Advantys STB
Special Modules
Reference Guide

04/2016
The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2016 Schneider Electric. All rights reserved.
Table of Contents

Safety Information
7

About the Book
9

Chapter 1 The Advantys STB Architecture: Theory of Operation

- Advantys STB Islands of Automation
14
- Types of Modules on an Advantys STB Island
16
- Island Segments
18
- Logic Power Flow
22
- The Power Distribution Modules
24
- Sensor Power and Actuator Power Distribution on the Island Bus
28
- Communications Across the Island
32
- Operating Environment
35

Chapter 2 The Advantys STB Parallel Interface Modules
37

2.1 STB EPI 1145 Tego Power Parallel Interface (16 in/8 out)
38
- STB EPI 1145 Physical Description
39
- STB EPI 1145 LED Indicators
41
- STB EPI 1145 Field Wiring
44
- STB EPI 1145 Functional Description
46
- STB EPI 1145 Data for the Process Image
52
- STB EPI 1145 Specifications
58

2.2 STB EPI 2145 Parallel Interface for TeSys Model U Starter Applications (12 in/8 out prewiring module)
60
- STB EPI 2145 Physical Description
61
- STB EPI 2145 LED Indicators
63
- STB EPI 2145 Field Wiring
66
- STB EPI 2145 Functional Description
70
- STB EPI 2145 Data for the Process Image
76
- STB EPI 2145 Specifications
81

Chapter 3 STB AHI 8321 HART Interface Module
83

3.1 STB AHI 8321 Physical Description
84
- Physical Description
84
- LED Indicators
86
- STB AHI 8321 LED Indicators
86

3.3 STB AHI 8321 Functional Description
89
- Functional Description
89
4.5 STB XBE 2100 CANopen Extension Module 151
STB XBE 2100 Physical Description 152
STB XBE 2100 LED Indicator .. 154
Making the CANopen Cable Connection 155
STB XBE 2100 Functional Description 157
STB XBE 2100 Specifications .. 161
4.6 The STB CPS 2111 Auxiliary Power Supply 162
STB CPS 2111 Physical Description 163
STB CPS 2111 LED Indicator .. 166
STB CPS 2111 Functional Description 167
STB CPS 2111 Auxiliary Power Supply Specifications 169

Chapter 5 Advantys Power Distribution Modules 171
5.1 STB PDT 3100 24 VDC Power Distribution Module 172
STB PDT 3100 Physical Description 173
STB PDT 3100 LED Indicators 177
STB PDT 3100 Source Power Wiring 179
STB PDT 3100 Field Power Over-current Fuses 182
The Protective Earth Connection 184
STB PDT 3100 Specifications .. 185
5.2 STB PDT 3105 24 VDC Basic Power Distribution Module 186
STB PDT 3105 Physical Description 187
STB PDT 3105 Source Power Wiring 191
STB PDT 3105 Field Power Over-current Fuses 193
STB PDT 3105 Protective Earth Connection 195
STB PDT 3105 Specifications .. 196

Chapter 6 STB Module Bases ... 197
Advantys Bases ... 198
STB XBA 1000 I/O Base .. 199
STB XBA 2000 I/O Base .. 203
STB XBA 3000 I/O Base .. 207
STB XBA 2200 PDM Base ... 211
The Protective Earth Connection 215
STB XBA 2300 Beginning-of-Segment Base 216
STB XBA 2400 End-of-segment Base 219
STB XBA 2100 Auxiliary Power Supply Base 223

Appendices .. 229
<table>
<thead>
<tr>
<th>Appendix A</th>
<th>IEC Symbols</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IEC Symbols</td>
<td>231</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>233</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>251</td>
</tr>
</tbody>
</table>
Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

- The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

- This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

<table>
<thead>
<tr>
<th>DANGER</th>
<th>Indicates a hazardous situation which, if not avoided, will result in death or serious injury.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>Indicates a hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>NOTICE is used to address practices not related to physical injury.</td>
</tr>
</tbody>
</table>
PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.
About the Book

At a Glance

Document Scope

This document describes the physical and functional characteristics of the Advantys STB special I/O modules, power distribution modules, and special module accessories.

Validity Note

The technical characteristics of the devices described in this document also appear online. To access this information online:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Go to the Schneider Electric home page www.schneider-electric.com.</td>
</tr>
</tbody>
</table>
| 2 | In the **Search** box type the reference of a product or the name of a product range.
 | ● Do not include blank spaces in the reference or product range.
 | ● To get information on grouping similar modules, use asterisks (*). |
| 3 | If you entered a reference, go to the **Product Datasheets** search results and click on the reference that interests you.
 | If you entered the name of a product range, go to the **Product Ranges** search results and click on the product range that interests you. |
| 4 | If more than one reference appears in the **Products** search results, click on the reference that interests you. |
| 5 | Depending on the size of your screen, you may need to scroll down to see the data sheet. |
| 6 | To save or print a data sheet as a .pdf file, click **Download XXX product datasheet**. |

The characteristics that are presented in this manual should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the manual and online information, use the online information as your reference.

Related Documents

<table>
<thead>
<tr>
<th>Title of Documentation</th>
<th>Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantys STB Analog I/O Modules Reference Guide</td>
<td>31007715 (English), 31007716 (French), 31007717 (German), 31007718 (Spanish), 31007719 (Italian)</td>
</tr>
<tr>
<td>Title of Documentation</td>
<td>Reference Number</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Advantys STB Digital I/O Modules Reference Guide</td>
<td>31007720 (English), 31007721 (French), 31007722 (German), 31007723 (Spanish), 31007724 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Counter Modules Reference Guide</td>
<td>31007725 (English), 31007726 (French), 31007727 (German), 31007728 (Spanish), 31007729 (Italian)</td>
</tr>
<tr>
<td>Advantys STB System Planning and Installation Guide</td>
<td>31002947 (English), 31002948 (French), 31002949 (German), 31002950 (Spanish), 31002951 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard Proflibus DP Network Interface Applications Guide</td>
<td>31002957 (English), 31002958 (French), 31002959 (German), 31002960 (Spanish), 31002961 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Basic Proflibus DP Network Interface Applications Guide</td>
<td>31005773 (English), 31005774 (French), 31005775 (German), 31005776 (Spanish), 31005777 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard INTERBUS Network Interface Applications Guide</td>
<td>31004624 (English), 31004625 (French), 31004626 (German), 31004627 (Spanish), 31004628 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Basic INTERBUS Network Interface Applications Guide</td>
<td>31005789 (English), 31005790 (French), 31005791 (German), 31005792 (Spanish), 31005793 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard DeviceNet Network Interface Applications Guide</td>
<td>31003680 (English), 31003681 (French), 31003682 (German), 31003683 (Spanish), 31004619 (Italian)</td>
</tr>
<tr>
<td>Title of Documentation</td>
<td>Reference Number</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Advantys STB Basic DeviceNet Network Interface Applications Guide</td>
<td>31005784 (English), 31005785 (French), 31005786 (German), 31005787 (Spanish), 31005788 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard CANopen Network Interface Applications Guide</td>
<td>31003684 (English), 31003685 (French), 31003686 (German), 31003687 (Spanish), 31004621 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Basic CANopen Network Interface Applications Guide</td>
<td>31005779 (English), 31005780 (French), 31005781 (German), 31005782 (Spanish), 31005783 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard CANopen Devices</td>
<td>31006709 (English), 31006710 (French), 31006711 (German), 31006712 (Spanish), 31006713 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard Ethernet Modbus TCP/IP Network Interface Applications Guide</td>
<td>31003688 (English), 31003689 (French), 31003690 (German), 31003691 (Spanish), 31004622 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard Modbus Plus Network Interface Applications Guide</td>
<td>31004629 (English), 31004630 (French), 31004631 (German), 31004632 (Spanish), 31004633 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Standard Fipio Network Interface Applications Guide</td>
<td>31003692 (English), 31003693 (French), 31003694 (German), 31003695 (Spanish), 31004623 (Italian)</td>
</tr>
<tr>
<td>Advantys STB Configuration Software Quick Start User Guide</td>
<td>33003486 (English), 33003487 (French), 33003488 (German), 33003489 (Spanish), 33003490 (Italian)</td>
</tr>
</tbody>
</table>
You can download these technical publications and other technical information from our website at http://download.schneider-electric.com

<table>
<thead>
<tr>
<th>Title of Documentation</th>
<th>Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantys STB Reflex Actions Reference Guide</td>
<td>31004635 (English),</td>
</tr>
<tr>
<td></td>
<td>31004636 (French),</td>
</tr>
<tr>
<td></td>
<td>31004637 (German),</td>
</tr>
<tr>
<td></td>
<td>31004638 (Spanish),</td>
</tr>
<tr>
<td></td>
<td>31004639 (Italian)</td>
</tr>
</tbody>
</table>
Chapter 1
The Advantys STB Architecture: Theory of Operation

Overview
This chapter provides an overview of the Advantys STB system. It provides you with context for understanding the functional capabilities of an island and how its various hardware components interoperate with one other.

What Is in This Chapter?
This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantys STB Islands of Automation</td>
<td>14</td>
</tr>
<tr>
<td>Types of Modules on an Advantys STB Island</td>
<td>16</td>
</tr>
<tr>
<td>Island Segments</td>
<td>18</td>
</tr>
<tr>
<td>Logic Power Flow</td>
<td>22</td>
</tr>
<tr>
<td>The Power Distribution Modules</td>
<td>24</td>
</tr>
<tr>
<td>Sensor Power and Actuator Power Distribution on the Island Bus</td>
<td>28</td>
</tr>
<tr>
<td>Communications Across the Island</td>
<td>32</td>
</tr>
<tr>
<td>Operating Environment</td>
<td>35</td>
</tr>
</tbody>
</table>
Advantys STB Islands of Automation

System Definition
Advantys STB is an open, modular distributed I/O system designed for the machine industry, with a migration path to the process industry. Modular I/O, power distribution modules (PDMs) and a network interface module (NIM) reside in a structure called an island. The island functions as a node on a fieldbus control network and is managed by an upstream fieldbus master controller.

Open Fieldbus Choices
An island of Advantys STB modules can function on a variety of different open industry-standard fieldbus networks. Among these are:

- Profibus DP
- DeviceNet
- Ethernet
- CANopen
- Fipio
- Modbus Plus
- INTERBUS

A NIM resides in the first position on the island bus (leftmost on the physical setup). It acts as the gateway between the island and the fieldbus, facilitating data exchange between the fieldbus master and the I/O modules on the island. It is the only module on the island that is fieldbus-dependent—a different type of NIM module is available for each fieldbus. The rest of the I/O and power distribution modules on the island bus function exactly the same, regardless of the fieldbus on which the island resides. You have the advantage of being able to select the I/O modules to build an island independent of the fieldbus on which it will operate.

Granularity
Advantys STB I/O modules are designed to be small, economical devices that provide you with just enough input and output channels to satisfy your application needs. Specific types of I/O modules are available with two or more channels. You can select exactly the amount of I/O you need and you do not have to pay for channels that you don’t need.

Mechatronics
An Advantys STB system lets you place the control electronics in the I/O modules as close as possible to the mechanical devices they are controlling. This concept is known as mechatronics. Depending on the type of NIM you use, an Advantys STB island bus may be extended to multiple segments of I/O on one or more DIN rails. Island bus extensions allow you to position the I/O as close as possible to the sensors and actuators they control. Using special extension cables and modules, an island bus may be stretched to distances up to 15 m (49.21 ft).
Environmental Considerations

This product supports operation at normal and extended temperature ranges and is ATEX certified for operation in hazardous environments. Refer to the Advantys STB System Installation and Planning Guide, 890 USE 171 00 for a complete summary of capabilities and limitations.
Types of Modules on an Advantys STB Island

Summary
Your island’s performance is determined by the type of NIM that you use. NIMs for various field buses are available in different model numbers at different price points and with scalable operating capabilities. Standard NIMs, for example, can support up to 32 I/O modules in multiple (extension) segments. Low-cost basic NIMs, on the other hand, are limited to 16 I/O modules in a single segment.

If you are using a basic NIM, you may use only Advantys STB I/O modules on the island bus. With a standard NIM, you may use:
- Advantys STB I/O modules
- optional preferred modules
- optional standard CANopen devices

Advantys STB Modules
The core set of Advantys STB modules comprises:
- a set of analog, digital and special I/O modules
- open fieldbus NIMs
- power distribution modules (PDMs)
- island bus extension modules
- special modules

These core modules are designed to specific Advantys STB form factors and fit on base units on the island bus. They take full advantage of the island’s communication and power distribution capabilities, and they are auto-addressable.

Preferred Modules
A preferred module is a device from another Schneider catalog, or potentially from a third-party developer, that fully complies with the Advantys STB island bus protocol. Preferred modules are developed and qualified under agreement with Schneider; they conform fully to Advantys STB standards and are auto-addressable.

For the most part, the island bus handles a preferred module as it does standard Advantys STB I/O module, with four key differences:
- A preferred module is not designed in the standard form factor of an Advantys STB module and does not fit into one of the standard base units. It therefore does not reside in an Advantys STB segment.
- A preferred module requires its own power supply. It does not get logic power from the island bus.
- To place preferred modules in your island, use the Advantys configuration software.
- You cannot use preferred modules with a basic NIM.
Preferred modules can be placed between segments of STB I/O or at the end of the island. If a preferred module is the last module on the island bus, it should be terminated with a 120 Ω terminator resistor.

Standard CANopen Devices

An Advantys STB island can support standard off-the-shelf CANopen devices. These devices are not auto-addressable on the island bus, and therefore they should be manually addressed, usually with physical switches built into the devices. They are configured using the Advantys configuration software. You cannot use a standard CANopen device with a basic NIM.

When standard CANopen devices are used, they should be installed at the end of the island. 120 Ω termination should be provided both at the end of the last Advantys STB segment and at the last standard CANopen device.
Island Segments

Summary
An Advantys STB system starts with a group of interconnected devices called the primary segment. This first segment is a mandatory piece of an island. Depending on your needs and on the type of NIM you are using (see page 16), the island may optionally be expanded to additional segments of Advantys STB modules, called extension segments and to non-STB devices such as preferred modules and/or standard CANopen devices.

The Primary Segment
Every island bus begins with a primary segment. The primary segment consists of the island’s NIM and a set of interconnected module bases attached to a DIN rail. The PDMs and Advantys STB I/O module mount in these bases on the DIN rail. The NIM is always the first (leftmost) module in the primary segment.

The Island Bus
The bases that you interconnect on the DIN rail form an island bus structure. The island bus houses the modules and supports the communications buses across the island. A set of contacts on the sides of the base units (see page 32) provides the bus structure for:
- logic power
- sensor field power to the input modules
- actuator power to the output modules
- the auto-addressing signal
- island bus communications between the I/O and the NIM

The NIM, unlike the PDMs and I/O modules, attaches directly to a DIN rail:

1. NIM
2. module bases
3. termination plate
4. DIN rail
The DIN Rail
The NIM and the module bases snap onto a conductive metal DIN rail. The rail may be 7.5 mm or 15 mm deep.

The NIM
A NIM performs several key functions:
- It is the master of the island bus, supporting the I/O modules by acting as their communications interface across the island backplane
- It is the gateway between the island and the fieldbus on which the island operates, managing data exchange between the island’s I/O modules and the fieldbus master
- It may be the interface to the Advantys configuration software; basic NIMs do not provide a software interface
- It is the primary power supply for logic power on the island bus, delivering a 5 VDC logic power signal to the I/O modules in the primary segment

Different NIM models are available to support the various open fieldbuses and different operational requirements. Choose the NIM that meets your needs and operates on the appropriate fieldbus protocol. Each NIM is documented in its own user manual.

PDMs
The second module on the primary segment is a PDM. PDMs are available in different models to support:
- 24 VDC field power to the I/O modules in a segment
- 115 VAC or 230 VAC field power to the I/O modules in a segment

The number of different I/O voltage groups that are installed on the segment determine the number of PDMs that need to be installed. If your segment contains I/O from all three voltage groups, you will need to install at least three separate PDMs in the segment.

Different PDM models are available with scalable performance characteristics. A standard PDM, for example, delivers actuator power to the output modules and sensor power to the input modules in a segment over two separate power lines on the island bus. A basic PDM, on the other hand, delivers actuator power and field power over a single power line.

The Bases
There are six types of bases that can be used in a segment. Specific bases should be used with specific module types, and it is important that you always install the correct bases in the appropriate locations in each segment:

<table>
<thead>
<tr>
<th>Base Model</th>
<th>Base Width</th>
<th>Advantys STB Modules It Supports</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBA 1000</td>
<td>13.9 mm (0.54 in)</td>
<td>the size 1 base that supports 13.9 mm wide I/O modules (24 VDC digital I/O and analog I/O)</td>
</tr>
<tr>
<td>STB XBA 2000</td>
<td>18.4 mm (0.72 in)</td>
<td>the size 2 base that supports 18.4 mm I/O modules and the STB XBE 2100 CANopen extension module (see page 151)</td>
</tr>
</tbody>
</table>
As you plan and assemble the island bus, check that you choose and insert the correct base in each location on the island bus.

I/O

Each segment contains a minimum of one Advantys STB I/O module. The maximum number of modules in a segment is determined by their total current draw on the 5 VDC logic power supply in the segment. A built-in power supply in the NIM provides 5 VDC to the I/O modules in the primary segment. A similar power supply built into the BOS modules provides 5 VDC for the I/O modules in any extension segments. Each of these supplies produce 1.2 A, and the sum of the logic power current consumed by all the I/O modules in a segment cannot exceed 1.2 A.

The Last Device on the Primary Segment

The island bus should be terminated with a 120 Ω terminator resistor. If the last module on the island bus is an Advantys STB I/O module, use an STB XMP 1100 terminator plate at the end of the segment.

If the island bus is extended to another segment of Advantys STB modules or to a preferred module (see page 16), you need to install an STB XBE 1000 EOS bus extension module in the last position of the segment that will be extended. Do not apply 120 Ω termination to the EOS module. The EOS module has an IEEE 1394-style output connector for a bus extension cable. The extension cable carries the island’s communications bus and auto-addressing line to the extension segment or to the preferred module.

If the island bus is extended to a standard CANopen device (see page 16), you need to install an STB XBE 2100 CANopen extension module in the rightmost position of the segment and apply 120 Ω termination to island bus after the CANopen extension module—use the STB XMP 1100 terminator plate. You should also provide 120 Ω termination on the last CANopen device that is installed on the island bus.

Remember that you cannot use extensions when a basic NIM is in the primary segment.

<table>
<thead>
<tr>
<th>Base Model</th>
<th>Base Width</th>
<th>Advantys STB Modules It Supports</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBA 2100</td>
<td>18.4 mm (0.72 in)</td>
<td>the size 2 base that supports an auxiliary power supply</td>
</tr>
<tr>
<td>STB XBA 2200</td>
<td>18.4 mm (0.72 in)</td>
<td>the size 2 base that supports the PDMs</td>
</tr>
<tr>
<td>STB XBA 2300</td>
<td>18.4 mm (0.72 in)</td>
<td>the size 2 base that supports BOS modules</td>
</tr>
<tr>
<td>STB XBA 2400</td>
<td>18.4 mm (0.72 in)</td>
<td>the size 2 base that supports EOS modules</td>
</tr>
<tr>
<td>STB XBA 3000</td>
<td>28.1 mm (1.06 in)</td>
<td>the size 3 base that supports many of the special modules</td>
</tr>
</tbody>
</table>
An Illustrative Example

The illustration below shows an example of a primary segment with PDMs and I/O modules installed in their bases:

1. The NIM resides in the first location. One and only one NIM is used on an island.
2. A 115/230 VAC STB PDT 2100 PDM, installed directly to the right of the NIM. This module distributes AC power over two separate field power buses, a sensor bus and an actuator bus.
3. A set of digital AC I/O modules installed in a voltage group directly to the right of the STB PDT 2100 PDM. The input modules in this group receive field power from the island’s sensor bus, and the output modules in this group receive AC field power from the island’s actuator bus.
4. A 24 VDC STB PDT 3100 PDM, which will distribute 24 VDC across the island’s sensor and actuator buses to a voltage group of 24 VDC I/O modules. This PDM also provides isolation between the AC voltage group to its left and the DC voltage group to its right.
5. A set of analog and digital I/O modules installed directly to the right of the STB PDT 3100 PDM.
6. An STB XBE 1000 EOS extension module installed in the last location in the segment. Its presence indicates that the island bus will be extended beyond the primary segment and that you are not using a basic NIM.
Logic Power Flow

Summary

Logic power is the power that the Advantys STB I/O modules require to run their internal processing and light their LEDs. It is distributed across an island segment by a 5-to-24 VDC power supply. One of these power supplies is built into the NIM to support the primary segment; another is built into the STB XBE 1200 BOS modules to support any extension segments. If you need to provide more logic power in a primary or extension segment than the initial power supply can deliver, you may also use an STB CPS 2111 auxiliary power supply (see page 162).

These power supplies require an external SELV-rated 24 VDC power source, which is usually mounted in the enclosure with the island.

Logic Power Flow

The NIM converts the incoming 24 VDC to 5 VDC, and sends it across the island bus to the I/O modules in the primary segment:

This power supply provides 1.2 A of current to the primary segment. If the total current draw of all the modules on the island bus exceeds 1.2 A, you need to either use an auxiliary power supply or place some of the modules in one or more extension segment(s). If you use an extension segment, an EOS module is needed at the end of the primary segment, followed by an extension cable to a BOS module in an extension segment. The EOS terminates the 5 V logic power in the primary segment. The BOS in the next segment has its own 24-to-5 VDC power supply. It requires its own external 24 V power supply.
Here is an illustration of the extension segment scenario:
The Power Distribution Modules

Functions
A PDM distributes field power to a set of Advantys STB I/O modules on the island bus. The PDM sends field power to the input and output modules in a segment. Depending on the PDM module you are using, it may distribute sensor power and actuator power on the same or on separate power lines across the island bus. The PDM helps to protect the input and output modules with a user-replaceable fuse. It also provides a protective earth (PE) connection for the island.

Voltage Groupings
I/O modules with different voltage requirements need to be isolated from each other in the segment, and the PDMs serve this role. Each voltage group requires its own PDM

Standard PDM Power Distribution
A PDM is placed immediately to the right of the NIM in slot 2 on the island. The modules in a specific voltage group follow in series to the right of the PDM. The following illustration shows a standard STB PDT 2100 PDM supporting a cluster of 115 VAC I/O modules:

1 115 VAC sensor power signal to the PDM
2 115 VAC actuator power signal to the PDM

Notice that sensor power (to the input modules) and actuator power (to the output modules) are brought to the island via separate two-pin connectors on the PDM.

The island layout shown above assumes that all the I/O modules in the segment use 115 VAC for field power. Suppose, however, that your application requires a mix of 24 VDC and 115 VAC modules. A second PDM (this time a standard STB PDT 3100 module) is used for the 24 VDC I/O.
NOTE: When you plan the layout of an island segment that contains a mixture of AC and DC modules, we recommend that you place the AC voltage group(s) to the left of the DC voltage group(s) in a segment.

In this case, the STB PDT 3100 PDM is placed directly to the right of the last 115 VAC module. It terminates the sensor and actuator buses for the 115 VAC I/O voltage group and initiates new sensor and actuator buses for the 24 VDC modules:

![Diagram showing connections between modules and the PDM]

1. 115 VAC sensor power signal to the PDM
2. 115 VAC actuator power signal to the PDM
3. 24 VDC sensor power signal to the PDM
4. 24 VDC actuator power signal to the PDM

Each standard PDM contains a pair of time-lag fuses to help protect the I/O modules in the segment:
- a 10 A fuse for the actuator bus—connected to output modules
- a 5 A fuse for the sensor bus—connected to input modules

These fuses are user-replaceable.
Basic PDM Power Distribution

If your island uses basic PDMs instead of standard PDMs, then actuator power and sensor power are sent over a single power line:

Each basic PDM contains one 5 A time-lag fuse that helps to protect the I/O modules in the segment. This fuse is user-replaceable.
PE Grounding

A captive screw terminal on the bottom of the PDM base makes contact with pin 12 (see page 33) on each I/O base, establishing an island PE bus. The screw terminal on the PDM base meets IEC-1131 requirements for field power protection. The screw terminal should be wired to the PE point on your system.
Sensor Power and Actuator Power Distribution on the Island Bus

Summary
The sensor bus and the actuator bus need to be powered separately from external sources. Depending on your application, you may want to use the same or different external power supplies to feed the sensor bus and the actuator bus. The source power is fed to 2 two-pin power connectors on a PDM.

- The top connector is for the sensor power bus
- The bottom two-pin connector is for the actuator power bus

24 VDC Field Power Distribution
An external power supply delivers field power distributed to an STB PDT 3100 PDM.
The power components are not galvanically isolated. They are intended for use only in systems designed to provide SELV isolation between the supply inputs or outputs and the load devices or system power bus. Use SELV-rated supplies to provide 24 VDC source power to the NIM.

NOTICE

EQUIPMENT DAMAGE
Use only power supplies designed to provide SELV isolation between the supply inputs, outputs, load devices and system power bus.

Failure to follow these instructions can result in equipment damage.

NOTE: Above 130 VAC, the relay module may compromise the double insulation provided by a SELV-rated power supply.

CAUTION

COMPROMISED DOUBLE INSULATION
When you use a relay module, use separate external 24 VDC power supplies for the PDM supporting that module and the logic power to the NIM or BOS module when the contact voltage is above 130 VAC.

Failure to follow these instructions can result in injury or equipment damage.
For more consistent system performance, use a separate 24 VDC supply for logic power to the NIM and for field power to the PDM:

1. 24 VDC signal to the NIM’s logic power supply
2. 24 VDC signal to the segment’s sensor bus
3. 24 VDC signal to the segment’s actuator bus
4. Optional relay on the actuator bus

If the I/O load on the island bus is low and the system is operating in a low-noise environment, you may use the same supply for both logic power and field power:

1. 24 VDC signal to the NIM’s logic power supply
2. 24 VDC signal to the segment’s sensor bus
3. 24 VDC signal to the segment’s actuator bus
4. Optional relay on the actuator bus
NOTE: In the example above, a single power supply is used to provide 24 VDC to the NIM (for logic power) and the PDM. If any of the modules supported by the PDM is an STB relay module that operates at a contact voltage above 130 VAC, the double insulation provided by the SELV power supply is no longer present. Therefore, you will need to use a separate 24 VDC power supply to support the relay module.

115 and 230 VAC Field Power Distribution

AC field power is distributed across the island by an STB PDT 2100 PDM. It can accept field power in the range 85 ... 264 VAC. The following illustration shows a simple view of 115 VAC power distribution:

1. 24 VDC signal to the NIM’s logic power supply
2. 115 VAC signal to the segment’s sensor bus
3. 115 VAC signal to the segment’s actuator bus
4. Optional relay on the actuator bus
If the segment contains a mixture of both 115 VAC and 230 VAC I/O modules, you should take care to install them in separate voltage groups and support the different voltages with separate STB PDT 2100 PDMs:

1. 24 VDC signal to the NIM’s logic power supply
2. 115 VAC signal to the segment’s sensor bus
3. 115 VAC signal to the segment’s actuator bus
4. Optional relay on the actuator bus
5. 230 VAC signal to the segment’s sensor bus
6. 230 VAC signal to the segment’s actuator bus
Communications Across the Island

Island Bus Architecture

Two sets of contacts on the left side of the base units—one set on the bottom and one on the top—enable the island to support several different communication and power buses. The contacts on the top left of a base support the island’s logic side functions. The contacts at the bottom left of a base support the island’s field power side.

Logic Side Contacts

The following illustration shows the location of the contacts as they appear on all the I/O bases. The six contacts at the top of the base support the logic side functionality:

1 reserved
2 common ground contact
3 5 VDC logic power contact
4 island bus communications (+) contact
5 island bus communications (-) contact
6 address line contact

The following table lists the way the logic-side contacts are implemented on the different base units.

<table>
<thead>
<tr>
<th>Base Unit</th>
<th>Logic-side Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBA 1000 size 1 I/O base</td>
<td>Contacts 2 ... 6 present and pass signals to the right. Contacts 2 and 3 terminate at the end of the segment; contacts 4, 5 and 6 pass to the end of the island bus</td>
</tr>
<tr>
<td>STB XBA 2000 size 2 I/O base</td>
<td>Contacts 2 ... 6 present and pass signals to the right. Contacts 2 and 3 terminate at the end of the segment; contacts 4, 5 and 6 pass to the end of the island bus</td>
</tr>
</tbody>
</table>
Field Power Distribution Contacts

The following illustration highlights the contacts at the bottom of the base, which support the island’s field power distribution functionality:

<table>
<thead>
<tr>
<th>Base Unit</th>
<th>Logic-side Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBA 2200 size 2 PDM base</td>
<td>Contacts 2 ... 6 present and pass signals to the right. Contacts 2 and 3 terminate at the end of the segment; contacts 4, 5 and 6 pass to the end of the island bus</td>
</tr>
<tr>
<td>STB XBA 2300 size 2 BOS base</td>
<td>Contacts 2 ... 6 are present and pass signals to the right</td>
</tr>
<tr>
<td>STB XBA 2400 size 2 EOS base</td>
<td>Contacts 1 ... 6 are present but the signals do not pass to the right</td>
</tr>
<tr>
<td>STB XBA 3000 size 3 I/O base</td>
<td>Contacts 2 ... 6 present and pass signals to the right. Contacts 2 and 3 terminate at the end of the segment; contacts 4, 5 and 6 pass to the end of the island bus</td>
</tr>
</tbody>
</table>

7. a DIN rail clip that provides functional ground for noise immunity, RFI, etc.
8 and 9 sensor bus
10 and 11 actuator bus
12. PE, established via a captive screw on the PDM base units
The following table lists the way the field-side contacts are implemented on the different base units.

<table>
<thead>
<tr>
<th>Base Unit</th>
<th>Logic-side Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBA 1000 size 1 I/O base</td>
<td>Contacts 7 ... 12 present. Contacts 7 and 12 are always made. Contacts 8 and 9 are made for input modules but not for output modules. Contacts 10 and 11 are made for output modules but not for input modules.</td>
</tr>
<tr>
<td>STB XBA 2000 size 2 I/O base</td>
<td>Contacts 7 ... 12 present. Contacts 7 and 12 are always made. Contacts 8 and 9 are made for input modules but not for output modules. Contacts 10 and 11 are made for output modules but not for input modules.</td>
</tr>
<tr>
<td>STB XBA 2200 size 2 PDM base</td>
<td>Contacts 7 and 12 present and are always made. Contacts 8 ... 11 are not connected on the left side—sensor and actuator power are delivered to the PDM from external power sources and passed to the right.</td>
</tr>
<tr>
<td>STB XBA 2300 size 2 BOS base</td>
<td>Contacts 7 ... 12 present but do not pass signals to the right. The BOS module does not receive field power.</td>
</tr>
<tr>
<td>STB XBA 2400 size 2 EOS base</td>
<td>Contacts 7 ... 12 are present but do not pass signals to the right. The EOS module does not receive field power.</td>
</tr>
<tr>
<td>STB XBA 3000 type 3 I/O base</td>
<td>Contacts 7 ... 12 present. Contacts 7 and 12 are always made. Contacts 8 and 9 are made for input modules but not for output modules. Contacts 10 and 11 are made for output modules but not for input modules.</td>
</tr>
</tbody>
</table>
Operating Environment

Environmental Specifications

The following information describes system-wide environmental requirements and specifications for the Advantys STB system.

Enclosure

This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR Publication 11, indicating there may be potential difficulties achieving electromagnetic compatibility in other environments due to conducted and/or radiated disturbance.

All Advantys STB modules meet CE mark requirements for open equipment as defined by EN61131-2, and should be installed in an enclosure that is designed for specific environmental conditions and designed to help reduce the chance of personal injury resulting from access to live parts. The interior of the enclosure should be accessible only by the use of a tool.

NOTE: Special requirements apply for enclosures located in hazardous (explosive) environments.

Requirements

This equipment meets agency certification for UL, CSA, CE, FM class 1 div 2 and ATEX. This equipment is intended for use in a Pollution Degree 2 industrial environment, in over-voltage Category II applications (as defined in IEC publication 60664-1), at altitudes up to 2000 m (6500 ft) without derating.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>protection</td>
<td>ref. EN61131-2</td>
</tr>
<tr>
<td>protection ref.</td>
<td>IP20, class 1</td>
</tr>
<tr>
<td>agency</td>
<td>ref. EN61131-2</td>
</tr>
<tr>
<td>agency ref.</td>
<td>UL 508, CSA 1010-1, FM Class 1 Div. 2, CE, ATEX and Maritime</td>
</tr>
<tr>
<td>isolation voltage</td>
<td>ref. EN61131-2</td>
</tr>
<tr>
<td>isolation voltage ref.</td>
<td>1500 VDC field-to-bus for 24 VDC</td>
</tr>
<tr>
<td>isolation voltage ref.</td>
<td>2500 VDC field-to-bus for 115/230 VAC</td>
</tr>
<tr>
<td>Note: No internal isolation voltage; isolation requirements should be met by using SELV-based external power supply.</td>
<td></td>
</tr>
<tr>
<td>over-voltage class</td>
<td>ref. EN61131-2</td>
</tr>
<tr>
<td>over-voltage class ref.</td>
<td>category II</td>
</tr>
<tr>
<td>operating temperature range</td>
<td>0 ... 60° C (32 ... 140° F)</td>
</tr>
<tr>
<td>extended operating temperature ranges</td>
<td>-25 ... 0° C (-13 ... 32° F) and 60 ... 70° C (140 ... 158° F) for qualified modules (see</td>
</tr>
<tr>
<td>storage temperature</td>
<td>-40 ... +85° C (-40 ... +185° F)</td>
</tr>
<tr>
<td>maximum humidity</td>
<td>95% relative humidity @ 60° C (non-condensing)</td>
</tr>
<tr>
<td>supply voltage variation, interruption, shut-down and start-up</td>
<td>IEC 61000-4-11 ref. 61131-2</td>
</tr>
<tr>
<td>shock</td>
<td>ref. IEC68, part 2-27</td>
</tr>
<tr>
<td>shock ref.</td>
<td>+/-15 g peak, 11 ms, half-sine wave for 3 shocks/axis</td>
</tr>
</tbody>
</table>
Electromagnetic Susceptibility

The following table lists the electromagnetic susceptibility specifications:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrostatic discharge</td>
<td>ref. EN61000-4-2</td>
</tr>
<tr>
<td>radiated</td>
<td>ref. EN61000-4-3</td>
</tr>
<tr>
<td>fast transients</td>
<td>ref. EN61000-4-4</td>
</tr>
<tr>
<td>surge withstand (transients)</td>
<td>ref. EN61000-4-5</td>
</tr>
<tr>
<td>conducted RF</td>
<td>ref. EN61000-4-6</td>
</tr>
</tbody>
</table>

Radiated Emission

The following table lists the emission specification ranges:

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>radiated emission</td>
<td>ref. EN 55011 Class A</td>
<td>30 ... 230 MHz, 10 m @ 40 dBμV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230 ... 1000 MHz, 10 m @ 47 dBμV</td>
</tr>
</tbody>
</table>
Chapter 2
The Advantys STB Parallel Interface Modules

Overview
This chapter describes in detail the features of the parallel interface modules in the Advantys STB family.

