EcoStruxure™
Control Expert
Convertidor de aplicaciones de Concept
Manual del usuario

(Traducción del documento original inglés)

12/2018
La información que se ofrece en esta documentación contiene descripciones de carácter general y/o características técnicas sobre el rendimiento de los productos incluidos en ella. La presente documentación no tiene como objeto sustituir dichos productos para aplicaciones de usuario específicas, ni debe emplearse para determinar su idoneidad o fiabilidad. Los usuarios o integradores tienen la responsabilidad de llevar a cabo un análisis de riesgos adecuado y completo, así como la evaluación y las pruebas de los productos en relación con la aplicación o el uso de dichos productos en cuestión. Ni Schneider Electric ni ninguna de sus filiales o asociados asumirán responsabilidad alguna por el uso inapropiado de la información contenida en este documento. Si tiene sugerencias de mejoras o modificaciones o ha hallado errores en esta publicación, le rogamos que nos lo notifique.

Usted se compromete a no reproducir, salvo para su propio uso personal, no comercial, la totalidad o parte de este documento en ningún soporte sin el permiso de Schneider Electric, por escrito. También se compromete a no establecer ningún vínculo de hipertexto a este documento o su contenido. Schneider Electric no otorga ningún derecho o licencia para el uso personal y no comercial del documento o de su contenido, salvo para una licencia no exclusiva para consultarla "tal cual", bajo su propia responsabilidad. Todos los demás derechos están reservados.

Al instalar y utilizar este producto es necesario tener en cuenta todas las regulaciones sobre seguridad correspondientes, ya sean regionales, locales o estatales. Por razones de seguridad y para garantizar que se siguen los consejos de la documentación del sistema, las reparaciones solo podrá realizarlas el fabricante.

Cuando se utilicen dispositivos para aplicaciones con requisitos técnicos de seguridad, siga las instrucciones pertinentes.

Si con nuestros productos de hardware no se utiliza el software de Schneider Electric u otro software aprobado, pueden producirse lesiones, daños o un funcionamiento incorrecto del equipo.

Si no se tiene en cuenta esta información, se pueden causar daños personales o en el equipo.

© 2018 Schneider Electric. Reservados todos los derechos.
# Tabla de materias

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Información de seguridad</td>
<td>9</td>
</tr>
<tr>
<td>Acerca de este libro</td>
<td>13</td>
</tr>
<tr>
<td><strong>Parte I</strong></td>
<td><strong>Requisitos y conversión</strong></td>
</tr>
<tr>
<td><strong>Capítulo 1</strong></td>
<td><strong>Descripción general del convertidor de Concept de Control Expert.</strong></td>
</tr>
<tr>
<td></td>
<td>Descripción general</td>
</tr>
<tr>
<td></td>
<td>Conversión con el asistente de conversión</td>
</tr>
<tr>
<td><strong>Capítulo 2</strong></td>
<td><strong>Requisitos.</strong></td>
</tr>
<tr>
<td></td>
<td>Versión de Concept</td>
</tr>
<tr>
<td></td>
<td>Plataformas de hardware admitidas</td>
</tr>
<tr>
<td></td>
<td>Configuración</td>
</tr>
<tr>
<td></td>
<td>Sistema</td>
</tr>
<tr>
<td></td>
<td>EFB</td>
</tr>
<tr>
<td></td>
<td>Lenguaje de programación SFC</td>
</tr>
<tr>
<td></td>
<td>Lenguaje de programación LD</td>
</tr>
<tr>
<td></td>
<td>Lenguaje de programación ST/IL</td>
</tr>
<tr>
<td></td>
<td>Lenguaje de programación LL984</td>
</tr>
<tr>
<td></td>
<td>Lenguaje de programación FBD</td>
</tr>
<tr>
<td><strong>Capítulo 3</strong></td>
<td><strong>Diferencias de los lenguajes.</strong></td>
</tr>
<tr>
<td></td>
<td>Funciones no incluidas en Control Expert</td>
</tr>
<tr>
<td></td>
<td>EFB reemplazado por función</td>
</tr>
<tr>
<td></td>
<td>Falta de disponibilidad de los FFB para todas las plataformas</td>
</tr>
<tr>
<td></td>
<td>Parámetros INOUT</td>
</tr>
<tr>
<td></td>
<td>Tipo de parámetro modificado</td>
</tr>
<tr>
<td></td>
<td>Parámetros ANY_ARRAY_WORD.</td>
</tr>
<tr>
<td></td>
<td>Nomenclatura inequívoca requerida</td>
</tr>
<tr>
<td></td>
<td>Generación LD incompleta</td>
</tr>
<tr>
<td></td>
<td>Secuencia de ejecución LD modificada</td>
</tr>
<tr>
<td></td>
<td>Diferencia de detección de flancos</td>
</tr>
<tr>
<td></td>
<td>Constantes</td>
</tr>
<tr>
<td></td>
<td>Índices en ST e IL</td>
</tr>
<tr>
<td></td>
<td>Cálculo con TIME y REAL</td>
</tr>
<tr>
<td></td>
<td>Asignaciones de WORD a matrices BOOL</td>
</tr>
<tr>
<td></td>
<td>Solapamiento de direcciones topológicas</td>
</tr>
<tr>
<td></td>
<td>Sustituir %QD por %MF</td>
</tr>
</tbody>
</table>
Alineación de estructura modificada .......................................................... 86
Salida indefinida en EF deshabilitadas ...................................................... 87
Variables en pins vacíos ........................................................................... 89
La acción definida queda activa incluso cuando el paso correspondiente se desactiva. ................................................................. 90
Retención del estado de la sección SFC al realizar una modificación online ......................................................................................... 91
El comportamiento de un bloque de funciones SFCCNTRL difiere entre Control Expert y Concept. .......................................................... 92
Numeración de los días de la semana ......................................................... 93
Temporizador de sistema ......................................................................... 94
Valores iniciales ......................................................................................... 95
Macros ...................................................................................................... 97
Capítulo 4 Posible cambio de comportamiento de la aplicación .......... 99
General .................................................................................................. 100
Comportamiento de Concept ................................................................. 101
Requisitos IEC ......................................................................................... 102
Comportamiento de Control Expert ....................................................... 105
Consecuencias ....................................................................................... 108
Capítulo 5 El proceso de conversión ....................................................... 115
Proceso de conversión ........................................................................... 115
Capítulo 6 Procedimiento de conversión .............................................. 117
Exportación de un proyecto Concept ...................................................... 118
Importación de un proyecto en Control Expert ........................................ 119
Tipos de datos que faltan al comienzo de la importación ...................... 120
Conversión sólo de partes de una aplicación Concept ............................ 121
Eliminación de macros de Concept incluidas accidentalmente .......... 122
Valores de inicialización ....................................................................... 123
Si la aplicación Momentum convertida contiene más de un bloque XMIT ............................................................................................ 124
Parte II Bloques de Concept a Control Expert ....................................... 125
Capítulo 7 BYTE_TO_BIT_DFB: Conversión de tipos ......................... 127
Descripción ........................................................................................... 127
Capítulo 8 CREADREG: Lectura continua de registro ....................... 131
Descripción ........................................................................................... 132
Modo de funcionamiento ...................................................................... 135
Descripción de parámetros ................................................................... 136
Códigos de error de Modbus Plus ......................................................... 137
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>CWRITREG: Escritura continua de registro</td>
<td>139</td>
</tr>
<tr>
<td>10</td>
<td>DINT_AS_WORD_DFB: Conversión de tipos</td>
<td>145</td>
</tr>
<tr>
<td>11</td>
<td>DIOSTAT: Estado de función del módulo (DIO)</td>
<td>147</td>
</tr>
<tr>
<td>12</td>
<td>GET_TOD: Lectura del reloj de hardware (tiempo del día)</td>
<td>149</td>
</tr>
<tr>
<td>13</td>
<td>LIMIT_IND_DFB: Indicador de límite de ancho</td>
<td>153</td>
</tr>
<tr>
<td>14</td>
<td>LOOKUP_TABLE1_DFB: Progresión de travesía con interpolación de primer grado</td>
<td>157</td>
</tr>
<tr>
<td>15</td>
<td>PLCSTAT: DFB de estado de función de la CPU M580.</td>
<td>163</td>
</tr>
<tr>
<td>16</td>
<td>PLCSTAT: Quantum estado de la función PLC</td>
<td>169</td>
</tr>
<tr>
<td>17</td>
<td>READREG: Lectura de registro</td>
<td>185</td>
</tr>
<tr>
<td>18</td>
<td>RIOSTAT: Estado del bloque de funciones (RIO)</td>
<td>193</td>
</tr>
<tr>
<td>19</td>
<td>SET_TOD: Ajuste del reloj de hardware (tiempo del día)</td>
<td>197</td>
</tr>
<tr>
<td>20</td>
<td>WORD_AS_BYTE_DFB: Conversión de tipos</td>
<td>201</td>
</tr>
<tr>
<td>21</td>
<td>WORD_TO_BIT_DFB: Conversión de tipos</td>
<td>203</td>
</tr>
<tr>
<td>Capítulo 22</td>
<td>WRITEREG: Escritura de registro</td>
<td>207</td>
</tr>
<tr>
<td>Descripción</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Modo de funcionamiento</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Descripción de los parámetros</td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>

| Parte III | Importación/exportación de aplicaciones LL984 | 215 |
| Capítulo 23 | Importar | 217 |
| Importación de una aplicación LL984 | 218 |
| Importación de PLC | 228 |
| Importación de configuraciones específicas de la CPU | 231 |
| Importación de configuraciones de Hot Standby | 239 |
| Importación de módulos de E/S | 241 |
| Importación de la configuración de comunicación | 248 |
| Importación de descriptores y comentarios | 251 |
| Restricciones de importación | 254 |
| Importación de partes de aplicaciones con el asistente de conversión | 258 |

| Capítulo 24 | Exportar | 259 |
| Exportación/importación de segmentos y redes LL984 | 259 |

| Parte IV | Tabla de conversiones de módulos de E/S | 261 |
| Capítulo 25 | Módulos de E/S admitidos/no admitidos | 263 |
| Módulos Quantum | 264 |
| Módulos de la serie 800 | 271 |
| Módulos de las series 200/500 | 278 |
| Módulos SY/MAX | 281 |
| Módulos Compact | 284 |

<p>| Capítulo 26 | Conversión especial para los módulos de E/S Compact | 291 |
| 26.1 | Conversión de módulos de entradas digitales | 292 |
| 26.2 | Conversión de módulos de entradas digitales | 292 |
| 26.3 | Conversión de módulos de entradas analógicas | 295 |
| 26.4 | Conversión de módulos de entradas analógicas | 295 |
| ADU 206/256 | 297 |
| Tensión y corriente del módulo ADU 205 | 303 |
| Tensión y corriente de ADU 210 | 307 |
| Termopar del módulo ADU 204/ADU 254 | 308 |</p>
<table>
<thead>
<tr>
<th>Tensión, corriente, termopar y resistencias mixtas del módulo</th>
<th>ADU 214</th>
<th>310</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termopar de uno y dos canales con 32 bits del módulo ADU 257</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>Módulos configurados de los conmutadores de hardware</td>
<td>ADU 211/212 y ADU 216</td>
<td>316</td>
</tr>
<tr>
<td>Módulos de conteo y posicionamiento, FRQ xxx, ZAE xxx, MOT.xxx, VIC.xxx</td>
<td></td>
<td>318</td>
</tr>
</tbody>
</table>

### 26.5 Conversión de módulos de salidas analógicas

<table>
<thead>
<tr>
<th>Conversión de módulos de salidas analógicas</th>
<th>DAU 204</th>
<th>320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daau 208</td>
<td></td>
<td>321</td>
</tr>
<tr>
<td>Daau 2x2</td>
<td></td>
<td>324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apéndices</th>
<th></th>
<th>327</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apéndice A Preguntas más frecuentes sobre errores de compilación</td>
<td></td>
<td>329</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>Error al crear el enlace del objeto</td>
<td></td>
<td>331</td>
</tr>
<tr>
<td>El objeto debe estar conectado a un sucesor</td>
<td></td>
<td>332</td>
</tr>
<tr>
<td>No se permite el enlace junto con la variable</td>
<td></td>
<td>334</td>
</tr>
<tr>
<td>Data Type 'xxxx' Expected</td>
<td></td>
<td>335</td>
</tr>
<tr>
<td>DFB vacío para sustituir el EFB obsoleto</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>Símbolo no definido &quot;xxxx&quot;</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>Call of Non-Function Block</td>
<td></td>
<td>343</td>
</tr>
<tr>
<td>Se tiene que asignar el parámetro &quot;xxxx&quot;</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>&quot;xxxx&quot; no es un parámetro de &quot;yyyy&quot;</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>Falta el componente del DDT</td>
<td></td>
<td>348</td>
</tr>
<tr>
<td>Parámetros de EHC fuera de rango</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>No es una dirección válida</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>Configuración de 140 NOG 111 00 no convertida</td>
<td></td>
<td>351</td>
</tr>
<tr>
<td>E1163 Uso de dirección directa no configurada</td>
<td></td>
<td>352</td>
</tr>
<tr>
<td>La instancia está ubicada en una dirección no configurada</td>
<td></td>
<td>353</td>
</tr>
</tbody>
</table>

### Apéndice B FAQ sobre errores de conversión

<table>
<thead>
<tr>
<th>FAQ sobre errores de conversión</th>
<th></th>
<th>355</th>
</tr>
</thead>
</table>

### Índice

<table>
<thead>
<tr>
<th>Índice</th>
<th></th>
<th>361</th>
</tr>
</thead>
</table>
Información de seguridad

Información importante

AVISO

Lea atentamente estas instrucciones y observe el equipo para familiarizarse con el dispositivo antes de instalarlo, utilizarlo, revisarlo o realizar su mantenimiento. Los mensajes especiales que se ofrecen a continuación pueden aparecer a lo largo de la documentación o en el equipo para advertir de peligros potenciales, o para ofrecer información que aclara o simplifica los distintos procedimientos.

La inclusión de este ícono en una etiqueta “Peligro” o “Advertencia” indica que existe un riesgo de descarga eléctrica, que puede provocar lesiones si no se siguen las instrucciones.

Este es el ícono de alerta de seguridad. Se utiliza para advertir de posibles riesgos de lesiones. Observe todos los mensajes que siguen a este ícono para evitar posibles lesiones o incluso la muerte.

PELIGRO

PELIGRO indica una situación de peligro que, si no se evita, provocará lesiones graves o incluso la muerte.

ADVERTENCIA

ADVERTENCIA indica una situación de peligro que, si no se evita, podría provocar lesiones graves o incluso la muerte.

ATENCIÓN

ATENCIÓN indica una situación peligrosa que, si no se evita, podría provocar lesiones leves o moderadas.

AVISO

AVISO indica una situación potencialmente peligrosa que, si no se evita, puede provocar daños en el equipo.
TENGA EN CUENTA LO SIGUIENTE:
La instalación, el manejo, las revisiones y el mantenimiento de equipos eléctricos deberán ser realizados sólo por personal cualificado. Schneider Electric no se hace responsable de ninguna de las consecuencias del uso de este material.
Una persona cualificada es aquella que cuenta con capacidad y conocimientos relativos a la construcción, el funcionamiento y la instalación de equipos eléctricos, y que ha sido formada en materia de seguridad para reconocer y evitar los riesgos que conllevan tales equipos.

ANTES DE EMPEZAR
No utilice este producto en maquinaria sin protección de punto de funcionamiento. La ausencia de protección de punto de funcionamiento en una máquina puede provocar lesiones graves al operador de dicha máquina.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPO SIN PROTECCIÓN</td>
</tr>
<tr>
<td>• No utilice este software ni los equipos de automatización relacionados en equipos que no dispongan de protección de punto de funcionamiento.</td>
</tr>
<tr>
<td>• No introduzca las manos u otras partes del cuerpo dentro de la maquinaria mientras está en funcionamiento.</td>
</tr>
</tbody>
</table>
**El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.**

Este equipo de automatización y el software relacionado se utilizan para controlar diversos procesos industriales. El tipo o modelo del equipo de automatización adecuado para cada uso varía en función de factores tales como las funciones de control necesarias, el grado de protección requerido, los métodos de producción, la existencia de condiciones poco habituales, las normativas gubernamentales, etc. En algunos usos, puede ser necesario más de un procesador, como en el caso de que se requiera redundancia de respaldo.
Solamente el usuario, el fabricante de la máquina o el integrador del sistema conocen las condiciones y los factores presentes durante la configuración, el funcionamiento y el mantenimiento de la máquina y, por consiguiente, pueden decidir el equipo asociado y las medidas de seguridad y los enclavamientos relacionados que se pueden utilizar de forma adecuada. Al seleccionar los equipos de automatización y control, así como el software relacionado para un uso determinado, el usuario deberá consultar los estándares y las normativas locales y nacionales aplicables. La publicación National Safety Council's Accident Prevention Manual (que goza de un gran reconocimiento en los Estados Unidos de América) también proporciona gran cantidad de información de utilidad.
En algunas aplicaciones, como en el caso de la maquinaria de embalaje, debe proporcionarse protección adicional al operador, como la protección de punto de funcionamiento. Esta medida es necesaria si existe la posibilidad de que las manos y otras partes del cuerpo del operador puedan introducirse y quedar atrapadas en áreas o puntos peligrosos, lo que puede provocar lesiones graves. Los productos de software por sí solos no pueden proteger al operador frente a posibles lesiones. Por este motivo, el software no se puede sustituir por la protección de punto de funcionamiento ni puede realizar la función de esta.

Asegúrese de que las medidas de seguridad y los enclavamientos mecánicos/eléctricos relacionados con la protección de punto de funcionamiento se hayan instalado y estén operativos antes de que los equipos entren en funcionamiento. Todos los enclavamientos y las medidas de seguridad relacionados con la protección de punto de funcionamiento deben estar coordinados con la programación del software y los equipos de automatización relacionados.

NOTA: La coordinación de las medidas de seguridad y los enclavamientos mecánicos/eléctricos para la protección de punto de funcionamiento está fuera del ámbito de la biblioteca de bloques de funciones, la guía de usuario del sistema o de otras instalaciones mencionadas en esta documentación.

INICIAR Y PROBAR

Antes de utilizar los equipos eléctricos de control y automatización para su funcionamiento normal tras la instalación, es necesario que personal cualificado lleve a cabo una prueba de inicio del sistema para verificar que los equipos funcionan correctamente. Es importante realizar los preparativos para una comprobación de estas características y disponer de suficiente tiempo para llevar a cabo las pruebas de forma completa y correcta.

Realice todas las pruebas de inicio recomendadas en la documentación del equipo. Guarde la documentación del equipo para consultarla en el futuro.

Las pruebas del software deben realizarse tanto en un entorno simulado como en un entorno real. Verifique que no existen cortocircuitos ni conexiones a tierra temporales en todo el sistema que no estén instalados según la normativa local (de conformidad con National Electrical Code de EE. UU., por ejemplo). Si fuera necesario realizar pruebas de tensión de alto potencial, siga las recomendaciones de la documentación del equipo para evitar dañar el equipo fortuitamente.
Antes de dar tensión al equipo:
- Retire del equipo las herramientas, los medidores y el material de desecho que pueda haber.
- Cierre la puerta de la carcasa del equipo.
- Retire todas las conexiones a tierra temporales de las líneas de alimentación de entrada.
- Realice todas las pruebas iniciales recomendadas por el fabricante.

**FUNCIONAMIENTO Y AJUSTES**

Las precauciones siguientes proceden de NEMA Standards Publication ICS 7.1-1995 (prevalece la versión en inglés):
- Aunque se ha extremado la precaución en el diseño y la fabricación del equipo o en la selección y las especificaciones de los componentes, existen riesgos que pueden aparecer si el equipo se utiliza de forma inadecuada.
- En algunas ocasiones puede desajustarse el equipo, lo que provocaría un funcionamiento incorrecto o poco seguro. Utilice siempre las instrucciones del fabricante como guía para realizar los ajustes de funcionamiento. El personal que tenga acceso a estos ajustes debe estar familiarizado con las instrucciones del fabricante del equipo y con la maquinaria utilizada para los equipos eléctricos.
- El operador solo debe tener acceso a los ajustes de funcionamiento que realmente necesita. El acceso a los demás controles debe restringirse para evitar cambios no autorizados en las características de funcionamiento.
Acerca de este libro

Presentación

Objeto

Este documento describe la funcionalidad y el alcance del rendimiento del convertidor de aplicaciones de Concept para Control Expert.

Campo de aplicación

Este documento es válido para la versión EcoStruxure™ Control Expert 14.0 o posterior.

Documentos relacionados

<table>
<thead>
<tr>
<th>Título de la documentación</th>
<th>Número de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoStruxure™ Control Expert, Lenguajes y estructura del programa, Manual de referencia</td>
<td>35006144 (inglés), 35006145 (francés), 35006146 (alemán), 35013361 (italiano), 35006147 (español), 35013362 (chino)</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert, Modalidades de funcionamiento</td>
<td>33003101 (inglés), 33003102 (francés), 33003103 (alemán), 33003104 (español), 33003696 (italiano), 33003697 (chino)</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert, Editor LL984, Manual de referencia</td>
<td>EIO00000000549 (inglés), EIO0000000802 (francés), EIO0000000803 (alemán), EIO0000000804 (italiano), EIO0000000805 (español), EIO0000000806 (chino)</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert, UnityLL984, Biblioteca de bloques</td>
<td>EIO00000000550 (inglés), EIO0000000807 (francés), EIO0000000808 (alemán), EIO0000000809 (italiano), EIO0000000810 (español), EIO0000000811 (chino)</td>
</tr>
<tr>
<td>Título de la documentación</td>
<td>Número de referencia</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert, Palabras y bits de sistema Manual de referencia</td>
<td>EIO00000002135 (inglés), EIO00000002136 (francés), EIO00000002137 (alemán), EIO00000002138 (italiano), EIO00000002139 (español), EIO00000002140 (chino)</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert, Convertidor de aplicaciones M580, Manual del usuario</td>
<td>NVE78183 (ingles), NVE78184 (francés), NVE78185 (alemán), NVE78186 (italiano), NVE78187 (español), NVE78188 (chino)</td>
</tr>
<tr>
<td>EcoStruxure™ Control Expert, Comunicación - Biblioteca de bloques</td>
<td>33002527 (ingles), 33002528 (francés), 33002529 (alemán), 33003682 (italiano), 33002530 (español), 33003683 (chino)</td>
</tr>
<tr>
<td>Quantum con EcoStruxure™ Control Expert, Sistema Hot Standby, Manual del usuario</td>
<td>35010533 (ingles), 35010534 (francés), 35010535 (alemán), 35013993 (italiano), 35010536 (español), 35012188 (chino)</td>
</tr>
<tr>
<td>Quantum con EcoStruxure™ Control Expert, Configuración TCP/IP, Manual del usuario</td>
<td>33002467 (ingles), 33002468 (francés), 33002469 (alemán), 31008078 (italiano), 33002470 (español), 31007110 (chino)</td>
</tr>
<tr>
<td>Quantum con EcoStruxure™ Control Expert, Expertos y comunicación, Manual de referencia</td>
<td>35010574 (ingles), 35010575 (francés), 35010576 (alemán), 35014012 (italiano), 35010577 (español), 35012187 (chino)</td>
</tr>
<tr>
<td>Título de la documentación</td>
<td>Número de referencia</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>Quantum con EcoStruxure™ Control Expert, Módulos de red Modubs Plus, Manual del usuario</td>
<td>35010487 (inglés), 35010488 (francés), 35010489 (alemán), 35013961 (italiano), 35010490 (español), 35012186 (chino)</td>
</tr>
<tr>
<td>Modicon Modbus Plus Network Planning and Installation Guide</td>
<td>31003525</td>
</tr>
</tbody>
</table>

Parte I
Requisitos y conversión

Descripción general
Esta sección contiene requisitos e información general sobre la conversión.

Contenido de esta parte
Esta parte contiene los siguientes capítulos:

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Nombre del capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Descripción general del convertidor de Concept de Control Expert</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Requisitos</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Diferencias de los lenguajes</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>Posible cambio de comportamiento de la aplicación</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>El proceso de conversión</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>Procedimiento de conversión</td>
<td>117</td>
</tr>
</tbody>
</table>
Capítulo 1
Descripción general del convertidor de Concept de Control Expert

Descripción general
En este capítulo se ofrece una descripción general del convertidor de Concept de Control Expert.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción general</td>
<td>20</td>
</tr>
<tr>
<td>Conversión con el asistente de conversión</td>
<td>22</td>
</tr>
</tbody>
</table>
Descripción general

Breve descripción

El convertidor de Concept es una función integrada de Control Expert que se utiliza para convertir aplicaciones Concept a Control Expert. Esto significa que los programas de Concept también se pueden utilizar en Control Expert.

Los objetos de sustitución se utilizan en lugar de objetos que no se pueden convertir. El proyecto Control Expert se puede analizar mediante el menú principal Crear → Analizar proyecto. Los mensajes posteriores se muestran en la ventana de resultados para buscar los objetos de sustitución.

Los elementos de la aplicación Concept que no se pueden convertir se registran en el informe de conversión.

En el capítulo Procedimiento de conversión (véase página 117) se describen estos procedimientos.

NOTA: No es posible revertir la conversión de Control Expert a Concept.

![ADVERTENCIA]

COMPORTAMIENTO IMPREVISTO DE LA APLICACIÓN

El convertidor de Concept traduce la aplicación, pero no garantiza su correcto funcionamiento. Compruebe la aplicación después de la conversión.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Convertión

La conversión se lleva a cabo en cuatro pasos:

1. **En Concept:** Exporte la aplicación Concept mediante el Convertidor Concept, que creará un archivo ASCII (*.ASC).
   
   NOTA: No utilice el proyecto con la opción de DFB utilizados (Reconectar a igual) al crear el archivo *.ASC. Control Expert no puede importar la aplicación si se utiliza esta opción.

2. **En Control Expert:** Abra el archivo ASCII exportado (*.ASC) en Control Expert.

3. **En Control Expert:** Se realiza la conversión automática del archivo ASCII al formato de archivo de origen de Control Expert.

4. **En Control Expert:** Se realiza la importación automática del archivo de origen de Control Expert.

Opciones de conversión para proyectos de Concept

Antes de la conversión puede introducir opciones de conversión (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento) en Control Expert que afectarán al resultado de la conversión.
Descripción general

No es posible convertir Atrium
Las configuraciones de Atrium no se pueden convertir a Control Expert.

Asistente de conversión
Consulte Conversión con el asistente de conversión (véase página 22).
Descripción general

Conversión con el asistente de conversión

Conversión de aplicaciones en su totalidad
Para convertir una aplicación en su totalidad, manteniendo la misma familia PLC y sin necesidad de seleccionar partes de la aplicación ni reasignar objetos de E/S, utilice el convertidor de aplicaciones de Concept directamente a través del menú Archivo → Abrir de Control Expert.

Conversión parcial de aplicaciones
Si desea convertir una aplicación parcialmente o debe cambiar la familia PLC o reasignar objetos de E/S, utilice el asistente de conversión a través del menú Herramientas → Convertir parcialmente de Control Expert.

Para obtener información detallada, consulte la Introducción (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento) al asistente de conversión.

Asistente de conversión
El asistente de conversión es una parte integrada de Control Expert.

Se puede utilizar para lo siguiente:
- Convertir aplicaciones exportadas de aplicaciones heredadas (Concept y PL7) a Control Expert
- convertir aplicaciones antiguas parcialmente o en su totalidad
- reasignar objetos de E/S (canales, variables, etc.) durante la conversión mediante el asistente
- adaptar simultáneamente la configuración del hardware de la nueva aplicación en Control Expert
- modificar la cantidad de memoria utilizada en la CPU

El asistente de conversión está disponible si ha optado por instalar un convertidor (por ejemplo, el convertidor de aplicaciones de Concept) durante la configuración de Control Expert.
Procedimiento general
A continuación figura el procedimiento general para convertir una aplicación heredada a Control Expert.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exporte la aplicación del sistema de programación heredado (por ejemplo, como archivo ASC de Concept).</td>
</tr>
<tr>
<td>2</td>
<td>Cree una aplicación nueva en Control Expert y seleccione una CPU con memoria suficiente y las funciones de acceso de E/S necesarias. Opcionalmente, puede configurar los módulos de E/S que se prevea que se vayan a necesitar, pero puede modificar la configuración del hardware posteriormente (consulte el paso 6).</td>
</tr>
<tr>
<td>3</td>
<td>Abra el asistente de conversión en Control Expert mediante Herramientas → Convertir parcialmente. <strong>Resultado:</strong> El asistente de conversión le solicita que seleccione el archivo de origen heredado exportado.</td>
</tr>
<tr>
<td>4</td>
<td>Seleccionar el archivo de origen heredado que se ha exportado. <strong>Resultado:</strong> El convertidor analiza el archivo de origen y muestra el resultado en las 3 fichas del asistente de conversión.</td>
</tr>
<tr>
<td>5</td>
<td>Seleccionar las partes de la aplicación (o toda la aplicación) que se van a convertir en la ficha <strong>Estructura</strong>.</td>
</tr>
<tr>
<td>6</td>
<td>Reasignar los objetos de E/S para que sean compatibles con la nueva configuración del hardware. Simultáneamente, puede modificar la configuración del hardware de la nueva aplicación en Control Expert. <strong>Nota:</strong> Para guardar un archivo de copia de seguridad de la asignación de E/S intermedia, puede utilizar el botón Guardar. Con <strong>Cargar</strong>, puede volver a cargar la última asignación de E/S intermedia guardada.</td>
</tr>
<tr>
<td>7</td>
<td>Tras finalizar todas las selecciones y modificaciones manuales, haga clic en <strong>Aceptar</strong>. <strong>Resultado:</strong> El convertidor aplica la reasignación que se ha definido a las partes seleccionadas del archivo origen y importa los resultados en la aplicación de Control Expert que se ha abierto.</td>
</tr>
<tr>
<td>8</td>
<td>Continúe trabajando en la aplicación que se ha abierto, guárdela o expórtela como archivo XEF.</td>
</tr>
</tbody>
</table>

**Documentación del asistente de conversión**
Para obtener información detallada sobre el asistente de conversión, consulte el capítulo *Asistente de conversión* (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento).
Capítulo 2
Requisitos

Descripción general
En este capítulo se describen los requisitos para convertir un proyecto Concept en un proyecto Control Expert.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versión de Concept</td>
<td>26</td>
</tr>
<tr>
<td>Plataformas de hardware admitadas</td>
<td>27</td>
</tr>
<tr>
<td>Configuración</td>
<td>28</td>
</tr>
<tr>
<td>Sistema</td>
<td>29</td>
</tr>
<tr>
<td>EFB</td>
<td>39</td>
</tr>
<tr>
<td>Lenguaje de programación SFC</td>
<td>43</td>
</tr>
<tr>
<td>Lenguaje de programación LD</td>
<td>44</td>
</tr>
<tr>
<td>Lenguaje de programación ST/IL</td>
<td>56</td>
</tr>
<tr>
<td>Lenguaje de programación LL984</td>
<td>58</td>
</tr>
<tr>
<td>Lenguaje de programación FBD</td>
<td>59</td>
</tr>
</tbody>
</table>
Requisitos

Versión de Concept

General
Los proyectos de las versiones 2.11, 2.5 y 2.6 de Concept se pueden convertir a proyectos Control Expert.

Preconversión
Si desea convertir una versión anterior de un proyecto Concept a Control Expert, por razones de seguridad deberá convertirlo en primer lugar dentro de Concept, para que se convierta a la versión 2.6.
Plataformas de hardware admitidas

General
El convertidor de Concept acepta aplicaciones que utilicen las siguientes plataformas de hardware:
- Quantum
- Compact
- Momentum

Correcciones manuales
NOTA: El convertidor de Concept convierte los módulos en la medida de lo posible cuando existen equivalencias. Es obligatorio comprobar el resultado según las necesidades del proceso. Los ajustes de los módulos de hardware (parámetros) no se convierten, sino que se definen en valores predeterminados que se deben introducir en Control Expert para cada módulo. Los objetos de canal se convierten siempre que es posible. Sin embargo, puede que el programa tenga que adaptarse al comportamiento diferente del módulo original.

Aplicaciones Quantum
Las aplicaciones Concept Quantum se convierten en aplicaciones Control Expert Quantum.
NOTA: Las aplicaciones Concept Quantum no se pueden convertir en aplicaciones Control Expert Momentum.

Aplicaciones Compact
Mediante la conversión global, las aplicaciones Concept Compact se convierten en aplicaciones Quantum con una configuración de hardware predeterminada que contiene una CPU (140 CPU 534 14 AU) y una fuente de alimentación (140 CPS 424 00).
Mediante la conversión parcial (asistente de conversión), se recomienda preparar una configuración de hardware Modicon M340.

Aplicaciones Momentum
Mediante la conversión global, las aplicaciones Concept Momentum se convierten en aplicaciones Quantum con una configuración de hardware predeterminada que contiene una CPU (140 CPU 534 14 AU) y una fuente de alimentación (140 CPS 424 00).
Mediante la conversión parcial (asistente de conversión), se recomienda preparar una configuración de hardware Modicon M340.

PLC de seguridad
NOTA: No es posible recuperar una aplicación de Concept en el PLC de seguridad de Control Expert. Para crear un sistema de seguridad, consulte el manual de seguridad.
Requisitos

Configuración

General
Las secciones Concept creadas mediante el lenguaje de programación LL984 también aparecen como secciones LL984 no IEC en Control Expert.

Restricciones para las configuraciones de LL984 antiguas
Control Expert ya no es compatible con los siguientes aspectos de las configuraciones de LL984:

<table>
<thead>
<tr>
<th>No compatible con Control Expert</th>
<th>Compatible con Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargables</td>
<td>Se ha integrado en Control Expert la funcionalidad necesaria de cargables del sistema. Control Expert no proporciona equivalentes para todos los demás cargables.</td>
</tr>
<tr>
<td>Mensajería ASCII</td>
<td>No se convertirá.</td>
</tr>
<tr>
<td>Rango 6x (registro en memoria expandida)</td>
<td>No se convertirá.</td>
</tr>
<tr>
<td>Ampliación de la configuración de protección de datos</td>
<td>No será compatible.</td>
</tr>
</tbody>
</table>

Hot Standby (HSBY)
Para convertir el Hot Standby de Concept a Control Expert, hay que tener en cuenta las diferencias siguientes:

<table>
<thead>
<tr>
<th>Concept</th>
<th>Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>El sistema Hot Standby de Concept se basa en el módulo 140 CHS 111 00.</td>
<td>Este módulo ya no es compatible con Control Expert.</td>
</tr>
<tr>
<td>El módulo 140 CHS 111 00 es, básicamente, un módulo Hot Standby para un único slot. La alimentación se transmite a través del bastidor.</td>
<td>El módulo CPU 671 60 es un módulo de CPU para dos slots, con una conexión fija asignada para el intercambio de datos. El sistema Hot Standby se integra en el módulo CPU 671 60.</td>
</tr>
</tbody>
</table>

El convertidor de Concept sustituye la CPU de Concept por la nueva CPU 671 60 Hot Standby y elimina el módulo 140 CHS 111 00 Hot Standby de Concept. Todos los parámetros de Hot Standby se transferirán a la aplicación de Control Expert.

NOTA: No es posible recuperar una aplicación de Concept en el PLC de seguridad de Control Expert. Para crear un sistema de seguridad, consulte el manual de seguridad.

NOTA: Como la CPU de Concept sólo requiere un slot y la nueva CPU de Control Expert requiere dos, pueden producirse solapamientos en el bastidor. Estos solapamientos deberá resolverlos el usuario de forma manual.
Requisitos

Sistema

Seguridad
Las autorizaciones de acceso definidas en Concept **no** se convierten a Control Expert.

La seguridad en Control Expert **no** hace referencia a la instalación correspondiente, como lo hace en Concept.

Ejecución del programa
La ejecución del programa difiere según se utilice Concept o Control Expert. Puede conllevar un comportamiento diferente durante la primera ejecución del programa tras el reinicio.

**Ejecución del programa para Concept:**
1. Escritura de las salidas (ejecución del programa n-1)
2. Lectura de las entradas (ejecución del programa n)
3. Procesamiento del programa

**Ejecución del programa para Control Expert:**
1. Lectura de las entradas
2. Procesamiento del programa
3. Escritura de las salidas

**Ejemplo:**
En Concept, se ha asignado un registro 4x a una salida digital y se ha detenido el PLC cuando el valor es "true". Tras un reinicio, el valor sigue siendo "true" durante la primera ejecución del programa, aunque se hayan modificado las condiciones del proceso.

Secuencia de ejecución especificada
La secuencia de ejecución en el lenguaje de bloques de funciones de Concept se determina, en primer lugar, por el posicionamiento de los FFB. Si, a continuación, los FFB se conectan por medio de conexiones gráficas, la secuencia de ejecución estará determinada por el flujo de datos. Tras esto, la secuencia de ejecución puede modificarse según la intención.

En Control Expert no es posible ver el orden de posicionamiento de los FFB tras la conversión. Por lo tanto, siempre que el orden no se pueda determinar de un modo claro a partir de la regla del flujo de datos, lo definirá el proyecto Concept.

La secuencia de ejecución definida se muestra en forma de rectángulo con el número del paso situado en la esquina superior derecha del FFB.

Función de ciclo único
La función de ciclo único ya no es compatible con Control Expert.

Las funciones correspondientes pueden llevarse a cabo en Control Expert mediante los "puntos de parada" de la función Depuración.
Requisitos

Descarga de EFB
Mediante Concept, todos los EFB dependientes de la plataforma pueden colocarse en cualquier momento y cargarse en todas las plataformas del PLC. Los errores detectados durante la ejecución del programa se escriben en la memoria de mensajes.

En Control Expert, sólo se pueden colocar los EFB válidos. La descarga al PLC sólo es posible si los EFB empleados son coherentes con la plataforma del PLC.

Editor de datos de referencia (RDE)
Las tablas del RDE creadas en Concept se convierten a Control Expert al colocarse en el mismo directorio que el archivo ASCII de Concept.

Valores de variables globales
Debido a las diferencias en el comportamiento durante el reinicio tras un corte de alimentación, es posible que los estados de las variables globales de dos PLC que se reinician de un modo distinto no sean los mismos tras la primera ejecución del programa.

Se distingue entre dos tipos de comportamientos durante el reinicio:
1. Todos los PLC de 16 bits (todos los Momentum, Quantum 113, 213, 424) continúan ejecutando el programa en el punto en el que se interrumpió.
2. Todos los PLC de 32 bits (Quantum 434, 534) inician la ejecución del programa desde el principio.

Control Expert es compatible con el primer comportamiento durante el reinicio, descrito más arriba.

Memoria de señal
En Control Expert, las direcciones de registro de memoria de señal de Concept se asignan a direcciones conformes a la normativa IEC.

Las direcciones de los módulos de E/S se convierten en direcciones "planas" o en direcciones topológicas.
Registro de memoria de señal sin módulos de E/S

Las direcciones de registro de memoria de señal sin módulos de E/S asignados se representan con direcciones "planas":

<table>
<thead>
<tr>
<th>Concept</th>
<th>Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x</td>
<td>%MWx</td>
</tr>
<tr>
<td>3x</td>
<td>%IWx (1)</td>
</tr>
<tr>
<td>0x</td>
<td>%Mx</td>
</tr>
<tr>
<td>1x</td>
<td>%Ix</td>
</tr>
</tbody>
</table>

(1) = Si Modicon M340 es la plataforma de destino, no hay equivalente para los registros de entrada de memoria de señal (%IWx). Las direcciones se convierten formalmente a direcciones planas que el usuario deberá corregir.

Para ello, se añade el número de registro al final de la introducción.

La dirección queda como sigue:

```
%[IM][W]Número de registro
```

Registro de memoria de señal con módulos de E/S

Las direcciones de registro de memoria de señal con módulos de E/S asignados se pueden representar en Quantum con direcciones "planas", tal como se ha descrito anteriormente, o con direccionamiento topológico.

Para definir que las direcciones de registro de memoria de señal se convertirán en direcciones topológicas, abra la ficha Configuración de conversión a través de Herramientas → Opciones en Control Expert y active la casilla de verificación Generar direcciones topológicas para Quantum antes de llevar a cabo la conversión.

Si no se activa la casilla de verificación, las direcciones de registro de memoria de señal se convertirán en direcciones "planas" (sólo para Quantum).

Si las aplicaciones Compact o Momentum se convierten mediante el asistente de conversión, se utiliza de forma predeterminada direccionamiento topológico, con independencia de si la casilla de verificación está activada.

Direcciones de registro de memoria de señal con módulos de E/S asignados (topológicas)

<table>
<thead>
<tr>
<th>Concept</th>
<th>Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x</td>
<td>%QWt</td>
</tr>
<tr>
<td>3x</td>
<td>%IWt</td>
</tr>
<tr>
<td>0x</td>
<td>%Qt</td>
</tr>
<tr>
<td>1x</td>
<td>%It</td>
</tr>
</tbody>
</table>

t = descripción topológica
Requisitos

La información que se muestra a continuación se lee de la configuración para ofrecer una descripción topológica adecuada de las direcciones de registro de memoria de señal con módulos de E/S asignados:

- Número de bus (corresponde al módulo de comunicaciones de la estación en Concept)
- Estación
- Bastidor
- Módulo
- Canal

La dirección completa queda como sigue:


Asignación de memoria de señal mediante tipos de datos derivados

En Concept, los elementos de la estructura de datos empiezan en los límites de BYTE. En Control Expert, los elementos de la estructura de datos empiezan en los límites de WORD.

Ejemplo de un tipo de datos derivados:

```
TYPE SKOE:
  STRUCT
  PAR1: BOOL;
  PAR2: BYTE;
  PAR3: BOOL;
  PAR4: WORD;
  PAR5: BOOL;
  PAR6: WORD;
  END_STRUCT;
  END_TYPE
```
Al utilizar Concept, los tipos de datos derivados se almacenan en la memoria de señal:

Requisitos
Al utilizar **Control Expert**, los mismos tipos de datos derivados se almacenan en la memoria de señal:

<table>
<thead>
<tr>
<th>Palabra 1</th>
<th>Palabra 2</th>
<th>Palabra 3</th>
<th>Palabra 4</th>
<th>Palabra 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
</tr>
<tr>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
</tr>
<tr>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
</tr>
<tr>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
</tr>
<tr>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
</tr>
<tr>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
</tr>
<tr>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
</tr>
<tr>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
</tr>
<tr>
<td>156</td>
<td>157</td>
<td>158</td>
<td>159</td>
<td>160</td>
</tr>
<tr>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
<td>165</td>
</tr>
<tr>
<td>166</td>
<td>167</td>
<td>168</td>
<td>169</td>
<td>170</td>
</tr>
<tr>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
</tr>
<tr>
<td>176</td>
<td>177</td>
<td>178</td>
<td>179</td>
<td>180</td>
</tr>
<tr>
<td>181</td>
<td>182</td>
<td>183</td>
<td>184</td>
<td>185</td>
</tr>
<tr>
<td>186</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>190</td>
</tr>
<tr>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
</tr>
<tr>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
<td>200</td>
</tr>
<tr>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
</tr>
<tr>
<td>206</td>
<td>207</td>
<td>208</td>
<td>209</td>
<td>210</td>
</tr>
<tr>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
</tr>
<tr>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
</tr>
<tr>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
</tr>
<tr>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
<td>230</td>
</tr>
<tr>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
</tr>
<tr>
<td>236</td>
<td>237</td>
<td>238</td>
<td>239</td>
<td>240</td>
</tr>
<tr>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
</tr>
<tr>
<td>246</td>
<td>247</td>
<td>248</td>
<td>249</td>
<td>250</td>
</tr>
<tr>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
<td>255</td>
</tr>
<tr>
<td>256</td>
<td>257</td>
<td>258</td>
<td>259</td>
<td>260</td>
</tr>
<tr>
<td>261</td>
<td>262</td>
<td>263</td>
<td>264</td>
<td>265</td>
</tr>
<tr>
<td>266</td>
<td>267</td>
<td>268</td>
<td>269</td>
<td>270</td>
</tr>
<tr>
<td>271</td>
<td>272</td>
<td>273</td>
<td>274</td>
<td>275</td>
</tr>
<tr>
<td>276</td>
<td>277</td>
<td>278</td>
<td>279</td>
<td>280</td>
</tr>
<tr>
<td>281</td>
<td>282</td>
<td>283</td>
<td>284</td>
<td>285</td>
</tr>
<tr>
<td>286</td>
<td>287</td>
<td>288</td>
<td>289</td>
<td>290</td>
</tr>
<tr>
<td>291</td>
<td>292</td>
<td>293</td>
<td>294</td>
<td>295</td>
</tr>
<tr>
<td>296</td>
<td>297</td>
<td>298</td>
<td>299</td>
<td>300</td>
</tr>
<tr>
<td>301</td>
<td>302</td>
<td>303</td>
<td>304</td>
<td>305</td>
</tr>
<tr>
<td>306</td>
<td>307</td>
<td>308</td>
<td>309</td>
<td>310</td>
</tr>
<tr>
<td>311</td>
<td>312</td>
<td>313</td>
<td>314</td>
<td>315</td>
</tr>
<tr>
<td>316</td>
<td>317</td>
<td>318</td>
<td>319</td>
<td>320</td>
</tr>
<tr>
<td>321</td>
<td>322</td>
<td>323</td>
<td>324</td>
<td>325</td>
</tr>
<tr>
<td>326</td>
<td>327</td>
<td>328</td>
<td>329</td>
<td>330</td>
</tr>
<tr>
<td>331</td>
<td>332</td>
<td>333</td>
<td>334</td>
<td>335</td>
</tr>
<tr>
<td>336</td>
<td>337</td>
<td>338</td>
<td>339</td>
<td>340</td>
</tr>
<tr>
<td>341</td>
<td>342</td>
<td>343</td>
<td>344</td>
<td>345</td>
</tr>
<tr>
<td>346</td>
<td>347</td>
<td>348</td>
<td>349</td>
<td>350</td>
</tr>
<tr>
<td>351</td>
<td>352</td>
<td>353</td>
<td>354</td>
<td>355</td>
</tr>
<tr>
<td>356</td>
<td>357</td>
<td>358</td>
<td>359</td>
<td>360</td>
</tr>
<tr>
<td>361</td>
<td>362</td>
<td>363</td>
<td>364</td>
<td>365</td>
</tr>
<tr>
<td>366</td>
<td>367</td>
<td>368</td>
<td>369</td>
<td>370</td>
</tr>
<tr>
<td>371</td>
<td>372</td>
<td>373</td>
<td>374</td>
<td>375</td>
</tr>
<tr>
<td>376</td>
<td>377</td>
<td>378</td>
<td>379</td>
<td>380</td>
</tr>
<tr>
<td>381</td>
<td>382</td>
<td>383</td>
<td>384</td>
<td>385</td>
</tr>
<tr>
<td>386</td>
<td>387</td>
<td>388</td>
<td>389</td>
<td>390</td>
</tr>
<tr>
<td>391</td>
<td>392</td>
<td>393</td>
<td>394</td>
<td>395</td>
</tr>
<tr>
<td>396</td>
<td>397</td>
<td>398</td>
<td>399</td>
<td>400</td>
</tr>
<tr>
<td>401</td>
<td>402</td>
<td>403</td>
<td>404</td>
<td>405</td>
</tr>
<tr>
<td>406</td>
<td>407</td>
<td>408</td>
<td>409</td>
<td>410</td>
</tr>
<tr>
<td>411</td>
<td>412</td>
<td>413</td>
<td>414</td>
<td>415</td>
</tr>
<tr>
<td>416</td>
<td>417</td>
<td>418</td>
<td>419</td>
<td>420</td>
</tr>
<tr>
<td>421</td>
<td>422</td>
<td>423</td>
<td>424</td>
<td>425</td>
</tr>
<tr>
<td>426</td>
<td>427</td>
<td>428</td>
<td>429</td>
<td>430</td>
</tr>
<tr>
<td>431</td>
<td>432</td>
<td>433</td>
<td>434</td>
<td>435</td>
</tr>
<tr>
<td>436</td>
<td>437</td>
<td>438</td>
<td>439</td>
<td>440</td>
</tr>
</tbody>
</table>

**Temporizador, fecha y supervisión de la batería**

En Control Expert ya no se puede asignar la dirección del temporizador, la fecha/hora del día y la supervisión de la batería a la memoria de señal. Se puede acceder a toda la información requerida a través del panel de control.

Cuando Concept se convierte a Control Expert, se crean DFB que pueden simularse en Control Expert sin necesidad de realizar modificaciones manuales en dichas funciones.

**NOTA:** El registro de temporizador de Concept tiene una longitud de 16 bits y una precisión de 10 ms. La palabra de sistema equivalente %SW18 en Control Expert tiene una longitud de 32 bits y una precisión de 100 ms. Si esta precisión no es suficiente, puede emplearse la función FREERUN de la biblioteca del sistema que ofrece una precisión de hasta 1 ms.

**NOTA:** En el caso de los días de la semana, el valor 1 corresponde a **domingo** en Concept y a **lunes** en Control Expert.
Palabras de diagnóstico de Quantum

En Control Expert, las palabras de diagnóstico deben ser un número determinado:

- E/S locales: 16 palabras
- E/S RIO: 16 palabras
- E/S DIO: 16 palabras

En Concept, también se podía especificar un número menor de palabras de diagnóstico para las E/S individuales.

Tenga en cuenta esta diferencia, ya que puede ocasionar problemas.

Direcciones topológicas

Las direcciones topológicas se asignan de manera que, si la configuración del hardware no se modifica, ocupen las mismas conexiones de E/S que las que se les asignaron en Concept.

El usuario ve las direcciones de hardware que emplean en Control Expert sin necesidad de llevar a cabo el paso intermedio a través de la memoria de señal.

Variables ubicadas

Las variables ubicadas BOOL de Concept se convierten en variables EBOOL en Control Expert.

Control Expert ofrece esta nueva variable EBOOL para detectar las transiciones (flancos). Este "tipo de BOOL elemental" se emplea para %Ix, %Mx y variables no ubicadas.

Las variables EBOOL se pueden forzar.

La variable EBOOL ofrece tres elementos de información:

- Valor actual
- Valor registrado
- Información de forzado

Sólo se puede acceder al valor actual, ya que a los otros valores sólo se puede acceder a través de las funciones específicas del producto.

Aumento del tiempo de ciclo a través de EBOOL

En Control Expert, al contrario que en Concept, la información de flanco y forzado se actualiza desde las variables EBOOL durante la ejecución del programa.

Por ello, en las plataformas CPU 434, CPU 534 y CPU 311 de Quantum, la asignación de variables EBOOL sólo es la mitad de rápida que la asignación de variables BOOL.

NOTA: Si necesita variables en la memoria de señal, utilice variables BOOL y asiguelas al área de memoria %MW (por ejemplo, BoolVar : BOOL AT %MW10). Si no es así, utilice variables BOOL no ubicadas.
Requisitos

Constantes
Las constantes de Concept se convierten en variables con protección contra escritura en Control Expert.
Control Expert no ofrece constantes. Se puede obtener funciones similares mediante variables con protección contra escritura.

Registro %Mx
En Concept, los registros 0x no utilizan búfer, sino que se ponen a cero con cada reinicio en caliente.
En Control Expert, los registros %Mx sí utilizan búfer ("RETENTIVE", "VAR_RETAIN"), es decir, cumplen la normativa IEC.
No elija la opción de poner el registro 0x a cero para cada reinicio en caliente si utiliza un proyecto en Concept que desea convertir a Control Expert.
**NOTA:** Si necesita un comportamiento sin búfer, defina el evento de reinicio en caliente con el bloque de funciones SYSSTATE y copie explícitamente el valor 0 (cero) en el registro %Mx.
Salidas forzadas (%M)

⚠️ ADVERTENCIA

COMPORTAMIENTO IMPREVISTO DEL SISTEMA
Tenga cuidado con el conmutador de protección de memoria.
El comportamiento de las salidas forzadas (%M) entre Modsoft/Proworx/Concept y Control Expert ha cambiado.
- Con Modsoft/ProWORX/Concept, no pueden forzarse las salidas si el conmutador de protección de memoria de la CPU Quantum está en la posición de encendido.
- Con Control Expert, pueden forzarse las salidas incluso si el conmutador de protección de memoria de la CPU Quantum está en la posición de encendido.
El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

⚠️ ADVERTENCIA

COMPORTAMIENTO IMPREVISTO DEL SISTEMA
Vuelva a forzar las salidas tras un arranque en frío.
El comportamiento de las salidas forzadas (%M) entre Modsoft/Proworx/Concept y Control Expert ha cambiado.
- Con Modsoft/ProWORX/Concept, las salidas forzadas mantienen sus valores tras un arranque en frío.
- Con Control Expert, las salidas forzadas pierden sus valores tras un arranque en frío.
El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Requisitos

**Control de E/S remotas de Quantum**

En Concept, sólo se pueden asignar estaciones de E/S a las secciones LL984. Esto no es posible en proyectos Concept con secciones conformes a la normativa IEC (FBD, LD, SFC, IL, ST).

Control Expert ofrece esta opción mediante la que se vuelve a crear una lógica de acuerdo con LL984. Sin embargo, esta lógica debe introducirse manualmente.

Ejemplo de la secuencia de procesamiento de una sección en Control Expert:

- Sección n-2
- Sección n-1
  - Llamada RIO (u,v,w)
- Sección n
  - Llamada RIO (u+1,w,x)
- Sección n+1
  - Llamada RIO (u+2,x,y)

RIO (x,y,z) es la llamada explícita de E/S en este caso:

- Escribir las salidas en la estación de E/S x.
- Esperar actividad en las entradas de la estación de E/S y.
- Preparar las entradas de la estación de E/S z.

**NOTA:** Tenga en cuenta esta configuración nueva al estructurar el proyecto.

**Ubicación cíclica de variables**

Las variables no ubicadas no pueden ubicarse cíclicamente en Control Expert. (Esto es posible en Concept).

Si desea ubicar las variables cíclicamente en el proyecto, debe emplear variables ubicadas.

Los registros %Mx/%1x (EBOOL) se pueden forzar.

Los registros %MWx/%IWx pueden ubicarse cíclicamente (sólo valores numéricos).
Requisitos

EFB

General
Para convertir EFB de Concept a Control Expert, dispone de las opciones siguientes:

- Los EFB también son compatibles con Control Expert; se asignan uno a uno.
- Los EFB ya no son compatibles con Control Expert.
  En lugar de EFB, se colocan los DFB correspondientes en la aplicación. La funcionalidad no se ve afectada por este cambio.
- Los EFB ya no son compatibles con Control Expert.
  En lugar de EFB, se colocan DFB sin contenido de programación en la aplicación. Estos DFB contienen todos los parámetros de Concept.
  Se muestra un mensaje de error que indica que el contenido de programación de estos DFB aún debe crearse.

EF genéricas
Concept dispone de pocas funciones elementales (EF) genéricas, por ejemplo, MOVE, SEL, MUX. Para otras funciones, los tipos de datos elementales se añaden al nombre de la función.

En Control Expert, la mayoría de estas funciones se utilizan sin el tipo de datos elemental añadido al nombre (tal como se define en IEC 61131). Por consiguiente, el convertidor elimina el tipo de datos añadido del nombre de la función.

En algunos casos, el uso de funciones genéricas en Control Expert generará errores analíticos. En estos casos, des habilite la casilla de verificación Generar EF genéricas.

Abra la ficha Configuración de conversión a través de Herramientas → Opciones en Control Expert para habilitar/deshabilitar la casilla de verificación Generar EF genéricas antes de llevar a cabo la conversión.

- Cuando esta casilla de verificación está habilitada, el convertidor suprime el tipo de datos añadido del nombre de la función.
- Si no se habilita esta casilla de verificación, el convertidor dejará el tipo de datos añadido en el nombre de la función.
**Requisitos**

**Biblioteca DIAGNO**

Al realizar la conversión de Concept a Control Expert, se omite el parámetro de estación para todos los bloques de diagnóstico.

Los EFB de la biblioteca DIAGNO de Concept que se muestran a continuación se convierten en DFB vacíos en Control Expert.

