ConneXium

TCSESM, TCSESM-E Managed Switch
Command Line Interface Reference Manual
The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer must perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2018 Schneider Electric. All Rights Reserved.
Content

1 Command Structure
1.1 Format
1.1.1 Command
1.1.2 Parameters
1.1.3 Values
1.1.4 Conventions
1.1.5 Annotations
1.1.6 Special keys
1.1.7 Special characters in scripts
1.1.8 Secrets in scripts

2 Quick Start up
2.1 Quick Starting the Switch
2.2 System Info and System Setup

3 Mode-based CLI
3.1 Mode-based Topology
3.2 Mode-based Command Hierarchy
3.3 Flow of Operation
3.4 “No” Form of a Command
3.4.1 Support for “No” Form 49
3.4.2 Behavior of Command Help ("?") 49

4 CLI Commands: Base 51

4.1 System Information and Statistics Commands 52
4.1.1 show address-conflict 52
4.1.2 show arp switch 52
4.1.3 show bridge address-learning 53
4.1.4 show bridge address-relearn-detect 53
4.1.5 show bridge aging-time 54
4.1.6 show bridge duplex-mismatch-detect 54
4.1.7 show bridge fast-link-detection 54
4.1.8 show bridge framesize 55
4.1.9 show bridge vlan-learning 55
4.1.10 show bridge framesize 56
4.1.11 show config-watchdog 56
4.1.12 show device-status 57
4.1.13 show authentication 58
4.1.14 show eventlog 59
4.1.15 show interface 60
4.1.16 show interface ethernet 62
4.1.17 show interface switchport 70
4.1.18 show logging 70
4.1.19 show mac-addr-table 71
4.1.20 show signal-contact 72
4.1.21 show slot 73
4.1.22 show running-config 74
4.1.23 show sysinfo 75
4.1.24 show temperature 77

4.2 Management VLAN Commands 78
4.2.1 network mgmt_vlan 78

4.3 Class of Service (CoS) Commands 79
4.3.1 classofservice dot1p-mapping 80
4.3.2 classofservice ip-dscp-mapping 81
4.3.3 classofservice trust 82
4.3.4 show classofservice dot1p-mapping 83
4.3.5 show classofservice ip-dscp-mapping 84
4.3.6 show classofservice trust 85
4.3.7 vlan port priority all 86
4.3.8 vlan priority 86

4.4 Management Commands 87
4.4.1 transport input telnet 87
4.4.2 bridge address-learning 88
4.4.3 bridge address-relearn detect operation 88
4.4.4 bridge address-relearn detect threshold 88
4.4.5 bridge aging-time 90
4.4.6 bridge fast-link-detection 91
4.4.7 bridge duplex-mismatch-detect operation 91
4.4.8 bridge vlan-learning 92
4.4.9 ethernet-ip 92
4.4.10 network javascriptmode 93
4.4.11 network mgmt-access add 94
4.4.12 network mgmt-access delete 94
4.4.13 network mgmt-access modify 95
4.4.14 network mgmt-access operation 96
4.4.15 network mgmt-access status 96
4.4.16 network parms 97
4.4.17 network protocol 97
4.4.18 network priority 98
4.4.19 serial timeout 99
4.4.20 set prompt 100
4.4.21 show ethernet-ip 100
4.4.22 show network 101
4.4.23 show network mgmt-access 102
4.4.24 show serial 104
4.4.25 show snmp-access 104
4.4.26 show snmpcommunity 105
4.4.27 show snmp sync 106
4.4.28 show snmptrap 107
4.4.29 show telnetcon 108
4.4.30 show trapflags 109
4.4.31 snmp-access global 110
4.4.32 snmp-access version 111
4.4.33 snmp-server 112
4.4.34 snmp-server community 113
4.4.35 snmp-server contact 114
4.4.36 snmp-server community ipaddr 115
4.4.37 snmp-server community ipmask 116
4.4.38 snmp-server community mode
4.4.39 snmp-server community ro
4.4.40 snmp-server community rw
4.4.41 snmp-server location
4.4.42 snmp-server sysname
4.4.43 snmp-server enable traps
4.4.44 snmp-server enable traps chassis
4.4.45 snmp-server enable traps l2redundancy
4.4.46 snmp-server enable traps linkmode
4.4.47 snmp-server enable traps multiusers
4.4.48 snmp-server enable traps port-sec
4.4.49 snmp-server enable traps stpmode
4.4.50 snmptrap
4.4.51 snmptrap ipaddr
4.4.52 snmptrap mode
4.4.53 snmptrap snmpversion
4.4.54 telnetcon maxsessions
4.4.55 telnetcon timeout

4.5 Syslog Commands
4.5.1 logging buffered
4.5.2 logging buffered wrap
4.5.3 logging cli-command
4.5.4 logging console
4.5.5 logging host
4.5.6 logging host reconfigure
4.5.7 logging host remove
4.5.8 logging snmp-requests get operation
4.5.9 logging snmp-requests set operation
4.5.10 logging snmp-requests get severity
4.5.11 logging snmp-requests set severity
4.5.12 logging syslog
4.5.13 logging syslog port