What Is in This Chapter?
This chapter contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>STB EPI 1145 Tego Power Parallel Interface (16 in/8 out)</td>
<td>38</td>
</tr>
<tr>
<td>2.2</td>
<td>STB EPI 2145 Parallel Interface for TeSys Model U Starter Applications (12 in/8 out prewiring module)</td>
<td>60</td>
</tr>
</tbody>
</table>
Section 2.1
STB EPI 1145 Tego Power Parallel Interface (16 in/8 out)

Overview
This section provides a detailed description of the Advantys STB EPI 1145 interface to Tego Power motor drives. The module's functions, physical design, technical specifications, field wiring requirements, and configuration options are described.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB EPI 1145 Physical Description</td>
<td>39</td>
</tr>
<tr>
<td>STB EPI 1145 LED Indicators</td>
<td>41</td>
</tr>
<tr>
<td>STB EPI 1145 Field Wiring</td>
<td>44</td>
</tr>
<tr>
<td>STB EPI 1145 Functional Description</td>
<td>46</td>
</tr>
<tr>
<td>STB EPI 1145 Data for the Process Image</td>
<td>52</td>
</tr>
<tr>
<td>STB EPI 1145 Specifications</td>
<td>58</td>
</tr>
</tbody>
</table>
STB EPI 1145 Physical Description

Physical Characteristics

The STB EPI 1145 is a special-purpose Advantys STB module that functions as the parallel interface between an island of Advantys distributed I/O and a Tego Power application. This high-density module features eight outputs and sixteen inputs, and is able to remotely control up to eight Tego Power motor starters, or four reversible motor starters.

The STB EPI 1145 fits into a size 2 I/O base. It is equipped with an HE10 30-pin connector, and links to the Tego Power system through an STB XCA 3002 or STB XCA 3003 cable.

Front Panel View

1. location for the STB XMP 6700 user-customizable label
2. model reference number
3. LED array denoting various states of the motor starters
4. black identification stripe, indicating a special module
5. SHIFT button, indicated by a pair of Up/Down arrows. This button shifts the display of LEDs between outputs 1-4 and outputs 5-8.
6. HE10 30-pin connector used to link the STB EPI 1145 to a Tego Power system, using one of the STB XCA 3002/3003 dedicated cables
Parallel Interface Modules

Ordering Information

The module and its related parts may be ordered for stock or replacement, as follows:

- an STB EPI 1145 special-purpose Advantys STB module
- a size 2 STB XBA 2000 I/O base (see page 203)
- an STB XCA 3002 1 m cable
- an STB XCA 3003 2 m cable

Other accessories are also available:

- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the base as part of your island assembly plan
- the STB XMP 7800 keying pin kit to help deter installation of the STB EPI 1145 in any module base other than the STB XBA 2000

For installation instructions and other details, refer to the Advantys STB System Planning and Installation Guide (890 USE 171).

Tego Power itself requires separate components, such as the APP 2R2E or APP 2R4E splitters, and a 24 VDC power supply. For information on Tego Power components, refer to the Motor Starters, Control Components and Power Protection section of the Schneider Electric catalog.

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>module on a base</th>
<th>18.4 mm (0.72 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>height</td>
<td>module only</td>
<td>120 mm (4.74 in)</td>
</tr>
<tr>
<td></td>
<td>on a base</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td>depth</td>
<td>module only</td>
<td>70 mm (2.76 in)</td>
</tr>
<tr>
<td></td>
<td>on a base, with connectors</td>
<td>102.7 mm (4.04 in)</td>
</tr>
</tbody>
</table>
Parallel Interface Modules

STB EPI 1145 LED Indicators

Overview

The eight LEDs on the STB EPI 1145 module are visual indicators of the operating status of the module and of its outputs (in this case, motor starters). The top two LEDs indicate the operating status of the module. The remaining six LEDs indicate the status of the outputs. The LEDs do not indicate the status of the module's inputs.

The module makes use of a special SHIFT button in conjunction with the LEDs to allow the display of all eight outputs.

Location

The eight LEDs are positioned in a column in the upper section of the bezel, along its right edge. The figure below shows their location.

The following table provides the color and legend for each LED, as well as a brief indication to their meaning.

<table>
<thead>
<tr>
<th>LED</th>
<th>color</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDY</td>
<td>green</td>
<td>module is ready to operate on the island bus</td>
</tr>
<tr>
<td>ERR</td>
<td>red</td>
<td>an error condition has been detected</td>
</tr>
<tr>
<td>S1</td>
<td>green</td>
<td>on = status for first series of outputs (1 to 4) displayed</td>
</tr>
<tr>
<td>S2</td>
<td>green</td>
<td>on = status for second series of outputs (5 to 8) displayed</td>
</tr>
<tr>
<td>O 1/5</td>
<td>green</td>
<td>output 1 status when S1 is on; output 5 status when S2 is on</td>
</tr>
<tr>
<td>O 2/6</td>
<td>green</td>
<td>output 2 status when S1 is on; output 6 status when S2 is on</td>
</tr>
<tr>
<td>O 3/7</td>
<td>green</td>
<td>output 3 status when S1 is on; output 7 status when S2 is on</td>
</tr>
<tr>
<td>O 4/8</td>
<td>green</td>
<td>output 4 status when S1 is on; output 8 status when S2 is on</td>
</tr>
</tbody>
</table>
Using the SHIFT Button with the LEDs

After module initialization, the SHIFT button controls the display of the mutually exclusive S1 and S2 LEDs. At power up, the default is always S1 on and S2 off, where:

- the O 1/5 LED indicates the status of output 1
- the O 2/6 LED indicates the status of output 2
- the O 3/7 LED indicates the status of output 3
- the O 4/8 LED indicates the status of output 4

If you push the SHIFT button, S1 turns off and S2 turns on. When S2 is on:

- the O 1/5 LED indicates the status of output 5
- the O 2/6 LED indicates the status of output 6
- the O 3/7 LED indicates the status of output 7
- the O 4/8 LED indicates the status of output 8

The status of an output is either active (24 V present), in which case the corresponding LED is on, or inactive (0 V present), in which case the corresponding LED is off.

RDY and ERR Indications

The two top LEDs reflect the module’s status on the network:

<table>
<thead>
<tr>
<th>LED</th>
<th>Meaning</th>
<th>What to Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDY</td>
<td>ERR</td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>The module is not receiving logic power or has stopped functioning.</td>
</tr>
<tr>
<td>flicker*</td>
<td>off</td>
<td>Auto-addressing is in progress.</td>
</tr>
</tbody>
</table>
| on | off | The module has achieved all of the following:
- it has power
- it has passed the confidence tests
- it is operational | Check LEDs 3 to 8 for specific output status. |
| on | on | The watchdog has timed out. | Cycle power, restart communications. |
| blink 1** | | The module is in pre-operational mode or in its fallback state. | |
| flicker* | | Field power absent or a short circuit detected at the actuator. | Check power. |
| blink 1** | | A field error has been detected and the module continues to operate. | Cycle power, restart communications. |
| blink 2*** | | The island bus is not running. | Check network connections, replace NIM. |

* flicker—the LED flickers when it is repeatedly on for 50 ms, then off for 50 ms.
** blink 1—the LED blinks on for 200 ms, then off for 200 ms. This pattern is repeated until the causal condition changes.

*** blink 2—the LED blinks on for 200 ms, off for 200 ms, on again for 200 ms, then off for 1 s. This pattern is repeated until the causal condition changes.
STB EPI 1145 Field Wiring

Summary

The STB EPI 1145 parallel interface module uses a single HE10 30-pin connector to link to your Tego Power application. The module is designed to work exclusively in Tego Power motor starter applications.

Connector and Cables

Use one of the Advantys Tego Power cables to connect an STB EPI 1145 module to your Tego Power system. Two cables are available:

- a 1 m STB XCA 3002 cable
- a 2 m STB XCA 3003 cable

These are the only cables recommended and approved by Schneider Electric for this module. Both available cables have a 30-pin HE10 connector on each end. One connector plugs into the field wiring connector on the STB EPI 1145 module, and the other fits into the 30-pin receptacle on the left side of the splitter, on top of the Tego Power system. Both connections have the same pinout.

The following table provides the pinout for each connection:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN 1 breaker</td>
<td>2</td>
<td>IN 2 breaker</td>
</tr>
<tr>
<td>3</td>
<td>IN 3 breaker</td>
<td>4</td>
<td>IN 4 breaker</td>
</tr>
<tr>
<td>5</td>
<td>IN 5 breaker</td>
<td>6</td>
<td>IN 6 breaker</td>
</tr>
<tr>
<td>7</td>
<td>IN 7 breaker</td>
<td>8</td>
<td>IN 8 breaker</td>
</tr>
<tr>
<td>9</td>
<td>IN 9 contactor</td>
<td>10</td>
<td>IN 10 contactor</td>
</tr>
<tr>
<td>11</td>
<td>IN 11 contactor</td>
<td>12</td>
<td>IN 12 contactor</td>
</tr>
<tr>
<td>13</td>
<td>IN 13 contactor</td>
<td>14</td>
<td>IN 14 contactor</td>
</tr>
<tr>
<td>15</td>
<td>IN 15 contactor</td>
<td>16</td>
<td>IN 16 contactor</td>
</tr>
<tr>
<td>17</td>
<td>OUT 1 command contactor</td>
<td>18</td>
<td>OUT 2 command contactor</td>
</tr>
<tr>
<td>19</td>
<td>OUT 3 command contactor</td>
<td>20</td>
<td>OUT 4 command contactor</td>
</tr>
<tr>
<td>21</td>
<td>OUT 5 command contactor</td>
<td>22</td>
<td>OUT 6 command contactor</td>
</tr>
<tr>
<td>23</td>
<td>OUT 7 command contactor</td>
<td>24</td>
<td>OUT 8 command contactor</td>
</tr>
<tr>
<td>25</td>
<td>+24 V IN</td>
<td>26</td>
<td>0 V IN</td>
</tr>
<tr>
<td>27</td>
<td>+24 V OUT</td>
<td>28</td>
<td>0 V OUT</td>
</tr>
<tr>
<td>29</td>
<td>+24 V OUT</td>
<td>30</td>
<td>0 V OUT</td>
</tr>
</tbody>
</table>
The Tego Power System

Tego Power is a modular busbar system used to install Tego Power motor starters with power ratings of up to 15 kW/400 V, by letting you pre-wire the logic and power circuits.

For more information on Tego Power applications, contact your Telemecanique representative.

The figure below shows a sample Tego Power application, connected to the Advantys STB EPI 1145 parallel interface module:

1. (Tego Power) power distribution box
2. control distribution box
3. connecting cable
4. connection control module
STB EPI 1145 Functional Description

Functional Characteristics
The STB EPI 1145 module is a special-purpose 8 outputs, 16 inputs module designed to connect to Tego Power, a modular system for the installation of up to eight Tego Power motor starters (or four reversible motor starters). Using the Advantys configuration software, you can customize the following operating parameters:

- the module’s responses to recovery of detected fault
- logic normal or logic reverse input and output polarity for each channel on the module
- a fallback state for each channel on the module

Fault Recovery Responses
The module can detect a short circuit on the actuator bus or an overcurrent on an output channel when the channel is turned on. In case of a detected fault on any channel, the module will do one of the following:

- automatically latch off that channel, or
- automatically recover and resume operation on the channel when the detected fault is cleared

The factory default setting is latched off, where the module turns off the output channel when a short circuit or overcurrent condition is detected on that channel. The channel will remain off until you reset it explicitly.

If you want to set the module to auto-recover when the detected fault is corrected, use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 1145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 1145 module opens in the software module editor.</td>
</tr>
<tr>
<td>2</td>
<td>From the pull-down menu in the Value column of the Fault Recovery Response row, select the desired response mode.</td>
<td>Two choices appear in the pull-down menu—Latched Off and Auto Recovery.</td>
</tr>
</tbody>
</table>

Resetting a Latched Off Output
If an output channel has been latched off because of fault detection, it will not recover until two events take place:

- the detected error has been corrected
- you explicitly reset the channel

To reset a latched off output channel, you should send it a value of 0. The 0 value resets the channel to a standard off condition and restores its ability to respond to control logic (turn on and off). You need to provide the reset logic in your application program.
Auto-recovery

When the module is configured to auto-recover, a channel that previously turned off because of a short circuit will start operating again as soon as it is corrected. No user intervention is required to reset the channel. If the detected fault was transient, the channel may reactivate without leaving any history of the short circuit having occurred.

Input Polarity

By default, the polarity on all 16 input channels is logic normal, where:

- an input value of 0 indicates that the physical sensor is off (or the input signal is low)
- an input value of 1 indicates that the physical sensor is on (or the input signal is high)

The input polarity on one or more of the channels may optionally be configured for logic reverse, where:

- an input value of 1 indicates that the physical sensor is off (or the input signal is low)
- an input value of 0 indicates that the physical sensor is on (or the input signal is high)

To change an input polarity parameter from logic normal, or back to normal from logic reverse, you need to use the Advantys configuration software.

You may configure input polarity values independently for each input channel:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 1145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 1145 module opens in the software module editor.</td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal checkbox at the top right of the editor.</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the + Input Polarity Settings fields by clicking on the + sign.</td>
<td>A top level row appears. It leads to two groups: + Input Polarity (First 8 channels), containing circuit-breaker information for input channels 1 through 8, and + Input Polarity (Last 8 channels), providing contactor information for channels 9 through 16.</td>
</tr>
<tr>
<td>4</td>
<td>Expand either of the + Input Polarity fields by clicking on the + sign.</td>
<td>For instance, if you click on First 8 channels, the corresponding rows for input channels 1 through 8 appear.</td>
</tr>
</tbody>
</table>
Output Polarity

By default, the polarity on all eight output channels is *logic normal*, where:

- an output value of 0 indicates that the physical actuator is off (or the output signal is low)
- an output value of 1 indicates that the physical actuator is on (or the output signal is high)

The output polarity on one or more of the channels may optionally be configured for *logic reverse*, where:

- an output value of 1 indicates that the physical actuator is off (or the output signal is low)
- an output value of 0 indicates that the physical actuator is on (or the output signal is high)

To change an output polarity parameter from *logic normal*, or back to normal from *logic reverse*, use the Advantys configuration software.

You can configure the output polarity on each output channel independently:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 1145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 1145 module opens in the software module editor.</td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal checkbox at the top right of the editor.</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
</tbody>
</table>
Fallback Modes

When communication is lost between the module and the fieldbus master, the module’s outputs should go to a known state where they remain until communications are restored. This is known as the output’s fallback state. You may configure fallback values for each output individually.

Fallback configuration is accomplished in two steps:

- first by configuring fallback modes for each output
- then (if necessary) by configuring the fallback states

When an output has predefined state as its fallback mode, it can be configured with a fallback state, either 1 or 0. When an output has hold last value as its fallback mode, it stays at its last known state when communication is lost—it cannot be configured with a predefined fallback state.

By default, the fallback mode for all outputs is a predefined state. To change the fallback mode to hold last value, use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 1145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 1145 module opens in the software module editor.</td>
</tr>
</tbody>
</table>
NOTE: In the event module hardware stops functioning, all output channels turn off.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
<tr>
<td></td>
<td>Hexadecimal box at the top right of the editor.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Expand the Fallback Mode Settings fields by clicking on the + sign.</td>
<td>A single row called Fallback Mode (Output) appears.</td>
</tr>
<tr>
<td>4</td>
<td>Expand the Fallback Mode (Output) row further by clicking on the +</td>
<td>Rows for output channels 1 through 8 appear.</td>
</tr>
<tr>
<td></td>
<td>sign.</td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>To change the settings at the module level, select the integer that</td>
<td>When you select the Fallback Mode value, the max./min. values of the range appear at the bottom of the module editor screen.</td>
</tr>
<tr>
<td></td>
<td>appears in the Value column of the Fallback Mode (Output) row.</td>
<td>When you accept a new value for Fallback Mode (Output), the values associated with the channels change.</td>
</tr>
<tr>
<td></td>
<td>Enter a hexadecimal or decimal value in the range 0 to 255, where 0</td>
<td>For example, if you choose a fallback mode value of 2, then channel 2 goes to predefined state and all other channels go to hold last value.</td>
</tr>
<tr>
<td></td>
<td>means all outputs hold their last values, and 255 means that all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outputs go to a predefined state.</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>To change the settings at the channel level, double click on the</td>
<td>When you accept a new value for a channel setting, the value for the module in the Fallback Mode (Output) row changes.</td>
</tr>
<tr>
<td></td>
<td>channel values you want to change, then select the desired settings</td>
<td>For example, if you set channel 2 to predefined state and all other channels to hold last value, the Fallback Mode value</td>
</tr>
<tr>
<td></td>
<td>from the pull-down menu.</td>
<td>changes to 2.</td>
</tr>
</tbody>
</table>

NOTE: If an output channel has been configured with **hold last value** as its fallback mode, any value that you try to configure as a **predefined fallback value** will be ignored.
To modify a fallback state from *hold last value* (default), or to revert back to the default from the ON setting, you need to use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check that the Fallback Mode for the STB EPI 1145 module you want to configure is 1 (predefined state). If the Fallback Mode value is 0 (hold last value), any value entered in the associated Predefined Fallback Value row will be ignored.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal box at the top right of the editor. Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Click on the + sign to expand the Predefined Fallback Value settings. A row called + Predefined Fallback Value appears.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Expand the + Predefined Fallback Value row further by clicking on the + sign. Rows for output Channels 1 to 8 appear.</td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>To change the settings at the module level, select the integer that appears in the Value column of the Fallback Mode row. Enter a hexadecimal or decimal value in the range 0 to 255 (0 to 0xFF), where 0 means all outputs have 0 as their predefined fallback value, and 255 means that all outputs adopt 1 as their predefined fallback value. When you select the value associated with + Predefined Fallback Value, the max./min. values of the range appear at the bottom of the module editor screen. When you accept a new Predefined Fallback Value, the values associated with the channels change. For example, if you choose a fallback state value of 2, then Channel 2 adopts 1 as its predefined fallback value, while all other channels will have 0 as their predefined fallback value.</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>To change the settings at the channel level, double click on the channel values you want to change, then select the desired settings from the pull-down menu. You may configure a fallback state of either 0 or 1 for each channel on the module. When you accept a new value for a channel setting, the value for the module in the Predefined Fallback Value row changes. For example, if you set Channel 2 to 1 and all other channels to 0, the Predefined Fallback Value changes to 2.</td>
<td></td>
</tr>
</tbody>
</table>
Representing I/O Data and Status

The NIM keeps a record of output data in one block of registers in the process image, and a record of input data and status in another block of registers in the process image. Output data is written to the output data block by the fieldbus master, and is used to update the outputs.

The information in the input and status block is provided by the module itself. This process image information can be monitored by the fieldbus master or, if you are not using a basic NIM, by an HMI panel connected to the NIM's CFG (configuration) port. The specific registers used by the STB EPI 1145 module are based on its physical location on the island bus.

NOTE: The data format illustrated in this section is common across the island bus, regardless of the fieldbus on which the island is operating. The data is also transferred to and from the master, in a fieldbus-specific format. For fieldbus-specific descriptions, refer to one of the Advantys STB Network Interface Module Application Guides. A separate guide is available for each supported fieldbus.

Input Data Image

The input data image is part of a block of 4096 16-bit registers (in the range 45392 through 49487) that represents the data returned to the fieldbus master. In this block, six contiguous registers represent the input data for the STB EPI 1145 module.

These registers are discussed individually below. If specific bit values (0 or 1) are provided in the following discussion, it is understood that polarity is logic normal for all channels, i.e. that polarity has not been explicitly reconfigured to logic reverse.

- Register 1: reads motor starter circuit breaker information
- Register 2: provides motor starter circuit breaker status
- Register 3: reads motor starter contactor information
- Register 4: provides motor starter contactor status
- Register 5: echo output data
- Register 6: provides status of outputs
Register 1: Circuit Breaker Information from Motor Starters

The first input/status register provides circuit breaker information from the various motor starters.

```
never used
always set to 0
```

1. bit 0 indicates the status of channel 1 (the circuit breaker for motor starter 1), where 0 = tripped and 1 = on
2. bit 1 indicates the status of channel 2 (the circuit breaker for motor starter 2), where 0 = tripped and 1 = on
3. bit 2 indicates the status of channel 3 (the circuit breaker for motor starter 3), where 0 = tripped and 1 = on
4. bit 3 indicates the status of channel 4 (the circuit breaker for motor starter 4), where 0 = tripped and 1 = on
5. bit 4 indicates the status of channel 5 (the circuit breaker for motor starter 5), where 0 = tripped and 1 = on
6. bit 5 indicates the status of channel 6 (the circuit breaker for motor starter 6), where 0 = tripped and 1 = on
7. bit 6 indicates the status of channel 7 (the circuit breaker for motor starter 7), where 0 = tripped and 1 = on
8. bit 7 indicates the status of channel 8 (the circuit breaker for motor starter 8), where 0 = tripped and 1 = on

Register 2: Circuit Breaker Status from Motor Starters

The second input/status register denotes the status of each input in Register 1. If any bit in this register is set to 0, no fault has been detected; if a bit is set to 1, a fault has been detected. A detected fault always derives from one the following causes: field power missing, short circuit on the field power.

```
never used
always set to 0
```

1. bit 0 denotes the status of channel 1 (motor starter 1 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
2. bit 1 denotes the status of channel 2 (motor starter 2 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
3. bit 2 denotes the status of channel 3 (motor starter 3 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
4. bit 3 denotes the status of channel 4 (motor starter 4 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
5. bit 4 denotes the status of channel 5 (motor starter 5 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
6. bit 5 denotes the status of channel 6 (motor starter 6 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
Parallel Interface Modules

7 bit 6 denotes the status of channel 7 (motor starter 7 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
8 bit 7 denotes the status of channel 8 (motor starter 8 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected

Register 3: Contactor Information from Motor Starters

The third input/status register provides contactor information from the various motor starters.

1 bit 0 indicates whether channel 1 (motor starter 1 contactor) is energized, where 1 = energized and 0 = de-energized
2 bit 1 indicates whether channel 2 (motor starter 2 contactor) is energized, where 1 = energized and 0 = de-energized
3 bit 2 indicates whether channel 3 (motor starter 3 contactor) is energized, where 1 = energized and 0 = de-energized
4 bit 3 indicates whether channel 4 (motor starter 4 contactor) is energized, where 1 = energized and 0 = de-energized
5 bit 4 indicates whether channel 5 (motor starter 5 contactor) is energized, where 1 = energized and 0 = de-energized
6 bit 5 indicates whether channel 6 (motor starter 6 contactor) is energized, where 1 = energized and 0 = de-energized
7 bit 6 indicates whether channel 7 (motor starter 7 contactor) is energized, where 1 = energized and 0 = de-energized
8 bit 7 indicates whether channel 8 (motor starter 8 contactor) is energized, where 1 = energized and 0 = de-energized
Register 4: Status of Contactor Inputs

The fourth input/status register denotes the status of each input in Register 3. If any bit in this register is set to 0, no fault has been detected; if a bit is set to 1, a fault has been detected. A detected fault always derives from one of the following causes: field power missing, or short circuit on the field power.

1 bit 0 denotes the status of channel 1 (motor starter 1 contactor); bit = 0: no fault detected; bit = 1: fault detected
2 bit 1 denotes the status of channel 2 (motor starter 2 contactor); bit = 0: no fault detected; bit = 1: fault detected
3 bit 2 denotes the status of channel 3 (motor starter 3 contactor); bit = 0: no fault detected; bit = 1: fault detected
4 bit 3 denotes the status of channel 4 (motor starter 4 contactor); bit = 0: no fault detected; bit = 1: fault detected
5 bit 4 denotes the status of channel 5 (motor starter 5 contactor); bit = 0: no fault detected; bit = 1: fault detected
6 bit 5 denotes the status of channel 6 (motor starter 6 contactor); bit = 0: no fault detected; bit = 1: fault detected
7 bit 6 denotes the status of channel 7 (motor starter 7 contactor); bit = 0: no fault detected; bit = 1: fault detected
8 bit 7 denotes the status of channel 8 (motor starter 8 contactor); bit = 0: no fault detected; bit = 1: fault detected

Register 5: Echo Output Data

The fifth register in the I/O status block is the module’s echo output data register. This register represents the data that has just been sent to the motor starters by the STB EPI 1145 module.

1 bit 0 indicates the state of output 1 (motor starter 1)
2 bit 1 indicates the state of output 2 (motor starter 2)
Parallel Interface Modules

3 bit 2 indicates the state of output 3 (motor starter 3)
4 bit 3 indicates the state of output 4 (motor starter 4)
5 bit 4 indicates the state of output 5 (motor starter 5)
6 bit 5 indicates the state of output 6 (motor starter 6)
7 bit 6 indicates the state of output 7 (motor starter 7)
8 bit 7 indicates the state of output 8 (motor starter 8)

Under most normal operating conditions, the bit values should be an exact replica of the bits in the output data register. A difference between the bit values in the output data register and the echo register could result from an output channel used for a reflex action, where the channel is updated directly by the EPI 1145 module, instead of by the fieldbus master.

Register 6: Status of Outputs

The sixth input/status register is the STB EPI 1145’s output status register. If any bit in this register is set to 0, no fault has been detected; if a bit is set to 1, a fault has been detected. A detected fault always derives from one of the following causes: field power missing, short circuit on the field power, or output overload.

1 bit 0 denotes the status of output 1 (motor starter 1); bit = 0: no fault detected; bit = 1: fault detected
2 bit 1 denotes the status of output 2 (motor starter 2); bit = 0: no fault detected; bit = 1: fault detected
3 bit 2 denotes the status of output 3 (motor starter 3); bit = 0: no fault detected; bit = 1: fault detected
4 bit 3 denotes the status of output 4 (motor starter 4); bit = 0: no fault detected; bit = 1: fault detected
5 bit 4 denotes the status of output 5 (motor starter 5); bit = 0: no fault detected; bit = 1: fault detected
6 bit 5 denotes the status of output 6 (motor starter 6); bit = 0: no fault detected; bit = 1: fault detected
7 bit 6 denotes the status of output 7 (motor starter 7); bit = 0: no fault detected; bit = 1: fault detected
8 bit 7 denotes the status of output 8 (motor starter 8); bit = 0: no fault detected; bit = 1: fault detected
Output Data and Status

The output data process image is part of a block of 4096 16-bit registers (in the range 40001 through 44096) that represents the data returned by the fieldbus master. The STB EPI 1145 uses one register in the output data block to control the on/off states of the module’s eight outputs.

The figure below represents the output data register. The fieldbus master writes these values to the island bus:

1. bit 0 indicates the state of output 1 (motor starter 1)
2. bit 1 indicates the state of output 2 (motor starter 2)
3. bit 2 indicates the state of output 3 (motor starter 3)
4. bit 3 indicates the state of output 4 (motor starter 4)
5. bit 4 indicates the state of output 5 (motor starter 5)
6. bit 5 indicates the state of output 6 (motor starter 6)
7. bit 6 indicates the state of output 7 (motor starter 7)
8. bit 7 indicates the state of output 8 (motor starter 8)
STB EPI 1145 Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Tego Power parallel interface (100 mA, HE10 connector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of input channels</td>
<td>16</td>
</tr>
<tr>
<td>Number of output channels</td>
<td>8</td>
</tr>
<tr>
<td>Module width</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>I/O base</td>
<td>STB XBA 2000 (see page 203)</td>
</tr>
<tr>
<td>Hot swapping supported*</td>
<td>yes</td>
</tr>
<tr>
<td>Reflex actions supported</td>
<td>input channels for reflex inputs only, output channels maximum of two</td>
</tr>
<tr>
<td>Logic bus current consumption</td>
<td>115 mA</td>
</tr>
<tr>
<td>Nominal actuator bus current consumption</td>
<td>815 mA</td>
</tr>
<tr>
<td>Input protection</td>
<td>resistor-limited</td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>bus-to-field 1500 V DC, actuator to sensor bus 500 V DC</td>
</tr>
<tr>
<td>Reverse polarity detection in case of incorrect wiring of PDM</td>
<td>helps protect the module against internal damage</td>
</tr>
<tr>
<td>Input response time</td>
<td>on-to-off 2 ms max., off-to-on 2 ms max.</td>
</tr>
<tr>
<td>Absolute maximum load current</td>
<td>per channel 0.1 A resistive load, per module 0.850 mA</td>
</tr>
<tr>
<td>Short circuit protection</td>
<td>per channel</td>
</tr>
<tr>
<td>Short circuit protection on actuator bus</td>
<td>5 A fuse inside the module, not field replaceable</td>
</tr>
<tr>
<td>Short circuit protection on sensor bus</td>
<td>1 A fuse</td>
</tr>
<tr>
<td>Internal to module, not field-replaceable</td>
<td></td>
</tr>
<tr>
<td>Short circuit protection (diagnostics)</td>
<td>per channel</td>
</tr>
<tr>
<td>PDM power available (diagnostics)</td>
<td>fuse on PDM module</td>
</tr>
<tr>
<td>Overheating protection</td>
<td>yes, by built-in thermal shut-down</td>
</tr>
<tr>
<td>Fault status if overheating</td>
<td>yes</td>
</tr>
<tr>
<td>Fallback mode</td>
<td>default predefined fallback values on all channels, user-configurable settings** hold last value, predefined fallback value on one or more channels</td>
</tr>
</tbody>
</table>
Parallel Interface Modules

<table>
<thead>
<tr>
<th>Fallback States (when predefined is the fallback mode)</th>
<th>Default</th>
<th>All Channels Go to 0</th>
<th>User-configurable settings**</th>
<th>Each Channel Configurable for 1 or 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarity on Individual Outputs and Inputs</td>
<td>Default</td>
<td>Logic Normal on All Channels</td>
<td>User-configurable settings**</td>
<td>Logic Reverse on One or More Channels</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>--40° to 85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 to 60°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agency Certifications</td>
<td>Refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ATEX applications prohibit hot swapping—refer to Advantys STB System Planning and Installation Guide, 890 USE 171 00

**Requires the Advantys configuration software.
Section 2.2
STB EPI 2145 Parallel Interface for TeSys Model U Starter Applications (12 in/8 out prewiring module)

Overview
This section provides you with a detailed description of the Advantys EPI 2145 parallel interface module for TeSys model U controller starter applications—its functions, physical design, technical specifications, field wiring requirements, and configuration options.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB EPI 2145 Physical Description</td>
<td>61</td>
</tr>
<tr>
<td>STB EPI 2145 LED Indicators</td>
<td>63</td>
</tr>
<tr>
<td>STB EPI 2145 Field Wiring</td>
<td>66</td>
</tr>
<tr>
<td>STB EPI 2145 Functional Description</td>
<td>70</td>
</tr>
<tr>
<td>STB EPI 2145 Data for the Process Image</td>
<td>76</td>
</tr>
<tr>
<td>STB EPI 2145 Specifications</td>
<td>81</td>
</tr>
</tbody>
</table>
STB EPI 2145 Physical Description

Physical Characteristics
The STB EPI 2145 is a parallel interface between an island of Advantys STB I/O and a TeSys model U application. This motor-starter interface includes eight outputs and twelve inputs, and is able to remotely connect to four direct or reversible TeSys model U controller-starters.

The STB EPI 2145 fits into a size 3 I/O base. It is equipped with four RJ45 connectors, and links to the TeSys model U system using dedicated cables with RJ45 connectors at both ends. Each of the STB EPI 2145's four channels features two outputs (starter control and reverse direction control), and three inputs (circuit breaker status, contactor status, and detected fault status).

Front Panel View

1 location for the STB XMP 6700 user-customizable label
2 model reference number
3 LED array denoting various states of the module’s outputs
4 black identification stripe, indicating a special module
5 four RJ45 connectors used to link the STB EPI 2145 to the LUFC00 control unit for a TeSys model U system, using one of the cables listed in the Ordering Information section below.
NOTE: The STB EPI 2145 has four plastic caps (not mounted on bezel, and not shown above). These caps are designed to keep foreign solids from penetrating unused RJ45 receptacles during normal operation of the module.

Ordering Information
The module can be ordered as part of a kit (STB EPI 2145 K), which includes:
- one STB EPI 2145 special-purpose Advantys STB module
- one size 3 STB XBA 3000 I/O base (see page 207)
You should separately order one of the following cables:
- a 0.3 m LU9 R03
- a 1 m LU9 R10
- a 3 m LU9 R30
All these cables have RJ45 connectors at both ends.
Additional STB EPI 2145 special-purpose Advantys STB modules, and standalone size 3 STB XBA 3000 I/O bases may be ordered for stock or replacement.
Other optional accessories are also available:
- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the base as part of your island assembly plan
- the STB XMP 7700 keying pin kit for inserting the module into the base
For installation instructions and other details, refer to the Advantys STB System Planning and Installation Guide (890 USE 171).
For further information on TeSys model U components, refer to the Starters and Basic TeSys model U Equipment section of the Schneider Electric catalog.

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>module on a base</th>
<th>28.1 mm (1.12 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>height</td>
<td>module only</td>
<td>120 mm (4.74 in)</td>
</tr>
<tr>
<td></td>
<td>on a base</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td>depth</td>
<td>module only</td>
<td>70 mm (2.76 in)</td>
</tr>
<tr>
<td></td>
<td>on a base, with connectors</td>
<td>102.7 mm (4.04 in)</td>
</tr>
</tbody>
</table>
STB EPI 2145 LED Indicators

Overview
The eight LEDs on the STB EPI 2145 module are visual indicators of the operating status of the module and of its outputs (in this case, controller-starters). The top two LEDs indicate the operating status of the module. The remaining six LEDs indicate the status of the outputs. The LEDs do not indicate the status of the module’s inputs.
The module makes use of a special SHIFT button in conjunction with the LEDs to allow all eight outputs to be displayed.

Location
The eight LEDs are positioned in a column in the upper section of the bezel, along its right edge. The figure below shows their location.
The SHIFT button, which is identified by a pair of vertical (up and down) arrows, is located below the LEDs.

<table>
<thead>
<tr>
<th>LED</th>
<th>color</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDY</td>
<td>green</td>
<td>module is ready to operate on the island bus</td>
</tr>
<tr>
<td>ERR</td>
<td>red</td>
<td>an error condition has been detected</td>
</tr>
<tr>
<td>S1</td>
<td>green</td>
<td>on = status for first series of outputs (1 to 4) displayed</td>
</tr>
</tbody>
</table>
Parallel Interface Modules

Using the SHIFT Button with the LEDs

After module initialization, the SHIFT button controls the display of the mutually exclusive S1 and S2 LEDs. The default at power up is always S1 on and S2 off, where:

- the O 1/5 LED indicates the status of output 1
- the O 2/6 LED indicates the status of output 2
- the O 3/7 LED indicates the status of output 3
- the O 4/8 LED indicates the status of output 4

If you push the SHIFT button, S1 turns off and S2 turns on. When S2 is on:

- the O 1/5 LED indicates the status of output 5
- the O 2/6 LED indicates the status of output 6
- the O 3/7 LED indicates the status of output 7
- the O 4/8 LED indicates the status of output 8

The status of a controller-starter is either active (24 V present), in which case the corresponding LED is on, or inactive (0 V present), in which case the corresponding LED is off.