- ACT_DIA
- XACT_DIA
- ERR2HMI
- ERRMSG

**NOTA:** Estos DFB creados en Control Expert poseen todos los parámetros de Concept, pero carecen de contenido de programación. Se muestra un mensaje de error que indica que el contenido de programación de estos DFB aún debe crearse.

Durante la creación del programa en Control Expert, reemplace los DFB ACT_DIA y XACT_DIA por el DFB XACT.

Para todos los bloques de diagnóstico que se pueden ampliar en Concept (D_PRE, D_GRP, etc.), las entradas ampliables (de IN1 a INx) se **agrupan en una** entrada. Esto se realiza mediante un enlace AND de lógica intercalada. En el lenguaje FBD, el convertidor coloca el bloque AND en la misma ubicación que el bloque de diagnóstico. Este solapamiento deberá resolverlo el usuario de forma manual.

**Biblioteca SYSTEM**

Los EFB SKP_RST_SCT_FALSE y LOOPBACK no se pueden emplear en Control Expert.

**Biblioteca FUZZY**

El rango normal de Control Expert no admite la biblioteca FUZZY, pero se puede instalar de forma opcional.

**Biblioteca HANDTABL**

La biblioteca HANDTABL ya no es compatible con Control Expert.
Biblioteca EXPERTS

Los siguientes EFB de Concept se convierten a DFB de Control Expert:

- ERT_TIME
- SIMTSX22
- EFB de la familia EX
- EFB de la familia MVB
- EFB de la familia ULEX

NOTA: Estos DFB creados en Control Expert poseen todos los parámetros de Concept, pero carecen de contenido de programación. Se muestra un mensaje de error que indica que el contenido de programación de estos DFB aún debe crearse.

Las estructuras de datos DPM_TIME y ERT_10_TTAG del módulo de marca de tiempo 140 ERT 854 10 se han modificado. El elemento MS se ha dividido en MS_LSB y MS_MSB. Si desea obtener más información, consulte Asignación de memoria de señal mediante tipos de datos derivados, página 32.

Las salidas que describen estructuras de datos deben tener asignadas variables de eventos con el operador de asignación (=>) dentro de los paréntesis del parámetro en los lenguajes ST e IL. Esto se produce de forma automática durante la conversión. Las funciones permanecen sin cambios, pero la sección del programa tiene un aspecto ligeramente distinto.

EFB que emplean funciones de periodo de tiempo

En Control Expert, los componentes de función que emplean funciones de periodo de tiempo (Temporizador, Diagnóstico, Componentes de control) permanecen en modalidad RUN aunque el SPS se establezca en modalidad STOP.

ATENCIÓN

COMPORTAMIENTO IMPREVISTO DEL CONTROL

Los componentes de función que emplean funciones de periodo de tiempo se comportan de forma diferente en Control Expert y en Concept.

Debe tener en cuenta esta diferencia de comportamiento durante la conversión de aplicaciones Concept.

El incumplimiento de estas instrucciones puede causar lesiones o daño al equipo.

EFB convertidos

Durante la conversión, Control Expert normaliza la oferta de EFB mediante la agrupación de EFB redundantes. Estos EFB se convierten automáticamente y el proyecto se ajusta como corresponde.
**Requisitos**

**EFB renombrados**

Los EFB de diagnóstico que se muestran a continuación cambian de nombre al convertirlos de Concept a Control Expert:

<table>
<thead>
<tr>
<th>Concept</th>
<th>Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>XACT</td>
<td>D_ACT</td>
</tr>
<tr>
<td>XREA_DIA</td>
<td>D_REA</td>
</tr>
<tr>
<td>XLOCK</td>
<td>D_LOCK</td>
</tr>
<tr>
<td>XGRP_DIA</td>
<td>D_GRP</td>
</tr>
<tr>
<td>XDYN_DIA</td>
<td>D_DYN</td>
</tr>
<tr>
<td>XPRE_DIA</td>
<td>D_PRE</td>
</tr>
</tbody>
</table>

El EFB de configuración de Quantum para el extensor de placa de conexiones 140 XBE 100 00 cambia de nombre al convertirse de Concept a Control Expert:

<table>
<thead>
<tr>
<th>Concept</th>
<th>Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBP</td>
<td>XBE</td>
</tr>
</tbody>
</table>
Lenguaje de programación SFC

General
Para algunos lenguajes de programación, deben cumplirse determinadas restricciones al convertir un proyecto de Concept a Control Expert.

Secuencia alternativa/paralela
Una bifurcación paralela no puede ir directamente seguida por una bifurcación alternativa. Este tipo de secuencia no está permitido según la normativa IEC 1131. Control Expert no es compatible con este tipo de secuencia, aunque pueda darse en Concept. El convertidor transfiere este tipo de proyecto a Control Expert, pero, a continuación, habrá que realizar modificaciones manuales. Este problema puede solucionarse mediante la introducción de un paso vacío entre las bifurcaciones.
Requisitos

Lenguaje de programación LD

General
Para algunos lenguajes de programación, deben cumplirse determinadas restricciones al convertir un proyecto de Concept a Control Expert.

Conversión de la imagen
Al convertir un proyecto Concept a Control Expert, también se convierte la imagen del diagrama Ladder LD, que puede provocar la reestructuración de la imagen.

Cruces de conexiones entre objetos booleanos
En Concept, pueden editarse las conexiones FFB entre objetos booleanos. Esto puede ocasionar cruces.
A continuación figura un ejemplo de una conexión FFB entre objetos booleanos (bobinas, contactos y conexiones horizontales y verticales) en Concept:

Tras la conversión de Concept a Control Expert, una conexión FFB entre objetos booleanos podría tener este aspecto:
En el editor LD de Control Expert, esta conexión FFB podría haberse:
- eliminado,
- movido o
- copiado y pegado.
Sin embargo, esta conexión FFB no puede crearse en el editor LD de Control Expert.
La conexión FFB permanecerá sin cambios tras moverse en Control Expert.

Conexión al rail de alimentación derecho
Ya no es necesaria la conexión al rail de alimentación derecho.
**Conexiones creadas de forma automática**

En Concept, el contacto c9 no se conecta a la entrada PV del componente.

En Control Expert, el contacto c9 se conecta de forma automática a una entrada PV, ya que ambas celdas son contiguas en Concept.
Por lo tanto, durante la conversión de Concept a Control Expert, el contacto c9 se mueve hacia abajo para evitar la creación de una conexión automática en Control Expert.

**Conversión de la imagen de salida**

Durante la conversión, se espera que la conversión de la imagen de Concept a Control Expert sea tan exacta como sea posible. Para ello, se aplican las reglas siguientes.

Reglas de posicionamiento de los objetos:
- La distancia entre dos objetos debe ser de al menos una celda.
- Cuando se conectan dos FFB, la distancia mínima debe ser igual al número de celdas del ancho del primer FFB.
- Las celdas en Control Expert son más pequeñas. Si un FFB ocupa parte de otra celda, se requerirá otra celda para dicho FFB.
- Si un objeto (contacto o bobinas) tiene una conexión vertical (enlace OR), dicha conexión se ubicará al final de la celda del objeto.
- Se necesitará una celda adicional si:
  - existe una conexión vertical (enlace OR) con un FFB de entrada;
  - el FFB fuente tiene variables de salida; o
  - el FFB de destino tiene variables de entrada.
- Una bobina no se puede conectar de forma directa al rail de alimentación izquierdo.
Requisitos

Reglas de conversión de conexiones FFB:

- Las conexiones FFB entre variables/constantes y FFB se ignorarán. En estos casos, Control Expert creará una conexión de forma automática.
- Las conexiones FFB puramente horizontales entre objetos que no son FFB se reemplazarán por conexiones horizontales con segmentos múltiples.
- Cuando se conecten dos objetos OR, primero se realizará una conexión horizontal en el lado derecho del objeto OR fuente. A continuación, se creará una conexión FFB entre esta conexión horizontal y el objeto de destino. Esto sucede porque, de otro modo, ambos objetos OR se combinarían durante la importación a Control Expert.
- Cada punto del rail de alimentación izquierdo sólo puede estar ocupado por una conexión.

Ejemplo de una imagen en Concept:
La imagen tras la conversión a Control Expert.

Durante la conversión, se llevaron a cabo las acciones siguientes, según las reglas anteriormente explicadas:

- El espacio ocupado por el FFB se expandió en dos columnas.
- Se añadió una columna en el lado de la entrada y otra en el de la salida del FFB.
- Las conexiones entre bobinas/contactos y el FFB se llevaron a cabo mediante conexiones FFB, y no con conexiones horizontales con segmentos múltiples.

**Reconocimiento y desconexión de redes LD**

El convertidor debe reconocer redes en las secciones LD durante la conversión. Para ello, se aplican las reglas siguientes:

- Una red LD es un grupo de objetos conectados entre sí sin estarlo a otros objetos (excepto el rail de alimentación).
- Siempre se aplica la distancia mínima a una columna entera de una red. Esto quiere decir que, si el objeto de una columna requiere una determinada distancia mínima, todos los demás objetos se desplazarán a una posición horizontal igual o superior.
- Si hay varias redes en la misma fila en Concept, la red siguiente se desplazará en dirección vertical hasta que deje de ocupar las mismas filas que la red anterior.
- Para evitar la creación automática de conexiones FFB no deseadas, el espacio ocupado por un FFB y su espacio de conexión se comprobará para detectar cruces. En el caso de que se produzcan cruces, los objetos siguientes se desplazarán horizontalmente.
Diagrama esquemático de una red LD en Concept con cruces
Diagrama esquemático de una red LD tras la conversión a Control Expert
Requisitos

Separar redes LD
Las secciones LD conformes a la normativa CEI contienen numerosas áreas gráficas independientes (redes).
Durante la conversión de secciones LD CEI, se añaden columnas adicionales a las redes con el fin de evitar que se generen automáticamente enlaces no deseados en Control Expert.
En caso de que las columnas insertadas de forma adicional se utilizaran para extenderse por toda la sección, el gráfico original se modificaría en gran medida. Por consiguiente, las secciones se dividen en redes durante la conversión y las columnas adicionales sólo se insertan para la red asociada.
La inserción de columnas adicionales puede provocar que una red supere el ancho máximo de sección, lo que haría que se expandiera a la línea siguiente.
Si esto provoca el solapamiento vertical de redes, el solapamiento de la lógica puede conllevar la aparición de enlaces automáticos en Control Expert.
Abra la ficha Configuración de conversión a través de Herramientas → Opciones en Control Expert para habilitar/deshabilitar la casilla de verificación Separar redes LD antes de llevar a cabo la conversión.

Ruptura de columna LD
La inserción de columnas adicionales puede provocar que una red supere el ancho máximo de sección, lo que haría que se expandiera a la línea siguiente.
Abra la ficha Configuración de conversión a través de Herramientas → Opciones en Control Expert para editar la opción Ruptura de columna LD antes de llevar a cabo la conversión.
El número que se introduce aquí determina la columna tras la que una red se expande a la columna siguiente.

Extensión de redes demasiado anchas
Como el ancho de las redes aumenta durante la conversión, es posible que se exceda el ancho de sección máximo.
Para mostrar una red que es demasiado ancha, la parte de dicha red que sobrepasa el límite derecho de la sección se desplazará a una fila nueva.
Las conexiones se muestran como conectores.
Ejemplo de una red LD en Concept
La red LD expandida tras la conversión a Control Expert.

Objetos para reconocer transiciones
Las diferentes maneras de manipular objetos de diagrama Ladder LD en Concept (activando un FB) y en Control Expert (activación del sistema) hace necesario el uso de variables de memoria de señal (registro 0x/1x).

Debido al requisito de que se puedan efectuar varios accesos de escritura al registro 0x/1x durante un periodo cíclico, puede producirse un comportamiento online diferente entre Concept y Control Expert.

Los objetos afectados son:
- El contacto para reconocer transiciones positivas
- El contacto para reconocer transiciones negativas
En Concept, el "valor antiguo" para reconocer una transición sólo se actualizará una vez por ciclo.

En Control Expert, el "valor antiguo" se actualizará cada vez que se produzca un acceso de escritura.

Ejemplo:

```
%QX1   %QX2
   |     ( )
%QX2
   | inc( %MW1 )
%QX1   %QX2
   |     ( )
%QX2
   | inc( %MW2 )
```

**Concept**: Si cambia %QX1 de 0 -> 1, aumentarán los valores de %MW1 y %MW2.

**Control Expert**: Si cambia %QX1 de 0 -> 1, **sólo** aumentará el valor de %MW1.

**NOTA**: Utilice objetos para reconocer transiciones con una determinada variable sólo una vez por ciclo.

Consulte también **Variables ubicadas, página 35** y el capítulo **Reconocimiento de flancos** (véase EcoStruxure™ Control Expert, Lenguajes y estructura del programa, Manual de referencia).

**Macros**

El convertidor rechaza las macros (el nombre comienza por @) porque Control Expert no puede implementar macros. Sin embargo, si intenta importar una aplicación que contenga macros, estas se reemplazarán por DFB vacíos (como indica el carácter ‘~’ que aparece en el nombre de la aplicación).

Al analizar el proyecto, obtendrá mensajes de error referentes a estos DFB vacíos. Para corregir estos errores, elimine todos los DFB creados para reemplazar las macros.
Requisitos

Lenguaje de programación ST/IL

General
Para algunos lenguajes de programación, deben cumplirse determinadas restricciones al convertir un proyecto de Concept a Control Expert.

EFB genéricos
Sólo se pueden llamar instancias de EFB genéricos una vez.
Al emplear Concept 2.2, asigne las salidas directamente tras la llamada del EFB de una variable.

Sintaxis con Concept 2.5
Utilice solamente la sintaxis nueva para Concept 2.5.
Sintaxis con Concept 2.5:
GenEFB(in1:=x1, in2:=x2, out1=>x3, out2=>X4;
in1, in2, out1 y out2 son del tipo ANY.

EFB genéricos en Concept
Lista de EFB genéricos en Concept:
● Biblioteca COMM
  ○ XXMIT
● Biblioteca CONT_CTL
  ○ DEADTIME
● Biblioteca EXTENDED
  ○ HYST
  ○ INDLIM
  ○ LIMD
  ○ SAH
● Biblioteca LIB984
  ○ FIFO
  ○ LIFO
  ○ R2T
  ○ SRCH
  ○ T2T
  ○ GET_3X
  ○ GET_4X
  ○ PUT_4X
Declaración de EFB

La declaración de EFB en Control Expert se encuentra en el editor de variables, y no en las secciones ST/IL, como ocurría en Concept.

Los EFB declarados de este modo, ya no estarán limitados a una única sección.
Requisitos

Lenguaje de programación LL984

General
Para algunos lenguajes de programación, deben cumplirse determinadas restricciones al convertir un proyecto de Concept a Control Expert.

LL984 ya es compatible con Control Expert

NOTA: Se admite el lenguaje LL984 para PLC Quantum (pero no para PLC de seguridad Quantum).
Se admite el lenguaje LL984 para PLC Modicon M340 con firmware de Modicon M340 2.4 o posterior.
Se admite el lenguaje LL984 para PLC Modicon M580 con CPU BME•584040, BME•585040 y BME•586040, con versión del firmware igual o posterior a 2.1.
Lenguaje de programación FBD

General
Para algunos lenguajes de programación, deben cumplirse determinadas restricciones al convertir un proyecto de Concept a Control Expert.

Macros
Al convertir un proyecto de Concept a Control Expert, las secciones creadas mediante macros también se convierten.
Estas secciones también se pueden copiar y modificar de forma manual.
Capítulo 3
Diferencias de los lenguajes

Descripción general
Este capítulo contiene información sobre las diferencias de los lenguajes.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funciones no incluidas en Control Expert</td>
<td>63</td>
</tr>
<tr>
<td>EFB reemplazado por función</td>
<td>64</td>
</tr>
<tr>
<td>Falta de disponibilidad de los FFB para todas las plataformas</td>
<td>65</td>
</tr>
<tr>
<td>Parámetros INOUT</td>
<td>70</td>
</tr>
<tr>
<td>Tipo de parámetro modificado</td>
<td>71</td>
</tr>
<tr>
<td>Parámetros ANY_ARRAY_WORD</td>
<td>72</td>
</tr>
<tr>
<td>Nomenclatura inequívoca requerida</td>
<td>73</td>
</tr>
<tr>
<td>Generación LD incompleta</td>
<td>74</td>
</tr>
<tr>
<td>Secuencia de ejecución LD modificada</td>
<td>75</td>
</tr>
<tr>
<td>Diferencia de detección de flancos</td>
<td>79</td>
</tr>
<tr>
<td>Constantes</td>
<td>80</td>
</tr>
<tr>
<td>Índices en ST e IL</td>
<td>81</td>
</tr>
<tr>
<td>Cálculo con TIME y REAL</td>
<td>82</td>
</tr>
<tr>
<td>Asignaciones de WORD a matrices BOOL</td>
<td>83</td>
</tr>
<tr>
<td>Solapamiento de direcciones topológicas</td>
<td>84</td>
</tr>
<tr>
<td>Sustituir %QD por %MF</td>
<td>85</td>
</tr>
<tr>
<td>Alineación de estructura modificada</td>
<td>86</td>
</tr>
<tr>
<td>Salida indefinida en EF deshabilitadas</td>
<td>87</td>
</tr>
<tr>
<td>Variables en pins vacíos</td>
<td>89</td>
</tr>
<tr>
<td>La acción definida queda activa incluso cuando el paso correspondiente se desactiva.</td>
<td>90</td>
</tr>
<tr>
<td>Retención del estado de la sección SFC al realizar una modificación online</td>
<td>91</td>
</tr>
<tr>
<td>El comportamiento de un bloque de funciones SFCCTRL difiere entre Control Expert y Concept.</td>
<td>92</td>
</tr>
</tbody>
</table>
### Diferencias de los lenguajes

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeración de los días de la semana</td>
<td>93</td>
</tr>
<tr>
<td>Temporizador de sistema</td>
<td>94</td>
</tr>
<tr>
<td>Valores iniciales</td>
<td>95</td>
</tr>
<tr>
<td>Macros</td>
<td>97</td>
</tr>
</tbody>
</table>
Funciones no incluidas en Control Expert

Empaquetador de DFB

Las funciones de Concept que no se incluyen en Control Expert se recogen en un empaquetador de DFB si se las llama en secciones ST (p. ej., WORD_AS_UDINT). Por ejemplo:

\[
\text{WAUD}(* \text{ UDINT } *) := \text{WORD_AS_UDINT} (\text{LOW} := \text{WAUL}, (* \text{ WORD } *) \text{HIGH} := \text{WAUH}(* \text{ WORD } *));
\]

... tiene la siguiente estructura tras la conversión:

\[
\text{WAUD}(* \text{ UDINT } *) := \text{FBI_ST1_75_33} (\text{LOW} := \text{WAUL}, (* \text{ WORD } *)\text{HIGH} := \text{WAUH}(* \text{ WORD } *));
\]

Corrección manual

\text{FBI_ST1_75_33} es el nombre de instancia del empaquetador de DFB suministrado. Sin embargo, la llamada sigue siendo inválida para el analizador, porque el convertidor no puede realizar aún correcciones de sintaxis de objetos múltiples en ST (esta posibilidad se incluirá en V2.0).

Hay que realizar la siguiente corrección manual:

\[
\text{FBI_ST1_75_33} (\text{LOW} := \text{WAUL}, (* \text{ WORD } *) \text{HIGH} := \text{WAUH}(* \text{ WORD } *), \text{OUT} => \text{WAUD});
\]
Diferencias de los lenguajes

**EFB reemplazado por función**

**Ampliación de DFB**

Algunos EFB estándar de Concept se implementan en Control Expert como funciones.

En estos casos, se proporciona un DFB de ampliación para que la interfaz original del EFB de Concept siga siendo válida.
Falta de disponibilidad de los FFB para todas las plataformas

Descripción general
Los FFB (funciones/bloques de funciones) enumerados a continuación sólo se pueden utilizar en plataformas Quantum (salvo SFC_RESTORE; consulte la tabla siguiente).
También puede utilizarse un subconjunto de estos FFB en una plataforma M580.
Si la plataforma de destino es Modicon M340, estos FFB aparecen marcados en rojo e indicados como "error de tipo".

FFB no disponibles

<table>
<thead>
<tr>
<th>Biblioteca</th>
<th>Comunicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familia</td>
<td>FFB</td>
</tr>
<tr>
<td>Ampliado</td>
<td>CREAD_REG</td>
</tr>
<tr>
<td></td>
<td>CWRITE_REG</td>
</tr>
<tr>
<td></td>
<td>MBP_MSTR</td>
</tr>
<tr>
<td></td>
<td>READ_REG</td>
</tr>
<tr>
<td></td>
<td>WRITE_REG</td>
</tr>
<tr>
<td></td>
<td>MODBUSP_ADDR</td>
</tr>
<tr>
<td></td>
<td>SYMAX_IP_ADDR</td>
</tr>
<tr>
<td></td>
<td>TCP_IP_ADDR</td>
</tr>
<tr>
<td></td>
<td>XXMIT</td>
</tr>
</tbody>
</table>
### Biblioteca Gestión de E/S

<table>
<thead>
<tr>
<th>Familia</th>
<th>FFB</th>
<th>Plataformas compatibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuración de E/S analógicas</td>
<td>I_FILTER</td>
<td>Quantum, M580</td>
</tr>
<tr>
<td></td>
<td>I_SET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_FILTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_SET</td>
<td></td>
</tr>
<tr>
<td>Escalado de E/S analógicas</td>
<td>I_NORM</td>
<td>Quantum, M580</td>
</tr>
<tr>
<td></td>
<td>I_NORM_WARN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_PHYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_PHYS_WARN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_RAW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_RAWSIM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_SCALE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_SCALE_WARN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_NORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_NORM_WARN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_PHYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_PHYS_WARN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_RAW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_RAW SIM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_SCALE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O_SCALE_WARN</td>
<td></td>
</tr>
<tr>
<td>E/S inmediatas</td>
<td>IMIO_IN</td>
<td>Quantum</td>
</tr>
<tr>
<td></td>
<td>IMIO_OUT</td>
<td></td>
</tr>
<tr>
<td>Familia</td>
<td>FFB</td>
<td>Plataformas compatibles</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Configuración de E/S de Quantum</td>
<td></td>
<td>Quantum, M580</td>
</tr>
<tr>
<td></td>
<td>ACI030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACI040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACO0020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACO130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AII330</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AII33010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIO330</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMM090</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARI030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATI030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVI030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVO020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DROP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERT_854_10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOGSTATUS</td>
<td>Quantum</td>
</tr>
<tr>
<td></td>
<td>QUANTUM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XBE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XDROP</td>
<td>Quantum, M580</td>
</tr>
</tbody>
</table>
### Biblioteca Movimiento

<table>
<thead>
<tr>
<th>Familia</th>
<th>FFB</th>
<th>Plataformas compatibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio con MMF</td>
<td>CFG_CP_F</td>
<td>Quantum</td>
</tr>
<tr>
<td></td>
<td>CFG_CP_V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFG_CS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFG_FS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFG_IA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFG_RA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFG_SA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRV_DNLDER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRV_UPLD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDN_CHK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDN_XFER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF_BITS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF_ESUB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF_INDEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF_JOG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMFMOVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF_RST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF_SUB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF_USUB</td>
<td></td>
</tr>
</tbody>
</table>

### Biblioteca obsoleta

<table>
<thead>
<tr>
<th>Familia</th>
<th>FFB</th>
<th>Plataformas compatibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensiones/Compatibilidad</td>
<td>GET_3X</td>
<td>Quantum</td>
</tr>
<tr>
<td></td>
<td>GET_4X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUT_4X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC_BMDI</td>
<td></td>
</tr>
</tbody>
</table>
### Biblioteca Sistema

<table>
<thead>
<tr>
<th>Familia</th>
<th>FFB</th>
<th>Plataformas compatibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestión de SFC</td>
<td>SFC_RESTORE</td>
<td>Quantum, Premium, M580</td>
</tr>
<tr>
<td>Hot Standby</td>
<td>HSBY_RD</td>
<td>Quantum</td>
</tr>
<tr>
<td></td>
<td>HSBY_ST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSBY_WR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REV_XFER</td>
<td>Quantum</td>
</tr>
</tbody>
</table>
Parámetros **INOUT**

**Corrección manual**
La sintaxis de los parámetros **INOUT** en ST (y en IL) se debe corregir de forma manual. Por ejemplo:

```
Ascii_FIFO_OUT (File := AscFifo_Mess); ....
```

```
AscFifo_Out := Ascii_FIFO_OUT.DataOut;
```

... se deben corregir manualmente del siguiente modo:

```
Ascii_FIFO_OUT (File := AscFifo_Mess, DataOut => AscFifo_Out);
```

**Parámetros de salida**
Los parámetros **INOUT** de las secciones ST que eran parámetros de salida en Concept (por ejemplo, `DataOut` de FIFO) se deben mover manualmente en ST e IL a los parámetros entre paréntesis asociados a la llamada.

Si los parámetros **INOUT** que eran salidas sólo en Concept se conectan sólo a un enlace en el lado de salida, deben recibir también en el lado de entrada una variable declarada manualmente.

El enlace se debe eliminar si no está conectado a otra variable **IN/OUT**. Los destinos del enlace eliminado se deben asignar a la variable declarada manualmente.

Esto se realiza automáticamente en V2.0.

**Cambio del tipo de variable**
El convertidor cambia el tipo de las variables directas de los parámetros **INOUT** de los bloques de comunicación a `ARRAY[0..0] OF WORD`.

Se debe realizar una corrección manual para garantizar la correspondencia con el tamaño de la matriz.
Tipo de parámetro modificado

Cambiar

El tipo de parámetro se ha modificado del tipo \texttt{WORD} a una matriz de palabras ubicadas.

Explicación

Control ExpertLos EFB de Comm ya no aceptan una dirección \texttt{WORD} sencilla para el campo de comunicación porque se escribe más de una \texttt{WORD}. Por lo tanto, el convertidor introduce una matriz artificial (mostrada en el informe de conversión) a la que se puede acceder desde el árbol de proyectos mediante el hipervínculo adecuado:

"For var \texttt{WORD1} type ARRAY[0..0] OF \texttt{WORD} generated"

La matriz tiene un tamaño de palabra sencillo porque el convertidor no puede determinar su tamaño. Por lo tanto, el usuario tiene que configurar manualmente el tamaño de matriz correcto.
**Parámetros ANY_ARRAY_WORD**

**Mensaje de error**

Para los pins EF/EFB que tienen el tipo **WORD** en Concept y se han modificado a **ANY_ARRAY_WORD** en Control Expert, se notificará el tipo "Cannot import variables" (no se pueden importar las variables). Normalmente, estos pins tienen una dirección de registro única como parámetro formal en Concept, pero se utilizan en realidad para señalar una matriz de palabras para la que no se ha declarado explícitamente el tamaño.

**Cambio del tipo de parámetro**

En Control Expert, se debe declarar una matriz de palabras para este propósito. Este es el motivo por el que el convertidor cambia el tipo a **ARRAY[0..0] OF WORD**.

Sin embargo, el convertidor no puede determinar el tamaño requerido porque no existe ninguna declaración de tamaño en la aplicación Concept. Por lo tanto, el convertidor define un elemento de datos, [0..0], como valor de reemplazo de la variable original.

Depende del usuario reemplazar este rango predeterminado de un elemento por el número de elementos que requiere la aplicación.

**Redefinición del retorno a una matriz WORD monodimensional**

Si la aplicación definió estructuras de datos asignadas a registros que describen los datos con los que hay que trabajar, se requiere un trabajo considerable para redefinir el retorno a una matriz WORD monodimensional. Sin embargo, es necesario para Unity Pro V1.0, por ejemplo:

```plaintext
{Echanges_CR2 : [MAST]}: (r: 42, c: 7) E1092 data types do not match ('CREADREG.REG_READ:ANY_ARRAY_WORD'<>'table_rec_cr2:peer_Table')
```

Ejemplo:

---

**Lecture depuis API CR2**

---

El convertidor V2.0 cambia estos tipos de parámetros EFB a **ANY** para evitar este problema.
**Nomenclatura inequívoca requerida**

**Nombre inequívoco**

En las aplicaciones Concept, los nombres de sección pueden tener el mismo nombre que un DDT. Este no es el caso en Control Expert.

El convertidor comprueba los nombres de las secciones para ver si coinciden con los nombres de los DDT. En caso afirmativo, el convertidor agrega el sufijo "_Sect" al nombre de la sección.
Diferencias de los lenguajes

Generación LD incompleta

En algunos casos, la generación LD no se puede finalizar. Esto puede ocurrir cuando el algoritmo permite un objeto que requiere la misma posición que otro objeto ya existente. En estos casos, el objeto preexistente se sobrescribe.

Aparecen mensajes de advertencia para avisar al usuario:

{SAFETY_INTERLOCKS_PLC3 : [MAST]} :
(r: 8, c: 3) E1189 converter error: 'Se ha producido una sobrescritura al generar la red LD - vea el informe'

{SAFETY_INTERLOCKS_PLC3 : [MAST]} : (r: 8, c: 3) E1002 syntax error

Detalles del informe de conversión

En el informe de conversión, que se puede abrir después de la importación a través del hipervínculo del árbol de proyectos, se ofrece información adicional sobre el mensaje:

09:29:05.953 > Error: Objeto LD PTFDTP1_ENABLED con tipo de bobina sobrescrito

El usuario debe comparar el resultado de la conversión con una copia impresa de la sección original y corregir la sección convertida como corresponda.

Visualización de enlaces o etiquetas

El motivo por el que en las redes LD parece que han desaparecido algunos enlaces es porque se han sustituido por etiquetas para ofrecer una mejor lectura; para ver los enlaces, haga clic con el botón derecho del ratón y seleccione Mostrar como vínculo.
Secuencia de ejecución LD modificada

Secuencias de ejecución distintas

**NOTA:** La secuencia de ejecución LD de Control Expert puede variar de la de Concept. En Control Expert, se puede completar una red LD antes de que se inicie la siguiente. El convertidor sigue la secuencia de ejecución de Concept en el posicionado gráfico, haciendo visible la secuencia original para el usuario. Sin embargo, puesto que Control Expert calcula la secuencia de nuevo (sin la posibilidad de forzarla desde el convertidor), pueden existir discrepancias en la secuencia de ejecución.

Generar indirectas de ConvError

Abra la ficha **Configuración de conversión** a través de **Herramientas → Opciones** en Control Expert para habilitar/deshabilitar la casilla de verificación **Generar indirectas de ConvError** antes de llevar a cabo la conversión.

- Si se habilita esta casilla de verificación, los objetos **ConvError** se generan en los programas **LD durante la conversión para llamar la atención sobre problemas especiales**.
- Si no se habilita esta casilla de verificación, **no** se generarán objetos ConvError durante la conversión.

**Concept**

Durante el análisis en Concept, se calcula la secuencia de ejecución. El resultado se muestra entre paréntesis después de los nombres de instancia en esta imagen.

El bloque seleccionado se ejecuta en el medio de otra red, aunque no tenga ninguna conexión directa con ella. Concept calcula la secuencia de ejecución a partir de la posición del bloque.
Esta es la sección original tal como aparece en Concept:

<table>
<thead>
<tr>
<th>var2</th>
<th>INT</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>var3</td>
<td>INT</td>
<td>-3</td>
</tr>
</tbody>
</table>
Una ejecución de prueba en modalidad de ciclo único en Concept muestra el resultado esperado. El resultado del comparador se convierte en "true" después del primer ciclo:
Control Expert

La red convertida refleja la secuencia de ejecución de Concept en la posición gráfica de los bloques:

La imagen también muestra el estado de ejecución detenido en un punto de parada en el primer ciclo. El comparador $EQ_{INT}$ ya se ha ejecutado y no proporcionará un resultado "true" porque el primer bloque integrador $ADD_{INT}$ se ejecuta después de él.

Solución

Reemplace la conexión a través de una variable por un enlace para conseguir el mismo resultado que en Concept.
Diferencia de detección de flancos

**General**

La gestión de detección de flancos (transición positiva o negativa) varía entre **Concept** y **Control Expert**.

**Explicación**

Como se pueden efectuar varios accesos de escritura al registro 0x/1x durante un periodo cíclico, puede producirse un comportamiento online diferente entre Concept y Control Expert.

Los objetos afectados son:
- El contacto para reconocer transiciones positivas
- El contacto para reconocer transiciones negativas

En **Concept**, el "Valor previo" utilizado para reconocer una transición sólo se actualiza una vez por ciclo.

En **Control Expert**, el "Valor previo" se actualiza con cada acceso de escritura.

**Ejemplo:**

```
%QX1  %QX2
    |
%QX2
    |
[p]   inc( %MW1 )
%QX1  %QX2
    |
[p]   inc( %MW2 )
```

**Concept:** Si cambia %QX1 de 0 a 1, aumentarán los valores de %MW1 y %MW2.

**Control Expert:** Si cambia %QX1 de 0 a 1, sólo aumentará el valor de %MW1.

**NOTA:** Utilice objetos para reconocer transiciones con una determinada variable sólo una vez por ciclo.

Consulte también **Variables ubicadas, página 35** y el capítulo **Reconocimiento de flancos** (véase **EcoStruxure™ Control Expert, Lenguajes y estructura del programa, Manual de referencia**).
Diferencias de los lenguajes

**Constantes**

**Pérdida del comportamiento de sólo lectura**

Las constantes no se aceptan como variables DFB privadas. Por lo tanto, se convierten en variables inicializadas en DFB, por lo que pierden su comportamiento de sólo lectura.
Índices en ST e IL

**Alta resolución**

Además de INT, ahora DINT se permitirá como tipo de índice de matriz en todos los campos de Control Expert, pero con rangos de valores limitados.

Para DINT, el índice sólo puede contener valores INT (−32768 ... 32767).
Cálculo con **TIME** y **REAL**

**Corrección manual**

Cuando las variables **TIME** y **REAL** se multiplican en ST, **REAL_TO_DINT** se debe insertar manualmente en la variable **REAL**.
Asignaciones de \textbf{WORD} a matrices \textbf{BOOL}

**Corrección manual**

En Concept se admiten asignaciones de HEX WORDS para completar matrices Bool enviadas a registros Word, pero no en Control Expert. Se debe realizar una corrección manual, por ejemplo:

\begin{verbatim}
('AR2_BOOL[0]:BOOL'<>'16#0100:DINT')
('AR2_BYTE[0]:BYTE'<>'16#55AA:DINT')
('AR2_BYTE[0]:BYTE'<>'16#AA55:DINT')
\end{verbatim}

**Solución**

El código ST se debe modificar a asignaciones de componente único.

La palabra hex se debe dividir en bits únicos:

\begin{verbatim}
AR2_BOOL[17] := true;
\end{verbatim}
Solapamiento de direcciones topológicas

Dirección topológica idéntica

En Control Expert, se emite una advertencia (durante el análisis de la aplicación) si se asigna la misma dirección topológica a múltiples variables.
**Sustituir %QD por %MF**

**Introducción**

Las variables que se direccionan directamente en Concept con %QD pueden ser constantes inicializadas de coma flotante o de palabra doble.

Cuando aparecen principalmente constantes de coma flotante, debe habilitarse la casilla de verificación **Sustituir %QD por %MF**.

**Configuración de conversión**

Abra la ficha **Configuración de conversión** a través de **Herramientas → Opciones** en Control Expert para habilitar/deshabilitar la casilla de verificación **Sustituir %QD por %MF** antes de llevar a cabo la conversión.

- Cuando esta casilla de verificación está habilitada, las variables %QD se convierten en variables %MF.
- Cuando esta casilla de verificación no está habilitada, las variables %QD se convierten en variables MW.
Alineación de estructura modificada

Estructura DPM_Time

Control Expert utiliza una alineación de 2 bytes para estructuras, a diferencia de Concept (1 byte), para acelerar el acceso a los componentes de la estructura. Esto afecta a las estructuras de sistema asignadas a la memoria de señal, porque las mismas estructuras en Control Expert pueden ser mayores incluidos algunos vacíos de bytes.

La estructura afectada es DPM_Time, que se ha redefinido para Control Expert para una reasignación a las direcciones de hardware correctas.

Definición de DPM_Time en Concept:

```plaintext
sync: BOOL
ms: WORD
...
```

Definición de DPM_Time en Control Expert:

```plaintext
sync: BOOL
ms_lsb: BYTE
ms_msb: BYTE
...
```

Corrección manual

Si se convierte una aplicación que incluye la estructura DPM_time, el proceso de análisis/generación fallará para los componentes de estructura redefinidos (en el ejemplo anterior, ms_lsb, ms_msb).

El usuario tiene que cambiar manualmente el uso de estos componentes de estructura en la aplicación.
Salida indefinida en EF deshabilitadas

Salidas de EF no mantenidas
Si EN pasa de TRUE a FALSE, las salidas de las EF del ciclo anterior no se mantienen en Control Expert. Esto reduce el consumo de memoria en el PLC. Por el contrario, los EFB mantienen los valores del ciclo anterior. Concept utiliza enlaces estáticos para retener el valor del ciclo anterior.

Diferencias significativas en el comportamiento de ejecución
Si una aplicación Concept depende de las salidas de las EF para mantener los valores antiguos, el comportamiento de ejecución en Control Expert variará significativamente.

Corrección manual
La aplicación se debe modificar manualmente.
Los enlaces desde las salidas, de las que se asume que mantienen su valor, se deben reemplazar por variables. Si el EN de una EF se establece en "false", la EF no se ejecuta, y la variable conectada no se toca.

Concept
La salida de la EF SEL deshabilitada se mantiene y se utiliza como entrada para el bloque de funciones EQ_INT:

![Diagrama de concepto](image)
Control Expert

La salida de la EF SEL deshabilitada recibe un valor indefinido, en este caso 0. Por tanto, la salida del bloque de funciones EQ_INT ha pasado a "true":

![Diagrama de funcionamiento de SEL y EQ_INT](image)

Solución

Si el EN de SEL se establece en "false", el ENO de EQ_INT también se establece en "false", pero la variable de salida conectada mantiene el valor del ciclo anterior:

![Diagrama de funcionamiento con SEL y EQ_INT en "false"](image)

**NOTA**: El uso de una variable es obligatorio para retener los resultados de red si una EF se deshabilita.
Variables en pins vacíos

Introducción
En Control Expert, es necesario rellenar las entradas y las salidas proporcionadas para los parámetros de E/S o tipos de datos derivados (en Concept esto no es necesario).
Si estos tipos no son genéricos, el convertidor rellenará estas entradas y salidas inicialmente vacías con variables que creará.

Configuración de conversión
Abra la ficha Configuración de conversión a través de Herramientas → Opciones en Control Expert para habilitar/deshabilitar la casilla de verificación Variables en pins vacíos antes de llevar a cabo la conversión.
- Si se habilita esta casilla de verificación, los puntos de enlace vacíos se rellenarán con variables creadas por el convertidor.
- Si no se habilita esta casilla de verificación, los puntos de enlace vacíos no se rellenarán con variables creadas por el convertidor.
Diferencias de los lenguajes

La acción definida queda activa incluso cuando el paso correspondiente se desactiva.

En Concept
La acción se puede restablecer en otras secciones.

En Control Expert
La acción se desactiva solo cuando se restablezca en otro paso de la cadena de la sección SFC actual, utilizando el descriptor R.

NOTA: La solución para obtener un comportamiento idéntico es utilizar "Sección" como acción en lugar de "Variable". En la sección puede programar SET(bit_xxx); y en la sección de fuera del SFC puede programar RESET (bit_xxx ) y se pondrá en funcionamiento.
Retención del estado de la sección SFC al realizar una modificación online

**Modificaciones online sin restablecimiento**

En Control Expert, es posible realizar modificaciones online de una cadena SFC sin tener que restablecerlo. La cadena SFC retiene su estado y continúa la ejecución.

**NOTA:** En Concept, la modificación online de una cadena SFC resulta normalmente en el restablecimiento de la cadena.
El comportamiento de un bloque de funciones SFCCNTRL difiere entre Control Expert y Concept.

**RESETSFC frente a INIT**

En Concept la entrada RESETSFC de SFCCNTRL restablece todas las variables de acción de la sección SFC correspondiente.

En Control Expert la entrada INIT de SFCCNTRL (que tiene funciones parecidas a la entrada RESETSFC de Concept) sólo restablece las variables de acción que se han establecido en el paso SFC. Las variables de animación, por ejemplo, establecidas por la lógica de usuario o la tabla de animación no se restablecerán.
Numeración de los días de la semana

Numeración distinta

En Control Expert y en Concept, los días de la semana se numeran de forma distinta:

<table>
<thead>
<tr>
<th>Número</th>
<th>Control Expert</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lunes</td>
<td>Domingo</td>
</tr>
<tr>
<td>7</td>
<td>Domingo</td>
<td>Sábado</td>
</tr>
</tbody>
</table>

**SET_TOD / GET_TOD**

Bloques de funciones: SET_TOD y GET_TOD se convierten a Control Expert como DFB, lo que funciona en ambas direcciones.

SET_TOD espera un día de la semana con numeración "Concept" y lo traduce como un valor codificado de Control Expert. GET_TOD lee el valor Control Expert y devuelve al usuario el valor Concept.

**Palabra de sistema %SW49**

NOTA: No es recomendable mezclar la programación GET_TOD y SET_TOD con el uso de palabras de sistema (p. ej., %SW49) en la misma aplicación.
Diferencias de los lenguajes

Temporizador de sistema

Concept
El temporizador de sistema de Concept estaba ubicado en una palabra de registro definida por el usuario (16 bits) y se incrementaba en intervalos de 10 ms.

Control Expert
Control Expert ofrece un temporizador incremental con actualización cada 100 ms (%SW18). Se puede crear un temporizador de 10 ms de forma lógica mediante la función FREERUN (temporizador de segundos).
Valores iniciales

Definición de valores iniciales

Concept permite la definición de los valores iniciales de los pins DFB de una matriz estructurada. Control Expert prohíbe esta opción para los pins de tipo matriz. Esta opción se reserva para los pins de salida de tipo estructura.

El convertidor refleja esta característica con el siguiente mensaje de error en el registro de conversión:

```
Error: No se pueden convertir valores iniciales de los datos de llamar-por-referencia (pin Add_PV.in1)
```

Pins que se deben conectar

Al mismo tiempo, Control Expert fuerza la conexión de los pins de tipo matriz y los pins de entrada de tipo estructurado, lo que en este caso conduce a errores de análisis:

```
{ALL:[MAST]}:  (r:26, c:68) E1194 oarameter ´IN2´has to be assigned
{ALL:[MAST]}:  (r:26, c:68) E1194 oarameter ´IN1´has to be assigned
```
**Solución**

Para resolver este problema, cree una variable del tipo del pin e inicialicela con los valores originales.

Conecte esta constante al pin adecuado de cada instancia DFB.

**Ejemplo**

![Diagrama de ejemplo](image)

**Solución:** Añada una variable inicializada.

![Diagrama de ejemplo](image)
Macros

**Macros reemplazadas por DFB vacíos**

El convertidor rechaza las macros (el nombre comienza por @) porque Control Expert no implementa macros. Sin embargo, si intenta importar una aplicación que contenga macros, éstas se reemplazarán por DFB vacíos (como indica el carácter '~' que aparece en el nombre de la aplicación).

Al analizar el proyecto, obtendrá mensajes de error referentes a estos DFB vacíos. Para corregir estos errores, elimine todos los DFB creados para reemplazar las macros.

**Parámetros AXx y EPARx**

Los parámetros AXx y EPARx de los bloques de movimiento extensibles de Concept se invocan automáticamente con la matriz recientemente requerida en lugar de con los pins extensibles presentes anteriormente de Control Expert. Las constantes existentes en los pins de Concept también se ubican como valores de inicialización de estas matrices. Sin embargo, las variables y los enlaces se deben adjuntar manualmente con los bloques de movimiento a estas matrices.
Diferencias de los lenguajes
Capítulo 4
Posible cambio de comportamiento de la aplicación

Descripción general
Este capítulo contiene información sobre posibles cambios de comportamiento de la aplicación que pueden surgir al migrar de Concept a Control Expert.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>100</td>
</tr>
<tr>
<td>Comportamiento de Concept</td>
<td>101</td>
</tr>
<tr>
<td>Requisitos IEC</td>
<td>102</td>
</tr>
<tr>
<td>Comportamiento de Control Expert</td>
<td>105</td>
</tr>
<tr>
<td>Consecuencias</td>
<td>108</td>
</tr>
</tbody>
</table>
General

Concept

En Concept y las interfaces de Control Expert los bloques de funciones se implementan con estructuras de datos (áreas de instancia) recopilando parámetros, según el estándar CEI61131, el cual respetan ambos sistemas.

Las invocaciones de bloques de funciones manejan estas estructuras de datos. Sin embargo, Concept no incluye parámetros de salida hacia estas áreas de instancia. Todos los parámetros de DFB/EFB (bloques de funciones elementales) normalmente se manejan por referencia, por lo que en Concept los parámetros de salida los escribe directamente el bloque de funciones. Los DFB/EFB de Control Expert acumulan los parámetros de salida en el área de instancia, como indica el estándar CEI61131.

El comportamiento de Concept se utilizó, por ejemplo, para habilitar la implementación de la modalidad manual fácil de bloques de funciones de técnicas de regulación.

Si la salida se escribe, sólo una vez por ciclo, el comportamiento es el mismo en ambos sistemas. Si los valores de salida no se escriben en todos los casos de invocación, sino que los asignan varias instancias de bloques de funciones, pueden experimentarse comportamientos distintos entre ambos sistemas.

Si la variable afectada la escribe alguna otra parte de control antes de que un bloque de funciones tenga el mismo parámetro de salida, invocada en un caso en que el bloque de funciones no escriba a la salida, en Concept no cambia nada, pero en Control Expert se asigna al parámetro de salida el valor del búfer de variables del área de instancia resultante de una invocación anterior.

Para detectar estos casos, el convertidor de Concept detecta asignaciones múltiples a variables elementales o componentes de tipos de datos derivados de bloques de funciones, si se ha marcado la opción apropiada:
- Detectado para bloques de funciones elementales y derivados.
- Funciona en DFB y secciones de programa.
- Informa durante la conversión en la ficha de generación de la ventana de resultados con identificación textual de las ubicaciones afectadas.
- El mismo informe textual aparece en el Informe de conversión.
- Informes sobre las secciones FBD y LD con bloques “ConvError” se sitúan sobre los bloques de funciones afectados.
- Los mensajes sobre Análisis se muestran en la ficha Analizar/Generar de la ventana de resultados, que puede abrirse haciendo doble clic y abriendo la sección afectada y mostrando directamente el bloque de funciones afectado.

Utilizando este informe, el usuario puede adaptar este código para garantizar un funcionamiento común, por ejemplo: cambiando las salidas DFB por parámetros InOut, que también ofrecen escritura directa en Control Expert.

NOTA: Si la aplicación utiliza asignaciones múltiples en salidas EFB, lea cuidadosamente el capítulo siguiente para verificar que la aplicación convertida funciona como debería (que el usuario no pueda cambiar los EFB, sólo se puedan introducir otros nuevos).
Comportamiento de Concept

Parámetros gestionados por referencia
En Concept, todos los parámetros de bloques de funciones se gestionan por referencia, lo que significa que el bloque recibe un pointer a los datos de cada pin de bloque de funciones y trabaja directamente en la variable conectada.

Variables conectadas:

```
Variable de entrada conectada
\---------> Datos de instancia
          Código EFB
          \---------> Variable de salida conectada
```

Código de bloque de funciones
Por lo tanto, en Concept es el código de bloque de funciones el que decide las siguientes cuestiones:
- Comportamiento conforme a CEI
- Escritura de datos de entrada
- Lectura de datos de salida
- No escritura de datos de salida
Requisitos IEC

bloque de funciones

A efectos de lenguajes de programación del controlador programable, un bloque de funciones es una unidad de organización de programa que, cuando se ejecuta, invoca uno o más valores.

Se pueden crear múltiples instancias con nombre (copias) de un bloque de funciones.

Cada instancia puede tener un identificador asociado (el nombre de instancia) y una estructura de datos que contenga sus variables internas y de salida y, en función de la implementación, valores de las variables de entrada o referencias a estas.

Todos los valores de las variables de salida y las variables internas necesarias de esta estructura de datos persistirán de una ejecución del bloque de funciones a la siguiente.

Por lo tanto, la invocación de un bloque de funciones con los mismos argumentos (variables de entrada) no siempre tiene por qué producir los mismos valores de salida.

Asignación de un valor

No se admite la asignación de un valor a una variable de salida de un bloque de funciones, a menos que se haga desde el mismo bloque de funciones.

La asignación de un valor a la entrada de un bloque de funciones se admite solamente como parte de la invocación del bloque de funciones.

Las entradas no asignadas o no conectadas de un bloque de funciones conservarán sus valores inicializados o los valores de la última invocación realizada si existe.

En la tabla siguiente se resume la utilización permitida de las entradas y salidas de bloques de funciones, tomando como ejemplo el bloque de funciones FF75 del tipo SR.

Los ejemplos se indican en lenguaje ST.

<table>
<thead>
<tr>
<th>Uso</th>
<th>Dentro del bloque de funciones</th>
<th>Fuera del bloque de funciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectura de entrada</td>
<td>IF IN1 THEN ...</td>
<td>No permitida</td>
</tr>
<tr>
<td>Asignación de entrada</td>
<td>No permitida</td>
<td>FB_INST(IN1:=A,IN2:=B);</td>
</tr>
<tr>
<td>Lectura de salida</td>
<td>OUT := OUT AND NOT IN2;</td>
<td>C := FB_INST.OUT;</td>
</tr>
<tr>
<td>Asignación de salida</td>
<td>OUT := 1;</td>
<td>No permitida</td>
</tr>
<tr>
<td>Lectura de E/S</td>
<td>IF INOUT THEN ...</td>
<td>IF FB1.INOUT THEN...</td>
</tr>
<tr>
<td>Asignación de E/S</td>
<td>INOUT := OUT OR IN1;</td>
<td>FB_INST(INOUT:=D);</td>
</tr>
</tbody>
</table>

1. Las utilizaciones clasificadas como "no admitidas" en esta tabla podrían provocar efectos secundarios imprevisibles dependientes del tipo de implementación.
2. La lectura y escritura de variables internas, de entrada y de salida de un bloque de funciones se pueden realizar mediante la "función de comunicación", la "función de interfaz de operador" o las "funciones de supervisión, comprobación y programación" definidas en IEC 61131-1.
3. Se admite la modificación dentro del bloque de funciones de una variable declarada en un bloque VAR_IN_OUT.
EN y ENO en bloques de funciones

El fabricante o el usuario pueden proporcionar también una entrada EN (Enable) o una salida ENO (Enable Out) booleana adicional para bloques de funciones de acuerdo con las declaraciones. Cuando se utilizan estas variables, la ejecución de las operaciones definidas por el bloque de funciones se controla de acuerdo con las siguientes reglas:

1. Si el valor de EN es FALSE (0) cuando se invoca la instancia del bloque de funciones, las asignaciones de valores reales a las entradas del bloque de funciones se pueden realizar o no en función del tipo de implementación, las operaciones definidas por el cuerpo del bloque de funciones no se ejecutarán y el sistema de controlador programable restablecerá el valor de ENO a FALSE (0).

2. De lo contrario, el sistema de controlador programable establecerá el valor de ENO en TRUE (1), se realizarán las asignaciones de valores reales a las entradas del bloque de funciones y se ejecutarán las operaciones definidas por el cuerpo del bloque de funciones. Estas operaciones pueden incluir la asignación de un valor booleano a ENO.

3. Si la salida ENO se evalúa como FALSE (0), los valores de las salidas del bloque de funciones (VAR_OUTPUT) conservarán el estado de la invocación anterior.

Entradas EN no conectadas

Cuando las entradas EN quedan abiertas, los bloques correspondientes no se ejecutan en Concept, sino en Control Expert.

Para eliminar esta diferencia, el convertidor de Concept aplica un valor booleano constante de FALSE a las entradas EN no conectadas. De esta forma, se consigue el mismo comportamiento que en Concept.

Variables de E/S

Las variables de E/S son una clase especial de variables que se utilizan con unidades de organización de programa (POU), es decir, funciones, bloques de funciones y programas.

No representan ningún dato directamente, sino que hacen referencia a otros datos del tipo oportuno. Se declaran mediante la palabra clave VAR_IN_OUT. Las variables de E/S pueden ser de lectura o de escritura.

Dentro de una POU, las variables de E/S permiten acceder a la instancia original de una variable en lugar de a una copia local del valor contenido en la variable.
Invocación de bloques de función

La invocación de un bloque de funciones establece valores para las variables de entrada del bloque de funciones y provoca la ejecución del código de programa correspondiente al cuerpo del bloque de funciones.

Estos valores se pueden establecer de forma gráfica conectando variables o las salidas de otras funciones u otros bloques de funciones a las entradas correspondientes, o bien de forma textual enumerando las asignaciones de valor a las variables de entrada.

Si no se establece ningún valor para una variable en la invocación del bloque de funciones, se utiliza un valor predeterminado.

En función del tipo de implementación, las variables de entrada pueden estar formadas por los valores de variable reales, por direcciones en las que ubicar los valores de variable reales o por una combinación de las dos.

Estos valores se transmiten siempre al código de ejecución de la estructura de datos asociado a la instancia de bloque de funciones.

Los resultados de la ejecución del bloque de funciones también figuran en esta estructura de datos.

Por lo tanto, si la invocación del bloque de funciones se implementa como llamada de procedimiento, sólo es necesario pasar un argumento sencillo (la dirección de la estructura de datos de instancia) al procedimiento para la ejecución.
Comportamiento de Control Expert

Gestión de parámetros modificada

Para cumplir los requisitos IEC, la gestión de parámetros normal EDT (tipos de datos elementales) se ha modificado de Concept a Control Expert.

En la siguiente ilustración, se describe la implementación real en Control Expert.

Los EFB ya no reciben pointers a las variables de pin conectadas. Siempre reciben los datos por valor.

En cada ciclo, el código de aplicación actualiza la copia de los datos de entrada en los datos de instancia antes de la llamada del bloque de función (1).

La copia de los datos de pin está ubicada en los datos de instancia del bloque, y el código de bloque de función trabaja siempre en los datos de instancia (2).

Tras la ejecución del código de bloque de función, el código de la aplicación copia los datos de salida actualizados del bloque de función desde los datos de instancia hasta las variables de salida conectadas (3).

Esto es válido para todos los EDT. Los tipos de datos derivados y los tipos de datos más complejos se siguen gestionando por referencia en algunos casos.
**Modos de direccionamiento**

El modo de direccionamiento de un elemento de bloque de función está directamente vinculado al tipo del elemento.

Los modos de direccionamiento conocidos actualmente son:
- por valor (VAL)
- por dirección (L-ADR)
- por dirección y número de elementos (L-ADR-LG)

<table>
<thead>
<tr>
<th>Tabla con cuatro columnas y leyenda</th>
</tr>
</thead>
</table>

### Invocación de bloques de función

Se deben tener en cuenta las siguientes reglas a la hora de invocar una instancia de bloque de función:
- Se deben completar todos los parámetros de entrada/salida.
- Se deben completar todos los parámetros de entrada que utilicen los modos de direccionamiento L-ADR o L-ADR-LG.
- Se deben completar todos los parámetros de salida que utilicen los modos de direccionamiento L-ADR o L-ADR-LG.

Todos los demás parámetros se pueden omitir al invocar una instancia de bloque de función.

Para los parámetros de entrada, se aplican las siguientes reglas (en el orden indicado):
- Se utilizan los valores de la invocación previa.
- Si no hay invocación previa, se utilizan los valores iniciales.
Se obtiene una salida EFB y DFB cuando no están habilitados en una sección del programa.

Cuando una instancia DFB o EFB no está habilitada, el código no se ejecuta. Sin embargo, si hay una salida vinculada a una variable, la salida se aplica incluso aunque el código de la instancia DFB o EFB no se ejecute y, a continuación, se establece la variable en el valor de la salida de la instancia de DFB o EFB.

Salida de EFB y DFB vinculada a una variable y a otro EFB o DFB

Si hay una salida de una instancia DFB o EFB vinculada a una variable y, al mismo tiempo, a otro FFB, la pantalla del editor podría mostrar una diferencia entre el enlace el valor de la variable.