4.6 Scripting Commands
4.6.1 script apply
4.6.2 script delete
4.6.3 script list
4.6.4 script show
4.6.5 script validate

4.7 Device Configuration Commands
4.7.1 auto-disable reason
4.7.2 auto-disable reset
4.7.3 auto-disable timer
4.7.4 show auto-disable brief
4.7.5 show auto-disable reasons
4.7.6 auto-negotiate
4.7.7 cable-crossing
4.7.8 auto-negotiate all
4.7.9 macfilter
4.7.10 macfilter adddest
4.7.11 monitor session <session-id> destination interface
4.7.12 monitor session <session-id> mode
4.7.13 monitor session <session-id> source interface
4.7.14 rmon-alarm add
4.7.15 rmon-alarm delete
4.7.16 rmon-alarm enable
4.7.17 rmon-alarm disable
4.7.18 rmon-alarm modify mib-variable
4.7.19 rmon-alarm modify thresholds
4.7.20 rmon-alarm modify interval
4.7.21 rmon-alarm modify sample-type
4.7.22 rmon-alarm modify startup-alarm
4.7.23 rmon-alarm modify rising-event
4.7.24 rmon-alarm modify falling-event
4.7.25 serviceshell
4.7.26 set garp timer join
4.7.27 set garp timer leave
4.7.28 set garp timer leaveall
4.7.29 set gmrp adminmode
4.7.30 set gmrp interfacemode (Interface Config Mode)
4.7.31 set gmrp interfacemode (Global Config Mode)
4.7.32 set gmrp forward-all-groups
4.7.33 set gmrp forward-unknown
4.7.34 set igmp (Global Config Mode)
4.7.35 set igmp (Interface Config Mode)
4.7.36 set igmp aging-time-unknown
4.7.37 set igmp automatic-mode
4.7.38 set igmp forward-all
4.7.39 set igmp forward-unknown
4.7.40 set igmp static-query-port
4.7.41 set igmp groupmembershipinterval 181
4.7.42 set igmp interfacemode 182
4.7.43 set igmp lookup-interval-unknown 183
4.7.44 set igmp lookup-resp-time-unknown 183
4.7.45 set igmp maxresponse 184
4.7.46 set igmp querier max-response-time 185
4.7.47 set igmp querier protocol-version 185
4.7.48 set igmp querier status 186
4.7.49 set igmp querier tx-interval 186
4.7.50 set igmp query-ports-to-filter 187
4.7.51 set pre-login-banner text 188
4.7.52 selftest ramtest 189
4.7.53 selftest reboot-on-error 189
4.7.54 selftest sysmon 190
4.7.55 show garp 191
4.7.56 show gmrp configuration 192
4.7.57 show igmpsnooping 194
4.7.58 show mac-filter-table gmrp 196
4.7.59 show mac-filter-table igmpsnooping 197
4.7.60 show mac-filter-table multicast 198
4.7.61 show mac-filter-table static 199
4.7.62 show mac-filter-table staticfiltering 200
4.7.63 show mac-filter-table stats 201
4.7.64 show monitor session 202
4.7.65 show port 203
4.7.66 show rmon-alarm 205
4.7.67 show selftest 205
4.7.68 show serviceshell 205
4.7.69 show storm-control 207
4.7.70 show storm-control limiters port 208
4.7.71 show vlan 208
4.7.72 show vlan brief 210
4.7.73 show vlan port 211
4.7.74 shutdown 212
4.7.75 shutdown all 213
4.7.76 snmp sync community-to-v3 214
4.7.77 snmp sync v3-to-community 215
4.7.78 snmp trap link-status 216
4.7.79 snmp trap link-status all 217
4.7.80 spanning-tree bpdumigrationcheck 218
4.7.81 speed 219
4.7.82 storm-control broadcast 220
4.7.83 storm-control egress-limiting 221
4.7.84 storm-control ingress-limiting 221
4.7.85 storm-control broadcast (port-related) 221
4.7.86 storm-control egress-limit 222
4.7.87 storm-control ingress-limit 222
4.7.88 storm-control ingress-mode 222
4.7.89 storm-control flowcontrol 223
4.7.90 vlan 224
4.7.91 vlan0-transparent-mode 225
4.7.92 vlan acceptframe 226
4.7.93 vlan ingressfilter 227
4.7.94 vlan name 228
4.7.95 vlan participation 229
4.7.96 vlan participation all 230
4.7.97 vlan port acceptframe all 231
4.7.98 vlan port ingressfilter all 232
4.7.99 vlan port pvid all 233
4.7.100 vlan port tagging all 234
4.7.101 vlan pvid 235
4.7.102 vlan tagging 236

4.8 User Account Management Commands 237
4.8.1 disconnect 237
4.8.2 show loginsession 238
4.8.3 show users 239
4.8.4 users defaultlogin 240
4.8.5 users login <user> 241
4.8.6 users access 242
4.8.7 users name 243
4.8.8 users passwd 244
4.8.9 users snmpv3 accessmode 245
4.8.10 users snmpv3 authentication 246
4.8.11 users snmpv3 encryption 247

4.9 System Utilities 249
4.9.1 address-conflict 249
4.9.2 cablestatus 250
4.9.3 clear eventlog 250
4.9.4 traceroute 250
<table>
<thead>
<tr>
<th>Section</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.5</td>
<td>clear arp-table-switch</td>
<td>251</td>
</tr>
<tr>
<td>4.9.6</td>
<td>clear config</td>
<td>252</td>
</tr>
<tr>
<td>4.9.7</td>
<td>clear config factory</td>
<td>252</td>
</tr>
<tr>
<td>4.9.8</td>
<td>clear counters</td>
<td>252</td>
</tr>
<tr>
<td>4.9.9</td>
<td>clear hiper-ring</td>
<td>253</td>
</tr>
<tr>
<td>4.9.10</td>
<td>clear igmp-snooping</td>
<td>253</td>
</tr>
<tr>
<td>4.9.11</td>
<td>clear mac-addr-table</td>
<td>254</td>
</tr>
<tr>
<td>4.9.12</td>
<td>clear pass</td>
<td>254</td>
</tr>
<tr>
<td>4.9.13</td>
<td>clear signal-contact</td>
<td>255</td>
</tr>
<tr>
<td>4.9.14</td>
<td>clear traplog</td>
<td>256</td>
</tr>
<tr>
<td>4.9.15</td>
<td>clear ring-coupling</td>
<td>256</td>
</tr>
<tr>
<td>4.9.16</td>
<td>clear vlan</td>
<td>257</td>
</tr>
<tr>
<td>4.9.17</td>
<td>config-watchdog</td>
<td>257</td>
</tr>
<tr>
<td>4.9.18</td>
<td>copy</td>
<td>258</td>
</tr>
<tr>
<td>4.9.19</td>
<td>device-status connection-error</td>
<td>264</td>
</tr>
<tr>
<td>4.9.20</td>
<td>device-status</td>
<td>264</td>
</tr>
<tr>
<td>4.9.21</td>
<td>logout</td>
<td>265</td>
</tr>
<tr>
<td>4.9.22</td>
<td>ping</td>
<td>266</td>
</tr>
<tr>
<td>4.9.23</td>
<td>signal-contact connection-error</td>
<td>266</td>
</tr>
<tr>
<td>4.9.24</td>
<td>signal-contact</td>
<td>267</td>
</tr>
<tr>
<td>4.9.25</td>
<td>temperature</td>
<td>268</td>
</tr>
<tr>
<td>4.9.26</td>
<td>reboot</td>
<td>269</td>
</tr>
<tr>
<td>4.9.27</td>
<td>show reboot</td>
<td>270</td>
</tr>
<tr>
<td>4.9.28</td>
<td>reload</td>
<td>271</td>
</tr>
<tr>
<td>4.9.29</td>
<td>show reload</td>
<td>272</td>
</tr>
</tbody>
</table>