RDY and ERR Indications

The two top LEDs reflect the module’s status on the network:

<table>
<thead>
<tr>
<th>LED</th>
<th>color</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>green</td>
<td>on = status for second series of outputs (5 to 8) displayed</td>
</tr>
<tr>
<td>O 1/5</td>
<td>green</td>
<td>output 1 status when S1 is on; output 5 status when S2 is on</td>
</tr>
<tr>
<td>O 2/6</td>
<td>green</td>
<td>output 2 status when S1 is on; output 6 status when S2 is on</td>
</tr>
<tr>
<td>O 3/7</td>
<td>green</td>
<td>output 3 status when S1 is on; output 7 status when S2 is on</td>
</tr>
<tr>
<td>O 4/8</td>
<td>green</td>
<td>output 4 status when S1 is on; output 8 status when S2 is on</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED</th>
<th>color</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDY</td>
<td>ERR</td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>The module is not receiving logic power or has stopped functioning.</td>
</tr>
<tr>
<td>flicker*</td>
<td>off</td>
<td>Auto-addressing is in progress.</td>
</tr>
</tbody>
</table>
| on | off | The module has achieved all of the following:
 - it has power
 - it has passed the confidence tests
 - it is operational | Check LEDs 3 to 8 for specific output status. |
<p>| on | on | The watchdog has timed out. | Cycle power, restart communications. |
| blink 1** | | The module is in pre-operational mode or in its fallback state. | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>flicker</td>
<td>Field power absent or a short circuit detected at the actuator.</td>
<td>Check power.</td>
</tr>
<tr>
<td>blink 1</td>
<td>A field error has been detected and the module continues to operate.</td>
<td>Cycle power, restart communications.</td>
</tr>
<tr>
<td>blink 2</td>
<td>The island bus is not running.</td>
<td>Check network connections, replace NIM.</td>
</tr>
</tbody>
</table>

* flicker—the LED flickers when it is repeatedly on for 50 ms, then off for 50 ms.

** blink 1—the LED blinks on for 200 ms, then off for 200 ms. This pattern is repeated until the causal condition changes.

*** blink 2—the LED blinks on for 200 ms, off for 200 ms, on again for 200 ms, then off for 1 s. This pattern is repeated until the causal condition changes.
STB EPI 2145 Field Wiring

Summary
The STB EPI 2145 module uses four RJ45 connectors allowing you to connect to up to four separate TeSys model U controller-starters. The choices of connector types and field wire types are described below.

The STB EPI 2145 parallel interface module is designed to work exclusively with TeSys model U controller-starter applications.

Connector and Cables
Use one of the TeSys model U cables to connect an STB EPI 2145 module to your TeSys model U system. Three cables are available:

- a LU9 R03 0.3 m cable
- a LU9 R10 1 m cable
- a LU9 R30 3 m cable

All three cables feature an RJ45 connector on both ends. One connector plugs into the field wiring connector on the STB EPI 2145 module, and the other is directly connected to the RJ45 receptacle on the LUF C00 module (parallel link) included in the TeSys model U system. Both connections have the same pinout.

The TeSys model U System
TeSys model U is an integrated, modular power management system for motor starters. The complete TeSys model U parallel wiring system consists of a power base, a contactor, a thermal overload protection device, and a control unit for controller-starters, providing motor starter overload protection and control functions.
The figure below indicates the selector positions on the TeSys model U power base.

The following legend briefly explains each selector position.

<table>
<thead>
<tr>
<th>Selector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIP</td>
<td>corresponds to the detected fault state (a fault has been detected; commands are no longer parsed)</td>
</tr>
<tr>
<td>OFF</td>
<td>the TeSys model U application is not running (commands are presently not parsed)</td>
</tr>
<tr>
<td>RESET</td>
<td>resets the detected error status; necessary step prior to returning to READY position</td>
</tr>
</tbody>
</table>

For more information on TeSys model U applications, contact your Telemecanique representative.
The Advantys STB EPI 2145 module connects to the parallel wiring module included in the TeSys model U solution. This parallel wiring module provides the status and command information for each controller-starter. It should be used with an LUCx xxBL control unit.

The following table provides the pinout for the Advantys STB EPI 2145 module. It applies to each individual contactor.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Out1</td>
<td>output</td>
<td>this 24 V output drives the direct (forward) command of the motor</td>
</tr>
<tr>
<td>2</td>
<td>Out2</td>
<td>output</td>
<td>this 24 V output drives the reverse (backward) command of the motor</td>
</tr>
<tr>
<td>3</td>
<td>0 V out</td>
<td>output common</td>
<td>common for the 2 outputs above (pins 1 & 2)</td>
</tr>
<tr>
<td>4</td>
<td>READY</td>
<td>input</td>
<td>this input is active if the selector is in the ON position</td>
</tr>
<tr>
<td>5</td>
<td>contactor status</td>
<td>input</td>
<td>this input denotes the status of the contactor</td>
</tr>
<tr>
<td>6</td>
<td>unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TRIP</td>
<td>input</td>
<td>this input is active if the selector is in the TRIP position (i.e. a fault has been detected on the TeSys model U motor starter)</td>
</tr>
<tr>
<td>8</td>
<td>24 V in</td>
<td>input common</td>
<td>common for the above inputs (pins 4, 5 & 7)</td>
</tr>
</tbody>
</table>
The following illustration shows a sample connection between the Advantys STB EPI 2145 and a TeSys model U motor starter application.

- 1 Advantys STB EPI2145 module
- 2 TeSys model U power base
- 3 24 V control unit (LUC B/D/C/MxxL) for 0.09 to 15 kW motors
- 4 parallel link communication module (LUF C00)
- 5 options (additional contacts, inverter blocks)
STB EPI 2145 Functional Description

Functional Characteristics

The STB EPI 2145 module is a special-purpose 8 outputs, 12 inputs module that handles digital input data from the actuator bus, sends digital output data to the control unit of the TeSys model U system, and handles status information from the outputs. Using the Advantys configuration software, you can customize the following operating parameters:

- the module’s responses to detected fault recovery
- logic normal or logic reverse input and output polarity for each channel on the module
- a fallback state for each channel on the module

Fault Recovery Responses

The module can detect a short circuit on the actuator bus or an overcurrent fault on an output channel when the channel is turned on. If a fault detected on any channel, the module will do one of the following:

- automatically latch off that channel, or
- automatically recover and resume operation on the channel when the detected fault is cleared

The factory default setting is latched off, where the module turns off the output channel when a short circuit or overcurrent condition is detected on that channel. The channel will remain off until you reset it explicitly.

If you want to set the module to auto-recover when the detected fault is corrected, use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 2145 module you want to configure in the</td>
<td>The selected STB EPI 2145 module opens in the software module editor.</td>
</tr>
<tr>
<td></td>
<td>island editor.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>From the pull-down menu in the Value column of the Fault Recovery</td>
<td>Two choices appear in the pull-down menu: Latched Off and Auto Recovery.</td>
</tr>
<tr>
<td></td>
<td>Response row, select the desired response mode.</td>
<td></td>
</tr>
</tbody>
</table>

Resetting a Latched Off Output

When an output channel has been latched off because of fault detection, it will not recover until two events take place:

- the detected error has been corrected
- you explicitly reset the channel

To reset a latched off output channel, you should send it a value of 0. The 0 value resets the channel to a standard off condition and restores its ability to respond to control logic (turn on and off). You need to provide the reset logic in your application program.
Auto-recovery

When the module is configured to auto-recover, a channel that has been turned off because of a short circuit will start operating again as soon as it is corrected. No user intervention is required to reset the channel. If the detected fault was transient, the channel may reactivate without leaving any history of the short circuit.

Input Polarity

By default, the polarity on all 12 input channels is *logic normal*, where:
- an input value of 0 indicates that the physical sensor is off (or the input signal is low)
- an input value of 1 indicates that the physical sensor is on (or the input signal is high)

The input polarity on one or more of the channels may optionally be configured for *logic reverse*, where:
- an input value of 1 indicates that the physical sensor is off (or the input signal is low)
- an input value of 0 indicates that the physical sensor is on (or the input signal is high)

To change an input polarity parameter from *logic normal*, or back to normal from *logic reverse*, use the Advantys configuration software.

You may configure input polarity values independently for each input channel:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 2145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 2145 module opens in the software module editor.</td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal checkbox at the top right of the editor.</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the + Input Polarity Settings fields by clicking on the + sign.</td>
<td>A top level row appears. It reveals two groups for the first 8 input channels and the last 4 input channels.</td>
</tr>
<tr>
<td>4</td>
<td>Expand either of the + Input Polarity fields by clicking on the + sign.</td>
<td>For instance, if you click on First 8 channels, the corresponding rows for input channels 1 through 8 appear.</td>
</tr>
<tr>
<td>5a</td>
<td>To change the settings at the module level, select the integer that appears in the Value column of the Input Polarity row. Enter a decimal integer in the range 0 to 255, or 0 to 0xFF in hexadecimal notation, where 0 means all inputs have normal polarity and 0xFF means that the first eight input channels have reverse polarity. When you select the Input Polarity value, the max/min values of the range appear at the bottom of the module editor screen. When you accept a new value for Input Polarity, the values associated with the channels change. For example, if you choose an input polarity value of 0x2F, channels 5, 7 & 8 will have normal polarity, while other input channels will have reverse polarity.</td>
<td></td>
</tr>
</tbody>
</table>
Output Polarity

By default, the polarity on all eight output channels is logic normal, where:

- an output value of 0 indicates that the physical actuator is off (or the output signal is low)
- an output value of 1 indicates that the physical actuator is on (or the output signal is high)

The output polarity on one or more of the channels may optionally be configured for logic reverse, where:

- an output value of 1 indicates that the physical actuator is off (or the output signal is low)
- an output value of 0 indicates that the physical actuator is on (or the output signal is high)

To change an output polarity parameter from logic normal, or back to normal from logic reverse, use the Advantys configuration software.

You can configure the output polarity on each output channel independently:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 2145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 2145 module opens in the software module editor.</td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal checkbox at the top right of the editor.</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the + Output Polarity Settings fields by clicking on the + sign.</td>
<td>A single row appear for all output channels.</td>
</tr>
<tr>
<td>4</td>
<td>Expand either of the + Output Polarity fields by clicking on the + sign.</td>
<td>Rows for output channels 1 through 8 appear.</td>
</tr>
<tr>
<td>5a</td>
<td>To change the settings at the module level, select the integer that appears in the Value column of the Output Polarity row. Enter a decimal integer in the range 0 to 255, or 0 to 0xFF in hexadecimal notation, where 0 means all outputs have normal polarity and 0xFF means that the all eight output channels have reverse polarity.</td>
<td>When you select the Output Polarity value, the max/min values of the range appear at the bottom of the module editor screen. When you accept a new value for Output Polarity, the values associated with the channels change. For example, if you choose an output polarity value of 0x2F, channels 5, 7 & 8 will have normal polarity, while other output channels will have reverse polarity.</td>
</tr>
</tbody>
</table>
Parallel Interface Modules

Fallback Modes

When communication is lost between the module and the fieldbus master, the module’s outputs should go to a known state where they remain until communications are restored. This is known as the output’s fallback state. You may configure fallback values for each output individually.

Fallback configuration is accomplished in two steps:

- first by configuring fallback modes for each output
- then (if necessary) by configuring the fallback states

When an output has predefined state as its fallback mode, it can be configured with a fallback state, either 1 or 0. When an output has hold last value as its fallback mode, it stays at its last known state when communication is lost - it cannot be configured with a predefined fallback state.

By default, the fallback mode for all outputs is predefined state (1). If you want to change the fallback mode to hold last value (0), use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 2145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 2145 module opens in the software module editor.</td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal checkbox at the top right of the editor.</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the + Fallback Mode Settings fields by clicking on the + sign.</td>
<td>A single row called + Fallback Mode (Output) appears.</td>
</tr>
<tr>
<td>4</td>
<td>Expand the + Fallback Mode (Output) row further by clicking on the + sign.</td>
<td>Rows for output channels 1 through 8 appear.</td>
</tr>
<tr>
<td>5a</td>
<td>To change the settings at the module level, select the integer that appears in the Value column of the Fallback Mode (Output) row. Enter a hexadecimal or decimal value in the range 0 to 255, where 0 means all outputs hold their last values, and 255 means that all outputs go to a predefined state.</td>
<td>When you select the Fallback Mode value, the max/min values of the range appear at the bottom of the module editor screen. When you accept a new value for Fallback Mode (Output), the values associated with the channels change. For example, if you choose a fallback mode value of 2, then channel 2 goes to a predefined state, while all other channels go to hold last value.</td>
</tr>
</tbody>
</table>

When an output has predefined state as its fallback state, it can be configured with a fallback state, either 1 or 0. When an output has hold last value as its fallback mode, it stays at its last known state when communication is lost - it cannot be configured with a predefined fallback state.

By default, the fallback mode for all outputs is predefined state (1). If you want to change the fallback mode to hold last value (0), use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double click on the STB EPI 2145 module you want to configure in the island editor.</td>
<td>The selected STB EPI 2145 module opens in the software module editor.</td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal checkbox at the top right of the editor.</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the + Fallback Mode Settings fields by clicking on the + sign.</td>
<td>A single row called + Fallback Mode (Output) appears.</td>
</tr>
<tr>
<td>4</td>
<td>Expand the + Fallback Mode (Output) row further by clicking on the + sign.</td>
<td>Rows for output channels 1 through 8 appear.</td>
</tr>
<tr>
<td>5a</td>
<td>To change the settings at the module level, select the integer that appears in the Value column of the Fallback Mode (Output) row. Enter a hexadecimal or decimal value in the range 0 to 255, where 0 means all outputs hold their last values, and 255 means that all outputs go to a predefined state.</td>
<td>When you select the Fallback Mode value, the max/min values of the range appear at the bottom of the module editor screen. When you accept a new value for Fallback Mode (Output), the values associated with the channels change. For example, if you choose a fallback mode value of 2, then channel 2 goes to a predefined state, while all other channels go to hold last value.</td>
</tr>
</tbody>
</table>
NOTE: In the event the module hardware stops functioning, all output channels turn off.

Fallback States

If a module's fallback mode is predefined state, you may configure that channel to either turn on or turn off when communication between the module and the fieldbus master is lost. By default, all channels are configured to go to 0 as their fallback state:

- 0 indicates that the predefined fallback state of the module is de-energized
- 1 indicates that the predefined fallback state of the module is energized

NOTE: If an output channel has been configured with hold last value as its fallback mode, any value that you try to configure as a Predefined Fallback Value will be ignored.

To modify a fallback state from its default setting or to revert back to the default from the ON setting, you need to use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check that the Fallback Mode for the STB EPI 2145 module you want to configure is 1 (predefined state).</td>
<td>If the Fallback Mode value is 0 (hold last value), any value entered in the associated Predefined Fallback Value row will be ignored.</td>
</tr>
<tr>
<td>2</td>
<td>Choose the data display format by either checking or clearing the Hexadecimal checkbox at the top right of the editor.</td>
<td>Hexadecimal values will appear in the editor if the box is checked; decimal values will appear if the box is unchecked.</td>
</tr>
<tr>
<td>3</td>
<td>Click on the + sign to expand the + Predefined Fallback Value Settings fields.</td>
<td>A row called + Predefined Fallback Value appears.</td>
</tr>
<tr>
<td>4</td>
<td>Expand the + Predefined Fallback Value row further by clicking on the + sign.</td>
<td>Rows for output Channels 1 to 8 appear.</td>
</tr>
<tr>
<td>5a</td>
<td>To change the settings at the module level, select the integer that appears in the Value column of the Fallback Mode row. Enter a hexadecimal or decimal value in the range 0 to 255 (0 to 0xFF), where 0 means all outputs have 0 as their predefined fallback value, and 255 means that all outputs adopt 1 as their predefined fallback value.</td>
<td>When you select the value associated with + Predefined Fallback Value, the max/min values of the range appear at the bottom of the module editor screen. When you accept a new Predefined Fallback Value, the values associated with the channels change. For example, if you choose an fallback state value of 2, then Channel 2 adopts 1 as its predefined fallback value, while all other channels will have 0 as their predefined fallback value.</td>
</tr>
</tbody>
</table>
To change the settings at the channel level, double click on the channel values you want to change, then select the desired settings from the pull-down menu. You may configure a fallback state of either 0 or 1 for each channel on the module.

When you accept a new value for a channel setting, the value for the module in the **Predefined Fallback Value** row changes. For example, if you set Channel 2 to 1 and all other channels to 0, the **Predefined Fallback Value** changes to 2.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5b</td>
<td>To change the settings at the channel level, double click on the channel values you want to change, then select the desired settings from the pull-down menu. You may configure a fallback state of either 0 or 1 for each channel on the module.</td>
<td>When you accept a new value for a channel setting, the value for the module in the Predefined Fallback Value row changes. For example, if you set Channel 2 to 1 and all other channels to 0, the Predefined Fallback Value changes to 2.</td>
</tr>
</tbody>
</table>
STB EPI 2145 Data for the Process Image

Representing I/O Data and Status
The NIM keeps a record of output data in one block of registers in the process image, and a record of input data and status in another block of registers in the process image. Output data is written to the output data block by the fieldbus master, and is used to update the controller-starter outputs. The information in the input and status block is provided by the module itself. This process image information can be monitored by the fieldbus master or, if you are not using a basic NIM, by an HMI panel connected to the NIM’s CFG (configuration) port. The specific registers used by the STB EPI 2145 module are based on its physical location on the island bus.

NOTE: The data format illustrated in this section is common across the island bus, regardless of the fieldbus on which the island is operating. The data is also transferred to and from the master, in a fieldbus-specific format. For fieldbus-specific descriptions, refer to one of the Advantys STB Network Interface Module Application Guides. A separate guide is available for each supported fieldbus.

Input Data Image
The input data image is part of a block of 4096 16-bit registers (in the range 45392 through 49487) that represents the data returned to the fieldbus master. The input data for the STB EPI 2145 module is represented by six contiguous registers in this block.

These registers are discussed individually below. If specific bit values (0 or 1) are provided in the following discussion, it is understood that polarity is logic normal for all channels, i.e. that polarity has not been explicitly reconfigured to logic reverse.

- Register 1: reads input information from the motor starter
- Register 2: status of motor starter inputs
- Register 3: reads input information from the motor starter
- Register 4: status of motor starter inputs
- Register 5: provides echo data from outputs
- Register 6: status of motor starter outputs

Register 1: Input Information from Motor Starters
The first input/status register provides information from the various motor starters.

1 bit 0 indicates whether channel 1 (motor starter 1 switch) is set to ready, where 1 = ready and 0 = not ready
Parallel Interface Modules

Register 2: Status of Motor Starter Inputs

The second input/status register denotes the status of each input in Register 1. When any bit in this register is set to 0, no fault has been detected; if a bit is set to 1, a fault has been detected. A detected fault always derives from one of two causes—either the field power is missing or there is a short circuit on the field power.

1 bit 0 denotes the status of channel 1 (motor starter 1 switch); bit = 0: no fault detected; bit = 1: fault detected
2 bit 1 denotes the status of channel 2 (motor starter 1 contactor); bit = 0: no fault detected; bit = 1: fault detected
3 bit 2 denotes the status of channel 3 (motor starter 1 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
4 bit 3 denotes the status of channel 4 (motor starter 2 switch); bit = 0: no fault detected; bit = 1: fault detected
5 bit 4 denotes the status of channel 5 (motor starter 2 contactor); bit = 0: no fault detected; bit = 1: fault detected
6 bit 5 denotes the status of channel 6 (motor starter 2 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
7 bit 6 denotes the status of channel 7 (motor starter 3 switch); bit = 0: no fault detected; bit = 1: fault detected
8 bit 7 denotes the status of channel 8 (motor starter 3 contactor); bit = 0: no fault detected; bit = 1: fault detected
Register 3: Input Information from Motor Starters

The third input/status register provides information from the various motor starters.

1 bit 0 indicates whether channel 1 (motor starter 3 circuit breaker) is tripped, where 1 = tripped and 0 = not tripped
2 bit 1 indicates whether channel 2 (motor starter 4 switch) is set to ready, where 1 = ready and 0 = not ready
3 bit 2 indicates whether channel 3 (motor starter 4 contactor) is energized, where 1 = energized and 0 = de-energized
4 bit 3 indicates whether channel 4 (motor starter 4 circuit breaker) is tripped, where 1 = tripped and 0 = not tripped

Register 4: Status of Motor Starter Inputs

The fourth input/status register denotes the status of each input in Register 3. When any bit in this register is set to 0, no fault has been detected; if a bit is set to 1, a fault has been detected. A detected fault always derives from one of two causes—either the field power is missing or there is a short circuit on the field power.

1 bit 0 denotes the status of channel 1 (motor starter 3 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
2 bit 1 denotes the status of channel 2 (motor starter 4 switch); bit = 0: no fault detected; bit = 1: fault detected
3 bit 2 denotes the status of channel 3 (motor starter 4 contactor); bit = 0: no fault detected; bit = 1: fault detected
4 bit 3 denotes the status of channel 4 (motor starter 4 circuit breaker); bit = 0: no fault detected; bit = 1: fault detected
Register 5: Echo Output Data
The fifth register in the I/O status block is the module's echo output data register. This register represents the data that has just been sent to the controller-starters by the STB EPI 2145 module.

1 bit 0 denotes the state of output 1 (motor-starter 1 forward direction)
2 bit 1 denotes the state of output 2 (motor-starter 1 reverse direction)
3 bit 2 denotes the state of output 3 (motor-starter 2 forward direction)
4 bit 3 denotes the state of output 4 (motor-starter 2 reverse direction)
5 bit 4 denotes the state of output 5 (motor-starter 3 forward direction)
6 bit 5 denotes the state of output 6 (motor-starter 3 reverse direction)
7 bit 6 denotes the state of output 7 (motor-starter 4 forward direction)
8 bit 7 denotes the state of output 8 (motor-starter 4 reverse direction)

Under most normal operating conditions, the bit values should be an exact replica of the bits in the output data register. A difference between the bit values in the output data register and the echo register could result from an output channel used for a reflex action, where the channel is updated directly by the EPI 2145 module, instead of by the fieldbus master.

Register 6: Status of Outputs
The sixth input/status register is the STB EPI 2145's output status register. When any bit in this register is set to 0, no fault has been detected; if a bit is set to 1, a fault has been detected. A detected fault always derives from one of the following causes: field power missing, short circuit on the field power, or output thermal overload.

1 bit 0 denotes the status of output 1 (motor starter 1 forward direction); bit = 0: no fault detected; bit = 1: fault detected
2 bit 1 denotes the status of output 2 (motor starter 1 reverse direction); bit = 0: no fault detected; bit = 1: fault detected
Parallel Interface Modules

3. bit 2 denotes the status of output 3 (motor starter 2 forward direction); bit = 0: no fault detected; bit = 1: fault detected
4. bit 3 denotes the status of output 4 (motor starter 2 reverse direction); bit = 0: no fault detected; bit = 1: fault detected
5. bit 4 denotes the status of output 5 (motor starter 3 forward direction); bit = 0: no fault detected; bit = 1: fault detected
6. bit 5 denotes the status of output 6 (motor starter 3 reverse direction); bit = 0: no fault detected; bit = 1: fault detected
7. bit 6 denotes the status of output 7 (motor starter 4 forward direction); bit = 0: no fault detected; bit = 1: fault detected
8. bit 7 denotes the status of output 8 (motor starter 4 reverse direction); bit = 0: no fault detected; bit = 1: fault detected

Output Data

The output data image is part of a block of 4096 16-bit registers (in the range 40001 through 44096) that represents the data returned by the fieldbus master. The STB EPI 2145 uses one register in the output data block to control the on/off states of the module’s eight outputs.

The figure below represents the output data register. The fieldbus master writes these values to the island bus:

1. bit 0 indicates the state of output 1 (motor starter 1 forward direction)
2. bit 1 indicates the state of output 2 (motor starter 1 reverse direction)
3. bit 2 indicates the state of output 3 (motor starter 2 forward direction)
4. bit 3 indicates the state of output 4 (motor starter 2 reverse direction)
5. bit 4 indicates the state of output 5 (motor starter 3 forward direction)
6. bit 5 indicates the state of output 6 (motor starter 3 reverse direction)
7. bit 6 indicates the state of output 7 (motor starter 4 forward direction)
8. bit 7 indicates the state of output 8 (motor starter 4 reverse direction)
STB EPI 2145 Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Interface Pre-Wiring Module for TeSys U</td>
<td></td>
</tr>
<tr>
<td>Number of Input Channels</td>
<td>12</td>
</tr>
<tr>
<td>Number of Output Channels</td>
<td>8</td>
</tr>
<tr>
<td>Module Width</td>
<td>28.1 mm (1.12 in)</td>
</tr>
<tr>
<td>I/O Base</td>
<td>STB XBA 3000 (see page 207)</td>
</tr>
<tr>
<td>Hot Swapping Supported</td>
<td>Yes</td>
</tr>
<tr>
<td>Reflex Actions Supported</td>
<td>Input Channels for Reflex Inputs Only; Maximum of Two</td>
</tr>
<tr>
<td>Logic Bus Current Consumption</td>
<td>110 mA</td>
</tr>
<tr>
<td>Nominal Actuator Bus Current Consumption</td>
<td>815 mA</td>
</tr>
<tr>
<td>Input Protection</td>
<td>Resistor-Limited</td>
</tr>
<tr>
<td>Isolation Voltage</td>
<td>Bus-to-Field: 1500 V DC; Actuator to Sensor Bus: 500 V DC</td>
</tr>
<tr>
<td>Reverse Polarity Detection for Incorrect Wiring of PDM</td>
<td>Helps protect the module from internal damage</td>
</tr>
<tr>
<td>Input Response Time</td>
<td>On-to-Off: 2 ms max.; Off-to-On: 2 ms max.</td>
</tr>
<tr>
<td>Absolute Maximum Load Current</td>
<td>Per Channel: 0.1 A Resistive Load; Per Module: 0.850 mA</td>
</tr>
<tr>
<td>Short Circuit Protection</td>
<td>Per Channel</td>
</tr>
<tr>
<td>Short Circuit Protection on Actuator Bus</td>
<td>5 A fuse inside the module, not field-replaceable</td>
</tr>
<tr>
<td>Short Circuit Protection on Sensor Bus</td>
<td>1 A fuse internal to module, not field-replaceable</td>
</tr>
<tr>
<td>Short Circuit Feedback (Diagnostics)</td>
<td>Per Channel</td>
</tr>
<tr>
<td>PDM Power Available (Diagnostics)</td>
<td>Fuse on PDM module</td>
</tr>
<tr>
<td>Overheating Protection</td>
<td>By built-in thermal shut-down</td>
</tr>
<tr>
<td>Fault Status if Overheating</td>
<td>Yes</td>
</tr>
<tr>
<td>Fallback Mode</td>
<td>Default; Predefined fallback values on all channels</td>
</tr>
<tr>
<td>User-Configurable Settings</td>
<td>Hold Last Value; Predefined fallback value on one or more channels</td>
</tr>
<tr>
<td>Fallback States (when predefined is the fallback mode)</td>
<td>All channels go to 0; Each channel configurable for 1 or 0</td>
</tr>
<tr>
<td>Specification</td>
<td>Default</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Polarity on individual outputs and inputs</td>
<td>logic normal on all channels</td>
</tr>
<tr>
<td>Operating Temperature Range***</td>
<td>0 to 60°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>--40 to 85°C</td>
</tr>
</tbody>
</table>

*ATEX applications prohibit hot swapping—refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00.
Chapter 3
STB AHI 8321 HART Interface Module

Overview
This chapter describes in detail the features of the STB AHI 8321 HART interface module.

What Is in This Chapter?
This chapter contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>STB AHI 8321 Physical Description</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>LED Indicators</td>
<td>86</td>
</tr>
<tr>
<td>3.3</td>
<td>STB AHI 8321 Functional Description</td>
<td>89</td>
</tr>
<tr>
<td>3.4</td>
<td>STB AHI 8321 Field Wiring</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>STB AHI 8321 Data for the Process Image</td>
<td>94</td>
</tr>
<tr>
<td>3.6</td>
<td>STB AHI 8321 Configuration</td>
<td>102</td>
</tr>
<tr>
<td>3.7</td>
<td>STB AHI 8321 Specifications</td>
<td>115</td>
</tr>
</tbody>
</table>
Section 3.1
STB AHI 8321 Physical Description

Physical Description

Physical Characteristics

The STB AHI 8321 HART interface module works with a HART-enabled NIM—such as the STB NIP 2311, version 4.0 or greater—to create a HART multiplexer island, that can connect to HART instruments.

Each HART-multiplexer island can include up to eight STB AHI 8321 modules. Because each STB AHI 8321 module can support 4 HART channels, a single HART multiplexer island can support up to 32 HART channels.

The STB AHI 8321 module can communicate with HART instruments that support HART protocol versions 5, 6, and 7.

Front Panel View

1. model number
2. LED array
3 locations for custom labels
4 black special module identification stripe
4 field wiring connector (odd-numbered pins connect to analog I/O; even-numbered pins connect to HART field instruments)

Ordering Information

The module and its related parts can be purchased together in a kit. This kit can be ordered as part number STBAHI8321KC and includes:
- an STB AHI 8321 module
- an STB XBA 3000 I/O base (see page 207)
- an STB XTS 2150 18-pin removable spring-type connector

Other accessories are also available:
- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the base as part of your island assembly plan
- the STB XMP 7700 keying pin kit for inserting the module into the base

To meet CE compliance, use a grounding bar such as the one in the EMC Kit (STB XSP 3000) with your island installation. For details, refer to the Advantys STB System Planning and Installation Guide.
Section 3.2 LED Indicators

STB AHI 8321 LED Indicators

Overview

The front of the STB AHI 8321 HART interface module presents six LEDs. These six LEDs provide visual indication of the following conditions:

- the RDY and ERR LEDs indicate the operating status of the STB AHI 8321 HART interface module
- each of the four LEDs CH1…CH4 indicate the communication status of a HART channel

The location and meaning of the LEDs are described below.

Location

The six LEDs are located on the top front bezel of the module to the right of the model number.

Module Status LEDs: RDY and ERR

The RDY and ERR LEDs indicate the operating status of the STB AHI 8321 HART interface module: A dash (-) in a cell means the status of the LED does not matter.

<table>
<thead>
<tr>
<th>RDY (Green)</th>
<th>ERR (Red)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>No power/module out of service</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>The watchdog timer has timed out, indicating the module is no longer operating properly and needs to be replaced.</td>
</tr>
<tr>
<td>Flicker¹</td>
<td>Off</td>
<td>Auto-addressing sequence (acquiring Advantys island bus address)</td>
</tr>
</tbody>
</table>
The four channel LEDs—CH1...CH4—indicate the communication status of that HART channel:

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1...CH4</td>
<td>(none)</td>
<td>Off</td>
<td>Channel disabled—LED displays no color</td>
</tr>
<tr>
<td>Green</td>
<td>Flicker¹</td>
<td>Connecting</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>On</td>
<td>Connected with no differences</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Blink 1²</td>
<td>Connected with major differences see page 88</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Flicker¹</td>
<td>Connected with minor differences see page 88</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>On</td>
<td>Disconnected</td>
<td></td>
</tr>
</tbody>
</table>

1. flicker: The LED flickers when it is repeatedly on for 50 ms then off for 50 ms. This pattern repeats until the causal condition changes.

2. blink 1: The LED blinks on for 200 ms then off for 200 ms. This pattern repeats until the causal condition changes.

3. blink 2: The LED blinks on for 200 ms, off for 200 ms, on again for 200 ms then off for 1 s. This pattern is repeated until the causal condition changes.

STB AHI 8321 Interface Module

HART Channel Communication Status LEDs: CH1...CH4

The four channel LEDs—CH1...CH4—indicate the communication status of that HART channel:

<table>
<thead>
<tr>
<th>RDY (Green)</th>
<th>ERR (Red)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blink¹</td>
<td>-</td>
<td>Pre-operational (fallback)</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Operational</td>
</tr>
</tbody>
</table>

On or any blink pattern

Flicker¹ Indicates the HART interface module has detected one or more of the following conditions:

- one or more HART channels are disconnected
- a HART channel is connected to a field device that is materially different from the device configured for that channel (e.g., a device of different device type or made by a different manufacturer)
- an internal communication event (ICE)

In this case, the **Global Status** bit of **Module Status** data item is set = 1.

On or any blink pattern

Blink 1² Detected error in CAN controller

On or any blink pattern

- Blink 2³ CAN bus off

1. flicker: The LED flickers when it is repeatedly on for 50 ms then off for 50 ms. This pattern repeats until the causal condition changes.

2. blink 1: The LED blinks on for 200 ms then off for 200 ms. This pattern repeats until the causal condition changes.

3. blink 2: The LED blinks on for 200 ms, off for 200 ms, on again for 200 ms then off for 1 s. This pattern is repeated until the causal condition changes.
Major and Minor Differences

When the STB AHI 8321 module establishes connection with a HART instrument, it checks whether the present connection is the first connection made on the channel.

If there was a previous connection, the module checks whether the connected instrument matches the previously connected instrument. It does this by comparing the instrument-defining elements in the presently connected instrument with those recorded for the previously connected instrument.

The module gathers data from the HART instrument in the same manner whether the instrument is connected, connected with major differences, or connected with minor differences.

NOTE:

- To see which instrument-defining element has changed, you can use HART command 0 (Read Unique Identifier) to examine the definition of the presently connected HART field device.
- To accept a connected HART field instrument that has either major differences or minor differences, set the value of the CH-ResetChanged parameter to 1 for the appropriate channel.

Major Differences

The following differences in the definition of a HART field instrument are described as major:

- instrument type: e.g., a NIM (protocol gateway) instead of a sensor
- instrument manufacturer
- manufacturer-specific instrument model number
- instrument firmware revision number
- the collection of instrument supported Universal and Common Practice HART commands

Minor Differences

The following differences in the definition of a HART field instrument are described as minor:

- instrument serial number
- instrument supported HART protocol version: e.g., V.7 instead of V.5
- instrument electronics components
Section 3.3
STB AHI 8321 Functional Description

Functional Description

Deployment

The STB AHI 8321 (version 4.0 and greater) works with a HART-enabled network interface module—for example, the STB NIP 2311—as part of an Advantys STB HART multiplexer island. Each HART interface module can connect to one HART field instrument on each of 4 HART channels. An Advantys STB HART multiplexer island can include up to 8 HART interface modules, and thus can connect to a maximum of 32 HART field instruments.

The following is an example of an Advantys STB HART multiplexer island with a single STB AHI 8321 that can connect to 4 HART field instruments:
STB AHI 8321 Roles

The STB AHI 8321 HART interface module can be used with I/O modules in the following designs:
- the I/O can reside in the HART multiplexer island, with the NIM and HART interface modules
- the I/O can be located in drops at separate locations

In both designs, the HART interface module makes HART data available to:
- HART master devices that send HART commands over Ethernet through the NIM to the STB AHI 8321 HART interface module
- the PLC as part of its scan of the island's data process image

NOTE: In both designs, the STB AHI 8321 HART interface module is passively connected to both the HART field instrument and the analog I/O modules. If the HART interface module loses power, the analog current loop is not affected and continues to operate.

