger Kanal (aktiviert nur das entsprechende Bit des Funktionsfähigkeitsworts)
- Keine Prozessstromversorgung festgestellt
- CRC Fehler
- Falsche Austauschnummer

Wenn ein gestörter Eingang erkannt wird (wenn ein Bit in Wort 7 auf 0 gesetzt wird), wird der Wert des entsprechenden Kanals auf 0 gesetzt (im Wort 1).

Die folgende Abbildung zeigt die Register von Wort 7.

Wort 7



Bit 15 bis Bit 0: Diese 16 Bits werden auf 1 gesetzt, wenn kein Fehler erkannt wird.

## Parameterkonfiguration

#### **Betriebsarten**

Das Modul 140 SDI 953 00S ist konfigurierbar.

Die Konfiguration umfasst:

- Nummer von E/A-Station und Steckplatz (von Control Expert automatisch eingetragen)
- Maximale konsekutive CRC-Fehler, bevor das Modul als gestört erklärt wird

Wenn ein gestörter Eingang erkannt wird (d. h. ein Bit in Wort 7 wird auf 0 gesetzt), wird der Wert des entsprechenden Kanals auf 0 gesetzt (im Wort 1).

Das Modul bietet prozessseitige Diagnose, um dem Benutzer die Fehlerbehebung der Prozessanbindung beim Setup zu erleichtern (Erkennung Prozessstromversorgung und Drahtbruch).

#### Parameter und Standardwerte

Fenster der Parameterkonfiguration.



| Name                            | Standardwert  | Optionen | Beschreibung                                                                                                         |
|---------------------------------|---------------|----------|----------------------------------------------------------------------------------------------------------------------|
| Zuordnung                       | WORT (%IW-3x) | -        | -                                                                                                                    |
| Eingangsstartadresse 1          |               | -        | Je nach Anzahl der Module                                                                                            |
| Eingangsendadresse              | 7             | -        |                                                                                                                      |
| Eingangstyp                     | BINÄR         | -        | -                                                                                                                    |
| Task                            | MAST          | -        | -                                                                                                                    |
| Max. konsekutive CRC-<br>Fehler | 1             | -        | Definiert die Anzahl der<br>Kommunikationsfehler, die<br>erforderlich sind, um das Modul<br>als gestört zu erklären. |

35010518 09/2020

# Kapitel 60

## 140 SDO 953 00S: Digitales Ausgangsmodul

## Zu diesem Kapitel

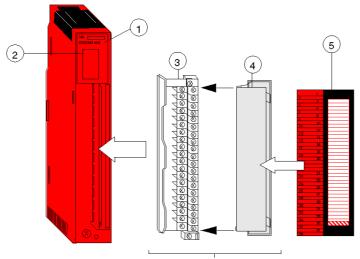
Das folgende Kapitel enthält Informationen über das Quantum-Modul 140 SDO 953 00S

## Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

| Thema                  | Seite |
|------------------------|-------|
| Beschreibung           | 642   |
| Anzeigen               | 643   |
| Verdrahtungsschema     | 644   |
| Technische Daten       | 647   |
| Adressierung           | 650   |
| Parameterkonfiguration | 656   |

#### **Beschreibung**


#### **Funktion**

16-kanaliges Digitalausgangsmodul, 24 VDC 0,5 A, Versorgungsüberlasterkennung

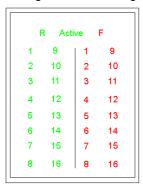
**HINWEIS:** Wird beim Selbsttest während des Anlaufs ein Fehler erkannt, kann das Modul keine Kommunikation mit dem Host aufbauen, bis der Fehler behoben ist. Wenn die externe 24 V-Spannungsversorgung nicht an das Modul angeschlossen ist, wird an den Kanälen ein Fehler erkannt und das Modul kann nicht anlaufen.

#### **Abbildung**

Die folgende Abbildung zeigt das Modul 140 SDO 953 00S mit seinen Komponenten.