La razón es:
- Se muestra una variable con su valor al final de la tarea MAST.
- Si la variable se escribe en otro lugar tras mostrarse, su valor ha cambiado y podría ser distinto del valor del enlace.
Posible cambio de comportamiento de la aplicación

Consecuencias

Problemas potenciales

### ADVERTENCIA

<table>
<thead>
<tr>
<th>COMPORTAMIENTO IMPREVISTO DE LA APLICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenga cuidado cuando una aplicación esté migrando de Concept a Control Expert.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

NOTA:
Debido a este cambio de arquitectura, al migrar una aplicación de Concept a Control Expert puede que necesite evaluar las consecuencias de la migración, especialmente en los casos siguientes:

- **Asignación múltiple de variables de salida conectadas:**
  En Concept, hay bloques de funciones, sobre todo en el área de técnicas de regulación, que no escriben sus valores de salida en las variables conectadas en modalidades de funcionamiento especiales (modalidad manual).
  En estas modalidades especiales, era posible escribir las variables desde otras ubicaciones de la aplicación.
  Esto sólo funciona en Control Expert si las variables se escriben después de la llamada del bloque de funciones.
  Si se escriben antes de la llamada del bloque de funciones, el proceso de copia desde los datos de instancia hasta las variables conectadas sobrescribe este valor con el valor antiguo de los datos de instancia.

- **Control de variables de salida mediante tabla de animación o HMI:**
  Si un bloque no escribía sus salidas en modalidades de funcionamiento especiales (como la modalidad manual; consulte el apartado anterior), era posible modificar las variables de salida conectadas mediante tablas de animación o HMI.
  Esto ya no funciona en Control Expert, ya que el proceso de copia desde los datos de instancia hasta las variables conectadas del bloque de funciones sobrescribe el valor modificado con el valor antiguo de los datos de instancia.
**Diseño modificado de EFB**

Para evitar problemas mayores, se ha modificado el diseño de numerosos bloques de funciones (sobre todo en las áreas de movimiento y CLC) de Concept a Control Expert para garantizar una modalidad de funcionamiento correcta de los bloques de funciones.

Los pins afectados se han modificado del tipo OUT al tipo IN/OUT.

En prácticamente todos los casos, la modificación se ajusta mejor a la realidad, ya que existe una lectura por parte de los pins de salida afectados, por lo que realmente se trata de IN/OUT.

En la tabla siguiente, se resumen los EFB en los que al menos se ha cambiado un pin de OUT a IN/OUT durante la migración de Concept a Control Expert.

**Biblioteca CONT_CTL:**

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlador</td>
<td>PI_B</td>
<td>OUT</td>
</tr>
<tr>
<td></td>
<td>PIDFF</td>
<td>OUT</td>
</tr>
<tr>
<td>Procesamiento de salida</td>
<td>MS</td>
<td>OUT</td>
</tr>
<tr>
<td>Gestión de consigna</td>
<td>SP_SEL</td>
<td>SP</td>
</tr>
</tbody>
</table>
Biblioteca Motion:

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio con MMF</td>
<td>CFG_CP_F</td>
<td>MFB, CFG_BLK</td>
</tr>
<tr>
<td></td>
<td>CFG_CP_V</td>
<td>MFB, CFG_BLK</td>
</tr>
<tr>
<td></td>
<td>CFG_CS</td>
<td>MFB, CFG_BLK</td>
</tr>
<tr>
<td></td>
<td>CFG_FS</td>
<td>MFB, CFG_BLK</td>
</tr>
<tr>
<td></td>
<td>CFG_IA</td>
<td>MFB, CFG_BLK</td>
</tr>
<tr>
<td></td>
<td>CFG_RA</td>
<td>MFB, CFG_BLK</td>
</tr>
<tr>
<td></td>
<td>CFG_SA</td>
<td>MFB, CFG_BLK</td>
</tr>
<tr>
<td></td>
<td>DRV_DNLD</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>DRV_UPLD</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>IDN_CHK</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>IDN_XFER</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_BITS</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_ESUB</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_INDEX</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_JOG</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_MOVE</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_RST</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_SUB</td>
<td>MFB</td>
</tr>
<tr>
<td></td>
<td>MMF_USUB</td>
<td>MFB</td>
</tr>
</tbody>
</table>
Posible cambio de comportamiento de la aplicación

Biblioteca Obsolete Lib:

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC_PRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALIM:</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>COMP_PID</td>
<td>Y, YMAN_N, OFF_N, SP_CAS_N</td>
</tr>
<tr>
<td></td>
<td>DERIV</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>INTEG</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>LAG</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>LAG2</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>LEAD_LAG</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>PD_OR_PI</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>PI</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>PID_P</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>PIP</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>PPI</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>VLIM</td>
<td>Y</td>
</tr>
<tr>
<td>Extensiones/Compatibilidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2T</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>SRCH</td>
<td>INDEX</td>
</tr>
<tr>
<td></td>
<td>T2T</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Comportamiento del convertidor de Concept

Normalmente, el convertidor de Concept gestiona el cambio de diseño del siguiente modo cuando se importa una aplicación de Concept en Control Expert:

- **Caso 1: Hay una variable conectada al pin de salida en Concept:**
  El convertidor de Concept mantiene la variable en la parte de salida del pin IN/OUT y añade la variable de forma adicional a la parte de entrada del pin.

- **Caso 2: Hay un enlace conectado al pin de salida en Concept:**
  El convertidor de Concept elimina el enlace, crea una variable nueva del tipo necesario y escribe esta nueva variable en la posición inicial y final del enlace eliminado. Además, la variable se añade a la parte de entrada del pin.
Otros problemas potenciales

Las tablas siguientes contienen bloques en los que también pueden surgir consecuencias del cambio de arquitectura de Concept a Control Expert en caso de asignación múltiple, ya que en Concept:

- Los bloques no escriben su pin de salida enumerado si hay errores dentro del bloque.
- Los bloques no escriben su pin de salida enumerado en la exploración **COLD o WARM INIT**.
- Los bloques escriben su pin de salida enumerado condicionalmente en función de la modalidad de funcionamiento interna.

**Biblioteca CONT_CTL:**

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condicionamiento</td>
<td>DTIME</td>
<td>OUT</td>
</tr>
<tr>
<td></td>
<td>SCALING</td>
<td>OUT</td>
</tr>
<tr>
<td></td>
<td>TOTALIZER</td>
<td>OUT, INFO</td>
</tr>
<tr>
<td>Controlador</td>
<td>AUTOTUNE</td>
<td>TRI, INFO</td>
</tr>
<tr>
<td></td>
<td>PI_B</td>
<td>OUT_D, DEV</td>
</tr>
<tr>
<td></td>
<td>PIDFF</td>
<td>OUT_D, INFO</td>
</tr>
<tr>
<td></td>
<td>STEP2</td>
<td>DEV</td>
</tr>
<tr>
<td></td>
<td>STEP3</td>
<td>DEV</td>
</tr>
<tr>
<td>Procesamiento de salida</td>
<td>MS</td>
<td>OUTD, STATUS</td>
</tr>
<tr>
<td></td>
<td>MS_DB</td>
<td>OUTD, STATUS</td>
</tr>
<tr>
<td></td>
<td>SPLRG</td>
<td>OUT1, OUT2</td>
</tr>
<tr>
<td>Gestión de consigna</td>
<td>RAMP</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>RATIO</td>
<td>KACT, SP</td>
</tr>
<tr>
<td></td>
<td>SP_SEL</td>
<td>LSP_MEM</td>
</tr>
</tbody>
</table>

**Biblioteca de gestión de E/S:**

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuración de E/S analógicas</td>
<td>I_SET</td>
<td>CHANNEL</td>
</tr>
<tr>
<td></td>
<td>O_SET</td>
<td>CHANNEL</td>
</tr>
<tr>
<td>Escalado de E/S analógicas</td>
<td>I_NORM_WARN</td>
<td>WARN</td>
</tr>
<tr>
<td></td>
<td>I_PHYS_WARN</td>
<td>WARN</td>
</tr>
<tr>
<td></td>
<td>I_SCALE_WARN</td>
<td>WARN</td>
</tr>
</tbody>
</table>
### Configuración de E/S Quantum

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuración de E/S Quantum</td>
<td>ACI040</td>
<td>CHANNEL1..16</td>
</tr>
<tr>
<td></td>
<td>ACO130</td>
<td>CHANNEL1..8</td>
</tr>
<tr>
<td></td>
<td>AII330</td>
<td>CHANNEL1..8, INTERNAL</td>
</tr>
<tr>
<td></td>
<td>AII33010</td>
<td>CHANNEL1..8</td>
</tr>
<tr>
<td></td>
<td>AIO330</td>
<td>CHANNEL1..8</td>
</tr>
<tr>
<td></td>
<td>ARI030</td>
<td>CHANNEL1..8</td>
</tr>
</tbody>
</table>

### Biblioteca Motion:

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio con MMF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFG_CP_F</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>CFG_CP_V</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>CFG_CS</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>CFG_FS</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>CFG_IA</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>CFG_RA</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>CFG_SA</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>DRV_DNLQ</td>
<td>Q, ERROR, IDN_CNT</td>
</tr>
<tr>
<td></td>
<td>DRV_UPLD</td>
<td>Q, ERROR, REG_CNT</td>
</tr>
<tr>
<td></td>
<td>IDN_CHK</td>
<td>Q, ERROR, NOT_EQ</td>
</tr>
<tr>
<td></td>
<td>IDN_XFER</td>
<td>Q, ERROR, OUT_RAW, OUTCONV</td>
</tr>
<tr>
<td></td>
<td>MMF_ESUB</td>
<td>Q, ERROR, RET1, RET2, RET$</td>
</tr>
<tr>
<td></td>
<td>MMF_INDEX</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>MMF_JOG</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>MMF_MOVE</td>
<td>Q, ERROR</td>
</tr>
<tr>
<td></td>
<td>MMF_RST</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>MMF_SUB</td>
<td>Q, ERROR, RET1, RET2, RET$</td>
</tr>
<tr>
<td></td>
<td>MMF_USUB</td>
<td>Q, ERROR, RET1, RET2, RET$</td>
</tr>
</tbody>
</table>
**Biblioteca Obsolete Lib:**

<table>
<thead>
<tr>
<th>Familia</th>
<th>bloque de funciones</th>
<th>Pin afectado</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC</td>
<td>DELAY:</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>PI1</td>
<td>ERR</td>
</tr>
<tr>
<td></td>
<td>PID1</td>
<td>ERR</td>
</tr>
<tr>
<td></td>
<td>PIDP1</td>
<td>ERR</td>
</tr>
<tr>
<td></td>
<td>THREE_STEP_CON1</td>
<td>ERR_EFF</td>
</tr>
<tr>
<td></td>
<td>THREEPOINT_CON1</td>
<td>ERR_EFF</td>
</tr>
<tr>
<td></td>
<td>TWOPOINT_CON1</td>
<td>ERR_EFF</td>
</tr>
<tr>
<td>CLC_PRO</td>
<td>COMP_PID</td>
<td>STATUS, ERR</td>
</tr>
<tr>
<td></td>
<td>DEADTIME</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>FGEN</td>
<td>Y, N</td>
</tr>
<tr>
<td></td>
<td>INTEG</td>
<td>STATUS</td>
</tr>
<tr>
<td></td>
<td>PCON2</td>
<td>ERR_EFF</td>
</tr>
<tr>
<td></td>
<td>PCON3</td>
<td>ERR_EFF</td>
</tr>
<tr>
<td></td>
<td>PD_OR_PI</td>
<td>ERR, STATUS</td>
</tr>
<tr>
<td></td>
<td>PDM</td>
<td>Y_POS, Y_NEG</td>
</tr>
<tr>
<td></td>
<td>PI</td>
<td>ERR, STATUS</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>ERR, STATUS</td>
</tr>
<tr>
<td></td>
<td>PID_P</td>
<td>ERR, STATUS</td>
</tr>
<tr>
<td></td>
<td>PIP</td>
<td>ERR, SP2, STATUS</td>
</tr>
<tr>
<td></td>
<td>PPI</td>
<td>ERR, SP2, STATUS</td>
</tr>
<tr>
<td></td>
<td>PWM</td>
<td>Y_POS, Y_NEG</td>
</tr>
<tr>
<td></td>
<td>QPWM</td>
<td>Y_POS, Y_NEG</td>
</tr>
<tr>
<td></td>
<td>SCON3</td>
<td>ERR_FF</td>
</tr>
<tr>
<td></td>
<td>VLIM</td>
<td>STATUS</td>
</tr>
<tr>
<td>Extensiones/Compatibilidad</td>
<td>FIFO</td>
<td>EMPTY, FULL</td>
</tr>
<tr>
<td></td>
<td>LIFO</td>
<td>EMPTY, FULL</td>
</tr>
</tbody>
</table>

**NOTA:** Los pins no se modifican porque esto carece de influencia en la modalidad de funcionamiento normal de los bloques.
Capítulo 5
El proceso de conversión

Proceso de conversión

General
Un proyecto Concept se exporta de Concept y, a continuación, se convierte de forma automática a un proyecto Control Expert mediante el convertidor de Concept de Control Expert.

Proceso de conversión

Representación del proceso de conversión:

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exportación de un proyecto Concept. Creación de un fichero ASCII.</td>
</tr>
<tr>
<td>2</td>
<td>Activación del convertidor de Concept de Control Expert. Conversión del archivo ASCII a un archivo XEF.</td>
</tr>
<tr>
<td>3</td>
<td>Importación del archivo XEF a Control Expert. Creación de un proyecto Control Expert.</td>
</tr>
<tr>
<td>4</td>
<td>Comprobación del informe de errores. No debe haber ningún error.</td>
</tr>
<tr>
<td>5</td>
<td>Proyecto disponible en Control Expert con posibilidad de generarlo y cargarlo en un PLC, así como de procesarlo en Control Expert.</td>
</tr>
</tbody>
</table>
El proceso de conversión

Informe de errores y análisis
Los errores producidos durante la conversión se registran en un informe de errores y se muestran en una ventana de resultados.

Los objetos de sustitución se utilizan en lugar de objetos que no se pueden convertir. El proyecto Control Expert se puede analizar mediante el menú principal Crear → Analizar proyecto. Los mensajes posteriores se muestran en la ventana de resultados para buscar los objetos de sustitución.

Los errores mostrados en la ventana de resultados deben corregirse de forma manual para garantizar el correcto funcionamiento del proyecto Control Expert.

Proceso de conversión de las tablas de animación
En Concept, las tablas RDE pueden tener nombres diferentes. El convertidor de Concept crea una tabla de animación para cada archivo de referencia del editor de datos encontrado en la carpeta del proyecto.

En las ventanas de visualización de datos de Prowrx32, todas las ventanas de visualización de datos generarán una tabla de animación.
Capítulo 6
Procedimiento de conversión

Descripción general
En este capítulo se ofrece información acerca de los procedimientos necesarios para convertir un proyecto Concept en un proyecto Control Expert.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exportación de un proyecto Concept</td>
<td>118</td>
</tr>
<tr>
<td>Importación de un proyecto en Control Expert</td>
<td>119</td>
</tr>
<tr>
<td>Tipos de datos que faltan al comienzo de la importación</td>
<td>120</td>
</tr>
<tr>
<td>Conversión sólo de partes de una aplicación Concept</td>
<td>121</td>
</tr>
<tr>
<td>Eliminación de macros de Concept incluidas accidentalmente</td>
<td>122</td>
</tr>
<tr>
<td>Valores de inicialización</td>
<td>123</td>
</tr>
<tr>
<td>Si la aplicación Momentum convertida contiene más de un bloque XMIT</td>
<td>124</td>
</tr>
</tbody>
</table>
Procedimiento de conversión

Exportación de un proyecto Concept

General

Un proyecto Concept que se debe utilizar en Control Expert ha de exportarse, en primer lugar, desde Concept. A continuación, se podrá emplear el convertidor de Concept de Control Expert para llevar a cabo la conversión a un proyecto Control Expert.

Exportar proyecto

Para exportar un proyecto, siga estos pasos:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Procedimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicie el programa del convertidor de Concept en el grupo de programas de Concept.</td>
</tr>
<tr>
<td>2</td>
<td>Seleccione Archivo → Exportar... para abrir el menú a fin de seleccionar el rango de exportación.</td>
</tr>
</tbody>
</table>
| 3    | Seleccione el rango de exportación:  
  - **Proyecto con DFB**: Se exportará toda la información del proyecto, incluidos los DFB y las estructuras de datos (tipos de datos derivados) empleados en el proyecto.  
  - **Proyecto sin DFB**: Se exportará toda la información del proyecto, incluidas todas las estructuras de datos (tipos de datos derivados), excepto los DFB y las macros.  
  **Resultado**: Se abre el cuadro de diálogo para seleccionar los archivos que se van a exportar. |
| 4    | Seleccione la extensión de archivo siguiente:  
  - **Exportar proyectos**: Seleccione la extensión .prj en el cuadro de la lista de formatos. |
| 5    | Seleccione el proyecto y confirme mediante Aceptar.  
  **Resultado**: El proyecto se almacena en el directorio actual como archivo ASCII (.asc). |
| 6    | Cierre el programa del convertidor de Concept mediante Archivo → Salir. |
Importación de un proyecto en Control Expert

General
Un proyecto de Concept que deba utilizarse en Control Expert primero ha de exportarse desde Concept. A continuación, se podrá emplear el convertidor de Concept de Control Expert para llevar a cabo la conversión a un proyecto Control Expert.

Importación de un proyecto
Para convertir e importar un proyecto, siga estos pasos:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Procedimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicie Control Expert.</td>
</tr>
</tbody>
</table>
| 2    | Abra el proyecto exportado de Concept mediante Archivo → Abrir. Seleccione el tipo de datos PROYECTOS CONCEPT (*.ASC).  
**NOTA:** No utilice el proyecto con la opción de DFB utilizados (Reconectar a igual) al crear el archivo *.ASC. Control Expert no puede importar la aplicación si se utiliza esta opción. |
| 3    | **Resultado:**  
El archivo ASCII se convierte a formato de archivo de origen de Control Expert y se importa de forma automática.  
En una ventana de resultados se muestran los errores de importación y los mensajes acerca de los objetos que no se pueden convertir y tienen objetos de sustitución disponibles. |
| 4    | Edite los errores y los mensajes mostrados en la ventana de resultados de forma manual para garantizar el correcto funcionamiento del proyecto de Control Expert. |
| 5    | Para comprobar que un proyecto ya no contiene errores, seleccione de nuevo el comando de menú Generar → Analizar proyecto. |
Procedimiento de conversión

Tipos de datos que faltan al comienzo de la importación

General
Si el cuadro de diálogo que aparece al comienzo de la importación solicita DDT desconocidos, busque las declaraciones de tipo local en el DDT y descubra cuáles están sin definir.
Además, los tipos no utilizados pero presentes en el archivo *.asc abierto se registran como desconocidos en un cuadro de diálogo que aparece durante la importación.

Tipos de datos de sistema Concept
Esto sucede en los tipos de datos de sistema Concept que Concept considera siempre presentes y que, por tanto, no se incluyen en la exportación.
El convertidor incluye automáticamente los tipos de datos de sistema estándar de Concept de forma individual, en caso de que fueran necesarios. Estos forman parte del comando del convertidor e incluyen el archivo CConv.xml presente en el directorio de ejecución de Control Expert.
Si se elimina la etiqueta de sólo lectura, este archivo puede ampliarse para que incluya tipos de datos adicionales para las bibliotecas EFB de usuarios.
Estos archivos de tipos de datos que se encuentran más allá de los globales/locales se colocan en el subdirectorio de la biblioteca de Concept para fusionarlos en la aplicación Concept, pero NO aparecen en el archivo de exportación de Concept.

Archivos *.dty de Concept
La versión V1.1 del convertidor de Concept dispondrá de una función para añadir archivos *.dty de Concept, que se almacenan en el mismo directorio que el archivo *.asc, a la aplicación convertida, como si su contenido apareciera dentro del propio archivo *.asc.
Conversión sólo de partes de una aplicación Concept

General
El convertidor de Concept convierte aplicaciones completas y partes de aplicaciones.
Si sólo se necesitan partes de una aplicación Concept, elija una de las dos opciones siguientes:
- Utilizar una exportación reducida de la aplicación con Concept (consulte las secciones que figuran a continuación).
- Utilizar el asistente de conversión (consulte Conversión con el asistente de conversión, página 22).

DFB único
En caso de que se necesite un único DFB, cree una aplicación nueva con 1 única sección y establezca una llamada al DFB que desea en esta sección.
Exporte la aplicación mediante el elemento de menú Exportar con DFB utilizados en Concept.
Convierta el archivo *.asc resultante en Control Expert a través de Archivo → Abrir.

Subconjunto de secciones
Para exportar un subconjunto de secciones, utilice el menú Archivo → Exportar → Programa: Secciones en Concept.
Seleccione la aplicación de origen y las secciones que desea y siga las instrucciones para obtener una aplicación reducida.
Sin embargo, si la sección contiene referencias a pasos SFC, Concept también requiere la exportación de la sección SFC a la que se hace referencia.
Convierta el archivo *.sec resultante en Control Expert con el asistente de conversión mediante Herramientas → Convertir parcialmente.

Subconjunto de variables
Para exportar un subconjunto de variables, abra primero el Editor de variables en Concept y seleccione las variables que desea.
A continuación, utilice el menú Archivo → Exportar → Variables: Texto delimitado.
Convierta el archivo *.txt resultante en Control Expert con el asistente de conversión mediante Herramientas → Convertir parcialmente.

Tablas de animación
Si hay archivos de tablas de animación en el directorio de exportación de la aplicación, dichas tablas se incluirán automáticamente en el resultado de la conversión.
Eliminación de macros de Concept incluidas accidentalmente

General
Si se ha incluido una macro en la exportación de Concept, esta se convierte como si fuera un DFB y aparece en el árbol del explorador de proyectos como DFB.
Elimine este DFB, ya que Control Expert no admite macros.
Valores de inicialización

**General**

Los valores de inicialización se encuentran en una matriz en la exportación de Concept y describen la memoria de señal.

Esta matriz se convierte en clústeres en Control Expert, es decir, se corta en secuencias contiguas de valores distintos de cero con valores admitidos de un solo cero.

Cada clúster se convierte en una matriz individual con los nombres de `LL_SRAMxxx`. 
Si la aplicación Momentum convertida contiene más de un bloque XMIT

**Norma**

Los procesadores 171 CBU 78090, 171 CBU 98090 o 171 CBU 98091 utilizan una velocidad en el puerto COM mucho más rápida que el antiguo PLC Momentum.

Como resultado, el bloque XMIT puede no funcionar correctamente, si la aplicación Momentum convertida contiene más de un bloque XMIT.

La velocidad del puerto rápido COM puede provocar que el siguiente bloque XMIT se ejecute antes de que el anterior bloque XMIT complete su operación. Si ocurre esto, puede parecer que el bloque está funcionando incorrectamente.

Para evitar la ejecución simultánea de los bloques XMIT, puede tener que añadirse un retardo de tiempo o una lógica adicional para probar la salida DONE del bloque XMIT al inicio de bloque o habilitar la lógica.
Parte II
Bloques de Concept a Control Expert

Descripción general
En este apartado se ofrece una descripción general de los bloques que no forman parte estándar de Control Expert.
Sin embargo, si estos bloques se utilizan en Concept, se generan durante la conversión del proyecto de Concept a Control Expert para asignar la funcionalidad configurada en Concept a Control Expert de uno en uno.

Contenido de esta parte
Esta parte contiene los siguientes capítulos:

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Nombre del capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>BYTE_TO_BIT_DFB: Conversión de tipos</td>
<td>127</td>
</tr>
<tr>
<td>8</td>
<td>CREADREG: Lectura continua de registro</td>
<td>131</td>
</tr>
<tr>
<td>9</td>
<td>CWRITREG: Escritura continua de registro</td>
<td>139</td>
</tr>
<tr>
<td>10</td>
<td>DINT_AS_WORD_DFB: Conversión de tipos</td>
<td>145</td>
</tr>
<tr>
<td>11</td>
<td>DIOSTAT: Estado de función del módulo (DIO)</td>
<td>147</td>
</tr>
<tr>
<td>12</td>
<td>GET_TOD: Lectura del reloj de hardware (tiempo del día)</td>
<td>149</td>
</tr>
<tr>
<td>13</td>
<td>LIMIT_IND_DFB: Indicador de límite de ancho</td>
<td>153</td>
</tr>
<tr>
<td>14</td>
<td>LOOKUP_TABLE1_DFB: Progresión de travesía con interpolación de primer grado</td>
<td>157</td>
</tr>
<tr>
<td>15</td>
<td>PLCSTAT: DFB de estado de función de la CPU M580</td>
<td>163</td>
</tr>
<tr>
<td>16</td>
<td>PLCSTAT: Quantum estado de la función PLC</td>
<td>169</td>
</tr>
<tr>
<td>17</td>
<td>READREG: Lectura de registro</td>
<td>185</td>
</tr>
<tr>
<td>18</td>
<td>RIOSTAT: Estado del bloque de funciones (RIO)</td>
<td>193</td>
</tr>
<tr>
<td>19</td>
<td>SET_TOD: Ajuste del reloj de hardware (tiempo del día)</td>
<td>197</td>
</tr>
<tr>
<td>20</td>
<td>WORD_AS_BYTE_DFB: Conversión de tipos</td>
<td>201</td>
</tr>
<tr>
<td>21</td>
<td>WORD_TO_BIT_DFB: Conversión de tipos</td>
<td>203</td>
</tr>
<tr>
<td>22</td>
<td>WRITEREG: Escritura de registro</td>
<td>207</td>
</tr>
</tbody>
</table>
Capítulo 7
BYTE_TO_BIT_DFB: Conversión de tipos

Descripción

Descripción de la función

El bloque de funciones convierte una palabra de entrada del tipo de datos BYTE en 8 valores de salida de tipo de datos BOOL.

Los bits individuales del byte en la entrada se asignan a las salidas de acuerdo con los nombres de salida.

EN y ENO se pueden configurar como parámetros adicionales.

Representación en FBD

Representación:

```
BYTE_TO_BIT_DFB Instance
BYTE_TO_BIT_DFB

BYTE_variable IN

BIT0
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7

BOOL_variable1
BOOL_variable2
BOOL_variable3
BOOL_variable4
BOOL_variable5
BOOL_variable6
BOOL_variable7
BOOL_variable8
```
Representación en LD

Representación:

CAL BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
BIT6=>BOOL_variable7, BIT7=>BOOL_variable8)

Representación en ST

Representación:

BYTE_TO_BIT_DFB_Instance (IN:=BYTE_variable,
BIT0=>BOOL_variable1, BIT1=>BOOL_variable2,
BIT2=>BOOL_variable3, BIT3=>BOOL_variable4,
BIT4=>BOOL_variable5, BIT5=>BOOL_variable6,
BIT6=>BOOL_variable7, BIT7=>BOOL_variable8) ;
## Descripción de parámetros

### Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>BYTE</td>
<td>Entrada</td>
</tr>
</tbody>
</table>

### Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT0</td>
<td>BOOL</td>
<td>Bit de salida 0</td>
</tr>
<tr>
<td>BIT1</td>
<td>BOOL</td>
<td>Bit de salida 1</td>
</tr>
<tr>
<td>::</td>
<td>::</td>
<td>::</td>
</tr>
<tr>
<td>BIT7</td>
<td>BOOL</td>
<td>Bit de salida 7</td>
</tr>
</tbody>
</table>
Capítulo 8  
CREADREG: Lectura continua de registro

Introducción

En este capítulo se describe el bloque **CREADREG**.

Contenido de este capítulo

Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>132</td>
</tr>
<tr>
<td>Modo de funcionamiento</td>
<td>135</td>
</tr>
<tr>
<td>Descripción de parámetros</td>
<td>136</td>
</tr>
<tr>
<td>Códigos de error de Modbus Plus</td>
<td>137</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función
Este bloque de funciones derivado lee de forma continua un área de registro. Lee los datos de los participantes direccionados a través de Modbus Plus.

Nota: Debe conocer los procedimientos de acceso utilizados en la red para poder programar una función CREADREG. La descripción detallada de las estructuras de ruta de acceso Modbus Plus se encuentra en la Guía de instalación y planificación de la red Modbus Plus (véase página 13).

Nota: Este bloque de funciones solo admite la interfaz local de Modbus Plus (no NOM).
En el caso de que se emplee un NOM, deberá utilizarse el bloque CREAD_REG de la biblioteca de bloques de comunicación.

Nota: Este bloque de funciones no admite Ethernet TCP/IP o SY/MAX.
Si se necesita Ethernet TCP/IP o SY/MAX, utilice el bloque CREAD_REG de la biblioteca de bloques de comunicación.

Nota: Se pueden utilizar varias copias de este bloque de funciones en el programa. No obstante, no es posible instanciar estos ejemplares de forma múltiple.

Representación en FBD
Representación:
Representación en LD

Representación:

```
CREADREG Instance

CREADREG

EN ENO

DeviceAddress NODEADDR STATUS — ErrorCode
RoutingPath ROUTPATH
OffsetAddress SLAVEREG
NumberOfRegisters NO_REG
ArrayForValuesRead REG_READ — REG_READ — ArrayForValuesRead
```

Representación en IL

Representación:

```
CAL CREADREG_Instance (NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters, REG_READ:=ArrayForValuesRead, STATUS=>ErrorCode)
```

Representación en ST

Representación:

```
CREADREG_Instance (NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters, REG_READ:=ArrayForValuesRead, STATUS=>ErrorCode;
```
## Descripción de parámetros

### Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODEADDR</td>
<td>INT</td>
<td>Dirección de dispositivo dentro del segmento de destino</td>
</tr>
<tr>
<td>ROUTPATH</td>
<td>DINT</td>
<td>Ruta de acceso al segmento de destino</td>
</tr>
<tr>
<td>SLAVEREG</td>
<td>DINT</td>
<td>Dirección de offset del primer registro 4x en el esclavo del que se debe leer</td>
</tr>
<tr>
<td>NO_REG</td>
<td>INT</td>
<td>Número de registros que se van a leer del esclavo</td>
</tr>
</tbody>
</table>

### Descripción de los parámetros de entrada/salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>REG_READ</td>
<td>ANY_ARRAY_WORD</td>
<td>Datos de escritura (Se debe declarar una estructura de datos como variable ubicada para el archivo que se va a leer).</td>
</tr>
</tbody>
</table>

### Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>SINT</td>
<td>Código de error</td>
</tr>
</tbody>
</table>
Modo de funcionamiento

Modo de funcionamiento de los módulos CREADREG

Se puede programar un gran número de módulos de función CREADREG, pero solamente pueden estar activas cuatro operaciones de lectura al mismo tiempo. En este caso no tiene importancia si dichas operaciones se realizan por medio de este módulo de función u otros (p. ej. MBP_MSTR, READREG). Todos los módulos de función emplean una ruta de acceso de transacción de datos y necesitan varios ciclos para completar una orden.

La información de acceso completa debe dividirse en dos partes:
- en la NODEADDR del participante de destino (independientemente de si se encuentra en el segmento local o en algún otro segmento)
- en la ruta de acceso, en caso de que se lleve a cabo una conexión a través de puentes de red.

La dirección de destino resultante está formada por estas dos partes de información.

La ruta de acceso es del tipo de datos DINT, que se interpreta como una secuencia de unidades de información de dos dígitos. No es necesario agregar "00" (p. ej., las dos informaciones de acceso, 4711 y 47110000, son válidas; en NODEADDR 34, el resultado es la dirección de destino 47.11.34.00.00).

NOTA: Este módulo de función supone una gran carga para la red; por lo tanto, se debe vigilar atentamente la carga de la red. En caso de que la carga de la red sea demasiado alta, hay que repasar de nuevo la lógica del programa para poder trabajar con el módulo de función READREG, una variación de este módulo de función que no trabaja en modalidad continua, sino controlado por comandos.
Descripción de parámetros

**NODEADDR**
Especifica la dirección del participante dentro del segmento de destino.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**ROUTPATH**
Especifica la ruta de acceso al segmento de destino. Las unidades de información de dos dígitos van desde 01 hasta 64 (consulte "Modo de funcionamiento, página 135"). En caso de que el slave se encuentre en el segmento de red local, ROUTPATH debe ajustarse a "0" o permanecer desconectado.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**SLAVEREG**
Principio del rango del esclavo direccionado desde el que se deben leer los datos de origen. El área de origen se encuentra siempre dentro del área de registro 4x. SLAVEREG espera la dirección de origen como offset dentro del área 4x. El "4" de la izquierda no se tiene en cuenta (p. ej. 59 (contenido de las variables o valor del literal) = 40059).
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**NO_REG**
Cantidad de registros que deben leerse desde el procesador slave (1 a 100).
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**STATUS**
Código de error, consulte "Códigos de error de Modbus Plus, página 137".
El parámetro se puede indicar como dirección, Located variable o Unlocated variable.

**REG_READ**
Para este parámetro se debe definir una ANY_ARRAY_WORD del tamaño del envío requerido (≥ NO_REG). El nombre de esta matriz se transferirá como parámetro. Si se define una matriz demasiado pequeña, sólo se transferirá la cantidad de datos que tenga cabida en la matriz.
El parámetro se debe indicar como Located Variable.
Códigos de error de Modbus Plus

Estructura de los códigos de error de función
La estructura de los códigos de error de función para Modbus Plus es Mmss, donde:

- M es el código de mayor valor
- m es el código de menor valor
- ss es un subcódigo

Código de error hexadecimal
Código de error hexadecimal para Modbus Plus

<table>
<thead>
<tr>
<th>Código de error hex.</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Interrupción por parte del usuario</td>
</tr>
<tr>
<td>2001</td>
<td>Se ha definido un tipo de operación no admitida en el bloque de control.</td>
</tr>
<tr>
<td>2002</td>
<td>Se han modificado uno o varios parámetros del bloque de control mientras el elemento MSTR está activo (sólo tiene validez en las operaciones para cuya conclusión son necesarios varios ciclos). Los parámetros del bloque de control sólo se pueden modificar cuando el elemento MSTR se encuentra inactivo.</td>
</tr>
<tr>
<td>2003</td>
<td>Valor inválido en el campo de longitud del bloque de control</td>
</tr>
<tr>
<td>2004</td>
<td>Valor inválido en el campo de offset del bloque de control</td>
</tr>
<tr>
<td>2005</td>
<td>Valor inválido en los campos de longitud y offset del bloque de control</td>
</tr>
<tr>
<td>2006</td>
<td>Campo de datos no permitido en el slave</td>
</tr>
<tr>
<td>2007</td>
<td>Campo de red no permitido en el slave</td>
</tr>
<tr>
<td>2008</td>
<td>Ruta de acceso a la red no permitida en el slave</td>
</tr>
<tr>
<td>2009</td>
<td>Ruta de acceso equivalente a su propia dirección</td>
</tr>
<tr>
<td>200A</td>
<td>Intento de recibir más palabras de datos globales de las disponibles</td>
</tr>
<tr>
<td>30ss</td>
<td>Respuesta extraordinaria a través del slave Modbus (véase página 138)</td>
</tr>
<tr>
<td>4001</td>
<td>Respuesta inconsecuente a través del slave Modbus</td>
</tr>
<tr>
<td>5001</td>
<td>Respuesta inconsecuente a través de la red</td>
</tr>
<tr>
<td>6msss</td>
<td>Error en la ruta de acceso (véase página 138)</td>
</tr>
</tbody>
</table>

El subcampo m indica dónde se ha producido el error (un valor de 0 significa participante local, 2 significa segundo aparato en la ruta, etc.).
Valor hexadecimal ss en los códigos de error 30ss

<table>
<thead>
<tr>
<th>Valor hex. ss</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>El slave no admite la operación solicitada.</td>
</tr>
<tr>
<td>02</td>
<td>Se han solicitado registros de un slave inexistente.</td>
</tr>
<tr>
<td>03</td>
<td>Se ha solicitado un valor de datos no admitido.</td>
</tr>
<tr>
<td>05</td>
<td>El slave ha recibido un comando de programa largo.</td>
</tr>
<tr>
<td>06</td>
<td>No es posible ejecutar la función: un comando largo está en ejecución.</td>
</tr>
<tr>
<td>07</td>
<td>El slave ha rechazado un comando de programa largo.</td>
</tr>
</tbody>
</table>

Valor hexadecimal ss en los códigos de error 6mss

NOTA: El subcampo m en los códigos de error 6mss es un índice en la información de acceso que indica el lugar en el que se ha encontrado un error (un valor 0 indica el participante local, un 2 el segundo equipo en la ruta, etc.).

El subcampo ss de los códigos 6mss tiene los siguientes significados.

<table>
<thead>
<tr>
<th>Valor hexadecimal ss</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>No se ha recibido ninguna respuesta.</td>
</tr>
<tr>
<td>02</td>
<td>Acceso a un programa denegado</td>
</tr>
<tr>
<td>03</td>
<td>Participante desconectado. Imposible la comunicación</td>
</tr>
<tr>
<td>04</td>
<td>Respuesta extraordinaria recibida</td>
</tr>
<tr>
<td>05</td>
<td>Rutas de datos del participante del enrutador ocupadas</td>
</tr>
<tr>
<td>06</td>
<td>El slave ha fallado.</td>
</tr>
<tr>
<td>07</td>
<td>Dirección de destino errónea</td>
</tr>
<tr>
<td>08</td>
<td>Tipo de participante no permitido en la ruta de acceso</td>
</tr>
<tr>
<td>10</td>
<td>El slave ha rechazado el comando.</td>
</tr>
<tr>
<td>20</td>
<td>El slave ha olvidado la transacción activada.</td>
</tr>
<tr>
<td>40</td>
<td>Recepción de una ruta de salida de master inesperada</td>
</tr>
<tr>
<td>80</td>
<td>Recepción de una respuesta inesperada</td>
</tr>
<tr>
<td>F001</td>
<td>Se ha especificado un participante de destino incorrecto para la operación MSTR.</td>
</tr>
</tbody>
</table>
Capítulo 9
CWRITREG: Escritura continua de registro

Introducción
En este capítulo se describe el bloque CWRITREG.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>140</td>
</tr>
<tr>
<td>Modo de funcionamiento</td>
<td>143</td>
</tr>
<tr>
<td>Descripción de parámetros</td>
<td>144</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función

Este bloque de funciones derivado escribe de forma continua en un área de registro. Transfiere datos desde el PLC mediante Modbus Plus a un procesador de destino esclavo especificado. EN y ENO pueden configurarse como parámetros adicionales.

NOTA: Para programar una función CWRITREG, es necesario conocer los procedimientos de enrutamiento que utiliza la red. La descripción detallada de las estructuras de ruta de acceso Modbus Plus se encuentra en la Guía de instalación y planificación de la red Modbus Plus (véase página 13).

NOTA: Este bloque de funciones solo admite la interfaz local de Modbus Plus (no NOM). En el caso de que se emplee un NOM, deberá utilizarse el bloque CWRITE_REG de la biblioteca de bloques de comunicación.

NOTA: Este bloque de funciones no admite Ethernet TCP/IP o SY/MAX. Si se necesita Ethernet TCP/IP- o SY/MAX, utilice el bloque CWRITE_REG de la biblioteca de bloques de comunicación.

NOTA: Se pueden utilizar varias copias de este bloque de funciones en el programa. No obstante, no es posible instanciar estos ejemplares de forma múltiple.

Representación en FBD

Representación:

```
CWRITREG

DeviceAddress  NODEADER  STATUS  ErrorCode
RoutingPath  ROUTPATH
OffsetAddress  SLAVEREG
NumberOfRegisters  NO_REG
SourceDataArea  REG_WRIT  REG_WRIT  SourceDataArea
```
Representación en LD

Representación:

```
CWRITREG_Instance

<table>
<thead>
<tr>
<th>DeviceAddress</th>
<th>NODEADDR</th>
<th>STATUS</th>
<th>ErrorCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoutingPath</td>
<td>ROUTPATH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OffsetAddress</td>
<td>SLAVEREG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NumberOfRegisters</td>
<td>NO_REG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceDataArea</td>
<td>REG_WRIT</td>
<td>REG_WRIT</td>
<td>SourceDataArea</td>
</tr>
</tbody>
</table>
```

Representación en IL

Representación:

```
CAL CWRITREG_Instance (NODEADDR:=DeviceAddress,
    ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
    NO_REG:=NumberOfRegisters,
    REG_WRIT:=SourceDataArea,
    STATUS=>ErrorCode)
```

Representación en ST

Representación:

```
CWRITREG_Instance (NODEADDR:=DeviceAddress,
    ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress,
    NO_REG:=NumberOfRegisters,
    REG_WRIT:=SourceDataArea,
    STATUS=>ErrorCode) ;
```
Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODEADDR</td>
<td>INT</td>
<td>Dirección de dispositivo dentro del segmento de destino</td>
</tr>
<tr>
<td>ROUTPATH</td>
<td>DINT</td>
<td>Ruta de acceso al segmento de destino</td>
</tr>
<tr>
<td>SLAVEREG</td>
<td>DINT</td>
<td>Dirección de offset del primer registro 4x en el esclavo en el que se debe escribir</td>
</tr>
<tr>
<td>NO_REG</td>
<td>INT</td>
<td>Número de registros que se van a escribir desde el esclavo</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de entrada/salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
</table>
| REG_WRIT   | ANY_ARRAY_WORD         | Campo de datos de origen  
Se debe declarar una estructura de datos como variable ubicada para el archivo de origen. |

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>SINT</td>
<td>Código de error</td>
</tr>
</tbody>
</table>
Modo de funcionamiento

Modo de funcionamiento de los módulos CWIREG

Se puede programar una cantidad ilimitada de módulos de función CWIREG, pero solamente pueden estar activas cuatro operaciones de escritura al mismo tiempo. En este caso no tiene importancia si dichas operaciones se realizan por medio de este módulo de función u otros (p. ej. MBP_MSTR, WRITEREG). Todos los módulos de función emplean una ruta de acceso de transacción de datos y necesitan varios ciclos para completar una orden.

Si se utilizan varios módulos de función CWIREG en una aplicación, hay que diferenciarlos al menos en los valores de los parámetros NO_REG o REG_WRIT.

La información de acceso completa debe dividirse en dos partes:
- en la NODEADDR del participante de destino (independientemente de si se encuentra en el segmento local o en algún otro segmento)
- en la ruta de acceso, en caso de que se lleve a cabo una conexión a través de puentes de red.

La dirección de destino resultante está formada por estas dos partes de información.

La ruta de acceso es del tipo de datos DINT, que se interpreta como una secuencia de unidades de información de dos dígitos. No es necesario agregar "00" (p. ej., las dos informaciones de acceso, 4711 y 47110000, son válidas; en NODEADDR 34, el resultado es la dirección de destino 47.11.34.00.00).

NOTA: Este módulo de función supone una gran carga para la red; por lo tanto, se debe vigilar atentamente la carga de la red. En caso de que la carga de la red sea demasiado alta, hay que repasar de nuevo la lógica del programa para poder trabajar con el bloque de función WRITEREG, una variación de este módulo de función que no trabaja en modalidad continua, sino controlado por comandos.
Descripción de parámetros

**NODEADDR**

Especifica la dirección del participante dentro del segmento de destino.

El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**ROUTPATH**

Especifica la ruta de acceso al segmento de destino. Las unidades de información de dos dígitos van desde 01 hasta 64 (consulte "Modo de funcionamiento, página 143"). En caso de que el slave se encuentre en el segmento de red local, **ROUTPATH** debe ajustarse a "0" o permanecer desconectado.

El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**SLAVEREG**

Comienzo del área de destino en el slave direccionado donde se van a escribir los datos de origen. Esta área de destino siempre se encuentra dentro del área de registro 4x. **SLAVEREG** espera la dirección de destino como offset dentro del área 4x. El "4" de la izquierda no se tiene en cuenta (p. ej. 59 [contenido de las variables o valor del literal] = 40059).

El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**NO_REG**

Número de registros que deben escribirse en el procesador slave (1 a 100).

El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**REG_WRIT**

Para este parámetro es necesario definir una matriz ANY_ARRAYWORD del tamaño del envío deseado (≥ **NO_REG**), que se utilizará como área de datos de origen. El nombre de esta matriz se transferirá como parámetro. Si se define una matriz demasiado pequeña, sólo se transferirá la cantidad de datos que tenga cabida en la matriz.

El parámetro se debe indicar como Located Variable.

**STATUS**

Notifica un error **MSTR**, consulte "Códigos de error de Modbus Plus, página 137".

El parámetro se puede indicar como dirección, Located variable o Unlocated variable.
Capítulo 10
DINT_AS_WORD_DFB: Conversión de tipos

Descripción

Descripción de la función
Este bloque de funciones derivado convierte una palabra de entrada del tipo de datos DINT en 2 valores de salida de tipo de datos WORD.
Las palabras individuales de la entrada DINT se asignan a las salidas en función de los nombres de salida.
EN y ENO se pueden configurar como parámetros adicionales.

Representación en FBD
Representación:

Representación en LD
Representación:
DINT AS WORD DFB

Representación en IL
Representación:
CAL DINT AS WORD DFB Instance (IN:=DINT_variable,
LOW=>LowWord, HIGH=>HighWord)

Representación en ST
Representación:
DINT AS WORD DFB_Instance (IN:=DINT_variable,
LOW=>LowWord, HIGH=>HighWord) ;

Descripción de parámetros
Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>DINT</td>
<td>Entrada</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>WORD</td>
<td>Palabra de menor valor</td>
</tr>
<tr>
<td>HIGH</td>
<td>WORD</td>
<td>Palabra de mayor valor</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función

Esta función muestra el estado de función de los módulos de E/S de una estación de E/S (DIO). Cada módulo (slot) de una estación de E/S se representa mediante un bit de la salida "Status". El bit que está situado más a la izquierda en "Status" corresponde al slot situado más a la izquierda de la estación de E/S.

NOTA: Si un módulo de la estación de E/S está configurado y funciona correctamente, el bit correspondiente se pone a "1".

EN y ENO se pueden configurar como parámetros adicionales.

Representación en FBD

Representación:

![Diagrama FBD](image1)

Representación en LD

Representación:

![Diagrama LD](image2)
Representación en IL
Representación:
CAL DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber, STATUS=>Status)

Representación en ST
Representación:
DIOSTAT_Instance (LINK:=LinkNumber, DROP:=DropNumber, STATUS=>Status) ;

Descripción de parámetros
Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>UINT</td>
<td>N.º enlace (0-2)</td>
</tr>
<tr>
<td>DROP</td>
<td>UINT</td>
<td>N.º estación de E/S (1-64)</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>SINT</td>
<td>Modelo de bits de estado (véase página 147) de una estación de E/S</td>
</tr>
</tbody>
</table>
Capítulo 12
GET_TOD: Lectura del reloj de hardware (tiempo del día)

Descripción

Descripción de la función
Este bloque de funciones examina (junto con otros bloques de funciones del grupo HSBY) la configuración del PLC en cuestión para buscar los componentes que necesita. Estos componentes siempre hacen referencia al hardware conectado realmente.

Por esta razón no es posible garantizar un comportamiento correcto de este bloque de funciones en los simuladores.

El bloque de funciones GET_TOD sirve para la lectura del reloj de hardware, en el caso de que previamente se hayan preparado para él los registros correspondientes en la configuración. Si estos registros no están disponibles, la salida TOD_CNF se establecerá en "0".

EN y ENO se pueden configurar como parámetros adicionales.

Representación en FBD

Representación:
GET_TOD

Representación en LD

Representación:

```
GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
                    D_WEEK=>DayOfWeek,
                    MONTH=>Byte_variable2,
                    DAY=>Byte_variable3,
                    YEAR=>Byte_variable4,
                    HOUR=>Byte_variable5,
                    MINUTE=>Byte_variable6,
                    SECOND=>Byte_variable7)
```

Representación en IL

Representación:

```
CAL GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
                      D_WEEK=>DayOfWeek,
                      MONTH=>Byte_variable2,
                      DAY=>Byte_variable3,
                      YEAR=>Byte_variable4,
                      HOUR=>Byte_variable5,
                      MINUTE=>Byte_variable6,
                      SECOND=>Byte_variable7)
```

Representación en ST

Representación:

```
GET_TOD_Instance (TOD_CNF=>RegisterPresentFlag,
                  D_WEEK=>DayOfWeek,
                  MONTH=>Byte_variable2,
                  DAY=>Byte_variable3,
                  YEAR=>Byte_variable4,
                  HOUR=>Byte_variable5,
                  MINUTE=>Byte_variable6,
                  SECOND=>Byte_variable7) ;
```
### Descripción de parámetros

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD_CNFP</td>
<td>BOOL</td>
<td>&quot;1&quot; = se ha encontrado el registro 4x para el reloj de hardware y el reloj está listo para el servicio. &quot;0&quot; = se establece momentáneamente el tiempo. En este caso, el resto de las salidas conservan los valores que tenían hasta el momento.</td>
</tr>
<tr>
<td>D_WEEK</td>
<td>BYTE</td>
<td>Día de la semana, 1 = domingo a .. 7 = sábado</td>
</tr>
<tr>
<td>MONTH</td>
<td>BYTE</td>
<td>Mes 1 a 12</td>
</tr>
<tr>
<td>DAY</td>
<td>BYTE</td>
<td>Día 1 a 31</td>
</tr>
<tr>
<td>YEAR</td>
<td>BYTE</td>
<td>Año 0 a 99</td>
</tr>
<tr>
<td>HOUR</td>
<td>BYTE</td>
<td>Hora 0 a 23</td>
</tr>
<tr>
<td>MINUTE</td>
<td>BYTE</td>
<td>Minutos 0 a 59</td>
</tr>
<tr>
<td>SECOND</td>
<td>BYTE</td>
<td>Segundos 0 a 59</td>
</tr>
</tbody>
</table>
Capítulo 13
LIMIT_IND_DFB: Indicador de límite de ancho

Descripción de la función
Este bloque de funciones derivado transmite sin cambios el valor de entrada (Input) a la salida (Output), si el valor de entrada no es menor que el valor mínimo (LimitMinimum) ni mayor que el valor máximo (LimitMaximum). Si el valor de entrada (Input) es menor que el valor mínimo (LimitMinimum), se transmitirá el valor mínimo a la salida. Si el valor de entrada (Input) es mayor que el valor máximo (LimitMaximum), se transmitirá el valor máximo a la salida.
Además, se indicará que el valor es mayor que el valor máximo o menor que el valor mínimo. Si el valor de la entrada (Input) es menor que el valor de la entrada (LimitMinimum), la salida (MinimumViolation) será "1". Si el valor de la entrada (Input) es mayor que el valor de la entrada (LimitMaximum), la salida (MaximumViolation) será "1".
Los valores de entrada (LimitMinimum, Input, LimitMaximum) y el valor de salida (Output) deben tener el mismo tipo de datos.
EN y ENO pueden configurarse como parámetros adicionales.

Fórmula
Fórmula del bloque:
OUT = IN, if (IN ≤ MX) & (IN ≥ MN)
OUT = MN, if (IN < MN)
OUT = MX, if (IN > MX)
MN_IND = 0, if IN ≥ MN
MN_IND = 1, if IN < MN
MX_IND = 0, if IN ≤ MX
MX_IND = 1, if IN > MX
Representación en FBD

Representación:

```
LIMIT_IND_DFB
```

Representación en LD

Representación:

```
LIMIT_IND_DFB
```

Representación en IL

Representación:

```
CAL LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
MX:=LimitMaximum, MN_IND=>MinimumViolation,
OUT=>Output, MX_IND=>MaximumViolation)
```

Representación en ST

Representación:

```
LIMIT_IND_DFB (MN:=LimitMinimum, IN:=INPUT,
MX:=LimitMaximum, MN_IND=>MinimumViolation,
OUT=>Output, MX_IND=>MaximumViolation) ;
```
Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>LimitMinimum</td>
<td>BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL, TIME</td>
<td>Límite de valor mínimo</td>
</tr>
<tr>
<td>Input</td>
<td>BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL, TIME</td>
<td>Entrada</td>
</tr>
<tr>
<td>LimitMaximum</td>
<td>BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL, TIME</td>
<td>Límite de valor máximo</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinimumViolation</td>
<td>BOOL</td>
<td>Visualización de trasgresión por defecto del valor mínimo</td>
</tr>
<tr>
<td>Output</td>
<td>BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL, TIME</td>
<td>Salida</td>
</tr>
<tr>
<td>MaximumViolation</td>
<td>BOOL</td>
<td>Visualización de trasgresión por exceso del valor máximo</td>
</tr>
</tbody>
</table>
Capítulo 14
LOOKUP_TABLE1_DFB: Progresión de travesía con interpolación de primer grado

Introducción
Este capítulo describe el bloque LOOKUP_TABLE1_DFB.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>158</td>
</tr>
<tr>
<td>Descripción detallada</td>
<td>160</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función
Este bloque de funciones linealiza las líneas características mediante la interpolación. El bloque de funciones trabaja con el ancho variable de los puntos de coordenadas.
La cantidad de entradas $X_i Y_i$ se puede aumentar a 30 modificando el tamaño vertical de la trama del módulo. Esto corresponde a un máximo de 15 pares de puntos de coordenadas.
La cantidad de entradas debe ser un número par.
Los valores $X$ deben estar ordenados de forma ascendente.
$EN$ y $ENO$ se pueden configurar como parámetros adicionales.

Representación en FBD
Representación:

![Diagrama en FBD](image)

Representación en LD
Representación:

![Diagrama en LD](image)
Representación en IL

Representación:
CAL LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
   XiYi1:=X_Coord_1_SupportPoint,
   XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
   QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1)

Representación en ST

Representación:
LOOKUP_TABLE1_DFB_Instance (X:=InputVariable,
   XiYi1:=X_Coord_1_SupportPoint,
   XiYi2:=Y_Coord_1_SupportPoint, Y=>OutputVariable,
   QXHI=>IndicatorSignalX>Xm, QXLO=>IndicatorSignalX<X1) ;

Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>XiYi1</td>
<td>REAL</td>
<td>Coordenada X 1. Punto de coordenadas</td>
</tr>
<tr>
<td>XiYi2</td>
<td>REAL</td>
<td>Coordenada Y 1. Punto de coordenadas</td>
</tr>
<tr>
<td>XiYin</td>
<td>REAL</td>
<td>Coordenada X m/2. Punto de coordenadas</td>
</tr>
<tr>
<td>XiYim</td>
<td>REAL</td>
<td>Coordenada Y m/2. Punto de coordenadas</td>
</tr>
<tr>
<td>X</td>
<td>REAL</td>
<td>Variable de entrada</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>REAL</td>
<td>Magnitud de salida</td>
</tr>
<tr>
<td>QXHI</td>
<td>BOOL</td>
<td>Visualización: X &gt; Xm</td>
</tr>
<tr>
<td>QXLO</td>
<td>BOOL</td>
<td>Visualización X &lt; X1</td>
</tr>
</tbody>
</table>
Descripción detallada

Descripción de parámetros
Cada dos entradas consecutivas \((X_i, Y_i)\) representan un par de puntos de coordenadas. La primera entrada \(X_i, Y_i\) corresponde a \(X_1, Y_1\), la siguiente a \(Y_1, X_2\), etc.

Para un valor de entrada cualquiera de \(X\), que se encuentre entre estos puntos de coordenadas, se interpola el valor de salida \(Y\) correspondiente, teniendo en cuenta linealmente el levantamiento poligonal entre los puntos de coordenadas.

Para \(X < X_1\) se aplica \(Y = Y_1\).

Para \(X > X_m\) se aplica \(Y = Y_m\).

Si el valor de la entrada \(X\) supera el valor del último punto de coordenadas \(X_m\), la salida \(Q_{XHI}\) es "1".

Si el valor de la entrada \(X\) no alcanza el valor del primer punto de coordenadas \(X_1\), la salida \(Q_{XLO}\) es "1".

Principio de interpolación
Progresión de travesía con interpolación de primer grado
Interpolación

Para un punto $y$ rige el siguiente algoritmo:

$$
y = Y_i + \frac{Y_{i+1} - Y_i}{X_{i+1} - X_i} \times (X - X_i)
$$

para $X_i \leq X \leq X_{i+1}$ e $i = 1 ... (m-1)$

Requisito: $X_1 \leq X_2 \leq ... \leq X_i \leq X_{i+1} \leq ... \leq X_{m-1} \leq X_m$

Los valores $X$ deben estar ordenados de forma ascendente.