STB AHI 8321 Configurable Parameters

The STB AHI 8321 HART interface module provides configurable settings you can use to:
- Determine whether program logic or the user (see page 101) controls the channel enable/disable function.
- Enable and disable HART channels (see page 107), where this function is reserved to the user.
- Set the following parameters (see page 107) for each channel:
 - the range of addresses the STB AHI 8321 HART interface module scans when searching a channel for a HART instrument, by setting the **Upper Scan Address** and **Lower Scan Address**.
 - the minimum **Number of Preambles** the STB AHI 8321 HART interface module uses when initiating communication with a HART instrument
 - the **Number of Busy Retries** and the **Number of Communication Retries**. These determine the number of times the STB AHI 8321 HART interface module attempts to communicate with a HART instrument, before identifying the instrument as missing and place the channel in the disconnected state.
 - the **Fallback Mode Setting**. If the connection to the HART instrument on a channel is lost, indicate the value to be assigned to the primary variable (PV) until the connection is restored and the actual value can be read.
Section 3.4
STB AHI 8321 Field Wiring

Field Wiring

Connector
The STB AHI 8321 HART presents two rows of connector pins:
- odd number pins (on the left) to connect the HART interface module to analog I/O
- even number pins (on the right) to connect the HART interface module to HART field instruments

<table>
<thead>
<tr>
<th>to Analog I/O</th>
<th>Pin</th>
<th>to HART Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILTER_1 (+)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RETURN_1 (–)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>FILTER_2 (+)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>RETURN_2 (–)</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>FILTER_3 (+)</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>RETURN_3 (–)</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>FILTER_4 (+)</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>RETURN_4 (–)</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>NC</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Wiring I/O to the HART Interface Module
The specific wiring design for the STB AHI 8321 HART interface module can vary, depending on the specific analog I/O module(s) to which the HART interface module is wired. HART wiring designs include configurations that may, or may not, include I/O modules. Examples of each type of wiring design follow. Refer to the *HART Multiplexer Applications Guide* for additional examples of wiring the HART interface module to analog I/O modules on different platforms.
Example 1: Using the STB AHI 8321 HART Interface Module with I/O

In the following example, the HART interface module is placed between an analog I/O module and a HART field instrument. The 4-20 mA current loop wiring (for a single channel) passes through the STB AHI 8321 module, which filters out the HART signal, and sends only the analog signal to the I/O module.

Unplugging the I/O wiring connector on the STB AHI 8321 HART interface module breaks the 4-20 mA current loop connecting the analog I/O card to the field devices. Digital and analog communication on the loop will be lost.

NOTICE

DATA LOSS
Do not remove the I/O wiring connector on the STB AHI 8321 HART interface module while the system is operating under power.

Failure to follow these instructions can result in equipment damage.
Wiring Example 2: Using the STB AHI 8321 HART Interface Module without I/O

In the following example, the HART interface module is connected to a HART field instrument, without I/O. The 4-20 mA current loop wiring (for a single channel) passes through the STB AHI 8321 module, which filters out the HART signal, and makes the HART data available to the PLC connected to the multiplexer island.

Making Wiring Connections

Individual connector pins accept one field wire. Use wire sizes in the range 0.20...0.82 mm² (24...18 AWG).

Shielded twisted-pair cable is required to meet CE. (See the Advantys STB System Planning and Installation Guide for an illustrated example of an island segment with an EMC kit making the analog I/O modules CE compliant.) The shield should be tied to an external clamp that is tied to functional earth.

Schneider Electric recommends that you strip at least 9 mm (.35 in) from the wire jacket for the module connection.
Section 3.5
STB AHI 8321 Data for the Process Image

Process Image Data
This section describes the process image data that the STB AHI 8321 exchanges with the NIM.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB AHI 8321 Process Image</td>
<td>95</td>
</tr>
<tr>
<td>STB AHI 8321 Input Items</td>
<td>96</td>
</tr>
<tr>
<td>STB AHI 8321 Output Items</td>
<td>100</td>
</tr>
</tbody>
</table>
STB AHI 8321 Process Image

Introduction

This topic discusses the input and output data process image for the STB AHI 8321 HART interface module.

NOTE: The following data format is particular to the island bus and ignores the fieldbus on which the island is operating. The data is transferred to the master in a fieldbus-specific format. For fieldbus-specific descriptions, refer to one of the Advantys STB Network Interface Module Application Guides. Separate guides are available for each supported fieldbus.

Input Data

Data from each input module and HART interface module on the island bus is represented in the NIM’s input data process image, a reserved block of 4096 (16-bit) registers in the range 45392 to 49487. The STB AHI 8321 HART interface module sends a representation of the operating state of the module and the enabled channels to the island’s NIM. The NIM stores the information in several contiguous 16-bit registers.

The number of registers used to store STB AHI 8321 input data (see page 96) depends on the data items mapped to the process image. By default, 13 contiguous registers are used for STB AHI 8321 HART interface module input data. You can use the Advantys configuration software to include a maximum of 70 contiguous registers of input data. (The specific positions of the registers in the process image are based on the module’s node address on the island bus.)

The input data process image can be read by:

- the fieldbus master
- an HMI panel connected to the NIM’s CFG port
- the Advantys configuration software in online mode

Refer to

Output Data

The NIM keeps a record of output data (see page 100) in one block of registers in the process image. Information in the output data block is written to the NIM by the fieldbus master or by the Advantys configuration software in online mode (if the island is in Test mode).

The NIM’s output data process image is a reserved block of 4096 (16-bit) registers in the range 40001 to 44096 that represents the data sent by the fieldbus master. Each output module and HART interface module on the island bus is represented in this data block. By default, the STB AHI 8321 HART interface module uses a single register in the output data block. You can use the Advantys configuration software to include a maximum of two contiguous registers of output data. (The specific positions of the registers in the process image are based on the module’s node address on the island bus.)
STB AHI 8321 Input Items

Input Data Items

The I/O Mapping tab of the Module Editor in the Advantys configuration software lists read-only input data items for the STB AHI 8321 HART interface module. These items can be added to the HART multiplexer island data process image, and include:

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Data Type</th>
<th>Mapped by Default?</th>
<th>Is Default Mapping Editable?</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Status</td>
<td>Word</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Channel 1...4 Status</td>
<td>Word</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Alignment</td>
<td>Word</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Channel 1...4 HART Instrument Specific Variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Variable</td>
<td>Float</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>(Channel 1...4 Input Data)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Status</td>
<td>32 bit</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>unsigned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Variable</td>
<td>Float</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Tertiary Variable</td>
<td>Float</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Quaternary Variable</td>
<td>Float</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Current Value</td>
<td>Float</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Percent Value</td>
<td>Float</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Update Counter</td>
<td>32 bit</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>unsigned</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module Status

The **Module Status** word presents a snapshot of the overall health of the HART interface module and its 4 channels.

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | Global Status | = 1 if the HART interface module has detected one or more of the following conditions:
| | | - one or more HART channels are disconnected (Bit 1 (Disconnected) = 1) |
| | | - a HART channel is connected to a field device that is materially different from the device configured for that channel; e.g., a device of different device type or made by a different manufacturer. (Bit 3 (Instrument Changed, Major) = 1) |
| | | - an internal communication event—ICE—has occurred (Bit 4 (ICE) = 1) |
| 1 | Disconnected | = 1 if any channel is in the disconnected (CH-Disconnected) state |
| 2 | Instrument Changed, Minor | = 1 if any channel is in the instrument changed, minor (CH-MinorDiff (see page 97) state |
| 3 | Instrument Changed, Major | = 1 if any channel is in the instrument changed, major (CH-MajorDiff (see page 97) state |
| 4...6 | — | = 0 (not used) |
| 7 | ICE | = 1 on the occurrence of an internal communication event |
| 8...15 | — | = 0 (not used) |

Channel Status

The **Channel Status** words report the status of each of the STB AHI 8321 HART interface module’s four channels. **Channel Status** values are as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CH-Disabled</td>
<td>The channel is disabled.</td>
</tr>
<tr>
<td>1</td>
<td>CH-Connecting</td>
<td>The STB AHI 8321 is searching for, and attempting to connect with, a HART instrument on the channel.</td>
</tr>
<tr>
<td>2</td>
<td>CH-Connected</td>
<td>The channel is connected to a HART instrument.</td>
</tr>
<tr>
<td>3</td>
<td>CH-MinorDiff</td>
<td>One or more minor differences (see page 88) exist between the connected HART instrument and the instrument description in the multiplexer island configuration.</td>
</tr>
<tr>
<td>4</td>
<td>CH-MajorDiff</td>
<td>One or more major differences (see page 88) exist between the connected HART instrument and the instrument description in the multiplexer island configuration.</td>
</tr>
</tbody>
</table>
Alignment

Use this parameter to place data objects on a 32-bit boundary, for architectures—such as the Schneider Electric M340 platform—that require input data to be read or written in 32-bit (2 register) increments. Mapping this parameter to the input data process image adds a 2 byte (1 register) buffer to the I/O image immediately in front of the input data.

You can use the I/O Image tab of the Module Editor in the Advantys configuration software to determine whether input data for an STB AHI 8321 HART interface module resides on a 32-bit boundary.

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 | CH-Disconnected | This state indicates either:
 - The STB AHI 8321 discovered no HART instrument on the channel, after performing two scans of the specified address range.
 - The STB AHI 8321 discovered a HART instrument on the channel, but the connection was lost.
 The STB AHI 8321 continues to search for a HART instrument on this channel. |
| 6, 7 | — | (not used) |
In the above example, input data begins at memory address 45426. To determine if this is a 32-bit boundary, multiply the memory address by 16 (the number of bits in a register), then divide the product by 32. In this case:

\[
45426 \times 16 = 726816 \\
726816 / 32 = 22713
\]

Because 22713 is a whole number, it resides on a 32-bit boundary. In this case, it is not necessary to map the Alignment parameter to the process image to place input data object on a 32-bit boundary.

Channel 1...4 HART Instrument Specific Data Items

The STB AHI 8321 can also receive from a HART instrument, and add to the multiplexer island process image, the following data items for each HART channel:

- Primary Variable (PV): manufacturer defined
- Instrument Status: reports one of the following conditions:
 - Inoperable field device: a detected error rendered the instrument non-operational
 - Configuration changed: an operation occurred that changed the instrument configuration
 - Cold start: the instrument was reset, or power was cycled off then on
 - More status available: additional instrument information is available via HART command 48 (Read Additional Status Information)
 - Output current fixed: current on the HART channel is being held at a fixed value, and is not responding to process variations
 - Output current saturated: current on the HART channel has reached its upper or lower limit, and cannot increase or decrease further
 - Non-primary variable out of limits: the value of an instrument variable, other than the Primary Variable (PV), has travelled beyond its operating limits
 - Primary variable out of limits: the value of the instrument Primary Variable (PV) has travelled beyond its operating limits
- Secondary Variable (SV): manufacturer defined
- Current Value: the actual reading of loop current, from 4...20 mA
- Percent Value: the actual reading of loop current, expressed as a percent of the 16 mA range
- Update Counter: a counter that is incremented each time the data process image is updated

Check the documentation for your specific HART instrument to determine which of the above data items it offers.
STB AHI 8321 Output Items

Output Data Items

The **Output Data** area of the I/O Mapping tab of the Module Editor lists output items for the STB AHI 8321 HART interface module. These items can be added to the HART multiplexer island data process image. These items include:

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Data Type</th>
<th>Mapped by Default?</th>
<th>Is Default Mapping Editable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-ResetChanged</td>
<td>Byte</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CH-Enable</td>
<td>Byte</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NOTE: When an output data item in the I/O Mapping tab is:
- **Selected**, program logic dynamically controls the item during run-time.
- **De-selected**, the data item is added to the list of configurable data items in the Properties tab, where you can set a static value to be assigned to the item at start-up.

CH-ResetChanged

Use the **CH-ResetChanged** data item to accept a HART instrument that the STB AHI 8321 HART interface module has detected to be different from the instrument that previously was connected to the same channel. In this case, the channel has a Module Status identity of either Instrument Changed, Minor or Instrument Changed, Major.

When logic in the PLC program causes a bit in this register to transition from 0 to 1, the HART instrument detected on that channel is accepted as the current instrument.

The **CH-ResetChanged** word includes the following bits:

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CH-1 Reset</td>
<td>The 0 to 1 transition clears the changed instrument flag, and accepts the detected HART instrument as the identified instrument for that channel,</td>
</tr>
<tr>
<td>1</td>
<td>CH-2 Reset</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CH-3 Reset</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CH-4 Reset</td>
<td></td>
</tr>
<tr>
<td>4...15</td>
<td>—</td>
<td>(not used)</td>
</tr>
</tbody>
</table>
The **CH-Enable** output item reports and controls the state—enabled or disabled—of each of the four channels of the HART interface module. Default value = 15 (dec), indicating the 4 HART channels are enabled.

The bits in the **CH-Enable** word:

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CH-1 Enable</td>
<td>• 0 = disabled</td>
</tr>
<tr>
<td>1</td>
<td>CH-2 Enable</td>
<td>• 1 = enabled (default)</td>
</tr>
<tr>
<td>2</td>
<td>CH-3 Enable</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CH-4 Enable</td>
<td></td>
</tr>
<tr>
<td>4...15</td>
<td>—</td>
<td>These bits should always be set to a value of 0.</td>
</tr>
</tbody>
</table>
Section 3.6
STB AHI 8321 Configuration

Overview
Before placing the STB AHI 8321 HART interface module into operation, configure its operating parameters. There are two ways to configure the STB AHI 8321:

- Use the STB NIP 2311 auto-configuration function to apply default parameter settings to all island modules, including the STB AHI 8321 HART interface module.
- Use the Advantys configuration software (ACS) to customize the default configuration of the STB AHI 8321 HART interface module, and any other island module with configurable settings.

If you previously saved the Advantys STB island configuration settings to a SIM card, you can also apply those saved settings to the island.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-Configuring the STB AHI 8321</td>
<td>103</td>
</tr>
<tr>
<td>Custom Configuring the STB AHI 8321 HART Interface Module</td>
<td>105</td>
</tr>
<tr>
<td>Configuring STB AHI 8321 Channel Settings</td>
<td>106</td>
</tr>
<tr>
<td>Mapping Data items to the HART Multiplexer Island Data Process Image</td>
<td>109</td>
</tr>
<tr>
<td>Viewing the IO Image for the STB AHI 8321 HART Interface Module</td>
<td>111</td>
</tr>
<tr>
<td>Configuring the STB AHI 8321 Module as Mandatory or Not Present</td>
<td>113</td>
</tr>
</tbody>
</table>
Auto-Configuring the STB AHI 8321

Applying the Factory Default Configuration

Every configurable Advantys STB module is shipped with a set of predefined parameter settings. When you apply these predefined parameter settings, the HART multiplexer island becomes operational. You can apply the default settings via auto-configuration.

When you auto-configure the HART multiplexer island, the following default parameter settings are applied to each STB AHI 8321 HART interface module in the multiplexer island:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
</tr>
</thead>
</table>
| CH-Enable | The statically defined states—enabled or disabled—of the four channels of the HART interface module. **NOTE:** The CH-Enable value equals the sum of the bit value for each channel that is enabled:
 - bit 0 (channel 1) has a value of 1, when enabled
 - bit 1 (channel 2) has a value of 2, when enabled
 - bit 2 (channel 3) has a value of 4, when enabled
 - bit 3 (channel 4) has a value of 8, when enabled | 15 (all channels are enabled) |
| Channel 1…4 Settings | | |
| Lower Scan Address | The first address, of a range of addresses, scanned by the HART interface module when looking for a HART instrument on the channel. | 0 |
| Upper Scan Address | The last address, of a range of addresses, scanned by the HART interface module when looking for a HART instrument on the channel. | 15 |
| Number of Preambles | The minimum number of preambles the HART interface module uses to communicate with a HART instrument. | 5 |
| Number of Communication Retries | The number of times the HART interface module will re-send a command to a non-responsive HART instrument. | 5 |
| Number of Busy Retries | The number of times the HART interface module will re-send a command after receiving a busy reply from a HART instrument. | 2 |
| Fallback Mode Setting | If the HART instrument on this channel is disconnected, or if there is no HART instrument, this setting determines the value that is assigned to the primary variable (PV) until a connection to a HART instrument is made. | NaN (not a number) |

To perform auto-configuration, you can use either:
- the RST button on the front face of the NIM
- the Online → Force Auto-configuration command in the Advantys configuration software

The simplest way to auto-configure the HART multiplexer is to use the RST button.
Finding the RST Button

The RST button performs a Flash memory overwrite operation. The RST button is located behind the hinged cover located immediately above the CFG port on the network interface module (for example, the STB NIP 2311) of the multiplexer island:

Pressing the RST button auto-configures the entire HART multiplexer island, including all STB AHI 8321 HART interface modules and—in case of a segmented island—all island segments.

Performing Auto-Configuration using the RST Button

To perform auto-configuration, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | Remove any SIM card from the NIM.
NOTE: A SIM card, if present in the module, resides in a card drawer located on the front of the NIM. Pull the drawer forward to remove a SIM card. |
| 2 | Using a small screwdriver with a flat blade no wider than 2.5 mm, press the RST button and hold it down for at least 2 seconds.
Do not use:
• a sharp object that can damage the RST button, or
• a soft item like a pencil that can break off and jam the RST button |

If the HART multiplexer island was previously auto-configured, auto-configuration changes no parameter settings. However, the HART multiplexer island stops updating I/O during the auto-configuration process.

If you previously used Advantys configuration software to edit the island parameters, auto-configuration overwrites your customized settings with the factory default parameters.
Custom Configuring the STB AHI 8321 HART Interface Module

Customizing the Configuration

Using the Advantys configuration software, you can customize the configuration of each STB AHI 8321 HART interface module in the HART multiplexer island, one module at a time. In the Advantys configuration software, with the island unlocked, select a HART interface module in the island and open the Module Editor, which presents the following tabs:

- use the Parameters tab to access and edit configurable parameters for the STB AHI 8321 module
- use the I/O Mapping tab to edit the multiplexer island data process image, by adding and removing STB AHI 8321 module data items
- use the IO Image tab to view a list of STB AHI 8321 module data process image items for the selected HART interface module
- use Options tab to specify that the STB AHI 8321 module is:
 - a mandatory island module
 - not present, but its place preserved in the island process image

Refer to the Advantys configuration software online help for the Module Editor for instructions on how to perform custom configuration edits.
Configuring STB AHI 8321 Channel Settings

Configuring HART Interface Module Channel Properties

Use the Parameters tab of the Module Editor for the STB AHI 8321 module to configure the HART channels. In this tab, you can:

- enable or disable each of the module’s four HART channels
- define the range of address the STB AHI 8321 module scans when searching for a HART instrument on each HART channel
- specify the minimum number of preambles the STB AHI 8321 module uses to communicate with a HART instrument

Create the STB AHI 8321 module configuration settings offline, then download them—along with the rest of the multiplexer island settings—to the NIM. The NIM uses these settings to configure the STB AHI 8321 module before placing the island into the run state.

NOTE: You cannot configure values or labels when the island is locked or online. For editable parameters, the valid value range is displayed in the status bar of the Module Editor.

The Parameters tab:

- **Data Item Name**
 - **Channel Name**
 - **Configured Value**
 - **User Defined Label**

![Parameters Tab](image)

NOTE: Configuration changes entered in this tab take effect only after you use the Advantys Configuration Software to:

1. save your edits by clicking either the OK or Apply button
2. download the island configuration by using:
 a. the Online → Connect command to connect to the island
 b. the Online → Download into the Island command to send the configuration to the island
Configurable Parameters

You can configure the following parameters for the STB AHI 8321 HART interface module:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **CH-Enable** | The state of all four of the HART channels. The CH-Enable value equals the sum of the bit value for each channel that is enabled:
- bit 0 (channel 1) has a value of 1, when enabled
- bit 1 (channel 2) has a value of 2, when enabled
- bit 2 (channel 3) has a value of 4, when enabled
- bit 3 (channel 4) has a value of 8, when enabled
 The default value is 15, indicating all 4 HART channels are enabled.
 NOTE: When CH-Enable appears as a parameter in this tab, it is not mapped to the process image and cannot be controlled by program logic. You can map the CH-Enable parameter to the process image by selecting it in the I/O Mapping tab. |
| **Channel 1...4** | Bit 0 (channel 1), bit 1 (channel 2), bit 2 (channel 3), bit 3 (channel 4) of CH-Enable. Sets the status of the selected channel to one of the following settings:
- 0 = disabled
- 1 = enabled (default) |
| **Lower Scan Address** | Use these two settings to establish the address range the HART interface module searches when looking for a HART instrument on the specified channel.
- minimum value = 0
- maximum value = 63
 Lower Scan Address Default = 0; Upper Scan Address Default = 15.
 NOTE: The value of the Upper Scan Address should be equal to or greater than the value of the Lower Scan Address. |
| **Upper Scan Address** | |
| **Number of Preambles** | The minimum number of preambles the HART interface module uses to communicate with a HART instrument. If the HART instrument requires:
- more preambles, the HART interface module sends more preambles
- fewer preambles, the HART interface module sends the minimum number configured by this setting
 Default = 5. |
| **Number of Communication Retries** | The number of times the HART interface module re-sends a command to a non-responsive HART instrument. Valid values = 0, 1, and 2. Default = 5. |
Parameter Name

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Number of Busy Retries</td>
<td>The number of times the HART interface module re-sends a command after receiving a busy reply from a HART instrument. Valid values = 0, 1, and 2. Default = 2.</td>
</tr>
<tr>
<td>• Fallback Mode Setting</td>
<td>If the HART instrument on this channel is disconnected, or if there is no HART instrument, this setting determines the value that is assigned to the primary variable (PV) until a connection to a HART instrument is made:</td>
</tr>
<tr>
<td></td>
<td>• 0 - Set to 0</td>
</tr>
<tr>
<td></td>
<td>• 1 - Hold Last Value</td>
</tr>
<tr>
<td></td>
<td>• 2 - Not a Number (NaN)</td>
</tr>
<tr>
<td></td>
<td>Default = NaN</td>
</tr>
</tbody>
</table>

Restore Default Values

You can click the **Restore Default Value** button to reset the modified values on this tab to their default values.
Mapping Data items to the HART Multiplexer Island Data Process Image

Editing the HART Multiplexer Data Process Image

Use the I/O Mapping tab of the Module Editor to perform the following tasks for a selected STB AHI 8321 module:

- Add data items to, or remove data items from, the multiplexer island data process image relating to the selected STB AHI 8321 module
- Configure the CH-Enable parameter for the selected STB AHI 8321 module as either:
 - a static property manually set in the Parameters tab of the Module Editor, or
 - a dynamic property controlled by program logic
- Restore the default list of input and output data items included in the island data process image by clicking the Restore Default Values button
- Display the data type and object ID for each input and output data item

I/O mapping lets you optimize the HART multiplexer island process image on a module-by-module basis. The title bar at the top of the Module Editor displays the name of the HART interface module and its exact location on the island bus.

The I/O Mapping tab:

NOTE: Configuration changes entered in this tab take effect only after you use the Advantys Configuration Software to:
1. save your edits by clicking either the OK or Apply button
2. download the island configuration by using:
 a. the Online → Connect command to connect to the island
 b. the Online → Download into the Island command to send the configuration to the island
Both the **Input Data** and the **Output Data** areas present the following columns:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Item Name</td>
<td>Displays both mapped and unmapped data items.</td>
</tr>
</tbody>
</table>
| I/O | A check mark indicates the data item is mapped to the island data process image. You can manage the quantity of data included in the HART multiplexer data process image by selecting or de-selecting data items in this column.
 NOTE: A gray background in this column indicates the data item is part of the data process image and cannot be deleted. |
| User Defined Label | Displays the labels associated with each data item. You can edit labels for a single HART interface module in the **I/O Image** tab of the Module Editor.
 NOTE: You can also use the Island → Label Editor... command to open a Label Editor and edit labels for the entire island. |

NOTE: Saving an added or deleted data item in this tab simultaneously adds or deletes it in the **I/O Image** tab.

If the current setting of any data item is different from its default setting, the ![Hexadecimal](hexadecimal.png) icon is displayed to the left of the **Hexadecimal** check box.

To restore input and output data items to their default mappings, click **Restore Default Values** in offline mode.

Mapping Input Data Items

For information describing individual input data items, refer to the topic STB AHI 8321 Input Items *(see page 96).*

Mapping Output Data Items

For information describing individual output data items, refer to the topic STB AHI 8321 Output Items *(see page 100).*
Viewing the IO Image for the STB AHI 8321 HART Interface Module

Viewing Mapped Data Items

Use the IO image tab of the Module Editor for the STB AHI 8321 module to:

- view the STB AHI 8321 module data items that are part of the multiplexer island data process image
- add user-defined labels to items in the list

The title bar of the Module Editor displays the name of the module and its exact location on the island bus.

The IO Image tab:

The IO Image tab presents the following columns:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Item Name</td>
<td>Displays data items, for the selected STB AHI 8321 module, that have been mapped to the HART multiplexer island data process image. Items that appear in this column are selected in the I/O Mapping tab</td>
</tr>
</tbody>
</table>
Current Value: Displays the current value for each mapped data item. You can toggle the format of the displayed values between decimal (the default) and hexadecimal by selecting or clearing the Hexadecimal check box.

NOTE: The actual values are displayed only when the island is online and in either the operational state or the non-mandatory module mismatch state. For other states, the symbol --- is displayed.

User Defined Label: Displays the labels associated with each data item. Double-click in the appropriate cell to enter label text. Each label can be up to 24 characters long.

Memory Address: Displays the Modbus register address for parent data items. Values in this column are read-only.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Value</td>
<td>Current Value: Displays the current value for each mapped data item. You can toggle the format of the displayed values between decimal (the default) and hexadecimal by selecting or clearing the Hexadecimal check box. NOTE: The actual values are displayed only when the island is online and in either the operational state or the non-mandatory module mismatch state. For other states, the symbol --- is displayed.</td>
</tr>
<tr>
<td>User Defined Label</td>
<td>Displays the labels associated with each data item. Double-click in the appropriate cell to enter label text. Each label can be up to 24 characters long.</td>
</tr>
<tr>
<td>Memory Address</td>
<td>Displays the Modbus register address for parent data items. Values in this column are read-only</td>
</tr>
</tbody>
</table>

Configuring the STB AHI 8321 Module as Mandatory or Not Present

Introduction

Use the **Options** tab of the **Module Editor** to indicate if the STB AHI 8321 HART interface module is:

- a mandatory island module *(see page 114)*
- a module that is not present *(see page 114)* in the island

The **Options** tab of the STB AHI 8321 HART interface module:

![Options tab](image)

The **Prioritize** parameter is disabled and does not apply to the STB AHI 8321HART interface module.
Mandatory Module

Select the Mandatory Module setting to designate the module as mandatory. If a mandatory module stops operating or is removed from the island, the island stops writing to outputs, and island modules go to their fallback states.

The island returns to its operational state after you install at this exact location on the bus:

- the same functional module
- a new module of the same type and major version number

By default, the Mandatory Module setting is de-selected.

NOTE: The Mandatory check box can be selected or de-selected only when the island is in offline mode.

Not Present

Check this box to mark the module as virtual placeholder.

The virtual placeholder designation lets you physically remove both a module and its base from the island without changing the island process image. In this way, you can physically remove one or more modules without having to edit the PLC program that controls the island.

In the Module Editor, modules configured as Not Present are marked with crossed red lines.
Section 3.7
STB AHI 8321 Specifications

Specifications

General Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>communication module for HART instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>4</td>
</tr>
<tr>
<td>Module size</td>
<td>Type-3 housing</td>
</tr>
<tr>
<td>Mandatory module</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual placeholder supported</td>
<td>Yes</td>
</tr>
<tr>
<td>Runtime parameters supported</td>
<td>No</td>
</tr>
<tr>
<td>IO mapping supported</td>
<td>Yes</td>
</tr>
<tr>
<td>Reflex action supported</td>
<td>No</td>
</tr>
<tr>
<td>Depth (module + base + plugs)</td>
<td>75.5 mm (2.97 inches)</td>
</tr>
<tr>
<td>Width</td>
<td>27.8 mm (1.09 inches)</td>
</tr>
<tr>
<td>Height (module + base)</td>
<td>128.3 mm (5.05 inches)</td>
</tr>
<tr>
<td>Weight (module + base + plugs)</td>
<td>110.1 g (0.243 lbs.)</td>
</tr>
<tr>
<td>Logic bus current consumption</td>
<td>250 mA</td>
</tr>
<tr>
<td>Operating voltage range</td>
<td>19.2...30 Vdc</td>
</tr>
<tr>
<td>Bus current</td>
<td>Less than 250 mA maximum @ 5.25 Vdc +2%/-4% 350 mA typical over the 0...60 °C (32...140 °F) temperature range</td>
</tr>
<tr>
<td>Hot swapping support</td>
<td>Yes</td>
</tr>
<tr>
<td>Reverse polarity detection</td>
<td>Yes</td>
</tr>
<tr>
<td>Sensor power provided</td>
<td>No</td>
</tr>
<tr>
<td>Number of channels</td>
<td>4 HART channels</td>
</tr>
<tr>
<td>Signal filtering for analog pass-through</td>
<td>A passive filter of 25 Hz-3 dB point to attenuate HART signals</td>
</tr>
<tr>
<td>Channel to channel isolation</td>
<td>30 Vdc minimum</td>
</tr>
<tr>
<td>Data format</td>
<td>floating point</td>
</tr>
<tr>
<td>I/O base</td>
<td>STB XBA 3000</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0...60 °C (32...140 °F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>–40...85 °C (–40...185 °F)</td>
</tr>
<tr>
<td>Agency certifications</td>
<td>UL, CSA, CE, FM class 1 div 2 (pending), and ATEX (pending)</td>
</tr>
</tbody>
</table>
Chapter 4
Advantys STB Bus Extension Modules

Overview

This chapter provides an overview of the bus extension capabilities of an Advantys STB island bus and detailed descriptions of the extension modules that support these capabilities. Extension cables are also described.

What is in This Chapter?

This chapter contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The STB XBE 1000 End of Segment Module</td>
<td>118</td>
</tr>
<tr>
<td>4.2</td>
<td>The STB XBE 1100 End of Segment Module</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>The STB XBE 1200 Beginning of Segment Module</td>
<td>134</td>
</tr>
<tr>
<td>4.4</td>
<td>The STB XBE 1300 Beginning of Segment Module</td>
<td>141</td>
</tr>
<tr>
<td>4.5</td>
<td>STB XBE 2100 CANopen Extension Module</td>
<td>151</td>
</tr>
<tr>
<td>4.6</td>
<td>The STB CPS 2111 Auxiliary Power Supply</td>
<td>162</td>
</tr>
</tbody>
</table>
Section 4.1
The STB XBE 1000 End of Segment Module

Introduction

This section provides you with a detailed description of the Advantys STB XBE 1000 end of segment (EOS) module–its functions, physical design, technical specifications, field wiring requirements, and configuration options.

NOTE: The STB XBE 1000 end of segment (EOS) module can be used exclusively with an STB XBE 1200 beginning of segment (BOS) module. The STB XBE 1000 EOS module cannot be paired with other BOS modules (e.g. the STB XBE 1300 BOS module). The STB XBE 1000 EOS and STB XBE 1200 BOS modules cannot be used with preferred modules.

To place I/O modules in Advantys STB segments, you should extend the island bus between the segments. The island bus extension cable runs from an end of segment (EOS) module at the end of one island segment to a beginning of segment (BOS) module at the beginning of the next segment.

What Is in This Section?

This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBE 1000 Physical Description</td>
<td>119</td>
</tr>
<tr>
<td>STB XBE 1000 LED Indicators</td>
<td>121</td>
</tr>
<tr>
<td>STB XBE 1000 Functional Description</td>
<td>122</td>
</tr>
<tr>
<td>STB XBE 1000 Module Specifications</td>
<td>124</td>
</tr>
</tbody>
</table>
STB XBE 1000 Physical Description

Physical Characteristics

The STB XBE 1000 EOS module is designed to mount in the last position in an island segment. The STB XBE 1000 module connects to the STB XBE 1200 BOS module in the next island segment, via a STB XCA island bus extension cable. The yellow stripe below the LED array on the front panel indicates that it is an STB *island bus communications* module.

Front Panel View

1. **model name**
2. **LED array**
3. **yellow identification stripe, indicating an STB island bus communications module**
4. **island bus communications output connection**

Ordering Information

The module and its related parts may be ordered for stock or replacement as follows:

- standalone STB XBE 1000 EOS modules
- standalone STB XBA 2400 size 2 bases

Optional accessories are also available:

- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the base as part of your island assembly plan
- the STB XMP 7800 keying pin kit to reduce the likelihood of installing the STB XBE 1000 in any module base other than the STB XBA 2400
NOTE: The STB XBA 2400 size 2 base is specifically designed for use with the EOS module. Do not attempt to use any other size 2 Advantys modules (like I/O, PDM, or BOS modules) with the STB XBA 2400 base.

NOTE: Use a module-to-base keying scheme to reduce the likelihood of accidently inserting this EOS module in the wrong type 2 base. For more information on keying schemes, refer to the keying considerations discussion in the Advantys STB System Planning and Installation Guide (890 USE 171).

For installation instructions and other details, refer to the Advantys STB System Planning and Installation Guide (890 USE 171).

Island Bus Extension Cables

An island bus extension cable carries the island bus communications signals and the bus addressing line. Cables that extend the island bus between the STB XBE 1000 EOS and the STB XBE 1200 BOS modules are available in five lengths:

<table>
<thead>
<tr>
<th>Cable Model</th>
<th>Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XCA 1001</td>
<td>0.3 m (1 ft)</td>
</tr>
<tr>
<td>STB XCA 1002</td>
<td>1.0 m (3.3 ft)</td>
</tr>
<tr>
<td>STB XCA 1003</td>
<td>4.5 m (14.8 ft)</td>
</tr>
<tr>
<td>STB XCA 1004</td>
<td>10 m (33 ft)</td>
</tr>
<tr>
<td>STB XCA 1005</td>
<td>14 m (46 ft)</td>
</tr>
</tbody>
</table>

Module Dimensions

<table>
<thead>
<tr>
<th></th>
<th>on a base</th>
<th>on a base, with connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>18.4 mm (0.72 in)</td>
<td>75.5 mm (2.97 in) worst case (with extension cable inserted)</td>
</tr>
<tr>
<td>height</td>
<td>125 mm (4.92 in)</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td>depth</td>
<td>128.25 mm (5.05 in)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>module only</td>
<td>module only</td>
</tr>
<tr>
<td></td>
<td>on a base</td>
<td>on a base, with connectors</td>
</tr>
</tbody>
</table>
STB XBE 1000 LED Indicators

Purpose

The CONN LED on the STB XBE 1000 end of segment (EOS) module is a visual indication of the operating status of the module. The LED location and its meanings are described below.

Location

The CONN LED is positioned at the top of the module. The figure below shows its location:

Indications

The CONN LED indicates the following conditions:

<table>
<thead>
<tr>
<th>CONN (green)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>healthy connection between the EOS and BOS module</td>
</tr>
<tr>
<td>off</td>
<td>bad connection between the EOS and BOS module</td>
</tr>
</tbody>
</table>
STB XBE 1000 Functional Description

Introduction

This topic covers the functional characteristics of the STB XBE 1000 end of segment (EOS) module.

EOS/BOS Modules Compatibility

The STB XBE 1000 EOS module is designed to connect to the STB XBE 1200 BOS module. When joining island bus segments together, it is important to note that only paired EOS/BOS modules work in conjunction with one another. If a STB XBE 1000 EOS module is installed in the current island segment, you should connect it to a STB XBE 1200 BOS module (in the beginning of the next island segment). Multiple island segments can have different paired EOS/BOS modules.

The following figure shows compatible EOS/BOS modules joined on an island with multiple segments:

1 primary island segment
2 extension segment 1
3 extension segment 2
4 network interface module (NIM)
5 power distribution module (PDM)
6 STB XBE 1100 EOS module
7 STB XBE 1300 BOS module
8 preferred module
9 STB XBE 1000 EOS module
10 STB XBE 1200 BOS module
11 island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.