4.10 LLDP - Link Layer Discovery Protocol

<table>
<thead>
<tr>
<th>Section</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10.1</td>
<td>show lldp</td>
<td>273</td>
</tr>
<tr>
<td>4.10.2</td>
<td>show lldp config</td>
<td>273</td>
</tr>
<tr>
<td>4.10.3</td>
<td>show lldp config chassis</td>
<td>274</td>
</tr>
<tr>
<td>4.10.4</td>
<td>show lldp config chassis admin-state</td>
<td>274</td>
</tr>
<tr>
<td>4.10.5</td>
<td>show lldp config chassis notification-interval</td>
<td>275</td>
</tr>
<tr>
<td>4.10.6</td>
<td>show lldp config chassis re-init-delay</td>
<td>275</td>
</tr>
<tr>
<td>4.10.7</td>
<td>show lldp config chassis tx-delay</td>
<td>276</td>
</tr>
<tr>
<td>4.10.8</td>
<td>show lldp config chassis tx-hold-mult</td>
<td>276</td>
</tr>
<tr>
<td>4.10.9</td>
<td>show lldp config chassis tx-interval</td>
<td>276</td>
</tr>
<tr>
<td>4.10.10</td>
<td>show lldp config port</td>
<td>277</td>
</tr>
<tr>
<td>4.10.11</td>
<td>show lldp config port tlv</td>
<td>278</td>
</tr>
<tr>
<td>4.10.12</td>
<td>show lldp remote-data</td>
<td>279</td>
</tr>
<tr>
<td>4.10.13</td>
<td>show lldp med</td>
<td>281</td>
</tr>
<tr>
<td>Section</td>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>4.10.14</td>
<td>show lldp med interface</td>
<td></td>
</tr>
<tr>
<td>4.10.15</td>
<td>show lldp med local-device detail</td>
<td></td>
</tr>
<tr>
<td>4.10.16</td>
<td>show lldp med remote-device</td>
<td></td>
</tr>
<tr>
<td>4.10.17</td>
<td>show lldp med remote-device detail</td>
<td></td>
</tr>
<tr>
<td>4.10.18</td>
<td>lldp</td>
<td></td>
</tr>
<tr>
<td>4.10.19</td>
<td>lldp config chassis admin-state</td>
<td></td>
</tr>
<tr>
<td>4.10.20</td>
<td>lldp config chassis notification-interval</td>
<td></td>
</tr>
<tr>
<td>4.10.21</td>
<td>lldp config chassis re-init-delay</td>
<td></td>
</tr>
<tr>
<td>4.10.22</td>
<td>lldp config chassis tx-delay</td>
<td></td>
</tr>
<tr>
<td>4.10.23</td>
<td>lldp config chassis tx-hold-mult</td>
<td></td>
</tr>
<tr>
<td>4.10.24</td>
<td>lldp config chassis tx-interval</td>
<td></td>
</tr>
<tr>
<td>4.10.25</td>
<td>clear lldp config all</td>
<td></td>
</tr>
<tr>
<td>4.10.26</td>
<td>lldp admin-state</td>
<td></td>
</tr>
<tr>
<td>4.10.27</td>
<td>lldp fdb-mode</td>
<td></td>
</tr>
<tr>
<td>4.10.28</td>
<td>lldp sa-mode</td>
<td></td>
</tr>
<tr>
<td>4.10.29</td>
<td>lldp max-neighbors</td>
<td></td>
</tr>
<tr>
<td>4.10.30</td>
<td>lldp med</td>
<td></td>
</tr>
<tr>
<td>4.10.31</td>
<td>lldp med all</td>
<td></td>
</tr>
<tr>
<td>4.10.32</td>
<td>lldp med confignotification</td>
<td></td>
</tr>
<tr>
<td>4.10.33</td>
<td>lldp med confignotification all</td>
<td></td>
</tr>
<tr>
<td>4.10.34</td>
<td>lldp med faststartrepeatcount</td>
<td></td>
</tr>
<tr>
<td>4.10.35</td>
<td>lldp med transmit-tlv</td>
<td></td>
</tr>
<tr>
<td>4.10.36</td>
<td>lldp med transmit-tlv all</td>
<td></td>
</tr>
<tr>
<td>4.10.37</td>
<td>lldp notification</td>
<td></td>
</tr>
<tr>
<td>4.10.38</td>
<td>lldp tlv link-aggregation</td>
<td></td>
</tr>
<tr>
<td>4.10.39</td>
<td>lldp tlv mac-phy-config-state</td>
<td></td>
</tr>
<tr>
<td>4.10.40</td>
<td>lldp tlv max-frame-size</td>
<td></td>
</tr>
<tr>
<td>4.10.41</td>
<td>lldp tlv mgmt-addr</td>
<td></td>
</tr>
<tr>
<td>4.10.42</td>
<td>lldp tlv port-desc</td>
<td></td>
</tr>
<tr>
<td>4.10.43</td>
<td>lldp tlv port-vlan</td>
<td></td>
</tr>
<tr>
<td>4.10.44</td>
<td>lldp tlv gmrp</td>
<td></td>
</tr>
<tr>
<td>4.10.45</td>
<td>lldp tlv igmp</td>
<td></td>
</tr>
<tr>
<td>4.10.46</td>
<td>lldp tlv portsec</td>
<td></td>
</tr>
<tr>
<td>4.10.47</td>
<td>lldp tlv ptp</td>
<td></td>
</tr>
<tr>
<td>4.10.48</td>
<td>lldp tlv protocol</td>
<td></td>
</tr>
<tr>
<td>4.10.49</td>
<td>lldp tlv sys-cap</td>
<td></td>
</tr>
<tr>
<td>4.10.50</td>
<td>lldp tlv sys-desc</td>
<td></td>
</tr>
<tr>
<td>4.10.51</td>
<td>lldp tlv sys-name</td>
<td></td>
</tr>
<tr>
<td>4.10.52</td>
<td>lldp tlv vlan-name</td>
<td></td>
</tr>
<tr>
<td>4.10.53</td>
<td>name</td>
<td></td>
</tr>
</tbody>
</table>
4.11 SNTP - Simple Network Time Protocol 307
 4.11.1show sntp 307
 4.11.2show sntp anycast 308
 4.11.3show sntp client 309
 4.11.4show sntp operation 310
 4.11.5show sntp server 311
 4.11.6show sntp status 311
 4.11.7show sntp time 312
 4.11.8no sntp 312
 4.11.9sntp anycast address 313
 4.11.10sntp anycast transmit-interval 313
 4.11.11sntp anycast vlan 314
 4.11.12sntp client accept-broadcast 314
 4.11.13sntp client disable-after-sync 315
 4.11.14sntp client offset 315
 4.11.15sntp client request-interval 316
 4.11.16no sntp client server 316
 4.11.17sntp client server primary 316
 4.11.18sntp client server secondary 318
 4.11.19sntp client threshold 319
 4.11.20sntp operation 320
 4.11.21sntp server disable-if-local 321
 4.11.22sntp time system 321