Dos valores $X$ sucesivos pueden ser iguales. De ahí surge la posibilidad de un levantamiento curvilíneo discontinuo.

Aquí se aplica la excepción:

$$y = 0.5 \times (Y_i + Y_{i+1})$$

para

$X_i \leq X \leq X_{i+1}$ e $i = 1 ... (m-1)$
Capítulo 15
PLCSTAT: DFB de estado de función de la CPU M580

DFB de estado de PLC

Introducción

Las aplicaciones Concept Quantum heredadas son compatibles con PLCSTAT, un bloque de funciones que recopila diagnósticos del sistema RIO S908. Este bloque de funciones hace referencia a bits y palabras del sistema que no son compatibles con M580.

Por tanto, se ha desarrollado un nuevo DFB para usarlo en aplicaciones M580. El nuevo DFB PLCSTAT se suministra con Control Expert, pero no forma parte de la biblioteca instalada. Se encuentra en la carpeta Control Expert Extras del PC.

El DFB es genérico en su formato importado. Es compatible con la arquitectura independiente y la redundante, pero se personaliza para aplicaciones específicas. Abra la sección ST del DFB y siga las instrucciones de personalización.

NOTA: Consulte la descripción de las secciones ST en la tarea MAST de Unity Pro.

El DFB tiene una entrada/salida denominada HSBY_DDDT. En el caso de las aplicaciones independientes, el usuario de la herramienta UMAC crea un DDT de dispositivo vacío de tipo T_M_ECPU_HSBY. Este DDDT vacío se asigna a la entrada/salida de HSBY_DDDT. En el caso de las aplicaciones redundantes, la entrada/salida se asigna al DDT de dispositivo HSBY_DDDT que se ha creado al añadir una CPU redundante a la configuración.

NOTA: Consulte la EcoStruxure™ Control Expert, UnityLL984, Biblioteca de bloques para obtener descripciones detalladas de los EFB L9_STAT (véase EcoStruxure™ Control Expert, UnityLL984, Biblioteca de bloques) y L9_MRTM (véase EcoStruxure™ Control Expert, UnityLL984, Biblioteca de bloques).
Ejemplos

Para utilizar el DFB PLCSTAT, impórtelo en el proyecto de M580 desde la carpeta Control Expert Extras. Los DDDT DIOSTATE, PLCSTATE y RIOSTATE se importan al mismo tiempo. Una instrucción de error de conversión genérica de la sección lógica ST le indica que asigne el comportamiento independiente o redundante en la lógica.

Inserte etiquetas de comentario para cada tipo de sistema a fin de ajustar la lógica de la sección ST del DFB.

En el caso de los proyectos independientes, marque como comentario la instrucción de error de conversión (convError) junto con cualquier instrucción lógica entre Second Choice y End Second Choice:

(*---##### Second Choice: PLC_STAT.word2 for a Hot Standby Application #####---*)

(*--- IEC bit 15: set to 1 if hot standby mode ---*)
PLC_STAT.word2 := 16#8000;

(*--- IEC bit 14: always 0 ---*)

(*--- IEC bit 13: IP or IP+1 = TODO ---*)

(*--- IEC bit 12: info validity = always valid ---*)
PLC_STAT.word2 := PLC_STAT.word2 or 16#1000;

(*--- IEC bit 11,10,9: not used, always 0 ---*)

(*--- IEC bit 8: copro firmware mismatch = not significant, always 0 (no copro) ---*)

(*--- IEC bit 7: all firmware (CPU, copro, CRP) mismatch ---*)
if (HSBY_DDDT.FW_MISMATCH) then
    PLC_STAT.word2 := PLC_STAT.word2 or 16#0080;
end_if;

(*--- IEC bit 6: CPU-sync link status ---*)
if (NOT(    HSBY_DDDT.LOCAL_HSBY_STS.HSBY_LINK_ERROR
OR HSBY_DDDT.REMOTE_HSBY_STS.HSBY_LINK_ERROR)) then
    PLC_STAT.word2 := PLC_STAT.word2 or 16#0040;
end_if;

(*--- IEC bit 5: unit A or B ---*)
if (HSBY_DDDT.LOCAL_HSBY_STS.PL_C) then
    PLC_STAT.word2 := PLC_STAT.word2 or 16#20;
end_if;

(*--- IEC bit 5: unit A or B ---*)
if (HSBY_DDDT.LOCAL_HSBY_STS.PLC_B) then
   PLC_STAT.word2 := PLC_STAT.word2 or 16#20;
end_if;

(*-- IEC bit 4: Application mismatch --*)
if (     HSBY_DDDT.APP_MISMATCH
     OR HSBY_DDDT.LOGIC_MISMATCH
     OR HSBY_DDDT.OFFLINE_BUILD_MISMATCH) then
   PLC_STAT.word2 := PLC_STAT.word2 or 16#0010;
end_if;

(*-- IEC bits 3, 2: remote system state --*)
if (     HSBY_DDDT.REMOTE_STS_VALID
     AND HSBY_DDDT.REMOTE_HSBY_STS.RUN_PRIMARY) then
   PLC_STAT.word2 := PLC_STAT.word2 or 16#0008; (*-- 10 = primary --*)
elsif (     HSBY_DDDT.REMOTE_STS_VALID
           AND HSBY_DDDT.REMOTE_HSBY_STS.RUN_STANDBY) then
   PLC_STAT.word2 := PLC_STAT.word2 or 16#0008; (*-- 10 = primary --*)
elsif (     HSBY_DDDT.REMOTE_STS_VALID
           AND HSBY_DDDT.REMOTE_HSBY_STS.RUN_STANDBY) then
   PLC_STAT.word2 := PLC_STAT.word2 or 16#000C; (*-- 11 = standby --*)
else
   PLC_STAT.word2 := PLC_STAT.word2 or 16#0004; (*-- 01 = offline --*)
end_if;

(*-- IEC bits 1, 0: local system state --*)
if (HSBY_DDDT.LOCAL_HSBY_STS.RUN_PRIMARY) then
   PLC_STAT.word2 := PLC_STAT.word2 or 16#0002; (*-- 10 = primary --*)
elsif (HSBY_DDDT.LOCAL_HSBY_STS.RUN_STANDBY) then
   PLC_STAT.word2 := PLC_STAT.word2 or 16#0003; (*-- 11 = standby --*)
else
   PLC_STAT.word2 := PLC_STAT.word2 or 16#0001; (*-- 01 = offline --*)
end_if;

(*-- ##### End Second Choice: PLC_STAT.word2 for a Hot Standby Application ##### --*)
Este es el DFB PLCSTAT para sistemas independientes en una sección FBD:

```
{ConvError('PLCSTAT DFB type: PLC_STAT.word2 discussion: Choose one implementation depending of targeted application, Standalone or Hot Standby.');}
{ConvError('PLCSTAT DFB type: PLC_STAT.word2 discussion: Choose one implementation depending of targeted application, Standalone or Hot Standby.');}
```

En el caso de los proyectos redundantes, marque como comentario la instrucción de error de conversión (convError) y cualquier instrucción lógica entre First Choice y End First Choice:

```
(* --
#######################################################################
#################### -- *);
(* -- ##### PLC_STAT.word2 contains Hot Standby status if application
is Hot Standby typed, ##### -- *);
(* -- ##### otherwise in an Standalone Application, this word do not
have significative     ##### -- *);
(* -- ##### value. In this case it is set to a zero value.     ##### -- *);
(* -- ##### User of the Converter have to choose between the 2
implementations and keep one     ##### -- *);
(* -- ##### (leaving in comment the non-used portion, so available
for a further change)     ##### -- *);

PLC_STAT.word2 := 0;
```

(*) -- ##### End First Choice: PLC_STAT.word2 for a Standalone Application     ##### -- *
Este es el DFB PLCSTAT para sistemas redundantes en una sección FBD:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC_READ</td>
<td>Entrada BOOL</td>
</tr>
<tr>
<td>RIO_READ</td>
<td>Entrada BOOL</td>
</tr>
<tr>
<td>DIO_READ</td>
<td>Entrada BOOL</td>
</tr>
<tr>
<td>HSBY_DDDT</td>
<td>Entrada/salida HSBY_DDDT se asigna al DTM redundante que se crea cuando se selecciona un procesador redundante.</td>
</tr>
<tr>
<td>PLC_STAT</td>
<td>Salida DDT (matriz de 1 palabra)</td>
</tr>
<tr>
<td>REIO_STAT</td>
<td>Salida DDT (matriz de 160 palabras)</td>
</tr>
<tr>
<td>DIO_STAT</td>
<td>Salida DDT (matriz de 106 palabras)</td>
</tr>
</tbody>
</table>
Capítulo 16
PLCSTAT: Quantum estado de la función PLC

Introducción

En este capítulo se describe el bloque PLCSTAT para la plataforma Modicon Quantum.

NOTA: Para la aplicación Modicon M580, hay disponible un PLCSTAT DFB (véase página 163) en la carpeta de la aplicación Control Expert: menú Inicio → Todos los programas → EcoStruxure Control Expert → Extras → Converter Quantum M580.

Contenido de este capítulo

Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>170</td>
</tr>
<tr>
<td>Tipos de datos derivados</td>
<td>172</td>
</tr>
<tr>
<td>Estado de PLC (PLC_STAT)</td>
<td>174</td>
</tr>
<tr>
<td>Estado de RIO (RIO_STAT) para Quantum</td>
<td>176</td>
</tr>
<tr>
<td>Estado de DIO (DIO_STAT)</td>
<td>178</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función
Este bloque de funciones derivado lee los estados internos y bits de error de un PLC Quantum y copia estos datos en las salidas correspondientes de las estructuras de datos asignadas. EN y ENO se pueden configurar como parámetros adicionales.

Sólo se leen los datos cuyo bit de entrada (PLC_READ, RIO_READ, DIO_READ) tenga el valor "1".

Evaluación
Es posible la evaluación de PLC_STAT (estado del PLC), RIO_STAT (estado de E/S) y DIO_STAT (estado de comunicación de E/S).

NOTA: El nombre de la salida DIO_STAT da lugar a confusión. Esta salida se refiere sólo a la información de estado de estación de E/S remota (S908) y no a al estado de E/S distribuidas. Para la lectura de estado de E/S distribuidas, utilice el módulo de función DIOSTAT (véase página 147).

Representación en FBD
Representación:

Representación en LD
Representación:
Representación en IL

Representación:

CAL PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag, 
RIO_READ:=CopyRIOSstatusFlag, 
DIO_READ:=CopyDIOStatusFlag, 
PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status, 
DIO_STAT=>DIO_IO_Status)

Representación en ST

Representación:

PLCSTAT_Instance (PLC_READ:=CopyPLCStatusFlag, 
RIO_READ:=CopyRIOSstatusFlag, 
DIO_READ:=CopyDIOStatusFlag, 
PLC_STAT=>PLC_IO_Status, RIO_STAT=>RIO_IO_Status, 
DIO_STAT=>DIO_IO_Status) ;

Descripción de los parámetros de PLCSTAT

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC_READ</td>
<td>BOOL</td>
<td>1 = copia el estado del PLC de la tabla de estado en la salida PLC_STAT.</td>
</tr>
<tr>
<td>RIO_READ</td>
<td>BOOL</td>
<td>1 = copia el estado de RIO de la tabla de estado en la salida RIO_STAT.</td>
</tr>
<tr>
<td>DIO_READ</td>
<td>BOOL</td>
<td>1 = copia el estado de DIO de la tabla de estado en la salida DIO_STAT.</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC_STAT</td>
<td>PLCSTATE,</td>
<td>Contiene el estado del PLC.</td>
</tr>
<tr>
<td>RIO_STAT</td>
<td>RIOSTATE,</td>
<td>Contiene el estado de RIO (estado de E/S) para Quantum.</td>
</tr>
<tr>
<td>DIO_STAT</td>
<td>DIOSTATE,</td>
<td>Contiene el estado de DIO (estado de comunicación de E/S). Nota: El nombre de esta salida da lugar a confusión. Esta salida se refiere sólo a la información de estado de estación de E/S remota (S908) y no a al estado de E/S distribuidas. Para la lectura de estado de E/S distribuidas, utilice el módulo de función DIOSTAT (véase página 147).</td>
</tr>
</tbody>
</table>
### Tipos de datos derivados

#### Descripción de los elementos de PLCSTATE

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>word1</td>
<td>WORD</td>
<td>Estado de la CPU</td>
</tr>
<tr>
<td>word2</td>
<td>WORD</td>
<td>Estado Hot Standby</td>
</tr>
<tr>
<td>word3</td>
<td>WORD</td>
<td>Estado del autómata</td>
</tr>
<tr>
<td>word4</td>
<td>WORD</td>
<td>Estado de RIO</td>
</tr>
<tr>
<td>word5</td>
<td>WORD</td>
<td>Reserva</td>
</tr>
<tr>
<td>word6</td>
<td>WORD</td>
<td>Reserva</td>
</tr>
<tr>
<td>word7</td>
<td>WORD</td>
<td>Reserva</td>
</tr>
<tr>
<td>word8</td>
<td>WORD</td>
<td>Reserva</td>
</tr>
<tr>
<td>word9</td>
<td>WORD</td>
<td>Reserva</td>
</tr>
<tr>
<td>word10</td>
<td>WORD</td>
<td>Reserva</td>
</tr>
<tr>
<td>word11</td>
<td>WORD</td>
<td>Reserva</td>
</tr>
</tbody>
</table>

#### Descripción de los elementos de RIOSTATE

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>word1</td>
<td>WORD</td>
<td>Estación de E/S 1, bastidor 1</td>
</tr>
<tr>
<td>word2</td>
<td>WORD</td>
<td>Estación de E/S 1, bastidor 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>word5</td>
<td>WORD</td>
<td>Estación de E/S 1, bastidor 5</td>
</tr>
<tr>
<td>word6</td>
<td>WORD</td>
<td>Estación de E/S 2, bastidor 1</td>
</tr>
<tr>
<td>word7</td>
<td>WORD</td>
<td>Estación de E/S 2, bastidor 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>word160</td>
<td>WORD</td>
<td>Estación de E/S 32, bastidor 5</td>
</tr>
</tbody>
</table>
### Descripción de los elementos de DIOSTATE

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>word1</td>
<td>WORD</td>
<td>Códigos de error de conexión:</td>
</tr>
<tr>
<td>word2</td>
<td>WORD</td>
<td>Error cable A</td>
</tr>
<tr>
<td>word3</td>
<td>WORD</td>
<td>Error cable A</td>
</tr>
<tr>
<td>word4</td>
<td>WORD</td>
<td>Error cable A</td>
</tr>
<tr>
<td>word5</td>
<td>WORD</td>
<td>Error cable B</td>
</tr>
<tr>
<td>word6</td>
<td>WORD</td>
<td>Error cable B</td>
</tr>
<tr>
<td>word7</td>
<td>WORD</td>
<td>Error cable B</td>
</tr>
<tr>
<td>word8</td>
<td>WORD</td>
<td>Estado de la comunicación global</td>
</tr>
<tr>
<td>word9</td>
<td>WORD</td>
<td>Conteo acumulativo de errores global para cable A</td>
</tr>
<tr>
<td>word10</td>
<td>WORD</td>
<td>Conteo acumulativo de errores global para cable B</td>
</tr>
<tr>
<td>word11</td>
<td>WORD</td>
<td>Estado health de la estación de E/S 1 y contador de repetición (primera palabra)</td>
</tr>
<tr>
<td>word12</td>
<td>WORD</td>
<td>Estado health de la estación de E/A 1 y contador de repetición (segunda palabra)</td>
</tr>
<tr>
<td>word13</td>
<td>WORD</td>
<td>Estado health de la estación de E/A 1 y contador de repetición (tercera palabra)</td>
</tr>
<tr>
<td>word14</td>
<td>WORD</td>
<td>Estado health de la estación de E/S 2 y contador de repetición (primera palabra)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>word104</td>
<td>WORD</td>
<td>Estado health de la estación de E/S 32 y contador de repetición (primera palabra)</td>
</tr>
<tr>
<td>word105</td>
<td>WORD</td>
<td>Estado health de la estación de E/A 32 y contador de repetición (segunda palabra)</td>
</tr>
<tr>
<td>word106</td>
<td>WORD</td>
<td>Estado health de la estación de E/A 32 y contador de repetición (tercera palabra)</td>
</tr>
</tbody>
</table>
**Estado de PLC (PLC_STAT)**

**Información general**

*NOTA:* La información corresponde a las palabras de las tablas de estado 1 a 11 en el cuadro de diálogo *Estado del PLC*.

Cuando los bits están establecidos en "1", las condiciones son True.

**Estado del PLC (PLCSTATE: word1)**

Ocupación de los bits:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>LED Run DES</td>
</tr>
<tr>
<td>11</td>
<td>Protección de memoria DES</td>
</tr>
<tr>
<td>12</td>
<td>Fallo de batería</td>
</tr>
</tbody>
</table>

**Estado de Hot Standby (PLCSTATE: word2)**

Ocupación de los bits:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHS 110/S911/R911 disponible y en orden</td>
</tr>
</tbody>
</table>
| 11  | 0 = Conmutador de desplazamiento CHS establecido en A  
|    | 1 = Conmutador de desplazamiento CHS establecido en B |
| 12  | 0 = Los PLC poseen la misma lógica.  
|    | 1 = Los PLC no poseen la misma lógica.       |
| 13, 14 | Estado del sistema remoto                  |
| 15, 16 | Estado del sistema local                   |

**Dec. Binario**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0 1 = Offline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1 0 = Primario</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1 1 = Standby</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 1 = Offline</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0 0 = Primario</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1 1 = Standby</td>
</tr>
</tbody>
</table>
### Estado del PLC (PLCSTATE: word3)

Ocupación de los bits:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primer ciclo</td>
</tr>
</tbody>
</table>

### Estado de RIO (PLCSTATE: word4)

Ocupación de los bits:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IOP defectuoso</td>
</tr>
<tr>
<td>2</td>
<td>Timeout de tiempo IOP</td>
</tr>
<tr>
<td>3</td>
<td>Bucle de prueba IOP</td>
</tr>
<tr>
<td>4</td>
<td>Perturbación de memoria IOP</td>
</tr>
<tr>
<td>13-16</td>
<td>00 IO no ha respondido.</td>
</tr>
<tr>
<td></td>
<td>01 Sin respuesta</td>
</tr>
<tr>
<td></td>
<td>02 Bucle de prueba defectuoso</td>
</tr>
</tbody>
</table>
Estado de RIO (RIO_STAT) para Quantum

Información general

NOTA: La información corresponde a las palabras de las tablas de estado 12 a 171 en el diálogo Estado del PLC.

Las palabras indican el estado de función de los módulos de E/S.

En cada caso se han reservado cinco palabras para una de las 32 estaciones de E/S que hay como máximo. En cada caso, cada una de estas palabras corresponde a uno de hasta 2 posibles bastidores en cada estación de E/S.

Visualización de la función para hardware Quantum

Cada uno de los bastidores para hardware Quantum puede contener hasta 15 módulos de E/S (excepto el primer bastidor, que contiene un máximo de 14 módulos de E/S). El bit de 1 a 16 de cada palabra muestra la visualización de la función de los módulos de E/S correspondientes en los bastidores.

Estado de función de los módulos de E/S

Ocupación de los bits:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Condiciones para una visualización de función correcta

Se tienen que cumplir cuatro condiciones para que un módulo de E/S pueda proporcionar una visualización de función correcta:

- El tráfico del slot tiene que ser supervisado.
- El slot tiene que estar permitido para el módulo montado.
- Entre el módulo y la interfaz RIO tiene que existir una comunicación válida en las estaciones RIO.
- Entre la interfaz RIO en una estación RIO y el procesador de E/S del PLC tiene que existir una comunicación válida.
Palabras de estado para los controles de operador MMI

El estado de los 32 accionamientos por botón de elemento y unidades PanelMate en una red RIO pueden supervisarse también con una palabra de estado de función E/S. Los accionamientos por botón se encuentran en el slot 4 en un bastidor de E/S y pueden supervisarse en el bit 4 de la palabra de estado correspondiente. En RIO hay un PanelMate en el slot 1 en el bastidor 1 de la estación de E/S que puede supervisarse en el bit 1 de la primera palabra de estado para la estación de E/S.

**NOTA:** El estado de comunicación del teclado ASCII se puede supervisar con los códigos de error de las instrucciones de lectura/escritura de ASCII.
Estado de DIO (DIO_STAT)

Información general

NOTA: La información corresponde a las palabras de las tablas de estado 172 a 277 en el diálogo Estado del PLC.
Las palabras contienen el estado de comunicación del sistema de E/S (estado de DIO). Las palabras 1 a 10 son palabras de estado globales. Las 96 palabras restantes se asignan de tres en tres hasta completar 32 estaciones de E/S.
La palabra word1 guarda los números de error de conexión. Esta palabra siempre es 0 cuando el sistema está en ejecución. Si se origina un fallo, el PLC no se inicia, sino que se genera un estado de parada del PLC (word5 de PLC_STAT).
Cuando los bits están establecidos en "1", las condiciones son True.

Números de error de conexión (DIOSTATE word1)

Cuando los bits están establecidos en "1", las condiciones son True.

<table>
<thead>
<tr>
<th>Código</th>
<th>Error</th>
<th>Significado (lugar del error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>BADTCLEN</td>
<td>Longitud de Traffic Cop</td>
</tr>
<tr>
<td>02</td>
<td>BADLINKNUM</td>
<td>Número de asignación RIO</td>
</tr>
<tr>
<td>03</td>
<td>BADNUMDPS</td>
<td>Número de estaciones de E/S en Traffic Cop</td>
</tr>
<tr>
<td>04</td>
<td>BADTCSUM</td>
<td>Suma de control de Traffic-Cop</td>
</tr>
<tr>
<td>10</td>
<td>BADDDELlen</td>
<td>Longitud de descriptor de estación de E/S</td>
</tr>
<tr>
<td>11</td>
<td>BADDRPNUM</td>
<td>Número de estación de E/S</td>
</tr>
<tr>
<td>12</td>
<td>BADDUPTIM</td>
<td>Tiempo de parada de estación de E/S</td>
</tr>
<tr>
<td>13</td>
<td>BADASCNUM</td>
<td>Número de puerto ASCII</td>
</tr>
<tr>
<td>14</td>
<td>BADNUMODS</td>
<td>Número de módulos en estación de E/S</td>
</tr>
<tr>
<td>15</td>
<td>PRECONDRP</td>
<td>Estación de E/S ya configurada</td>
</tr>
<tr>
<td>16</td>
<td>PRECONPRT</td>
<td>Puerto ya configurado</td>
</tr>
<tr>
<td>17</td>
<td>TOOMNYOUT</td>
<td>Más de 1024 puntos de salida</td>
</tr>
<tr>
<td>18</td>
<td>TOOMNYINS</td>
<td>Más de 1024 puntos de entrada</td>
</tr>
<tr>
<td>20</td>
<td>BADSLTNUM</td>
<td>Dirección del slot del módulo</td>
</tr>
<tr>
<td>21</td>
<td>BADRCKNUM</td>
<td>Dirección del bastidor</td>
</tr>
<tr>
<td>22</td>
<td>BADOUTBC</td>
<td>Número de bytes de salida</td>
</tr>
<tr>
<td>23</td>
<td>BADINBC</td>
<td>Número de bytes de entrada</td>
</tr>
<tr>
<td>25</td>
<td>BADRF1MAP</td>
<td>Primer número de referencia</td>
</tr>
<tr>
<td>26</td>
<td>BADRF2MAP</td>
<td>Segundo número de referencia</td>
</tr>
</tbody>
</table>
### Estado del cable A (DIOSTATE: word2, word3, word4)

#### Ocupación de los bits de word2:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 8</td>
<td>Cuenta los errores de bloques de datos.</td>
</tr>
<tr>
<td>9 - 16</td>
<td>Cuenta los desbordes del receptor DMA.</td>
</tr>
</tbody>
</table>

#### Ocupación de los bits de word3:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 8</td>
<td>Cuenta los errores de recepción.</td>
</tr>
<tr>
<td>9 - 16</td>
<td>Cuenta las recepciones erróneas de la estación de E/S.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Error</th>
<th>Significado (lugar del error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>NOBYTES</td>
<td>Ningún byte de entrada o salida</td>
</tr>
<tr>
<td>28</td>
<td>BADDISMAP</td>
<td>Bit interno no está al límite de 16 bits</td>
</tr>
<tr>
<td>30</td>
<td>BADODDOUT</td>
<td>Módulo de salida impar no emparejado</td>
</tr>
<tr>
<td>31</td>
<td>BADODDIN</td>
<td>Módulo de entrada impar no emparejado</td>
</tr>
<tr>
<td>32</td>
<td>BADODDREF</td>
<td>Referencia de módulo impar no emparejada</td>
</tr>
<tr>
<td>33</td>
<td>BAD3X1XRF</td>
<td>Referencia 1x según registro 3x</td>
</tr>
<tr>
<td>34</td>
<td>BADDMYMOD</td>
<td>Referencia de módulo vacío ya en uso</td>
</tr>
<tr>
<td>35</td>
<td>NOT3XDMY</td>
<td>Módulo 3x no es un módulo vacío</td>
</tr>
<tr>
<td>36</td>
<td>NOT4XDMY</td>
<td>Módulo 4x no es un módulo vacío</td>
</tr>
<tr>
<td>40</td>
<td>DMYREAL1X</td>
<td>Módulo vacío, luego módulo 1x real</td>
</tr>
<tr>
<td>41</td>
<td>REALDMY1X</td>
<td>Real, luego módulo vacío 1x</td>
</tr>
<tr>
<td>42</td>
<td>DMYREAL3X</td>
<td>Módulo vacío, luego módulo 3x real</td>
</tr>
<tr>
<td>43</td>
<td>REALDMY3X</td>
<td>Real, luego módulo vacío 3x</td>
</tr>
</tbody>
</table>
Ocupación de los bits de word4:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 = bloque de datos demasiado corto</td>
</tr>
<tr>
<td>2</td>
<td>1 = sin final de bloque de datos</td>
</tr>
<tr>
<td>13</td>
<td>1 = error CRC</td>
</tr>
<tr>
<td>14</td>
<td>1 = error de alineación</td>
</tr>
<tr>
<td>15</td>
<td>1 = error de desborde</td>
</tr>
</tbody>
</table>

Estado del cable A (DIOSTATE: word5, word6, word7)

Ocupación de los bits de word5:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 Cuenta los errores de bloques de datos.</td>
</tr>
<tr>
<td>9</td>
<td>16 Cuenta los desbordes del receptor DMA.</td>
</tr>
</tbody>
</table>

Ocupación de los bits de word6:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 Cuenta los errores de recepción.</td>
</tr>
<tr>
<td>9</td>
<td>16 Cuenta las recepciones erróneas de la estación de E/S.</td>
</tr>
</tbody>
</table>

Ocupación de los bits de word7:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 = bloque de datos demasiado corto</td>
</tr>
<tr>
<td>2</td>
<td>1 = sin final de bloque de datos</td>
</tr>
<tr>
<td>13</td>
<td>1 = error CRC</td>
</tr>
<tr>
<td>14</td>
<td>1 = error de alineación</td>
</tr>
<tr>
<td>15</td>
<td>1 = error de desborde</td>
</tr>
</tbody>
</table>
**Estado de comunicación global (DIOSTATE: word8)**

Cuando los bits están establecidos en "1", las condiciones son True.

Ocupación de los bits de word8:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Visualización de función de com.</td>
</tr>
<tr>
<td>2</td>
<td>Estado del cable A</td>
</tr>
<tr>
<td>3</td>
<td>Estado del cable B</td>
</tr>
<tr>
<td>5-8</td>
<td>Contador de comunicación perdido</td>
</tr>
<tr>
<td>9-16</td>
<td>Contador acumulativo de reinicios</td>
</tr>
</tbody>
</table>

**Conteo acumulativo de errores global para cable A (DIOSTATE: word9)**

Cuando los bits están establecidos en "1", las condiciones son True.

Ocupación de los bits de word9:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>Cuenta los errores detectados.</td>
</tr>
<tr>
<td>9-16</td>
<td>Cuenta las respuestas cero.</td>
</tr>
</tbody>
</table>

**Conteo acumulativo de errores global para cable B (DIOSTATE: word10)**

Cuando los bits están establecidos en "1", las condiciones son True.

Ocupación de los bits de word10:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>Cuenta los errores detectados.</td>
</tr>
<tr>
<td>9-16</td>
<td>Cuenta las respuestas cero.</td>
</tr>
</tbody>
</table>
**Estado de RIO (DIOSTATE: word11 a word106)**

Las palabras 11 a 106 se utilizan para la descripción del estado de la estación RIO; hay previstas tres palabras de estado para cada estación de E/S.

La **primera** palabra de cada grupo de tres muestra el estado de comunicación de la estación de E/S correspondiente:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Estado funcional de las comunicaciones</td>
</tr>
<tr>
<td>2</td>
<td>Estado del cable A</td>
</tr>
<tr>
<td>3</td>
<td>Estado del cable B</td>
</tr>
<tr>
<td>5</td>
<td>Contador de las comunicaciones perdidas</td>
</tr>
<tr>
<td>9</td>
<td>Contador acumulativo de reinicios</td>
</tr>
</tbody>
</table>

La **segunda** palabra de cada grupo de tres es el contador acumulativo de errores de la estación de E/S del cable A para la estación de E/S correspondiente:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Al menos un error en las palabras 2 a 4.</td>
</tr>
<tr>
<td>9</td>
<td>Cuenta las respuestas cero.</td>
</tr>
</tbody>
</table>

La **tercera** palabra de cada grupo de tres es el contador acumulativo de errores de la estación de E/S del cable B para la estación de E/S correspondiente:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Al menos un error en las palabras 5 a 7.</td>
</tr>
<tr>
<td>9</td>
<td>Cuenta las respuestas cero.</td>
</tr>
</tbody>
</table>

**NOTA:** En los PLC cuya estación de E/S 1 esté reservada para las E/S locales, las palabras word11 a word13 se ocuparán tal y como se indica a continuación:
word11 muestra el estado de la estación de E/S local:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Todos los módulos sin fallos.</td>
</tr>
<tr>
<td>9 - 16</td>
<td>Cuenta el número de veces que se han detectado fallos en un módulo; desborde del contador en 255.</td>
</tr>
</tbody>
</table>

word12 se utiliza como contador de errores de bus de E/S de 16 bits.

word13 se utiliza como contador de reinicios de bus de E/S de 16 bits.
PLCSTAT para Quantum
Capítulo 17
READREG: Lectura de registro

Introducción
En este capítulo se describe el bloque READREG.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>186</td>
</tr>
<tr>
<td>Modo de funcionamiento</td>
<td>189</td>
</tr>
<tr>
<td>Descripción de los parámetros</td>
<td>190</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función

Con cada flanco ascendente en la entrada REQ, este bloque de funciones lee un área de registro de un esclavo direccionado a través de Modbus Plus.

EN y ENO pueden configurarse como parámetros adicionales.

NOTA: Para programar una función READREG, es necesario conocer los procedimientos de enrutamiento que utiliza la red. La descripción detallada de las estructuras de ruta de acceso Modbus Plus se encuentra en la Guía de instalación y planificación de la red Modbus Plus (véase página 13).

NOTA: Este bloque de funciones solo admite la interfaz local de Modbus Plus (no NOM). En el caso de que se emplee un NOM, deberá utilizarse el bloque CWRITE_REG de la biblioteca de bloques de comunicación.

NOTA: Este bloque de funciones no admite Ethernet TCP/IP o SY/MAX. Si se necesita Ethernet TCP/IP o SY/MAX, utilice el bloque CREAD_REG de la biblioteca de bloques de comunicación.

NOTA: Se pueden utilizar varias copias de este bloque de funciones en el programa. No obstante, no es posible instanciar estos ejemplares de forma múltiple.

Representación en FBD

Representación:

```
READREG Instance

READREG

REQ | NDR

NODEADDR | ERROR

ROUTPATH | STATUS

SLAVEREG | NO_REG

REG_READ | REG_READ

SetAfterReadingNewData

SetInCaseOfError

ErrorCode

ArrayForValuesRead
```
Representación en LD

Representación:

```
READREG_Instance (REQ:=StartReadOnce,
NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
REG_READ:=ArrayForValuesRead,
NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
STATUS=>ErrorCode)
```

Representación en IL

Representación:

```
CAL READREG_Instance (REQ:=StartReadOnce,
NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
REG_READ:=ArrayForValuesRead,
NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
STATUS=>ErrorCode)
```

Representación en ST

Representación:

```
READREG_Instance (REQ:=StartReadOnce,
NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath,
SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
REG_READ:=ArrayForValuesRead,
NDR=>SetAfterReadingNewData, ERROR=>SetInCaseOfError,
STATUS=>ErrorCode)
```
Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>BOOL</td>
<td>Con cada flanco ascendente en la entrada REQ, este bloque de funciones lee un área de registro de un esclavo direccionado a través de Modbus Plus.</td>
</tr>
<tr>
<td>NODEADDR</td>
<td>INT</td>
<td>Dirección de dispositivo dentro del segmento de destino</td>
</tr>
<tr>
<td>ROUTPATH</td>
<td>DINT</td>
<td>Ruta de acceso al segmento de destino</td>
</tr>
<tr>
<td>SLAVEREG</td>
<td>DINT</td>
<td>Dirección de offset del primer registro 4x en el esclavo del que se debe leer</td>
</tr>
<tr>
<td>NO_REG</td>
<td>INT</td>
<td>Número de registros que se van a leer del esclavo</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de entrada/salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>REG_READ</td>
<td>ANY_ARRAY_WORD</td>
<td>Datos de escritura (Se debe declarar una estructura de datos como variable ubicada para el archivo que se va a leer).</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDR</td>
<td>BOOL</td>
<td>Se establece en 1 para un ciclo tras leer datos nuevos.</td>
</tr>
<tr>
<td>ERROR</td>
<td>BOOL</td>
<td>Se establece en 1 para realizar una exploración en caso de error.</td>
</tr>
<tr>
<td>STATUS</td>
<td>SINT</td>
<td>Código de error</td>
</tr>
</tbody>
</table>
Modo de funcionamiento

Modo de funcionamiento de los módulos READREG_DFB

Se puede programar un gran número de módulos de función READREG, pero solamente pueden estar activas cuatro operaciones de lectura al mismo tiempo. En este caso no tiene importancia si esto tiene lugar mediante este módulo de función u otros (p. ej. MBP_MSTR, CREAD_REG). Todos los módulos de función emplean una ruta de acceso de transacción de datos y necesitan varios ciclos para completar una orden. Las señales de estado NDR y ERROR indican al programa de aplicación el estado del módulo de función.

La información de acceso completa debe dividirse en dos partes:
- en la NODEADDR del participante de destino (independientemente de si se encuentra en el segmento local o en algún otro segmento)
- en la ruta de acceso en el caso de que se lleve a cabo una conexión por medio de puentes.

La dirección de destino resultante está formada por estas dos partes de información.

La ruta de acceso es del tipo de datos DINT, que se interpreta como una secuencia de unidades de información de dos dígitos. No es necesario agregar "00" (p. ej., las dos informaciones de acceso, 4711 y 47110000, son válidas; en NODEADDR 34, el resultado es la dirección de destino 47.11.34.00.00).
Descripción de los parámetros

**REQ**
Un flanco ascendente inicia la transacción de lectura.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**NODEADDR**
Especifica la dirección del participante dentro del segmento de destino del lugar de destino.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**ROUTPATH**
Especifica la ruta de acceso al segmento de destino. Las unidades de información de dos dígitos van desde 01 hasta 64 (consulte "Modo de funcionamiento, página 189"). En caso de que el slave se encuentre en el segmento de red local, ROUTPATH debe ajustarse a "0" o permanecer desconectado.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**SLAVEREG**
Principio del área en el slave direccionado en la que se leen los datos de origen. El área de origen se encuentra siempre dentro del área de registro 4x. SLAVEREG espera la dirección de origen como offset dentro del área 4x. El "4" de la izquierda no se tiene en cuenta (p. ej. 59 (contenido de las variables o valor del literal) = 40059).
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**NO_REG**
Cantidad de registros que deben leerse desde el procesador slave (1 a 100).
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**NDR**
El cambio a estado ON para un ciclo de programa significa recibir nuevos datos, que están dispuestos para ser procesados.
El parámetro se puede indicar como dirección, Located variable o Unlocated variable.

**ERROR**
Si se activa (ON) en un ciclo de programa, significa que se ha descubierto un nuevo error.
El parámetro se puede indicar como dirección, Located variable o Unlocated variable.
STATUS

Código de error, consulte “Códigos de error de Modbus Plus, página 137”.
El parámetro se puede indicar como dirección, Located variable o Unlocated variable.

REG_READ

Para este parámetro se debe definir una ANY_ARRAYWORD del tamaño del envío requerido (≥ NO_REG). El nombre de esta matriz se transferirá como parámetro. Si se define una matriz demasiado pequeña, sólo se transferirá la cantidad de datos que tenga cabida en la matriz.
El parámetro se debe indicar como Located Variable.
READREG
Descripción

Descripción de la función

Este bloque de funciones muestra el estado de función de los módulos de E/S de una estación de E/S (E/S locales/remotas).

Se pueden emplear las E/S de Quantum o las E/S de 800.

A cada bastidor se le asigna una salida STATUSx. Cada módulo (slot) de este bastidor se representa por medio de un bit de la salida correspondiente STATUSx. El bit situado más a la izquierda en STATUSx corresponde al slot situado más a la izquierda en el bastidor x.

Utilización de STATUS1 a STATUS5:

- E/S de Quantum
  Una estación de E/S tiene un único bastidor, es decir, únicamente se utiliza STATUS1.

- E/S de 800
  Una estación de E/S puede tener hasta 5 bastidores, es decir, STATUS1 corresponde al bastidor 1, y STATUS5 corresponde al bastidor 5.

NOTA: Si un módulo del bastidor está configurado y funciona correctamente, el bit correspondiente toma el valor "1".

EN y ENO se pueden configurar como parámetros adicionales.

Representación en FBD

Representación:
Representación en LD
Representación:

![Diagrama de representación en LD](image)

Representación en IL
Representación:

```
CAL RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
    STATUS1=>StatusBitPatternRack1,
    STATUS2=>StatusBitPatternRack2,
    STATUS3=>StatusBitPatternRack3,
    STATUS4=>StatusBitPatternRack4,
    STATUS5=>StatusBitPatternRack5)
```

Representación en ST
Representación:

```
RIOSTAT_Instance (DROP:=Local_RemoteDropNo,
    STATUS1=>StatusBitPatternRack1,
    STATUS2=>StatusBitPatternRack2,
    STATUS3=>StatusBitPatternRack3,
    STATUS4=>StatusBitPatternRack4,
    STATUS5=>StatusBitPatternRack5) ;
```
### Descripción de parámetros

**Descripción de los parámetros de entrada:**

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROP</td>
<td>UINT</td>
<td>N.° estación de E/S local/remota: (1-32)</td>
</tr>
</tbody>
</table>

**Descripción de los parámetros de salida:**

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS1</td>
<td>WORD</td>
<td>Estado de modelo de bits del bastidor del módulo 1</td>
</tr>
<tr>
<td>STATUS2</td>
<td>WORD</td>
<td>Estado de modelo de bits del bastidor del módulo 2 (sólo E/S de 800)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>STATUS5</td>
<td>WORD</td>
<td>Estado de modelo de bits del bastidor del módulo 5 (sólo E/S de 800)</td>
</tr>
</tbody>
</table>
Capítulo 19
SET_TOD: Ajuste del reloj de hardware (tiempo del día)

Descripción

Descripción de la función
Este bloque de funciones examina (junto con otros bloques de funciones del grupo HSBY) la configuración del PLC en cuestión para buscar los componentes que necesita. Estos componentes siempre hacen referencia al hardware conectado realmente.
Por esta razón no es posible garantizar un comportamiento correcto de este bloque de funciones en los simuladores.
El bloque de funciones sirve para ajustar el reloj de hardware si en la configuración están disponibles los registros correspondientes para él. Si estos registros no están disponibles, la salida TOD_CNF se establecerá en "0".
El bloque de funciones lee los valores de entrada cuando el flanco es ascendente en la entrada S_PULSE y los transmite al reloj de hardware.
Para todos los valores de entrada es válido que:
- Si el valor indicado está por encima del valor máximo, se utilizará dicho valor máximo.
- Si el valor indicado está por debajo del valor mínimo, se utilizará dicho valor mínimo.
EN y ENO se pueden configurar como parámetros adicionales.

Representación en FBD
Representación:
Representación en LD

Representación:

```
SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
                  D_WEEK:=DayOfWeek,
                  MONTH:=Byte_variable2,
                  DAY:=Byte_variable3,
                  YEAR:=Byte_variable4,
                  HOUR:=Byte_variable5,
                  MINUTE:=Byte_variable6,
                  SECOND:=Byte_variable7,
                  TOD_CNF=>ClockReady)
```

Representación en IL

Representación:

```
CAL SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
                      D_WEEK:=DayOfWeek,
                      MONTH:=Byte_variable2,
                      DAY:=Byte_variable3,
                      YEAR:=Byte_variable4,
                      HOUR:=Byte_variable5,
                      MINUTE:=Byte_variable6,
                      SECOND:=Byte_variable7, TOD_CNF=>ClockReady)
```

Representación en ST

Representación:

```
SET_TOD_Instance (S_PULSE:=InputAcceptedFlag,
                 D_WEEK:=DayOfWeek,
                 MONTH:=Byte_variable2,
                 DAY:=Byte_variable3,
                 YEAR:=Byte_variable4,
                 HOUR:=Byte_variable5,
                 MINUTE:=Byte_variable6,
                 SECOND:=Byte_variable7, TOD_CNF=>ClockReady) ;
```
Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_PULSE</td>
<td>BOOL</td>
<td>&quot;0 -&gt; 1&quot; = se toman los valores de entrada y se escriben en el reloj.</td>
</tr>
<tr>
<td>D_WEEK</td>
<td>BYTE</td>
<td>Día de la semana, 1 = domingo 7 = sábado</td>
</tr>
<tr>
<td>MONTH</td>
<td>BYTE</td>
<td>Mes 1 a 12</td>
</tr>
<tr>
<td>DAY</td>
<td>BYTE</td>
<td>Día 1 a 31</td>
</tr>
<tr>
<td>YEAR</td>
<td>BYTE</td>
<td>Año 0 a 99</td>
</tr>
<tr>
<td>HOUR</td>
<td>BYTE</td>
<td>Hora 0 a 23</td>
</tr>
<tr>
<td>MINUTE</td>
<td>BYTE</td>
<td>Minutos 0 a 59</td>
</tr>
<tr>
<td>SECOND</td>
<td>BYTE</td>
<td>Segundos 0 a 59</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD_CNF</td>
<td>BOOL</td>
<td>&quot;1&quot; = se ha encontrado el registro %MW (4x) para el reloj de hardware y el reloj está listo para el servicio. &quot;0&quot; = la hora está ajustada en estos momentos o no se puede encontrar el reloj de hardware.</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función

El bloque de funciones derivado convierte una palabra de entrada del tipo de datos **WORD** en 2 valores de salida de tipo de datos **BYTE**.

Cada uno de los bytes de la palabra en la entrada se asigna a las salidas según el nombre de la salida.

**EN** y **ENO** se pueden configurar como parámetros adicionales.

Representación en FBD

Representación:

```
    WORD_variable ————> WORD_AS_BYTE
          IN        LOW ————> LowByte
         HIGH ————> HighByte
```

Representación en LD

Representación:

```
    WORD_variable ————> WORD_AS_BYTE
          EN        ENO ————> ————>
          IN        LOW ————> LowByte
         HIGH ————> HighByte
```

---

Capítulo 20
WORD_AS_BYTE_DFB: Conversión de tipos
Representación en IL

Representación:
CAL WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable, LOW=>LowByte, HIGH=>HighByte)

Representación en ST

Representación:
WORD_AS_BYTE_DFB_Instance (IN:=WORD_variable, LOW=>LowByte, HIGH=>HighByte) ;

Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>WORD</td>
<td>Entrada</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>BYTE</td>
<td>byte menos significativo</td>
</tr>
<tr>
<td>HIGH</td>
<td>BYTE</td>
<td>byte más significativo</td>
</tr>
</tbody>
</table>
Capítulo 21
WORD_TO_BIT_DFB: Conversión de tipos

Descripción

Descripción de la función

El bloque de funciones derivado convierte una palabra de entrada del tipo de datos WORD en 16 valores de salida de tipo de datos BOOL.

Los bits individuales de la palabra en la entrada se asignan a las salidas de acuerdo con los nombres de salida.

\[ 2^{15} \rightarrow 2^0 \rightarrow \text{BIT0} (2^0) \]
\[ 2^{14} \rightarrow 2^1 \rightarrow \text{BIT1} (2^1) \]
\[ 2^{13} \rightarrow \text{BIT14} (2^{14}) \]
\[ 2^{12} \rightarrow \text{BIT15} (2^{15}) \]

EN y ENO se pueden configurar como parámetros adicionales.
Representación en FBD

Representación en LD
Representación en IL

Representación:

CAL WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15, BIT15=>Bit16)

Representación en ST

Representación:

WORD_TO_BIT_DFB_Instance (IN:=WORD_variable,
BIT0=>Bit1, BIT1=>Bit2, BIT2=>Bit3, BIT3=>Bit4,
BIT4=>Bit5, BIT5=>Bit6, BIT6=>Bit7, BIT7=>Bit8,
BIT8=>Bit9, BIT9=>Bit10, BIT10=>Bit11, BIT11=>Bit12,
BIT12=>Bit13, BIT13=>Bit14, BIT14=>Bit15,
BIT15=>Bit16) ;

Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>WORD</td>
<td>Entrada</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT0</td>
<td>BOOL</td>
<td>Salida BIT0</td>
</tr>
<tr>
<td>BIT1</td>
<td>BOOL</td>
<td>Salida BIT1</td>
</tr>
<tr>
<td>::</td>
<td>::</td>
<td>::</td>
</tr>
<tr>
<td>BIT15</td>
<td>BOOL</td>
<td>Salida BIT15</td>
</tr>
</tbody>
</table>
Capítulo 22
WRITEREG: Escritura de registro

Introducción
En este capítulo se describe el bloque WRITEREG.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>208</td>
</tr>
<tr>
<td>Modo de funcionamiento</td>
<td>211</td>
</tr>
<tr>
<td>Descripción de los parámetros</td>
<td>212</td>
</tr>
</tbody>
</table>
Descripción

Descripción de la función

Con cada flanco ascendente en la entrada REQ, este bloque de funciones escribe un área de registro desde el PLC a un esclavo direccionado mediante Modbus Plus. EN y ENO pueden configurarse como parámetros adicionales.

NOTA: Para programar una función WRITEREG, es necesario conocer los procedimientos de enrutamiento que utiliza la red. La descripción detallada de las estructuras de ruta de acceso Modbus Plus se encuentra en la Guía de instalación y planificación de la red Modbus Plus (véase página 13).

NOTA: Este bloque de funciones derivado solo admite la interfaz local de Modbus Plus (no NOM). En el caso de que se emplee un NOM, deberá utilizarse el bloque WRITE_REG de la biblioteca de bloques de comunicación.

NOTA: Este bloque de funciones derivado tampoco admite Ethernet TCP/IP o SY/MAX. Si se necesita Ethernet TCP/IP o SY/MAX, utilice el bloque WRITE_REG de la biblioteca de bloques de comunicación.

NOTA: Se pueden utilizar varias copias de este bloque de funciones en el programa. No obstante, no es posible instanciar estos ejemplares de forma múltiple.

Representación en FBD

Representación:
Representación en LD

Representación:

```
WRITEREG_Instance (REQ:=StartWriteOnce, NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters, REG_WRIT:=SourceDataArea, DONE=>SetAfterWritingData, ERROR=>SetInCaseOfError, STATUS=>ErrorCode)
```

Representación en IL

Representación:

```
CAL WRITEREG_Instance (REQ:=StartWriteOnce, NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters, REG_WRIT:=SourceDataArea, DONE=>SetAfterWritingData, ERROR=>SetInCaseOfError, STATUS=>ErrorCode)
```

Representación en ST

Representación:

```
WRITEREG_Instance (REQ:=StartWriteOnce, NODEADDR:=DeviceAddress, ROUTPATH:=RoutingPath, SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters, REG_WRIT:=SourceDataArea, DONE=>SetAfterWritingData, ERROR=>SetInCaseOfError, STATUS=>ErrorCode);
```
Descripción de parámetros

Descripción de los parámetros de entrada:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>BOOL</td>
<td>Con cada flanco ascendente en la entrada REQ, este bloque de funciones escribe un área de registro desde el PLC a un esclavo direccionado mediante Modbus Plus.</td>
</tr>
<tr>
<td>NODEADDR</td>
<td>INT</td>
<td>Dirección de dispositivo dentro del segmento de destino</td>
</tr>
<tr>
<td>ROUTPATH</td>
<td>DINT</td>
<td>Ruta de acceso al segmento de destino</td>
</tr>
<tr>
<td>SLAVEREG</td>
<td>DINT</td>
<td>Dirección de offset del primer registro 4x en el esclavo en el que se debe escribir</td>
</tr>
<tr>
<td>NO_REG</td>
<td>INT</td>
<td>Número de registros que se van a escribir desde el esclavo</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de entrada/salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>REG_WRIT</td>
<td>ANY_ARRAY_WORD</td>
<td>Campo de datos de origen Se debe declarar una estructura de datos como variable ubicada para el archivo de origen.</td>
</tr>
</tbody>
</table>

Descripción de los parámetros de salida:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Tipo de datos</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONE</td>
<td>BOOL</td>
<td>Se establece en 1 para realizar una exploración después de la escritura de datos.</td>
</tr>
<tr>
<td>ERROR</td>
<td>BOOL</td>
<td>Se establece en 1 para realizar una exploración en caso de error.</td>
</tr>
<tr>
<td>STATUS</td>
<td>SINT</td>
<td>Código de error</td>
</tr>
</tbody>
</table>
Modo de funcionamiento

Modo de funcionamiento de los módulos WRITEREG

Se puede programar un gran número de módulos de función WRITEREG, pero sólo pueden estar activas cuatro operaciones de escritura al mismo tiempo. En este caso no tiene importancia si esto tiene lugar mediante este módulo de función u otros (p. ej. MBP_MSTR, CWRITE_REG). Todos los módulos de función emplean una ruta de acceso de transacción de datos y necesitan varios ciclos para completar una orden.

Si se utilizan varios módulos de función WRITEREG en una aplicación, hay que diferenciarlos al menos en los valores de los parámetros NO_REG o REG_WRIT.

Las señales de estado DONE y ERROR indican al programa de aplicación el estado del módulo de función.

La información de acceso completa debe dividirse en dos partes:
- en la NODEADDR del participante de destino (independientemente de si se encuentra en el segmento local o en algún otro segmento)
- en la ruta de acceso, en caso de que se lleve a cabo una conexión a través de puente de red.

La dirección de destino resultante está formada por estas dos partes de información.

La ruta de acceso es del tipo de datos DINT, que se interpreta como una secuencia de unidades de información de dos dígitos. No es necesario agregar "00" (p. ej., las dos informaciones de acceso, 4711 y 47110000, son válidas; en NODEADDR 34, el resultado es la dirección de destino 47.11.34.00.00).
Descripción de los parámetros

**REQ**
Un flanco ascendente inicia la transacción de escritura.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**NODEADDR**
Especifica la dirección del participante dentro del segmento de destino del lugar de destino.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**ROUTPATH**
Especifica la ruta de acceso al segmento de destino. Las unidades de información de dos dígitos van desde 01 hasta 64 (consulte "Modo de funcionamiento, página 211"). En caso de que el slave se encuentre en el segmento de red local, **ROUTPATH** debe ajustarse a "0" o permanecer desconectado.
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**SLAVEREG**
Principio del área de destino en el slave direccionado en el que se escriben los datos de origen.
Esta área de destino siempre se encuentra dentro del área de registro 4x. **SLAVEREG** espera la dirección de destino como offset dentro del área 4x. El "4" de la izquierda no se tiene en cuenta (p. ej. 59 (contenido de las variables o valor del literal) = 40059).
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**NO_REG**
Número de registros que deben escribirse en el procesador slave (1 a 100).
El parámetro se puede indicar como dirección, Located Variable, Unlocated Variable o literal.

**REG_WRIT**
Para este parámetro es necesario definir una matriz ANY_ARRAY_WORD del tamaño del envío deseado (**NO_REG**), que se utilizará como área de datos de origen. El nombre de esta matriz se transferirá como parámetro. Si se define una matriz demasiado pequeña, sólo se transferirá la cantidad de datos que tenga cabida en la matriz.
El parámetro se debe indicar como Located Variable.
DONE
Si se activa (ON) en un ciclo de programa, significa que se han transmitido los datos.
El parámetro se puede indicar como dirección, Located variable o Unlocated variable.

ERROR
Si se activa (ON) en un ciclo de programa, significa que se ha descubierto un nuevo error.
El parámetro se puede indicar como dirección, Located variable o Unlocated variable.

STATUS
Código de error, consulte “Códigos de error de Modbus Plus, página 137”.
El parámetro se puede indicar como dirección, Located variable o Unlocated variable.
Parte III
Importación/exportación de aplicaciones LL984

Descripción general
En esta parte se describen los detalles de Editor LL984.
Para ver las funciones estándar, consulte Importación/exportación (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento).

Contenido de esta parte
Esta parte contiene los siguientes capítulos:

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Nombre del capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Importar</td>
<td>217</td>
</tr>
<tr>
<td>24</td>
<td>Exportar</td>
<td>259</td>
</tr>
</tbody>
</table>
Capítulo 23
Importar

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importación de una aplicación LL984</td>
<td>218</td>
</tr>
<tr>
<td>Importación de PLC</td>
<td>228</td>
</tr>
<tr>
<td>Importación de configuraciones específicas de la CPU</td>
<td>231</td>
</tr>
<tr>
<td>Importación de configuraciones de Hot Standby</td>
<td>239</td>
</tr>
<tr>
<td>Importación de módulos de E/S</td>
<td>241</td>
</tr>
<tr>
<td>Importación de la configuración de comunicación</td>
<td>248</td>
</tr>
<tr>
<td>Importación de descriptores y comentarios</td>
<td>251</td>
</tr>
<tr>
<td>Restricciones de importación</td>
<td>254</td>
</tr>
<tr>
<td>Importación de partes de aplicaciones con el asistente de conversión</td>
<td>258</td>
</tr>
</tbody>
</table>
Importación de una aplicación LL984

Introducción

Cuando se importa una aplicación a Control Expert desde otro software de programación, es posible que algunas de las funciones tengan un comportamiento distinto.

Por ejemplo:
- El comportamiento del arranque en frío de las aplicaciones de Control Expert LL984 es distinto de las aplicaciones LL984 anteriores.
- Las bobinas importadas de Concept IEC no funcionan igual que las bobinas importadas de LL984.
- Es posible que las funciones matemáticas de Control Expert no funcionen igual que las de LL984 anteriores (desborde, subdesbordamiento, etcétera).

Mensaje general después de la importación

Después de la importación, consulte el archivo de registro (véase página 227) para ver si contiene mensajes de error y de advertencia.

Debe Analizar y Generar el proyecto.

Advertencia

Funcionamiento imprevisto del equipo

- Una vez importado un programa de aplicación, edite el resultado asegurándose de que todos los elementos de lógica se han importado del todo y que están ubicados correctamente en el programa.
- Compruebe la aplicación antes de ejecutarla para asegurarse de que funciona correctamente.
- Si es necesario, edite el programa para añadir los elementos de lógica que falten, elimine los códigos que no sean necesarios y sustituya los elementos de lógica que tengan un comportamiento distinto al objetivo para el cual se han diseñado.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
**Importar**

Para importar una aplicación LL984, utilice el comando de menú **Archivo → Abrir.**

Consulte el cuadro de diálogo (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento) **Abrir.**

Se pueden importar las siguientes aplicaciones de versiones anteriores de LL984:

- Proyectos de Concept (*.ASC)
- Proyectos de Modsoft (*.CFG)
- Bases de datos ProWORX32 (*.PWX)
- ProWORX Nxt (*.DCF)

**NOTA:** Las funciones MSTR importadas no están diseñadas para funcionar con las CPU de Modicon M340. Cuando una aplicación se convierte en Control Expert, debe actualizarse manualmente. La función MSTR debe sustituirse por las funciones READ_VAR y WRITE_VAR.