140 XTS 002 00 wiring terminal block


- 1 Modellnummer, Modulbeschreibung, Farbcode
- 2 LED-Anzeige
- 3 Klemmenleiste für Feldverdrahtung (nicht im Lieferumfang des Moduls enthalten)
- 4 Abnehmbare Tür (nicht im Lieferumfang des Moduls enthalten)
- 5 Rotes Beschriftungsschild (mitgeliefertes Schild falten und an der Türinnenseite anbringen)

**HINWEIS:** Das Gehäuse der Sicherheitsmodule ist rot, und im Lieferumfang der Quantum-Sicherheits-E/A-Module ist ein rotes Beschriftungsschild enthalten. Es muss auf der Klemmenleiste angebracht werden.

## **Anzeigen**

## **Abbildung**

Die folgende Tabelle zeigt die LED-Anzeigen des Moduls 140 SDO 953 00S.



## **Beschreibung**

Die folgende Tabelle enthält die Beschreibung der LED-Anzeigen des Moduls 140 SDO 953 00S.

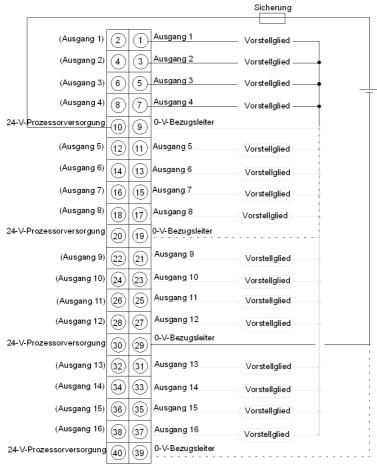
| LED-Typ          | LED-<br>Kennung | Farbe | Zustand | Bedeutung                                                                             |
|------------------|-----------------|-------|---------|---------------------------------------------------------------------------------------|
| System-          | R               | Grün  | EIN     | Power ON                                                                              |
| zustands-<br>LED |                 |       | AUS     | Power OFF                                                                             |
| LLD              | Active          | Grün  | EIN     | Das Modul kommuniziert mit dem Host.                                                  |
|                  |                 |       | AUS     | Das Modul kommuniziert nicht mit dem Host.                                            |
|                  | F               | Rot   | EIN     | Es wurde ein interner Diagnosefehler erkannt und/oder das Modul ist im Fehlermodus.   |
|                  |                 |       | AUS     | Es wurde kein interner Diagnosefehler erkannt und das Modul ist nicht im Fehlermodus. |
| Kanal-           | 1 16            | Grün  | EIN     | Der Kanal ist eingeschaltet.                                                          |
| LED              |                 |       | AUS     | Der Kanal ist ausgeschaltet.                                                          |
|                  |                 | Rot   | EIN     | Nicht betriebsbereiter Kanal und/oder Überlast am Kanal erkannt.                      |
|                  |                 |       | AUS     | Kanal betriebsbereit                                                                  |

## Verdrahtungsschema

#### Vorsichtsmaßnahmen

Es ist zwingend erforderlich, eine Prozessspannungsversorgung zu nutzen, die nach einer Trennung nicht automatisch wieder hergestellt wird. Nutzen Sie z.B. 24 VDC 10 A ABL8 RPS24100 im manuellen Modus.

## **A** VORSICHT


#### ÜBERSTROM AN DEN AUSGÄNGEN

Verwenden Sie flinke Sicherungen, um die elektronischen Komponenten des Moduls vor Überspannung zu schützen. Die Auswahl einer falschen Sicherung kann zur Beschädigung des Moduls führen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

#### **Abbildung**

Die folgende Abbildung zeigt das Verdrahtungsschema für das Modul 140 SDO 953 00S.



MODUL

Spannungsversorgung: 24 VDC

Sicherung: flink, max. 10 A (je nach Laststrom des Moduls)

Akt. Aktor

HINWEIS: Es gibt nur eine Gruppe mit 16 Ausgängen. Alle 24 V-Bezugsleiter sind intern angeschlossen, und alle 0V-Bezugsleiter sind ebenfalls intern angeschlossen. Bei Sicherheitsanwendungen ist es empfehlenswert, mindestens 2 Erdungsleitungen (Bezugspotenzial 0 V) an die Klemmenleiste der Feldverdrahtung anzuschließen. Die zwei Pins desselben Eingangs (z. B. Pin 1 und 2 für Eingang 1) sind ebenfalls intern verbunden, sodass Sie entweder den rechten oder den linken Pin verwenden können.