4.12 PTP - Precision Time Protocol 323
 4.12.1show ptp 323
 4.12.2ptp clock-mode 323
 4.12.3ptp operation 324

4.13 Port monitor 325
 4.13.1show port-monitor 326
 4.13.2show port-monitor <slot/port> 327
 4.13.3show port-monitor brief 328
 4.13.4show port-monitor crc-fragment 329
 4.13.5show port-monitor link-flap 329
 4.13.6show port-monitor overload-detection 330
 4.13.7show port-monitor speed-duplex 331
 4.13.8port-monitor (Global Config) 332
 4.13.9port-monitor (Interface Config) 332
 4.13.10port-monitor action 333
4.13.11 port-monitor condition overload-detection polling-interval (Global Config) 334
4.13.12 port-monitor condition overload-detection (Interface Config) 334
4.13.13 show port-monitor overload-detection 336
4.13.14 port-monitor condition link-flap (Global Config) 337
4.13.15 port-monitor condition link-flap (Interface Config) 337
4.13.16 port-monitor condition crc-fragment (Global Config) 338
4.13.17 port-monitor condition crc-fragment (Interface Config) 339

5 CLI Commands: Switching 341
5.1 Spanning Tree Commands 343
 5.1.1 show spanning-tree 343
 5.1.2 show spanning-tree interface 346
 5.1.3 show spanning-tree mst detailed 347
 5.1.4 show spanning-tree mst port detailed 348
 5.1.5 show spanning-tree mst port summary 351
 5.1.6 show spanning-tree summary 352
 5.1.7 show spanning-tree vlan 353
 5.1.8 spanning-tree 354
 5.1.9 spanning-tree auto-edgeport 355
 5.1.10 spanning-tree configuration name 356
 5.1.11 spanning-tree configuration revision 357
 5.1.12 spanning-tree drstp role 358
 5.1.13 spanning-tree drstp timeout 358
 5.1.14 spanning-tree drstp port 359
 5.1.15 spanning-tree edgeport 360
 5.1.16 spanning-tree forceversion 361
 5.1.17 spanning-tree forward-time 362
 5.1.18 spanning-tree guard loop 363
 5.1.19 spanning-tree guard none 364
 5.1.20 spanning-tree guard root 365
 5.1.21 spanning-tree hello-time 366
 5.1.22 spanning-tree hold-count 367
 5.1.23 spanning-tree max-age 368
 5.1.24 spanning-tree max-hops 369
 5.1.25 spanning-tree mst 370
 5.1.26 spanning-tree mst priority 372
 5.1.27 spanning-tree mst vlan 374
5.1.28 spanning-tree port mode 375
5.1.29 spanning-tree port mode all 376
5.1.30 spanning-tree stp-mrp-mode 377
5.1.31 spanning-tree tcnguard 378

5.2 MRP 379
5.2.1 show mrp 379
5.2.2 show mrp current-domain 380
5.2.3 mrp current-domain 382
5.2.4 mrp delete-domain 383
5.2.5 mrp new-domain 384

5.3 HIPER-Ring 385
5.3.1 show hiper-ring 386
5.3.2 hiper-ring 387
5.3.3 hiper-ring mode 388
5.3.4 hiper-ring port primary 388
5.3.5 hiper-ring port secondary 389
5.3.6 hiper-ring recovery-delay 389

5.4 Fast-HIPER-Ring (TCSESME) 391
5.4.1 show fast-hiper-ring (TCSESME) 392
5.4.2 show fast-hiper-ring current-id (TCSESME) 393
5.4.3 fast-hiper-ring 394

5.5 Redundant Coupling 397
5.5.1 show ring-coupling 398
5.5.2 ring-coupling 400
5.5.3 ring-coupling config 401
5.5.4 ring-coupling net-coupling 402
5.5.5 ring-coupling operation 402
5.5.6 ring-coupling port 403
5.5.7 ring-coupling redundancy-mode 403

5.6 Port Security 405
5.6.1 show port-sec mode 405
5.6.2 show port-sec port 405
5.6.3 port-sec mode 406
5.6.4 port-sec action 407
5.6.5 port-sec allowed-ip 408
5.6.6 port-sec allowed-mac 408
5.6.7 clear port-sec 408
5.7 DHCP Relay Commands
 5.7.1 show dhcp-relay 411
 5.7.2 dhcp-relay (Global Config Mode) 412
 5.7.3 dhcp-relay (Interface Config Mode) 413

5.8 Sub-Ring Commands
 (TCSESM-E) 415
 5.8.1 show sub-ring 415
 5.8.2 sub-ring <id> mode 417
 5.8.3 sub-ring <id> operation 418
 5.8.4 sub-ring <id> protocol 418
 5.8.5 sub-ring <id> port 419
 5.8.6 sub-ring <id> ring-name 419
 5.8.7 sub-ring <id> vlan 420
 5.8.8 sub-ring <id> mrp-domainID 421
 5.8.9 sub-ring delete-ring 422
 5.8.10 sub-ring new-ring 422

6 CLI Commands: Security 423

6.1 Security Commands 425
 6.1.1 authentication login 425
 6.1.2 authorization network radius 427
 6.1.3 clear dot1x statistics 427
 6.1.4 clear radius statistics 428
 6.1.5 dot1x defaultlogin 428
 6.1.6 dot1x dynamic-vlan enable 429
 6.1.7 dot1x guest-vlan 430
 6.1.8 dot1x initialize 431
 6.1.9 dot1x login 431
 6.1.10 dot1x mac-auth-bypass 432
 6.1.11 dot1x max-req 433
 6.1.12 dot1x max-users 434
 6.1.13 dot1x port-control 435
 6.1.14 dot1x port-control all 436
 6.1.15 dot1x re-authenticate 437
 6.1.16 dot1x re-authentication 437
 6.1.17 dot1x safe-vlan 438
 6.1.18 dot1x system-auth-control 439
 6.1.19 dot1x timeout 440
 6.1.20 dot1x timeout guest-vlan-period 442
Safety information

■ Important Information

Notice: Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

⚠️ The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

⚠️ This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

⚠️ DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

⚠️ CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.
PLEASE NOTE:

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.

No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

© 2018 Schneider Electric. All Rights Reserved.
Validity Note

The data and illustrations found in this book are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric.

Product Related Information

Schneider Electric assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, please follow the relevant instructions.

Failure to use Schneider Electric software or approved software with our hardware products may result in improper operating results.

Failure to observe this product related warning can result in injury or equipment damage.