Island Bus Addresses

The STB XBE 1000 EOS and the STB XBE 1200 BOS modules are not addressable. They simply pass data and addressing information along the island bus. That is, island bus addresses are assigned sequentially to all addressable STB I/O modules on the island bus as if they were on the same segment.
EOS/BOS Connection

The STB XCA 100.x island bus extension cable connects two STB island segments. One end of
the cable plugs in to the island bus communications output port on the front panel of the
STB XBE 1000 EOS module (at the end of one island segment). The other end of the extension
cable plugs in to the island bus communications input port on the front panel of the STB XBE 1200
BOS module (at the beginning of the next segment):

1 primary island segment
2 extension segment
3 network interface module (NIM)
4 power distribution module (PDM)
5 STB XBE 1000 EOS module
6 STB XBE 1200 BOS module
7 STB XCA 100x extension cable
8 island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for
each island bus extension segment.
STB XBE 1000 Module Specifications

General Specifications

General specifications for the STB XBE 1000 end of segment (EOS) module are described in the following table.

<table>
<thead>
<tr>
<th>General Specifications</th>
<th>Dimensions: Width (on a base)</th>
<th>18.4 mm (0.72 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height (unassembled)</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td></td>
<td>Height (on a base)</td>
<td>128.25 mm (5.05 in)</td>
</tr>
<tr>
<td></td>
<td>Depth (unassembled)</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td></td>
<td>Depth (on a base)</td>
<td>75.5 mm (2.97 in) worst case</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(with screw clamp connectors)</td>
</tr>
<tr>
<td>Base</td>
<td>STB XBA 2400</td>
<td></td>
</tr>
<tr>
<td>Interface connection</td>
<td>Island bus extension output port</td>
<td></td>
</tr>
<tr>
<td>Hot swapping support</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Nominal logic power</td>
<td>25 mA</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to 60°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 to 85°C</td>
<td></td>
</tr>
<tr>
<td>Agency certifications</td>
<td>Refer to Advantys STB System Planning and Installation Guide, 890 USE 171 00</td>
<td></td>
</tr>
</tbody>
</table>
Section 4.2
The STB XBE 1100 End of Segment Module

Introduction

This section provides you with a detailed description of the Advantys STB XBE 1100 end of segment (EOS) module–its functions, physical design, technical specifications, field wiring requirements, and configuration options.

NOTE: The STB XBE 1100 end of segment (EOS) module can be used exclusively with an STB XBE 1300 beginning of segment (BOS) module, or a preferred module. The STB XBE 1100 EOS module cannot be paired with other BOS modules (e.g. the STB XBE 1200 BOS module). The STB XBE 1100 EOS module will support preferred modules.

To place I/O modules in Advantys STB segments, you should extend the island bus between the segments. The island bus extension cable runs from an end of segment (EOS) module at the end of one island segment to a beginning of segment (BOS) module at the beginning of the next segment, or to a preferred module.

What Is in This Section?

This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBE 1100 Physical Description</td>
<td>126</td>
</tr>
<tr>
<td>STB XBE 1100 LED Indicators</td>
<td>129</td>
</tr>
<tr>
<td>STB XBE 1100 Functional Description</td>
<td>130</td>
</tr>
<tr>
<td>STB XBE 1100 Module Specifications</td>
<td>133</td>
</tr>
</tbody>
</table>
STB XBE 1100 Physical Description

Physical Characteristics
The STB XBE 1100 EOS module is designed to mount in the last position on an island segment. The STB XBE 1100 EOS module is connected to the STB XBE 1300 BOS module on the next island segment via an island bus extension cable, or to a preferred module via a preferred module extension cable.

The STB XBE 1100 EOS module can accept 24 VDC voltage from a 24 VDC power supply connected to its 2-terminal power connector, and pass this power to a preferred module.

The yellow stripe below the LED array on the front panel indicates that it is an STB island bus communications module.

Front Panel View

1. model name
2. LED array
3. yellow identification stripe, indicating an STB island bus communications module
4. 24 V DC power supply interface
5. island bus communications output connection
Ordering Information

The module can be ordered as part of a kit (STB XBE 1100 K), which includes:

- one STB XBE 1100 module
- one STB XBA 2400 size 2 base *(see page 219)*
- two alternative connectors:
 - one 2-terminal *screw type* connector
 - one 2-terminal *spring clamp* connector

Individual parts may also be ordered for stock or replacement as follows:

- a standalone STB XBE 1100 module
- a standalone STB XBA 2400 size 2 base
- a bag of *screw type* connectors (STB XTS 1120) or *spring clamp* connectors (STB XTS 2120)

NOTE: The STB XBA 2400 size 2 base is specifically designed for use with the EOS module only. Do not attempt to use any other size 2 Advantys modules (like I/O, PDM, or B0S modules) with the STB XBA 2400 base.

Additional optional accessories are also available:

- the STB XMP 6700 user-customized label kit, which may be applied to the module and the base
 as part of the island assembly plan
- the STB XMP 7800 keying pin kit to reduce the likelihood of installing the STB XBE 1100 in any
 module base other than the STB XBA 2400

NOTE: Use a module-to-base keying scheme to reduce the reduce the likelihood of accidentally
inserting this EOS module in the wrong type 2 base. For more information on keying schemes,
refer to the keying considerations discussion in the *Advantys STB System Planning and Installation
Guide* (890 USE 171).

Island Bus Extension Cables

An island bus extension cable carries the island bus communications signals and the bus
addressing line. Cables that extend the island bus between the STB XBE 1100 EOS and the
STB XBE 1300 BOS modules are available in five lengths:

<table>
<thead>
<tr>
<th>Cable Model</th>
<th>Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XCA 1001</td>
<td>0.3 m (1 ft)</td>
</tr>
<tr>
<td>STB XCA 1002</td>
<td>1.0 m (3.3 ft)</td>
</tr>
<tr>
<td>STB XCA 1003</td>
<td>4.5 m (14.8 ft)</td>
</tr>
<tr>
<td>STB XCA 1004</td>
<td>10 m (33 ft)</td>
</tr>
<tr>
<td>STB XCA 1005</td>
<td>14 m (46 ft)</td>
</tr>
</tbody>
</table>

NOTE: For cables relative to preferred modules, see the specific preferred module documentation.
Module Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>on a base</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>height</td>
<td>module only</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td></td>
<td>on a base</td>
<td>128.25 mm (5.05 in)</td>
</tr>
<tr>
<td>depth</td>
<td>module only</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td></td>
<td>on a base, with connectors</td>
<td>75.5 mm (2.97 in) worst case (with extension cable inserted)</td>
</tr>
</tbody>
</table>
STB XBE 1100 LED Indicators

Purpose
The STB XBE 1100 end of segment (EOS) module includes two LEDs:

- the CONN LED indicates the module’s operating status,
- the PWR LED indicates the module’s power status.

Location
The CONN LED is positioned at the top of the LED array; the PWR LED is located just beneath the CONN LED, as shown below:

Indicators
The CONN and PWR LEDs indicate the following conditions:

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONN (green)</td>
<td>on</td>
<td>healthy connection between the EOS and either a BOS or a preferred module</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>bad connection between the EOS and either a BOS or a preferred module, or island power in the segment is off</td>
</tr>
<tr>
<td>PWR (green)</td>
<td>on</td>
<td>24 V DC power is applied and is above 18 volts</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>24 V DC power is not applied, or is below 18 volts</td>
</tr>
</tbody>
</table>
Extension Modules

STB XBE 1100 Functional Description

Introduction
This topic covers the functional characteristics of the STB XBE 1100 end of segment (EOS) module.

Island Bus Addresses
The STB XBE 1100 EOS and the STB XBE 1300 BOS modules are not addressable. They simply pass data and addressing information along the island bus. That is, the NIM sequentially assigns island bus addresses to all addressable STB I/O modules on the island bus as if they were on the same segment.

EOS/BOS Modules Compatibility
The STB XBE 1100 EOS module is designed to connect to the STB XBE 1300 BOS module, or to a preferred module.

When joining island bus segments together it is important to note that only paired EOS/BOS modules work in conjunction with one another. If a STB XBE 1100 EOS module is installed on the current island segment, you should connect it to a STB XBE 1300 BOS module to the beginning of the next island segment. Multiple island segments can have different paired EOS/BOS modules.

If the STB XBE 1100 EOS module is connected to a preferred module, the preferred module should also be connected to the next island segment STB XBE 1300 BOS module, to another preferred module, or to an island bus terminator.

The following figure shows compatible EOS/BOS modules joined in an island with multiple segments:

1 primary island segment
2 extension segment 1
3 extension segment 2
4 network interface module (NIM)
5 power distribution module (PDM)
6 STB XBE 1100 EOS module
7 STB XBE 1300 BOS module
8 preferred module
9 STB XBE 1000 EOS module
10 STB XBE 1200 BOS module
11 island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.

NOTE: For cables relative to preferred modules, see the specific preferred module documentation.

EOS/BOS Connection

The STB XCA 100.x island bus extension cable connects two STB island segments. One end of the cable plugs in to the island bus communications output port on the front panel of the STB XBE 1100 EOS module (at the end of one island segment). The other end of the extension cable plugs in to the island bus communications input port on the front panel of the STB XBE 1300 BOS module (at the beginning of the next island segment):

1 primary island segment
2 extension segment
3 network interface module (NIM)
4 power distribution module (PDM)
5 STB XBE 1100 EOS module
6 STB XBE 1300 BOS module
7 STB XCA 100x extension cable
8 island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.
EOS/Preferred Module Connections

The STB XBE 1100 EOS module can also be connected to a preferred module. The example below shows a preferred module connected to the STB XBE 1100 EOS module via a preferred module extension cable and to an island bus terminator:

1 primary island segment
2 network interface module (NIM)
3 power distribution module (PDM)
4 STB XBE 1100 EOS module
5 preferred module
6 island bus terminator
7 preferred module extension cable

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.

Protection

The STB XBE 1100 EOS module provides protection against both power surges and 24 V DC power reverse polarity. It also contains an internal resettable fuse.

Configurable Parameters

There are no configurable parameters for the STB XBE 1100 EOS module.
General Specifications

General specifications for the STB XBE 1100 end of segment (EOS) module are described in the following table.

<table>
<thead>
<tr>
<th>General Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimensions</td>
<td>width (on a base) 18.4 mm (0.72 in)</td>
</tr>
<tr>
<td></td>
<td>height (unassembled) 125 mm (4.92 in)</td>
</tr>
<tr>
<td></td>
<td>height (on a base) 128.25 mm (5.05 in)</td>
</tr>
<tr>
<td></td>
<td>depth (unassembled) 65.1 mm (2.56 in)</td>
</tr>
<tr>
<td></td>
<td>depth (on a base) 75.5 mm (2.97 in) worst case (with screw clamp connectors)</td>
</tr>
<tr>
<td>base</td>
<td>STB XBA 2300</td>
</tr>
<tr>
<td>interface connections</td>
<td>island bus extension input port</td>
</tr>
<tr>
<td></td>
<td>to the external 24 VDC power supply 2-pin receptacle</td>
</tr>
<tr>
<td>built-in power supply</td>
<td>input voltage 19.2 ... 30 VDC</td>
</tr>
<tr>
<td></td>
<td>input current 310 mA @ 24 VDC/full load</td>
</tr>
<tr>
<td></td>
<td>375 mA/absolute maximum</td>
</tr>
<tr>
<td></td>
<td>input power interruption 10 ms @24 VDC</td>
</tr>
<tr>
<td></td>
<td>maximum current 1.2 A</td>
</tr>
<tr>
<td></td>
<td>protection over current, over voltage</td>
</tr>
<tr>
<td></td>
<td>internal power dissipation 2 W @ 24 VDC/full load</td>
</tr>
<tr>
<td>isolation</td>
<td>The BOS provides isolation (500 VAC test voltage) between the 24 V DC and the Island internal 5 V</td>
</tr>
<tr>
<td>operating temperature range</td>
<td>0 to 60°C</td>
</tr>
<tr>
<td>storage temperature</td>
<td>--40 to 85°C</td>
</tr>
<tr>
<td>hot swapping support</td>
<td>none</td>
</tr>
<tr>
<td>agency certifications</td>
<td>refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00</td>
</tr>
</tbody>
</table>

This product supports operation at normal and extended temperature ranges. Refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00 for a complete summary of capabilities and limitations.
Section 4.3
The STB XBE 1200 Beginning of Segment Module

Introduction

This section provides you with a detailed description of the Advantys STB XBE 1200 beginning of segment (BOS) module—its functions, physical design, technical specifications, field wiring requirements, and configuration options.

NOTE: The STB XBE 1200 beginning of segment (BOS) module can be used exclusively with the STB XBE 1000 end of segment (EOS) module. The STB XBE 1200 BOS module cannot be paired with other EOS modules (e.g., the STB XBE 1100 EOS module). The STB XBE 1000 EOS and STB XBE 1200 BOS modules cannot be used with preferred modules.

To place I/O modules in Advantys STB segments, you should extend the island bus between the segments. The island bus extension cable runs from the end of segment (EOS) module at the end of one segment to the beginning of segment (BOS) module at the beginning of the next segment.

What Is in This Section?

This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBE 1200 Physical Description</td>
<td>135</td>
</tr>
<tr>
<td>STB XBE 1200 LED Indicators</td>
<td>137</td>
</tr>
<tr>
<td>STB XBE 1200 Functional Description</td>
<td>138</td>
</tr>
<tr>
<td>STB XBE 1200 Module Specifications</td>
<td>140</td>
</tr>
</tbody>
</table>
STB XBE 1200 Physical Description

Physical Characteristics

The STB XBE 1200 BOS module is designed to mount in the first position in an island extension segment. The module contains a built-in power supply that produces 5 VDC logic power for the modules in the extension segment. The STB XBE 1200 BOS module is connected to the previous segment's STB XBE 1000 EOS module via a STB XCA island bus extension cable.

The yellow stripe below the LED array on the front panel indicates that the STB XBE 1200 BOS module is an STB island bus communications module.

Front Panel View

1 model name
2 LED array
3 yellow identification stripe, indicating an STB island bus communications module
4 24 VDC power supply interface
5 island bus communications input connection

Ordering Information

The module and its parts may also be ordered for stock or replacement as follows:

- standalone STB XBE 1200 digital input modules
- standalone STB XBA 2300 (see page 216) size 2 bases
- a bag of screw type connectors (STB XTS 1120) or spring clamp connectors (STB XTS 2120)

NOTE: The STB XBA 2300 size 2 base is specifically designed for use with the BOS module only. Do not attempt to use any other size 2 Advantys modules (like I/O, PDM, or EOS modules) with the STB XBA 2300 base.
Additional optional accessories are also available:

- the STB XMP 6700 user-customized label kit, which may be applied to the module and the base as part of the island assembly plan
- the STB XMP 7800 keying pin kit to help reduce the likelihood of installing the STB XBE 1200 in any module base other than the STB XBA 2300

NOTE: Use a module-to-base keying scheme to reduce the likelihood of accidentally inserting this BOS module in the wrong type 2 base. For more information on keying schemes, refer to the keying considerations discussion in the *Advantys STB System Planning and Installation Guide* (890 USE 171).

For installation instructions and other details, refer to the *Advantys STB System Planning and Installation Guide* (890 USE 171).

Island Bus Extension Cables

An island bus extension cable carries the island bus communications signals and the bus addressing line. Cables that extend the island bus between the STB XBE 1200 BOS and the STB XBE 1000 EOS modules are available in five lengths:

<table>
<thead>
<tr>
<th>Cable Model</th>
<th>Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XCA 1001</td>
<td>0.3 m (1 ft)</td>
</tr>
<tr>
<td>STB XCA 1002</td>
<td>1.0 m (3.3 ft)</td>
</tr>
<tr>
<td>STB XCA 1003</td>
<td>4.5 m (14.8 ft)</td>
</tr>
<tr>
<td>STB XCA 1004</td>
<td>10 m (33 ft)</td>
</tr>
<tr>
<td>STB XCA 1005</td>
<td>14 m (46 ft)</td>
</tr>
</tbody>
</table>

Module Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>height</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td>depth</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td>on a base,</td>
<td></td>
</tr>
<tr>
<td>module only</td>
<td>128.25 mm (5.05 in)</td>
</tr>
<tr>
<td>on a base</td>
<td>75.5 mm (2.97 in) worst case (with extension cable inserted)</td>
</tr>
</tbody>
</table>
STB XBE 1200 LED Indicators

Purpose
The two LEDs on the STB XBE 1200 beginning of segment (BOS) module are visual indications of the operating status of the module. The LED locations and their meanings are described below.

Location
The two LEDs are positioned at the top of the module. The figure below shows their locations:

![LED Locations](image)

Indications
The following table defines the meaning of the two LEDs (where an empty cell indicates that the pattern for the associated LED doesn’t matter):

<table>
<thead>
<tr>
<th>RDY (green)</th>
<th>CONN (green)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td></td>
<td>logic power OK</td>
</tr>
<tr>
<td>off</td>
<td></td>
<td>logic power not OK</td>
</tr>
<tr>
<td></td>
<td>on</td>
<td>healthy connection between the BOS and EOS module</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>bad connection between the BOS and EOS module</td>
</tr>
</tbody>
</table>
STB XBE 1200 Functional Description

Introduction

This topic covers the functional characteristics of the STB XBE 1200 beginning of segment (BOS) module.

EOS/BOS Modules Compatibility

The STB XBE 1200 BOS module is designed to connect to the STB XBE 1000 EOS module. When joining island bus segments together, it is important to note that only paired EOS/BOS modules work in conjunction with one another. If a STB XBE 1000 EOS module installed in the current island segment, you should connect it to a STB XBE 1200 BOS module to the beginning of the next island segment. Multiple island segments can have different paired EOS/BOS modules.

The following figure shows compatible EOS/BOS modules joined on an island with multiple segments:

![Diagram of EOS/BOS modules](image)

1. primary island segment
2. extension segment 1
3. extension segment 2
4. network interface module (NIM)
5. power distribution module (PDM)
6. STB XBE 1100 EOS module
7. STB XBE 1300 BOS module
8. preferred module
9. STB XBE 1000 EOS module
10. STB XBE 1200 BOS module
11. island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.
Integrated Power Supply
The BOS has a built-in 24-to-5 VDC power supply that provides logic power only to the I/O modules on the extension segment of the island bus. The power supply requires a 24 VDC external power source. It converts the 24 VDC to 5 V of logic power, providing 1.2 A of current to the island. Individual STB I/O modules in an island segment generally draw a current load of between 50 and 90 mA. If the current drawn by the I/O modules on the extension segment totals more than 1.2 A, additional STB power supplies need to be installed to support the load.

Island Bus Addresses
The STB XBE 1000 EOS and STB XBE 1200 BOS are not addressable. They simply pass data and addressing information along the island bus. That is, island bus addresses are assigned sequentially to all addressable STB I/O modules on the island bus as if they were on the same segment.

EOS/BOS Connection
The STB XCA 100x island bus extension cable connects two STB island segments. One end of the cable plugs in to the island bus communications output port on the front panel of the STB XBE 1000 EOS module (at the end of one island segment). The other end of the extension cable plugs in to the island bus communications input port on the front panel of the STB XBE 1200 BOS module (at the beginning of the next segment):

- 1 primary island segment
- 2 extension segment
- 3 network interface module (NIM)
- 4 power distribution module (PDM)
- 5 STB XBE 1000 EOS module
- 6 STB XBE 1200 BOS module
- 7 STB XCA 100x extension cable

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.
STB XBE 1200 Module Specifications

General Specifications

General specifications for the STB XBE 1200 beginning of segment (BOS) module are described in the following table.

<table>
<thead>
<tr>
<th>General Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimensions</td>
<td></td>
</tr>
<tr>
<td>width (on a base)</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>height (unassembled)</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td>height (on a base)</td>
<td>128.25 mm (5.05 in)</td>
</tr>
<tr>
<td>depth (unassembled)</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td>depth (on a base)</td>
<td>75.5 mm (2.97 in) worst case (with screw clamp connectors)</td>
</tr>
<tr>
<td>base</td>
<td>STB XBA 2300</td>
</tr>
<tr>
<td>interface connections</td>
<td></td>
</tr>
<tr>
<td>island bus extension input port</td>
<td>2-pin receptacle</td>
</tr>
<tr>
<td>to the external 24 VDC power supply</td>
<td></td>
</tr>
<tr>
<td>built-in power supply</td>
<td></td>
</tr>
<tr>
<td>input voltage</td>
<td>24 VDC nominal</td>
</tr>
<tr>
<td>input power range</td>
<td>19.2 ... 30 VDC</td>
</tr>
<tr>
<td>internal current supply</td>
<td>400 mA @ 24 VDC, consumptive</td>
</tr>
<tr>
<td>output voltage to the island bus</td>
<td>5 VDC</td>
</tr>
<tr>
<td></td>
<td>2% variation due to temperature drift, intolerance, or line regulation</td>
</tr>
<tr>
<td></td>
<td>1% load regulation</td>
</tr>
<tr>
<td></td>
<td>≤50 mΩ output impedance up to 100 kHz</td>
</tr>
<tr>
<td>output current rating</td>
<td>1.2 A @ 5 VDC</td>
</tr>
<tr>
<td>isolation</td>
<td>The BOS provides isolation (500 VAC test voltage) between the 24 V DC and the Island internal 5 V.</td>
</tr>
<tr>
<td>hot swapping support</td>
<td>none</td>
</tr>
<tr>
<td>operating temperature range</td>
<td>0 to 60°C</td>
</tr>
<tr>
<td>storage temperature</td>
<td>-40 to 85°C</td>
</tr>
<tr>
<td>agency certifications</td>
<td>refer to Advantys STB System Planning and Installation Guide, 890 USE 171 00</td>
</tr>
</tbody>
</table>
Section 4.4
The STB XBE 1300 Beginning of Segment Module

Introduction
This section provides you with a detailed description of the Advantys STB XBE 1300 beginning of segment (BOS) module—its functions, physical design, technical specifications, field wiring requirements, and configuration options.

NOTE: The STB XBE 1300 beginning of segment (BOS) module can be used exclusively with an STB XBE 1100 end of segment (EOS) module, or to a preferred module. The STB XBE 1300 BOS module cannot be paired with other EOS modules (e.g. the STB XBE 1000 EOS module).

To place I/O modules in Advantys STB segments, you should extend the island bus between the segments. The island bus extension cable runs from an end of segment (EOS) module at the end of one segment to the beginning of segment (BOS) module at the beginning of the next segment, or to a preferred module.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBE 1300 Physical Description</td>
<td>142</td>
</tr>
<tr>
<td>STB XBE 1300 LED Indicators</td>
<td>145</td>
</tr>
<tr>
<td>STB XBE 1300 Functional Description</td>
<td>146</td>
</tr>
<tr>
<td>STB XBE 1300 Module Specifications</td>
<td>150</td>
</tr>
</tbody>
</table>
STB XBE 1300 Physical Description

Physical Characteristics

The STB XBE 1300 BOS module is designed to mount in the first position on an island extension segment. It contains a built-in isolated power supply that produces 5 VDC logic power for the other modules in the extension segment. The STB XBE 1300 module is connected to an STB XBE 1100 EOS module on the previous island segment via an island bus extension cable.

The yellow stripe below the LED array on the front panel indicates that the BOS module is an STB island bus communications module.

Front Panel View

1 model name
2 LED array
3 yellow identification stripe, indicating an STB island bus communications module
4 24 VDC power supply interface
5 island bus communications input connection

Ordering Information

The module can be ordered as part of a kit (STB XBE 1300 K), which includes:

- one STB XBE 1300 BOS module
- one STB XBA 2300 size 2 base (see page 216)
- two alternative connectors:
 - one 2-terminal screw type connector
 - one 2-terminal spring clamp connector
Individual parts may also be ordered for stock or replacement as follows:

- a standalone STB XBE 1300 BOS module
- a standalone STB XBA 2300 base
- a bag of screw type connectors (STB XTS 1120) or spring clamp connectors (STB XTS 2120)

NOTE: The STB XBA 2300 base is specifically designed for use with the BOS module only. Do not attempt to use any other size 2 Advantys modules (like I/O, PDM, or E0S modules) with the STB XBA 2300 base.

Additional optional accessories are also available:

- the STB XMP 6700 user-customized label kit, which may be applied to the module and the base as part of the island assembly plan
- the STB XMP 7800 keying pin kit to help prevent installation of the STB XBE 1300 in any module base other than the STB XBA 2300

NOTE: Use a module-to-base keying scheme to assist in matching each module with the intended base.

For more information on keying schemes, refer to the keying considerations discussion in the *Advantys STB System Planning and Installation Guide* (890 USE 171).

Island Bus Extension Cables

An island bus extension cable carries the island bus communications signals and the bus addressing line.

Cables that extend the island bus between the STB XBE 1100 EOS and the STB XBE 1300 BOS modules are available in five lengths:

<table>
<thead>
<tr>
<th>Cable Model</th>
<th>Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XCA 1001</td>
<td>0.3 m (1 ft)</td>
</tr>
<tr>
<td>STB XCA 1002</td>
<td>1.0 m (3.3 ft)</td>
</tr>
<tr>
<td>STB XCA 1003</td>
<td>4.5 m (14.8 ft)</td>
</tr>
<tr>
<td>STB XCA 1004</td>
<td>10 m (33 ft)</td>
</tr>
<tr>
<td>STB XCA 1005</td>
<td>14 m (46 ft)</td>
</tr>
</tbody>
</table>

NOTE: Refer to your preferred module documentation for information about device-specific cables and other connection hardware.
Module Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>on a base</td>
</tr>
<tr>
<td>height</td>
<td>module only</td>
</tr>
<tr>
<td></td>
<td>on a base</td>
</tr>
<tr>
<td>depth</td>
<td>module only</td>
</tr>
<tr>
<td></td>
<td>on a base, with connectors</td>
</tr>
</tbody>
</table>
STB XBE 1300 LED Indicators

Purpose
The two LEDs on the STB XBE 1300 beginning of segment (BOS) module are visual indications of the operating status of the module.

Location
The two LEDs are positioned at the top of the module. The figure below shows their locations:

Indicators
The following table defines the meaning of the two LEDs (where an empty cell indicates that the pattern for the associated LED does not apply):

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDY (green)</td>
<td>on</td>
<td>logic power OK</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>logic power not OK</td>
</tr>
<tr>
<td>CONN (green)</td>
<td>on</td>
<td>healthy connection between the BOS module, or to a matching EOS and 24 V DC power is present on the EOS</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>bad connection between the BOS module, or to a matching EOS and 24 V DC power is not present on the EOS</td>
</tr>
</tbody>
</table>
STB XBE 1300 Functional Description

Introduction

This topic covers the functional characteristics of the STB XBE 1300 beginning of segment (BOS) module.

Integrated Power Supply

The STB XBE 1300 BOS module has a built-in isolated 24-to-5 VDC power supply that provides logic power only to the I/O modules on its extension segment of the island bus.

The power supply requires a 24 VDC external power source. It converts the 24 VDC to 5 V of logic power, providing 1.2 A of current to the island. If the current drawn by the I/O modules on the extension segment totals more than 1.2 A, additional STB power supplies need to be installed to support the load.

Island Bus Addresses

The STB XBE 1100 EOS and STB XBE 1300 BOS modules are not addressable. They simply pass data and addressing information along the island bus. That is, the NIM sequentially assigns island bus addresses to all addressable STB I/O modules on the island bus as if they were on the same segment.

EOS/BOS Modules Compatibility

The STB XBE 1300 BOS module is designed to connect to the STB XBE 1100 EOS module, or to a preferred module.

When joining island bus segments together it is important to note that only paired EOS/BOS modules work in conjunction with one another. If a STB XBE 1100 EOS module is installed on the current island segment, you should connect it to a STB XBE 1300 BOS module to the beginning of the next island segment. Multiple island segments can have different paired EOS/BOS modules.

If the STB XBE 1300 BOS module is connected to a preferred module, the preferred module should also be connected to the previous island segment STB XBE 1100 EOS module.
The following figure shows compatible EOS/BOS modules joined in an island with multiple segments:

1. primary island segment
2. extension segment 1
3. extension segment 2
4. network interface module (NIM)
5. power distribution module (PDM)
6. STB XBE 1100 EOS module
7. STB XBE 1300 BOS module
8. preferred module
9. STB XBE 1000 EOS module
10. STB XBE 1200 BOS module
11. island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.

NOTE: For cables relative to preferred modules, see the specific preferred module documentation.
EOS/BOS Connection

The STB XCA 100x island bus extension cable connects two STB island segments. One end of the cable plugs into the island bus communications output port on the front panel of the STB XBE 1100 EOS module (at the end of one island segment). The other end of the extension cable plugs into the island bus communications input port on the front panel of the STB XBE 1300 BOS module (at the beginning of the next island segment):

1. primary island segment
2. extension segment
3. network interface module (NIM)
4. power distribution module (PDM)
5. STB XBE 1100 EOS module
6. STB XBE 1300 BOS module
7. STB XCA 10xx extension cable
8. island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.
BOS/Preferred Module Connections

The STB XBE 1300 BOS module can also be connected to a preferred module. The example below shows a preferred module connected to the STB XBE 1100 EOS and STB XBE 1300 BOS modules via preferred module extension cables:

1. primary island segment
2. extension segment
3. network interface module (NIM)
4. power distribution module (PDM)
5. STB XBE 1100 EOS module
6. STB XBE 1300 BOS module
7. preferred module extension cable
8. island bus termination plate

NOTE: As the figure shows, you should install a PDM module to the right of the BOS module for each island bus extension segment.

NOTE: For cables relative to preferred modules, see the specific preferred module documentation.

Configurable Parameters

There are no configurable parameters for the STB XBE 1300 BOS module.
STB XBE 1300 Module Specifications

General Specifications

General specifications for the STB XBE 1300 BOS beginning of segment (BOS) module are described in the following table.

<table>
<thead>
<tr>
<th>General Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimensions</td>
<td></td>
</tr>
<tr>
<td>width (on a base)</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>height (unassembled)</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td>height (on a base)</td>
<td>128.25 mm (5.05 in)</td>
</tr>
<tr>
<td>depth (unassembled)</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td>depth (on a base)</td>
<td>75.5 mm (2.97 in) worst case (with screw clamp connectors)</td>
</tr>
<tr>
<td>base</td>
<td>STB XBA 2300</td>
</tr>
<tr>
<td>interface connections</td>
<td>2-pin receptacle</td>
</tr>
<tr>
<td>island bus extension input port</td>
<td>to the external 24 VDC power supply</td>
</tr>
<tr>
<td>built-in power supply</td>
<td></td>
</tr>
<tr>
<td>input voltage</td>
<td>19.2 ... 30 VDC</td>
</tr>
<tr>
<td>input current</td>
<td>310 mA @ 24 VCD/full load</td>
</tr>
<tr>
<td></td>
<td>375 mA/absolute maximum</td>
</tr>
<tr>
<td>input power interruption</td>
<td>10 ms @24 VDC</td>
</tr>
<tr>
<td>maximum current</td>
<td>1.2 A</td>
</tr>
<tr>
<td>protection</td>
<td>over current, over voltage</td>
</tr>
<tr>
<td>internal power dissipation</td>
<td>2 W @ 24 VCD/full load</td>
</tr>
<tr>
<td>isolation</td>
<td>The BOS provides isolation (500 VAC test voltage) between the 24 V DC and the Island internal 5 V</td>
</tr>
<tr>
<td>hot swapping support</td>
<td>none</td>
</tr>
<tr>
<td>storage temperature</td>
<td>-40 to 85°C</td>
</tr>
<tr>
<td>operating temperature range*</td>
<td>0 to 60°C</td>
</tr>
<tr>
<td>agency certifications</td>
<td>refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00</td>
</tr>
</tbody>
</table>

*This product supports operation at normal and extended temperature ranges. Refer to the *Advantys STB System Planning and Installation Guide, 890 USE 171 00* for a complete summary of capabilities and limitations.
Section 4.5
STB XBE 2100 CANopen Extension Module

Overview
This section provides a detailed description of the Advantys STB XBE 2100 CANopen extension module—its functions, physical design, technical specifications, field wiring requirements, and configuration options.

What is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBE 2100 Physical Description</td>
<td>152</td>
</tr>
<tr>
<td>STB XBE 2100 LED Indicator</td>
<td>154</td>
</tr>
<tr>
<td>Making the CANopen Cable Connection</td>
<td>155</td>
</tr>
<tr>
<td>STB XBE 2100 Functional Description</td>
<td>157</td>
</tr>
<tr>
<td>STB XBE 2100 Specifications</td>
<td>161</td>
</tr>
</tbody>
</table>
STB XBE 2100 Physical Description

Physical Characteristics
The STB XBE 2100 is an Advantys STB island bus extension module that lets you add standard CANopen devices to your island configuration. If you want to use standard V4 CANopen devices, you need to use one STB XBE 2100 module in the last STB module on the last segment of the island bus followed by an STB XMP 1100 terminator plate. The module mounts in a size 2 I/O base. A 5-terminal connection receptacle is provided to support a CANopen cable connection to the standard CANopen devices.

Front Panel View

1 locations for the STB XMP 6700 user-customizable labels
2 model name
3 LED indicator
4 yellow identification stripe, indicating a bus extension module
5 five-pin connection for the CANopen extension cable
Ordering Information

The module can be ordered as part of a kit (STB XBE 2100 K), which includes:

- one STB XBE 2100 island bus extension
- one STB XBA 2000 (see page 203) I/O base
- two alternative connectors:
 - one 5-terminal **screw type** connector
 - one 5-terminal **spring clamp** connector

Individual parts may also be ordered for stock or replacement as follows:

- a standalone STB XBE 2100 module
- a standalone STB XBA 2000 size 2 base
- a bag of **screw type** connectors (STB XTS 1110) or **spring clamp** connectors (STB XTS 2110)

Additional optional accessories are also available:

- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the base as part of your island assembly plan
- the STB XMP 7700 keying pin kit for inserting the module into the base
- the STB XMP 7800 keying pin kit for inserting the field wiring connectors into the module

For installation instructions and other details, refer to the *Advantys STB System Planning and Installation Guide* (890 USE 171).

Special Termination Considerations

A CANopen extension is treated as a sub-net on the island bus, and it should be terminated on both ends. CANopen sub-net termination is independent of the island’s normal termination. The STB XBE 2100 module has built-in termination, and needs to be used at one end of the extension sub-net. You should provide termination at the last standard CANopen device on the extension.

Module Dimensions

<table>
<thead>
<tr>
<th></th>
<th>width</th>
<th>height</th>
<th>depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>module on a base</td>
<td>18.4 mm (0.72 in)</td>
<td>125 mm (4.92 in)</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td>module only on a base</td>
<td>128.25 mm (5.05 in)</td>
<td>75.5 mm (2.97 in)</td>
<td></td>
</tr>
</tbody>
</table>
STB XBE 2100 LED Indicator

Purpose
The LED on the STB XBE 2100 module provides a visual indication of the operating status of the module. The LED location and its meaning is described below.

Location
The LED is positioned on the top front of the STB XBE 2100 module, as shown in the figure below:

Indications
When the LED is off, the module is either not receiving logic power from the NIM or the BOS module or it has stopped functioning.
When the LED is on, the module has power and is operational.
Making the CANopen Cable Connection

Summary
The STB XBE 2100 module provides one five-terminal connector for the CANopen extension cable. You are responsible for the extension cable. The choices of connector types and field wire types are described below, and some cable design and connection considerations are presented.