HINWEIS: Das Anzugsmoment muss zwischen 0,5 Nm und 0,8 Nm betragen.

## **HINWEIS**

#### ZERSTÖRUNG DES ADAPTERS

- Bevor Sie die Feststellmutter mit einem Anzugsmoment zwischen 0,50 und 0,80 Nm festdrehen, vergewissern Sie sich, dass der rechtwinklige F-Adapterstecker ordnungsgemäß positioniert und ausgerichtet ist.
- Beim Festdrehen der Mutter müssen Sie den Steckverbinder sicher in seiner Position halten.
- Der rechtwinklige F-Adapter darf keinesfalls mit einem h\u00f6heren als dem angegebenen Anzugsmoment angebracht werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

## **Technische Daten**

## Allgemeine Kenndaten

## Allgemeine Kenndaten

| Modultyp                 | 16 Ausgänge (1 Gruppe x 16 Kanäle)                                                                    |  |
|--------------------------|-------------------------------------------------------------------------------------------------------|--|
| Logik                    | True High                                                                                             |  |
| Stromversorgung Voraktor | 24 VDC                                                                                                |  |
| Verlustleistung          | 1,9 W + 0,65 V x I <sup>2</sup>                                                                       |  |
| Stromaufnahme (Modul)    | 350 mA                                                                                                |  |
| E/A-Zuordnung            | 4 Ausgangswörter und 7 Eingangswörter                                                                 |  |
| Fehlererkennung          | <ul><li>Überlast</li><li>24 V Prozessversorgungsproblem</li><li>System nicht betriebsbereit</li></ul> |  |
| Aktualisierungsdauer     | 15 ms für alle Kanäle                                                                                 |  |

## **Spannung**

## Spannung

| Betriebsspannung (max.)   | 19.2 30 VDC       |
|---------------------------|-------------------|
| Absolute Spannung (max.)  | 34 VDC            |
| Station EIN-Zustand/Punkt | 0,3 VDC bei 0,5 A |

## Maximaler Laststrom/Stoßstrom

#### Maximaler Laststrom/Stoßstrom

| Jeder Punkt                                   | 0,65 A                                          |
|-----------------------------------------------|-------------------------------------------------|
| Pro Modul                                     | 10,4 A                                          |
| Stoßstrom (max.)                              | 2 A bei 10 ms, einmal (interne Strombegrenzung) |
| Leckstrom im ausgeschalteten Zustand je Punkt | 0,5 mA bei 30 VDC                               |

## Potenzialtrennung/Schutz

## Potenzialtrennung/Schutz

| Gruppe-Gruppe  | i                                                                                                                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gruppe-Bus     | 1500 VAC effektiv für 1 Minute                                                                                                                       |
| Ausgangsschutz | <ul> <li>Unterdrückung der Spannungsspitzen (intern)</li> <li>Überlast</li> <li>Trennung (0,7 A bei 10 ms)</li> <li>Strombegrenzung (2 A)</li> </ul> |

## Antwort (ohmsche Lasten)

Antwort (ohmsche Lasten)

| AUS - EIN | 20 ms (max.) |
|-----------|--------------|
| EIN - AUS | 20 ms (max.) |

## Induktiver Blindwiderstand/Kapazität (max.)

Induktiver Blindwiderstand/Kapazität (max.)

| Induktiver Blindwiderstand (max.) | 0,5 Henry bei 11 Hz Schaltfrequenz oder:                                                                                      |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                   | L <sub>Max</sub> = ? Erläuterung: L = induktiver Blindwiderstand der Last (Henry)  I = Laststrom (A)  F = Schaltfrequenz (Hz) |
| Kapazität der Last (max.)         | 50 μF                                                                                                                         |

### Sicherungen

#### Sicherungen

| Intern | Keine                                            |
|--------|--------------------------------------------------|
| Extern | Zwingend                                         |
|        | (flink, max. 10 A, je nach Laststrom des Moduls) |

# **A** VORSICHT

### ÜBERSTROM AN DEN AUSGÄNGEN

Verwenden Sie flinke Sicherungen, um die elektronischen Komponenten des Moduls vor Überspannung zu schützen. Die Auswahl einer falschen Sicherung kann zur Beschädigung des Moduls führen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

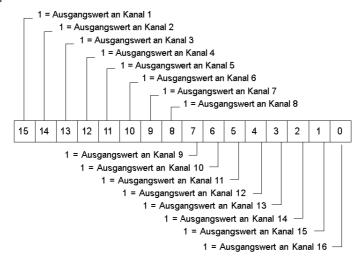
# Adressierung

#### Übersicht

Im Folgenden wird beschrieben, wie die zwischen dem Modul 140 SDO 953 00S und dem Prozessormodul ausgetauschten Daten zugeordnet werden.