User Comments

We welcome your comments about this document. You can reach us by email at techpub@schneider-electric.com
Related Documents

<table>
<thead>
<tr>
<th>Title of Documentation</th>
<th>Reference-Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConneXium TCSESM, TCSESM-E Managed Switch Redundancy Configuration User Manual</td>
<td>31007126</td>
</tr>
<tr>
<td>ConneXium TCSESM, TCSESM-E Managed Switch Basic Configuration User Manual</td>
<td>31007122</td>
</tr>
<tr>
<td>ConneXium TCSESM, TCSESM-E Managed Switch Basic Web-based Interface Reference Manual</td>
<td>EIO0000000482</td>
</tr>
<tr>
<td>ConneXium TCSESM Managed Switch Installation Manual</td>
<td>31007118</td>
</tr>
<tr>
<td>ConneXium TCSESM-E Managed Switch Rugged Installation Manual</td>
<td>EIO0000000529</td>
</tr>
</tbody>
</table>

Note: The Glossary you will find in the Reference Manual Command Line Interface.

The "Web-based Interface" reference manual contains detailed information on using the Web interface to operate the individual functions of the device.

The "Command Line Interface" reference manual contains detailed information on using the Command Line Interface to operate the individual functions of the device.

The “Installation” user manual contains a device description, safety instructions, a description of the display, and the other information that you need to install the device before you begin with the configuration of the device.

The “Basic Configuration” user manual contains the information you need to start operating the device. It takes you step by step from the first startup operation through to the basic settings for operation in your environment.

The “Redundancy Configuration” user manual contains the information you need to select a suitable redundancy procedure and configure it.
Service Shell

A service technician uses the Service Shell function for maintenance of your functioning device. If you need service support, this function allows the service technician to access internal functions of your device from an external location.

Note: The Service Shell function is for service purposes exclusively. This function allows the access on internal functions of the device. In no case, execute internal functions without service technician instructions. Executing internal functions such as deleting the content of the NVM (non-volatile memory) possibly leads to inoperability of your device.

Permanently disabling the Service Shell

If you do not need the Service Shell, the device allows you to disable the function. In this case you still have the option to configure the device. Though, the service technician has no possibilities to access internal functions of your device to call up additional required information.

Note: Disabling the Service Shell function produces a permanent effect. This process is irreversible.

To reactivate the Service Shell function, send the device back to the manufacturer.

- To display the Service Shell function, enter `serviceshell` and a space, and then a question mark `?`
- To permanently deactivate the Shell Service function, enter `serviceshell deactivate` and a space, and press the enter key.
1 Command Structure

The Command Line Interface (CLI) syntax, conventions and terminology are described in this section. Each CLI command is illustrated using the structure outlined below.
1.1 Format

Some commands, such as `clear vlan`, do not require parameters. Other commands, such as `network parms`, have parameters for which you a value is mandatory. Parameters are positional — Confirm that you type the values in the correct order. Optional parameters will follow required parameters. For example:

■ Example 1

```
network parms <ipaddr> <netmask> [gateway]
```

► `network parms`
 is the command name.
► `<ipaddr> <netmask>`
 are the required values for the command.
► `[gateway]`
 is the optional value for the command.

■ Example 2

```
snmp-server location <loc>
```

► `snmp-server location`
 is the command name.
► `<loc>`
 is the required parameter for the command.

■ Example 3

```
clear config
```

► `clear config`
 is the command name.
1.1.1 Command

The following conventions apply to the command name:

- The command name is displayed in this document in courier font and is to be typed exactly as shown.
- Once you have entered enough letters of a command name to uniquely identify the command, pressing the <Space bar> or <Tab key> will cause the system to complete the word.
- Entering Ctrl-Z will return you to the root level command prompt.

1.1.2 Parameters

Parameters are order dependent.

Parameters are displayed in this document in italic font, which are to be replaced with a name or number.

To use spaces as part of parameter name, enclose it in double quotes. For example, the expression "System Name with Spaces" forces the system to accept the spaces.

Parameters may be mandatory values, optional values, choices, or a combination.

- `<parameter>`. The <> angle brackets indicate that a mandatory parameter is to be entered in place of the brackets and text inside them.
- `[parameter]`. The [] square brackets indicate that an optional parameter may be entered in place of the brackets and text inside them.
- `choice1 | choice2`. Vertical bars '|' separate alternative, mutually exclusive, elements.
- The {} curly braces indicate that a parameter is mandatory to be chosen from the list of choices.
- Braces within square brackets [{}] indicate a required choice within an optional element.
1.1.3 Values

ipaddr

This parameter is a valid IP address. Presently the IP address can be entered in following formats:

- **a** (32 bits)
- **a.b** (8.24 bits)
- **a.b.c** (8.8.16 bits)
- **a.b.c.d** (8.8.8.8 bits)

In addition to these formats, decimal, hexadecimal and octal formats are supported through the following input formats (where n is any valid hexadecimal, octal or decimal number):

- **0xn** (CLI assumes hexadecimal format)
- **0n** (CLI assumes octal format with leading zeros)
- **n** (CLI assumes decimal format)

macaddr

The MAC address format is six hexadecimal numbers separated by colons, for example 00:06:29:32:81:40.

areaid

Area IDs may be entered in dotted-decimal notation (for example, 0.0.0.1). An area ID of 0.0.0.0 is reserved for the backbone. Area IDs have the same form as IP addresses, but are distinct from IP addresses. The IP network address of the sub-netted network may be used for the area ID.

routerid

The value of <router id> is mandatory to be entered in 4-digit dotted-decimal notation (for example, 0.0.0.1). A router ID of 0.0.0.0 is invalid.

Interface

Valid slot and port number separated by forward slashes. For example, 0/1 represents slot number 0 and port number 1.
Character strings Use double quotation marks to identify character strings, for example, “System Name with Spaces”. An empty string (“”) is not valid.
1.1.4 Conventions

Network addresses are used to define a link to a remote host, workstation or network. Network addresses are shown using the following syntax:

Double quotation marks such as "System Name with Spaces" set off user defined strings. If the operator wishes to use spaces as part of a name parameter then it is mandatory to be enclosed in double quotation marks.

Empty strings (""") are not valid user defined strings.

Command completion finishes spelling the command when enough letters of a command are typed to uniquely identify the command word. The command may be executed by typing <enter> (command abbreviation) or the command word may be completed by typing the <tab> or <space bar> (command completion).

The value 'Err' designates that the requested value was not internally accessible.

The value of '-----' designates that the value is unknown.