Para obtener más información, consulte Importación/exportación de aplicaciones LL984 (véase página 215).
**Cuadro de diálogo Opciones de LL984 (-> PLC Quantum de destino)**

Después de seleccionar un archivo de aplicación de una versión anterior de LL984, aparece el siguiente cuadro de diálogo de **Opciones de LL984**. En el gráfico siguiente se muestra un ejemplo con una aplicación de origen Quantum LL984 antigua y una aplicación Quantum seleccionada como familia PLC de destino.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplicación</td>
<td>Muestra el nombre de la aplicación antigua que se va a importar.</td>
</tr>
<tr>
<td>Familia PLC de origen</td>
<td>Muestra la familia PLC de la aplicación antigua que se va a importar.</td>
</tr>
<tr>
<td>Aceptar</td>
<td>Inicia la importación.</td>
</tr>
</tbody>
</table>

**Elementos del cuadro de diálogo**

- **Aplicación:** Q534 QUANTUM CPU-534
- **Símbolos:**
  - Original
  - _YYYYYY
- **Familia PLC de destino:**
  - Quantum
  - M340
  - Momentum
- **Opción de dirección completa:**
- **Opción de etiqueta da lugar a SR:**

La etiqueta da lugar a SR
Importar

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>Muestra un mensaje ...Fallo en el paso &quot;Convertir&quot;, no se importa ninguna aplicación y se genera el mensaje siguiente en el archivo de registro de importación: &quot;Conversión finalizada por el usuario&quot;.</td>
</tr>
<tr>
<td>Dirección completa</td>
<td>Esta casilla de verificación solamente se utiliza para convertir aplicaciones para PLC Modicon M340.</td>
</tr>
<tr>
<td>Símbolos</td>
<td></td>
</tr>
<tr>
<td>Original</td>
<td>Seleccione esta opción para usar los nombres de variable originales de la aplicación anterior en la aplicación Control Expert nueva.</td>
</tr>
</tbody>
</table>
| _YYYYY               | Seleccione esta opción para convertir automáticamente los nombres de variable de la versión anterior. Los nuevos nombres de variable se formarán según la lista siguiente:  
- _: el primer signo de las variables convertidas será un guión bajo.  
- X: representa el tipo de datos del área de memoria.  
  - 0: %M (bit de memoria)  
  - 1: %I (entrada binaria)  
  - 3: %IM (palabra de entrada)  
  - 4: %MW (palabra de memoria)  
- YYYY: representa el número de dirección.  
Por ejemplo, _400001 equivale a %MW1.                                                                                                                                                                                                                     |
| Familia PLC de destino |                                                                                                                                                                                                                                                                                                                                 |
| Quantum              | Seleccione esta opción para utilizar Quantum como PLC de destino.                                                                                                                                                                                                                                                                         |
| M340                 | Seleccione esta opción para utilizar Modicon M340 como PLC de destino. Los parámetros específicos de Modicon M340 para el direccionamiento topológico completo se muestran en una tabla independiente más adelante.                                                                                                         |
| Momentum             | Seleccione esta opción para utilizar Modicon Momentum en Control Expert como PLC de destino.                                                                                                                                                                                                                                               |
| Label causes SR      | Seleccione esta opción para importar un segmento que contenga etiquetas, por ejemplo, un segmento SR, incluso si la programación de este no expresa de esta manera. Solo se permiten etiquetas en segmentos SR. Para obtener más información, consulte Llamada de subrutinas (véase EcoStruxure Control Expert, Editor LL984, Manual de referencia) |
| Cambio a 984 remoto   | Esta opción adicional aparece si la familia de CPU de aplicación heredada es una familia 984. Si se selecciona, se añade un bastidor local Quantum a la aplicación y todos los números de estación aumentan un número hasta que se llegue a un número de estación no utilizado, con lo que se mantiene el bastidor 984 antiguo como primer bastidor remoto (estación número 2) sin la CPU antigua. Si la opción no está seleccionada, la conversión intenta convertir el bastidor local y sus módulos a Quantum siempre que sea posible. Una situación habitual es que las estaciones locales 984 suelen contener más bastidores de los permítidos con Quantum. |
Importar

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| Comentarios largos en el proyecto y en el directorio | Este cuadro de diálogo adicional muestra la ruta donde se almacenan los comentarios largos si la aplicación heredada contiene comentarios largos. Esta ruta es idéntica a la ruta donde se almacena la aplicación heredada más un directorio adicional para los comentarios largos. Los comentarios largos aparecen dos veces en la conversión:  
- Dentro de la base de datos de proyectos internos del editor de datos.  
- Como archivos de texto en el directorio de ruta de aplicación adicional para los comentarios largos.  
Para realizar una copia de seguridad de toda la información de la aplicación, sólo se tienen que guardar los archivos del directorio de rutas de aplicaciones adicionales. Para lograr la coherencia entre el editor de datos y los archivos de texto, los comentarios de ambas ubicaciones se deben editar a la vez. |
Cuadro de diálogo Opciones de LL984 (-> PLC Modicon M340 de destino)

La conversión de una aplicación LL984 antigua a una aplicación Modicon M340 puede determinar el tipo de direccionamiento. De forma predeterminada, se utiliza el direccionamiento de Memoria mixta topológica y de señal (opción Dirección completa no seleccionada).

**Direccionamiento de Memoria mixta topológica y de señal (-> Modicon M340)**

En el gráfico siguiente se muestra un ejemplo de conversión de una aplicación Compact antigua a una aplicación Modicon M340 con direccionamiento de memoria mixta topológica y de señal (opción Dirección completa no seleccionada).

**NOTA:** Si desea realizar importaciones a una aplicación LL984 Compact heredada que utiliza peticiones Modbus para comunicarse con un HMI, deberá utilizar el direccionamiento de memoria de señal para conservar el intercambio de Modbus entre el PLC y el HMI.
Direcccionamiento topológico completo (→ Modicon M340)

Para convertir una aplicación LL984 antigua a una aplicación Modicon M340 con direccionamiento topológico completo, se debe utilizar la opción Dirección completa.

- Todas las variables de palabra obtienen una declaración con un símbolo y la dirección topológica en el editor de datos, si no existe ya.
- **Las Palabras de entrada** se copian a un área de espejo de palabras de memoria, con lo que se permite el acceso a SCADA.
- Las palabras binarias se direccionan directamente con direcciones topológicas en los programas si no se ha definido ningún símbolo para ellas y, de este modo, muestran directamente su conexión de hardware al controlador.
- Si el acceso a SCADA es necesario para las entradas binarias, los bits de entrada se pueden copiar también en un área de espejo de bits de memoria y marcar **Copiar bits de entrada**.
- El acceso a SCADA para las entradas con Dirección completa seleccionado requiere que se modifiquen direcciones del sistema: los offsets del cuadro de diálogo deben añadirse a los offsets originales, y deben utilizarse las áreas de memoria en lugar de las áreas de entrada.
En el gráfico siguiente se muestra un ejemplo de conversión de una aplicación Compact antigua a una aplicación Modicon M340 con direccionamiento topológico completo.
Para convertir una aplicación LL984 antigua en una aplicación Modicon M340 con direccionamiento topológico completo, se utilizan los parámetros adicionales siguientes:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirección completa</td>
<td>Activa esta opción para convertir las direcciones de palabras de entrada (3x) de la aplicación LL984 antigua en un área separada y reflejada de áreas de %MW de la aplicación Modicon M340 de destino. Si esta opción no se activa, la aplicación LL984 antigua se convierte en una aplicación Modicon M340 de memoria de señal.</td>
</tr>
<tr>
<td>Offset de la palabra de entrada</td>
<td>Escribe el offset para las direcciones de palabras de entrada (3x) en el área reflejada del área de %MW de la aplicación Modicon M340 de destino.</td>
</tr>
<tr>
<td>Copiar bits de entrada</td>
<td>Activa esta opción para convertir direcciones del bit de entrada (1x) en el área reflejada del área %M de la aplicación Modicon M340 de destino.</td>
</tr>
<tr>
<td>Offset del bit de entrada</td>
<td>Escribe el offset para las direcciones del bit de entrada (1x) en el área reflejada del área de %M de la aplicación Modicon M340 de destino.</td>
</tr>
</tbody>
</table>

**NOTA:** Con esta opción **Dirección completa** activada se debe cambiar manualmente el acceso a las direcciones %I y %IW en los componentes SCADA.

**Conversión de una aplicación Compact antigua en Modicon M340 con direccionamiento topológico completo**

Durante la conversión de una aplicación Compact antigua en una aplicación Modicon M340 con el direccionamiento topológico completo, la importación crea automáticamente secciones de código ST separadas para las operaciones de entrada y salida con comandos de copia para transferir datos de E/S a las áreas de memoria reflejadas.

Consulte Emulación de módulos (véase página 244).

**Funcionamiento de la importación**

Durante la importación de una aplicación anterior de LL984 es posible que se presenten problemas:

- No se admite la familia de controladores
- No se admite la familia de E/S
- No se admite el módulo de E/S
- Recuento de bastidores superado
- No se admite la instrucción o el bloque de funciones
- No hay ninguna bobina en la columna 11

Por lo general estos problemas no impiden la importación.

En su lugar, aparece un mensaje para cada uno de los problemas detectados en la ficha **Importar/Exportar** de la **Ventana de resultados**, en la parte inferior de la interfaz de usuario de Control Expert.
Haga doble clic en el mensaje, en la **Ventana de resultados**, para acceder al respectivo cuadro de diálogo de su aplicación.

Si se detectan problemas, durante la importación sucede lo siguiente:

- Los controladores o las familias de E/S no admitidos se remplazan por una configuración de Quantum/Modicon M340 predeterminada.
- Los módulos de E/S no compatibles se omiten en el caso de que Quantum sea una familia PLC de destino.
- Se hace caso omiso de los bastidores que se excedan y de sus módulos.
- Las instrucciones no admitidas se representan mediante DFB vacíos cuya apariencia es idéntica a la de la instrucción LL984. Si es el caso, proceda de la manera que se describe en **Instrucciones e instrucciones cargables por el usuario de versiones anteriores de LL984 no admitidas** (véase página 255).
- Las redes de ecuación que contengan conversiones cuestionables (por ejemplo, conversiones de tipos implícitas) contendrán la instrucción de la ecuación importada y un mensaje adicional. Las redes de ecuaciones que no cumplan las reglas de alineación de variables de Modicon M340 causarán un error de compilación al Analizar. Para obtener más información, consulte **Redes de ecuación** (véase página 256).
- La importación de una aplicación anterior que contenga identificadores duplicados se cancela. Para obtener más información, consulte **Identificadores duplicados** (véase página 257).

Si no se importan algunas partes de una aplicación antigua, aparecerá un mensaje correspondiente después de Analizar y Generar el proyecto. En este caso, debe adaptar la aplicación de manera manual. (Por ejemplo, en el caso de Modicon M340, seleccionando **Memoria mixta topológica y de señal** en la ficha Memoria de los módulos y luego arreglando las variables relacionadas). (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento)

**Importar archivo de registro**

Después de la importación, un mensaje le informará de que la conversión y la importación han finalizado y le pedirá que revise el archivo de registro de la importación.

El archivo de registro de la importación se guarda en el directorio raíz de la aplicación.

Deberá Analizar y Generar el proyecto.
Importación de PLC

Introducción
Durante la importación, los PLC usados en aplicaciones LL984 heredadas se reemplazan por PLC disponibles en Control Expert.

En el cuadro de diálogo **Opciones de LL984**, puede seleccionar Quantum o Modicon M340 como familia PLC de destino.

Para algunos PLC antiguos solo es posible crear una configuración predeterminada sin E/S en la familia PLC de destino seleccionada. Esto se indica en el archivo de registro de importación.

La configuración predeterminada
- Para Modicon M340 es un bastidor local con CPU (BMX P34 2020, firmware V2.4) y fuente de alimentación.
- Para Quantum es un bastidor local con CPU (140 CPU 534 14A) y fuente de alimentación.

**PLC 984**
Un controlador 984 puede ser:
- ser sustituido con una configuración de Modicon M340 predeterminada sin E/S,
- ser sustituido por un bastidor local de Quantum con una CPU, una fuente de alimentación y un controlador de E/S remoto insertados. Las E/S que tienen equivalentes directos se traducen con parámetros específicos del módulo.

<table>
<thead>
<tr>
<th>PLC antiguo de LL984</th>
<th>PLC Quantum de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>984A/S908</td>
<td>140 CPU 534 14A</td>
</tr>
<tr>
<td>984B/S908</td>
<td></td>
</tr>
<tr>
<td>984A/S901</td>
<td>140 CPU 534 14A, sin E/S</td>
</tr>
<tr>
<td>984B/S901</td>
<td></td>
</tr>
<tr>
<td>984X</td>
<td></td>
</tr>
<tr>
<td>38x48x, 68x78x</td>
<td>140 CPU 534 14A</td>
</tr>
<tr>
<td>Sustitución de 484</td>
<td>140 CPU 534 14A, sin E/S</td>
</tr>
</tbody>
</table>

**NOTA:** Los PLC 984A, 984B y 984X de versiones anteriores de LL984 no tienen E/S locales.
En la importación de los PLC antiguos que tengan, por ejemplo, E/S de la serie 800 como estaciones RIO 1 a 32, se insertará la primera estación RIO como E/S local de Quantum y las siguientes estaciones RIO (2 a 32) como estaciones RIO de Quantum 1 a 31.

Deberá adaptar manualmente la configuración del hardware de su Control Expert.
Como solución, se recomienda adaptar la aplicación LL984 heredada cambiando el PLC por un PLC Quantum (con las E/S apropiadas) antes de importar la aplicación a Control Expert.

Si la aplicación LL984 heredada que se importa contiene una estación local de E/S 800 con más de 2 bastidores (por ejemplo, 4 bastidores), se trasladará a una estación local Quantum con el número apropiado de bastidores (es decir, 4 bastidores).
Pero si en Control Expert una estación local Quantum sólo puede tener un máximo de 2 bastidores, esta estación Quantum no es válida. Esto se indica mediante un mensaje en la ficha Importar/Exportar de la Ventana de resultados. La solución es arrastrar y soltar los módulos de los bastidores 3 y 4 hasta los bastidores 1 y 2 y luego eliminar los bastidores 3 y 4. Al arrastrar y soltar, Control Expert adaptará la lógica.

PLC Quantum
Los PLC Quantum utilizados en las aplicaciones LL984 heredadas pueden:
- ser sustituidos por una configuración de Modicon M340 predeterminada sin E/S,
- ser sustituidos/actualizados por el equivalente de Control Expert Quantum siguiente:
  - 140 CPU 311 10
  - 140 CPU 434 12A/U
  - 140 CPU 534 14A/U
  - 140 CPU 658 60
  - 140 CPU 671 60
  - 140 CPU 672 60
  - 140 CPU 672 61
  - 140 CPU 678 61
Consulte también Hot Standby de Control Expert (véase página 239).

PLC Compact
Si selecciona la opción Modicon M340 como PLC de destino, los PLC Compact se sustituyen con Modicon M340 CPU BMX P342020, firmware V2.4.
- Para los PLC Compact de 16 bits, el comportamiento de la tarjeta no se emula.
- Para los PLC Compact de 32 bits, el comportamiento de la tarjeta se emula todo lo posible.

Si selecciona la opción Quantum como PLC de destino, los PLC Compact son sustituidos por Quantum 140 CPU 534 14A.

Si la aplicación LL984 heredada que se importa contiene una estación Compact con más de 2 bastidores (por ejemplo, 4 bastidores), se trasladará a una estación local Quantum con el número apropiado de bastidores (por ejemplo, 4 bastidores).

Pero si en Control Expert una estación local Quantum sólo puede tener un máximo de 2 bastidores, esta estación Quantum no es válida. Esto se indica mediante un mensaje en la ficha Importar/Exportar de la Ventana de resultados. La solución es arrastrar y soltar los módulos de los bastidores 3 y 4 hasta los bastidores 1 y 2 y luego eliminar los bastidores 3 y 4. Al arrastrar y soltar, Control Expert adaptará la lógica.

PLC Micro
Los PLC Micro se pueden traducir con una configuración Quantum predeterminada o con una configuración Modicon M340 predeterminada.
Importar

**PLC Momentum**
Los PLC Momentum se pueden traducir con una configuración Quantum predeterminada o con una configuración Modicon M340 predeterminada.

**PLC 584**
Convertir una aplicación 584 de herencia acaba por NoConf (sin configuración).
Las aplicaciones ProWORX o Modsoft con un PLC Modicon 584 no se pueden importar correctamente:
- Es posible que se haya cambiado el orden de los segmentos.
- Es posible que Traffic Cop no se haya importado correctamente.
- Es posible que el parámetro del puerto no se haya importado correctamente.

Como solución, se recomienda convertir la aplicación ProWORX 584 en una aplicación ProWORX Quantum antes de importar la aplicación a Control Expert.

**Orden de segmentos de 584 PLC diferente**
Si en el proyecto de origen hay un PLC 584 que no admite un programador de segmentos, después de una importación es posible que el orden de segmentos no sea correcto. En tal caso, deberá ajustar el orden de los segmentos en el **Navigador de proyectos**.

**Otros PLC**
Otros PLC se pueden traducir con una configuración Quantum predeterminada o con una configuración Modicon M340 predeterminada.
Importación de configuraciones específicas de la CPU

Introducción

Con las aplicaciones LL984 heredadas se podía configurar algunas propiedades especiales de la CPU.

Durante la importación de una aplicación LL984 heredada, se convierten las siguientes propiedades de la CPU:

- Bobina de batería
- Registro de temporizador
- Reloj de fecha/hora

Se generan secciones especiales ST de Control Expert con un código que reproduce esas propiedades.

Las secciones ST generadas en la nueva aplicación Control Expert son:

- **LL984_OS_Wrapper** en la tarea MAST
  Esta sección proporciona un código para admitir las propiedades Bobina de batería, Reloj de fecha/hora y, parcialmente, Registro de temporizador.
- **Timer0** en la tarea Eventos de temporizador
  Esta sección proporciona un código adicional para admitir la propiedad Registro de temporizador.

Estas secciones especiales se ejecutarán antes de que lo hagan las secciones de la aplicación, con el fin de tener la información necesaria antes de que se ejecute la aplicación.

Puede modificar o eliminar el código en estas secciones.

Para obtener información sobre la propiedad Tiempo de vigilancia watchdog, consulte la sección que aparece a continuación (*véase página 236*).

Utilización de bits del sistema (%SM) y palabras del sistema (%SW)

En bits del sistema (%SM) y palabras del sistema (%SW) se puede ver información acerca de las propiedades mencionadas más arriba.

Consulte **Objetos del sistema** (*véase EcoStruxure™ Control Expert, Palabras y bits de sistema, Manual de referencia*).

Puede adaptar su aplicación empleando estos bits y palabras del sistema y luego eliminar las secciones generadas automáticamente.
Bobina de batería

Si la bobina de la batería está configurada según una aplicación LL984 heredada, el sistema operativo del PLC rellena la bobina direccionada con el estado de la batería en cada exploración. Este estado de la batería proporciona la misma información que el bit %S68 en un PLC de Control Expert. Por lo tanto, si una bobina de batería está configurada para la aplicación LL984 heredada, la sección LL984_OS_Wrapper contendrá un código para copiar el contenido de %S68 en la bobina de batería configurada (%M).

El código necesario es:

\[
%Mx := %S68;
\]

donde \( x \) es el número de la bobina de batería configurada en la aplicación LL984 heredada.

Bobina de batería con Modicon M340 como sistema de destino

Si la bobina de batería se configura en una aplicación LL984 heredada pero el sistema de destino es Modicon M340, no se genera ningún código para la bobina de batería porque Modicon M340 no está equipado con una batería. Un mensaje en el archivo de registro de importaciones indica que Modicon M340 no está equipado con una batería y que el comportamiento de arranque puede diferir de la aplicación LL984 heredada.

Registro de temporizador

El registro de temporizador es un temporizador de ejecución libre basado en 10 ms. En la aplicación LL984 heredada, el registro de temporizador configurado se actualiza en el temporizador del sistema cada 10 ms. Para obtener un funcionamiento parecido en Control Expert, la sección de evento Timer0 tiene las siguientes propiedades:

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de tiempo</td>
<td>0</td>
</tr>
<tr>
<td>Base de tiempo</td>
<td>10 ms</td>
</tr>
<tr>
<td>Preajuste</td>
<td>1</td>
</tr>
<tr>
<td>Fase</td>
<td>0</td>
</tr>
</tbody>
</table>

Para obtener más información, consulte también Cuadro de diálogo Propiedades para las secciones de evento de temporizador (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento). En la sección LL984_OS_Wrapper se llama al bloque de funciones ITCNTRL correspondiente. La sección LL984_OS_Wrapper proporciona un contador independiente de 10 ms en el temporizador configurado %MW.
La aplicación cíclica modifica este valor y durante la siguiente ejecución del temporizador el valor modificado se incrementará.

La sección de eventos Timer0 proporciona el registro del temporizador en Control Expert.

El código que se necesita en la sección LL984_OS_Wrapper es:

```plaintext
ITCNTRL (ENABLE := true (*BOOL*),
          RESET := false (*BOOL*),
          HOLD := false(*BOOL*),
          EVENT := 0(*BYTE*),
          STATUS => TIMER0_STATUS_WORD(*WORD*),
          VALUE => TIMER0_TIME_REGISTER(*TIME*));
```

```plaintext
IF(%S21 = true) THEN
  %MWx:=0;
END_IF;
```

El código que se necesita en la sección de evento Timer0 es:

```plaintext
%MWx:=%MWx+1;
```

donde \( x \) es el número del registro de temporizador configurado en la aplicación LL984 heredada.

**Reloj de fecha/hora**

En algunos PLC LL984 heredados se pueden usar los registros de fecha/hora para leer y escribir datos en el chip del reloj de tiempo real.

Los datos del TOD (fecha/hora) heredados de LL984 tienen el siguiente formato (americano):

<table>
<thead>
<tr>
<th>Registro</th>
<th>Registro de control</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>4XXXX</td>
<td>Binario 1 (MSB)</td>
<td>1 = establece los valores del reloj</td>
</tr>
<tr>
<td></td>
<td>Binario 2</td>
<td>1 = lee los valores del reloj</td>
</tr>
<tr>
<td></td>
<td>Binario 3</td>
<td>1 = indicador de realizado</td>
</tr>
<tr>
<td></td>
<td>Binario 4</td>
<td>1 = indicador de error</td>
</tr>
<tr>
<td>4XXXX +1</td>
<td>Día de la semana (1 - 7)</td>
<td>1 = Domingo</td>
</tr>
<tr>
<td>4XXXX +2</td>
<td>Mes (1 - 12)</td>
<td>-</td>
</tr>
<tr>
<td>4XXXX +3</td>
<td>Día (1 - 31)</td>
<td>-</td>
</tr>
<tr>
<td>4XXXX +4</td>
<td>Año (00 - 99)</td>
<td>-</td>
</tr>
<tr>
<td>4XXXX +5</td>
<td>Horas (0 - 23)</td>
<td>-</td>
</tr>
<tr>
<td>4XXXX +6</td>
<td>Minutos (0 - 59)</td>
<td>-</td>
</tr>
<tr>
<td>4XXXX +7</td>
<td>Segundos (0-59)</td>
<td>-</td>
</tr>
</tbody>
</table>

Dependiendo de la acción requerida (leer o escribir), la aplicación deberá establecer un bit de control en el primer registro de fecha/hora.

En los PLC de Control Expert, el reloj de tiempo real se gestiona empleando los objetos del sistema %S50 y %SW49 a %SW53.
Las palabras del sistema de Control Expert %SW49 a %SW53 tienen el formato siguiente:

<table>
<thead>
<tr>
<th>Palabra de sistema</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>%SW49</td>
<td>día de la semana</td>
</tr>
<tr>
<td></td>
<td>1 = Lunes</td>
</tr>
<tr>
<td></td>
<td>2 = Martes</td>
</tr>
<tr>
<td></td>
<td>3 = Miércoles</td>
</tr>
<tr>
<td></td>
<td>4 = Jueves</td>
</tr>
<tr>
<td></td>
<td>5 = Viernes</td>
</tr>
<tr>
<td></td>
<td>6 = Sábado</td>
</tr>
<tr>
<td></td>
<td>7 = Domingo</td>
</tr>
<tr>
<td>%SW50</td>
<td>segundos (16#SS00)</td>
</tr>
<tr>
<td>%SW51</td>
<td>horas y minutos (16#HHMM)</td>
</tr>
<tr>
<td>%SW52</td>
<td>mes y día (16#MMDD)</td>
</tr>
<tr>
<td>%SW53</td>
<td>año (16#YYYY)</td>
</tr>
</tbody>
</table>

La sección LL984_OS_Wrapper simulará la función de fecha/hora de la versión de LL984 heredada empleando los objetos del sistema %S50 y %SW49 a %SW53.
Si se necesita una lectura, la sección LL984_OS_Wrapper leerá el contenido desde %SW49 hasta %SW53 y convertirá y escribirá la información en la palabra de fecha/hora configurada (%MW).
Entonces la acción de lectura realizada se mostrará en la palabra de control del bit 3.
Si el %S51 muestra un error de reloj de tiempo real, se activará el bit 4 de la palabra de control.
Si se necesita escribir en el reloj de tiempo real, los valores de la palabra de fecha/hora se validan.
Si los valores no son correctos, se activará el indicador de error de la palabra de control.
Si los valores son válidos, los datos se preparan en una matriz de palabras no localizada y se llama al WRTC_DT de FFB, que escribe el reloj de tiempo real interno del PLC.
Para mostrar que la escritura es correcta, se activa el indicador de realizado en la palabra del control de fecha/hora.

El código que se necesita en la sección LL984_OS_Wrapper es:

```plaintext
IF((%MWx AND 16#8000) = 16#8000) THEN
  (* Write the clock with help of the WRTC_DT EF *)
  %S18 :=FALSE;
  (* Validation from the clock parameters *)
  if( (%MWx+4 > 99) (* Year > 99 *)
    OR (%MWx+2 > 12) (* Month > 12 *)
    OR (%MWx+3 >31 ) (*Day > 31 *)
    OR (%MWx+5 >23 ) (* Hours > 23 *)
    OR (%MWx+6 >59 ) (* Minutes > 59*)
    OR (%MWx+7 >59 )) (* Seconds > 59*)
    THEN
      (* One or more of parameter contains wrong values *)
```
%MW10 := 16#1000;
ELSE
  UNITY_LL984_INTARRAY[1] := (*INT*) SHL(INT_TO_BCD(%MW17),8);
  UNITY_LL984_INTARRAY[2] := (*INT*) SHL(INT_TO_BCD(%MW15),8);
  \ INT_TO_BCD(%MW16);
  UNITY_LL984_INTARRAY[3] := (*INT*) SHL(INT_TO_BCD(%MW12),8);
  \ INT_TO_BCD(%MW13);
  UNITY_LL984_INTARRAY[4] := (*INT*) INT_TO_BCD(%MW14+2000);
  UNITY_LL984DT := ARINT_TO_DT(UNITY_LL984_INTARRAY);
  WRTC_DT(UNITY_LL984DT);
ELSE
  %MW10 := 16#2000;
END_IF;
ELSE
  (***************** Real Time Clock Read***************
  IF((%MWx AND 16#4000) = 16#4000) THEN
  (* Read the content from %SW49..%SW53 and convert the content
  to a LL984 TOD format *)
  IF(%S51 = TRUE) THEN
    %MW10 := 16#1000; (* Show an error because the %SW49
    till %SW50 are not valid yet *)
  ELSE
    %MWx+1 := %SW49; (* Day of the week content *)
    %MWx+2 := BCD_TO_INT(SHR(%SW52,8) AND 255);
    (* Month from the %SW52 higbyte *)
    %MWx+3 := BCD_TO_INT(%SW52 AND 255);
    (*day from the %SW52 Lowbyte *)
    %MWx+4 := BCD_TO_INT(%SW53) MOD 100;
    (*Year only from 0 till 99*)
    %MWx+5 := BCD_TO_INT(SHR(%SW51,8) AND 255);
    (* Hours from the %SW51 higbyte *)
    %MWx+6 := BCD_TO_INT(%SW51 AND 255);
    (*Minutes from the %SW51 lowbyte *)
    %MWx+7 := BCD_TO_INT(SHR(%SW50,8));(* Seconds *)
    %MWx := 16#6000; (* Show the application that
    the read from the time of day clock is done,
    but let the read command bit true *)
  END_IF;
END_IF;END_IF;
Importar

where x is the first number of the record configured of date/time in the application LL984 heredada.

**NOTA:** La configuración de Día de la semana del reloj de fecha/hora se puede establecer en aplicaciones LL984 heredadas. En Control Expert con LL984, esta configuración del sistema (%SW49) se obtiene de la fecha definida y no se puede establecer cuando se usa la palabra de comando del reloj TOD configurado de LL984 Establecer tiempo de bit. Esto se puede compensar modificando la lógica del ST en la sección LL984_OS_Wrapper.

(Por ejemplo, el código %MWx+1 := (%SW49 + 1) MOD 7; para establecer el domingo como primer día de la semana, el lunes como el segundo, etc.).

### Tiempo de vigilancia watchdog

El tiempo de vigilancia watchdog en aplicaciones LL984 heredadas se emplea para detener el PLC si se excede el tiempo esperado de exploración.

Puesto que en Control Expert las secciones importadas de LL984 se ejecutarán en la tarea MAST, el tiempo de vigilancia watchdog de la tarea MAST es el equivalente en Control Expert al tiempo de vigilancia watchdog de la aplicación LL984 heredada.

Durante la importación
- el tiempo de vigilancia watchdog configurado en la aplicación LL984 heredada se convierte en el tiempo de vigilancia watchdog de la tarea MAST.
  Cuando el tiempo de vigilancia watchdog configurado es 0 (que en la aplicación LL984 heredada significa 250 ms), el tiempo de vigilancia watchdog de la tarea MAST se establece en 250 ms.
- la tarea MAST está configurada como tarea cíclica pues la modalidad cíclica es muy parecida a la exploración cíclica de una aplicación LL984 heredada.

Si se produce un desborde de watchdog, el PLC se detiene inmediatamente (estado de PAUSA).

El bit de sistema %S11 indica un desborde de watchdog. El sistema lo establece en 1 cuando el tiempo del ciclo de la tarea MAST es mayor que el watchdog.

La palabra del sistema %SW11 proporciona el valor de watchdog en ms. El programa no puede modificar este valor.

El valor máximo del watchdog de la tarea MAST es de 1500 ms.

**NOTA:** Si la configuración de Tiempo de vigilancia watchdog de las aplicaciones LL984 heredadas importadas se establece en más de 150 (150*10 ms =1500 ms), el tiempo de vigilancia watchdog de la tarea MAST se establecerá en el límite máximo de 1500 ms.

Consulte también la sección Visualización y modificación de propiedades de las tareas (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento).
Importar

Palabra de estado asignado de E/S

NOTA: Durante la importación no se genera la compatibilidad de palabras de estado asignado de E/S Compact. En caso de que la aplicación Compact estuviera utilizando la información almacenada en el registro de estado asignado de E/S, deberá modificar la aplicación para utilizar la información de estado del módulo Modicon M340 estándar.

NOTA: En esta sección sólo se proporciona información para que la considere.
En los sistemas LL984 de Compact heredados, la palabra de estado asignado de E/S se proporciona en la tabla de estado para todos los módulos y hace referencia al slot configurado del bastidor.

Para los PLC de Compact, la primera palabra del mapa de E/S del cuadro de diálogo contiene la palabra de estado de los dos primeros slots (CPU) a la vez. La referencia 3x para la información de estado es de libre definición. Por ejemplo, si la dirección empieza con 300101 la palabra de estado en 300103 es para el slot 3 del bastidor primario.

Partición del área de estado asignado de E/S del registro 3x (entrada de PLC)

<table>
<thead>
<tr>
<th>3x</th>
<th>Palabra</th>
<th>Slot</th>
<th>Placa de conexiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x</td>
<td>1</td>
<td>Slot de la CPU</td>
<td>1. Placa de conexiones</td>
</tr>
<tr>
<td>3x + 1</td>
<td>2</td>
<td>Slot de la CPU</td>
<td></td>
</tr>
<tr>
<td>3x + 2</td>
<td>3</td>
<td>1. Módulo de E/S</td>
<td></td>
</tr>
<tr>
<td>3x + 3</td>
<td>4</td>
<td>2. Módulo de E/S</td>
<td></td>
</tr>
<tr>
<td>3x + 4</td>
<td>5</td>
<td>3. Módulo de E/S</td>
<td></td>
</tr>
<tr>
<td>3x + 5</td>
<td>6</td>
<td>4. Módulo de E/S</td>
<td>2. Placa de conexiones</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3x + 9</td>
<td>10</td>
<td>8. Módulo de E/S</td>
<td></td>
</tr>
<tr>
<td>3x + 10</td>
<td>11</td>
<td>9. Módulo de E/S</td>
<td>3. Placa de conexiones</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3x + 14</td>
<td>15</td>
<td>13. Módulo de E/S</td>
<td>4. Placa de conexiones</td>
</tr>
<tr>
<td>3x + 15</td>
<td>16</td>
<td>14. Módulo de E/S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3x + 19</td>
<td>20</td>
<td>18. Módulo de E/S</td>
<td></td>
</tr>
</tbody>
</table>

Estructura de la palabra de estado asignado de E/S

<table>
<thead>
<tr>
<th>Bit</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 14</td>
<td>Módulo dependiente, no se utiliza en la mayoría de los casos</td>
</tr>
<tr>
<td>15</td>
<td>0 = el módulo funciona correctamente.</td>
</tr>
<tr>
<td></td>
<td>1 = el módulo no funciona correctamente (informa de varios mensajes de</td>
</tr>
<tr>
<td></td>
<td>error que son visibles en la palabra de estado de entrada del módulo una</td>
</tr>
<tr>
<td></td>
<td>vez identificada).</td>
</tr>
</tbody>
</table>
Secciones con código de emulación

Después de la importación, estas secciones contienen las instrucciones necesarias, por ejemplo, para copiar los bits de estado de BMXAM0410 en la palabra de estado de DAU204, o bien, para copiar los bits de estado de BMXAM0410 en la palabra de estado de ADU206/256.

Puede tener acceso de lectura/escritura a estas secciones, pero al principio se puede leer esta observación:

(* Do not change arbitrarily *)

Consulte Emulación de módulos (véase página 244).
Importación de configuraciones de Hot Standby

Introducción

En aplicaciones LL984 heredadas, la ampliación Hot Standby de Quantum permite establecer el tipo de transferencia de memoria (RAM) de señal entre los módulos 140 CHS 110 00 en un sistema de controlador redundante.

Se pueden definir un registro de comandos inicial y el área no transferible. También se pueden definir fragmentos desde la memoria de señal que se transferirán en cada exploración, y algunos fragmentos que se deberán transferir con varias exploraciones.

Esta ampliación sólo está disponible para controladores Quantum versión 2.x que contengan en la configuración la instrucción cargable CHS.

Hot Standby de Control Expert

El sistema de control Hot Standby de Control Expert utiliza el PLC 140 CPU 671 60, 140 CPU 672 60, 140 CPU 672 61 o 140 CPU 678 61 que ofrece una CPU con un coprocesador integrado.

La CPU heredada (1 slot) y el módulo de extensión 140 CHS 110 00 (1 slot) se sustituyen por el nuevo PLC 140 CPU 671 60, 140 CPU 672 60, 140 CPU 672 61 o 140 CPU 678 61 (2 slots).

En un sistema de control Hot Standby de Control Expert, la memoria de señal se transfiere con cada exploración, a excepción del área no transferible.

Por lo tanto, el parámetro del área no transferible se convierte en una configuración Hot Standby de Control Expert.

Los registros de comando y de estado permiten la supervisión y el control de las operaciones Hot Standby.

El registro de estado es la tercera palabra del área no transferible.

Puesto que Control Expert sólo admite un área no transferible en el área %MW, no se importa ninguna de las áreas no transferibles configuradas de las referencias 0x, 1x, 3x.

Si la aplicación de origen se sirve de la exclusión específica de referencia y las funciones adicionales de transferencia de la memoria de señal, la aplicación debe adaptarse a las necesidades Hot Standby de Control Expert.

Por lo general sólo se importarán los parámetros de configuración realizados en la ampliación de configuración Hot Standby de Quantum.

Para obtener información detallada, consulte la documentación de Hot Standby (véase Quantum con EcoStruxure™ Control Expert, Sistema Hot Standby, Manual del usuario).
Configuración de Hot Standby mediante instrucciones cargables

Los ajustes de Hot Standby realizados en aplicaciones LL984 heredadas mediante la instrucción cargable CHS, o en las series LL984 antiguas mediante la instrucción cargable HSBY, no se importan y se deben ajustar manualmente en la ficha Hot Standby del cuadro de diálogo Módulo de CPU.

Aparece el siguiente mensaje:

La configuración de Hot Standby con la instrucción cargable CHS no está admitida. La adaptación Hot Standby debe hacerse manualmente.

En ese caso la aplicación se debe adaptar según las necesidades de Hot Standby de Control Expert.

- El PLC, insertado automáticamente durante la importación, se debe sustituir por el PLC Hot adecuado: 140 CPU 671 60, 140 CPU 672 60, 140 CPU 672 61 o 140 CPU 678 61.
- Los parámetros de Hot Standby se deben ajustar manualmente.
- Los DFB HSBY o CHS, creados durante la importación, se deben eliminar para permitir generar la aplicación.
Importación de módulos de E/S

Introducción
Los sistemas LL984 de versiones anteriores asocian imágenes de datos de módulos dinámicos a la memoria de señal.
Dicha asociación se expresa en los cuadros de diálogo de Traffic Cop.

Serie Quantum
Los módulos de E/S de Quantum de las aplicaciones LL984 heredadas se reemplazan por módulos de E/S Quantum de Control Expert si están disponibles.
Los módulos no disponibles se sustituyen por módulos adecuados. Consulte Módulos Quantum (véase página 264).
Durante la importación se omite los módulos Quantum no admitidos. Un mensaje del archivo de registro de importación le recuerda que debe reemplazar manualmente estos módulos después de importarlos.
Un Traffic Cop LL984 heredado se convierte en Control Expert para Quantum.
En los sistemas Quantum, el contenido del Traffic Cop se puede asignar uno a uno, ya que Control Expert proporciona cuadros de diálogo de Quantum similares.
Casos especiales:
● Los módulos Quantum 140 XBE100-00 no están en el lugar correcto.
   Según la aplicación, después de una importación se pueden situar dos módulos 140 XBE 100 00 en el mismo bastidor. Control Expert muestra un mensaje durante el proceso de Generar. Corrija la configuración y coloque un 140 XBE 100 00 en bastidores independientes.
● El bastidor DIO Quantum vacío no se convierte a Control Expert
   Si una estación DIO Quantum configurada sólo contiene un módulo 140 CRA 2xx, esta estación DIO no se importa. Si se necesitan estaciones vacías, créelas en Control Expert con sólo un módulo 140 CRA 2xx en cada bastidor.

Modicon Compact / E/S serie A120 (General)
Durante la importación, el convertidor intenta encontrar un equivalente para cada módulo de E/S Compact de la familia Modicon M340 o Quantum (según la familia PLC de destino seleccionada). Consulte Módulos Compact (véase página 284).
Modicon Compact / E/S de serie A120 (Modicon M340 como familia PLC de destino)

Se genera un mensaje en el archivo de registro de importación para los módulos Compact desconocidos o no admitidos que no están convertidos. Los módulos desconocidos/no admitidos se sustituyen por módulos de prueba. Estas sustituciones se indican con un mensaje en la ventana de salida durante Analizar. Haga doble clic en un mensaje para navegar hasta el módulo afectado de la ventana de configuración Bus PLC, sustituya el módulo de prueba y adapte la lógica en caso necesario.

Algunos módulos Compact se convierten en dos módulos Modicon M340

(Por ejemplo, DAU208 se convierte en dos módulos AMO0414 mediante sensores de tensión). Estos módulos adicionales se integran en el bastidor en orden consecutivo. Los números de slot de los módulos siguientes del bastidor se aumentan como corresponde.

Módulos reducidos

Al importar módulos de E/S Compact con Modicon M340 como familia PLC de destino, debido a problemas de compatibilidad y para evitar el solapamiento de direcciones, algunos módulos se configuran con un número reducido de E/S en Control Expert durante la importación. Consulte Módulos reducidos (véase página 290).

Traffic Cop

Para cada módulo se evalúan los datos de Traffic Cop y los parámetros de Traffic Cop como el tipo y la dirección de memoria de señal (binario o registro/palabra) se utilizan como datos de configuración del módulo Modicon M340.

Existen dos familias Compact diferentes, que tienen también dos tipos distintos de Traffic Cop.

- CPU de 32 bits: 984-E258 a 984-E285
- CPU de 16 bits: 948-0120 a 948-E255

El uso de módulos de E/S es distinto entre estas dos familias:

- Con las CPU de Compact de 32 bits, la mayoría de los módulos analógicos y expertos se configuran con la ayuda de cuadros de diálogo de configuración específicos de módulo.
- Con las CPU de Compact de 16 bits, los módulos de E/S se configuran en tiempo de ejecución con lógica de usuario.

La emulación de módulos Compact (parámetros de configuración de E/S) está limitada a proyectos que contienen una CPU de Compact de 32 bits.

Bloques de E/S de canal específicos de módulo

Según los diferentes datos de parámetros del módulo Compact, el convertidor solo establecerá los bloques de E/S de canal específicos del módulo Modicon M340 que contengan, entre otros, parámetros de escalado y de límite.

Cuando no puede configurarse un canal para que actúe como si estuviera con la familia Compact, se inserta un bloque ConvError en una sección ST generada por el convertidor, que le informa de que hay un problema que debe resolverse mediante cambios de lógica en el hardware o en los programas.
En este caso, el canal se configura con una configuración predeterminada (la misma que cuando se inserta manualmente el módulo en la ventana de configuración del Bus PLC).

Durante Analizar, aparece un mensaje ConvError en la ventana de salida. Haga doble clic en el mensaje para navegar hasta la sección ST que contiene el bloque ConvError.

En esta sección aparece el bloque ConvError en un comentario de tema que contiene la dirección topológica del canal.

Puede recuperar la configuración del módulo y abrirlo con la dirección topológica.

Es necesario configurar el módulo con posibilidades de Modicon M340 y, potencialmente, cambiar la lógica del programa.

Tras resolver el problema, puede confirmarlo y eliminar el bloque ConvError.

Sin emulación de palabras de estado de Compact

Con la excepción de DAU204, no habrá ninguna emulación de palabras de estado de Compact en la aplicación de destino de Control Expert.

Por lo tanto, deberá comprobar la aplicación y la comunicación, si se ha utilizado esa información de estado.

Sin adaptación de valor de canal de corriente analógico

No hay adaptación de valor de canal de corriente analógico.

Compact tiene un comportamiento especial. Para algunos módulos analógicos, en caso de detectar un límite de rango o un conductor interrumpido, el valor de canal de corriente analógico se establece en un valor predefinido. Por ejemplo, el valor de signo de 15 bits ADU205 se configura en -32.768 si se ha llegado a estar por debajo del rango.

Dado que en Modicon M340 los valores de canales de corriente analógicos no se adaptarán, debe comprobar la aplicación en relación con la utilización de los valores de canales de corriente analógicos.

Parámetros dependientes del módulo

Los parámetros del módulo Modicon M340 generados dependen del módulo y se describen en el capítulo Conversión especial para módulos de E/S Compact (véase página 291).
Cuadros de diálogo de configuración específicos

Si durante la importación se ha creado una sección ST para simular el comportamiento de configuración de Compact, el convertidor crea una configuración de módulo de E/S específico con cuadros de diálogo de configuración específicos (véase página 244).

Consulte también la ficha Memoria (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento).

El área Gestión de memorias queda atenuada y la opción se fija en Memoria mixta topológica y de señal.

En el área Memoria de señal, las opciones Formato y Codificación las define la importación.

Estos módulos solo se pueden eliminar. No es posible copiar ni pegar estos módulos.

Emulación de módulos

Cuando se importa una aplicación Compact LL984 heredada en Control Expert con Modicon M340 como familia PLC de destino y la configuración de los módulos de E/S Compact no se puede convertir directamente a una configuración del módulo Modicon M340, en algunos casos se crearan secciones ST para emular el comportamiento de la configuración de Compact.

En este párrafo se describe la emulación de módulos en caso de convertir los módulos de E/S de Compact en módulos de Modicon M340.

La secuencia de segmentos LL984 en la tarea MAST se introduce mediante la importación con una sección ST ATSTCopIn dedicada al procesamiento previo de datos de módulos de entrada y finaliza con una sección ST ATSTCopOut para el procesamiento posterior de datos de módulos de salida.

<table>
<thead>
<tr>
<th>Segmentos de emulación</th>
<th>Cuadro de diálogo de configuración con sugerencia de emulación de módulos</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Programa</em></td>
<td><em>0.2: BMX AMI 0410</em></td>
</tr>
<tr>
<td><em>Tareas</em></td>
<td>Módulo de emulación: AS-8ADU-2X0</td>
</tr>
<tr>
<td><em>MAST</em></td>
<td></td>
</tr>
<tr>
<td><em>Secciones</em></td>
<td></td>
</tr>
<tr>
<td><em>ST</em></td>
<td></td>
</tr>
<tr>
<td><em>ATSTCopIn</em></td>
<td></td>
</tr>
<tr>
<td><em>Segment_1</em></td>
<td></td>
</tr>
<tr>
<td><em>ST</em></td>
<td></td>
</tr>
<tr>
<td><em>ATSTCopOut</em></td>
<td></td>
</tr>
<tr>
<td><em>Secciones SR</em></td>
<td></td>
</tr>
</tbody>
</table>
En el encabezado del cuadro de diálogo de configuración de un módulo con procesamiento previo o posterior, el nombre del módulo original aparece después de la introducción del Módulo de emulación.

Como orientación, ambas secciones ST muestran una lista de comentarios: para cada módulo, la posición topológica, el nombre del módulo generado y el nombre del módulo original.

Por ejemplo: (* 0.0 BMXP342020 (984-E258): *).

Después de la línea de comentario del módulo, se implementa el procesamiento específico de módulo.

Ejemplo:

- ADU256, DAU204: construcción de la palabra de estado de módulo específica
- Notas de ConvError para canales de módulos que no se pueden convertir automáticamente, por ejemplo, debido a los módulos originales configurados solo manualmente (por ejemplo, ADU 216) o a que la resolución no está disponible.
- ADU 204-254: escalado de termopar

Si está seleccionada la opción de conversión de direcciones Full Topological, el código de copia para los datos de módulo entre la dirección topológica y las áreas de espejo en la memoria %M o %MW se coloca también en estas secciones.

**Modicon Compact / E/S de serie A120 (Quantum como familia PLC de destino)**

Los módulos de E/S Compact son sustituidos por módulos Quantum.

Consulte Módulos Compact (véase página 284).

Puesto que la mayoría de los módulos de E/S Quantum facilitan un tamaño de datos mayor que los módulos E/S Compact, en muchos casos puede presentarse un solapamiento y es posible que tenga que ajustar la aplicación.

Durante la importación se hace caso omiso de los módulos Compact no admitidos.

Si en la familia Quantum no existe ningún módulo de E/S equivalente, el slot quedará vacío y se generará una sugerencia en el archivo de registro.

Un mensaje del archivo de registro de importación le recuerda que debe reemplazar usted mismo estos módulos después de importarlos.

**Casos especiales:**

**Los parámetros de EHC10500 no se pueden configurar correctamente después de la conversión de un ZAE 20.**

En este caso, después de la importación de la aplicación se muestra un mensaje como este:

(Device (1.4) 140 EHC 105 00): Parameter <DEFAULT TO RELATIVE SET> out of range (value (0) not in [1 to 1])

Para corregir este problema, debe eliminar el módulo y reconfigurarlo con los parámetros correctos de la aplicación heredada.
La aplicación que contiene 140MSB10100 o 140EIA92100 acaba con NoConf.

Cuando se importa un proyecto de Compact heredado que contiene una tarjeta B MOT201, el PLC de Control Expert está en el estado NoConf después de la descarga.

Durante la importación de la configuración se convierte B MOT201 en un módulo 140 MSB101-00. Este módulo no está convertido correctamente. El SO de Control Expert detecta un tamaño de parámetro incorrecto y pasa al estado NoConf.

Este problema puede aparecer también al utilizar los módulos 140 EIA921-00.

Como solución, debe eliminar el módulo de la configuración de Control Expert, volverlo a crear y especificar manualmente los parámetros desde la aplicación heredada.

Serie 800

Los equivalentes directos disponibles para la serie 800 se sustituyen por el mismo módulo.

Los módulos cuya lógica sea equivalente pero que tengan características eléctricas distintas, se tratan de manera común.

Consulte Módulos de la serie 800 (véase página 271).

El módulo de 8 bits debe asignarse en direcciones de 16 bits.

Tras la importación de una aplicación LL984 heredada en Control Expert, en algunos casos se muestra este mensaje:

El módulo de 8 bits de S800 debe asignarse en un límite de 16(+1) bits

En este caso, debe asignar el módulo de 8 bits de la estación S800 a direcciones de 16 bits. Control Expert gestiona la asignación de datos en límites de 16 bits.

Configuración de estación de Control Expert no válida

Si una aplicación LL984 heredada importada contiene una estación con más de 2 bastidores de módulos de E/S de la serie 800, esta se traduce en una estación Quantum local con el mismo número de bastidores. Esta configuración no es válida con Control Expert, puesto que una estación Quantum local sólo puede tener un máximo de 2 bastidores. Esto se indica mediante un mensaje en la ficha Importar/exportar de la ventana Salida.

Como solución, para una estación Quantum con tres bastidores, arrastre y suelte los módulos del bastidor 3 a los bastidores 1 y 2 y, a continuación, elimine el bastidor 3. Al arrastrar y soltar, Control Expert adapta la lógica automáticamente.
Serie 200/500
Los módulos de E/S de las series 200 y 500 por lo general se remplazan por dos módulos de E/S de la serie 800.
Por lo general, Control Expert y los sistemas LL984 heredados admiten estas familias de E/S, así que los módulos de lógica similar se tratan de manera común.
Consulte Módulos de las series 200/500 (véase página 278).

Las E/S de serie 200 no se importan correctamente
Al importar una aplicación ProWORX o Modsoft con un controlador Modicon 984B, es posible que el Traffic Cop no se importe correctamente.
El proyecto importado contendrá más canales con módulos de E/S que los configurados en el proyecto de origen.
Como solución, se recomienda reemplazar el PLC de la aplicación LL984 heredada por un PLC Quantum antes de importar la aplicación en Control Expert.

SY/MAX
Se reemplazan los equivalentes directos disponibles para módulos de E/S SY/MAX.
Consulte Módulos SY/MAX (véase página 281).
Durante la importación se hace caso omiso de los módulos de E/S SY/MAX no admitidos.
Un mensaje del archivo de registro de importación le recuerda que debe reemplazar usted mismo estos módulos después de importarlos.

Series 300 y DCP
No se admiten las familias de E/S de la serie 300 y DCP.

Parameter <NOT USED>
Tras la importación de una aplicación LL984 heredada en Control Expert, en algunos casos se muestra este mensaje:
Parameter <NOT USED> out of range [value 0] not in [1 to 1]
Elimine la configuración del módulo y vuelva a configurarlo con los parámetros correctos desde la aplicación heredada.
Importación de la configuración de comunicación

Introducción

Las aplicaciones LL984 heredadas ofrecen funciones de comunicación tales como ampliaciones de configuración.

Durante la importación sólo se convierten las siguientes ampliaciones:
- Comunicación TCP/IP
- Peer Cop
- Explorador de E/S
- Ethernet SY/MAX

Comunicación TCP/IP

La ampliación de TCP/IP permite que el controlador funcione con una tarjeta de comunicación TCP/IP.

Los controladores admiten diversos números de tarjetas de comunicación TCP/IP:
- Los controladores Quantum 113 revisión 2, y 213 revisión 2 admiten 2 tarjetas
- El Quantum 424 revisión 2 admite hasta 6 tarjetas
- Los controladores Momentum M1E sólo admiten 1 tarjeta y el número del módulo de comunicaciones está fijado en 1.

Durante la importación de una aplicación LL984 heredada, se convierten los siguientes parámetros TCP/IP:
- Número de la tarjeta (1-6)
- Número de slot (1-16)
- Dirección IP (1-255),(1-255),(1-255),(1-255) en la sección de direcciones IP, máscara de subred y campos IP de la pasarela.
  0.0.0.0 indica una dirección no definida.
- Tipo de transferencia (Ethernet II o IEEE 802.3)
- Selección de la dirección IP
  ° Ampliación: al arrancar, el PLC lee de esta ampliación la información relativa a la dirección TCP/IP.
  ° BOOTP: al arrancar, el PLC solicitará a un servidor BOOTP la información relativa a la dirección TCP/IP.

Para obtener más información, consulte Configuración TCP/IP de Quantum.
Peer Cop

La ampliación Peer Cop proporciona transferencias de datos entre 2 o más controladores en una red de sistemas interconectados, así como conexiones entre varias redes mediante la tarjeta de comunicación S985.

Peer Cop configura bloques de datos para que se transfieran continuamente (una vez por ciclo) entre nodos de una red Modbus Plus.

Los datos se pueden difundir a todos los nodos de un solo enlace (E/S globales) o entre nodos Modbus Plus específicos de un enlace (E/S específicas).

Simultáneamente se pueden transferir a (o leer de) un controlador, un máximo de 32 registros de datos o 512 puntos de E/S (por ejemplo, 32*16).

Peer Cop es compatible con los controladores Compact con CPU A145 y E-Series, Momentum y Quantum equipados con adaptadores NOK Modbus+.

Se pueden configurar y editar hasta tres enlaces de Peer Cop.

Durante la importación de una aplicación LL984 heredada, los parámetros Peer Cop se convierten a Control Expert.

Para obtener más información, consulte Configuración Peer Cop (véase Quantum con EcoStruxure™ Control Expert, Módulos de red Modbus Plus, Manual del usuario).

Explorador de E/S

Durante la importación de una aplicación LL984 heredada (con Quantum como familia PLC de destino), se convierten los siguientes parámetros de exploración de E/S:

- Tipo de transacción
  - Directo
    - Crea una única transacción en el dispositivo local. Los datos se transfieren sin tener en cuenta la programación del dispositivo remoto. Esta opción es más sencilla que el enlace cliente/servidor, ya que el dispositivo de destino no necesita ningún programa adicional para verificar su funcionamiento.
  - Enlace cliente/servidor
    - Crea un par de transacciones coincidentes, una en cada dispositivo. El servidor realiza una petición a un cliente y, a continuación, este responde a dicha petición. Esta opción es más complicada de instalar y conservar que las transacciones directas.

- Dirección IP del campo de dirección IP del dispositivo local en el formato estándar de IP (1-255),(1-255),(1-255).
  - Para Quantum, seleccione el slot en que reside la tarjeta NOE (o adaptador similar de Ethernet).

- PLC de destino con los que se vaya a establecer la comunicación.
  - Estos PLC de destino se denominan dispositivos remotos. Debe haber al menos un dispositivo remoto definido antes de proceder - Dirección IP del PLC para el dispositivo remoto.
  - Si usa un PLC Quantum, seleccione el slot en que reside la tarjeta NOE (o adaptador similar de Ethernet).
Transacciones
Para transferir datos de un dispositivo a otro se requiere una transacción. Se pueden crear hasta 128 transacciones, excepto si se están utilizando PLC M1E, que sólo admiten 64 transacciones.
- Función (leer/escribir)
- Desde y hasta (4xxxx direcciones)
- Longitud (número de campos de registro en el área Leer de dispositivo remoto y Escribir en dispositivo remoto).