Mit Ausnahme des Funktionsfähigkeitsworts werden die hier beschriebenen Daten an und vom Modul 140 SDO 953 00S mittels der globalen Baugruppenträgerkommunikation in Quantum übertragen. Diese Methode wird von allen Quantum-Modulen genutzt.

**HINWEIS:** Die Wörter "Eingang" und "Ausgang" werden hier in Bezug auf das Prozessormodul verwendet.


11 Wörter sind für dieses Modul erforderlich:

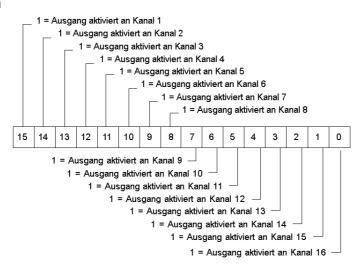
- 4 Wörter speziell für Ausgangsdaten
  - 1 Wort speziell für Kanalwerte
  - o 3 Wörter, die vom Modul genutzt werden (Austauschnummer, CRC)
- 6 Wörter speziell für Eingangsdaten:
  - o 1 Wort speziell für die Erkennung von aktivierten/deaktivierten Kanälen
  - 1 Wort speziell für Überlastfehler
  - o 1 Wort speziell für Fehler in unsicheren Kanälen
  - 1 Wort speziell für den Zustand der Prozesstromversorgung, Fehlfunktion des Hosts (und die vom Modul genutzte Austauschnummer)
  - 2 Wörter, die vom Modul genutzt werden (CRC)
- 1 Funktionsfähigkeitswort (auf dieses Wort kann nur das Prozessormodul zugreifen)

#### Flache Adressierung (Ausgangswörter)

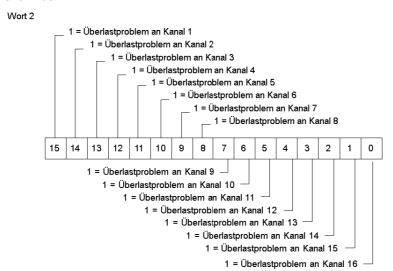
Die folgende Abbildung zeigt die Register des ersten Ausgangsworts. In Bit 15 lesen Sie den Ausgangswert von Kanal 1, in Bit 14 lesen Sie den Ausgangswert von Kanal 2 usw.






Die Wörter 2, 3 und 4 werden vom Modul für interne Prüfungen genutzt:

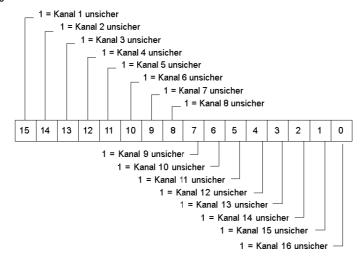
- Austauschnummer: serielle Nummer des Datensatzes
- Zyklische Redundanzprüfung (CRC): Funktion zum Erkennen von Fehlern nach der Übertragung


#### Flache Adressierung (Eingangswörter)

Die folgende Abbildung zeigt die Register des ersten Eingangsworts. Wenn Bit 15 auf 1 gesetzt ist, ist der Ausgang an Kanal 1 aktiviert. Wenn Bit 14 auf 1 gesetzt ist, ist der Ausgang an Kanal 2 aktiviert usw.

Wort 1




Die folgende Abbildung zeigt die Register des zweiten Eingangsworts. Ist Bit 15 auf 1 gesetzt, gibt es ein Überlastproblem an Kanal 1, wenn Bit 14 auf 1 gesetzt ist, gibt es ein Überlastproblem an Kanal 2 usw.