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Format</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddr</td>
<td>192.168.11.110</td>
<td>0.0.0.0 to 255.255.255.255 (decimal)</td>
</tr>
<tr>
<td>macaddr</td>
<td>A7:C9:89:DD:A9:B3</td>
<td>hexadecimal digit pairs</td>
</tr>
</tbody>
</table>

Table 1: Network Address Syntax
1.1.5 Annotations

The CLI allows the user to type single-line annotations at the command prompt for use when writing test or configuration scripts and for better readability. The exclamation point (‘!’) character flags the beginning of a comment. The comment flag character can begin a word anywhere on the command line and all input following this character is ignored. Any command line that begins with the character ‘!’ is recognized as a comment line and ignored by the parser.

Some examples are provided below:

! Script file for setting the CLI prompt
set prompt example-switch
! End of the script file
1.1.6 Special keys

Certain special key combinations speed up use of the CLI. They are listed in this section. Also, help is available for the CLI by typing HELP:

BS delete previous character
Ctrl-A go to beginning of line
Ctrl-E go to end of line
Ctrl-F go forward one character
Ctrl-B go backward one character
Ctrl-D delete current character
Ctrl-H display command history or retrieve a command
Ctrl-U, X delete to beginning of line
Ctrl-K delete to end of line
Ctrl-W delete previous word
Ctrl-T transpose previous character
Ctrl-P go to previous line in history buffer
Ctrl-N go to next line in history buffer
Ctrl-Z return to root command prompt
Tab, <SPACE> command-line completion
Exit go to next lower command prompt
? list choices
1.1.7 Special characters in scripts

Some of the configuration parameters are strings that can contain special characters. When the switch creates a script from the running configuration (by use of the command `#show running-config <scriptname.cli>`), these special characters are written to the script with a so-called escape character preceding them. This helps ensure that when applying the script, these characters are regarded as a normal part of the configuration parameter, not having the special meaning they usually have.

<table>
<thead>
<tr>
<th>Character (plain)</th>
<th>Meaning, when entered in the CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Begin of a comment, ! and the rest of the line will be ignored</td>
</tr>
<tr>
<td>"</td>
<td>Begin or end of a string that may contain space characters</td>
</tr>
<tr>
<td>'</td>
<td>Begin or end of a string that may contain space characters</td>
</tr>
<tr>
<td>?</td>
<td>Shows possible command keywords or parameters</td>
</tr>
<tr>
<td>\</td>
<td>The backslash is used as an escape character to mask characters that normally have a special meaning</td>
</tr>
</tbody>
</table>

Tab. 2: Special characters

<table>
<thead>
<tr>
<th>Character (escaped)</th>
<th>Meaning, when entered in the CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>! becomes part of the string</td>
</tr>
<tr>
<td>"</td>
<td>" becomes part of the string</td>
</tr>
<tr>
<td>'</td>
<td>' becomes part of the string</td>
</tr>
<tr>
<td>?</td>
<td>? becomes part of the string</td>
</tr>
<tr>
<td>\</td>
<td>\ becomes part of the string</td>
</tr>
</tbody>
</table>

Tab. 3: Special characters escaped
The commands with strings that may contain these special characters are listed below.

Note: Not every string is allowed to contain special characters. The string that is output with the escape characters (if necessary) is shown as "...".

<table>
<thead>
<tr>
<th>Command</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>!System Description "..."</td>
<td>"At the beginning of the script"</td>
</tr>
<tr>
<td>!System Version "..."</td>
<td>"At the beginning of the script"</td>
</tr>
</tbody>
</table>

Tab. 4: Commands in Privileged Exec mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server location "..."</td>
<td></td>
</tr>
<tr>
<td>snmp-server contact "..."</td>
<td></td>
</tr>
<tr>
<td>snmp-server community "..."</td>
<td></td>
</tr>
<tr>
<td>snmp-server community ipaddr <ip> "..."</td>
<td></td>
</tr>
<tr>
<td>snmp-server community ipmask <ip> "..."</td>
<td></td>
</tr>
<tr>
<td>snmp-server community ro "..."</td>
<td></td>
</tr>
<tr>
<td>snmp-server community rw "..."</td>
<td></td>
</tr>
<tr>
<td>no snmp-server community mode "..."</td>
<td></td>
</tr>
<tr>
<td>no snmp-server community "..."</td>
<td></td>
</tr>
<tr>
<td>spanning-tree configuration name "..."</td>
<td></td>
</tr>
<tr>
<td>ptp subdomain-name "..."</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5: Commands in Global Config mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>name "..."</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 6: Commands in Interface Config mode
1.1 Format

When a device creates a script, a human-readable header is included that lists the special characters and the escape characters:

!Parameter string escape handling \, 1
!Characters to be preceded with escape char (\): \, !, ", ', ?

1.1.8 Secrets in scripts

A configuration may include secrets (e.g., passwords). When creating a script, these secrets are written to it in a scrambled form, not in clear text. These secrets may be up to 31 characters long. The format for a scrambled secret is: ":v1:<scrambled secret>:" (without the quotes ("), they were added for readability). v1 denotes the scrambling method (v1 in this case), the value of the scrambled secret is a 64-digit hex string.

The following commands produce scrambled secrets (if necessary):

<table>
<thead>
<tr>
<th>Command</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan name <n> "..."</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 7: Commands in VLAN Database mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius server key acct <ip> <password></td>
<td></td>
</tr>
<tr>
<td>radius server key auth <ip> <password></td>
<td></td>
</tr>
<tr>
<td>users passwd <username> <password></td>
<td></td>
</tr>
<tr>
<td>users snmpv3 encryption <username> des <password></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 8: Commands in Global Config mode
Applying or validating a script requires the following conditions for a scrambled secret, else it will be considered invalid (usually only relevant if a script is edited manually):

- Confirm that the string is not longer than 64 hex digits
- Confirm that the string only contains the digits 0-9 and the characters A-F (or a-f)
- Confirm that the string length is even
2 Quick Start up

The CLI Quick Start up details procedures to quickly become acquainted with the software.
2.1 Quick Starting the Switch

- Read the device Installation Guide for the connectivity procedure. In-band connectivity allows access to the software locally or from a remote workstation. Confirm that the device is configured with IP information (IP address, subnet mask, and default gateway).
- Turn the Power on.
- Allow the device to load the software until the login prompt appears. The device's initial state is called the default mode.
- When the prompt asks for operator login, execute the following steps:
 - Type the word `admin` in the login area. Since a number of the Quick Setup commands require administrator account rights, we recommend logging into an administrator account. Press the enter key.
 - Enter the state on delivery password `private`.
 - Press the enter key.
 - The CLI User EXEC prompt will be displayed.
 - User EXEC prompt:
 - (Schneider Electric Product) >
 - Use “enable” to switch to the Privileged EXEC mode from User EXEC.
 - Privileged EXEC prompt:
 - (Schneider Electric Product) #
 - Use “configure” to switch to the Global Config mode from Privileged EXEC.
 - Global Config prompt:
 - (Schneider Electric Product) (Config)#
 - Use “exit” to return to the previous mode.
2.2 System Info and System Setup