Para obtener más información, consulte Configuración del explorador de E/S Quantum (véase Quantum con EcoStruxure™Control Expert, TCP/IP Configuración, Manual del usuario).

NOTA: Con Control Expert no está permitido establecer en cero los parámetros Timeout de estado o Velocidad de repetición. (Con la aplicación LL984 heredada, estos parámetros se podían establecer en cero).

El bloque de control del dispositivo no se ha importado para los proyectos de ProWORX.
Al importar una aplicación LL984 heredada con una configuración del explorador de E/S de Ethernet configurado, la configuración del bloque de control del dispositivo no se importa.
Después de la importación, vuelva a escribir la dirección del bloque de control del dispositivo en la ventana de configuración de Ethernet de Control Expert.

Ethernet SY/MAX
La ampliación de configuración de SY/MAX permite acceder y configurar correctamente hasta 6 tarjetas SY/MAX RIO.
Esta ampliación sólo está disponible para controladores Quantum revisión 2 o posteriores.
Durante la importación de una aplicación LL984 heredada, se convierten los siguientes parámetros Ethernet SY/MAX:
- Número de la tarjeta (1-6)
- Número de estación de módulo (de −1 a 99). Establézcalo en −1 si la estación no está definida.
- Slot de la placa de conexiones (número de slot (de 0 a 16) que ocupa la tarjeta RIO. Establézcalo en 0 para eliminar un módulo.
- Número de reintentos (de 1 a 255)
- Timeout (de 1 ms a 65535 ms)

Para obtener más información, consulte Módulos Ethernet Quantum (véase Quantum con EcoStruxure™ Control Expert, Expertos y comunicación, Manual de referencia).

NOTA: Si el contenido de la ampliación de configuración de SY/MAX no se importa a la aplicación de destino de Control Expert, deberá consultar y ajustar el parámetro de configuración de NOE311/NOE351 en la aplicación de destino de Control Expert.
**Importación de descriptores y comentarios**

**Introducción**

Durante la importación de una aplicación (*véase página 218*), se importan los siguientes elementos de las aplicaciones heredadas de LL984:

- Descriptores
- Comentarios cortos
- Comentarios largos
- Títulos de página

**Descriptores**

Los descriptores (1-9) de variables se importan y se pueden mostrar y editar mediante el *Editor de datos* o el cuadro de diálogo *Propiedades de datos*.

Consulte Configuración de las columnas del editor de datos (*véase EcoStruxure™ Control Expert, Editor LL984, Manual de referencia*).

**NOTA:** En un proyecto LL984 de Control Expert, los descriptores de símbolo de un proyecto Modsoft se convierten en comentarios cortos.

**NOTA:** Los descriptores de bit de Modsoft o ProWORX no se convierten puesto que no tienen equivalentes en los proyectos LL984 de Control Expert.

**Comentarios cortos**

El comentario corto de una variable se importa y se muestra como propiedad del *Comentario* de la variable.

Este se puede mostrar y editar mediante el *Editor de datos* o el cuadro de diálogo *Propiedades de datos*.

El *Comentario* también se puede mostrar en el editor LL984. Consulte Visualización de red (*véase EcoStruxure™ Control Expert, Editor LL984, Manual de referencia*).

Los comentarios cortos asociados a una red se importan como comentarios de red.
Comentarios largos

Durante la importación de una aplicación se puede seleccionar una de las 2 opciones siguientes:

- **1:1 en el proyecto**
- **1:n en archivos con hipervínculos**

Consulte Cuadro de diálogo Opciones de LL984 adicional (véase página 220).

Si se selecciona

- **1:1 en el proyecto**, el comentario largo de una variable se importa y se muestra como propiedad **Personalizada** de la variable.

  Los comentarios largos asociados a una red se importan como comentarios de red.

- **1:n en archivos con hipervínculos**, los comentarios largos se convierten en archivos de texto.

  - Si ya existe un comentario en la columna **Comentarios** de la variable, este se mostrará de color azul y funcionará como hipervínculo al archivo de texto.
  - Si no hay comentarios en la columna **Comentarios** de la variable, se muestra una ruta de acceso relativa de color azul que sirve de hipervínculo al archivo de texto.

Un comentario largo asociado a una red se importa como hipervínculo para la red y su Nombre de usuario será el mismo que el nombre de red y la Ruta de destino la misma que el archivo de texto en que está almacenado el comentario largo.

Este hipervínculo se puede activar por medio del Explorador de proyectos.

Los hipervínculos están disponibles en la columna **Comentarios** de la variable del editor de datos y en el cuadro de diálogo **Propiedades de datos**.

El Comentario también se puede mostrar en el editor LL984. Consulte Visualización de red (véase EcoStruxure™ Control Expert, Editor LL984, Manual de referencia).

**NOTA:** Los comentarios largos no se incluirán en la información de carga.

Hipervínculo para un comentario de red largo

En caso de que no se cree un hipervínculo para un comentario de red largo se deberá crear manualmente.

Los archivos de comentarios largos se almacenan en la ubicación seleccionada durante la importación.

El nombre de los archivos de comentarios largos será _LCx, donde x es el número de comentario largo.

En el cuadro de diálogo de propiedades del hipervínculo (accesible mediante el menú contextual de la red), es posible navegar hasta la carpeta de comentarios largos y seleccionar el archivo de comentarios largos deseado.
Títulos de página

El **Título de página** de una red de la aplicación LL984 heredada se importará como nombre de red. El **Título de página** de una red de la aplicación LL984 heredada puede tener hasta 64 caracteres. Como los nombres de red de Control Expert están limitados a 32 caracteres, estos se truncan y se añade automáticamente un sufijo numérico para que el nombre sea único.

Los caracteres en blanco se reemplazan por guiones bajos.

Se puede editar el nombre de la red con su cuadro de diálogo **Propiedades** por medio del menú contextual (haciendo clic con el botón derecho del ratón) o directamente en el **Explorador de proyectos**.

El **Título de página** no cambiado se muestra en el comentario de la red.
Importar

Restricciones de importación

**Macros**

Las macros de ProWORX32, ProWORX Nxt, Modsoft SFC y Modsoft no se convierten ni se admiten.

**Ventanas de visualización de datos**

Durante la importación, las ventanas de visualización de datos usadas en las aplicaciones LL984 heredadas se convierten en tablas de animación en Control Expert.

Consulte Forzado de variables mediante tablas de animación (véase EcoStruxure™ Control Expert, Editor LL984, Manual de referencia) y Tablas de animación (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento).

**Tablas de animación**

La importación de las tablas de animación depende de la aplicación LL984 heredada:

- **Concept**
  Con Concept, todas las tablas de animación (*.RDE) de la carpeta de la aplicación se importan en Control Expert, pero sin conexiones con la aplicación que se esté importando.

- **Modsoft**
  Las tablas de animación Modsoft (*.RFD) no se importan en Control Expert. Se tienen que introducir manualmente.

- **ProWORX32**
  Con ProWORX32, solamente se importa en Control Expert la última tabla de animación que se haya abierto y que se almacene en el archivo de la aplicación. Los archivos externos (*.DWA) no se importan en Control Expert.

- **ProWORX Nxt**
  Las tablas de animación ProWORX Nxt (*.DWW) no se importan en Control Expert. Se tienen que introducir manualmente.

**Hot Standby**

La importación admite sólo la configuración Hot Standby de Quantum realizada mediante la ampliación de configuración Hot Standby.

Para obtener más información, consulte Importación de configuraciones Hot Standby (véase página 239).
Instrucciones y elementos cargables por el usuario no admitidos de versiones de LL984 heredadas

Si la aplicación importada Ladder Logic LL984 contiene instrucciones lógicas de LL984 no admitidas o elementos cargables por el usuario, ocurre lo siguiente:

1. **El registro de la importación identifica las instrucciones o los archivos cargables no compatibles con un mensaje:** Se ha encontrado una instrucción o elemento cargable no admitidos.

2. La importación coloca en la misma ubicación de la lógica un DFB vacío idéntico a la instrucción LL984.

3. **El DFB vacío contiene la lógica ST:**
   
   ```
   {ConvError ('Se ha encontrado una instrucción o elemento cargable no admitidos. Para obtener más información, consulte el apartado de importación de archivos');};
   ```

   Este código no es ejecutable y produce una notificación durante la función Analizar del proyecto.

Si los DFB vacíos forman parte de la aplicación importada, siga este procedimiento:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elimine o marque como comentario el ST del DFB vacío para eliminar las notificaciones durante el análisis de la aplicación.</td>
</tr>
<tr>
<td>2</td>
<td>Si aún se necesita en la aplicación la instrucción o elemento cargable por el usuario no admitidos, genere una lógica DFB de reemplazo mediante las instrucciones de IEC disponibles.</td>
</tr>
<tr>
<td>3</td>
<td>Si necesita asistencia técnica, póngase en contacto con el representante local de Schneider Electric.</td>
</tr>
</tbody>
</table>

Las instancias lógicas de los DFB vacíos se pueden asignar de diferentes maneras:

- Use el ícono **Buscar** de la barra de herramientas.
- Haga doble clic en el DFB, en el **explorador de proyectos**.
- Haga clic con el botón derecho del ratón en el DFB, en **Tipos de DFB** y seleccione **Inicializar búsqueda** en el menú contextual.

Para ver las instrucciones de versiones de LL984 heredadas que no se admiten en Control Expert, consulte **Bloques de funciones no implementados** (véase EcoStruxure™ Control Expert, UnityLL984, Biblioteca de bloques).
Redes de ecuación

Si la aplicación importada Ladder Logic LL984 contiene redes de ecuación con conversiones cuestionables (por ejemplo, conversiones de tipos implícitas), ocurre lo siguiente:

- El respectivo Bloque de la red de ecuación contiene la instrucción de la ecuación importada y un mensaje adicional:
  Compruebe que esta ecuación es correcta y está integra antes de proceder.
- Este mensaje produce una notificación durante la función Analizar de la aplicación.
- Después de verificar que el Bloque de la red de ecuación es correcto, se deberá eliminar el mensaje para conseguir una función Generar correcta.

Después de importar una red de ecuación, el sufijo de tipo de datos de las variables INT S es diferente del sufijo creado por el Editor LL984.

Los sufijos generados son estos:

<table>
<thead>
<tr>
<th>Tipo de datos</th>
<th>Importación</th>
<th>Editor LL984</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT S</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>DINT L</td>
<td>DI</td>
<td>-</td>
</tr>
<tr>
<td>UDINT</td>
<td>UL</td>
<td>UD</td>
</tr>
<tr>
<td>REAL</td>
<td>F</td>
<td>L</td>
</tr>
<tr>
<td>WORD</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>DWORD</td>
<td>DW</td>
<td>DW</td>
</tr>
</tbody>
</table>

Importación de redes de ecuación a Control Expert para Modicon M340

Modicon M340 tiene normas de alineación de variables específicas que son diferentes de Quantum.

Según la aplicación LL984 heredada, es posible que la alineación de tipos de variables de la red de ecuaciones importada no coincida con las normas de alineación de Modicon M340 en estos casos:

- Si se importa una aplicación LL984 heredada que contenga redes de ecuación.
- Si se selecciona Modicon M340 como plataforma de destino.

En este caso, se crea un error de compilación al Analizar la aplicación.

Modifique la ecuación para que coincida con las normas de alineación de Modicon M340 para conseguir una Generación correcta.

Alineación de Modicon M340:

- Los de tipo BOOL y BYTE se alinean en bytes pares o impares.
- Los de tipo INT, WORD y UINT se alinean en bytes pares.
- Los de tipo DINT, UDINT, REAL, TIME, DATE, TOD, DT y DWORD se alinean en palabras dobles.
Importar

Identificadores duplicados
Si la aplicación importada Ladder Logic LL984 contiene identificadores duplicados, por ejemplo, si una red y un segmento tienen el mismo nombre, se interrumpe la importación.
Aparece el siguiente mensaje:
Error al crear el objeto. Duplique el identificador.
Deberá abrir la aplicación con el software de la versión de LL984 heredada (es decir, Concept, ProWORX32, etc.) y verificar que los identificadores no se repitan.
A continuación podrá importar de nuevo la aplicaciones heredadas.

Palabra de estado de estación
En caso de que las palabras de estado asignadas de E/S para estaciones de E/S Quantum o Compact, el software de Concept o ProWORX evite una utilización doble de referencias 3x de esta área de estado asignada de E/S.
El tamaño del área dependerá del número de slot más alto configurado (ejemplo: si hay configurado un módulo en el número de slot 8, se evitará el uso como palabras de entrada de las cuatro primeras referencias 3x del área de estado del módulo).
En el caso de Control Expert con un PLC Quantum, con independencia del slot más alto configurado, se reservan, y no se pueden utilizar como referencias de entrada, 8 palabras %IW para el bastidor primario y otras 8 palabras %IW para un bastidor secundario.
Debido a esto, es posible que después de la importación se asigne un módulo de E/S a una dirección %IW que se ha permitido en la aplicación heredada pero que da lugar a un mensaje de error al Generar la aplicación de Control Expert.
En este caso debe volver a asignar los módulos de E/S o el área de estado asignada de E/S y adaptar la aplicación relativa a estas direcciones de %IW modificadas.

Aplicación AS-i Proworx, reglas de conversión
Si la aplicación AS-i Proworx utiliza la asignación de bits de entrada/salida, siga el procedimiento que se indica en este apartado de FAQ para convertir y adaptar la aplicación en Control Expert.
Importación de partes de aplicaciones con el asistente de conversión

Introducción

El asistente de conversión es una parte integrada de Control Expert.

Se puede utilizar para lo siguiente:
- convertir aplicaciones exportadas de aplicaciones antiguas (PL7 y Concept) a Control Expert
- convertir aplicaciones heredadas parcialmente o en su totalidad
- reasignar objetos de E/S (canales, variables, etc.) durante la conversión mediante el asistente
- adaptar la configuración del hardware de la nueva aplicación simultáneamente en Control Expert
- modificar la cantidad de memoria utilizada en la CPU

Para obtener información detallada, consulte Asistente de conversión (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento).
Capítulo 24
Exportar

Exportación/importación de segmentos y redes LL984

Introducción
Se pueden exportar e importar segmentos y redes LL984 desde la Vista estructural del Navegador de proyectos.

Restricciones
A diferencia del cuadro de diálogo Exportar para otras secciones de lenguaje, el cuadro de diálogo para segmentos y redes LL984 no dispone de la casilla de verificación Con SR, pues las redes de subrutinas llamadas en las redes exportadas no se exportan. Esto es porque el número de subrutina llamado puede estar dado como parámetro en tiempo de ejecución, por lo tanto no se sabe de antemano qué subrutinas se han llamado en realidad. Si desea usar las subrutinas llamadas en otra aplicación, deberá exportar y volver a importar el segmento de subrutina LL984 completo.

Archivos generados
Durante la exportación se generan archivos con las siguientes extensiones:
- *.X9S para segmentos LL984
- *.X9N para redes LL984

Los archivos creados también incluyen las definiciones de variables y tipos de variables empleadas dentro de los segmentos y redes exportados.

Exportación de segmentos y redes LL984

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seleccione el elemento que se va a exportar (segmento o red LL984).</td>
</tr>
<tr>
<td>2</td>
<td>Haga clic con el botón secundario y seleccione Exportar en el menú contextual, o use el comando de menú Archivo → Exportar.</td>
</tr>
<tr>
<td>3</td>
<td>Seleccione el directorio de destino para la exportación y escriba el nombre del archivo.</td>
</tr>
<tr>
<td>4</td>
<td>Seleccione o anule la selección de las opciones Con DDT/Con DFB.</td>
</tr>
<tr>
<td>5</td>
<td>Haga clic en el botón Exportar.</td>
</tr>
<tr>
<td>6</td>
<td>Cuando la exportación se haya completado aparecerá en la ficha Importar/exportar de la ventana de resultados un mensaje que lo indica.</td>
</tr>
</tbody>
</table>
Importación de redes LL984
Para importar un archivo *.X9N (red LL984), deberá seleccionar un nodo de segmento LL984 en la Vista estructural del Navegador de proyectos.
Haga clic con el botón secundario y seleccione Importar en el menú contextual, o use el comando de menú Archivo → Importar.
Si se presentan conflictos de nomenclatura para el nombre de la red o las variables y los tipos de variables empleados, aparecerá un cuadro de diálogo de Importar informe de problemas. Consulte la sección Gestión de conflictos (véase EcoStruxure™ Control Expert, Modalidades de funcionamiento).

Importación de segmentos LL984
Para importar un archivo *.X9S (segmento LL984) deberá seleccionar Secciones o Secciones SR en la Vista estructural del Navegador de proyectos.
Haga clic con el botón secundario y seleccione Importar en el menú contextual, o use el comando de menú Archivo → Importar.
Si se presentan conflictos de nomenclatura, aparecerá un cuadro de diálogo de Importar informe de problemas.
La importación de un archivo *.X9S al nodo Secciones SR puede hacer que exista más de un segmento LL984 en Secciones SR.
Esto se detectará durante la función Analizar y conducirá a un error de análisis.
Si se presenta este caso, desplace las redes de subrutina LL984 necesarias a un segmento SR LL984 y elimine los otros segmentos SR LL984.
Incluso si no está establecida la opción Ladder Logic (LL984), que se encuentra en Herramientas → Configuración del proyecto → Programa → Lenguajes, se pueden importar archivos *.X9S sin que se produzcan mensajes de error, y se crearán los correspondientes segmentos y redes. En este caso, más tarde, durante la función Analizar aparecerá para estos segmentos y redes un mensaje de incorrect language.
En el menú contextual de segmentos, la entrada del menú para importar redes está desactivada si no se ha especificado la opción Ladder Logic (LL984).
Parte IV
Tabla de conversiones de módulos de E/S

Descripción general
En esta parte se describen los módulos de E/S y las especificidades de conversión de los módulos compatibles.

Contenido de esta parte
Esta parte contiene los siguientes capítulos:

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Nombre del capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Módulos de E/S admitidos/no admitidos</td>
<td>263</td>
</tr>
<tr>
<td>26</td>
<td>Conversión especial para los módulos de E/S Compact</td>
<td>291</td>
</tr>
<tr>
<td>Tabla de conversiones de módulos de E/S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Capítulo 25
Módulos de E/S admitidos/no admitidos

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulos Quantum</td>
<td>264</td>
</tr>
<tr>
<td>Módulos de la serie 800</td>
<td>271</td>
</tr>
<tr>
<td>Módulos de las series 200/500</td>
<td>278</td>
</tr>
<tr>
<td>Módulos SY/MAX</td>
<td>281</td>
</tr>
<tr>
<td>Módulos Compact</td>
<td>284</td>
</tr>
</tbody>
</table>
Módulos de E/S admitidos/no admitidos

Módulos Quantum

Módulos Quantum admitidos

Entrada analógica

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIO30-00</td>
<td>Entrada unipolar analógica de 8 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>ACIO40-00</td>
<td>Módulo de corriente analógica de 16 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>AI1330-00</td>
<td>Entrada analógica autosegura</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>AI1330-10</td>
<td>Corriente de entrada analógica de 8 canales autosegura</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>ARIO30-10</td>
<td>RTD de 8 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>ATI030-00</td>
<td>Termopar de 8 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>AVIO30-00</td>
<td>Entrada analógica bipolar de 8 canales</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>

Salida analógica

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO020-00</td>
<td>Módulo de salida analógica de 4-20 mA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>ACO130-00</td>
<td>Módulo de salida de 8 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>AI0330-00</td>
<td>Salida analógica autosegura</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>AVOO20-00</td>
<td>Módulo de salida de tensión analógica</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>

Entrada digital

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAI340-00</td>
<td>Módulo de 16 entradas ISO de 24 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI353-00</td>
<td>Módulo de 32 entradas de 24/48 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI440-00</td>
<td>Módulo de 2×8 entradas de 48 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI453-00</td>
<td>Módulo de 32 entradas de 48 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI540-00</td>
<td>Módulo aislado de 16 entradas de 115 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI543-00</td>
<td>Módulo de 2×8 entradas de 115 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI553-00</td>
<td>Módulo de 32 entradas de 115 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI740-00</td>
<td>Módulo de 16 entradas de 230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAI753-00</td>
<td>Módulo de 4×8 entradas de 230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>Módulo antiguo</td>
<td>Descripción</td>
<td>Sustituido por un módulo de Control Expert</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>DCF077-00</td>
<td>Módulo de tiempo GPS o DTS</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD153-10</td>
<td>Módulo de 4×8 entradas de 5 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD153-00</td>
<td>Módulo de 32 entradas de 24 V CC</td>
<td>140DD153-310</td>
</tr>
<tr>
<td>DD153-10</td>
<td>Módulo de 32 entradas de 24 V CC, lógica negativa</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD1364-00</td>
<td>Módulo de 6×12 entradas rápidas de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD1673-00</td>
<td>Módulo de entrada de 24 puntos de 125 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD1841-00</td>
<td>Módulo de 16 entradas de 10-60 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD1853-00</td>
<td>Módulo de 32 entradas de 10-60 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DI330-00</td>
<td>Entrada digital autosegura</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DI3353-00</td>
<td>Módulo de entrada de 32 puntos de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DII340-00</td>
<td>Alta velocidad/retención/interrupt</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>

**Salida digital**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAO840-00</td>
<td>16 salidas de 24-230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAO840-10</td>
<td>16 salidas de 24-115 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAO842-10</td>
<td>Módulo de 16 salidas de 100-230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAO842-20</td>
<td>16 salidas de 24-48 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAO853-00</td>
<td>4×8 salidas de 24-230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DDO153-10</td>
<td>Módulo de 4×8 salidas de 5 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DDO353-00</td>
<td>Módulo de 32 salidas de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DDO353-01</td>
<td>Módulo de salida de 32 puntos de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DDO353-10</td>
<td>Módulo de 32 salidas de 24 V CC, lógica negativa</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DDO364-00</td>
<td>Módulo de 96 salidas de 24 V CC, lógica positiva</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD0843-00</td>
<td>16 salidas de 10-60 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DD0855-00</td>
<td>Módulo de salida de 12 puntos de 125 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DIO330-00</td>
<td>Salida digital autosegura</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DRA840-00</td>
<td>Relé de 16 salidas</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DRC830-00</td>
<td>Relé ISO de 8 salidas</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DVO853-00</td>
<td>Módulo de salida verificada de 10-30 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>
### Analógico genérico

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI050-00</td>
<td>Entrada de corriente analógica de 32 canales</td>
<td>GENANAIO</td>
</tr>
<tr>
<td>ACI051-00</td>
<td>Tensión/Corriente analógica de 32 canales</td>
<td>GENANAIO</td>
</tr>
<tr>
<td>ACI052-00</td>
<td>Tensión/Corriente analógica de 32 canales</td>
<td>GENANAIO</td>
</tr>
<tr>
<td>AU040-00</td>
<td>Módulo de entrada universal de 16 canales</td>
<td>GENANAIO</td>
</tr>
<tr>
<td>AVI050-00</td>
<td>Entrada de tensión analógica de 32 canales</td>
<td>GENANAIO</td>
</tr>
</tbody>
</table>

### Mixto

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMM090-00</td>
<td>Entrada/salida analógica 4 canales/2 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DAM390-00</td>
<td>Bidireccional de 16/8 de 24 V CA</td>
<td>140DAM59000</td>
</tr>
<tr>
<td>DAM490-00</td>
<td>Bidireccional de 16/8 de 48 V CA</td>
<td>140DAM59000</td>
</tr>
<tr>
<td>DAM590-00</td>
<td>Bidireccional de 16/8 de 120 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DCP</td>
<td>Módulo de control distribuido</td>
<td>GENNOM</td>
</tr>
<tr>
<td>DDM390-00</td>
<td>Bidireccional de 16/8 de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>DDM690-00</td>
<td>Módulo HPO de 4 entradas/4 salidas de 125 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>EHC105-00</td>
<td>Contador de alta velocidad de 5 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>EHC202-00</td>
<td>Contador de alta velocidad</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>EIA021-00</td>
<td>Interfaz de módulo AS-I de 1 canal</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>ERT854-10</td>
<td>Entrada digital inteligente de 32 puntos</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>ESIO262-10</td>
<td>Interfaz ASCII de 2 canales</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>MSB101-00</td>
<td>Codificador incremental de movimiento</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>MSC101-00</td>
<td>Descodificador/dispositivo de resolución de movimiento</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>NOA611-00</td>
<td>Módulo maestro INTERBUS-S</td>
<td>GENNOM</td>
</tr>
<tr>
<td>NOA611-10</td>
<td>Maestro INTERBUS-S con PCP</td>
<td>GENNOM</td>
</tr>
<tr>
<td>NOG111-00</td>
<td>Maestro Bitbus</td>
<td>GENNOM</td>
</tr>
</tbody>
</table>
### Comunicación

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRA211-10</td>
<td>Estación DIO MB+</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CRA211-20</td>
<td>Estación DIO MB+</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CRA212-10</td>
<td>Estación DIO MB+</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CRA212-20</td>
<td>Estación DIO MB+</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CRA931-00</td>
<td>Estación RIO S908</td>
<td>140CRA93X00</td>
</tr>
<tr>
<td>CRA932-00</td>
<td>Estación RIO S908</td>
<td>140CRA93X00</td>
</tr>
<tr>
<td>CRP811-00</td>
<td>Módulo de interfaz Profibus DP</td>
<td>PTQPDPMV1</td>
</tr>
<tr>
<td>CRP931-00</td>
<td>Módulo de comunicaciones RIO S908</td>
<td>140CRP93X00</td>
</tr>
<tr>
<td>CRP932-00</td>
<td>Módulo de comunicaciones RIO S908</td>
<td>140CRP93X00</td>
</tr>
<tr>
<td>NOE211-00</td>
<td>Par trenzado TCP/IP Ethernet</td>
<td>140NOE77111</td>
</tr>
<tr>
<td>NOE251-00</td>
<td>Fibra óptica TCP/IP Ethernet</td>
<td>140NOE77111</td>
</tr>
<tr>
<td>NOE311-00</td>
<td>Par trenzado Ethernet SY/MAX</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>NOE351-00</td>
<td>Fibra óptica SY/MAX Ethernet</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>NOE771-00</td>
<td>Ethernet TCP/IP de 10/100 megabits</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>NOE771-01</td>
<td>Ethernet TCP/IP de 10/100 megabits</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>NOE771-10</td>
<td>Servidor web FactoryCast</td>
<td>140NOE77111</td>
</tr>
<tr>
<td>NOE771-11</td>
<td>Ethernet TCP/IP de 10/100 megabits</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>NOM212-10</td>
<td>Tarjeta de interfaz de estación MB+</td>
<td>140NOM2XX00</td>
</tr>
<tr>
<td>NOM2XX-00</td>
<td>Tarjeta de interfaz de estación MB+</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>NWM100-00</td>
<td>Servidor web de FactoryCast HMI</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>P910</td>
<td>-</td>
<td>J892/P8XX</td>
</tr>
</tbody>
</table>

### Controlador

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>140CPU65150</td>
<td>Controlador</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>140CPU65160</td>
<td>Controlador</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>140CPU65260</td>
<td>Controlador</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>140CPU67160</td>
<td>Controlador</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>434/534</td>
<td>Controlador</td>
<td>140CPU53414A/U</td>
</tr>
<tr>
<td>CPU-113-2</td>
<td>Controlador</td>
<td>140CPU31110</td>
</tr>
<tr>
<td>CPU-113-3</td>
<td>Controlador</td>
<td>140CPU31110</td>
</tr>
<tr>
<td>CPU-213-4</td>
<td>Controlador</td>
<td>140CPU31110</td>
</tr>
</tbody>
</table>
### Módulos de E/S admitidos/no admitidos

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-424-X</td>
<td>Controlador</td>
<td>140CPU43412A/U</td>
</tr>
<tr>
<td>CPU-434</td>
<td>Controlador</td>
<td>140CPU43412A/U</td>
</tr>
<tr>
<td>CPU-534</td>
<td>Controlador</td>
<td>140CPU53414A/U</td>
</tr>
</tbody>
</table>

**Bastidor**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBP-002</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>XBP-003</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>XBP-004</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>XBP-006</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>XBP-008</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>XBP-010</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>XBP-016</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>

**Fuente de alimentación**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS-111</td>
<td>Fuente de alimentación 3 A de 115/230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-114</td>
<td>Fuente de alimentación 10 A de 115/230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS114-20</td>
<td>Fuente de alimentación 10 A de 115/230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-124</td>
<td>Fuente de alimentación RED 8A de 115/230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS124-20</td>
<td>Fuente de alimentación RED 8A de 115/230 V CA</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-211</td>
<td>Fuente de alimentación 3 A de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-214</td>
<td>Fuente de alimentación 8 A de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-224</td>
<td>Fuente de alimentación RED 8 A de 24 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-414</td>
<td>Fuente de alimentación SUM 8 A de 48 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-424</td>
<td>Fuente de alimentación RED 8 A de 48 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-511</td>
<td>Fuente de alimentación 3 A de 125 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS-524</td>
<td>Fuente de alimentación 8 A de 125 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>CPS524-20</td>
<td>Fuente de alimentación 10 A de 125 V CC</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>XBE-100</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>
### Extensor de placa de conexiones

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBE100-00</td>
<td>Extensor de placa de conexiones</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>

### Módulos Quantum no admitidos

#### Mixto

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMM090-0X</td>
<td>Salida analógica de 4 canales y 4-20mA</td>
</tr>
<tr>
<td>DEVNET-08</td>
<td>Explorador Devicenet de 16 registros</td>
</tr>
<tr>
<td>DEVNET-32</td>
<td>Explorador Devicenet de 64 registros</td>
</tr>
<tr>
<td>EHC204-00</td>
<td>Contador de alta velocidad de 4 canales</td>
</tr>
<tr>
<td>EHC208-00</td>
<td>Contador de alta velocidad de 8 canales</td>
</tr>
<tr>
<td>GPS100-00</td>
<td>Interfaz de sincronización de tiempo IRIG-B</td>
</tr>
<tr>
<td>I2T010-00</td>
<td>10 entradas/10 salidas I2T</td>
</tr>
<tr>
<td>I2T016-00</td>
<td>16 entradas/16 salidas I2T</td>
</tr>
<tr>
<td>MPM204-00</td>
<td>Módulo de prueba de medición de 4 canales</td>
</tr>
<tr>
<td>NOL911-XX</td>
<td>Interfaz LonWorks</td>
</tr>
<tr>
<td>NOP911-00</td>
<td>Módulo de interfaz Profibus FMS</td>
</tr>
<tr>
<td>QSPXM</td>
<td>Maestro Seriplex</td>
</tr>
<tr>
<td>SERX53-00</td>
<td>Grabador de la secuencia de eventos</td>
</tr>
</tbody>
</table>

#### Comunicación

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOE511-00</td>
<td>Par trenzado MMS Ethernet</td>
</tr>
<tr>
<td>NOE551-00</td>
<td>Fibra óptica MMS Ethernet</td>
</tr>
</tbody>
</table>

#### Contador

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCI186X</td>
<td>Interfaz del dispositivo de resolución helicoidal</td>
</tr>
<tr>
<td>MCI18X1X2</td>
<td>Módulo de la interfaz del dispositivo de resolución</td>
</tr>
<tr>
<td>MCI18X3X4</td>
<td>Interfaz de giro simple</td>
</tr>
</tbody>
</table>
Módulos de E/S admitidos/no admitidos

### Movimiento

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMB102-00</td>
<td>Movimiento de 2 ejes con incremental</td>
</tr>
<tr>
<td>MMB104-00</td>
<td>Movimiento de cuatro ejes con incremental</td>
</tr>
<tr>
<td>MMC120-0X</td>
<td>Control del movimiento de dos ejes</td>
</tr>
<tr>
<td>MMD102-00</td>
<td>Movimiento absoluto de dos ejes</td>
</tr>
<tr>
<td>MMD104-00</td>
<td>Movimiento absoluto de cuatro ejes</td>
</tr>
</tbody>
</table>

### Adaptadores diversos

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHS110-00</td>
<td>Hot Standby</td>
</tr>
<tr>
<td>HRT100-00</td>
<td>Tarjeta de comunicaciones serie HART</td>
</tr>
<tr>
<td>MDCCRDL-6</td>
<td>Módulo de bus, basculante</td>
</tr>
<tr>
<td>QUCM-SE</td>
<td>Comunicación universal NRD</td>
</tr>
<tr>
<td>XCP900-00</td>
<td>Sostén de batería</td>
</tr>
</tbody>
</table>
### Módulos de la serie 800 admitidos

**Entrada analógica**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>B863-001</td>
<td>Entrada de registro de 4 canales</td>
<td>B863</td>
</tr>
<tr>
<td>B863-032</td>
<td>Entrada de registro de 4 canales</td>
<td>B863</td>
</tr>
<tr>
<td>B865-001</td>
<td>Entrada de registro de 8 canales</td>
<td>B865</td>
</tr>
<tr>
<td>B869-001</td>
<td>Entrada de registro de 8 canales</td>
<td>B869</td>
</tr>
<tr>
<td>B873</td>
<td>Entrada analógica de 4 canales</td>
<td>B873</td>
</tr>
<tr>
<td>B873-001</td>
<td>Entrada analógica de 4 canales de 4-20 mA y 1-5 V</td>
<td>B873</td>
</tr>
<tr>
<td>B873-002</td>
<td>Entrada analógica de 4 canales de 4-20 mA y 1-5 V</td>
<td>B873</td>
</tr>
<tr>
<td>B873-011</td>
<td>Entrada analógica de 4 canales de −10 V a 10 V</td>
<td>B873</td>
</tr>
<tr>
<td>B873-012</td>
<td>Entrada analógica de 4 canales de −10 V a 10 V</td>
<td>B873</td>
</tr>
<tr>
<td>B873-200</td>
<td>Entrada del indicador de tensión RTD, térmico, V/A</td>
<td>B873</td>
</tr>
<tr>
<td>B875</td>
<td>Entrada analógica de 8 canales</td>
<td>B875</td>
</tr>
<tr>
<td>B875-001</td>
<td>Entrada analógica de 8 canales de 4-20 mA y 1-5 V</td>
<td>B875</td>
</tr>
<tr>
<td>B875-002</td>
<td>Entrada analógica de 8 canales de 4-20 mA y 1-5 V</td>
<td>B875</td>
</tr>
<tr>
<td>B875-011</td>
<td>Entrada analógica de 8 canales de −10 V a 10 V</td>
<td>B875</td>
</tr>
<tr>
<td>B875-012</td>
<td>Entrada analógica de 8 canales de −10 V a 10 V</td>
<td>B875</td>
</tr>
<tr>
<td>B875-101</td>
<td>Entrada analógica de selección rápida de 8 canales</td>
<td>B875</td>
</tr>
<tr>
<td>B875-102</td>
<td>Entrada analógica de selección rápida de 8 canales</td>
<td>B875</td>
</tr>
<tr>
<td>B875-111</td>
<td>Entrada de diferenciales elegible de 8 canales</td>
<td>B875</td>
</tr>
<tr>
<td>B875-200</td>
<td>Entrada del indicador de tensión RTD, térmico, V/A</td>
<td>B875</td>
</tr>
<tr>
<td>B877-111</td>
<td>Entrada finalizada simple elegible de 16 canales</td>
<td>B877</td>
</tr>
</tbody>
</table>
### Módulos de E/S admitidos/no admitidos

**Salida analógica**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>B846</td>
<td>MUX analógico</td>
<td>B846</td>
</tr>
<tr>
<td>B846-001</td>
<td>MUX analógico</td>
<td>B846</td>
</tr>
<tr>
<td>B846-002</td>
<td>MUX analógico</td>
<td>B846</td>
</tr>
<tr>
<td>B862-001</td>
<td>Salida de registro de 4 canales</td>
<td>B862</td>
</tr>
<tr>
<td>B864-001</td>
<td>Salida de registro de 8 canales</td>
<td>B864</td>
</tr>
<tr>
<td>B868-001</td>
<td>Salida de registro de 8 canales</td>
<td>B868</td>
</tr>
<tr>
<td>B872</td>
<td>Salida de tensión elegible de 4 canales</td>
<td>B872</td>
</tr>
<tr>
<td>B872-002</td>
<td>Salida analógica de 4 canales de 4-20 mA y 1-5 V</td>
<td>B872</td>
</tr>
<tr>
<td>B872-011</td>
<td>Salida de tensión elegible de 4 canales</td>
<td>B872</td>
</tr>
<tr>
<td>B872-100</td>
<td>Módulo de salida de corriente de 4 canales de 4-20 mA</td>
<td>B872</td>
</tr>
<tr>
<td>B872-200</td>
<td>Salida de tensión elegible de 4 canales</td>
<td>B872</td>
</tr>
</tbody>
</table>

**Entrada digital**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>B803-008</td>
<td>Módulo de entrada de 8 puntos de 115 V CA</td>
<td>B803</td>
</tr>
<tr>
<td>B805-016</td>
<td>Módulo de entrada de 16 puntos de 115 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B807</td>
<td>Módulo de entrada de 32 puntos</td>
<td>B807</td>
</tr>
<tr>
<td>B807-032</td>
<td>Módulo de entrada de 32 puntos de 115 V CA</td>
<td>B807</td>
</tr>
<tr>
<td>B807-132</td>
<td>Módulo de entrada de 32 puntos de 115 V CA</td>
<td>B807</td>
</tr>
<tr>
<td>B809-016</td>
<td>Módulo de entrada de 16 puntos de 230 V CA</td>
<td>B807</td>
</tr>
<tr>
<td>B817</td>
<td>Módulo de entrada aislada de 16 puntos</td>
<td>B817</td>
</tr>
<tr>
<td>B817-116</td>
<td>Módulo de entrada aislada de 16 puntos de 115 V CA</td>
<td>B817</td>
</tr>
<tr>
<td>B817-216</td>
<td>Módulo de entrada aislada de 16 puntos de 230 V CA</td>
<td>B817</td>
</tr>
<tr>
<td>B819-032</td>
<td>Módulo de entrada de 32 puntos de 230 V CA</td>
<td>B819</td>
</tr>
<tr>
<td>B819-232</td>
<td>Módulo de entrada de 32 puntos de 230 V CA</td>
<td>B817</td>
</tr>
<tr>
<td>B821</td>
<td>Entrada de 8 puntos</td>
<td>B821</td>
</tr>
<tr>
<td>B821-008</td>
<td>Entrada de 8 puntos de 10-60 V CC</td>
<td>B821</td>
</tr>
<tr>
<td>B821-108</td>
<td>Entrada de 8 puntos de 10-60 V CC</td>
<td>B821</td>
</tr>
<tr>
<td>B825-016</td>
<td>Entrada de 16 puntos de 24 V CC</td>
<td>B825</td>
</tr>
<tr>
<td>B827-032</td>
<td>Entrada de 32 puntos de 24 V CC</td>
<td>B827</td>
</tr>
<tr>
<td>B829-116</td>
<td>Entrada de 16 puntos de 5 V TTL</td>
<td>B829</td>
</tr>
<tr>
<td>Módulo antiguo</td>
<td>Descripción</td>
<td>Sustituido por un módulo de Control Expert</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>B833-016</td>
<td>Entrada de 16 puntos de 24 V CC</td>
<td>B833</td>
</tr>
<tr>
<td>B835</td>
<td>Entrada de 8 puntos</td>
<td>B835</td>
</tr>
<tr>
<td>B837-016</td>
<td>Entrada de 16 puntos de 24 V CA/CC</td>
<td>B837</td>
</tr>
<tr>
<td>B849-016</td>
<td>Módulo de entrada de 16 puntos de 48 V CA/CC</td>
<td>B849</td>
</tr>
<tr>
<td>B853-016</td>
<td>16 entradas de 115 V CA/125 V CC</td>
<td>B853</td>
</tr>
<tr>
<td>B855-016</td>
<td>Entrada de 16 puntos de 12 V CC</td>
<td>B855</td>
</tr>
<tr>
<td>B863-03w</td>
<td>Entrada de registro de 4 canales</td>
<td>B863</td>
</tr>
<tr>
<td>B881-001</td>
<td>Entrada con retención de 16 puntos de 24 V CC</td>
<td>B881</td>
</tr>
</tbody>
</table>

**Salida digital**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>B802-008</td>
<td>Módulo de salida de 8 puntos de 115 V CA</td>
<td>B802</td>
</tr>
<tr>
<td>B804</td>
<td>Módulo de salida de 16 puntos de 115 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B804-016</td>
<td>Módulo de salida de 16 puntos de 115 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B804-116</td>
<td>Módulo de salida de 16 puntos de 115 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B806</td>
<td>Módulo de salida de 32 puntos</td>
<td>B806</td>
</tr>
<tr>
<td>B806-032</td>
<td>Módulo de salida de 32 puntos de 115 V CA</td>
<td>B806</td>
</tr>
<tr>
<td>B806-124</td>
<td>Módulo de salida de 32 puntos de 24 V CA</td>
<td>B806</td>
</tr>
<tr>
<td>B808-016</td>
<td>Módulo de salida de 16 puntos de 230 V CA</td>
<td>B808</td>
</tr>
<tr>
<td>B810-008</td>
<td>Módulo de 8 salidas libres de potencial de 115 V CA</td>
<td>B810</td>
</tr>
<tr>
<td>B814</td>
<td>Módulo de salida de 8 puntos</td>
<td>B814</td>
</tr>
<tr>
<td>B814-001</td>
<td>Módulo NA de salida de 8 puntos a relé de potencia</td>
<td>B814</td>
</tr>
<tr>
<td>B814-002</td>
<td>Módulo NC de salida de 8 puntos a relé de potencia</td>
<td>B814</td>
</tr>
<tr>
<td>B814-108</td>
<td>Módulo NA/NC de salida de 8 puntos a relé de potencia</td>
<td>B814</td>
</tr>
<tr>
<td>B818-032</td>
<td>Salida de 32 puntos de 24 V CC</td>
<td>B818</td>
</tr>
<tr>
<td>B820-008</td>
<td>Salida de 8 puntos de 10-60 V CC</td>
<td>B820</td>
</tr>
<tr>
<td>B824-016</td>
<td>Salida de 16 puntos de 24 V CC</td>
<td>B824</td>
</tr>
<tr>
<td>B826-032</td>
<td>Salida de 32 puntos de 24 V CC</td>
<td>-</td>
</tr>
<tr>
<td>B828-016</td>
<td>Salida de 16 puntos de 5 V TTL</td>
<td>B828</td>
</tr>
<tr>
<td>B832-016</td>
<td>Salida de 16 puntos de 24 V CC</td>
<td>B832</td>
</tr>
<tr>
<td>B834</td>
<td>Módulo de salida de 8 puntos</td>
<td>B834</td>
</tr>
<tr>
<td>B836-016</td>
<td>Módulo de salida de 16 puntos de 12-250 V CC</td>
<td>B836</td>
</tr>
<tr>
<td>B838-032</td>
<td>Salida de 32 puntos de 24 V CC</td>
<td>B838</td>
</tr>
<tr>
<td>Módulo antiguo</td>
<td>Descripción</td>
<td>Sustituido por un módulo de Control Expert</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>B840-108</td>
<td>Módulo NA/NC de salida de 8 puntos a relé Reed</td>
<td>B840</td>
</tr>
<tr>
<td>B842-008</td>
<td>Módulo NA/NC de salida de 8 puntos a relé Reed</td>
<td>B842</td>
</tr>
<tr>
<td>B881-108</td>
<td>Módulo de salida protegida de 8 puntos de 115 V CA</td>
<td>B881</td>
</tr>
<tr>
<td>B882-032</td>
<td>Módulo de salida de diagnóstico de 24 V CC</td>
<td>B882</td>
</tr>
</tbody>
</table>

Mixto

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>B881-508</td>
<td>Módulo de salida de 8 puntos de 125 V CC, lógica positiva</td>
<td>B881</td>
</tr>
<tr>
<td>B882-239</td>
<td>Módulo de 2 contadores progresivos de alta velocidad de 0-30 kHz</td>
<td>B882</td>
</tr>
<tr>
<td>B883</td>
<td>Módulo de entrada de 10 puntos</td>
<td>B883</td>
</tr>
<tr>
<td>B883-001</td>
<td>Módulo de 2 contadores progresivos/regresivos de alta velocidad de 0-50 kHz</td>
<td>B883</td>
</tr>
<tr>
<td>B883-101</td>
<td>Entrada de codificador CAM ABS de 4 kHz, 8 salidas binarias</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>B883-111</td>
<td>CAM de 1 kHz con compensación de velocidad</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>B883-200</td>
<td>Módulo de entrada de 10 termopares</td>
<td>B883</td>
</tr>
<tr>
<td>B883-201</td>
<td>Módulo de entrada de 8 RTD</td>
<td>B883</td>
</tr>
<tr>
<td>B885-100</td>
<td>Módulo de movimiento</td>
<td>B885</td>
</tr>
<tr>
<td>B885-110</td>
<td>Módulo de movimiento</td>
<td>B885</td>
</tr>
<tr>
<td>B886-000</td>
<td>Resolvedor lógico de alta velocidad</td>
<td>B886</td>
</tr>
<tr>
<td>B887-000</td>
<td>Bidireccional de 12 registros</td>
<td>B887</td>
</tr>
<tr>
<td>B888-100</td>
<td>Interfaz Datalogic CM1000 AutoID</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>B984-100</td>
<td>Resolvedor lógico de alta velocidad</td>
<td>B984</td>
</tr>
<tr>
<td>B984-102</td>
<td>Resolvedor lógico de alta velocidad</td>
<td>B184</td>
</tr>
<tr>
<td>DCP</td>
<td>Módulo de control distribuido</td>
<td>GENNOM</td>
</tr>
<tr>
<td>B819</td>
<td>Módulo de entrada de 32 puntos de 230 V CA</td>
<td>B819</td>
</tr>
<tr>
<td>B863</td>
<td>Entrada de registro de 4 canales</td>
<td>B863</td>
</tr>
<tr>
<td>B881</td>
<td>Módulo de salida protegida de 8 puntos</td>
<td>B881</td>
</tr>
</tbody>
</table>
### Módulos de E/S admitidos/no admitidos

#### Comunicación

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>J890-001</td>
<td>RIO sencillo</td>
<td>P890300</td>
</tr>
<tr>
<td>J890-002</td>
<td>RIO redundante</td>
<td>P890300</td>
</tr>
<tr>
<td>J892-001</td>
<td>RIO-ASCII sencillo</td>
<td>J892/P8XX</td>
</tr>
<tr>
<td>J892-002</td>
<td>RIO-ASCII redundante</td>
<td>J892/P8XX</td>
</tr>
</tbody>
</table>

#### Bastidor

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>H810-100</td>
<td>Secundario de 4 slots</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>H810-208</td>
<td>Único de 4 slots</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>H810-209</td>
<td>Primario de 4 slots</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>H819-100</td>
<td>Secundario de 7 slots</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>H819-103</td>
<td>Primario de 7 slots</td>
<td>AS-H819-209</td>
</tr>
<tr>
<td>H819-209</td>
<td>Primario de 7 slots</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>H827-100</td>
<td>Secundario de 11 slots</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>H827-103</td>
<td>Primario de 11 slots</td>
<td>Disponible en Control Expert</td>
</tr>
<tr>
<td>H827-209</td>
<td>Primario de 11 slots</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>

#### Fuente de alimentación

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>P800-003</td>
<td>Fuente de alimentación de 115/230 V CA</td>
<td>P890300</td>
</tr>
<tr>
<td>P802-001</td>
<td>Fuente de alimentación de 24 V CC</td>
<td>P890300</td>
</tr>
<tr>
<td>P810-000</td>
<td>Fuente de alimentación de 115/230 V CA</td>
<td>P890300</td>
</tr>
<tr>
<td>P830-000</td>
<td>Fuente de alimentación de 115/230 V CA 24 V CC</td>
<td>P890300</td>
</tr>
<tr>
<td>P840-000</td>
<td>Fuente de alimentación de 115/230 V CA</td>
<td>P890300</td>
</tr>
<tr>
<td>P884-001</td>
<td>Fuente de alimentación de 115/230 V CA</td>
<td>P890300</td>
</tr>
<tr>
<td>P890-000</td>
<td>Fuente de alimentación de 115/230 V CA 24 V CC</td>
<td>P890300</td>
</tr>
<tr>
<td>P892-000</td>
<td>Fuente de alimentación de 115/230 V CA 24 V CC</td>
<td>P890300</td>
</tr>
<tr>
<td>XBE-100</td>
<td>-</td>
<td>Disponible en Control Expert</td>
</tr>
</tbody>
</table>
Módulos de la serie 800 no admitidos

Mixto

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>B884-002</td>
<td>Módulo de control PID de 2 bucles</td>
</tr>
<tr>
<td>B885</td>
<td>Módulo de movimiento</td>
</tr>
<tr>
<td>B885-002</td>
<td>Módulo ASCII/BASIC</td>
</tr>
<tr>
<td>MMC188-40</td>
<td>Módulo de movimiento</td>
</tr>
<tr>
<td>S985-XXX</td>
<td>Interfaz Modbus Plus</td>
</tr>
</tbody>
</table>

Comunicación

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>D908-110</td>
<td>Control distribuido sencillo</td>
</tr>
<tr>
<td>D908-120</td>
<td>Control distribuido dual</td>
</tr>
<tr>
<td>S908-110</td>
<td>RIO Proc sencillo</td>
</tr>
<tr>
<td>S908-120</td>
<td>RIO Proc dual</td>
</tr>
<tr>
<td>S911-800</td>
<td>Hot Standby</td>
</tr>
</tbody>
</table>

Controlador

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>984-380</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-381</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-381E</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-385</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-385E/D</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-480</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-480E</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-485</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-485E</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-680</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-685</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-685E</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-780</td>
<td>Controlador</td>
</tr>
<tr>
<td>Módulo antiguo</td>
<td>Descripción</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>984-785</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-785E</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-785EQ</td>
<td>Controlador</td>
</tr>
<tr>
<td>984-785L</td>
<td>Controlador</td>
</tr>
<tr>
<td>B816</td>
<td>-</td>
</tr>
</tbody>
</table>
Módulos de las series 200/500

Entrada digital

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-IN</td>
<td>Entrada de la serie 500</td>
<td>B805</td>
</tr>
<tr>
<td>B231</td>
<td>Entrada de 115 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B233</td>
<td>Entrada de 24 V CC</td>
<td>B805</td>
</tr>
<tr>
<td>B235</td>
<td>Entrada de 230 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B237</td>
<td>Entrada de 5 V CC para lógica TTL</td>
<td>B805</td>
</tr>
<tr>
<td>B243</td>
<td>Entrada analógica</td>
<td>B805</td>
</tr>
<tr>
<td>B245</td>
<td>Entrada aislada de 230 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B247</td>
<td>Entrada aislada de 115 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B256</td>
<td>Entrada analógica</td>
<td>B805</td>
</tr>
<tr>
<td>B258</td>
<td>Entrada analógica</td>
<td>B805</td>
</tr>
<tr>
<td>B271</td>
<td>Entrada de 48 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B275</td>
<td>Entrada de 10-60 V CC</td>
<td>B805</td>
</tr>
<tr>
<td>B551</td>
<td>Entrada de 115 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B553</td>
<td>Entrada universal de 9-56 V CC, lógica positiva</td>
<td>B805</td>
</tr>
<tr>
<td>B555</td>
<td>Entrada de 220 V CA</td>
<td>B805</td>
</tr>
<tr>
<td>B557</td>
<td>Entrada de 5 V TTL</td>
<td>B805</td>
</tr>
<tr>
<td>B559</td>
<td>Entrada universal de 9-56 V CC, lógica negativa</td>
<td>B805</td>
</tr>
<tr>
<td>B561</td>
<td>Entrada de 9-160 V CC</td>
<td>B805</td>
</tr>
<tr>
<td>B581</td>
<td>Codificador absoluto</td>
<td>B805</td>
</tr>
<tr>
<td>B583</td>
<td>Entrada con retención autosegura</td>
<td>B805</td>
</tr>
</tbody>
</table>
## Módulos de E/S admitidos/no admitidos

### Salida digital

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-OUT</td>
<td>Salida de la serie 500</td>
<td>B804</td>
</tr>
<tr>
<td>B230</td>
<td>Salida de 115 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B232</td>
<td>Salida de 24 V CC</td>
<td>B804</td>
</tr>
<tr>
<td>B234</td>
<td>Salida de 230 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B236</td>
<td>Salidas de 5 V CC para lógica TTL</td>
<td>B804</td>
</tr>
<tr>
<td>B238</td>
<td>Salida de corriente elevada de 24 V CC</td>
<td>B804</td>
</tr>
<tr>
<td>B239</td>
<td>Señales de pulso de alta velocidad</td>
<td>B804</td>
</tr>
<tr>
<td>B244</td>
<td>Salida aislada de 230 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B246</td>
<td>Salida aislada de 115 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B248</td>
<td>Salida de 10-60 V CC</td>
<td>B804</td>
</tr>
<tr>
<td>B260</td>
<td>Salida de tensión analógica</td>
<td>B804</td>
</tr>
<tr>
<td>B262</td>
<td>Salida de corriente analógica</td>
<td>B804</td>
</tr>
<tr>
<td>B266</td>
<td>Salida aislada Reed</td>
<td>B804</td>
</tr>
<tr>
<td>B268</td>
<td>Salida aislada Reed</td>
<td>B804</td>
</tr>
<tr>
<td>B270</td>
<td>Salida de 48 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B274</td>
<td>Salida aislada Reed</td>
<td>B804</td>
</tr>
<tr>
<td>B276</td>
<td>Salida aislada Reed</td>
<td>B804</td>
</tr>
<tr>
<td>B550</td>
<td>Salida de 115 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B552</td>
<td>Salida universal de 9-56 V CC, lógica positiva</td>
<td>B804</td>
</tr>
<tr>
<td>B554</td>
<td>Salida de 220 V CA</td>
<td>B804</td>
</tr>
<tr>
<td>B556</td>
<td>Salida de 5 V TTL</td>
<td>B804</td>
</tr>
<tr>
<td>B558</td>
<td>Salida universal de 9-56 V CC, lógica negativa</td>
<td>B804</td>
</tr>
<tr>
<td>B560</td>
<td>Salida de 9-150 V CC</td>
<td>B804</td>
</tr>
<tr>
<td>B592</td>
<td>Salida de relé Reed - Normalmente abierta</td>
<td>B804</td>
</tr>
<tr>
<td>B596</td>
<td>Salida de relé Reed - Normalmente cerrada</td>
<td>B804</td>
</tr>
</tbody>
</table>
### Módulos de E/S admitidos/no admitidos

#### Mixto

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-IN/OUT</td>
<td>Mixto serie 500</td>
<td>B846</td>
</tr>
<tr>
<td>B570</td>
<td>Multiplexor BCD de 5 V CC</td>
<td>B846</td>
</tr>
<tr>
<td>B571</td>
<td>Complemento del multiplexor BCD</td>
<td>B846</td>
</tr>
<tr>
<td>B572</td>
<td>Salida analógica</td>
<td>B846</td>
</tr>
<tr>
<td>B573</td>
<td>Entrada analógica</td>
<td>B846</td>
</tr>
<tr>
<td>B574</td>
<td>Salida analógica de 4-20 mA</td>
<td>B846</td>
</tr>
<tr>
<td>B575</td>
<td>Control del motor paso a paso</td>
<td>B846</td>
</tr>
<tr>
<td>B577</td>
<td>Entrada analógica</td>
<td>B846</td>
</tr>
<tr>
<td>B579</td>
<td>Contador de alta velocidad dual</td>
<td>B846</td>
</tr>
</tbody>
</table>

#### Módulos de las series 200/500 no admitidos

##### Entrada digital

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-IN</td>
<td>Entrada de la serie 200</td>
</tr>
</tbody>
</table>

##### Salida digital

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-OUT</td>
<td>Salida de la serie 200</td>
</tr>
</tbody>
</table>
Módulos SY/MAX

Módulos SY/MAX admitidos

### Entrada analógica

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM121</td>
<td>Entrada analógica de 4 funciones</td>
<td>8030RIM121_125</td>
</tr>
<tr>
<td>RIM123</td>
<td>Entrada analógica de alta velocidad de 8 canales</td>
<td>8030RIM123</td>
</tr>
<tr>
<td>RIM125</td>
<td>Entrada analógica de 16 funciones</td>
<td>8030RIM121_125</td>
</tr>
<tr>
<td>RIM126</td>
<td>Entrada térmica/analógica de 8 canales</td>
<td>8030RIM126</td>
</tr>
<tr>
<td>RIM127</td>
<td>Módulo de entrada RTD de 12 canales</td>
<td>8030RIM127</td>
</tr>
<tr>
<td>RIM131</td>
<td>Módulo de contador de alta velocidad</td>
<td>8030RIM131</td>
</tr>
<tr>
<td>RIM144</td>
<td>Módulo multiplexor de entrada BCD</td>
<td>8030RIM144</td>
</tr>
</tbody>
</table>

### Salida analógica

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM121</td>
<td>Salida analógica de 4 funciones</td>
<td>8030ROM121</td>
</tr>
<tr>
<td>ROM122</td>
<td>Salida aislada de 4 funciones</td>
<td>8030ROM122</td>
</tr>
<tr>
<td>ROM131</td>
<td>Módulo del controlador del motor paso a paso</td>
<td>8030ROM131</td>
</tr>
<tr>
<td>ROM141</td>
<td>Módulo multiplexor de salida BCD</td>
<td>8030ROM141</td>
</tr>
</tbody>
</table>

### Entrada digital

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDI116</td>
<td>Entrada de 16 canales</td>
<td>8030RIM101_361</td>
</tr>
<tr>
<td>RDI132</td>
<td>Entrada de 32 canales</td>
<td>8030RIM331</td>
</tr>
<tr>
<td>RDI1XX</td>
<td>Módulo de entrada</td>
<td>8030RIM331</td>
</tr>
<tr>
<td>RIM101</td>
<td>Entrada de 120 V CA/CC de 16 funciones</td>
<td>8030RIM101_361</td>
</tr>
<tr>
<td>RIM301</td>
<td>Módulo de 16 entradas de 85-140 V CA</td>
<td>8030RIM301</td>
</tr>
<tr>
<td>RIM331</td>
<td>Entrada de 24 V CC de 32 funciones</td>
<td>8030RIM331</td>
</tr>
<tr>
<td>RIM361</td>
<td>Entrada de 240 V CA/CC de 16 funciones</td>
<td>8030RIM101_361</td>
</tr>
<tr>
<td>RIM731</td>
<td>Entrada de 24 V CA/CC de 64 funciones</td>
<td>8030RIM731</td>
</tr>
</tbody>
</table>

**NOTA:** Tenga cuidado de que los módulos Sy/Max RIM 101 y ROM 221 = inversión de bit tras la conversión.
Convirtiendo de la siguiente manera:
- **Square D --> Quantum Concept**
- **Square D --> Quantum Control Expert**

En ambos casos se invierte el orden de bits. Para el caso de Control Expert, crear un DFB específico (para reordenar todos los bits) puede resultar de ayuda.