Connectors
Use either an STB XTS 1110 screw type connector (available in a kit of 20) or an STB XTS 2110 spring clamp connector (also available in a kit of 20) as the connection for the CANopen extension cable and the STB XBE 2100 module. These connectors each have five connection terminals, with a 5.08 mm (0.2 in) pitch between each pin.

You need to make a connection on the other end of the extension cable that matches the connector on your standard CANopen device.

CANopen Device Requirements
The STB XBE 2100 module supports a maximum of 12 standard CANopen devices on an island bus. The required characteristics of the standard CANopen devices are described on Standard CANopen Device Requirements, page 158.

You should provide separate power sources as required to support the standard CANopen devices. These devices should operate at 500 kbaud, and you should check that their baud settings as well as their node addresses are set correctly on the physical devices. These operating values cannot be set via the Advantys configuration software.

NOTE: When you use a CANopen extension, check that you do not auto-configure the island. Standard CANopen devices are not recognized in an auto-configured system. Auto-configuration also resets the baud rate to 800 kbaud, and an island bus with a CANopen extension should operate at 500 kbaud.

Cable Requirements
The cable between the STB XBE 2100 extension module and a standard CANopen device, or between two CANopen extension devices, should meet the recommendations defined in CiA specification DR303-1. Cable with a resistance of 70 mW/m and a cross section of 0.25 ... 0.34 mm is recommended.

NOTE: A CANopen extension on an island bus should be separately terminated at the beginning and at the end. The STB XBE 2100 CANopen extension module has built-in termination for the beginning of the CANopen extension. You should provide termination at the last CANopen device on the extension. Connect your cables so that the STB XBE 2100 is the first module on the extension sub-net.
Cable Pinout

The following table describes the pinout of the five-terminal connector that plugs into the STB XBE 2100 module. Three signals are required to connect this module to a standard CANopen device. An optional shield connection is also provided:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN ground (0 V)</td>
</tr>
<tr>
<td>2</td>
<td>CAN low bus signal</td>
</tr>
<tr>
<td>3</td>
<td>cable shield (optional)</td>
</tr>
<tr>
<td>4</td>
<td>CAN high bus signal</td>
</tr>
<tr>
<td>5</td>
<td>no connection</td>
</tr>
</tbody>
</table>

Sample Cabling Diagrams

Cable connections are always made on pins 1, 2 and 4 of the five-terminal connector:

If a shielded cable is used, the cable shield may be connected to pin 3:

NOTE: In high noise environments, we recommend that you tie the cable shield directly to the functional earth connection. See the Advantys STB System Planning and Installation Guide (890 USE 171) for details.
STB XBE 2100 Functional Description

Functional Characteristics

The STB XBE 2100 module is essentially a repeater that lets you establish a CANopen extension bus on the Advantys island bus. The module isolates the island bus from the CANopen extension bus. The overall length of the island bus, including the CANopen extension, is constrained by this isolation and by the speed at which it is operating.

Isolation

The STB XBE 2100 module provides 500 VDC optical isolation between the island bus and the CANopen extension bus. The isolation provides some protection to the island bus from external wiring or electrical faults.

You need to place an STB XMP 1100 termination plate immediately after the CANopen extension module in the rightmost position in the island segment, and you should provide an additional 120 Ω of termination on the last standard CANopen device in the CANopen extension bus.

The optical isolation adds some propagation delay to the CANopen signals. As a result, an island bus that implements a CANopen extension bus has a shorter maximum length.
Bus Speed

When an STB XBE 2100 CANopen extension module is used in an island bus configuration, the island’s operating speed is limited to 500 kbaud. The total island bus length, including the CANopen extension bus, is limited to 15 m (49.2 ft). This maximum length should not be exceeded.

The factory default baud rate setting is 800 kbaud. When you use an STB XBE 2100 CANopen extension module, you need to set the rate to 500 kbaud. To change the baud rate, use the Advantys configuration software:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From the Island pull-down menu, select Baud Rate Tuning.</td>
<td>A Baud Rate Tuning dialog appears.</td>
</tr>
<tr>
<td>2</td>
<td>If the value in the Baud Rate Tuning dialog is the default (800 kbaud), use the drop-down list box to select a value of 500 kbaud.</td>
<td>If the value is already set to 500 kbaud, go to step 3.</td>
</tr>
<tr>
<td>3a</td>
<td>Click OK.</td>
<td>If you do not change the baud rate value in the Baud Rate Tuning dialog, the old baud rate remains in effect. If you change the baud rate value in the dialog, a message appears letting you know that your system performance may be affected by changing the baud rate.</td>
</tr>
<tr>
<td>3b</td>
<td>If the message box appears and you accept the possible change in system performance, push OK.</td>
<td>The new baud rate for the island bus is now set to the selected value.</td>
</tr>
</tbody>
</table>

Power Requirements

The STB XBE 2100 module uses the 5 V logic power signal on the island bus. It has no external power supply requirements. It draws a nominal 120 mA from the logic power supply.

Standard CANopen Device Requirements

An STB XBE 2100 module can support up to 12 standard CANopen devices.

In order to be recognized as a valid island module by the Advantys configuration software, the profile of the standard CANopen device should appear in the Advantys configuration software—i.e., it should appear in the catalog browser in the software. You can drag and drop standard CANopen devices from the catalog browser into the logical island configuration similarly to regular STB I/O modules, but they should be placed at the end of the island bus and they should be preceded by an STB XBE 2100 CANopen extension module in the last position of the last segment on the island bus.
If you want to use a standard CANopen device that does not appear in the Advantys configuration software, contact your local Schneider Electric representative. Schneider Electric is able to integrate many standard CANopen devices into the STB catalog upon request.

NOTE: Check that you follow vendor instructions when you install, configure and operate standard CANopen devices on an Advantys STB island.

Addressing Standard CANopen Devices on the Island Bus

Standard CANopen devices are not auto-addressed by the island bus—they need to be manually addressed using physical switches on the devices. However, you do need to provide the CANopen module addresses to the configuration in the Advantys configuration software. The standard CANopen devices should be the last devices on the island bus, and they cannot use any addresses used by auto-addressed modules. The address range for standard CANopen devices is between the last auto-address + 1 and 32.

By default, the Advantys configuration software assigns the CANopen device that you drop into the last position on the island bus an address of 32. As you continue to drop additional CANopen devices to the end of the island bus, the most recently added device takes address 32.

For example, if you have three CANopen devices (A, B and C) that you want to add to the island bus configuration, do the following:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Advantys configuration software, select the STB XBE 2100 CANopen extension module in the island editor. Then drag device A from the catalog browser and drop it into the island editor.</td>
<td>An image of device A appears in the island editor below the STB XBE 2100 module with an address of 32.</td>
</tr>
<tr>
<td>2</td>
<td>Select device A in the island editor. Then drag device B from the catalog browser and drop it into the island editor.</td>
<td>An image of device B appears in the island editor to the right of device A. Device B now takes address 32, and device A takes address 31.</td>
</tr>
<tr>
<td>3</td>
<td>Select device B in the island editor. Then drag device C from the catalog browser and drop it into the island editor.</td>
<td>An image of device C appears in the island editor to the right of device B. Device C now takes address 32, device B takes address 31, and device A takes address 30.</td>
</tr>
</tbody>
</table>
You may also drop standard CANopen devices between two other devices on the CANopen extension bus. For example, if you want to drop a fourth device (D) into the extension bus described above and you want to reside at address 31:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In the Advantys configuration software, select standard CANopen device B, which resides at island buss address 31. Then drag device D from the catalog browser and drop it into the island editor.</td>
<td>An image of device D appears in the island editor to the right of device B. Device D now takes address 31. Device B takes address 30 and device A takes address 29. Device C remains at address 32.</td>
</tr>
</tbody>
</table>

Changing the Default Maximum Address

The Advantys configuration software also lets you change the default address to a value less than 32. For example, say you have 12 STB modules auto-addressed on the island bus and you want to add five standard CANopen devices. You want to define the addresses of the CANopen devices as addresses 13 ... 17.

To change the default address assignment from 32 to a lower value (such as 17), double click on the NIM in the island editor of the Advantys configuration software. This will open the module editor for the NIM. In the top right corner of the module editor is a field called **Max node ID on the CANopen Extension**. The default value is 32. Using the down arrow, you can decrement the value down to the desired maximum address value.
STB XBE 2100 Specifications

Table of Technical Specifications

<table>
<thead>
<tr>
<th>description</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>island bus extension module for standard CANopen devices</td>
<td></td>
</tr>
<tr>
<td>module width</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>module base</td>
<td>STB XBA 2000</td>
</tr>
<tr>
<td>island bus operational speed</td>
<td>500 kbaud</td>
</tr>
<tr>
<td>island bus length</td>
<td>15 m (49.2 ft) maximum</td>
</tr>
<tr>
<td>nominal logic bus current consumption</td>
<td>100 mA</td>
</tr>
<tr>
<td>isolation between external CANopen extension and internal island bus</td>
<td>500 VDC</td>
</tr>
<tr>
<td>storage temperature</td>
<td>--40° to 85°C</td>
</tr>
<tr>
<td>operating temperature</td>
<td>0° to 60°C</td>
</tr>
<tr>
<td>agency certifications</td>
<td>refer to Advantys STB System Planning and Installation Guide, 890 USE 171 00</td>
</tr>
</tbody>
</table>
Section 4.6
The STB CPS 2111 Auxiliary Power Supply

Overview
This section provides a detailed description of the Advantys STB CPS 2111 auxiliary power supply—its functions, physical design, technical specifications, and field wiring requirements.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB CPS 2111 Physical Description</td>
<td>163</td>
</tr>
<tr>
<td>STB CPS 2111 LED Indicator</td>
<td>166</td>
</tr>
<tr>
<td>STB CPS 2111 Functional Description</td>
<td>167</td>
</tr>
<tr>
<td>STB CPS 2111 Auxiliary Power Supply Specifications</td>
<td>169</td>
</tr>
</tbody>
</table>
STB CPS 2111 Physical Description

Physical Characteristics
The STB CPS 2111 auxiliary power supply mounts in a dedicated size 2 base, the STB XBA 2100 base (see page 223). Use only the STB XBA 2100 base for the auxiliary power supply module. Do not use a different size 2 base for this module. Using a different size 2 base will short multiple power supply outputs together. The system may continue to operate, but the following events can occur:

- When you turn off a logic power supply, power may not be removed from the intended portion of the island segment.
- The life expectancy of all the logic power supplies in the segment is reduced.

⚠️ CAUTION

REduced POWER SUPPLY LIFE EXPECTANCY
Use only the STB XBA 2100 base for the STB CPS 2111 auxiliary power supply module.
Failure to follow these instructions can result in injury or equipment damage.

The yellow color stripe beneath the LED display at the top of the module indicates that the STB_CPS_2111 is a power supply module.
Front Panel View

1 area for user-customizable label
2 model name
3 LED array
4 yellow module identification stripe
5 incoming 24 VDC power connection

Ordering Information

The module can be ordered as part of a kit (STB CPS 2111 K), which includes:

- one STB CPS 2111 auxiliary power supply
- one STB XBA 2100 size 2 base (see page 223)
- two alternative connectors:
 - one 2-terminal screw type connector
 - one 2-terminal spring clamp connector

Individual parts may also be ordered for stock or replacement as follows:

- a standalone STB CPS 2111 auxiliary power supply
- a standalone STB XBA 2100 size 2 base
- a bag of screw type connectors (STB XTS 1120) or spring clamp connectors (STB XTS 2120)
Additional optional accessories are also available:

- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the base as part of the island assembly plan
- the STB XMP 7800 keying pin kit to reduce the likelihood of installing the STB CPS 2111 in any module base other than the STB XBA 2100

NOTE: Use of a module-to-base keying scheme to reduce the likelihood of accidentally inserting the auxiliary power supply in the wrong type 2 base.

For more information on keying schemes, refer to the keying considerations discussion in the *Advantys STB System Planning and Installation Guide* (890 USE 171).

Module Dimensions

<table>
<thead>
<tr>
<th></th>
<th>description</th>
<th>dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>on a base</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>height</td>
<td>module only</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td></td>
<td>on a base</td>
<td>128.25 mm (5.05 in)</td>
</tr>
<tr>
<td>depth</td>
<td>module only</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td></td>
<td>on a base, with connector</td>
<td>75.5 mm (2.97 in)</td>
</tr>
</tbody>
</table>
STB CPS 2111 LED Indicator

Purpose

The single green LED on the STB CPS 2111 auxiliary power supply is a visual indication of the module’s operating status. The LED’s location and meanings are described below.

Location

![LED Indicator Diagram]

Indications

<table>
<thead>
<tr>
<th>PWR</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>logic power OK</td>
</tr>
<tr>
<td>off</td>
<td>logic power not OK</td>
</tr>
</tbody>
</table>
STB CPS 2111 Functional Description

Integrated Power Supply

The STB CPS 2111 auxiliary power supply provides 5 VDC logic power to the modules installed to its right in an Advantys STB island segment. It works together with the NIM (in the primary segment) or with a BOS module (in an extension segment) to provide logic power when the I/O modules in the segment draw current in excess of 1.2 A.

The module converts 24 VDC from an external power source to an isolated 5 VDC of logic power, providing up to 1.2 A of current to the modules to its right.

Island Bus Addresses

The auxiliary power supply is not addressable. It simply passes data and addressing information along the island bus.

Configurable Parameters

The STB CPS 2111 auxiliary power supply has no configurable operating parameters.

Installation Examples

The following illustration shows how an auxiliary power supply can support additional I/O modules in the primary segment of an Advantys STB island.

1. an STB NCO 2212 CANopen NIM
2. two voltage groups of AC I/O modules
3. a voltage group of DC digital I/O modules
4. an STB CPS 2111 auxiliary power supply
5. voltage group of DC analog I/O modules

In this configuration, the logic power supply in the NIM supports the first 16 I/O modules. The STB CPS 2111 auxiliary power supply provides logic power to the last eight I/O modules.

NOTE: A PDM is required after a CPS module.
You may also use an STB CPS 2111 auxiliary power supply in one or more extension segment.

In the following example, the primary segment is used to support a small set of AC I/O modules, and the extension segment supports a large set of DC I/O modules. The BOS module provides logic power to the first 11 I/O modules in the extension segment, and the STB CPS 2111 auxiliary power supply provides logic power to the last 9 I/O modules in the segment.

1 an STB NCO 2212 CANopen NIM
2 a voltage group of AC I/O modules
3 an EOS module at the end of the primary segment
4 a BOS module at the beginning of the extension segment
5 a voltage group of DC digital I/O modules
6 an STB CPS 2111 auxiliary power supply
7 voltage group of DC analog I/O modules

NOTE: A PDM is required after a CPS module.
STB CPS 2111 Auxiliary Power Supply Specifications

General Specifications

<table>
<thead>
<tr>
<th>General Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Requirements</td>
</tr>
<tr>
<td>input voltage</td>
</tr>
<tr>
<td>input current</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>input power interruption</td>
</tr>
<tr>
<td>Output to Bus</td>
</tr>
<tr>
<td>maximum current</td>
</tr>
<tr>
<td>protection</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>internal power dissipation</td>
</tr>
<tr>
<td>isolation</td>
</tr>
<tr>
<td>hot swapping support</td>
</tr>
<tr>
<td>base</td>
</tr>
<tr>
<td>dimensions</td>
</tr>
<tr>
<td>width (on a base)</td>
</tr>
<tr>
<td>height (unassembled)</td>
</tr>
<tr>
<td>height (on a base)</td>
</tr>
<tr>
<td>depth (unassembled)</td>
</tr>
<tr>
<td>depth (on a base)</td>
</tr>
<tr>
<td>storage temperature</td>
</tr>
<tr>
<td>operating temperature range*</td>
</tr>
<tr>
<td>agency certifications</td>
</tr>
</tbody>
</table>

This product supports operation at normal and extended temperature ranges. Refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00 for a complete summary of capabilities and limitations.
Chapter 5
Advantys Power Distribution Modules

Overview
The island bus uses special-purpose PDMs to distribute field power to the I/O modules in its segment(s). There are two classes of PDMs, those that distribute:

- 24 VDC power to digital and analog I/O that operate with DC-powered field devices
- 115 or 230 VAC to digital I/O modules that operate with AC-power field devices

All PDMs distribute sensor and actuator power, provide PE resistance for the I/O modules they support and provide over-current protection. Within each class are standard and basic PDM models.

What Is in This Chapter?
This chapter contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>STB PDT 3100 24 VDC Power Distribution Module</td>
<td>172</td>
</tr>
<tr>
<td>5.2</td>
<td>STB PDT 3105 24 VDC Basic Power Distribution Module</td>
<td>186</td>
</tr>
</tbody>
</table>
Section 5.1
STB PDT 3100 24 VDC Power Distribution Module

Overview
This section provides you with a detailed description of the STB PDT 3100 PDM—its functions, physical design, technical specifications, and power wiring requirements.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB PDT 3100 Physical Description</td>
<td>173</td>
</tr>
<tr>
<td>STB PDT 3100 LED Indicators</td>
<td>177</td>
</tr>
<tr>
<td>STB PDT 3100 Source Power Wiring</td>
<td>179</td>
</tr>
<tr>
<td>STB PDT 3100 Field Power Over-current Fuses</td>
<td>182</td>
</tr>
<tr>
<td>The Protective Earth Connection</td>
<td>184</td>
</tr>
<tr>
<td>STB PDT 3100 Specifications</td>
<td>185</td>
</tr>
</tbody>
</table>
STB PDT 3100 Physical Description

Physical Characteristics

The STB PDT 3100 is a standard module that distributes field power independently over the island’s sensor bus to the input modules and over the island’s actuator bus to the output modules. This PDM requires two DC power inputs from an external power source. 24 VDC source power signals are brought into the PDM via a pair of two-pin power connectors, one for sensor power and one for actuator power. The module also houses two user-replaceable fuses that independently help protect the island’s sensor power bus and actuator power bus.

Front and Side Panel Views

1. locations for the STB XMP 6700 user-customizable labels
2. model name
3. LED array
4. dark blue identification stripe, indicating a DC PDM
5. input field power connection receptacle (for the sensor bus)
6. output field power connection receptacle (for the actuator bus)
7. PE captive screw clamp on the PDM base
The fuses for the sensor power and actuator power are housed in slots on the right side of the module:

1. Housing door for the 5 A sensor power fuse
2. Housing door for the 10 A actuator power fuse
3. Notches in the two doors
4. Burn hazard statement

WARNING

EXPLOSION HAZARD

- Ensure all power supplies are switched off, locked out and tagged out before separating/assembling, connecting/disconnecting equipment.
- Ensure the surrounding area is non hazardous before separating/assembling, connecting/disconnecting equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Power Distribution Modules

![Image](270x643 to 287x658)

POWER DISTRIBUTION MODULES

The two red plastic doors house a pair of fuses:

- a 5 A fuse helps protect the input modules on the island’s sensor bus
- a 10 A helps protect the output modules on the island’s actuator bus

Follow the instructions on the side of the module when replacing a fuse (see page 183).

Ordering Information

The module can be ordered as part of a kit (STB PDT 3100 K), which includes:

- one STB PDT 3100 power distribution module
- one STB XBA 2200 (see page 211) PDM base
- two alternative sets of connectors:
 - two 2-terminal screw type connectors, keying pins included
 - two 2-terminal spring clamp connectors, keying pins included
- a 5 A, 250 V time-lag, low-breaking-capacity (glass) fuse to help protect the input modules on
 the island’s sensor bus
- a 10 A, 250 V time-lag, glass fuse to help protect the output modules on the island’s actuator
 bus

Individual parts may also be ordered for stock or replacement as follows:

- a standalone STB PDT 3100 power distribution module
- a standalone STB XBA 2200 PDM base
- a bag of screw type connectors (STB XTS 1130) or spring clamp connectors (STB XTS 2130)
- the STB XMP 5600 fuse kit, which contains five 5 A replacement fuses and five 10 A
 replacement fuses

Additional optional accessories are also available:

- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the
 base as part of your island assembly plan
- the STB XMP 7700 kit for inserting the module into the base (to check that an AC PDM is not
 inadvertently placed on the island where an STB PDT 3100 PDM belongs)
- the STB XMP 7800 kit for inserting the field wiring connectors into the module

For installation instructions and other details, refer to the Advantys STB System Planning and
Installation Guide (890 USE 171).

WARNING

BURN HAZARD - HOT FUSE

Disconnect power for 10 minutes before removing fuse.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Dimensions

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>module on a base</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>height</td>
<td>module only</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td></td>
<td>on a base*</td>
<td>138 mm (5.43 in)</td>
</tr>
<tr>
<td>depth</td>
<td>module only</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td></td>
<td>on a base, with connectors</td>
<td>75.5 mm (2.97 in) worst case (with screw clamp connectors)</td>
</tr>
</tbody>
</table>

PDMs are the tallest modules in an Advantys STB island segment. The 138 mm height dimension includes the added height imposed by the PE captive screw clamp on the bottom of the STB XBA 2200 base.
STB PDT 3100 LED Indicators

Overview
The two LEDs on the STB PDT 3100 are visual indications of the presence of sensor power and actuator power. The LED locations and their meanings are described below.

Location
The two LEDs are located on the top front bezel of the module, directly below the model number:

Indications
The following table defines the meaning of the two LEDs (where an empty cell indicates that the pattern on the associated LED doesn’t matter):

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td></td>
<td>sensor (input) field power is present</td>
</tr>
<tr>
<td>off</td>
<td></td>
<td>The module either:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● is not receiving sensor field power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● has a blown fuse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● has stopped functioning</td>
</tr>
<tr>
<td>on</td>
<td></td>
<td>actuator (output) field power is present</td>
</tr>
<tr>
<td>off</td>
<td></td>
<td>The module either:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● is not receiving sensor field power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● has a blown fuse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● has stopped functioning</td>
</tr>
</tbody>
</table>
NOTE: The power required to illuminate these LEDs comes from the 24 VDC power supplies that provide the sensor bus and actuator bus power. These LED indicators operate regardless of whether or not the NIM is transmitting logic power.
STB PDT 3100 Source Power Wiring

Summary
The STB PDT 3100 uses two two-pin source power connectors that let you connect the PDM to one or two 24 VDC field power source(s). Source power for the sensor bus is connected to the top connector, and source power for the actuator bus is connected to the bottom connector. The choices of connector types and wire types are described below, and a power wiring example is presented.

Connectors
Use a set of either:
- Two STB XTS 1130 screw type field wiring connectors
- Two STB XTS 2130 spring clamp field wiring connectors
Both connector types are provided in kits of 10 connectors/kit. These power wiring connectors each have two connection terminals, with a 5.08 mm (0.2 in) pitch between pins.

Power Wire Requirements
Individual connector terminals can accept one power wire in the range 1.29 ... 2.03 mm² (16 ... 12 AWG). When 1.29 mm² (16 AWG) power wire is used, two wires can be connected to a terminal.
We recommend that you strip at least 10 mm from the wire jackets to make the connections.

Safety Keying
NOTE: The same screw type and spring clamp connectors are used to deliver power to the STB PDT 3100 PDM and to the STB PDT 2100 PDM. To help avoid connecting VAC power to a VDC module or vice versa, Schneider offers an optional STB XMP 7810 safety keying pin kit for the PDMs. Refer the Advantys STB System Planning and Installation Guide (890 USE 171) for a detailed discussion of keying strategies.

Power Wiring Pinout
The top connector receives 24 VDC source power for the sensor bus, and the bottom connector receives 24 VDC source power for the actuator bus.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Top Connector</th>
<th>Bottom Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 VDC for the sensor bus</td>
<td>+24 VDC for the sensor bus</td>
</tr>
<tr>
<td>2</td>
<td>-24 VDC sensor power return</td>
<td>-24 VDC actuator power return</td>
</tr>
</tbody>
</table>
Source Power

The STB PDT 3100 PDM requires source power from at least one independent, SELV-rated 19.2 ... 30 VDC power supply.

Sensor power and actuator power are isolated from one another on the island. You may provide source power to these two buses via a single power supply or by two separate power supplies.

Refer to the Advantys STB System Planning and Installation Guide (890 USE 171) for a detailed discussion of external power supply selection considerations.

Sample Wiring Diagrams

This example shows the field power connections to both the sensor bus and the actuator bus coming from a single 24 VDC SELV power supply.

1 +24 VDC sensor bus power
2 -24 VDC sensor power return
3 +24 VDC actuator bus power
4 -24 VDC actuator power return

The diagram above shows a protection relay, which you may optionally place on the +24 VDC power wire to the actuator bus connector. A protection relay enables you to disable the output devices receiving power from the actuator bus while you test the input devices that receive power from the sensor bus. For a detailed discussion and some recommendations, refer to the Advantys STB System Planning and Installation Guide (890 USE 171).
This example shows field power for the sensor bus and field power for the actuator bus being derived from separate SELV power supply sources.

1. +24 VDC sensor bus power
2. 24 VDC sensor power return
3. +24 VDC actuator bus power
4. -24 VDC actuator power return

An optional protection relay is shown on the +24 VDC power wire to the actuator bus connector.
STB PDT 3100 Field Power Over-current Fuses

Fuse Requirements
The STB PDT 3100 PDM includes fuses that help protect input modules on the sensor bus and output modules on the actuator bus. The fuses are:
- a 5 A fuse on the sensor bus
- a 10 A fuse on the actuator bus
These fuses are accessible and replaceable via two side panels on the PDM.

Recommended Fuses
- Overcurrent protection for the input modules on the sensor bus needs to be provided by a 5 A time-lag fuse such as the Wickmann 1951500000.
- Overcurrent protection for the output modules on the actuator bus needs to be provided by a 10 A time-lag fuse such as the Wickmann 1952100000.

Performance Considerations
The maximum combined module current - the sum of actuator current and sensor current - depends upon the island’s ambient temperature, as displayed in the following diagram:

Maximum Current (A) to Temperature (°C)

For example:
- At 60 °C, total maximum combined module current is 8 A.
- At 45 °C, total maximum combined module current is 10 A.
- At 30 °C, total maximum combined module current is 12 A.
At any temperature, the maximum actuator current is 8 A, and the maximum sensor current is 4 A.
Accessing the Fuse Panels

The two panels that house the actuator bus protection fuse and the sensor bus protection fuse are located on the right side of the PDM housing (see page 173). The panels are red doors with fuse holders inside them. The 5 A sensor power fuse is in the top door. The 10 A actuator power fuse is in the bottom door.

Replacing a Fuse

WARNING

BURN HAZARD - HOT FUSE

Disconnect power for 10 minutes before removing fuse.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Before you replace a fuse in the STB PDT 3100, remove the power sources to the actuator bus and sensor bus.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>After you have removed the power connectors from the module and let the unit cool down for 10 minutes, pull the PDM from its base. Push the release buttons at the top and bottom of the PDM and pull it from the base.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Insert a small flathead screwdriver in the slot on the left of the fuse panel door and use it to pop the door open.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remove the old fuse from the fuse holder inside the panel door, and replace it with another fuse or with a fuse bypass plug.</td>
<td>Check that the new fuse is the same type as the old one.</td>
</tr>
<tr>
<td>4</td>
<td>Optionally, you may repeat steps 3 and 4 to replace the fuse in the other panel.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Snap the panel door(s) shut and plug the PDM back into its base. Then plug the connectors back into the receptacles, close the cabinet and reapply field power.</td>
<td></td>
</tr>
</tbody>
</table>
The Protective Earth Connection

PE Contact for the Island

One of the key functions of a PDM, in addition to distributing sensor and actuator power to the I/O modules, is the provision of protective earth (PE) to the island. On the bottom of each STB XBA 2200 PDM base is a captive screw in a plastic block. By tightening this captive screw, you can make a PE contact with the island bus. Every PDM base on the island bus should make PE contact.

How PE Contact Is Made

PE is brought to the island by a heavy-duty cross-sectional wire, usually a copper braided cable, 4.2 mm² (10 gage) or larger. The wire needs to be tied to a single grounding point. The ground conductor connects to the bottom of the each PDM base and is secured by the PE captive screw. Local electrical codes take precedence over our PE wiring recommendations.

Handling Multiple PE Connections

It is possible that more than one PDM will be used on an island. Each PDM base on the island will receive a ground conductor and distribute PE as described above.

NOTE: Tie the PE lines from more than one PDM to a single PE ground point in a star configuration. This will minimize ground loops and excessive current from being created in PE lines.

This illustration shows separate PE connections tied to a single PE ground:

1. the NIM
2. a PDM
3. another PDM
4. captive screws for the PE connections
5. PE connection on the DIN rail
STB PDT 3100 Specifications

Table of Technical Specifications

The STB PDT 3100 module’s technical specifications are described in the following table.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>24 VDC power distribution module</td>
</tr>
<tr>
<td>Module width</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>Module height in its base</td>
<td>137.9 mm (5.43 in)</td>
</tr>
<tr>
<td>PDM base</td>
<td>STB XBA 2200</td>
</tr>
<tr>
<td>Hot swapping supported</td>
<td>no</td>
</tr>
<tr>
<td>Nominal logic power current consumption</td>
<td>0 mA</td>
</tr>
<tr>
<td>Sensor/actuator bus voltage range</td>
<td>19.2 ... 30 VDC</td>
</tr>
<tr>
<td>Reverse polarity protection</td>
<td>yes, on the actuator bus</td>
</tr>
</tbody>
</table>

Module Current Field

<table>
<thead>
<tr>
<th>Current</th>
<th>Unit</th>
<th>Temperature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 A rms</td>
<td>A</td>
<td>@ 30°C (86°F)</td>
<td>for outputs</td>
</tr>
<tr>
<td>5 A rms</td>
<td>A</td>
<td>@ 60°C (140°F)</td>
<td>for outputs</td>
</tr>
<tr>
<td>4 A rms</td>
<td>A</td>
<td>@ 30°C (86°F)</td>
<td>for inputs</td>
</tr>
<tr>
<td>2.5 A rms</td>
<td>A</td>
<td>@ 60°C (140°F)</td>
<td>for inputs</td>
</tr>
</tbody>
</table>

Overcurrent Protection

<table>
<thead>
<tr>
<th>Protection</th>
<th>Remarks</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>For inputs</td>
<td>User-replaceable 5 A time-lag fuse from an STB XMP 5600 fuse kit</td>
<td></td>
</tr>
<tr>
<td>For outputs</td>
<td>User-replaceable 10 A time-lag fuse from an STB XMP 5600 fuse kit</td>
<td></td>
</tr>
</tbody>
</table>

Bus Current

<table>
<thead>
<tr>
<th>Current</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage Surge Protection

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

PE Current

<table>
<thead>
<tr>
<th>Current</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 A</td>
<td>A</td>
<td>for 2 min</td>
</tr>
</tbody>
</table>

Status Reporting

<table>
<thead>
<tr>
<th>Source</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor bus power present</td>
<td></td>
</tr>
<tr>
<td>Actuator bus power present</td>
<td></td>
</tr>
</tbody>
</table>

Voltage-Detect Threshold

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED turns on</td>
<td>at 15 VDC (±1 VDC)</td>
</tr>
<tr>
<td>LED turns off</td>
<td>less than 15 VDC (±1 VDC)</td>
</tr>
</tbody>
</table>

Storage Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 to 85°C</td>
<td></td>
</tr>
</tbody>
</table>

Operating Temperature Range

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 60°C</td>
<td></td>
</tr>
</tbody>
</table>

Agency Certifications

Refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00 for a complete summary of capabilities and limitations.

This product supports operation at normal and extended temperature ranges. Refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00 for a complete summary of capabilities and limitations.
Section 5.2
STB PDT 3105 24 VDC Basic Power Distribution Module

Overview
This section provides you with a detailed description of the STB PDT 3105 PDM—its functions, physical design, technical specifications, and power wiring requirements.

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB PDT 3105 Physical Description</td>
<td>187</td>
</tr>
<tr>
<td>STB PDT 3105 Source Power Wiring</td>
<td>191</td>
</tr>
<tr>
<td>STB PDT 3105 Field Power Over-current Fuses</td>
<td>193</td>
</tr>
<tr>
<td>STB PDT 3105 Protective Earth Connection</td>
<td>195</td>
</tr>
<tr>
<td>STB PDT 3105 Specifications</td>
<td>196</td>
</tr>
</tbody>
</table>
STB PDT 3105 Physical Description

Physical Characteristics
The STB PDT 3105 is a basic Advantys STB module that distributes sensor power and actuator power over a single power bus to the I/O modules in a segment. This PDM mounts in a special size 2 base. It requires a 24 VDC source power input from an external power source, which is brought into the PDM via a two-pin power connector. The module also houses a user-replaceable fuse that helps protect the island’s I/O power bus.

Front and Side Panel Views

1. locations for the STB XMP 6700 user-customizable labels
2. model name
3. dark blue identification stripe, indicating a DC PDM
4. I/O field power connection
5. PE captive screw clamp on the PDM base
The following illustration shows the right side of the module, where the user-replaceable fuse is housed:

1 housing door for the 5 A fuse
2 this slot is not used
3 notches in the two doors
4 burn hazard statement

WARNING

EXPLOSION HAZARD

- Ensure all power supplies are switched off, locked out and tagged out before separating/assembling, connecting/disconnecting equipment.
- Ensure the surrounding area is non hazardous before separating/assembling, connecting/disconnecting equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Follow the instructions on the side of the module when you are replacing a fuse *(see page 183).*

WARNING

BURN HAZARD - HOT FUSE

Disconnect power for 10 minutes before removing fuse.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Ordering Information

The module can be ordered as part of a kit (STB PDT 3105 K), which includes:

- one STB PDT 3105 power distribution module
- one STB XBA 2200 *(see page 211)* PDM base
- two alternative sets of connectors:
 - one 2-terminal *screw type* connector, keying pins included
 - one 2-terminal *spring clamp* connector, keying pins included
- a 5 A, 250 V time-lag, low-breaking-capacity (glass) fuse to help protect the input and output modules

Individual parts may also be ordered for stock or replacement as follows:

- a standalone STB PDT 3105 power distribution module
- a standalone STB XBA 2200 PDM base
- a bag of screw type connectors (STB XTS 1130) or spring clamp connectors (STB XTS 2130)
- the STB XMP 5600 fuse kit, which contains five 5 A replacement fuses and five 10 A replacement fuses

NOTE: Do not use the 10 A fuses in the STB PDT 3105 module.

Additional optional accessories are also available:

- the STB XMP 6700 user-customizable label kit, which may be applied to the module and the base as part of your island assembly plan
- the STB XMP 7700 kit for inserting the module into the base (to check that an AC PDM is not inadvertently placed on the island where an STB PDT 3105 PDM belongs)
- the STB XMP 7800 kit for inserting the field wiring connectors into the module

For installation instructions and other details, refer to the *Advantys STB System Planning and Installation Guide* (890 USE 171).
Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>module on a base</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>height</td>
<td>module only</td>
<td>125 mm (4.92 in)</td>
</tr>
<tr>
<td></td>
<td>on a base*</td>
<td>138 mm (5.43 in)</td>
</tr>
<tr>
<td>depth</td>
<td>module only</td>
<td>65.1 mm (2.56 in)</td>
</tr>
<tr>
<td></td>
<td>on a base, with connectors</td>
<td>75.5 mm (2.97 in) worst case (with screw clamp connectors)</td>
</tr>
</tbody>
</table>

* PDMs are the tallest modules in an Advantys STB island segment. The 138 mm height dimension includes the added height imposed by the PE captive screw clamp on the bottom of the STB XBA 2200 base.
STB PDT 3105 Source Power Wiring

Summary

The STB PDT 3105 uses a two-pin source power connector that let you connect the PDM to a 24 VDC field power source. The choices of connector types and wire types are described below, and a power wiring example is presented.