This chapter informs you about:

- Quick Start up Software Version Information
- Quick Start up Physical Port Data
- Quick Start up User Account Management
- Quick Start up IP Address
- Quick Start up Uploading from Switch to Out-of-Band PC (Only XMODEM)
- Quick Start up Downloading from Out-of-Band PC to Switch (Only XMODEM)
- Quick Start up Downloading from TFTP Server
- Quick Start up Factory Defaults
Quick Start up Physical Port Data

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>show port all</td>
<td>Displays the Ports</td>
</tr>
<tr>
<td>(in Privileged EXEC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slot/port</td>
</tr>
<tr>
<td></td>
<td>Type - Indicates if the port is a special type of port</td>
</tr>
<tr>
<td></td>
<td>Admin Mode - Selects the Port Control Administration State</td>
</tr>
<tr>
<td></td>
<td>Physical Mode - Selects the desired port speed and duplex mode</td>
</tr>
<tr>
<td></td>
<td>Physical Status - Indicates the port speed and duplex mode</td>
</tr>
<tr>
<td></td>
<td>Link Status - Indicates whether the link is up or down</td>
</tr>
<tr>
<td></td>
<td>Link Trap - Determines whether or not to send a trap when link status changes</td>
</tr>
<tr>
<td></td>
<td>LACP Mode - Displays whether LACP is enabled or disabled on this port.</td>
</tr>
</tbody>
</table>

Table 9: Quick Start up Physical Port Data

Quick Start up User Account Management

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>show users</td>
<td>Displays all of the users that are allowed to access the switch</td>
</tr>
<tr>
<td>(in Privileged EXEC)</td>
<td>Access Mode - Shows whether the user is able to change parameters on the switch(Read/Write) or is only able to view them (Read Only). As a factory default, the ‘admin’ user has Read/Write access and the ‘user’ user has Read Only access. There can only be one Read/Write user and up to five Read Only users.</td>
</tr>
<tr>
<td>show login session</td>
<td>Displays all of the login session information</td>
</tr>
<tr>
<td>(in User EXEC)</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Quick Start up User Account Management
2.2 System Info and System Setup

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>users passwd <username> (in Global Config)</td>
<td>Allows the user to set passwords or change passwords needed to login. A prompt will appear after the command is entered requesting the users old password. In the absence of an old password leave the area blank. Confirm that the operator presses enter to execute the command. The system then prompts the user for a new password then a prompt to confirm the new password. If the new password and the confirmed password match a message will be displayed. User password should not be more than eight characters in length. Confirm that the passwords of the users differ from each other. If two or more users try to choose the same password, the CLI will display an detected error message.</td>
</tr>
<tr>
<td>copy system:running-config nvram:startup-config (in Privileged EXEC)</td>
<td>This will save passwords and all other changes to the device. If you do not save the configuration by doing this command, all configurations will be lost when a power cycle is performed on the switch or when the switch is reset.</td>
</tr>
<tr>
<td>logout (in User EXEC and Privileged EXEC)</td>
<td>Logs the user out of the switch</td>
</tr>
</tbody>
</table>

Table 10: Quick Start up User Account Management
Quick Start up IP Address

To view the network parameters the operator can access the device by the following methods.

- Simple Network Management Protocol - SNMP
- Web Browser

Note: After configuring the network parameters it is advisable to execute the command `copy system:running-config nvram:startup-config` to help ensure that the configurations are not lost.

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>show network</td>
<td>Displays the Network Configurations</td>
</tr>
<tr>
<td>(in User EXEC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IP Address - IP Address of the switch</td>
</tr>
<tr>
<td></td>
<td>Default IP is 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Subnet Mask - IP Subnet Mask for the switch</td>
</tr>
<tr>
<td></td>
<td>Default is 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Default Gateway - The default Gateway for this switch</td>
</tr>
<tr>
<td></td>
<td>Default value is 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Burned in MAC Address - The Burned in MAC Address used for in-band connectivity</td>
</tr>
<tr>
<td></td>
<td>Network Configurations Protocol (BOOTP/DHCP) - Indicates which network protocol is being used</td>
</tr>
<tr>
<td></td>
<td>Default is DHCP</td>
</tr>
<tr>
<td></td>
<td>Management VLAN Id - Specifies VLAN id</td>
</tr>
<tr>
<td></td>
<td>Web Mode - Indicates whether HTTP/Web is enabled.</td>
</tr>
<tr>
<td></td>
<td>JavaScript Mode - Indicates whether java mode is enabled.</td>
</tr>
<tr>
<td></td>
<td>When the user accesses the switch’s web interface and JavaScript Mode is enabled, the switch’s web server will deliver a HTML page that contains JavaScript. Some browsers do not support JavaScript. In this case, a HTML page without JavaScript is necessary. In this case, set JavaScript Mode to disabled.</td>
</tr>
<tr>
<td></td>
<td>Default: enabled.</td>
</tr>
</tbody>
</table>

network parms <ipaddr> <net-mask> [gateway] (in Privileged EXEC)

Sets the IP Address, subnet mask and gateway of the router. Confirm that the IP Address and the gateway are on the same subnet.

- IP Address range from 0.0.0.0 to 255.255.255.255
- Subnet Mask range from 0.0.0.0 to 255.255.255.255
- Gateway Address range from 0.0.0.0 to 255.255.255.255

Table 11: Quick Start up IP Address
Quick Start up

2.2 System Info and System Setup

Quick Start up Downloading from TFTP Server
Before starting a TFTP server download, confirm that the operator completes the Quick Start up for the IP Address.

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>`copy <url> {nvram:startup-config</td>
<td>system:image}`</td>
</tr>
</tbody>
</table>

Table 12: Quick Start up Downloading from TFTP Server

Quick Start up Factory Defaults

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear config</code> (in Privileged EXEC Mode)</td>
<td>Enter yes when the prompt pops up to clear all the configurations made to the switch.</td>
</tr>
<tr>
<td><code>copy system:running-config nvram:startup-config</code></td>
<td>Enter yes when the prompt pops up that asks if you want to save the configurations made to the switch.</td>
</tr>
<tr>
<td><code>reboot</code> (or cold boot the switch) (in Privileged EXEC Mode)</td>
<td>Enter yes when the prompt pops up that asks if you want to reset the system. This is the users choice either reset the switch or cold boot the switch, both work effectively.</td>
</tr>
</tbody>
</table>

Table 13: Quick Start up Factory Defaults
Mode-based CLI

The CLI groups all the commands in appropriate modes according to the nature of the command. A sample of the CLI command modes are described below. Each of the command modes support specific software commands.