**HINWEIS**: Bei Aktivierung des Überlastbits wird der entsprechende Ausgang vom Modul automatisch in den Zustand "AUS" geschaltet (Trennung) und für mindestens 10 Sekunden im Zustand "AUS" gehalten. Zur Wiederherstellung der Steuerung des Ausgangs muss der Befehl per Anwendung für überlastete Ausgänge des Moduls in den Zustand "AUS" gesetzt werden.

Die folgende Abbildung zeigt die Register des dritten Eingangsworts. Wenn Bit 15 auf 1 gesetzt ist, haben die internen Prüfungen eine Fehlfunktion von Kanal 1 erkannt usw.





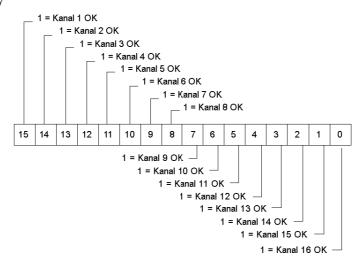
Im Wort 4 ist Bit 15 für den **Ausfall der Prozessstromversorgung** reserviert. Wenn es auf 1 gesetzt ist, wird die externe Stromversorgung nicht mehr erkannt.

Im Wort 4 ist Bit 14 für die **Systemabschaltung** reserviert. Wenn es auf 1 gesetzt wird, hat das Modul eine Fehlfunktion des Hosts erkannt. In diesem Fall ist das Modul sicher und wird abgeschaltet.

Die anderen Bits im Wort 4 und in den Wörtern 5 und 6 werden vom Modul für interne Prüfungen genutzt:

- Austauschnummer: serielle Nummer des Datensatzes
- **Zyklische Redundanzprüfung (CRC)**: Funktion zum Erkennen von Fehlern nach der Übertragung

#### Funktionsfähigkeitswort


Das Funktionsfähigkeitswort ist eine zusätzliche Systemsteuerung vom Prozessormodul. Es nutzt die aus dem Ausgangsmodul gelesenen Daten.

Die folgenden Fehler aktivieren das Funktionsfähigkeitswort:

- Überlastproblem (aktiviert nur das entsprechende Bit des Funktionsfähigkeitsworts)
- Unsicherer Kanal (aktiviert nur das entsprechende Bit des Funktionsfähigkeitsworts)
- Fehlfunktion des Hosts (SSD)
- Prozessstromversorgung Problem
- CRC Fehler
- Falsche Austauschnummer

Die folgende Abbildung zeigt die Register von Wort 7.

Wort 7



Bit 15 bis Bit 0: Diese 16 Bits werden auf 1 gesetzt, wenn kein Fehler erkannt wird.

# Parameterkonfiguration

#### **Betriebsarten**

Die Konfiguration des 140 SDO 953 00S umfasst:

- Nummer von E/A-Station und Steckplatz (von Control Expert automatisch eingetragen)
- Maximale Anzahl aufeinander folgender CRC-Fehler, bevor das Modul als gestört erklärt wird
- Timeout, bevor das Modul in den Fehlermodus geht
- Fehlermodus (benutzerdefiniert oder letzten Wert halten)

**HINWEIS:** Das Modul nutzt nur die Wortschnittstelle (%QW-4x). Es handelt sich zwar um ein Digitalausgangsmodul, das aber nicht für die Verwendung der Bitschnittstelle (%Q-0x) konfiguriert werden kann.

Im normalen Betrieb prüft das Modul 140 SDO 953 00S zyklisch die interne prozessseitige Elektronik, sodass das Modul den Status der Ausgangskanäle erkennt. Es führt auch einen Satz Diagnoseprüfungen im internen System und mit der internen prozessseitigen Elektronik durch.

#### Konfiguration des Fehlermodus der Ausgänge

Wenn das Modul 140 SDO 953 00S eine Diskrepanz in den Daten vom Host erkennt, versetzt das Modul seine Ausgänge in den konfigurierten Fehlermodus.

Die Ausgänge des Moduls 140 SDO 953 00S haben drei Zustände.

- Aktiviert
- Deaktiviert
- "Letzten Zustand halten" (Fehlermodus)

Im Parameter-Konfigurationsfenster von Control Expert können Sie die Ausgangsposition für den Fall konfigurieren, dass das Modul nicht mehr vom Prozessormodul bedient wird. Sie können entweder den letzten Wert halten oder einen anderen Wert definieren.