Connectors

Use either:
- an STB XTS 1130 screw type field wiring connector
- an STB XTS 2130 spring clamp field wiring connector

Both connector types are provided in kits of 10 connectors/kit.

These power wiring connectors each have two connection terminals, with a 5.08 mm (0.2 in) pitch between pins.

Power Wire Requirements

Individual connector terminals can accept one power wire in the range 1.29 ... 2.03 mm² (16 ... 12 AWG). When 1.29 mm² (16 AWG) power wire is used, two wires can be connected to a terminal.

We recommend that you strip at least 10 mm from the wire jackets to make the connections.

Safety Keying

NOTE: The same screw type and spring clamp connectors are used to deliver power to the STB PDT 3105 PDM and to the STB PDT 2100 and STB PDT 2105 PDMs. To help avoid connecting VAC power to a VDC module or vice versa, Schneider offers an optional STB XMP 7810 safety keying pin kit for the PDMs. Refer the Advantys STB System Planning and Installation Guide (890 USE 171) for a detailed discussion of keying strategies.

Power Wiring Pinout

The connector receives 24 VDC source power for the sensor bus, and the bottom connector receives 24 VDC source power for the actuator bus.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 VDC I/O power</td>
</tr>
<tr>
<td>2</td>
<td>-24 VDC return</td>
</tr>
</tbody>
</table>
Source Power

The STB PDT 3105 PDM requires source power from an independent, SELV-rated 19.2 ... 30 VDC power supply. Refer to the Advantys STB System Planning and Installation Guide (890 USE 171) for a detailed discussion of external power supply selection considerations.

Sample Wiring Diagrams

This example shows the field power connections to both the sensor bus and the actuator bus coming from a single 24 VDC SELV power supply.

1 +24 VDC I/O power
2 -24 VDC return

For a detailed discussion and some recommendations, refer to the Advantys STB System Planning and Installation Guide (890 USE 171).
STB PDT 3105 Field Power Over-current Fuses

Fuse Requirements
The STB PDT 3105 PDM includes a 5 A fuse that helps to protect the I/O modules. The fuse is accessible and replaceable via a side panel on the PDM.

Recommended Fuses
Overcurrent protection for the input and output modules on the island bus needs to be provided by a 5 A time-lag fuse such as the Wickmann 1951500000.

Performance Considerations
When the island is operating at an ambient temperature of 60 degrees C (140 degrees F), the fuse can pass 4 A continuously.

Accessing the Fuse Panels
Two panels are located on the right side of the PDM housing (see page 187). The top panel houses the active protection fuse and the other is not used. The top panel has a fuse holder inside it.

Replacing a Fuse

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>After you have removed the power connector from the module and let the unit cool down for 10 minutes, pull the PDM from its base. Push the release buttons at the top and bottom of the PDM and pull it from the base.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Insert a small flathead screwdriver in the slot on the left of the fuse panel door and use it to pop the door open.</td>
<td>The slot is molded to reduce the likelihood that the tip of the screwdriver accidentally touches the fuse.</td>
</tr>
</tbody>
</table>

WARNING

BURN HAZARD - HOT FUSE
Disconnect power for 10 minutes before removing fuse.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Before you replace a fuse in the STB PDT 3105, remove the power source.
3. Remove the old fuse from the fuse holder inside the panel door, and replace it with another fuse. Check that the new fuse is a 5 A fuse. **Note** 10 A fuses are provided in the fuse kit, but they should not be used with an STB PDT 3105 module.

4. Snap the panel door(s) shut and plug the PDM back into its base. Then plug the connectors back into the receptacles, close the cabinet and reapply field power.
STB PDT 3105 Protective Earth Connection

PE Contact for the Island Bus

One of the key functions of a PDM, in addition to distributing sensor and actuator power to the I/O modules, is the provision of PE to the island. On the bottom of each STB XBA 2200 PDM base is a captive screw in a plastic block. By tightening this captive screw, you can make a PE contact with the DIN rail. Every PDM base on the island bus should make PE contact.

How PE Contact Is Made

PE is brought to the island by a heavy-duty cross-sectional wire, usually a copper braided cable, 4.2 mm2 (10 gauge) or larger. The wire needs to be tied to a single grounding point. The ground conductor connects to the bottom of the each PDM base and is secured by the PE captive screw. Local electrical codes take precedence over our PE wiring recommendations.

Handling Multiple PE Connections

It is possible that more than one PDM will be used on an island. Each PDM base on the island will receive a ground conductor and distribute PE as described above.

NOTE: Tie the PE lines from more than one PDM to a single PE ground point in a star configuration. This will minimize ground loops and excessive current from being created in PE lines.

This illustration shows separate PE connections tied to a single PE ground:

1. the NIM
2. a PDM
3. another PDM
4. captive screws for the PE connections
5. PE connection on the DIN rail
STB PDT 3105 Specifications

Table of Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>basic 24 VDC power distribution module</td>
</tr>
<tr>
<td>module width</td>
<td>18.4 mm (0.72 in)</td>
</tr>
<tr>
<td>module height in its base</td>
<td>137.9 mm (5.43 in)</td>
</tr>
<tr>
<td>PDM base</td>
<td>STB XBA 2200</td>
</tr>
<tr>
<td>hot swapping supported</td>
<td>no</td>
</tr>
<tr>
<td>nominal logic power current consumption</td>
<td>0 mA</td>
</tr>
<tr>
<td>I/O power bus voltage range</td>
<td>19.2 ... 30 VDC</td>
</tr>
<tr>
<td>reverse polarity protection</td>
<td>on the outputs only</td>
</tr>
<tr>
<td>module current field</td>
<td>4 A max</td>
</tr>
<tr>
<td>overcurrent protection for sensor and</td>
<td>user-replaceable 5 A time-lag fuse</td>
</tr>
<tr>
<td>actuator power</td>
<td>one fuse ships with the PDM; replacements are available in an STB XMP 5600 fuse kit</td>
</tr>
<tr>
<td>bus current</td>
<td>0 mA</td>
</tr>
<tr>
<td>voltage surge protection</td>
<td>yes</td>
</tr>
<tr>
<td>PE current</td>
<td>30 A for 2 min</td>
</tr>
<tr>
<td>storage temperature</td>
<td>-40 to 85°C</td>
</tr>
<tr>
<td>operating temperature</td>
<td>0 to 60°C</td>
</tr>
<tr>
<td>agency certifications</td>
<td>refer to the Advantys STB System Planning and Installation Guide, 890 USE 171 00</td>
</tr>
</tbody>
</table>
Chapter 6
STB Module Bases

Overview

The physical communications bus that supports the island is constructed by interconnecting a series of base units and snapping them on a DIN rail. Different Advantys modules require different types of bases. Install bases in the proper sequence as you construct the island bus. This chapter provides you with a description of each base type.

What Is in This Chapter?

This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantys Bases</td>
<td>198</td>
</tr>
<tr>
<td>STB XBA 1000 I/O Base</td>
<td>199</td>
</tr>
<tr>
<td>STB XBA 2000 I/O Base</td>
<td>203</td>
</tr>
<tr>
<td>STB XBA 3000 I/O Base</td>
<td>207</td>
</tr>
<tr>
<td>STB XBA 2200 PDM Base</td>
<td>211</td>
</tr>
<tr>
<td>The Protective Earth Connection</td>
<td>215</td>
</tr>
<tr>
<td>STB XBA 2300 Beginning-of-Segment Base</td>
<td>216</td>
</tr>
<tr>
<td>STB XBA 2400 End-of-segment Base</td>
<td>219</td>
</tr>
<tr>
<td>STB XBA 2100 Auxiliary Power Supply Base</td>
<td>223</td>
</tr>
</tbody>
</table>
Advantys Bases

Summary
There are six different base units. When interconnected on a DIN rail, these bases form the physical backplane onto which the Advantys modules are mounted. This physical backplane also supports the transmission of power, communications and PE across the island bus.

Base Models
The table below lists the bases by model number, size and types of Advantys modules that they support.

<table>
<thead>
<tr>
<th>Base Model</th>
<th>Width</th>
<th>Modules Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB XBA 1000</td>
<td>13.9 mm (0.58 in)</td>
<td>size 1 Advantys input and output modules</td>
</tr>
<tr>
<td>(see page 199)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STB XBA 2000</td>
<td>18.4 mm (0.72 in)</td>
<td>size 2 Advantys input and output modules and the STB XBE 2100 CANopen extension module</td>
</tr>
<tr>
<td>(see page 203)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STB XBA 2200</td>
<td>18.4 mm (0.72 in)</td>
<td>All Advantys PDM modules</td>
</tr>
<tr>
<td>(see page 211)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STB XBA 2300</td>
<td>18.4 mm (0.72 in)</td>
<td>STB XBE 1200 BOS island bus extension modules</td>
</tr>
<tr>
<td>(see page 216)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STB XBA 2400</td>
<td>18.4 mm (0.72 in)</td>
<td>STB XBE 1000 EOS island bus extension modules</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STB XBA 3000</td>
<td>27.8 mm (1.09 in)</td>
<td>size 3 Advantys specialty modules</td>
</tr>
<tr>
<td>(see page 207)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: You should insert the correct base in each location on the island bus to support the desired module type. Notice that there are three different size 2 (18.4 mm) bases. Check that you choose and install the correct one at each position on the island bus.
STB XBA 1000 I/O Base

Summary

The STB XBA 1000 I/O base is 13.9 mm (0.58 in) wide. It provides the physical connections for a size 1 input or output module on the island bus. These connections let you communicate with the NIM over the island bus and hot swap the module when the island bus is operational. They also enable the module to receive:

- logic power from the NIM or from a BOS module
- sensor power (for inputs) or actuator power (for outputs) from the PDM

Physical Overview

The following illustration shows some of the key components an STB XBA 1000 base:

1. user-customizable label tab
2. six island bus contacts
3. DIN rail lock/release latch
4. DIN rail contact
5. five field power distribution contacts
The Label Tab

A label can be positioned on the tab shown above in item 1. The label helps identify the specific module that will reside at this base unit’s island bus location. A similar label can be placed on the module itself so that they can be matched up properly during the island installation.

Labels are provided on an STB XMP 6700 marking label sheet, which can be ordered from your Schneider Electric service provider.

The Island Bus Contacts

The six contacts located at the top left side of the STB XBA 1000 base provide logic power and island bus communications connections between the module and the island bus:

In the primary segment of the island bus, the signals that make these contacts come from the NIM. In extension segments, these signals come from an STB XBE 1000 BOS extension module:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>not used</td>
</tr>
<tr>
<td>2</td>
<td>the common ground contact</td>
</tr>
<tr>
<td>3</td>
<td>the 5 VDC logic power signal generated by the power supply in either the NIM (in the primary segment) or a BOS module (in an extension segment)</td>
</tr>
<tr>
<td>4 and 5</td>
<td>used for communications across the island bus between the I/O and the NIM— contact 4 is positive (+ve), and contact 5 is negative (-ve).</td>
</tr>
<tr>
<td>6</td>
<td>connects the module in the base to the island’s address line. The NIM uses the address line to validate that the expected module is located at each physical address.</td>
</tr>
</tbody>
</table>
The Lock/Release Latch

The latch in the center front of the STB XBA 1000 base has two positions, as shown below:

Release position

The latch needs to be in release position while the base is being inserted on the DIN rail and when it is being removed from the DIN rail. It needs to be in lock position when the base has been pushed and snapped into place on the rail before the module is inserted into the base.

The DIN Rail Contacts

One of the functions of the DIN rail is to provide the island with functional earth. Functional earth provides the island with noise immunity control and RFI/EMI protection.

When an I/O base is snapped onto the DIN rail, two contacts on the back of the rail provide the earth ground connection between the rail and the I/O module that will be seated on the base.
The Field Power Distribution Contacts

The five contacts located in a column at the bottom of the STB XBA 1000 I/O base provide field power and a protective earth (PE) connections to the I/O module:

Field power (sensor power for inputs and actuator power for outputs) is distributed across the island bus to the STB XBA 1000 bases by a PDM:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>when the module inserted in the base has input channels, contacts 1 and 2 deliver sensor bus power to the module</td>
</tr>
<tr>
<td>3 and 4</td>
<td>when the module inserted in the base has output channels, contacts 3 and 4 deliver actuator bus power to the module</td>
</tr>
<tr>
<td>5</td>
<td>PE is established via a captive screw on the PDM base units (see page 215) and is delivered to the Advantys STB I/O module via contact 5</td>
</tr>
</tbody>
</table>

If the module in the STB XBA 1000 base supports only input channels, contacts 3 and 4 are not used. If the module in the STB XBA 1000 base supports only output channels, contacts 1 and 2 are not used.
Summary

The STB XBA 2000 I/O base is 18.4 mm (0.72 in) wide. It provides the physical connections for a size 2 input or output module on the island bus. These connections let you communicate with the NIM over the island bus and hot swap the module when the island bus is operational. They also enable the module to receive:

- logic power from the NIM or from a BOS module
- sensor power (for inputs) or actuator power (for outputs) from the PDM

The base also support an STB XBE 2100 CANopen extension module on the island bus.

NOTE: The STB XBA 2000 is designed only for the size 2 modules described above. Do not use this base for other size 2 Advantys modules such as the PDMs, EOS modules or BOS modules.

Physical Overview

The following illustration shows some of the key components an STB XBA 2000 base:

1. user-customizable label tab
2. six island bus contacts
3. DIN rail lock/release latch
4. DIN rail contact
5. five field power distribution contacts
The Label Tab

A label can be positioned on the tab shown above in item 1. The label helps identify the specific module that will reside at this base unit’s island bus location. A similar label can be placed on the module itself so that they can be matched up properly during the island installation.

Labels are provided on an STB XMP 6700 marking label sheet, which can be ordered from your Schneider Electric service provider.

The Island Bus Contacts

The six contacts located in a column at the top of the I/O base provide logic power and island bus communications connections between the module and the island bus:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>not used</td>
</tr>
<tr>
<td>2</td>
<td>the common ground contact</td>
</tr>
<tr>
<td>3</td>
<td>the 5 VDC logic power signal generated by the power supply in either the NIM (in the primary segment) or a BOS module (in an extension segment)</td>
</tr>
<tr>
<td>4 and 5</td>
<td>used for communications across the island bus between the I/O and the NIM—contact 4 is positive (+ve), and contact 5 is negative (-ve).</td>
</tr>
<tr>
<td>6</td>
<td>connects the module in the base to the island’s address line. The NIM uses the address line to validate that the expected module is located at each physical address.</td>
</tr>
</tbody>
</table>
The Lock/Release Latch

The latch in the center front of the STB XBA 2000 base has two positions, as shown below:

Release position

Lock position

The latch needs to be in release position while the base is being inserted on the DIN rail and when it is being removed from the DIN rail. It needs to be in lock position when the base has been pushed and snapped into place on the rail before the module is inserted into the base.

The DIN Rail Contacts

One of the functions of the DIN rail is to provide the island with functional earth. Functional earth provides the island with noise immunity control and RFI/EMI protection.

When an I/O base is snapped onto the DIN rail, two contacts on the back of the rail provide the earth ground connection between the rail and the I/O module that will be seated on the base.
The Field Power Distribution Contacts

The five contacts located in a column at the bottom of the STB XBA 2000 base provide AC or DC field power and a protective earth (PE) connections to the I/O module. They are as follows:

1 and 2 when the module inserted in the base has input channels, contacts 1 and 2 deliver sensor bus power to the module

3 and 4 when the module inserted in the base has output channels, contacts 3 and 4 deliver actuator bus power to the module

5 PE is established via a captive screw on the PDM base units (see page 215) and is delivered to the Advantys STB I/O module via contact 5

Field power (sensor power for inputs and actuator power for outputs) is distributed across the island bus to the STB PDT 2100 PDM:

If the module in the STB XBA 2000 base supports only input channels, contacts 3 and 4 are not used. If the module in the STB XBA 1000 base supports only output channels, contacts 1 and 2 are not used.
STB XBA 3000 I/O Base

Summary

The STB XBA 3000 I/O base is 27.8 mm (1.1 in) wide, provides the physical connections for a size 3 input and output module on the island bus. These connections let you communicate with the NIM over the island bus and hot swap the module when the island bus is operational. They also enable the module to receive:

- logic power from the NIM or from a BOS module
- sensor power (for inputs) or actuator power (for outputs) from the PDM

Physical Overview

The following illustration shows some of the key components an STB XBA 3000 base:

1. six island bus contacts
2. size 3 security pin
3. DIN rail lock/release latches
4. DIN rail contacts
5. five field power distribution contacts
The Island Bus Contacts

The six contacts located in a column at the top of the I/O base provide logic power (see page 22) and island bus communications connections between the module and the island backplane. They are as follows:

In the primary segment of the island bus, the signals that make these contacts come from the NIM. In extension segments, these signals come from an STB XBE 1000 BOS extension module:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>not used</td>
</tr>
<tr>
<td>2</td>
<td>the common ground contact</td>
</tr>
<tr>
<td>3</td>
<td>the 5 VDC logic power signal generated by the power supply in either the NIM (in the primary segment) or a BOS module (in an extension segment)</td>
</tr>
<tr>
<td>4 and 5</td>
<td>used for communications across the island bus between the I/O and the NIM—contact 4 is positive (+ve), and contact 5 is negative (-ve).</td>
</tr>
<tr>
<td>6</td>
<td>connects the module in the base to the island’s address line. The NIM uses the address line to validate that the expected module is located at each physical address.</td>
</tr>
</tbody>
</table>

The Size 3 Module Security Pin

The STB XBA 3000 I/O base looks very much like a pair of interlocked STB XBA 1000 I/O bases. It is designed, however, to house only size 3 I/O modules. The security pin located in the center front of the base above the two lock/release latches reduces the likelihood you will inadvertently install two size 1 modules in the base.
The Lock/Release Latch

Two latches in the center front of the STB XBA 3000 base each have two positions, as shown below:

Release positions

The latches need to be in their release positions while the base is being inserted on the DIN rail and when it is being removed from the DIN rail. They need to be in their lock positions when the base has been pushed and snapped into place on the rail before the module is inserted into the base.
The DIN Rail Contacts

One of the functions of the DIN rail is to provide the island with functional earth. Functional earth provides the island with noise immunity control and RFI/EMI protection.

When an STB XBA 3000 I/O base is snapped onto the DIN rail, four contacts on the back of the rail provide functional ground connections between the rail and the I/O module that will be seated on the base.

The Field Power Distribution Contacts

The five contacts located in a column at the bottom of the STB XBA 3000 base provide field power and protective earth (PE) connections to the I/O module. They are as follows:

1 and 2 when the module inserted in the base has input channels, contacts 1 and 2 deliver sensor bus power to the module
3 and 4 when the module inserted in the base has output channels, contacts 3 and 4 deliver actuator bus power to the module
5 PE is established via a captive screw on the PDM base units (see page 215) and is delivered to the Advantys STB I/O module via contact 5

Field power (sensor power for inputs and actuator power for outputs) is distributed across the island bus to the STB XBA 3000 bases by a PDM:

If the module in the STB XBA 3000 base supports only input channels, contacts 3 and 4 are not used. If the module in the STB XBA 1000 base supports only output channels, contacts 1 and 2 are not used.
STB XBA 2200 PDM Base

Summary

The STB XBA 2200 PDM base is 18.4 mm (0.72 in) wide. It is the mounting connection for any PDM(s) on the island bus. It allows you to easily remove and replace the module from the island for maintenance. It also enables the PDM to distribute sensor bus power to input modules and actuator power to output modules in the voltage group of I/O modules supported by that NIM.

A plastic block at the bottom of the base houses a PE captive screw (see page 215), which should be used to make protective earth connections for the island. This captive screw block gives the PDM an added height dimension of 138 mm (5.44 in). As a result, the PDMs are always the tallest Advantys modules in an island segment.

NOTE: The STB XBA 2200 is designed only for PDMs. Do not attempt to use this base for other size 2 Advantys modules such as STB I/O modules or island bus extension modules.

Physical Overview

The following illustration shows an STB XBA 2200 PDM base and highlights some of its key physical components.

1 user-customizable label
2 six island bus contacts
3 DIN rail lock/release latch
4 DIN rail contact
5 PE contact
6 PE captive screw
The Label Tab

A label can be positioned on the tab shown above in item 1 to help identify the module that will reside at this base unit’s island bus location. A similar label can be placed on the PDM itself so that they can be matched up properly during the island installation.

Labels are provided on an STB XMP 6700 marking label sheet, which can be ordered at no charge from your Schneider Electric service provider.

The Island Bus Contacts

The six contacts located in a column at the top of the I/O base allow island bus logic power and communication signals flow through the PDM downstream to the I/O modules:

1. not used
2. common ground contact
3. 5 VDC logic power contact
4. island bus communications + contact
5. island bus communications - contact
6. address line contact

The STB PDT 3100 and STB PDT 2100 PDMs are non-addressable modules, and they do not use the island’s logic power or communication buses. The six island bus contacts at the top of the base are used for 5 V ground and for LED power.
The Lock/Release Latch

The latch in the center front of the STB XBA 2200 base has two positions, as shown below:

Release position

Lock position

The latch needs to be in release position while the base is being inserted on the DIN rail and when it is being removed from the DIN rail. It needs to be in lock position when the base has been pushed and snapped into place on the rail before the module is inserted into the base.

The DIN Rail Contacts

One of the roles of the DIN rail is to provide the island with functional earth. Functional earth provides the island with noise immunity control and RFI/EMI protection.

When a PDM base is snapped onto the DIN rail, two contacts on the back of the rail provide the functional ground connection between the rail and the PDM that will be seated on the base.
Protective Earth

One of the key functions of a PDM, in addition to distributing sensor and actuator power to the I/O modules, is the provision of protective earth to the island. PE is essentially a return line across the bus for detected fault currents generated at a sensor or actuator device in the control system.

A captive screw at the bottom of the STB XBA 2200 base secures a PE wire to the island:

1. The PE contact
2. The PE captive screw

PE is brought to the island by an insulated ground conductor, usually a copper wire that is tied to a single grounding point on the cabinet. The ground conductor is secured by the PE captive screw. The STB XBA 2200 base distributes PE to the island via a single contact located at the bottom left side of the base (item 2 above). The PDM base distributes PE to its right and left along the island bus.

The single contact on the bottom left of the base is one of the ways to discriminate the STB XBA 2200 from other size 2 bases. The PDM base does not need the four field power contacts on its bottom left side—the PDM takes field power from an external power supply via two power connectors on the front of the module and distributes that power downstream to the I/O modules it supports.
The Protective Earth Connection

PE Contact for the Island
One of the key functions of a PDM, in addition to distributing sensor and actuator power to the I/O modules, is the provision of protective earth (PE) to the island. On the bottom of each STB XBA 2200 PDM base is a captive screw in a plastic block. By tightening this captive screw, you can make a PE contact with the island bus. Every PDM base on the island bus should make PE contact.

How PE Contact Is Made
PE is brought to the island by a heavy-duty cross-sectional wire, usually a copper braided cable, 6 mm² or larger. The wire needs to be tied to a single grounding point. The ground conductor connects to the bottom of each PDM base and is secured by the PE captive screw. Local electrical codes take precedence over our PE wiring recommendations.

Handling Multiple PE Connections
It is possible that more than one PDM will be used on an island. Each PDM base on the island will receive a ground conductor and distribute PE as described above.

NOTE: Tie the PE lines from more than one PDM to a single PE ground point in a star configuration. This will minimize ground loops and excessive current from being created in PE lines.

This illustration shows separate PE connections tied to a single PE ground:

1 the NIM
2 a PDM
3 another PDM
4 captive screws for the PE connections
5 PE connection on the DIN rail
6 PE ground point
STB XBA 2300 Beginning-of-Segment Base

Summary

The STB XBA 2300 base is 18.4 mm (0.72 in) wide. It provides the physical connections for an STB XBE 1200 BOS extension module. The base provides the physical connection point for a module on the island bus and allows you to easily remove and replace the module for maintenance.

This base should be installed in the first (leftmost) position of an extension segment. It enables the BOS module to send logic power to the I/O modules in the extension segment, and it supports island bus communications between the I/O modules in the extension segment and the NIM in the primary segment.

NOTE: The STB XBA 2000 is designed only for STB XBE 1000 BOS modules. Do not attempt to use this base for other size 2 Advantys modules such as the PDMs, EOS modules or I/O modules.

Physical Overview

The following illustration shows some of the key components an STB XBA 2300 base:

1. user-customizable label tab
2. DIN rail lock/release latch
3. DIN rail contact
NOTE: Notice the absence of logic and field power contacts along the left side of the STB XBA 2300 base. This is one way you can discriminate between an STB XBA 2300 base and other size 2 bases. Because a BOS module mounts in the leftmost location on an extension segment, it does not use any left-side contacts.

The Label Tab

A label can be positioned on the tab shown above in item 1 to help identify the specific Advantys I/O module that will reside at this base unit's island bus location. A similar label can be placed on the module itself so that they can be matched up properly during the island installation.

Labels are provided on an STB XMP 6700 marking label sheet, which can be ordered at no charge from your Schneider Electric service provider.

The Lock/Release Latch

The latch in the center front of the STB XBA 2300 base has two positions, as shown below:

Release position

Lock position
The latch needs to be in release position while the base is being inserted on the DIN rail and when it is being removed from the DIN rail. It needs to be in lock position when the base has been pushed and snapped into place on the rail before the module is inserted into the base.

The DIN Rail Contacts
One of the functions of the DIN rail is to provide the island with functional earth. Functional earth provides the island with noise immunity control and RFI/EMI protection.
When an I/O base is snapped onto the DIN rail, two contacts on the back of the rail provide the functional ground connection between the rail and the I/O module that will be seated on the base.
STB XBA 2400 End-of-segment Base

Summary

The STB XBA 2400 EOS base is 18.4 mm (0.72 in) wide. It provides the physical connections for any EOS modules used on the island bus. If this base is used, it is always the last (rightmost) base in a segment. By definition, this segment is not at the end of the island bus, so the terminator plate is never connected to it.

The base has two set of contacts on its left side. These contacts receive logic power from the NIM or BOS module at the beginning of the segment and allow the EOS module to pass island bus communication signals to the next segment or preferred module on the island bus. The base does not make any contacts on its right side.

NOTE: The STB XBA 2400 is designed only for EOS modules. Do not attempt to use this base for other size 2 Advantys modules such as I/O, PDMs or BOS modules.

Physical Overview

The following illustration shows some of the key components an STB XBA 2400 base:

1 user-customizable label tab
2 six island bus contacts
3 DIN rail lock/release latch
4 DIN rail contact
5 five field power contacts
The Label Tab

A label can be positioned on the tab shown above in item 1. The label helps identify the specific module that will reside at this base unit's island bus location. A similar label can be placed on the module itself so that they can be matched up properly during the island installation.

Labels are provided on an STB XMP 6700 marking label sheet, which can be ordered from your Schneider Electric service provider.

The Island Bus Contacts

The six contacts located in a column at the top of the EOS base provide logic power and island bus communications connections between the module and the island bus:

In the primary segment of the island bus, the signals that make these contacts come from the NIM. In extension segments, these signals come from an STB XBE 1000 BOS extension module:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>not used</td>
</tr>
<tr>
<td>2</td>
<td>the common ground contact</td>
</tr>
<tr>
<td>3</td>
<td>the 5 VDC logic power signal generated by the power supply in either the NIM (in the primary segment) or a BOS module (in an extension segment)</td>
</tr>
<tr>
<td>4 and 5</td>
<td>used to pass island bus communications between the NIM and the EOS module. The EOS module then passes communications to/from the next segment or preferred module on the island—contact 4 is positive (+ve), and contact 5 is negative (-ve).</td>
</tr>
<tr>
<td>6</td>
<td>passes the address line to the next segment or preferred module on the island bus</td>
</tr>
</tbody>
</table>
The Lock/Release Latch

The latch in the center front of the STB XBA 2400 base has two positions, as shown below:

Release position

Lock position

The latch needs to be in release position while the base is being inserted on the DIN rail and when it is being removed from the DIN rail. It needs to be in lock position when the base has been pushed and snapped into place on the rail before the module is inserted into the base.

The DIN Rail Contacts

One of the functions of the DIN rail is to provide the island with functional earth. Functional earth provides the island with noise immunity control and RFI/EMI protection.

When an I/O base is snapped onto the DIN rail, two contacts on the back of the rail provide the earth ground connection between the rail and the I/O module that will be seated on the base.
The Field Power Distribution Contacts

The five contacts located at the bottom of the STB XBA 2400 base are not used:

Field power (sensor power for inputs and actuator power for outputs) is distributed across the island bus to the STB PDT 2100 PDM:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 and 4</td>
<td>not used</td>
</tr>
<tr>
<td>5</td>
<td>PE is established via a captive screw on the PDM base units (see page 215) and is delivered to the Advantys STB I/O module via contact 5</td>
</tr>
</tbody>
</table>
STB XBA 2100 Auxiliary Power Supply Base

Summary

The STB XBA 2100 dedicated auxiliary power supply base is 18.4 mm (0.72 in) wide. It provides the physical connections for an auxiliary power supply on the island bus. The STB XBA 2100 base passes the CAN lines, and allows auto-addressing. Used jointly, the STB XBA 2100 base and the STB CPS 2111 auxiliary power supply (see page 162) enable the user to generate a new, additional 5 V logic power supply when needed.

NOTE: The STB XBA 2100 is designed only for the STB CPS 2111 auxiliary power supply described above. Do not use this base for other size 2 Advantys module such as a PDM, I/O, EOS or BOS module.

Physical Overview

The following illustration shows some of the key components of the STB XBA 2100 base:

1. user-customizable label tab
2. five island bus contacts, on left side (the right side of the base has six contacts)
3. DIN rail lock/release latch
4. DIN rail contact
5. five field power distribution contacts
Bases

The Label Tab

A label can be positioned on the tab shown above in item 1. The label helps identify the specific module that will reside at this base unit’s island bus location. A similar label can be placed on the module itself so that they can be matched up properly during the island installation.

Labels are provided on an STB XMP 6700 marking label sheet, which can be ordered from your Schneider Electric service provider.

The Island Bus Contacts

On the left side of the STB XBA 2100 auxiliary power supply base, five contacts provide ground and island bus communications connections between the module and the island bus:

In the primary segment of the island bus, the signals that make these contacts come from the NIM. In extension segments, these signals come from an STB XBE 1200 BOS extension module. The following table describes each of the five contacts on the left side of the STB XBA_2111 auxiliary power supply:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reserved</td>
</tr>
<tr>
<td>2</td>
<td>the common ground contact</td>
</tr>
<tr>
<td>3 and 4</td>
<td>used for communications across the island bus between the I/O and the NIM—contact 4 is positive (+ve), and contact 5 is negative (-ve).</td>
</tr>
<tr>
<td>5</td>
<td>connects the module in the base to the island’s address line. The NIM uses the address line to validate that the expected module is located at each physical address.</td>
</tr>
</tbody>
</table>
The right side of the STB XBA 2100 auxiliary power supply base presents six contacts, as do all Advantys module bases. The following table describes each of the six contacts on the right side of the STB XBA_2100 auxiliary power supply:

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reserved</td>
</tr>
<tr>
<td>2</td>
<td>the common ground contact</td>
</tr>
<tr>
<td>3</td>
<td>the 5 VDC logic power signal generated by the STB CPS 2100 auxiliary power supply</td>
</tr>
<tr>
<td>4 and 5</td>
<td>used for communications across the island bus between the I/O and the NIM—contact 4 is positive (+ve), and contact 5 is negative (-ve).</td>
</tr>
<tr>
<td>6</td>
<td>connects the module in the base to the island’s address line. The NIM uses the address line to validate that the expected module is located at each physical address.</td>
</tr>
</tbody>
</table>

The Lock/Release Latch

The latch in the center front of the STB XBA 2100 base has two positions, as shown below:

Release position
Lock position

The latch needs to be in release position while the base is being inserted on the DIN rail and when it is being removed from the DIN rail. It needs to be in lock position when the base has been pushed and snapped into place on the rail before the module is inserted into the base.

The DIN Rail Contacts

One of the functions of the DIN rail is to provide the island with functional earth. Functional earth provides the island with noise immunity control and RFI/EMI protection.

When an Advantys STB module is snapped onto the DIN rail, two contacts on the back of the rail provide the earth ground connection between the rail and the module that will be seated on the base.
The Field Power Distribution Contacts

The five contacts located in a column at the bottom of the STB XBA 2100 base provide AC or DC field power and a protective earth (PE) connections to the STB XBA 2100 auxiliary power supply. They are as follows:

Field power (sensor power for inputs and actuator power for outputs) from the PDM passes through the STB XBA 2100 base. However, with this base only, the STB CPS 2111 auxiliary power supply uses neither sensor power, nor actuator power.

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>not used by the STB CPS 2111 auxiliary power supply, when inserted in its intended base</td>
</tr>
<tr>
<td>3 and 4</td>
<td>not used by the STB CPS 2111 auxiliary power supply, when inserted in its intended base</td>
</tr>
<tr>
<td>5</td>
<td>PE is established via a captive screw on the PDM base units (see page 215) and is delivered to the Advantys STB module via contact 5</td>
</tr>
</tbody>
</table>

The STB CPS 2111 auxiliary power supply inserted in its dedicated base (STB XBA 2100) does not use any of the contacts described in the preceding table.
Appendix A
IEC Symbols

IEC Symbols

Introduction
The following table contains illustrations and definitions of the common IEC symbols used in describing the Advantys STB modules and system.

List of Symbols
Here are some common IEC symbols used in the field wiring examples throughout this book:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>two-wire actuator/output</td>
</tr>
<tr>
<td></td>
<td>three-wire actuator/output</td>
</tr>
<tr>
<td></td>
<td>two-wire digital sensor/input</td>
</tr>
<tr>
<td></td>
<td>three-wire digital sensor/input</td>
</tr>
<tr>
<td></td>
<td>four-wire digital sensor/input</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>analog voltage sensor</td>
</tr>
<tr>
<td></td>
<td>analog current sensor</td>
</tr>
<tr>
<td></td>
<td>thermocouple element</td>
</tr>
<tr>
<td></td>
<td>fuse</td>
</tr>
<tr>
<td></td>
<td>VAC power</td>
</tr>
<tr>
<td></td>
<td>VDC power</td>
</tr>
<tr>
<td></td>
<td>earth ground</td>
</tr>
</tbody>
</table>
100Base-T
An adaptation of the IEEE 802.3u (Ethernet) standard, the 100Base-T standard uses twisted-pair wiring with a maximum segment length of 100 m (328 ft) and terminates with an RJ-45 connector. A 100Base-T network is a baseband network capable of transmitting data at a maximum speed of 100 Mbit/s. "Fast Ethernet" is another name for 100Base-T, because it is ten times faster than 10Base-T.

10Base-T
An adaptation of the IEEE 802.3 (Ethernet) standard, the 10Base-T standard uses twisted-pair wiring with a maximum segment length of 100 m (328 ft) and terminates with an RJ-45 connector. A 10Base-T network is a baseband network capable of transmitting data at a maximum speed of 10 Mbit/s.

802.3 frame
A frame format, specified in the IEEE 802.3 (Ethernet) standard, in which the header specifies the data packet length.