### Salida digital

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDO616</td>
<td>Salida de relé de 16 canales</td>
<td>8030ROM271</td>
</tr>
<tr>
<td>RDO732</td>
<td>Salida de relé de 32 canales</td>
<td>8030ROM871</td>
</tr>
<tr>
<td>RDOXXX</td>
<td>Salida de relé</td>
<td>8030ROM871</td>
</tr>
<tr>
<td>ROM221</td>
<td>Salida de 120 V CA de 16 funciones</td>
<td>8030ROM221_431</td>
</tr>
<tr>
<td>ROM271</td>
<td>Salida de relé de 120 V CA de 16 funciones</td>
<td>8030ROM271</td>
</tr>
<tr>
<td>ROM421</td>
<td>Módulo de 16 salidas de 35-140 V CA</td>
<td>8030ROM421</td>
</tr>
<tr>
<td>ROM431</td>
<td>Salida de 240 V CA de 16 funciones</td>
<td>8030ROM221_431</td>
</tr>
<tr>
<td>ROM441</td>
<td>Salida de 24 V CC de 32 funciones</td>
<td>8030ROM441</td>
</tr>
<tr>
<td>ROM871</td>
<td>Salida de relé de 64 funciones</td>
<td>8030ROM871</td>
</tr>
</tbody>
</table>

### Adaptaor de E/S

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRM931-D1</td>
<td>Adaptador digital RIO de 2 slots</td>
<td>8030CRM931DG1</td>
</tr>
<tr>
<td>CRM931-D2</td>
<td>Adaptador digital RIO de 4 slots</td>
<td>8030CRM931DG1</td>
</tr>
<tr>
<td>CRM931-D4</td>
<td>Adaptador digital RIO de 8 slots</td>
<td>8030CRM931DG1</td>
</tr>
<tr>
<td>CRM931-D8</td>
<td>Adaptador digital RIO de 16 slots</td>
<td>8030CRM931DG1</td>
</tr>
<tr>
<td>CRM931-RG</td>
<td>Módulo adaptador RIO de registros</td>
<td>8030CRM931DG1</td>
</tr>
</tbody>
</table>

### Bastidor

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRK200</td>
<td>Bastidor</td>
<td>8030-RRK-200</td>
</tr>
<tr>
<td>RRK100</td>
<td>Bastidor</td>
<td>8030-RRK-100</td>
</tr>
<tr>
<td>RRK200</td>
<td>Bastidor</td>
<td>8030-RRK-200</td>
</tr>
<tr>
<td>RRK300</td>
<td>Bastidor</td>
<td>8030-RRK-300</td>
</tr>
</tbody>
</table>
### Módulos de E/S admitidos/no admitidos

#### Simulador

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Control Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM116</td>
<td>Simulador de 16 entradas</td>
<td>830_SIM_116</td>
</tr>
</tbody>
</table>

#### Módulos SY/MAX no admitidos

**Fuente de alimentación**

<table>
<thead>
<tr>
<th>Módulo antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS25</td>
<td>-</td>
</tr>
<tr>
<td>PS35</td>
<td>-</td>
</tr>
</tbody>
</table>
Módulos Compact

Descripción general

Los módulos Compact pueden convertirse en módulos de Control Expert Modicon M340 o módulos de Quantum según la configuración de conversión.

Para definir que los módulos Compact se conviertan en módulos de Control Expert Modicon M340, abra el cuadro de diálogo Opciones de LL984 y active la opción M340 en este cuadro de diálogo (véase página 220).

Para convertir los módulos Compact en módulos de Quantum Control Expert, active la opción Quantum.

Consulte también el apartado Conversión especial para módulos de E/S Compact (véase página 291).

Módulos Compact admitidos

Entrada analógica

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADU 204- ADU 254</td>
<td>Entrada de registro de 4 canales</td>
<td>GENANAIO</td>
<td>BMXART0414</td>
</tr>
<tr>
<td>ADU 205</td>
<td>Entrada de registro de 4 canales</td>
<td>140ACI03000</td>
<td>BMXAMI0410</td>
</tr>
<tr>
<td>ADU 206</td>
<td>Entrada de registro de 4 canales</td>
<td>140ACI03000</td>
<td>BMXAMI0410</td>
</tr>
<tr>
<td>ADU 210</td>
<td>Entrada de tensión/corriente de 4 canales</td>
<td>GENANAIO</td>
<td>BMXAMI0410</td>
</tr>
<tr>
<td>ADU 211</td>
<td>Módulo de entrada analógica de 8 canales</td>
<td>140ACI03000</td>
<td>BMXART0814</td>
</tr>
<tr>
<td>ADU 212</td>
<td>Módulo de entrada analógica de 8 canales</td>
<td>140ACI03000</td>
<td>BMXART0814</td>
</tr>
<tr>
<td>ADU 214</td>
<td>Entrada A/D multirango de 4 canales</td>
<td>140ACI03000</td>
<td>BMXAMI0410, BMXART0414</td>
</tr>
<tr>
<td>ADU 216</td>
<td>Termopar de 8 canales</td>
<td>Disponible en Control Expert</td>
<td>BMXART0814</td>
</tr>
<tr>
<td>ADU 256</td>
<td>Entrada de registro de 4 canales</td>
<td>140ACI03000</td>
<td>BMXAMI0410</td>
</tr>
<tr>
<td>ADU 257</td>
<td>Termopar de 8 canales</td>
<td>140ACI03000</td>
<td>BMXART0814</td>
</tr>
</tbody>
</table>
### Salida analógica

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAU 202</td>
<td>Salida de registro de 2 canales</td>
<td>GENANAIO</td>
<td>BMXAMO0210</td>
</tr>
<tr>
<td>DAU 204</td>
<td>Salida analógica de 4 canales, aislamiento óptico</td>
<td>GENANAIO</td>
<td>BMXAMO0410</td>
</tr>
<tr>
<td>DAU 208</td>
<td>Salida de registro de 8 canales</td>
<td>140ACO13000</td>
<td>BMXAMO0410, BMXAMO0410</td>
</tr>
</tbody>
</table>

### Entrada digital

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEO 216</td>
<td>Módulo de entrada de 16 puntos de 24 V CC</td>
<td>140DDI35300</td>
<td>BMXDDI1602</td>
</tr>
<tr>
<td>DEP 208</td>
<td>Módulo de entrada de 8 puntos de 230 V CA</td>
<td>140DAI74000</td>
<td>BMXDAI0805</td>
</tr>
<tr>
<td>DEP 209</td>
<td>Módulo de entrada de 8 puntos de 120 V CA</td>
<td>140DAI55300</td>
<td>BMXDAI1604 Consulte el apartado Módulos reducidos (véase página 290).</td>
</tr>
<tr>
<td>DEP 210</td>
<td>Módulo de entrada de 8 puntos de 115 V CA</td>
<td>140DAI55300</td>
<td>BMXDAI1604 Consulte el apartado Módulos reducidos (véase página 290).</td>
</tr>
<tr>
<td>DEP 211</td>
<td>Módulo de entrada de 8 puntos de 115 V CA</td>
<td>140DAI55300</td>
<td>BMXDAI1604 Consulte el apartado Módulos reducidos (véase página 290).</td>
</tr>
<tr>
<td>DEP 214-254</td>
<td>Módulo de entrada de 16 puntos de 12-60 V CC</td>
<td>140DDI67300</td>
<td>BMXDDI1603</td>
</tr>
<tr>
<td>DEP 215</td>
<td>Módulo de entrada TTL de 16 puntos de 5 V CC</td>
<td>140DDI35300</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
<tr>
<td>DEP 216</td>
<td>Módulo de entrada de 16 puntos de 24 V CC</td>
<td>140DDI35300</td>
<td>BMXDDI1602</td>
</tr>
<tr>
<td>DEP 217</td>
<td>Módulo de entrada de 16 puntos de 24 V CC</td>
<td>140DDI35300</td>
<td>BMXDDI1602</td>
</tr>
<tr>
<td>DEP 218</td>
<td>Módulo de entrada de 16 puntos de 115 V CA</td>
<td>140DAI54000</td>
<td>BMXDAI1604</td>
</tr>
</tbody>
</table>
### Módulos de E/S admitidos/no admitidos

<table>
<thead>
<tr>
<th>Módulo Compacto antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP 220</td>
<td>Módulo rápido de entrada de 16 puntos de 24 V CC</td>
<td>140DDM39000</td>
<td>BMXDDI1602</td>
</tr>
<tr>
<td>DEP 256</td>
<td>Módulo de entrada de 16 puntos de 24 V CC</td>
<td>140DDI35300</td>
<td>BMXDDI1602</td>
</tr>
<tr>
<td>DEP 257</td>
<td>16 entradas de 110 V CC</td>
<td>140DAI54000</td>
<td>BMXDAI1604</td>
</tr>
<tr>
<td>DEP 296</td>
<td>16 entradas de 60 V CC</td>
<td>140DDI67300</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
<tr>
<td>DEP 297</td>
<td>16 entradas de 48 V CC</td>
<td>140DDI67300</td>
<td>BMXDDI1603</td>
</tr>
</tbody>
</table>

### Salida digital

<table>
<thead>
<tr>
<th>Módulo Compacto antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAO 216</td>
<td>Módulo de salida de 16 puntos de 24 V CC</td>
<td>140DDO35300</td>
<td>BMXDDO1602</td>
</tr>
<tr>
<td>DAP 204</td>
<td>Relé de 4 puntos de 24 V CC</td>
<td>140DRC83000</td>
<td>BMXDRA0805</td>
</tr>
<tr>
<td>DAP 208</td>
<td>Relé de 8 puntos de 24 V CC</td>
<td>140DRC83000</td>
<td>BMXDRA0805</td>
</tr>
<tr>
<td>DAP 209</td>
<td>Módulo de salida de 8 puntos de 120 V CA</td>
<td>140DDO84010</td>
<td>BMXDAO0805 Consulte el apartado Módulos reducidos (véase página 290).</td>
</tr>
<tr>
<td>DAP 210</td>
<td>Módulo de salida de 8 puntos de 24-230 V CA</td>
<td>140DAO84220</td>
<td>BMXDAO0805 Consulte el apartado Módulos reducidos (véase página 290).</td>
</tr>
<tr>
<td>DAP 216</td>
<td>Módulo de salida de 16 puntos de 24 V CC</td>
<td>140DDO35300</td>
<td>BMXDDO1602</td>
</tr>
<tr>
<td>DAP 217</td>
<td>Módulo de salida de 16 puntos de 5-24 V CC</td>
<td>140DRC83000</td>
<td>BMXDDO1612</td>
</tr>
<tr>
<td>DAP 218</td>
<td>Módulo de salida de 16 puntos de 24-240 V CA</td>
<td>140DAO84000</td>
<td>BMXDAO1605</td>
</tr>
<tr>
<td>DAP 258</td>
<td>Relé de 8 puntos de 24 V CC</td>
<td>140DRC83000</td>
<td>BMXDRA0805</td>
</tr>
</tbody>
</table>
### Mixto

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAP 211</td>
<td>Módulo pulsador marcador de 120 V CA</td>
<td>140DDM39000</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
<tr>
<td>DAP 212</td>
<td>Entrada de 8 puntos/salida de 4 puntos de 24 V CC</td>
<td>140DDM39000</td>
<td>BMXDDM16022</td>
</tr>
<tr>
<td>DAP 220-250</td>
<td>Módulo de entrada/salida de 8 puntos de 24 V CC</td>
<td>140DDM39000</td>
<td>BMXDDM16022</td>
</tr>
<tr>
<td>DAP 252</td>
<td>8 entradas/4 salidas de 24 V CC</td>
<td>140DDM39000</td>
<td>BMXDDM16022</td>
</tr>
<tr>
<td>DAP 253</td>
<td>8 entradas/4 salidas de 110 V CC</td>
<td>140DDM39000</td>
<td>BMXDDI1604, BMXDRA0804 Consulte el apartado Módulos reducidos (véase página 290).</td>
</tr>
<tr>
<td>DAP 292</td>
<td>8 entradas/4 salidas de 60 V CC</td>
<td>140DDM39000</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
<tr>
<td>FRQ 204</td>
<td>Módulo de frecuencia</td>
<td>140EHC10500</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
<tr>
<td>FRQ 254</td>
<td>Módulo de frecuencia</td>
<td>140EHC10500</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
<tr>
<td>ZAE 201</td>
<td>Contador/posicionador de alta velocidad</td>
<td>140EHC10500</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
<tr>
<td>ZAE 204</td>
<td>Contador/posicionador de alta velocidad de 4 canales</td>
<td>140EHC10500</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
<tr>
<td>VRC/CTR2xx</td>
<td>Contador de alta velocidad</td>
<td>-</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
<tr>
<td>VIC 200</td>
<td>4 entradas de pulsos de alta velocidad o 4 entradas VRC</td>
<td>-</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
<tr>
<td>VIC 205</td>
<td>4 entradas de pulsos de alta velocidad o 4 entradas TTL de 5 V</td>
<td>-</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
</tbody>
</table>
## Módulos de E/S admitidos/no admitidos

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIC 212</td>
<td>4 entradas de pulsos de alta velocidad o de 12 V CC</td>
<td>-</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
<tr>
<td>VIC 224</td>
<td>4 entradas de pulsos de alta velocidad o de 24 V CC</td>
<td>-</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
</tbody>
</table>

### Controlador

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>984-0120</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-0130</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-0145</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-A120</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-A13x</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-A141</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-A145</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-E241</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-E245</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-E251</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-E255</td>
<td>Controlador de 16 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-E258</td>
<td>Controlador de 32 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-E265</td>
<td>Controlador de 32 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
<tr>
<td>984-E275</td>
<td>Controlador de 32 bits</td>
<td>140CPU53414A/U 140CP53414A/U</td>
<td>BMXP342020</td>
</tr>
</tbody>
</table>

### Bastidor

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDTA-200</td>
<td>Bastidor</td>
<td>140XBP00600 140XBP00600</td>
<td>BMXXBP0600</td>
</tr>
<tr>
<td>HDTA-201</td>
<td>Bastidor</td>
<td>140XBP00600 140XBP00600</td>
<td>BMXXBP0600</td>
</tr>
</tbody>
</table>
### Fuente de alimentación

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>P120 000</td>
<td>Fuente de alimentación</td>
<td>140CPS11420</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
<tr>
<td>P120 125</td>
<td>Fuente de alimentación</td>
<td>140CPS11420</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
</tbody>
</table>

### Mixto

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNOE-211</td>
<td>Módulo Ethernet opcional</td>
<td>140NOE77110</td>
<td>BMXNOE0100.2</td>
</tr>
</tbody>
</table>

### Movimiento

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Quantum</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOT 201</td>
<td>Codificador del módulo de control del movimiento de los ejes</td>
<td>140MSC10100</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba (véase página 242).</td>
</tr>
<tr>
<td>MOT 202</td>
<td>Codificador y dispositivo de resolución del módulo de control del movimiento de los ejes</td>
<td>140MSC10100</td>
<td>BMXXXXXXX Consulte el apartado Módulo de prueba.</td>
</tr>
</tbody>
</table>
Módulos de E/S admitidos/no admitidos

Módulos reducidos

Al importar módulos de E/S Compact con Modicon M340 como familia PLC de destino, debido a problemas de compatibilidad y para evitar el solapamiento de direcciones, algunos módulos se configuran con un número reducido de E/S en Control Expert durante la importación.

**NOTA:** Estos módulos reducidos no se pueden seleccionar en el cuadro de diálogo *Nuevo dispositivo* del editor *Bus PLC* en Control Expert.

Para los módulos reducidos debe insertar físicamente los módulos siguientes en su bastidor de hardware.

<table>
<thead>
<tr>
<th>Módulo reducido</th>
<th>Módulo para insertar físicamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMXDAI0804</td>
<td>BMXDAI1604</td>
</tr>
<tr>
<td>BMXDAO0805</td>
<td>BMXDAO1605</td>
</tr>
<tr>
<td>BMXDDI0804</td>
<td>BMXDDI1604</td>
</tr>
</tbody>
</table>

Módulos Compact no admitidos

Adaptador de E/S

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKF 202</td>
<td>Esclavo de INTERBUS S</td>
</tr>
<tr>
<td>BKF201-16</td>
<td>Maestro INTERBUS S de 16 palabras</td>
</tr>
<tr>
<td>BKF201-64</td>
<td>Maestro INTERBUS S de 64 palabras</td>
</tr>
<tr>
<td>KOS260-24</td>
<td>Comunicador universal de 24 palabras</td>
</tr>
<tr>
<td>KOS260-64</td>
<td>Comunicador universal de 64 palabras</td>
</tr>
</tbody>
</table>
Capítulo 26
Conversión especial para los módulos de E/S Compact

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1</td>
<td>Conversión de módulos de entradas digitales</td>
<td>292</td>
</tr>
<tr>
<td>26.2</td>
<td>Conversión de módulos de salidas digitales</td>
<td>293</td>
</tr>
<tr>
<td>26.3</td>
<td>Conversión de módulos mixtos digitales</td>
<td>294</td>
</tr>
<tr>
<td>26.4</td>
<td>Conversión de módulos de entradas analógicas</td>
<td>295</td>
</tr>
<tr>
<td>26.5</td>
<td>Conversión de módulos de salidas analógicas</td>
<td>319</td>
</tr>
</tbody>
</table>
Sección 26.1
Conversión de módulos de entradas digitales

Conversión de módulos de entradas digitales

Conversión de binario a BCD

Para Quantum, la configuración de BCD es posible para los módulos de entradas digitales asignados en %I o %IW.

Para Modicon M340, la configuración de BCD solo es posible para los módulos de entradas digitales asignados en %IW.

Si se configura el BCD con referencias binarias, deberá adaptar su aplicación en consecuencia.
Sección 26.2
Conversión de módulos de salidas digitales

Conversión de módulos de salidas digitales

Conversión de binario a BCD
Para Quantum, la configuración de BCD es posible para los módulos de salidas digitales asignados en %M o %MW.
Para Modicon M340, la configuración de BCD solo es posible para los módulos de salidas digitales asignados en %MW.
Si se configura el BCD con referencias binarias, deberá adaptar su aplicación en consecuencia.

Conversión de comportamiento de timeout
Dado que los módulos de Modicon M340 tienen un comportamiento de PLC detenido configurable, el comportamiento de detención de Compact PLC anterior se puede convertir en un comportamiento de detención de PLC específico del módulo de Modicon M340.
El valor antiguo Último valor seleccionado se convierte en la modalidad de retorno Mantener, y en caso de que se configure un Valor definido por el usuario, este se convertirá en los valores de retorno específicos del canal, y la modalidad de retorno se establece en Retorno.
Sección 26.3
Conversión de módulos mixtos digitales

Conversión de módulos mixtos digitales

Conversión de binario a BCD
Para Quantum, la configuración de BCD es posible para módulos mixtos digitales asignados a %I o %IW (entradas) respectivamente sobre %M o %MW (salidas).
Para Modicon M340, la configuración de BCD es posible para los módulos mixtos digitales asignados en %IW (entradas), respectivamente en %MW (salidas).
Si se configura el BCD con referencias binarias, deberá adaptar su aplicación en consecuencia.

Conversión de comportamiento de timeout
Dado que los módulos de Modicon M340 tienen un comportamiento de PLC detenido configurable, el comportamiento de detención de Compact PLC anterior se puede convertir en un comportamiento de detención de PLC específico del módulo de Modicon M340.
El valor antiguo Último valor seleccionado se convierte en la modalidad de retorno Mantener, y en caso de que se configure un Valor definido por el usuario, este se convertirá en los valores de retorno específicos del canal, y la modalidad de retorno se establece en Retorno.
Sección 26.4
Conversión de módulos de entradas analógicas

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversión de módulos de entradas analógicas</td>
<td>296</td>
</tr>
<tr>
<td>ADU 206/256</td>
<td>297</td>
</tr>
<tr>
<td>Tensión y corriente del módulo ADU 205</td>
<td>303</td>
</tr>
<tr>
<td>Tensión y corriente de ADU 210</td>
<td>307</td>
</tr>
<tr>
<td>Termopar del módulo ADU 204/ADU 254</td>
<td>308</td>
</tr>
<tr>
<td>Tensión, corriente, termopar y resistencias mixtos del módulo ADU 214</td>
<td>310</td>
</tr>
<tr>
<td>Termopar de uno y dos canales con 32 bits del módulo ADU 257</td>
<td>315</td>
</tr>
<tr>
<td>Módulos configurados de los conmutadores de hardware ADU 211/212 y ADU 216</td>
<td>316</td>
</tr>
<tr>
<td>Módulos de conteo y posicionamiento, FRQ xxx, ZAE xxx, MOT_xyz, VIC_xyz</td>
<td>318</td>
</tr>
</tbody>
</table>
Conversión especial para módulos de E/S Compact

Conversión de módulos de entradas analógicas

Introducción
Control Expert generaliza la configuración del módulo mediante un cuadro de diálogo parecido para todos los módulos de entrada analógica, donde los cuadros de diálogo del módulo de entrada analógica Concept y ProWORX Compact son muy diferentes en estilo y contenido.

Parámetros de escala y desborde
El convertidor utiliza los parámetros Escala y Desborde para que todos los módulos de entrada analógica implementen los rangos de valores y las comprobaciones de límites, tal como estaban en el sistema Compact.
La columna Rango debe estar siempre completada; de lo contrario, al Analizar se generará los mensajes correspondientes. En este caso se genera el sensor más parecido.
Los módulos BMXARTxxxx requieren parámetros adicionales. También se determinan mediante el convertidor.

Valores por encima/por debajo del rango
Los módulos analógicos de Modicon M340 no admiten los valores predefinidos de Por encima/Por debajo del rango específicos del módulo Compact.
En caso de que la aplicación heredada utilice cualquiera de los valores definidos previamente de Por encima/Por debajo del rango específicos del módulo Compact (por ejemplo para la detección de errores del rango), esta parte de la aplicación deberá volver a revisarse manualmente.
En los capítulos siguientes se describe la configuración de los módulos de entrada analógica de Compact específicos.
Las tablas muestran todos los rangos de valores que proporciona el módulo analógico Compact.
ADU 206/256

Sustitución del módulo Modicon M340
El módulo Compact ADU 256 antiguo funciona igual que el módulo ADU 206, con la diferencia de que el módulo ADU 256 funciona a temperatura ampliada.
Por lo tanto, ambos módulos se sustituyen por módulos Modicon M340 BMXAMI0410.

Modalidades compatibles e incompatibles
Consulte las siguientes tablas para ver cómo se realiza la conversión y buscar las modalidades para las que no se puede proporcionar una conversión automática.
No es posible convertir automáticamente las modalidades que muestren valores de escalado Fuera de rango, debido a
• que los valores necesarios superan el máximo permitido. En estos casos, se necesita un código de emulación adicional para la conversión de valores.
Para obtener un ejemplo de cómo crear un código de emulación, consulte la descripción del módulo ADU 214 (véase página 313).
• la modalidad no es la modalidad de importación predeterminada (consulte Puntos débiles de la conversión (véase página 300)). En este caso, debe parametrizar el canal del módulo BMXAMI0410 manualmente.
El módulo BMXAMI0410 no es compatible con una modalidad de conversión de 16 bits.
En caso de que un módulo ADU 206 antiguo esté configurado con una resolución de 16 bits, se generará un mensaje en el archivo de registro de la importación.
También se generará un mensaje en el archivo de registro de la importación para cada canal y los bloques de entradas y salidas del canal (IOB) del módulo BMXAMI0410 contendrán los valores predeterminados.
Además, se insertará un bloque ConvError en una sección ST generada por el convertidor. Consulte Bloques de E/S de canal específicos de módulo (véase página 242).
### Unipolar

<table>
<thead>
<tr>
<th>ADU 206</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 20 mA</td>
<td></td>
<td>BMXAMI0410 adecuada</td>
<td></td>
</tr>
<tr>
<td>11 bits</td>
<td>0…2.000</td>
<td>De 0 a 20 mA</td>
<td>0 / 2.000</td>
</tr>
<tr>
<td>12 bits</td>
<td>0…4.000</td>
<td>De 0 a 20 mA</td>
<td>0 / 4.000</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0…32.000</td>
<td>De 0 a 20 mA</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0…64.000</td>
<td>De 0 a 20 mA</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADU 206</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 1 V</td>
<td></td>
<td>BMXAMI0410 adecuada</td>
<td></td>
</tr>
<tr>
<td>11 bits</td>
<td>0…2.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>12 bits</td>
<td>0…4.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0…32.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>16 bits</td>
<td>0…64.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADU 206</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 10 V</td>
<td></td>
<td>BMXAMI0410 adecuada</td>
<td></td>
</tr>
<tr>
<td>11 bits</td>
<td>0…2.000</td>
<td>De 0 a 10 V</td>
<td>0 / 2.000</td>
</tr>
<tr>
<td>12 bits</td>
<td>0…4.000</td>
<td>De 0 a 10 V</td>
<td>0 / 4.000</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0…32.000</td>
<td>De 0 a 10 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0…64.000</td>
<td>De 0 a 10 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>
## Bipolar

<table>
<thead>
<tr>
<th>ADU 206 +/- 20 mA</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>-2.000...2.000</td>
<td>+/- 20 mA</td>
<td>-2.000...2.000</td>
</tr>
<tr>
<td>12 bits</td>
<td>48...4.048</td>
<td>+/- 20 mA</td>
<td>48...4.048</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>-32.000...32.000</td>
<td>+/- 20 mA</td>
<td>-32.000...32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>768...64.768</td>
<td>+/- 20 mA</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADU 206 +/- 1 V</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>-2.000...2.000</td>
<td>+/- 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>12 bits</td>
<td>48...4.048</td>
<td>+/- 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>-32.000...32.000</td>
<td>+/- 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>16 bits</td>
<td>768...64.768</td>
<td>+/- 5 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADU 206 +/- 10 V</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>-2.000...2.000</td>
<td>+/- 10 V</td>
<td>-2.000...2.000</td>
</tr>
<tr>
<td>12 bits</td>
<td>48...4.048</td>
<td>+/- 10 V</td>
<td>48...4.048</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>-32.000...32.000</td>
<td>+/- 10 V</td>
<td>-32.000...32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>768...64.768</td>
<td>+/- 10 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>
Conversión especial para módulos de E/S Compact

Conductor interrumpido

<table>
<thead>
<tr>
<th>ADU 206</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>0…2.000</td>
<td>De 4 a 20 mA</td>
<td>0 / 2.000</td>
</tr>
<tr>
<td>12 bits</td>
<td>0…4.000</td>
<td>De 4 a 20 mA</td>
<td>0 / 4.000</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0…32.000</td>
<td>De 4 a 20 mA</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0…64.000</td>
<td>De 4 a 20 mA</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADU 206</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>0…2.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>12 bits</td>
<td>0…4.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0…32.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>16 bits</td>
<td>0…64.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADU 206</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>0…2.000</td>
<td>De 0 a 10 V</td>
<td>-500 / 2.000</td>
</tr>
<tr>
<td>12 bits</td>
<td>0…4.000</td>
<td>De 0 a 10 V</td>
<td>-1000 / 4.000</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0…32.000</td>
<td>De 0 a 10 V</td>
<td>-8000 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0…64.000</td>
<td>De 0 a 10 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

Puntos débiles de la conversión

La selección de la entrada de tensión/corriente del módulo ADU206/ADU256 se realiza mediante puentes. Por lo tanto, el convertidor selecciona una modalidad de conversión predeterminada y adapta el parámetro de canal a dicha modalidad predeterminada.

Los rangos predeterminados de conversión son:
- De 0 a 20 mA
  - En el caso de que el parámetro del módulo ADU206/ADU256 muestre +/- 1 V, +/- 20 mA.
- De 0 a 20 mA
  - En el caso de que el parámetro del módulo ADU206/ADU256 muestre de 0 a 1 V, de 0 a 20 mA.
- De 4 a 20 mA
  - En el caso de que el parámetro del módulo ADU206/ADU256 muestre de 0,2 a 1 V, de 4 a 20 mA.
Más acciones para el usuario

- La selección de la entrada de tensión/corriente del módulo ADU206/ADU256 se realiza mediante puentes. Como el convertidor selecciona una modalidad predeterminada para la modalidad de canal del módulo BMXAMI0410 (consulte Modalidades compatibles e incompatibles (véase página 297)), deben comprobarse los rangos de canal y el escalado de canal. En el caso de que deba usarse un rango no predeterminado, el rango de canal y los parámetros de canal deben adaptarse a las necesidades de la aplicación.

- La modalidad de 2 a 10 V no es compatible directamente con el módulo BMXAMI0410. En caso de que esta modalidad se emule con el rango del módulo BMXAMI0410 de 0 a 10 V, pueden aparecer valores negativos si la tensión de entrada es menor que 2 V. Para esta modalidad, no se establecerá ningún bit de conductor interrumpido en la palabra de estado emulado. Por consiguiente, la lógica debe adaptarse en este caso para aceptar los valores negativos y la detección de conductor interrumpido debe llevarse a cabo con una lógica adicional.

Código de emulación creado

Únicamente existe la creación automática del código de emulación para la información de estado (véase a continuación).

Información de estado compatible

Los módulos Modicon M340 no proporcionan directamente los bits del estado de entrada específico del módulo Compact antiguo.

Durante la importación se genera el código ST, que copia o combina la información de estado del módulo BMXAMI0410 existente al área de estado del módulo ADU 206 correspondiente. Estos bits se establecen y resetean según la información de estado del módulo BMXAMI0410, que puede diferir del comportamiento de estado del módulo ADU 206. El módulo BMXAMI0410 no proporciona información que sea similar al significado de la palabra de estado de los bits 5 y 7. Por lo tanto, estos 2 bits no tienen equivalente en la palabra de estado de destino del módulo Modicon M340.
El módulo Modicon M340 proporciona los bits de estado de la siguiente manera:

<table>
<thead>
<tr>
<th>Bit del 1 al 16</th>
<th>Significado (registro 30xxx [Compact])</th>
<th>Equivalente en el módulo BMXAMI0410</th>
<th>Significado (Modicon M340)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 = error actual del canal 1 (por encima de rango o circuito abierto)</td>
<td>%IWr.m.0.1.5 OR %IWr.m.0.1.6 *</td>
<td>medición dentro del área de tolerancia inferior o superior</td>
</tr>
<tr>
<td>2</td>
<td>1 = error actual del canal 2 (por encima de rango o circuito abierto)</td>
<td>%IWr.m.1.1.5 OR %IWr.m.1.1.6 *</td>
<td>medición dentro del área de tolerancia inferior o superior</td>
</tr>
<tr>
<td>3</td>
<td>1 = error actual del canal 3 (por encima de rango o circuito abierto)</td>
<td>%IWr.m.2.1.5 OR %IWr.m.2.1.6 *</td>
<td>medición dentro del área de tolerancia inferior o superior</td>
</tr>
<tr>
<td>4</td>
<td>1 = error actual del canal 4 (por encima de rango o circuito abierto)</td>
<td>%IWr.m.3.1.5 OR %IWr.m.3.1.6 *</td>
<td>medición dentro del área de tolerancia inferior o superior</td>
</tr>
<tr>
<td>5</td>
<td>el módulo mide la corriente o tensión en modalidad unipolar de 12 bits</td>
<td>no disponible con el módulo Modicon M340</td>
<td>no disponible con el módulo Modicon M340</td>
</tr>
<tr>
<td>6</td>
<td>el módulo mide la corriente o tensión con un offset por encima del rango restringido De 4 a 20 mA, de 0,2 a 1 V, de 2 a 10 V</td>
<td>se han establecido uno o varios bits del 1 al 4</td>
<td>la medición de un canal está dentro del área de tolerancia inferior o superior</td>
</tr>
<tr>
<td>7</td>
<td>la tensión de alimentación externa del módulo no está conectada</td>
<td>no disponible con el módulo Modicon M340</td>
<td>no disponible con el módulo Modicon M340</td>
</tr>
<tr>
<td>8</td>
<td>el módulo todavía no está listo, se han establecido uno o varios bits del 1 a4 o bien se ha producido un fallo de procesador</td>
<td>se han establecido uno o varios bits del 1 a4 o bien se ha establecido el bit de error de módulo</td>
<td>la medición de un canal está dentro del área de tolerancia inferior o superior o bien se muestra un error de módulo</td>
</tr>
<tr>
<td>9-16</td>
<td>no se utiliza</td>
<td>no se utiliza</td>
<td>no se utiliza</td>
</tr>
</tbody>
</table>

* r = bastidor, m = slot de módulo

Para facilitar el acceso a esta información de estado, el convertidor crea un código de emulación que transfiere los bits a la variable de entrada afectada. El código creado se puede ver en la sección ATSTCopIn.

Además de que el módulo BMXAMI0410 no ofrece un error común para el desborde, el código de emulación combina los errores de desborde/agotamiento del canal para simular esta información de estado. Para ello, se utiliza un OR lógico.
Tensión y corriente del módulo ADU 205

Sustitución del módulo Modicon M340

El módulo ADU 205 se sustituye por módulos Modicon M340 BMXAMI0410.

Modalidades compatibles e incompatibles

Consulte las siguientes tablas para ver cómo se realiza la conversión y buscar las modalidades para las que no se puede proporcionar una conversión automática.

No es posible convertir automáticamente las modalidades que muestren valores de escalado Fuera de rango, ya que los valores necesarios superan el máximo permitido. En estos casos, se necesita un código de emulación adicional para la conversión de valores.

Para obtener un ejemplo de cómo crear un código de emulación, consulte la descripción del módulo ADU 214 (véase página 313).

El módulo BMXAMI0410 no es compatible con una modalidad de conversión de 16 bits.

En caso de que un módulo ADU 205 antiguo esté configurado con una resolución de 16 bits, se generará un mensaje en el archivo de registro de la importación.

También se generará un mensaje en el archivo de registro de importación para cada canal con una modalidad incompatible y los bloques de entradas y salidas del canal (IOB) del módulo BMXAMI0410 contendrán los valores predeterminados.

Además, se insertará un bloque ConvError en una sección ST generada por el convertidor. Consulte Bloques de E/S de canal específicos de módulo (véase página 242).

<table>
<thead>
<tr>
<th>ADU 205 Modalidad</th>
<th>AMI0410 Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>De -20 a +20 V</td>
<td>No admitido</td>
</tr>
<tr>
<td>De -40 a 40 mA</td>
<td>No admitido</td>
</tr>
<tr>
<td>De -10 a +10 V</td>
<td>+/- 10 V</td>
</tr>
<tr>
<td>+/- 20 mA</td>
<td>De +/- 5 V +/- 20 mA</td>
</tr>
<tr>
<td>De 0 a 20 mA</td>
<td>De 0 a 5 V/De 0 a 20 mA</td>
</tr>
<tr>
<td>De 4 a 20 mA</td>
<td>De 1 a 5 V/De 4 a 20 mA</td>
</tr>
<tr>
<td>De 0 a 10 V</td>
<td>De 0 a 10 V</td>
</tr>
<tr>
<td>De 0 a 20 V</td>
<td>No admitido</td>
</tr>
</tbody>
</table>

Los rangos del módulo ADU 205 de -20 a +20 V, de -40 a 40 mA y de 0 a 20 V no son compatibles con ningún módulo Modicon M340.
### Valores de escalado

Valores de escalado del módulo Modicon M340 para las modalidades del módulo ADU 205 admitidas para el módulo BMXAMI0410.

<table>
<thead>
<tr>
<th>ADU 205</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 bits</td>
<td>0...4.095</td>
<td>De 0 a 20 mA</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>12 bits + signo</td>
<td>0...4.095</td>
<td>De 0 a 20 mA</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>13 bits</td>
<td>0...8.191</td>
<td>De 0 a 20 mA</td>
<td>0 / 8.191</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0...32.000</td>
<td>De 0 a 20 mA</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0...65.520</td>
<td>De 0 a 20 mA</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0 a 10 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 bits</td>
<td>0...4.095</td>
<td>De 0 a 10 V</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>12 bits + signo</td>
<td>0...4.095</td>
<td>De 0 a 10 V</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>13 bits</td>
<td>0...8.191</td>
<td>De 0 a 10 V</td>
<td>0 / 8.191</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0...32.000</td>
<td>De 0 a 10 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0...65.520</td>
<td>De 0 a 10 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 4 a 20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 bits</td>
<td>0...4.095</td>
<td>De 4 a 20 mA</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>12 bits + signo</td>
<td>0...4.095</td>
<td>De 4 a 20 mA</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>13 bits</td>
<td>0...8.191</td>
<td>De 4 a 20 mA</td>
<td>0 / 8.191</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0...32.000</td>
<td>De 4 a 20 mA</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0...65.520</td>
<td>De 4 a 20 mA</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>+/- 20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 bits</td>
<td>0...4.095</td>
<td>+/- 20 mA</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>12 bits + signo</td>
<td>-4.095...4.095</td>
<td>+/- 20 mA</td>
<td>-4.095 / 4.095</td>
</tr>
<tr>
<td>13 bits</td>
<td>0...8.191</td>
<td>+/- 20 mA</td>
<td>0 / 8.191</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>-32.000...32.000</td>
<td>+/- 20 mA</td>
<td>-32.000 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0...65.520</td>
<td>+/- 20 mA</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>
Conversión especial para módulos de E/S Compact

<table>
<thead>
<tr>
<th>ADU 205 +/- 10 V</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 bits</td>
<td>0…4.095</td>
<td>+/- 10 V</td>
<td>0 / 4.095</td>
</tr>
<tr>
<td>12 bits + signo</td>
<td>-4.095…4.095</td>
<td>+/- 10 V</td>
<td>-4.095 / 4.095</td>
</tr>
<tr>
<td>13 bits</td>
<td>0…8.191</td>
<td>+/- 10 V</td>
<td>0 / 8.191</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>-32.000…32.000</td>
<td>+/- 10 V</td>
<td>-32.000 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0…65.520</td>
<td>+/- 10 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

**Puntos débiles de la conversión**

Las entradas de tensión/corriente del módulo ADU 205 admiten rangos que no son compatibles con ningún módulo analógico Modicon M340.

En caso de que se seleccione un rango ampliado, como +/- 20 V, de 0 a 20 V o +/- 40 mA, se deberá realizar una adaptación manualmente y, quizás, se deba realizar también una adaptación para los sensores.

**Más acciones para el usuario**

Se requiere un código de emulación creado manualmente para las aplicaciones en las que se utilicen resoluciones de 16 bits y para aplicaciones en las que se seleccionara un rango de +/- 20 V, de 0 a 20 V o +/- 40 mA.

Para obtener un ejemplo de cómo crear un código de emulación, consulte la descripción del módulo ADU 214 (véase página 313).

**Código de emulación creado**

No hay ninguna creación automática de código de emulación para este módulo durante la importación.
**Información de estado compatible**

No hay ninguna emulación automática de la información de estado para el módulo ADU 205 durante la importación.

Los módulos Modicon M340 no proporcionan directamente los bits del estado de entrada específicos del módulo Compact descritos. En caso de que la aplicación haga referencia a la información de estado del módulo ADU 205, la aplicación debe adaptarse manualmente y debe utilizar la información de estado del módulo Modicon M340 disponible.

Palabra de estado asignada de E/S específica del módulo Compact ADU 205

<table>
<thead>
<tr>
<th>Bit</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Canal 1: superar/caer por debajo el rango de medición</td>
</tr>
<tr>
<td>1</td>
<td>Canal 2: superar/caer por debajo el rango de medición</td>
</tr>
<tr>
<td>2</td>
<td>Canal 3: superar/caer por debajo el rango de medición</td>
</tr>
<tr>
<td>3</td>
<td>Canal 4: superar/caer por debajo el rango de medición o el circuito abierto</td>
</tr>
<tr>
<td>4</td>
<td>Canal 1: circuito abierto</td>
</tr>
<tr>
<td>5</td>
<td>Canal 2: circuito abierto</td>
</tr>
<tr>
<td>6</td>
<td>Canal 3: circuito abierto</td>
</tr>
<tr>
<td>7</td>
<td>Canal 4: circuito abierto</td>
</tr>
<tr>
<td>8-14</td>
<td>reservado</td>
</tr>
<tr>
<td>15</td>
<td>0 = el módulo funciona correctamente.</td>
</tr>
<tr>
<td></td>
<td>1 = el módulo no funciona correctamente (error múltiple: notifica varios errores visualizables en la palabra de estado de entrada del módulo una vez identificada).</td>
</tr>
</tbody>
</table>
Conversión especial para módulos de E/S Compact

Tensión y corriente de ADU 210

Sustitución de Modicon M340

El módulo Compact ADU 210 antiguo se sustituye por un módulo Modicon M340 BMXAMI0410.

Modalidades compatibles e incompatibles

La conversión se realiza estableciendo valores de escalado especiales dentro de la configuración del módulo BMXAMI0410.

NOTA: Un módulo Compact ADU 210 establecido inicialmente como inactivo se convierte en un módulo BMXAMI0410 activo con todos los canales utilizados y un rango establecido en ± 10 V. Para establecer un módulo BMXAMI0410 como inactivo, borre manualmente todas las casillas de verificación de los canales Utilizados después de la importación.

Para la conversión de ADU 210 este mecanismo es suficiente para admitir todas las modalidades del módulo ADU 210.

<table>
<thead>
<tr>
<th>Modalidad de ADU 210</th>
<th>Valor de origen Rango</th>
<th>Modalidad adecuada de BMXAMI0410</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivo</td>
<td>Inactivo</td>
<td>± 10 V</td>
<td>Predeterminado</td>
</tr>
<tr>
<td>De 0 a 10 V</td>
<td>De 0 a 32.000</td>
<td>De 0 a 10 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>De 0 a 5 V</td>
<td>De 0 a 32.000</td>
<td>De 0 a 5 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>De 2 a 10 V</td>
<td>De 0 a 32.000</td>
<td>De 0 a 10 V</td>
<td>-8.000 / 32.000</td>
</tr>
<tr>
<td>De 1 a 5 V</td>
<td>De 0 a 32.000</td>
<td>De 1 a 5 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>± 5 V</td>
<td>De -32.000 a 32.000</td>
<td>± 5 V</td>
<td>-32.000 / 32.000</td>
</tr>
<tr>
<td>± 10 V</td>
<td>De -32.000 a 32.000</td>
<td>± 10 V</td>
<td>-32.000 / 32.000</td>
</tr>
</tbody>
</table>

Más acciones para el usuario

Las comprobaciones de límites son distintas para el módulo BMXAMI0410.

Por lo tanto, se requieren acciones de usuario adicionales en el caso de que se activara el límite <> 0 para el canal ADU 210.

Código de emulación creado

No hay ninguna creación automática de código de emulación para el módulo ADU 210 durante la importación.

Información de estado compatible

No hay ninguna emulación de la información de estado para el módulo ADU 210 durante la importación.
Conversión especial para módulos de E/S Compact

Termopar del módulo ADU 204/ADU 254

Sustitución del módulo Modicon M340
El módulo Compact ADU 204/ADU 254 antiguo se sustituye por un módulo Modicon M340 BMXART0414.

Modalidades compatibles e incompatibles
A excepción de las resoluciones de 13 bits y 15 bits + signo en combinación con los sensores RTD, las modalidades del módulo ADU 204/ADU 254 son compatibles con la conversión automática.

<table>
<thead>
<tr>
<th>Modalidad de sensor RTD del módulo ADU 204/ADU 254</th>
<th>Rango de temperaturas</th>
<th>Modalidad del módulo BMXART0414 adecuada</th>
<th>Rango de temperaturas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt 100, de -200 a 850 °C</td>
<td>De -200 a 850 °C</td>
<td>Pt 100</td>
<td>De -175 a 825 °C</td>
</tr>
<tr>
<td>Pt 200, de -200 a 250 °C</td>
<td>De -200 a 250 °C</td>
<td>Pt 100</td>
<td>De -175 a 825 °C</td>
</tr>
<tr>
<td>Ni 100, de -60 a 250 °C</td>
<td>De -60 a 250 °C</td>
<td>Ni 100</td>
<td>De -54 a 174 °C</td>
</tr>
<tr>
<td>Ni 200, de -60 a 150 °C</td>
<td>De -60 a 150 °C</td>
<td>Ni 100</td>
<td>De -54 a 174 °C</td>
</tr>
<tr>
<td>JPt 100, de -200 a 600 °C</td>
<td>De -200 a 600 °C</td>
<td>JPt 100</td>
<td>De -87 a 437 °C</td>
</tr>
<tr>
<td>JPt 200, de -200 a 250 °C</td>
<td>De -200 a 250 °C</td>
<td>JPt 100</td>
<td>De -87 a 437 °C</td>
</tr>
</tbody>
</table>

Si los rangos de temperatura resultantes no se ajustan a los requisitos de proceso tras la conversión, serán necesarias adaptaciones adicionales. Consulte Más acciones para el usuario (véase página 309).

Al contrario que las modalidades de RTD, de acuerdo con las cuales los valores entregados se encuentran en unidades fijas de 1/10 °C o 1/10 °F para la modalidad de medición de la resistencia, el convertidor inserta valores de escalado especiales en la configuración para adaptarlos a los rangos del módulo ADU 204/ADU 254.

<table>
<thead>
<tr>
<th>Modalidad de resistencia del módulo ADU 204/ADU 254</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXART0414 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 400 Ω, 13 bits</td>
<td>0…8.191</td>
<td>De 0 a 400 Ω</td>
<td>0 / 8.191</td>
</tr>
<tr>
<td>De 0 a 400 Ω, 15 bits + signo</td>
<td>0…32.000</td>
<td>De 0 a 400 Ω</td>
<td>0 / 32.000</td>
</tr>
</tbody>
</table>
Más acciones para el usuario

Para las modalidades de sensores de RTD, las resoluciones de 13 bits y 15 bits + signo no son compatibles con la conversión automática. Se requiere el código de emulación creado manualmente para estas modalidades de funcionamiento.

Además, es posible que el rango de temperaturas del RTD resultante no cumpla con los requisitos de proceso. En este caso, la modalidad propuesta y el sensor RTD deberán sustituirse por otros.

La siguiente tabla muestra los sensores RTD compatibles con el módulo BMXART0414 y los rangos de temperatura que se ofrecen.

<table>
<thead>
<tr>
<th>Tipo de RTD</th>
<th>Rango de temperatura compatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100 IEC 751-1995, JIS C1604-1997 (2/4 conductores)</td>
<td>De -175 a 825 °C (de -283 a 1.517 °F)</td>
</tr>
<tr>
<td>Pt1000 IEC 751-1995, JIS C1604-1997 (2/4 conductores)</td>
<td>De -175 a 825 °C (de -283 a 1.517 °F)</td>
</tr>
<tr>
<td>Ni100 DIN43760-1987 (2/4 conductores)</td>
<td>De -54 a 174 °C (de -66 a 346 °F)</td>
</tr>
<tr>
<td>Ni1000 DIN43760-1987 (2/4 conductores)</td>
<td>De -54 a 174 °C (de -66 a 346 °F)</td>
</tr>
<tr>
<td>Pt100 IEC 751-1995, JIS C1604-1997 (3 conductores)</td>
<td>De -175 a 825 °C (de -283 a 1.517 °F)</td>
</tr>
<tr>
<td>Pt1000 IEC 751-1995, JIS C1604-1997 (3 conductores)</td>
<td>De -175 a 825 °C (de -283 a 1.517 °F)</td>
</tr>
<tr>
<td>Ni100 DIN43760-1987 (3 conductores)</td>
<td>De -54 a 174 °C (de -66 a 346 °F)</td>
</tr>
<tr>
<td>Ni1000 DIN43760-1987 (3 conductores)</td>
<td>De -54 a 174 °C (de -66 a 346 °F)</td>
</tr>
<tr>
<td>JPt100 JIS C1604-1981, JIS C1606-1989 (2/4 conductores)</td>
<td>De -87 a 437 °C (de -124 a 818 °F)</td>
</tr>
<tr>
<td>JPt100 JIS C1604-1981, JIS C1606-1989 (2/4 conductores)</td>
<td>De -87 a 437 °C (de -124 a 818 °F)</td>
</tr>
<tr>
<td>JPt100 JIS C1604-1981, JIS C1606-1989 (3 conductores)</td>
<td>De -87 a 437 °C (de -124 a 818 °F)</td>
</tr>
<tr>
<td>JPt100 JIS C1604-1981, JIS C1606-1989 (3 conductores)</td>
<td>De -87 a 437 °C (de -124 a 818 °F)</td>
</tr>
<tr>
<td>Cu10 (2/4 conductores)</td>
<td>De -91 a 251 °C (de -132 a 484 °F)</td>
</tr>
<tr>
<td>Cu10 (3 conductores)</td>
<td>De -91 a 251 °C (de -132 a 484 °F)</td>
</tr>
</tbody>
</table>

Código de emulación creado

El convertidor genera un código de emulación para las modalidades de temperatura 1,0° Celsius y 1,0° Fahrenheit, que divide las unidades 1/10° del módulo BMXART0414 por 10.