# Parameter und Standardwerte

Fenster der Parameterkonfiguration.

| SICHERHEIT DC OUT 10-30 V 16x1 |                       |  |  |
|--------------------------------|-----------------------|--|--|
| Übersicht Konfig E/A-Objekte   |                       |  |  |
| Parametername                  | Wert                  |  |  |
| ZUORDNUNG                      | WORT (%IW-3X %MW-4X)  |  |  |
| EINGABE STARTADRESSE           | 1                     |  |  |
| EINGABE ENDADRESSE             | 7                     |  |  |
| AUSGABE STARTADRESSE           | 1                     |  |  |
| - · · AUSGABE ENDADRESSE       | 4                     |  |  |
| TASK                           | MAST                  |  |  |
| AUSGANGSTYP                    | BINÄR ▼               |  |  |
| MAX. KONSEKUTIVE CRC-FEHLER    | 1                     |  |  |
| MODUL-TIMEOUT                  | 200                   |  |  |
| □ - TIMEOUT-STATUS             |                       |  |  |
| ⊕ - KANAL 1                    | BENUTZERDEFINIERT ▼   |  |  |
| WERT                           | 1                     |  |  |
| ⊕ - KANAL 2                    | LETZTEN WERT HALTEN   |  |  |
| · · · · VALUE                  | 0                     |  |  |
| ⊕ - KANAL 3                    | LETZTEN WERT HALTEN   |  |  |
| ⊕ - KANAL 4                    | LETZTEN WERT HALTEN   |  |  |
| ⊕ - ·KANAL 5                   | LETZTENWERT HALTEN    |  |  |
| ⊕ - ·KANAL 6                   | LETZTENWERT HALTEN    |  |  |
| KANAL 7                        | LETZTENWERT HALTEN    |  |  |
| ⊕ - KANAL 8                    | LETZTEN WERT HALTEN   |  |  |
| ⊕ - KANAL 9                    | LETZTENWERT HALTEN    |  |  |
| ⊕ - KANAL 10                   | LETZTEN WERT HALTEN   |  |  |
| . ⊢KANAL 11                    | LETZTEN WERT HALTEN   |  |  |
| ⊕ - KANAL 12                   | LETZTEN WERT HALTEN   |  |  |
| ⊕ - KANAL 13                   | LETZTEN WERT HALTEN   |  |  |
| ⊕ - KANAL 14                   | LETZTEN WERT HALTEN   |  |  |
| ⊡ - KANAL 15                   | LETZTEN WERT HALTEN ▼ |  |  |
| ⊕ - KANAL 16                   | LETZTEN WERT HALTEN   |  |  |

| Name                            | Standardwert         | Optionen | Beschreibung                                                                                                                                                         |
|---------------------------------|----------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zuordnung                       | WORT (%IW-3x %MW-4x) | -        | -                                                                                                                                                                    |
| Eingangsstartadresse            | 1                    | -        | Je nach Anzahl der Module                                                                                                                                            |
| Eingangsendadresse              | 7                    | -        |                                                                                                                                                                      |
| Ausgangsstartadresse            | 1                    | -        | Je nach Anzahl der Module                                                                                                                                            |
| Ausgangsendadresse              | 4                    | -        |                                                                                                                                                                      |
| Task                            | MAST                 | -        | -                                                                                                                                                                    |
| Ausgangstyp                     | BINÄR                | -        | -                                                                                                                                                                    |
| Max. konsekutive CRC-<br>Fehler | 1                    | -        | Definiert die Anzahl der<br>Kommunikationsfehler, die<br>erforderlich sind, um das Modul als<br>gestört zu erklären.                                                 |
| Modul-Timeout                   | 200 ms               | -        | Definiert, wie lange die Ausgänge<br>den Zustand halten, bevor sie in den<br>Fehlermodus gehen, wenn keine<br>Kommunikation vom<br>Prozessormodul mehr erkannt wird. |

| Name           | Standardwert        | Optionen               | Beschreibung         |
|----------------|---------------------|------------------------|----------------------|
| Timout-Zustand |                     |                        |                      |
| Kanal 1        | LETZTEN WERT HALTEN | BENUTZERDEFI-<br>NIERT | Position bei Timeout |
|                |                     |                        |                      |
| Kanal16        | LETZTEN WERT HALTEN | BENUTZERDEFI-<br>NIERT | Position bei Timeout |