A
agent
1. SNMP – the SNMP application that runs on a network device.
2. Fipio – a slave device on a network.

analog input
A module that contains circuits that convert analog DC input signals to digital values that can be manipulated by the processor. By implication, these analog inputs are direct. That means a data table value directly reflects the analog signal value.

analog output
A module that contains circuits that transmit an analog DC signal proportional to a digital value input to the module from the processor. By implication, these analog outputs are direct. That means a data table value directly controls the analog signal value.

application object
In CAN-based networks, application objects represent device-specific functionality, such as the state of input or output data.

ARP
The ARP (address resolution protocol) is the IP network layer protocol, which uses ARP to map an IP address to a MAC (hardware) address.
Glossary

auto baud
The automatic assignment and detection of a common baud rate as well as the ability of a device on a network to adapt to that rate.

auto-addressing
The assignment of an address to each Island bus I/O module and preferred device.

auto-configuration
The ability of Island modules to operate with predefined default parameters. A configuration of the Island bus based completely on the actual assembly of I/O modules.

B

basic I/O
Low-cost Advantys STB input/output modules that use a fixed set of operating parameters. A basic I/O module cannot be reconfigured with the Advantys Configuration Software and cannot be used in reflex actions.

basic network interface
A low-cost Advantys STB network interface module that supports up to 12 Advantys STB I/O modules. A basic NIM does not support the Advantys Configuration Software, reflex actions, nor the use of an HMI panel.

basic power distribution module
A low-cost Advantys STB PDM that distributes sensor power and actuator power over a single field power bus on the Island. The bus provides a maximum of 4 A total power. A basic PDM includes a 5 A fuse.

BootP
BootP (bootstrap protocol) is an UDP/IP protocol that allows an internet node to obtain its IP parameters based on its MAC address.

BOS
BOS stands for beginning of segment. When more than 1 segment of I/O modules is used in an Island, an STB XBE 1200 or an STB XBE 1300 BOS module is installed in the first position in each extension segment. Its job is to carry Island bus communications to and generate logic power for the modules in the extension segment. Which BOS module has to be selected depends on the module types that shall follow.

bus arbitrator
A master on a Fipio network.
C

CAN
The CAN (controller area network) protocol (ISO 11898) for serial bus networks is designed for the interconnection of smart devices (from multiple manufacturers) in smart systems for real-time industrial applications. CAN multi-master systems provide high data integrity through the implementation of broadcast messaging and advanced diagnostic mechanisms. Originally developed for use in automobiles, CAN is now used in a variety of industrial automation control environments.

CANopen protocol
An open industry standard protocol used on the internal communication bus. The protocol allows the connection of any enhanced CANopen device to the Island bus.

CI
This abbreviation stands for command interface.

CiA
CiA (CAN in Automation) is a non-profit group of manufacturers and users dedicated to developing and supporting CAN-based higher layer protocols.

CIP
Common Industrial Protocol. Networks that include CIP in the application layer can communicate seamlessly with other CIP-based networks. For example, the implementation of CIP in the application layer of an Ethernet TCP/IP network creates an EtherNet/IP environment. Similarly, CIP in the application layer of a CAN network creates a DeviceNet environment. Devices on an EtherNet/IP network can therefore communicate with devices on a DeviceNet network via CIP bridges or routers.

COB
A COB (communication object) is a unit of transportation (a message) in a CAN-based network. Communication objects indicate a particular functionality in a device. They are specified in the CANopen communication profile.

configuration
The arrangement and interconnection of hardware components within a system and the hardware and software selections that determine the operating characteristics of the system.

CRC
cyclic redundancy check. Messages that implement this detected error mechanism have a CRC field that is calculated by the transmitter according to the message’s content. Receiving nodes recalculate the field. Disagreement in the two codes indicates a difference between the transmitted message and the one received.
CSMA/CS
carrier sense multiple access/collision detection. CSMA/CS is a MAC protocol that networks use to manage transmissions. The absence of a carrier (transmission signal) indicates that a network channel is idle. Multiple nodes may try to simultaneously transmit on the channel, which creates a collision of signals. Each node detects the collision and immediately terminates transmission. Messages from each node are retransmitted at random intervals until the frames are successfully transmitted.

D

DDXML
Device Description eXtensible Markup Language

device name
A customer-driven, unique logical personal identifier for an Ethernet NIM. A device name (or *role name*) is created when you combine the numeric rotary switch setting with the NIM (for example, STBNIP2212_010).

After the NIM is configured with a valid device name, the DHCP server uses it to identify the island at power up.

DeviceNet protocol
DeviceNet is a low-level, connection-based network that is based on CAN, a serial bus system without a defined application layer. DeviceNet, therefore, defines a layer for the industrial application of CAN.

DHCP
dynamic host configuration protocol. A TCP/IP protocol that allows a server to assign an IP address based on a device name (host name) to a network node.

differential input
A type of input design where two wires (+ and -) are run from each signal source to the data acquisition interface. The voltage between the input and the interface ground are measured by two high-impedance amplifiers, and the outputs from the two amplifiers are subtracted by a third amplifier to yield the difference between the + and - inputs. Voltage common to both wires is thereby removed. When ground differences exist, use differential signalling instead of single ended signalling to help reduce cross channel noise.

digital I/O
An input or output that has an individual circuit connection at the module corresponding directly to a data table bit or word that stores the value of the signal at that I/O circuit. It allows the control logic to have discrete access to the I/O values.

DIN
Deutsche industrial norms. A German agency that sets engineering and dimensional standards and now has worldwide recognition.
Drivecom Profile
The Drivecom profile is part of CiA DSP 402 (profile), which defines the behavior of drives and motion control devices on CANopen networks.

Economy Segment
A special type of STB I/O segment created when an STB NCO 1113 economy CANopen NIM is used in the first location. In this implementation, the NIM acts as a simple gateway between the I/O modules in the segment and a CANopen master. Each I/O module in an economy segment acts as an independent node on the CANopen network. An economy segment cannot be extended to other STB I/O segments, preferred modules or enhanced CANopen devices.

EDS
Electronic Data Sheet. The EDS is a standardized ASCII file that contains information about a network device's communications functionality and the contents of its object dictionary. The EDS also defines device-specific and manufacturer-specific objects.

EIA
Electronic Industries Association. An organization that establishes electrical/electronic and data communication standards.

EMC
Electromagnetic Compatibility. Devices that meet EMC requirements can operate within a system’s expected electromagnetic limits without interruption.

EMI
Electromagnetic Interference. EMI can cause an interruption or disturbance in the performance of electronic equipment. It occurs when a source electronically transmits a signal that interferes with other equipment.

EOS
This abbreviation stands for end of segment. When more than 1 segment of I/O modules is used in an Island, an STB XBE 1000 or an STB XBE 1100 EOS module is installed in the last position in every segment that has an extension following it. The EOS module extends Island bus communications to the next segment. Which EOS module has to be selected depends on the module types that shall follow.

Ethernet
A LAN cabling and signaling specification used to connect devices within a defined area, e.g., a building. Ethernet uses a bus or a star topology to connect different nodes on a network.

Ethernet II
A frame format in which the header specifies the packet type, Ethernet II is the default frame format for NIM communications.
 EtherNet/IP
 EtherNet/IP (the Ethernet Industrial Protocol) is especially suited to factory applications in which there is a need to control, configure, and monitor events within an industrial system. The ODVA-specified protocol runs CIP (the Common Industrial Protocol) on top of standard Internet protocols, like TCP/IP and UDP. It is an open local (communications) network that enables the interconnectivity of all levels of manufacturing operations from the plant’s office to the sensors and actuators on its floor.

fallback state
A known state to which an Advantys STB I/O module can return in the event that its communication connection is not open.

fallback value
The value that a device assumes during fallback. Typically, the fallback value is either configurable or the last stored value for the device.

F

FED_P
Fipio extended device profile. On a Fipio network, the standard device profile type for agents whose data length is more than 8 words and equal to or less than 32 words.

Fieldbus Interface Protocol (FIP)
An open fieldbus standard and protocol that conforms to the FIP/World FIP standard. Fipio is designed to provide low-level configuration, parameterization, data exchange, and diagnostic services.

Flash memory
Flash memory is nonvolatile memory that can be overwritten. It is stored on a special EEPROM that can be erased and reprogrammed.

FRD_P
Fipio reduced device profile. On a Fipio network, the standard device profile type for agents whose data length is two words or less.

FSD_P
Fipio standard device profile. On a Fipio network, the standard device profile type for agents whose data length is more than two words and equal to or less than 8 words.

full scale
The maximum level in a specific range—e.g., in an analog input circuit the maximum allowable voltage or current level is at full scale when any increase beyond that level is over-range.

function block
A function block performs a specific automation function, such as speed control. A function block comprises configuration data and a set of operating parameters.
function code
A function code is an instruction set commanding 1 or more slave devices at a specified address(es) to perform a type of action, e.g., read a set of data registers and respond with the content.

G

gateway
A program or hardware that passes data between networks.

global_ID
global_identifier. A 16-bit integer that uniquely identifies a device’s location on a network. A global_ID is a symbolic address that is universally recognized by all other devices on the network.

GSD
generic slave data (file). A device description file, supplied by the device’s manufacturer, that defines a device’s functionality on a Profibus DP network.

H

HMI
human-machine interface. An operator interface, graphical, for industrial equipment.

hot swapping
Replacing a component with a like component while the system remains operational. When the replacement component is installed, it begins to function automatically.

HTTP
hypertext transfer protocol. The protocol that a web server and a client browser use to communicate with one another.

I

I/O base
A mounting device, designed to seat an Advantys STB I/O module, connect it on a DIN rail, and connect it to the Island bus. It provides the connection point where the module can receive either 24 VDC or 115/230 VAC from the input or output power bus distributed by a PDM.

I/O module
In a programmable controller system, an I/O module interfaces directly to the sensors and actuators of the machine/process. This module is the component that mounts in an I/O base and provides electrical connections between the controller and the field devices. Normal I/O module capacities are offered in a variety of signal levels and capacities.
Glossary

I/O scanning
The continuous polling of the Advantys STB I/O modules performed by the COMS to collect data, status, and diagnostics information.

IEC
International Electrotechnical Commission Carrier. Founded in 1884 to focus on advancing the theory and practice of electrical, electronics, and computer engineering, and computer science. EN 61131-2 is the specification that deals with industrial automation equipment.

IEC type 1 input
Type 1 digital inputs support sensor signals from mechanical switching devices such as relay contacts and push buttons operating in normal environmental conditions.

IEC type 2 input
Type 2 digital inputs support sensor signals from solid state devices or mechanical contact switching devices such as relay contacts, push buttons (in normal or harsh environmental conditions), and 2- or 3-wire proximity switches.

IEC type 3 input
Type 3 digital inputs support sensor signals from mechanical switching devices such as relay contacts, push buttons (in normal-to-moderate environmental conditions), 3-wire proximity switches and 2-wire proximity switches that have:
- a voltage drop of no more than 8 V
- a minimum operating current capability less than or equal to 2.5 mA
- a maximum off-state current less than or equal to 1.5 mA

IEEE
Institute of Electrical and Electronics Engineers, Inc. The international standards and conformity assessment body for all fields of electrotechnology, including electricity and electronics.

IGMP
(Internet group management protocol). This Internet standard for multicasting allows a host to subscribe to a particular multicast group.

industrial I/O
An Advantys STB I/O module designed at a moderate cost for typical continuous, high-duty-cycle applications. Modules of this type often feature standard IEC threshold ratings, providing user-configurable parameter options, on-board protection, good resolution, and field wiring options. They are designed to operate in moderate-to-high temperature ranges.

input filtering
The amount of time that a sensor has to hold its signal on or off before the input module detects the change of state.

input polarity
An input channel’s polarity determines when the input module sends a 1 and when it sends a 0 to the master controller. If the polarity is *normal*, an input channel sends a 1 to the controller when its field sensor turns on. If the polarity is *reverse*, an input channel sends a 0 to the controller when its field sensor turns on.
input response time
The time it takes for an input channel to receive a signal from the field sensor and put it on the
Island bus.

INTERBUS protocol
The INTERBUS fieldbus protocol observes a master/slave network model with an active ring
topology, having all devices integrated in a closed transmission path.

IOC object
Island operation control object. A special object that appears in the CANopen object dictionary
when the remote virtual placeholder option is enabled in a CANopen NIM. It is a 16-bit word that
provides the fieldbus master with a mechanism for issuing reconfiguration and start requests.

IOS object
Island operation status object. A special object that appears in the CANopen object dictionary
when the remote virtual placeholder option is enabled in a CANopen NIM. It is a 16-bit word that
reports the success of reconfiguration and start requests or records diagnostic information in the
event that a request is not completed.

IP
internet protocol. That part of the TCP/IP protocol family that tracks the internet addresses of
nodes, routes outgoing messages, and recognizes incoming messages.

IP Rating
Ingress Protection rating according to IEC 60529. Each IP rating requires the following standards
to be met with respect to a rated device:
• IP20 modules are protected against ingress and contact of objects larger than 12.5 mm. The
 module is not protected against harmful ingress of water.
• IP67 modules are completely protected against ingress of dust and contact. Ingress of water in
 harmful quantity is not possible when the enclosure is immersed in water up to 1 m.

LAN
local area network. A short-distance data communications network.

light industrial I/O
An Advantys STB I/O module designed at a low cost for less rigorous (e.g., intermittent, low-duty-
cycle) operating environments. Modules of this type operate in lower temperature ranges with
lower qualification and agency requirements and limited on-board protection; they have limited or
no user-configuration options.

linearity
A measure of how closely a characteristic follows a straight-line function.

LSB
least significant bit, least significant byte. The part of a number, address, or field that is written as
the rightmost single value in conventional hexadecimal or binary notation.
Glossary

M

MAC address
media access control address. A 48-bit number, unique on a network, that is programmed into each network card or device when it is manufactured.

mandatory module
When an Advantys STB I/O module is configured to be mandatory, it should be present and healthy in the Island configuration for the Island to be operational. If a mandatory module is inoperable or is removed from its location on the Island bus, the Island goes to a pre-operational state. By default, all I/O modules are not mandatory. You should use the Advantys Configuration Software to set this parameter.

master/slave model
The direction of control in a network that implements the master/slave model is from the master to the slave devices.

Modbus
Modbus is an application layer messaging protocol. Modbus provides client and server communications between devices connected on different types of buses or networks. Modbus offers many services specified by function codes.

MOV
mend oxide varistor. A 2-electrode semiconductor device with a voltage-dependant nonlinear resistance that drops markedly as the applied voltage is increased. It is used to suppress transient voltage surges.

MSB
most significant bit, most significant byte. The part of a number, address, or field that is written as the leftmost single value in conventional hexadecimal or binary notation.

N

N.C. contact
normally closed contact. A relay contact pair that is closed when the relay coil is de-energized and open when the coil is energized.

N.O. contact
normally open contact. A relay contact pair that is open when the relay coil is de-energized and closed when the coil is energized.

NEMA
National Electrical Manufacturers Association

network cycle time
The time that a master requires to complete a single scan of the configured I/O modules on a network device; typically expressed in microseconds.
Glossary

NIM

network interface module. This module is the interface between an Island bus and the fieldbus network of which the Island is a part. A NIM enables all the I/O on the Island to be treated as a single node on the fieldbus. The NIM also provides 5 V of logic power to the Advantys STB I/O modules in the same segment as the NIM.

NMT

network management. NMT protocols provide services for network initialization, diagnostic control, and device status control.

O

object dictionary

Part of the CANopen device model that provides a map to the internal structure of CANopen devices (according to CANopen profile DS-401). A device’s object dictionary (also called the *object directory*) is a lookup table that describes the data types, communications objects, and application objects the device uses. By accessing a particular device’s object dictionary through the CANopen fieldbus, you can predict its network behavior and build a distributed application.

ODVA

Open DeviceNet Vendors Association. The ODVA supports the family of network technologies that are built on the Common Industrial Protocol (EtherNet/IP, DeviceNet, and CompoNet).

open industrial communication network

A distributed communication network for industrial environments based on open standards (EN 50235, EN50254, and EN50170, and others) that allows the exchange of data between devices from different manufacturers.

output filtering

The amount that it takes an output channel to send change-of-state information to an actuator after the output module has received updated data from the NIM.

output polarity

An output channel’s polarity determines when the output module turns its field actuator on and when it turns the actuator off. If the polarity is *normal*, an output channel turns its actuator on when the master controller sends it a 1. If the polarity is *reverse*, an output channel turns its actuator on when the master controller sends it a 0.

output response time

The time it takes for an output module to take an output signal from the Island bus and send it to its field actuator.

P

parameterize

To supply the required value for an attribute of a device at run-time.
Glossary

PDM
power distribution module. A module that distributes either AC or DC field power to a cluster of I/O modules directly to its right on the Island bus. A PDM delivers field power to the input modules and the output modules. It is important that all the I/O installed directly to the right of a PDM be in the same voltage group—either 24 VDC, 115 VAC, or 230 VAC.

PDO
process data object. In CAN-based networks, PDOs are transmitted as unconfirmed broadcast messages or sent from a producer device to a consumer device. The transmit PDO from the producer device has a specific identifier that corresponds to the receive PDO of the consumer devices.

PE
protective ground. A return line across the bus to keep improper currents generated at a sensor or actuator device out of the control system.

peer-to-peer communications
In peer-to-peer communications, there is no master/slave or client/server relationship. Messages are exchanged between entities of comparable or equivalent levels of functionality, without having to go through a third party (like a master device).

PLC
programmable logic controller. The PLC is the brain of an industrial manufacturing process. It automates a process as opposed to relay control systems. PLCs are computers suited to survive the harsh conditions of the industrial environment.

PowerSuite Software
PowerSuite Software is a tool for configuring and monitoring control devices for electric motors, including ATV31x, ATV71, and TeSys U.

preferred module
An I/O module that functions as an auto-addressable device on an Advantys STB Island but is not in the same form factor as a standard Advantys STB I/O module and therefore does not fit in an I/O base. A preferred device connects to the Island bus via an EOS module and a length of a preferred module extension cable. It can be extended to another preferred module or back into a BOS module. If it is the last device on the Island, it should be terminated with a 120 Ω terminator.

premium network interface
A premium NIM has advanced features over a standard or basic NIM.

prioritization
An optional feature on a standard NIM that allows you to selectively identify digital input modules to be scanned more frequently during a the NIM’s logic scan.

process I/O
An Advantys STB I/O module designed for operation at extended temperature ranges in conformance with IEC type 2 thresholds. Modules of this type often feature high levels of on-board diagnostics, high resolution, user-configurable parameter options, and higher levels of agency approval.
Glossary

process image
A part of the NIM firmware that serves as a real-time data area for the data exchange process. The process image includes an input buffer that contains current data and status information from the Island bus and an output buffer that contains the current outputs for the Island bus, from the fieldbus master.

producer/consumer model
In networks that observe the producer/consumer model, data packets are identified according to their data content rather than by their node address. All nodes listen on the network and consume those data packets that have appropriate identifiers.

Profibus DP
Profibus Decentralized Peripheral. An open bus system that uses an electrical network based on a shielded 2-wire line or an optical network based on a fiber-optic cable. DP transmission allows for high-speed, cyclic exchange of data between the controller CPU and the distributed I/O devices.

Q
QoS
(quality of service). The practice of assigning different priorities to traffic types for the purpose of regulating data flow on the network. In an Industrial network, QoS can help provide a predictable level of network performance.

R
reflex action
A simple, logical command function configured locally on an Island bus I/O module. Reflex actions are executed by Island bus modules on data from various Island locations, like input and output modules or the NIM. Examples of reflex actions include compare and copy operations.

repeater
An interconnection device that extends the permissible length of a bus.

reverse polarity protection
Use of a diode in a circuit to help protect against damage and unintended operation in the event that the polarity of the applied power is accidentally reversed.

rms
root mean square. The effective value of an alternating current, corresponding to the DC value that produces the same heating effect. The rms value is computed as the square root of the average of the squares of the instantaneous amplitude for 1 complete cycle. For a sine wave, the rms value is 0.707 times the peak value.

role name
A customer-driven, unique logical personal identifier for an Ethernet NIM. A role name (or device name) is created when you:
combine the numeric rotary switch setting with the NIM (for example, STBNIP2212_010), or . . .

- edit the **Device Name** setting in the NIM's embedded web server pages

After the NIM is configured with a valid role name, the DHCP server uses it to identify the island at power up.

RSTP

(rapid spanning tree protocol). Allows a network design to include spare (redundant) links that provide automatic backup paths when an active link becomes inoperable, without loops or manual enabling/disabling of backup links. Loops should be avoided because they result in flooding the network.

RTD

resistive temperature detect. An **RTD device** is a temperature transducer composed of conductive wire elements typically made of platinum, nickel, copper, or nickel-iron. An RTD device provides a variable resistance across a specified temperature range.

RTP

run-time parameters. **RTP** lets you monitor and modify selected I/O parameters and Island bus status registers of the NIM while the Advantys STB Island is running. The RTP feature uses 5 reserved output words in the NIM’s process image (the RTP request block) to send requests, and 4 reserved input words in the NIM’s process image (the RTP response block) to receive responses. Available only in standard NIMs running firmware version 2.0 or higher.

Rx

reception. For example, in a CAN-based network, a PDO is described as an RxPDO of the device that receives it.

S

SAP

service access point. The point at which the services of 1 communications layer, as defined by the ISO OSI reference model, is made available to the next layer.

SCADA

supervisory control and data acquisition. Typically accomplished in industrial settings by means of microcomputers.

SDO

service data object. In CAN-based networks, SDO messages are used by the fieldbus master to access (read/write) the object directories of network nodes.

segment

A group of interconnected I/O and power modules on an Island bus. An Island should have at least 1 segment and, depending on the type of NIM used, may have as many as 7 segments. The first (leftmost) module in a segment needs to provide logic power and Island bus communications to the I/O modules on its right. In the primary or basic segment, that function is filled by a NIM. In an extension segment, that function is filled by an STB XBE 1200 or an STB XBE 1300 BOS module.
SELV
safety extra low voltage. A secondary circuit designed so that the voltage between any 2 accessible parts (or between 1 accessible part and the PE terminal for Class 1 equipment) does not exceed a specified value under normal conditions or under single-fault conditions.

SIM
subscriber identification module. Originally intended for authenticating users of mobile communications, SIMs now have multiple applications. In Advantys STB, configuration data created or modified with the Advantys Configuration Software can be stored on a SIM (referred to as the "removable memory card") and then written to the NIM’s Flash memory.

single-ended inputs
An analog input design technique whereby a wire from each signal source is connected to the data acquisition interface, and the difference between the signal and ground is measured. For the success of this design technique, 2 conditions are imperative: the signal source should be grounded, and the signal ground and data acquisition interface ground (the PDM lead) should have the same potential.

sink load
An output that, when turned on, receives DC current from its load.

size 1 base
A mounting device, designed to seat an STB module, install it on a DIN rail, and connect it to the Island bus. It is 13.9 mm (0.55 in.) wide and 128.25 mm (5.05 in.) high.

size 2 base
A mounting device, designed to seat an STB module, install it on a DIN rail, and connect it to the Island bus. It is 18.4 mm (0.73 in.) wide and 128.25 mm (5.05 in.) high.

size 3 base
A mounting device, designed to seat an STB module, install it on a DIN rail, and connect it to the Island bus. It is 28.1 mm (1.11 in.) wide and 128.25 mm (5.05 in.) high.

slice I/O
An I/O module design that combines a small number of channels (between 2 and 6) in a small package. The idea is to allow a system developer to purchase just the right amount of I/O and to be able to distribute it around the machine in an efficient, mechatronics way.

SM_MPS
state management_message periodic services. The applications and network management services used for process control, data exchange, diagnostic message reporting, and device status notification on a Fipio network.

SNMP
simple network management protocol. The UDP/IP standard protocol used to manage nodes on an IP network.

snubber
A circuit generally used to suppress inductive loads—it consists of a resistor in series with a capacitor (in the case of an RC snubber) and/or a metal-oxide varistor placed across the AC load.
source load
A load with a current directed into its input; has to be driven by a current source.

standard I/O
Any of a subset of Advantys STB input/output modules designed at a moderate cost to operate with user-configurable parameters. A standard I/O module may be reconfigured with the Advantys Configuration Software and, in most cases, may be used in reflex actions.

standard network interface
An Advantys STB network interface module designed at moderate cost to support the configuration capabilities, multi-segment design and throughput capacity suitable for most standard applications on the Island bus. An Island run by a standard NIM can support up to 32 addressable Advantys STB and/or preferred I/O modules, up to 12 of which may be standard CANopen devices.

standard power distribution module
An Advantys STB module that distributes sensor power to the input modules and actuator power to the output modules over two separate power buses on the Island. The bus provides a maximum of 4 A to the input modules and 8 A to the output modules. A standard PDM requires a 5 A fuse for the input modules and an 8 A fuse for the outputs.

STD_P
standard profile. On a Fipio network, a standard profile is a fixed set of configuration and operating parameters for an agent device, based on the number of modules that the device contains and the device’s total data length. There are 3 types of standard profiles: Fipio reduced device profile (FRD_P), Fipio standard device profile (FSD_P), and the Fipio extended device profile (FED_P).

stepper motor
A specialized DC motor that allows discrete positioning without feedback.

subnet
A part of a network that shares a network address with the other parts of a network. A subnet may be physically and/or logically independent of the rest of the network. A part of an internet address called a subnet number, which is ignored in IP routing, distinguishes the subnet.

surge suppression
The process of absorbing and clipping voltage transients on an incoming AC line or control circuit. Metal-oxide varistors and specially designed RC networks are frequently used as surge suppression mechanisms.

TC
thermocouple. A TC device is a bimetallic temperature transducer that provides a temperature value by measuring the voltage differential caused by joining together two different metals at different temperatures.
TCP
transmission control protocol. A connection-oriented transport layer protocol that provides full-duplex data transmission. TCP is part of the TCP/IP suite of protocols.

telegram
A data packet used in serial communication.

TFE
transparent factory Ethernet. Schneider Electric’s open automation framework based on TCP/IP.

Tx
transmission. For example, in a CAN-based network, a PDO is described as a TxPDO of the device that transmits it.

UDP
user datagram protocol. A connectionless mode protocol in which messages are delivered in a datagram to a destination computer. The UDP protocol is typically bundled with the Internet Protocol (UDP/IP).

V
varistor
A 2-electrode semiconductor device with a voltage-dependant nonlinear resistance that drops markedly as the applied voltage is increased. It is used to suppress transient voltage surges.

voltage group
A grouping of Advantys STB I/O modules, all with the same voltage requirement, installed directly to the right of the appropriate power distribution module (PDM) and separated from modules with different voltage requirements. Install modules with different voltage requirements in different voltage groups.

VPCR object
virtual placeholder configuration read object. A special object that appears in the CANopen object dictionary when the remote virtual placeholder option is enabled in a CANopen NIM. It provides a 32-bit subindex that represents the actual module configuration used in a physical Island.

VPCW object
virtual placeholder configuration write object. A special object that appears in the CANopen object dictionary when the remote virtual placeholder option is enabled in a CANopen NIM. It provides a 32-bit subindex where the fieldbus master can write a module reconfiguration. After the fieldbus writes to the VPCW subindex, it can issue a reconfiguration request to the NIM that begins the remote virtual placeholder operation.
watchdog timer

A timer that monitors a cyclical process and is cleared at the conclusion of each cycle. If the watchdog runs past its programmed time period, it reports a time-out.
Index

A
- actuator bus contacts
 - on an STB XBA 1000 I/O base, 202
 - on an STB XBA 2000 I/O base, 206, 222
 - on an STB XBA 3000 I/O base, 210
 - on STB XBA 2100 auxiliary power supply base, 227
- Actuator bus contacts
 - on the I/O bases, 33
 - agency approvals, 35
 - AM1DP200 DIN rail, 19
 - auto-configure
 - STB AHI 8321 HART module, 103
 - auxiliary power supply, 163

B
- base units
 - STB XBA 2300, 216
 - STB XBA 2400, 219
- beginning of segment module, 135, 142

C
- CANopen cable requirements, 155
- color code, digital DC input modules, 135, 142
- color code, island bus communications, 119, 126
- color code, yellow, 163
- communications interface
 - auxiliary power supply, 167
 - BOS module, 139, 139, 146
 - EOS module, 123, 131
 - STB XBE 1300 BOS, 148
- configurable parameters
 - auxiliary power supply, 167
 - BOS, 149
 - EOS, 132

D
- DIN rail, 19

E
- electromagnetic susceptibility specifications, 36
- emission specifications, 36
- end of segment module, 119, 126
- environmental system specifications, 35
- EOS/BOS modules compatibility
 - joining island bus segments, 122, 130, 138, 146
- extension cable
 - STB XCA 100x, 127, 143

F
- Field power distribution contacts
 - on the I/O bases, 33
- Flash memory, 104
- functional description
 - auxiliary power supply, 167
 - BOS module, 138, 146
 - EOS module, 122, 130
- Functional ground connection
 - on the I/O bases, 33

I
- I/O base units
 - STB XBA 1000, 199
 - STB XBA 2000, 203
 - STB XBA 3000, 207
- island bus addresses
 - auxiliary power supply, 167
 - BOS module, 139, 146
 - EOS module, 122, 130
Index

J
joining island bus segments
EOS/BOS modules compatibility, 122, 130, 138, 146

K
keying considerations
STB CPS_2111 auxiliary power supply, 165
STB XBE_1000 auxiliary power supply, 120, 127, 136, 143
keying pins
STB XMP 7810 PDM kit, 179, 191

L
labels
for Advantys modules and bases, 200, 204, 217, 220, 224
for STB modules and bases, 212
LED indications
STB XBE 1000 EOS module, 121
STB XBE 1200 BOS module, 137
LED indicators
STB XBE 1100 EOS module, 129
STB XBE 1300 BOS module, 145
LEDs
on an STB XBE 2100 CANopen extension module, 154
on the STB PDT 3100 DC power distribution module, 177
STB AHI 8321 HART module, 86
STB CPS 2111 auxiliary power supply, 166
STB XBE 1000 EOS module, 121
STB XBE 1100 EOS module, 129
STB XBE 1200 BOS module, 137
STB XBE 1300 BOS module, 145
Logic side contacts
on the I/O bases, 32

M
mandatory module, 114

N
not present, 114

P
PDM base unit
STB XBA 2200, 211
PE bus contact
on the I/O bases, 33
power distribution modules
STB PDT 3100 standard 24 VDC, 172
STB PDT 3105 basic 24 VDC, 186
power wiring
on the STB PDT 3100 power distribution module, 179
on the STB PDT 3105 power distribution module, 191
preferred module
connected to EOS, 132, 149

R
reflex actions, 114
RST button, 104

S
sensor bus contacts
on an STB XBA 1000 I/O base, 202
on an STB XBA 2000 I/O base, 260, 222
on an STB XBA 3000 I/O base, 210
on STB XBA 2100 auxiliary power supply base, 227
on the I/O bases, 33
specifications
electromagnetic susceptibility, 36
emission, 36
environmental, 35
environmental, system-wide, 35
standard CANopen device cable require-
ments, 155
standard CANopen device requirements, 155, 158
STB AHI 8321
process image, 95
data for the process image, 94
field wiring, 91
STB AHI 8321
functional description, 89
STB AHI 8321
physical description, 84
specifications, 115
STB AHI 8321 HART module
auto-configure, 103
LEDs, 86
STB AHI 8321 module
channel settings, 106
configuring, 105
IO image, 111
mandatory, 113
mapping data items, 109
STB CPS 2111 auxiliary power supply
communications interface, 167
configurable parameters, 167
functional description, 167
in an extension segment, 168
in the primary segment, 167
introduction, 162
island bus addresses, 167
LEDs, 166
physical characteristics, 163
STB EPI 1145
data for the process image, 52
field wiring, 44
functional description, 46
LED indicators, 41
output data and status, 57
physical characteristics, 39
SHIFT button, 42
STB EPI 2145
data for the process image, 76
field wiring, 66
functional description, 70
LED indicators, 63
physical characteristics, 61
SHIFT button, 64
STB PDT 3100 DC power distribution module
LED indicators, 177
STB PDT 3100 power distribution module
power wiring, 179
wiring diagram, 180
STB PDT 3105 power distribution module
power wiring, 191
wiring diagram, 192
STB XBA 1000 I/O base
for 13.9 mm Advantys STB I/O modules, 199
STB XBA 2000 I/O base
for 18.4 mm Advantys STB I/O modules, 203
STB XBA 2100 auxiliary power supply base
for 18.4 mm Advantys STB auxiliary power supply, 223
STB XBA 2200 PDM base
for AC and DC power distribution, 211
STB XBA 2300 BOS base
for STB XBE 1200 modules, 216
STB XBA 2400 EOS base
for STB XBE 1000 modules, 219
STB XBA 3000 I/O base
for 27.8 mm Advantys I/O modules, 207
STB XBE 1000 End of Segment Module
general specifications, 124
LED indications, 121
LEDs, 121
STB XBE 1000 EOS module
communications interface, 123
EOS/BOS module compatibility, 122
functional description, 122
introduction, 118
island bus addresses, 122
physical characteristics, 119
Index

STB XBE 1100 End of Segment Module
 LED indicators, 129
 LEDs, 129
STB XBE 1100 EOS module
 communications interface, 131
 configurable parameters, 132
 connection to preferred module, 132
 EOS/BOS module compatibility, 130
 functional description, 130
STB XBE 1100 EOS module
 general specifications, 133
STB XBE 1100 EOS module
 introduction, 125
 island bus addresses, 130
 physical characteristics, 126
STB XBE 1200 BOS module
 communications interface, 139, 139
 EOS/BOS module compatibility, 138
 functional description, 138
STB XBE 1200 BOS module
 general specifications, 140
STB XBE 1200 BOS module
 introduction, 134
 island bus addresses, 139
STB XBE 1200 BOS module
 LED indications, 137
 LEDs, 137
STB XBE 1200 BOS module
 physical characteristics, 135
STB XBE 130 EOS module
 connection to preferred module, 149
STB XBE 1300 BOS module
 communications interface, 146, 148
 configurable parameters, 149
 EOS/BOS module compatibility, 147
 functional description, 146
STB XBE 1300 BOS module
 general specifications, 150
STB XBE 1300 BOS module
 introduction, 141
 island bus addresses, 146
STB XBE 1300 BOS module
 LED indicators, 145
 LEDs, 145
STB XBE 1300 BOS module
 physical characteristics, 142
STB XBE 2100 CANopen extension module
 baud rate requirement, 158
STB XBE 2100 CANopen extension module
 cable requirements, 155
STB XBE 2100 CANopen extension module
 LED indicators, 154
 power requirements, 158
 wiring diagrams, 156
STB XCA 100x
 extension cable, 127, 143
STB XMP 6700 label sheet, 200, 204, 220, 224
STB XMP 6700 marking label sheet, 212, 217
STB XMP 7810 safety keying pins
 for the PDM power connectors, 179, 191
STB XTS 1130 screw type power wiring connector
 on the STB PDT 3100 power distribution module, 179
 on the STB PDT 3105 power distribution module, 191
STB XTS 2130 spring clamp power wiring connector
 on the STB PDT 3100 power distribution module, 179
 on the STB PDT 3105 power distribution module, 191

T

Tego power parallel interface
 STB EPI 1145, 38
Tego Power system
 components, 45
 overview, 45
TeSys model U parallel interface
 STB EPI 2145, 60
TeSys model U system
 components, 66
 overview, 66
 power base, 67
Virtual Placeholders, 114

wiring diagram
 with I/O, 92
 without I/O, 93