El código ST creado para este propósito queda como se puede observar en el siguiente ejemplo:

```%IW177 := WRITE_INPUT_INT(REAL_TO_INT(INT_TO_REAL(%IW177) / 10));```

El código de emulación creado automáticamente se almacena en la sección ST ATSTCopIn.

Información de estado compatible

No hay ninguna emulación de la información de estado para el módulo ADU 204/ADU 254 durante la importación.
Tensión, corriente, termopar y resistencias mixtos del módulo ADU 214

Sustitución del módulo Modicon M340

Los módulos Compact ADU 214 antiguos pueden configurarse para entradas de tensión, corriente, termopar y resistencias mixtos siguiendo un criterio por canal. No existe un módulo equivalente en la gama del módulo Modicon M340 y, por lo tanto, se necesita más de un módulo para sustituir un módulo ADU 214.

Dentro de la configuración, el convertidor coloca los módulos BMXAMI0410 y BMXART0414 para la sustitución del módulo ADU 214, aplicando las siguientes reglas:

<table>
<thead>
<tr>
<th>El primer sensor encontrado es</th>
<th>Sustitución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión unipolar del módulo ADU 214</td>
<td>un módulo BMXAMI0410</td>
</tr>
<tr>
<td>Tensión bipolar del módulo ADU 214</td>
<td>un módulo BMXAMI0410</td>
</tr>
<tr>
<td>Termopar del módulo ADU 214</td>
<td>un módulo BMXART0414</td>
</tr>
<tr>
<td>Resistencia del módulo ADU 214</td>
<td>un módulo BMXART0414</td>
</tr>
</tbody>
</table>

Se coloca un segundo módulo si se necesitan más de 4 canales, bien un módulo BMXAMI0410 o un módulo BMXART0414.
Modalidades compatibles e incompatibles

Como la conversión de las diversas modalidades del módulo ADU 214 se realiza con la función de escalado del módulo BMXAMI0410 y BMXART0414, solamente se pueden proporcionar unas cuantas conversiones automáticamente. Consulte las siguientes tablas para obtener una descripción general.

No es posible convertir automáticamente las modalidades que muestren valores de escalado fuera de rango. En estos casos, se necesita un código de emulación adicional para la conversión de valores.

Consulte Más acciones para el usuario (véase página 313).

<table>
<thead>
<tr>
<th>Tensión unipolar del módulo ADU 214</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado del 0% al 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 0,5 V</td>
<td>0…32.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0 a 1 V</td>
<td>0…32.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0 a 5 V</td>
<td>0…32.000</td>
<td>De 0 a 5 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>De 0 a 10 V</td>
<td>0…32.000</td>
<td>De 0 a 10 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>De 0,1 a 0,5 V</td>
<td>0…32.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0,2 a 1 V</td>
<td>0…32.000</td>
<td>De 0 a 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 1 a 5 V</td>
<td>0…32.000</td>
<td>De 1 a 5 V</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>De 2 a 10 V</td>
<td>0…32.000</td>
<td>De 0 a 10 V</td>
<td>-8.000 / 32.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensión bipolar del módulo ADU 214</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMI0410 adecuada</th>
<th>Valores de escalado del 0% al 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0,5 V</td>
<td>-32.000…32.000</td>
<td>± 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>± 1 V</td>
<td>-32.000…32.000</td>
<td>± 5 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>± 5 V</td>
<td>-32.000…32.000</td>
<td>± 5 V</td>
<td>-32.000 / 32.000</td>
</tr>
<tr>
<td>± 10 V</td>
<td>-32.000…32.000</td>
<td>± 10 V</td>
<td>-32.000 / 32.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Termopar del módulo ADU 214</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXART0414 adecuada</th>
<th>Valores de escalado del 0% al 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Ω De -60 a +160 °C Ni</td>
<td>0…32.000</td>
<td>100 Ω De -54 a +174 °C Ni</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>200 Ω De -60 a +160 °C Ni</td>
<td>0…32.000</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>500 Ω De -60 a +160 °C Ni</td>
<td>0…32.000</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>1 kΩ De -60 a +160 °C Ni</td>
<td>0…32.000</td>
<td>1 kΩ De -54 a +174 °C Ni</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>
### Resistencia del módulo ADU 214

<table>
<thead>
<tr>
<th>Resistencia del módulo ADU 214</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXART0414 adecuada</th>
<th>Valores de escalado del 0% al 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 100 Ω</td>
<td>0…32.000</td>
<td>De 0 a 400 Ω</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0 a 200 Ω</td>
<td>0…32.000</td>
<td>De 0 a 400 Ω</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0 a 500 Ω</td>
<td>0…32.000</td>
<td>De 0 a 4 kΩ</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0 a 1 kΩ</td>
<td>0…32.000</td>
<td>De 0 a 4 kΩ</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>De 0 a 2 kΩ</td>
<td>0…32.000</td>
<td>De 0 a 4 kΩ</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

### Termopar del módulo ADU 214

<table>
<thead>
<tr>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXART0414 adecuada</th>
<th>Valores de escalado del 0% al 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Ω De -160 a +160 °C Pt</td>
<td>0…32.000</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>200 Ω De -160 a +160 °C Pt</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>500 Ω De -160 a +160 °C Pt</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>1 kΩ De -160 a +160 °C Pt</td>
<td>1 kΩ De -175 a +825 °C Pt</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>100 Ω De -200 a +320 °C Pt</td>
<td>100 Ω De -175 a +825 °C Pt</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>200 Ω De -200 a +320 °C Pt</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>500 Ω De -200 a +320 °C Pt</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>1 kΩ De -200 a +320 °C Pt</td>
<td>1 kΩ De -175 a +825 °C Pt</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>100 Ω De -200 a +640 °C Pt</td>
<td>100 Ω De -175 a +825 °C Pt</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>200 Ω De -200 a +640 °C Pt</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>500 Ω De -200 a +640 °C Pt</td>
<td>Ninguna</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>1 kΩ De -200 a +640 °C Pt</td>
<td>1 kΩ De -175 a +825 °C Pt</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>
Más acciones para el usuario

Debido al gran rango de valores del módulo ADU 214, la mayoría de valores de escalado resultantes excede el máximo rango posible. Por lo tanto, se necesita un código de emulación adicional para convertir y emular el rango de origen de los valores.

La sección ST ATSTCopIn ya se ha creado para admitir el código de emulación adicional. Consulte también Emulación de módulos (véase página 244).

Por supuesto, también se pueden utilizar otros tipos de secciones (como FBD, LD, etc.) para este propósito.

Ejemplo de conversión para un termopar con un rango de -60 a +160:

Dentro de este rango de temperatura, el módulo ADU 214 entrega valores entre 0 y 32.000, tal como señala la siguiente tabla. Por el contrario, el módulo BMXART0414 siempre entrega en unidades de 1/10 °C y, por lo tanto, los resultados en valores oscilan entre -600 y 1.600 en el mismo rango de temperatura.

<table>
<thead>
<tr>
<th>Módulo Compact bajo</th>
<th>Módulo Compact alto</th>
<th>Módulo Modicon M340 bajo</th>
<th>Módulo Modicon M340 alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32.000</td>
<td>-600</td>
<td>1600</td>
</tr>
</tbody>
</table>

Ahora, debe realizar una conversión lineal de estos valores de un rango a otro. Una forma de hacerlo es utilizar la ecuación común para una línea:

\[ Y = m \cdot X + b \]

Mientras que \( m \) es el gradiente, \( b \) es la intersección con la ordenada de dicha línea buscada.

El gradiente \( m \) se puede calcular por:

\[ m = \frac{(\text{Compact alto} - \text{Compact bajo})}{(\text{M340 alto} - \text{M340 bajo})} \]

En el ejemplo, el gradiente \( m \) resulta en 14,545.

Ahora ya puede calcular el punto de intersección \( b \) con la fórmula:

\[ b = \text{Compact alto} - m \cdot \text{M340 alto} \]

Y esto resulta en 8,727,27 para \( b \).

Con los dos valores ya es posible generar su código ST para hacer la conversión. Recuerde que esto está basado en la ecuación para una línea \( Y = m \cdot X + b \) desde el principio que, adaptado a su objetivo, queda de la siguiente manera:

\(<\text{valor de Compact}> = m \cdot <\text{valor de M340}> + b\)

y si se expresa en texto estructurado (del inglés, Structured Text [ST]), queda así:

\[%\text{IW999} := \text{WRITE_INPUT_INT(REAL_TO_INT(m \ast INT_TO_REAL(%\text{IW999}) + b)};\]

y, por último, con valores insertados, así:

\[%\text{IW999} := \text{WRITE_INPUT_INT(REAL_TO_INT(14.545 \ast INT_TO_REAL(%\text{IW999}) + 8727.27)};\]
Tras añadir este código ST a la aplicación, los valores recibidos serán los mismos que los entregados por el módulo ADU 214 dentro del rango de temperatura:
De -60 a 160 °C.
Se puede crear el código de emulación para otras modalidades de la misma manera.

Código de emulación creado
No hay ninguna creación de emulación automática para el módulo ADU 214 durante la importación.

Información de estado compatible
No hay ninguna emulación de la información de estado para el módulo ADU 214 durante la importación.
Termopar de uno y dos canales con 32 bits del módulo ADU 257

Sustitución del módulo Modicon M340
El módulo Compact ADU 257 antiguo se sustituye por un módulo Modicon M340 BMXART0814. El módulo BMXART0814 está equipado con un convertidor de 16 bits para cada entrada y, por lo tanto, se pueden alcanzar todas las resoluciones del módulo ADU 257 como mínimo.

Modalidades compatibles e incompatibles
Para este módulo, la conversión difiere de otras conversiones, ya que no se ha utilizado ningún mecanismo de valores de escalado, sino que el convertidor genera un código de emulación para convertir los valores del módulo BMXART0814 en valores del módulo ADU 257. Debido a este principio, se admiten prácticamente todas las modalidades del módulo ADU 257. Solo deben adaptarse manualmente las resoluciones de coma flotante IEEE754.

Más acciones para el usuario
Se requiere un código de emulación creado manualmente para los canales con resolución de coma flotante IEEE754.

Código de emulación creado
El convertidor genera un código de emulación para prácticamente todas las modalidades del módulo ADU 257 y todas las resoluciones. Solamente no está admitida la resolución de coma flotante IEEE754.

El código de emulación creado automáticamente se almacena en la sección ST ATSTCopIn.
El principio básico de conversión es la ecuación para una línea \( Y = m \cdot X + b \). Para obtener un ejemplo de cómo crear un código de emulación, consulte la descripción del módulo ADU 214 (véase página 313).

Ejemplo para el código ST creado:
\[
%IW130 := WRITE_INPUT_INT(REAL_TO_INT(0.216667 \cdot INT_TO_REAL(%IW130) + 710.666626));
\]

Información de estado compatible
No hay ninguna emulación de la información de estado para el módulo ADU 257 durante la importación.
Módulos configurados de los conmutadores de hardware ADU 211/212 y ADU 216

Sustitución de Modicon M340

Los módulos Compact heredados ADU 211/212 y ADU 216 se sustituyen del siguiente modo:

<table>
<thead>
<tr>
<th>Módulo Compact antiguo</th>
<th>Descripción</th>
<th>Sustituido por un módulo de Modicon M340</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADU 211</td>
<td>Módulo de entrada analógica de 8 canales</td>
<td>BMXART0814</td>
</tr>
<tr>
<td>ADU 212</td>
<td>Módulo de entrada analógica de 8 canales</td>
<td>BMXART0814</td>
</tr>
<tr>
<td>ADU 216</td>
<td>Termopar de 8 canales</td>
<td>BMXART0814</td>
</tr>
</tbody>
</table>

Se convierten con la configuración predeterminada de Control Expert, como si fueran introducidos por la configuración de Control Expert.

El archivo de registro de la importación da una sugerencia para corregir la elección de módulo predeterminada.

Modalidades compatibles e incompatibles

Como este módulo analógico heredado se configura durante el tiempo de ejecución por lógica, no se puede ajustar la configuración del canal del módulo BMXART0814 durante la importación.

Puntos débiles de la conversión

No existe información disponible para el convertidor, que podría utilizarse para ajustar los parámetros del módulo BMXART0814.
Más acciones para el usuario

- La configuración del módulo BMXART0814 debe adaptarse a las necesidades de la aplicación y el sensor.
- Puesto que la aplicación contiene una lógica para configurar el módulo Compact durante el tiempo de ejecución, se debe eliminar esta lógica de configuración.
- Con los módulos ADU211/212/216 heredados, era necesario demultiplexar los valores de entrada con la ayuda de la lógica. Esta lógica se debe eliminar.
- En caso de que la aplicación Compact heredada utilice un formato de datos o un tipo de datos que no estén admitidos por el módulo BMXART0814, se deberá adaptar la lógica.
- En el caso de que la aplicación Compact heredada utilice la información de estado de estos módulos, deberá adaptar la lógica y se deberá utilizar la información de estado, accesible en el área topológica del módulo BMXART0814.
- En caso de que la configuración del conmutador DIP del módulo ADU211/212 y el valor de Rango de tensión de entrada sea mayor que +/- 1.28 V, se debe sustituir el módulo BMXART0814 por dos módulos BMXAMI0410.
- En caso de que la configuración del conmutador DIP del módulo ADU211/212 y el valor de Rango de tensión de entrada sea mayor que +/- 1.28 V, se debe sustituir el módulo BMXART0814 por un módulo BMXART0414 y un módulo BMXAMI0410.

Código de emulación creado

No hay ninguna creación automática de código de emulación para estos módulos durante la importación.

Información de estado compatible

No hay ninguna emulación de la información de estado o información de las palabras de estado asignadas de E/S para estos módulos durante la importación.
Conversión especial para módulos de E/S Compact

Módulos de conteo y posicionamiento, FRQ xxx, ZAE xxx, MOT_xxx, VIC_xxx

Sustitución del módulo Modicon M340
Los módulos de conteo y posicionamiento antiguos se sustituyen por módulos de prueba (BMXXXXXX).

No hay ninguna conversión de configuración ni de parámetros.
Debe modificar la configuración y la lógica de la aplicación con relación a los módulos de conteo y posicionamiento.
Sección 26.5
Conversión de módulos de salidas analógicas

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversión de módulos de salidas analógicas</td>
<td>320</td>
</tr>
<tr>
<td>DAU 204</td>
<td>321</td>
</tr>
<tr>
<td>DAU 208</td>
<td>324</td>
</tr>
<tr>
<td>DAU 2x2</td>
<td>325</td>
</tr>
</tbody>
</table>
Conversión especial para módulos de E/S Compact

Conversión de módulos de salidas analógicas

Introducción
Los módulos de salidas analógicas proporcionan Valores de recuperación. El comportamiento Detener de los módulos Compact puede tomarse de manera idéntica.

Valores definidos por usuario
Si se establecen valores de Definido por usuario para los módulos Compact, estos valores se trasladan a los módulos Modicon M340 y se utilizan para Valores de recuperación. En estos casos, deberá activar la casilla de verificación Retorno asignada en el módulo de destino Modicon M340. Los módulos afectados son DAU 204, DAU 208 y DAU 2x2.
Conversión especial para módulos de E/S Compact

DAU 204

Sustitución del módulo Modicon M340

El módulo Compact DAU 204 antiguo se sustituye por un módulo Modicon M340 BMXAMO0410.

Modalidades compatibles e incompatibles

Consulte las siguientes tablas para ver cómo se realiza la conversión y buscar las modalidades para las que no se puede proporcionar una conversión automática.

No es posible convertir automáticamente las modalidades que muestren valores de escalado Fuera de rango, ya que los valores necesarios superan el máximo permitido. En estos casos, se necesita un código de emulación adicional para la conversión de valores.

Para obtener un ejemplo de cómo crear un código de emulación, consulte la descripción del módulo ADU 214 (véase página 313).

<table>
<thead>
<tr>
<th>DAU 204</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMO0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>0...2.047</td>
<td>De 0 a 20 mA, de 4 a 20 mA</td>
<td>0 / 2.048</td>
</tr>
<tr>
<td>12 bits</td>
<td>0...4.095</td>
<td>De 0 a 20 mA, de 4 a 20 mA</td>
<td>0 / 4.096</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>0...32.000</td>
<td>De 0 a 20 mA, de 4 a 20 mA</td>
<td>0 / 32.000</td>
</tr>
<tr>
<td>16 bits</td>
<td>0...65.520</td>
<td>De 0 a 20 mA, de 4 a 20 mA</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAU 204 ±1 V</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMO0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>0...2.047</td>
<td>±10 V</td>
<td>-9.216 / 11.264</td>
</tr>
<tr>
<td>12 bits</td>
<td>0...4.095</td>
<td>±10 V</td>
<td>-18.432 / 22.528</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>-32.000...32.000</td>
<td>±10 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>16 bits</td>
<td>0...65.520</td>
<td>±10 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAU 204 ±5 V</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMO0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 bits</td>
<td>0...2.047</td>
<td>±10 V</td>
<td>-1.024 / 3.072</td>
</tr>
<tr>
<td>12 bits</td>
<td>0...4.095</td>
<td>±10 V</td>
<td>-2.048 / 6.144</td>
</tr>
<tr>
<td>15 bits + signo</td>
<td>-32.000...32.000</td>
<td>±10 V</td>
<td>Fuera de rango</td>
</tr>
<tr>
<td>16 bits</td>
<td>0...65.520</td>
<td>±10 V</td>
<td>Fuera de rango</td>
</tr>
</tbody>
</table>
### Más acciones para el usuario

Se requiere un código de emulación creado manualmente para todas las modalidades en las que los valores de escalado estén Fuera de rango.

Para obtener un ejemplo de cómo crear un código de emulación, consulte la descripción del módulo ADU 214 (*véase página 313*).
Código de emulación creado

Únicamente existe la creación automática del código de emulación para la información de estado (véase a continuación).

Información de estado compatible

El módulo Modicon M340 proporciona los bits de estado de la siguiente manera:

<table>
<thead>
<tr>
<th>Bit (1 a 16)</th>
<th>Significado (Compact)</th>
<th>Equivalente de BMXAMO0410</th>
<th>Significado (Modicon M340)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 = error actual</td>
<td>OR de canal 1 a canal 4</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1 = Error actual de canal 1</td>
<td>[T_ANA_OUT_BMX].ACT_WIRE_FLT</td>
<td>conductor de actuador abierto o cortocircuito</td>
</tr>
<tr>
<td>3</td>
<td>1 = Error actual de canal 2</td>
<td>[T_ANA_OUT_BMX].ACT_WIRE_FLT</td>
<td>conductor de actuador abierto o cortocircuito</td>
</tr>
<tr>
<td>4</td>
<td>1 = Error actual de canal 3</td>
<td>[T_ANA_OUT_BMX].ACT_WIRE_FLT</td>
<td>conductor de actuador abierto o cortocircuito</td>
</tr>
<tr>
<td>5</td>
<td>1 = Error actual de canal 4</td>
<td>[T_ANA_OUT_BMX].ACT_WIRE_FLT</td>
<td>conductor de actuador abierto o cortocircuito</td>
</tr>
<tr>
<td>6-14</td>
<td>no se utiliza</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>1 = error de memoria de módulo</td>
<td>desconocido/no disponible</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>1 = error de módulo</td>
<td>[T_GEN_MOD].MOD_ERROR</td>
<td>bit de error detectado del módulo</td>
</tr>
</tbody>
</table>

Para facilitar el acceso a esta información de estado, el convertidor crea un código de emulación que transfiere los bits a la variable de entrada afectada. El código creado se puede ver en la sección ATSTCopIn.

Además de que el módulo BMXAMO0410 no ofrece un error común para la corriente, el código de emulación combina los errores por canal para simular esta información de estado; para ello, se utiliza un OR lógico.
Sustitución del módulo Modicon M340

El módulo Compact DAU 208 antiguo tiene 8 canales de salida y se sustituye por 2 módulos Modicon M340 BMXAMO0410.

Modalidades compatibles e incompatibles

La conversión se realiza estableciendo valores de escalado especiales dentro de la configuración de los módulos BMXAMO0410.

Este mecanismo de conversión es suficiente para admitir cualquier modalidad a cualquier resolución de los módulos DAU 208.

Asimismo, los valores de desborde y subdesbordamiento, así como los valores de timeout configurados, pasan a la configuración del módulo BMXAMO0410 para obtener el mismo comportamiento en casos de desborde y timeout.

<table>
<thead>
<tr>
<th>Modalidad del módulo DAU 208</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMO0410 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
<th>Valores de desborde Por debajo/Por encima</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 V, 12 bits</td>
<td>48…4.048</td>
<td>±10 V</td>
<td>48 / 4.048</td>
<td>47 / 4.049</td>
</tr>
<tr>
<td>±10 V, 15 bits + signo</td>
<td>-32.000…32.000</td>
<td>±10 V</td>
<td>-32.000 / 32.000</td>
<td>-32.016 / 32.016</td>
</tr>
</tbody>
</table>

Más acciones para el usuario

No se necesitan más acciones.

Código de emulación creado

No hay ninguna creación automática de código de emulación para este módulo durante la importación.

Información de estado compatible

No hay ninguna emulación de la información de estado para el módulo DAU 208 durante la importación.
Conversión especial para módulos de E/S Compact

**DAU 2x2**

**Sustitución del módulo Modicon M340**
El módulo Compact DAU 208/DAU 252 antiguo se sustituye por un módulo Modicon M340 BMXAMO0210.

**Modalidades compatibles e incompatibles**
La conversión se realiza estableciendo valores de escalado especiales dentro de la configuración del módulo BMXAMO0210.
Este mecanismo de conversión es suficiente para admitir cualquier modalidad a cualquier resolución de los módulos DAU 2x2.
Asimismo, los valores de desborde y subdesbordamiento, así como los valores de timeout configurados, pasan a la configuración del módulo BMXAMO0210 para obtener el mismo comportamiento en casos de desborde y timeout.

<table>
<thead>
<tr>
<th>Modalidad del módulo DAU 2x2</th>
<th>Rango de valores de origen</th>
<th>Modalidad del módulo BMXAMO0210 adecuada</th>
<th>Valores de escalado 0% / 100%</th>
<th>Valores de desborde Por debajo/Por encima</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 0 a 20 mA, 12 bits</td>
<td>48…4.048</td>
<td>De 0 a 20 mA</td>
<td>48 / 4.048</td>
<td>47 / 4.049</td>
</tr>
<tr>
<td>De 0 a 20 mA, 15 bits + signo</td>
<td>-32.000…32.000</td>
<td>De 0 a 20 mA</td>
<td>-32.000 / 32.000</td>
<td>-32.016 / 32.016</td>
</tr>
<tr>
<td>±10 V, 12 bits</td>
<td>48…4.048</td>
<td>±10 V</td>
<td>48 / 4.048</td>
<td>47 / 4.049</td>
</tr>
<tr>
<td>±10 V, 15 bits + signo</td>
<td>-32.000…32.000</td>
<td>±10 V</td>
<td>-32.000 / 32.000</td>
<td>-32.016 / 32.016</td>
</tr>
</tbody>
</table>

**Más acciones para el usuario**
No se necesitan más acciones.

**Código de emulación creado**
No hay ninguna creación automática de código de emulación para este módulo durante la importación.

**Información de estado compatible**
No hay ninguna emulación de la información de estado para el módulo DAU 2x2 durante la importación.
Conversión especial para módulos de E/S Compact
Apéndices

Vista general
En esta sección se incluyen los apéndices.

Contenido de este anexo
Este anexo contiene los siguientes capítulos:

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Nombre del capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Preguntas más frecuentes sobre errores de compilación</td>
<td>329</td>
</tr>
<tr>
<td>B</td>
<td>FAQ sobre errores de conversión</td>
<td>355</td>
</tr>
</tbody>
</table>
Apéndice A
Preguntas más frecuentes sobre errores de compilación

Vista general
En este capítulo se incluye información sobre los errores de compilación.

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>330</td>
</tr>
<tr>
<td>Error al crear el enlace del objeto</td>
<td>331</td>
</tr>
<tr>
<td>El objeto debe estar conectado a un sucesor</td>
<td>332</td>
</tr>
<tr>
<td>No se permite el enlace junto con la variable</td>
<td>334</td>
</tr>
<tr>
<td>Data Type 'xxxx' Expected</td>
<td>335</td>
</tr>
<tr>
<td>DFB vacío para sustituir el EFB obsoleto</td>
<td>340</td>
</tr>
<tr>
<td>Símbolo no definido &quot;xxxx&quot;</td>
<td>341</td>
</tr>
<tr>
<td>Call of Non-Function Block</td>
<td>343</td>
</tr>
<tr>
<td>Se tiene que asignar el parámetro &quot;xxxx&quot;</td>
<td>346</td>
</tr>
<tr>
<td>&quot;xxxx&quot; no es un parámetro de &quot;yyyy&quot;</td>
<td>347</td>
</tr>
<tr>
<td>Falta el componente del DDT</td>
<td>348</td>
</tr>
<tr>
<td>Parámetros de EHC fuera de rango</td>
<td>349</td>
</tr>
<tr>
<td>No es una dirección válida</td>
<td>350</td>
</tr>
<tr>
<td>Configuración de 140 NOG 111 00 no convertida</td>
<td>351</td>
</tr>
<tr>
<td>E1163 Uso de dirección directa no configurada</td>
<td>352</td>
</tr>
<tr>
<td>La instancia está ubicada en una dirección no configurada.</td>
<td>353</td>
</tr>
</tbody>
</table>
General

Vista general
Tras convertir una aplicación Concept, se debe invocar el menú Regenerar todo.

Si la aplicación no se genera con este comando, se deben examinar todos los mensajes de error de la ventana de salida de generación haciendo doble clic en ellos. Esto hace que se abra la sección con el origen del problema.

Se debe comparar toda la sección con el original en Concept y se deben corregir manualmente las diferencias funcionales en la aplicación convertida.

Ejemplo

Ejemplos de mensajes:
- {SCADA_Info : [MAST]} : (r: 172, c: 4) E1218 Object must be connected to a successor, at least the Right-Power-Rail
- {PC124_Visual_call_up_part_3 : [MAST]} : (r: 31, c: 5) E1189 converter error: 'Object Link creation error (Link pin can not be located in original object) : Link to pin (linkSource: row=30, col=4, Object=, Pin=OUT1.) can not be created. Object has not been created during import.'

Posibles mensajes

En la siguiente lista se facilitan formas abreviadas de posibles mensajes, que están vinculadas a la explicación correspondiente:
- Error al crear el enlace del objeto, página 331
- El objeto debe estar conectado a un sucesor, página 332
- No se permite el enlace junto con la variable, página 334
- Data Type 'xxx' Expected, página 335
- DFB vacío para sustituir el EFB obsoleto, página 340
- Símbolo no definido "xxx", página 341
- Call of Non-Function Block, página 343
- Se tiene que asignar el parámetro "xxx", página 346
- "xxx" no es un parámetro de "yyyy", página 347
- Falta el componente del DDT, página 348
- Parámetros de EHC fuera de rango, página 349
- No es una dirección válida, página 350
Error al crear el enlace del objeto

Causa
Este mensaje, que puede producirse al importar o analizar, puede deberse a que el convertidor no ha implementado la sustitución de los bloques de diagnóstico ampliables con FB dobles.

Explicación
D_GRP y D_PRE necesitan un bloque AND asociado a la entrada IN. Este AND adicional se debe implementar de manera que reciba todas las entradas del área ampliable anterior. Añada el bloque que falta manualmente.

Ejemplo

```
{_9_TIME : [MAST]} : (r: 2, c: 1) E1189 converter error: 'Object Link creation error (Link pin can not be located in original object) : Link to pin (linkSource: row=1, col=0, Object=FBI_9_2_DRAW, Pin=OUT.) can not be created. Object has not been created during import.'
{_9_TIME : [MAST]} : (r: 2, c: 1) E1002 syntax error
{_9_TIME : [MAST]} : (r: 6, c: 13) E1189 converter error: 'Object Link creation error (Link pin can not be located in original object) : Link to pin (linkDestination: row=5, col=12, Object=FBI_9_2, Pin=.) can not be created. Object has not been created during import.'
{_9_TIME : [MAST]} : (r: 6, c: 13) E1002 syntax error
```

Figura
El objeto debe estar conectado a un sucesor

Causa

Un mensaje como el siguiente puede estar justificado en un error LD de Concept 2.1:

{TANKVLVS <DFB> : [TVALVE]} : (r: 93, c: 3) E1218 Object must be connected to a successor, at least the Right-Power-Rail

Al conectar contactos a un OR (un cortocircuito vertical), a veces ocurre que el primer contacto de salida pretendido se conecta a la entrada del OR.

Concept lo muestra en los gráficos con un punto pequeño en la entrada del OR:

![Diagrama de contacto OR](image)

En este caso, la bobina ALARM sólo está conectada al contacto V01ALARM. La salida del OR está conectada a NOTHING.
En consecuencia, el convertidor lo traduce a:
Preguntas más frecuentes sobre errores de compilación

No se permite el enlace junto con la variable

Descripción general
Se notifica este error con relación a los pins INOUT.

Ejemplo

Solución
Elimine el enlace e inserte la variable en el parámetro de destino del enlace.
Preguntas más frecuentes sobre errores de compilación

**Data Type 'xxxx' Expected**

**Ejemplo**

La ilustración siguiente muestra la corrección del error del bloque de funciones 115.1, en el que se ha modificado el tipo de salida (MW100) al tipo utilizado para la entrada (REAL).

Reemplace los tipos de datos utilizados en función del tipo requerido.

El convertidor de Concept de V1.0 evalúa el tipo desde la dirección y no tiene en cuenta el tipo real. Esto queda sujeto a una versión posterior.
Reescritura del parámetro EFB

Otro de los motivos de este mensaje puede ser, por ejemplo, que se ha reescrito el parámetro EFB a ANY_ARRAY_WORD. Consulte también el apartado Tipo de parámetro modificado.

Combinaciones de variables, instancias de variables y parámetros de Concept

De Concept proceden las combinaciones de variables, instancias de variables y parámetros (pins) siguientes:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaraciones de variables</td>
<td>● La declaración de variables tiene un tipo propio y puede tener un registro.</td>
</tr>
<tr>
<td></td>
<td>● Varias declaraciones de variables pueden tener tipos concretos y el mismo</td>
</tr>
<tr>
<td></td>
<td>registro.</td>
</tr>
<tr>
<td></td>
<td>CP_GV1 &quot;Symbol&quot; 4:100 DPM_Time INIT: FALSE EXP: FALSE RET: FALSE READONLY:</td>
</tr>
<tr>
<td></td>
<td>FALSE MAS: FALSE TEXT:</td>
</tr>
<tr>
<td></td>
<td>CP_GV1 &quot;SymbolElem&quot; 4:100 IEC_INT_ID INIT: FALSE EXP: FALSE RET: FALSE</td>
</tr>
<tr>
<td></td>
<td>READONLY: FALSE MAS: FALSE TEXT:</td>
</tr>
<tr>
<td>Instancias de variables</td>
<td>● Las INSTACIAS de variables acompañadas de un SÍMBOLO no tienen tipo</td>
</tr>
<tr>
<td></td>
<td>propio ni registro y utilizan el tipo de la declaración de variables necesaria.</td>
</tr>
<tr>
<td></td>
<td>CP_GVI NAMED_VAR: &quot;SymbolElem&quot; 10 9 FP_IO_OUTPUT</td>
</tr>
<tr>
<td></td>
<td>● La instancia de variable puede ir acompañada de un registro; en este caso,</td>
</tr>
<tr>
<td></td>
<td>tiene un tipo propio en la declaración de la instancia y no tiene ningún símbolo.</td>
</tr>
<tr>
<td></td>
<td>CP_GVI REG_VAR: 4:100 27 16 FP_IO_INPUT DPM_Time EXP: FALSE RET: TRUE MAS:</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>● No es necesario tener una declaración de variables para instancias de</td>
</tr>
<tr>
<td></td>
<td>variables de registro:</td>
</tr>
<tr>
<td></td>
<td>✗ Las declaraciones anónimas textuales (AT %MWxx:DDT;) son</td>
</tr>
<tr>
<td></td>
<td>equivalentes a las declaraciones de instancias de variables con registro y</td>
</tr>
<tr>
<td></td>
<td>también declaran el tipo.</td>
</tr>
<tr>
<td></td>
<td>✗ Se obliga a que el tipo sea el mismo que una declaración de variables</td>
</tr>
<tr>
<td></td>
<td>existente. Si son contradictorios, se rechaza la declaración en Concept.</td>
</tr>
<tr>
<td></td>
<td>CP__ST AT %QW102: REAL;</td>
</tr>
<tr>
<td>Parámetros</td>
<td>El pin al que está unida una instancia de variable tiene un tipo propio, que</td>
</tr>
<tr>
<td></td>
<td>no tiene por qué ser necesariamente el mismo que el de la instancia de</td>
</tr>
<tr>
<td></td>
<td>variable. No se puede modificar y puede ser genérico.</td>
</tr>
<tr>
<td></td>
<td>VS_FRM &quot;IN1&quot; HIDE POSL 2 FP_IO_INPUT FP_INP_NORMAL FP_LOC_OUTSIDE INT TEXT:</td>
</tr>
<tr>
<td></td>
<td>VS_FRM &quot;IN&quot; HIDE POSL 2 FP_IO_INPUT FP_INP_NORMAL FP_LOC_OUTSIDE ANY TEXT:</td>
</tr>
</tbody>
</table>

**NOTA:** Por tanto, hay tres tipos distintos + n posibles para declararlos para una variable de registro en Concept (1(2=>n),4,6).
Declaración del tipo en Control Expert

Control Expert acepta un tipo declarado con un símbolo asociado a un registro. Si se utiliza directamente el registro, sólo se adopta el tipo predeterminado.

Para generar el código, el tipo y el tamaño de una variable conectada a un pin se deben designar a un tipo. Pins distintos pueden tener tipos diferentes.

Instancia de variable de registro

Si hay una instancia de variable de registro con su tipo y, adicionalmente, una declaración de variables con un tipo distinto y el mismo registro, Concept genera el código en función del tipo proporcionado con el registro o con el símbolo de cada pin.

Tipo predeterminado

Control Expert sólo conoce un tipo predeterminado para los registros. Si hay que modificarlo, se debe declarar una variable con un símbolo para que traslade el tipo, pero no se aceptan dos símbolos con tipos distintos para un registro.

Control Expert no importa la segunda variable si se importa esta aplicación.

Comportamiento de variables, instancias de variables y parámetros en Control Expert

<table>
<thead>
<tr>
<th>Si...</th>
<th>Y...</th>
<th>Entonces...</th>
</tr>
</thead>
</table>
| los símbolos se utilizan con una instancia de variable | - | ● se debe utilizar el tipo declarado en la declaración con el símbolo.  
● no se debe utilizar el tipo de una instancia de variable de registro que posiblemente esté presente. |
| se va a utilizar una variable de registro con un tipo distinto del predeterminado | ya hay una declaración de variables con el mismo registro, pero un tipo distinto | se emite un mensaje de error para esta imposibilidad. |
| se va a utilizar una variable de registro con un tipo distinto del predeterminado | hay una declaración de variables con el mismo registro con el mismo tipo | se debe utilizar su símbolo en lugar de la dirección directa. |
| se va a utilizar una variable de registro con un tipo distinto del predeterminado | no hay una declaración de variables con el mismo registro | se debe declarar y utilizar un símbolo artificial en lugar de la dirección directa. |
| un pin de la plantilla de Control Expert tiene el tipo ANY_ARRAY_WORD. | - | una variable de registro asociada podría adoptar el tipo ARRAY[0..0] OF WORD, si previamente tenía el tipo WORD. |
| el registro también se utiliza en pins con el tipo WORD. | - | el registro adopta el índice [0] asociado. |
Otros casos de discrepancia de tipos

Se notifican otros casos de discrepancia de tipos con un mensaje de generación (=analizar) y se deja que los resuelva el usuario.

Matrices de palabras en bloques de comunicación

Los bloques de comunicación cuentan con matrices de palabras como parámetros, que se definen en Concept con una referencia únicamente a la primera palabra.

A menudo, el tamaño de la matriz lo da el contenido de una variable, que se define durante el tiempo de ejecución. Por tanto, el convertidor no puede determinar el tamaño.

El usuario debe determinar el tamaño máximo y declarar la matriz él mismo en consecuencia.

Ejemplo de Concept

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IF MicroScCActive = 0 THEN MicroScCTMSTR1 := 1; MicroScCTMSTR2 := 0; MicroScCTMSTR3 := 3; MicroScCTMSTR4 := 47; MicroScCTMSTR5 := 1028; MicroScCTMSTR6 := 1; MicroScCTMSTR7 := 0; MicroScCTMSTR8 := 0; MicroScCTMSTR9 := 0; MicroScCTMSTR10 := 62; END_IF;</td>
</tr>
</tbody>
</table>

Todos los miembros de la matriz se muestran como variables únicas. En Control Expert, se deben combinar en una matriz.

| 2    | El convertidor prepara esta operación al declarar una variable con el rango [0..0]. |
### Preguntas más frecuentes sobre errores de compilación

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Esto hace que un conjunto de mensajes de análisis informen al usuario de la necesidad de corrección. En este caso, la corrección del usuario debe ser similar a la siguiente:</td>
</tr>
</tbody>
</table>

```plaintext
MicroScaleConfig [MAST]

("Micro Scale Clear-Tape (402310.402319) ")
IF MicroScCTActive = 0 THEN
  MicroScCTMSTR [1] := 1;
  MicroScCTMSTR [2] := 0;
  MicroScCTMSTR [3] := 3;
  MicroScCTMSTR [6] := 1;
  MicroScCTMSTR [7] := 0;
  MicroScCTMSTR [8] := 0;
  MicroScCTMSTR [9] := 0;
  MicroScCTMSTR10 [1] := 62 ;
END_IF;
```

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>En este caso, el código de origen relacionado con ello es:</td>
</tr>
</tbody>
</table>

```plaintext
{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 2, c: 2) E1063 call of non-function block
{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 4, c: 29) E1067 'Q' is not a member of 'SECT_CTRL'
```
Preguntas más frecuentes sobre errores de compilación

DFB vacío para sustituir el EFB obsoleto

Causa
No se han transferido unos cuantos EFB estándar de Concept a Control Expert.
Si el convertidor encuentra uno de ellos, inserta un DFB vacío con los mismos parámetros que el original para permitir la generación de la aplicación y para ofrecer la posibilidad al usuario de sustituir el original por su propio código.

Solución
Inserte el código en el cuerpo del DFB vacío, que contiene el comando para generar en él un mensaje como el que se muestra a continuación:

\{(S1 : [REAL_W2]) : (r: 1, c: 2) E1189 converter error: 'Empty DFB to replace obsolete EFB - fill by user'\}

Se debe eliminar el comando del mensaje si se ha introducido código válido en el cuerpo del DFB para permitir la generación de la aplicación.

NOTA: Puesto que en los DFB de Control Expert no se permite el tipo ANY, se produce un problema adicional si se ha utilizado este tipo en el EFB sustituido (p. ej., EFB XXMIT).

EFB definidos por el cliente
Los EFB definidos por el cliente no se convierten. Si desea convertir una aplicación mediante los EFB definidos por el cliente, póngase en contacto con el servicio de asistencia de Schneider.
Símbolo no definido "xxxx"

Nombre incorrecto de sección SFC

<table>
<thead>
<tr>
<th>Explicación</th>
<th>Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>En ocasiones, este mensaje aparece junto con el bloque SFCCNTRL. Dicho mensaje significa que el nombre de la sección SFC, que se tiene que asociar a la entrada CHARTREF, no es el nombre de una sección SFC existente dentro de la aplicación actual.</td>
<td>Cree la sección correspondiente y el mensaje desaparecerá.</td>
</tr>
</tbody>
</table>
Nombre de instancia incorrecto

**Explicación**

Otra razón por la que aparece dicho mensaje puede ser que un bloque de funciones de Concept que ahora se encuentra en Control Expert es una función o un procedimiento. El convertidor realiza la labor de conversión en los lenguajes textuales ST e IL de manera semiautomática en el caso de esta incompatibilidad. El nombre de la instancia de Concept se elimina y se sustituye por el nombre del tipo, también para direccionar salidas, que pasa a ser una sintaxis ilegal:

```
LOOKUP_TABLE1(X := ODT,
   XiYi1 := -30.0, XiYi2 := PARA.p1,
   XiYi3 := -20.0, XiYi4 := PARA.p2,
   XiYi5 := -10.0, XiYi6 := PARA.p3,
   XiYi7 := 0.0, XiYi8 := PARA.p4,
   XiYi9 := 10.0, XiYi10:= PARA.p5,
   XiYi11:= 20.0, XiYi12:= PARA.p6);
OUT := LOOKUP_TABLE1.Y;
```

**Solución**

Se debe corregir la última línea manualmente. Mediante el operador de asignación de salida, se debe modificar esta instrucción y se debe trasladar dentro de los paréntesis de llamada:

```
LOOKUP_TABLE1(X := ODT,
   XiYi1 := -30.0, XiYi2 := PARA.p1,
   XiYi3 := -20.0, XiYi4 := PARA.p2,
   XiYi5 := -10.0, XiYi6 := PARA.p3,
   XiYi7 := 0.0, XiYi8 := PARA.p4,
   XiYi9 := 10.0, XiYi10:= PARA.p5,
   XiYi11:= 20.0, XiYi12:= PARA.p6,
  Y=>OUT);
```
Call of Non-Function Block

Causa
Este mensaje puede aparecer cuando un bloque de funciones de Concept que ahora se encuentra en Control Expert es una función o un procedimiento.

El convertidor elimina el nombre de la instancia del bloque de Concept, lo sustituye por el nombre del tipo y traslada las asignaciones de salidas dentro de los paréntesis de invocación.

Para los bloques GET_BIT y SET_BIT, el tratamiento no se aplica completamente. Durante el análisis, aparece el mensaje:

```
{INPUTS : [MAST]} : (r: 7, c: 4) E1063 call of non-function block
```

Los nombres de función continúan marcados como erróneos tras la conversión, porque las funciones se convierten con la sintaxis de procedimiento en ST, y no con la sintaxis de función necesaria, como muestra la versión corregida. Asimismo, el convertidor ha disminuido los índices de la variable resultante de GET_BIT.

Ejemplo

<table>
<thead>
<tr>
<th>Códigos originales de Concept</th>
<th>Tras la conversión</th>
<th>Versión corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT_WORD : GET_BIT;</td>
<td>FOR I_BASE := 1 TO 20 DO</td>
<td>FOR I_BASE := 1 TO 20 DO</td>
</tr>
<tr>
<td>END_VAR;</td>
<td>FOR I_POINT := 1 TO 16 DO</td>
<td>FOR I_POINT := 1 TO 16 DO</td>
</tr>
<tr>
<td></td>
<td>GET_BIT(IN:=IO_SCAN_IN_WORD [I_BASE], NO:=I_POINT);</td>
<td>INPUT[BASE, I_POINT]:= GET_BIT(IN:=IO_SCAN_IN_WORD [I_BASE], NO:=I_POINT);</td>
</tr>
<tr>
<td></td>
<td>RES =&gt; INPUT);</td>
<td>RES =&gt; INPUT);</td>
</tr>
<tr>
<td></td>
<td>END_FOR;</td>
<td>END_FOR;</td>
</tr>
<tr>
<td>VAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT_WORD : SET_BITX;</td>
<td>FOR O_BASE := 1 TO 20 DO</td>
<td>FOR O_BASE := 1 TO 20 DO</td>
</tr>
<tr>
<td>END_VAR;</td>
<td>FOR O_POINT := 1 TO 16 DO</td>
<td>FOR O_POINT := 1 TO 16 DO</td>
</tr>
<tr>
<td></td>
<td>OUTPUT_WORD (RES := IO_SCAN_OUT_WORD[O_BASE], IN := OUTPUT(O_BASE,O_POINT), NO := O_POINT);</td>
<td>IO_SCAN_OUT_WORD[O_BASE] := SET_BIT(IN := OUTPUT(O_BASE,O_POINT), NO := O_POINT);</td>
</tr>
<tr>
<td></td>
<td>END_FOR;</td>
<td>END_FOR;</td>
</tr>
<tr>
<td></td>
<td>END_FOR;</td>
<td>END_FOR;</td>
</tr>
</tbody>
</table>
Preguntas más frecuentes sobre errores de compilación

Conjunción con otros mensajes
Este mensaje puede aparecer junto con otros mensajes:
- `{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 2, c: 2) E1063 call of non-function block`
- `{RESET_CONV <DFB> : [RC_HSK_1]} : (r: 4, c: 29) E1067 'Q' is not a member of 'SECT_CTRL'

Código de origen relacionado
En este caso, el código de origen relacionado con ello es:
- `RESET_CONV147(IN := (CTRL.TB.RC_INI AND V_SYNCHRO), PT := t#500ms);`
- `T_CONVRESET := RESET_CONV147.Q;`

Uso doble del nombre de la instancia
Control Expert asocia el nombre de la instancia al tipo de datos derivado SECT_CTRL, aunque su función es asignar un temporizador. Normalmente, esto ocurre si la aplicación Concept ha utilizado el nombre de la instancia dos veces. Para averiguarlo, realice los pasos siguientes:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
</table>
| 1    | Abra el archivo de exportación de Concept .asc y busque el nombre de la instancia sin las cifras del final con un comando de búsqueda del editor de texto. **Resultado:** En el caso siguiente, el resultado es:  
  STR_RCI: (* RC Eingänge = SPS Ausgänge *)  
  STRUCT AUTO : BOOL ; (* Betriebsart Automatik / Hand *)  
  AXIS_EN : BOOL ; (* Achsen angewählt *)  
  Z_UP : BOOL ; (* Z-Achse auf *)  
  RESET_PROG : BOOL ; (* Programm abbrechen *)  
  RESET_CONV : BOOL ; (* Förderer synchronisieren *)  
| 2    | Se ha omitido la introducción de línea...STR.  
  CP_GVS "RESET_CONV" SECT_CTRL INIT: FALSE 0 EXP: FALSE RET: TRUE READONLY: FALSE MAS: FALSE TEXT:  
  CP_SEC "RESET_CONV" SECTK_F_SECTION LANG_ST SBV: FALSE ID: 27 EXEC: 26 TEXT:  
  CP_ST  
  CP_ST VAR  
  CP_ST RESET_CONV : TP; (* Impuls Reset Conveyor *)  
  Se ha utilizado el mismo nombre como nombre de componente de estructura, nombre de sección con la variable de control y para una instancia de temporizador "TP".  
| 3    | Cambie el tipo de la instancia en el editor de datos a "TP". |
Procedimientos de sustitución en ST/IL

Algunos EFB de Concept se implementan como procedimientos en Control Expert sin nombres de instancia.

Abra la ficha Configuración de conversión a través de Herramientas → Opciones en Control Expert para habilitar/deshabilitar la casilla de verificación Sustituir procedimientos en ST/IL antes de llevar a cabo la conversión.

- Si se activa esta casilla de verificación, el nombre de la instancia de la llamada de Concept se sustituirá por el nombre del tipo.
- Si no se activa esta casilla de verificación, se creará un DFB que accederá al procedimiento.
Se tiene que asignar el parámetro "xxxx"

Causa

Para las entradas, los pines abiertos en los bloques obtienen una variable generada de forma automática con el tipo apropiado. Todavía no se ha efectuado esto para las salidas.

En el caso de tipos de datos genéricos, no es fácil de hacer.

Solución

En estos casos, el usuario debe declarar las variables correspondientes y asociarlas a los pines abiertos.
"xxxx" no es un parámetro de "yyyy"

**Causa**

Los EFB de diagnóstico, que se han ampliado en Concept, no obtienen la sintaxis de llamada adecuada en IL.

```
{ _9_TIME : [MAST] } : (r: 43, c: 17) E1031 'IN1' is not a parameter of function block 'GRP_DIA_9'

{ _9_TIME : [MAST] } : (r: 44, c: 17) E1031 'IN2' is not a parameter of function block 'GRP_DIA_9'
```

**Solución**

En el caso de los EFB de diagnóstico ampliables en Concept, la ampliación se puede llevar a cabo con una función lógica AND, cuya salida está asociada a la entrada única de la función de diagnóstico. Esto se realiza con las tres primeras líneas de la corrección.

La salida utilizada la debe procesar **BOOL_TO_TIME**, que se sobrepasa en la conversión automática y que se corrige en las tres últimas líneas.

**Ejemplo**

<table>
<thead>
<tr>
<th>Código original de Concept</th>
<th>Tras la conversión</th>
<th>Versión corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL GRP_DIA_9 (ED :=DUMMY_1_91, DTIME :=IN92, IN1 :=DUMMY_1_94, IN2 :=DUMMY_1_96) LD GRP_DIA 9.ERR BOOL_TO_TIME ST OUT90</td>
<td>CAL GRP_DIA_9 (ED :=DUMMY_1_91, DTIME :=IN92, IN1 :=DUMMY_1_94, IN2 :=DUMMY_1_96, ERR =&gt; OUT90) BOOL_TO_TIME</td>
<td>LD DUMMY_1_94 AND DUMMY_1_96 ST GRP_DIA_9.IN CAL GRP_DIA_9 (ED :=DUMMY_1_91, DTIME :=IN92) LD GRP_DIA 9.ERR BOOL_TO_TIME ST OUT90</td>
</tr>
</tbody>
</table>
Preguntas más frecuentes sobre errores de compilación

Falta el componente del DDT

Causa
No se pueden utilizar palabras clave como símbolos de componentes del DDT o como nombres de variables. Tal es el caso de la ranura para el nombre.

Solución
Si faltan componentes del DDT o se importan conflictos de importación, realice los pasos siguientes:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Busque la instancia del nombre con otro significado en el archivo .asc.</td>
</tr>
<tr>
<td>2</td>
<td>Cambie el nombre del significado contradictorio.</td>
</tr>
</tbody>
</table>
Parámetros de EHC fuera de rango

Causa
Para el módulo contador de alta velocidad, los límites de los parámetros no se tratan correctamente.

Ejemplo

```
<table>
<thead>
<tr>
<th>Nombre del parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPPING</td>
<td>WORD (%IW-3x %IW-4x)</td>
</tr>
<tr>
<td>INPUT START ADDRESS</td>
<td>1121</td>
</tr>
<tr>
<td>INPUT END ADDRESS</td>
<td>1125</td>
</tr>
<tr>
<td>OUTPUT START ADDRESS</td>
<td>1121</td>
</tr>
<tr>
<td>OUTPUT END ADDRESS</td>
<td>1126</td>
</tr>
</tbody>
</table>
```

Parameter <OUTPUT START ADDRESS> out of range (Error with param 17)

Solución
Estos parámetros se deben corregir manualmente.
No es una dirección válida

Causa
Durante el análisis, se genera un mensaje como el que aparece a continuación si no se ha definido por completo un sistema de reserva en caliente.

Analyzing...

(Cpu (1.2 ) 140 CPU 671 60) : %MW0 is not a valid address in Quantum

Solución

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abra el bastidor local de la configuración y la propia configuración de la CPU y seleccione la ficha <strong>Hot Stand-By</strong> (Reserva en caliente) de la configuración de la CPU.</td>
</tr>
<tr>
<td>2</td>
<td>En la parte inferior se encuentra <strong>State Ram</strong> (RAM de estado) y <strong>Non Transfer area</strong> (Área sin transferencia). Normalmente, los campos <strong>Start</strong> (Inicio) y <strong>Length</strong> (Longitud) contienen un cero, que se ha pasado directamente desde la aplicación Concept.</td>
</tr>
<tr>
<td>3</td>
<td>Para eliminar el mensaje de error, introduzca 1 en el campo de inicio.</td>
</tr>
</tbody>
</table>
Configuración de 140 NOG 111 00 no convertida

Concept
140 NOG 111 00 se usa como módulo NOM en Concept.

Configuración no convertida
La conversión también crea un módulo NOM en Control Expert, pero se pierde la configuración de E/S.
E1163 Uso de dirección directa no configurada

Descripción
Los valores de dirección configurados en la aplicación heredada superan el máximo permitido para la Memoria de señal.

NOTA: El valor máximo de las CPU Quantum para %M 0x Memoria de señal: 65280.
La instancia está ubicada en una dirección no configurada.

Solución
Reserve más palabras de memoria en la Memoria de señal de la CPU.
Preguntas más frecuentes sobre errores de compilación
Apéndice B
FAQ sobre errores de conversión

FAQ sobre errores de conversión

Descripción general
En esta sección se enumeran las palabras clave que no se deben utilizar para definir los nombres de objetos (variables y tipos de variables).
Si una aplicación de Concept contiene variables o tipos de variables con estos nombres, la aplicación no se podrá convertir a Control Expert.
Aparecerá este mensaje para informar al usuario: **Error al definir la Located Variable: no se pueden utilizar palabras clave como nombres de variables.**

Palabras clave
En las siguientes listas se enumeran las palabras clave en orden alfabético:

A
- Address
- AI_CONSTANT
- AI_SECTION
- AI_VARIABLEINST
- AI_VARIABLEINST_REG
- ANY
- AsciiMsg
- ATTRIBUTE

B
- BCD16
- BCD32
- BCD64
- BCD8
- BEGIN
- binData
- BOOL
- byte

C
- CL_DFB
- CL_FRM
- CL_PLC
- COLUMN_WIDTH
FAQ sobre errores de conversión

- CONCEPT_
- CONCEPT_VERSION
- configImage
- configTable
- CP__IL
- CP__ST
- CP_ABR
- CP_ACT
- CP_AJN
- CP_APP
- CP_COM
- CP_CON
- CP_DBI
- CP_DFB
- CP_FBI
- CP_GEN
- CP_GV1
- CP_GV2
- CP_GV4
- CP_GVI
- CP_GVS
- CP_GVT
- CP_IFP
- CP_INV
- CP_JMP
- CP_LNK
- CP_OPT
- CP_PBR
- CP_PJN
- CP_PRG
- CP_PRI
- CP_PRO
- CP_PRP
- CP_SEC
- CP_STP
- CP_STR
- CP_TRN
- CP_VRS
- CR_END

D
- DATE
- dint
- DisplayFormat
FAQ sobre errores de conversión

- dpMasterData
- dpSlaveData
- DRAW
- DropHead
- dropNumber
- DT
- DWORD

E
- END
- END_ENTRY
- END_RDE_TEMPLATE
- ENTRY
- EVN
- extType

F
- FALSE
- FBIPH_INPUT
- FBIPH_OUTPUT
- FP_IO_INOUTPUT
- FP_IO_INOUTPUT_COMP
- FP_IO_INPUT
- FP_IO_INPUT_COMP
- FP_IO_OUTPUT
- FP_IO_OUTPUT_COMP

G
- global

H
- headIndex
- HEIGHT
- HIDE
- HX_n

I
- ID_{Digit}+
- IEC_BCD16_ID
- IEC_BCD32_ID
- IEC_BCD64_ID
- IEC_BCD8_ID
- IEC_BOOL_ID
- IEC_BYTE_ID
- IEC_DATE_ID
- IEC_DINT_ID
- IEC_DT_ID
FAQ sobre errores de conversión

- IEC_DWORD_ID
- IEC_INT_ID
- IEC_LINT_ID
- IEC_LREAL_ID
- IEC_LWORD_ID
- IEC_REAL_ID
- IEC_SINT_ID
- IEC_STRING_ID
- IEC_TIME_ID
- IEC_TOD_ID
- IEC_UDINT_ID
- IEC_UINT_ID
- IEC_ULINT_ID
- IEC_UNKNOWN_ID
- IEC_USINT_ID
- IEC_WORD_ID
- INIT
- inputBytes
- inputReference
- int
- INV
- IODrop
- IOModule
- L
  - LANG_FBD
  - LANG_IL
  - LANG_LD
  - LANG_LL
  - LANG_SFC
  - LANG_ST
  - LINT
  - LL_INS
  - LL_NET
  - LL_NOD
  - LL_REG
  - LL_SON
  - LL_SRD
  - LL_SRM
  - LL_VAR
  - local
  - locInc
  - LREAL
  - LWORD
FAQ sobre errores de conversión

M
- macAddr
- MAS
- maxConstant
- modData

N
- NAMED_VAR
- nodeParam

O
- outputBytes
- outputReference

P
- pcHealthTimeout
- pcHoldLastValue
- PlcCntDb
- PLCConfig
- plcName
- POSR

R
- rack
- RDE_TEMPLATE
- RDE TEMPLATE VERSION
- READONLY
- Real
- REG_VAR
- RET
- rs232Params

S
- scratchPad
- SECTK_F_SECTION
- SetValue
- SFC_STEP_INIT
- SFC_STEP_NORMAL
- SINT
- SLOT
- STRING
- svcFile

T
- Tagname
- TEXT
- time
FAQ sobre errores de conversión

- TIMN
- TOD
- U
  - uint
  - uint
  - ULIINT
  - UNKNOWN
  - USINT
- V
  - VAL
  - Value
  - VS_FFB
  - VS_FRM
- W
  - WIDTH
  - WINDOW_LOCATION
  - WITHOUT_ATT
  - WORD
EcoStruxure™ Control Expert

Índice

A
analizar
   proyectos, 61, 115
aplicación, comportamiento
   cambios, 99
asistente de conversión para Concept, 22

B
BYTE_TO_BIT_DFB, 127

C
Concept
   asistente de conversión, 22
Concept, convertidor - instrucciones
   BYTE_TO_BIT_DFB, 127
   CREADREG, 131
   CWRITREG, 139
   DINT_AS_WORD_DFB, 145
   DIOSTAT, 147
   GET_TOD, 149
   LIMIT_IND_DFB, 153
   LOOKUP_TABLE1_DFB, 157
   READREG, 185
   RIOSTAT, 193
   SET_TOD, 197
   WORD_AS_BYTE_DFB, 201
   WORD_TO_BIT_DFB, 203
   WRITEREG, 207
condiciones previas, 25
configuración
   diferencias, 28
configuración de 140 NOG 111 00
   no convertida, 351
conversión
   procedimiento, 117
   proceso, 115
conversión especial para módulos de E/S
   Compact, 291
convertidor, 17
Convertidor de Concept
   Gestión de flancos, 79
Convertidor de Concept - instrucciones
   PLCSTAT, 163, 169
   CREADREG, 131
   CWRITREG, 139

D
diagrama de bloques de funciones
   diferencias, 59
diagrama Ladder
   diferencias, 44
DINT_AS_WORD_DFB, 145
DIOSTAT, 147
dirección
   no configurada, 353
dirección directa
   E1163, 352

e
E1163
   dirección directa, 352
Editor LL984
   exportar/importar segmentos y redes
   LL984, 259
   importación de partes de una aplicación
   LL984, 217
   importación de una aplicación LL984, 217
   Módulos de E/S admitidos/no admitidos,
   263
   restricciones de importación, 217
EFB
   diferencias, 39
EN
   no conectada, 103
error, mensajes, 61, 99, 115, 120
errores de compilación, 329
errores de conversión, 355
Índice

exportar
  DFB, 118
  macros, 118
  proyectos, 19, 118
  secciones, 118
exportar/importar segmentos y redes LL984
  Editor LL984, 259

G
  GET_TOD, 149
  gráfica de función secuencial
diferencias, 43

H
  hardware
correspondencias, 27

I
  importación de partes de una aplicación LL984
    Editor LL984, 217
  importación de una aplicación LL984
    Editor LL984, 217
  importar
    DDT, 120
    macros, 61, 122
    proyectos, 19, 119
    instrucciones
diferencias, 39

L
  Ladder Logic
diferencias, 58
  lenguaje, objetos, 61
diferencias, 29
  LIMIT_IND_DFB, 153
  lista de instrucciones
diferencias, 56
  LL_SRAMxxx
    matriz, 123
    valores de inicialización, 123
  LOOKUP_TABLE1_DFB, 157

M
  M580
    PLCSTAT, 163
  Módulos de E/S admitidos/no admitidos
    Editor LL984, 263
  módulos de E/S Compact
corversión especial, 291

N
  no configurada
  dirección, 353

O
  objetos, tipos
diferencias, 61

P
  plataformas de hardware
  admitidas, 27
  PLCSTAT, 163
    M580, 163
    Quantum, 169
  programa, ejecución
diferencias, 29

Q
  Quantum
    PLCSTAT, 169

R
  READREG, 185
  requisitos, 25
  restricciones de importación
    Editor LL984, 217
  RIOSTAT, 193
Índice

S
SET_TOD, 197
sistema, objetos
diferencias, 29

T
texto estructurado
diferencias, 56

V
valores de inicialización
clúster, 123
LL_SRAMxxx, 123
matriz, 123

W
WORD_AS_BYTE_DFB, 201
WORD_TO_BIT_DFB, 203
WRITEREG, 207