# Index



| 0-9                     | 140DD030400, <i>309</i>                                                          |
|-------------------------|----------------------------------------------------------------------------------|
| 140ACI03000, <i>63</i>  | 140DDO84300, <i>379</i>                                                          |
| 140ACI04000, <i>75</i>  | 140DD088500, <i>389</i>                                                          |
| 140ACO02000, <i>129</i> | 140DII33000, <i>589</i>                                                          |
| 140ACO13000, <i>139</i> | 140DIO33000, <i>599</i>                                                          |
| 140All33000, <i>539</i> | 140DRA84000, <i>457</i>                                                          |
| 140AII33010, <i>563</i> | 140DRC83000, <i>465</i>                                                          |
| 140AlO33000, <i>577</i> | 140DSI35300, <i>315</i>                                                          |
| 140AMM09000, <i>163</i> | 140DVO85300, <i>475</i>                                                          |
| 140ARI03010, <i>85</i>  | 140SAI94000S, <i>615</i>                                                         |
| 140ATI03000, <i>99</i>  | 140SDI95300S, <i>629</i>                                                         |
| 140AVI03000, <i>115</i> | 140SDO95300S, <i>641</i>                                                         |
| 140AVO02000, <i>149</i> |                                                                                  |
| 140DAI34000, <i>243</i> | Α                                                                                |
| 140DAI35300, <i>251</i> |                                                                                  |
| 140DAI44000, <i>259</i> | Adressierung, 27                                                                 |
| 140DAI45300, <i>267</i> | Flat, <i>28</i>                                                                  |
| 140DAI54000, <i>275</i> | IODDT, 30                                                                        |
| 140DAI54300, <i>283</i> |                                                                                  |
| 140DAI55300, <i>291</i> | D                                                                                |
| 140DAI74000, <i>299</i> | _                                                                                |
| 140DAI75300, <i>307</i> | Dezentrale E/A (RIO), <i>612</i><br>Digitale E/A-Module konfigurieren, <i>23</i> |
| 140DAM59000, <i>517</i> | Digitale E/A-Module Konligurieren, 23                                            |
| 140DAO84000, <i>401</i> |                                                                                  |
| 140DAO84010, <i>411</i> | E                                                                                |
| 140DAO84210, <i>421</i> | <del>-</del>                                                                     |
| 140DAO84220, <i>433</i> | Eigensicher, 531                                                                 |
| 140DAO85300, <i>445</i> |                                                                                  |
| 140DDI15310, <i>185</i> | K                                                                                |
| 140DDI35300, <i>193</i> |                                                                                  |
| 140DDI35310, <i>201</i> | Kanaldatenstruktur für analoge Module                                            |
| 140DDI36400, <i>209</i> | T_ANA_BI_VWE, 30, 32                                                             |
| 140DDI67300, <i>217</i> | T_ANA_IN_VE, 30, 31                                                              |
| 140DDI84100, <i>227</i> | T_ANA_IN_VWE, <i>30</i> , <i>31</i>                                              |
| 140DDI85300, <i>235</i> | T_CNT_105, <i>30</i>                                                             |
| 140DDM39000, <i>491</i> | Klemmenblöcke                                                                    |
| 140DDM69000, <i>505</i> | Installieren, 59                                                                 |
| 140DD015310, <i>329</i> |                                                                                  |
| 140DDO35300, <i>339</i> | Q                                                                                |
| 140DDO35301, <i>349</i> |                                                                                  |
| 140DDO35310 <i>359</i>  | Quantum-Sicherheits-E/A. 612                                                     |

# R

RIO (Dezentrale E/A), 612

# S

Statusbytes, 36, 40, 46, 54, 72, 83, 96, 111, 125, 137, 146, 157, 177, 323, 484, 557, 573, 586
Statuswörter, 71, 82, 94, 109, 124, 137, 146, 157, 175, 322, 483, 555, 572, 586, 624, 637, 650

# T

T\_ANA\_BI\_VWE, 32 T\_ANA\_IN\_VE, 31 T\_ANA\_IN\_VWE, 31 T\_CNT\_105T\_CNT\_105, 32