- **User Exec Mode**
- **Privileged Exec Mode**
- **Global Config Mode**
- **Interface Config Mode**
- **Line Config Mode**

The Command Mode table captures the command modes, the prompts visible in that mode and the exit method from that mode.

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit or Access Next Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Exec Mode</td>
<td>This is the first level of access. Perform basic tasks and list system information</td>
<td>(Schneider Electric Product)></td>
<td>Enter Logout command</td>
</tr>
<tr>
<td>Privileged Exec Mode</td>
<td>From the User Exec Mode, enter the enable command</td>
<td>(Schneider Electric Product)#</td>
<td>To exit to the User Exec mode, enter exit or press Ctrl-Z.</td>
</tr>
<tr>
<td>VLAN Mode</td>
<td>From the Privileged User Exec mode, enter the vlan database command</td>
<td>(Schneider Electric Product) (Vlan) #</td>
<td>To exit to the Privileged Exec mode, enter the exit command, or press Ctrl-Z to switch to User Exec mode.</td>
</tr>
<tr>
<td>Global Config Mode</td>
<td>From the Privileged Exec mode, enter the configure command</td>
<td>(Schneider Electric Product) (Config) #</td>
<td>To exit to the Privileged Exec mode, enter the exit command, or press Ctrl-Z to switch to User exec mode.</td>
</tr>
<tr>
<td>Interface Config Mode</td>
<td>From the Global Configuration mode, enter the interface <slot/port> command</td>
<td>(Schneider Electric Product) (Interface- "if number") #</td>
<td>To exit to the Global Config mode enter exit. To return to user EXEC mode enter ctrl-Z.</td>
</tr>
<tr>
<td>Line Config Mode</td>
<td>From the Global Configuration mode, enter the lineconfig command</td>
<td>(Schneider Electric Product) (line) #</td>
<td>To exit to the Global Config mode enter exit. To return to User Exec mode enter ctrl-Z.</td>
</tr>
</tbody>
</table>

Table 14: Command Mode
3.1 Mode-based Topology

The CLI tree is built on a mode concept where the commands are available according to the interface. Some of the modes are depicted in the following figure.

Fig. 1: Mode-based CLI
3.2 Mode-based Command Hierarchy

The CLI is divided into various modes. The Commands in one mode are not available until the operator switches to that particular mode, with the exception of the User Exec mode commands. The User Exec mode commands may also be executed in the Privileged Exec mode.

The commands available to the operator at any point in time depend upon the mode. Entering a question mark (?) at the CLI prompt, displays a list of the available commands and descriptions of the commands.

The CLI provides the following modes:

User Exec Mode

When the operator logs into the CLI, the User Exec mode is the initial mode. The User Exec mode contains a limited set of commands. The command prompt shown at this level is:

Command Prompt: (Schneider Electric Product)>

Privileged Exec Mode

To have access to the full suite of commands, confirm that the operator enters the Privileged Exec mode. Privileged users authenticated by login are able to enter the Privileged EXEC mode. From Privileged Exec mode, the operator can issue any Exec command, enter the Global Configuration mode. The command prompt shown at this level is:

Command Prompt: (Schneider Electric Product)#

VLAN Mode

This mode groups all the commands pertaining to VLANs. The command prompt shown at this level is:

Command Prompt: (Schneider Electric Product)(VLAN)#

Global Config Mode

This mode permits the operator to make modifications to the running configuration. General setup commands are grouped in this mode. From the Global Configuration mode, the operator can enter the System Configuration mode, the Physical Port Configuration mode, the
Interface Configuration mode, or the Protocol Specific modes specified below. The command prompt at this level is:

Command Prompt: (Schneider Electric Product)(Config)#

From the Global Config mode, the operator may enter the following configuration modes:

Interface Config Mode

Many features are enabled for a particular interface. The Interface commands enable or modify the operation of an interface.

In this mode, a physical port is set up for a specific logical connection operation. The Interface Config mode provides access to the router interface configuration commands. The command prompt at this level is:

Command Prompt: (Schneider Electric Product)(Interface <slot/port>)#

The resulting prompt for the interface configuration command entered in the Global Configuration mode is shown below:

(Schneider Electric Product)(Config)# interface 2/1
(Schneider Electric Product)(Interface 2/1)#

Line Config Mode

This mode allows the operator to configure the console interface. The operator may configure the interface from the directly connected console. The command prompt at this level is:

Command Prompt: (Schneider Electric Product)(Line)#
3.3 Flow of Operation

This section captures the flow of operation for the CLI:

- The operator logs into the CLI session and enters the User Exec mode. In the User Exec mode the `(Schneider Electric Product)(exec)>` prompt is displayed on the screen.

The parsing process is initiated whenever the operator types a command and presses <ENTER>. The command tree is searched for the command of interest. If the command is not found, the output message indicates where the offending entry begins. For instance, command node A has the command "show spanning-tree" but the operator attempts to execute the command "show arpp brief" then the output message would be `(Schneider Electric Product)(exec)> show sspanning-tree^.`. If the operator has given an invalid input parameter in the command, then the message conveys to the operator an invalid input was detected. The layout of the output is depicted below:

```
(Schneider Electric Product)(exec) #show sspanning-tree

(Schneider Electric Product)Invalid input detected at '^' marker.
```

Fig. 2: Detected Syntax Error Message

After all the mandatory parameters are entered, any additional parameters entered are treated as optional parameters. If any of the parameters are not recognized a detected syntax error message will be displayed.

- After the command is successfully parsed and validated, the control of execution goes to the corresponding CLI callback function.
For mandatory parameters, the command tree extends till the mandatory parameters make the leaf of the branch. The callback function is only invoked when all the mandatory parameters are provided. For optional parameters, the command tree extends till the mandatory parameters and the optional parameters make the leaf of the branch. However, the callback function is associated with the node where the mandatory parameters are fetched. The callback function then takes care of the optional parameters.

Once the control has reached the callback function, the callback function has complete information about the parameters entered by the operator.
3.4 “No” Form of a Command

“No” is a specific form of an existing command and does not represent a new or distinct command. Only the configuration commands are available in the “no” form. The behavior and the support details of the “no” form is captured as part of the mapping sheets.

3.4.1 Support for “No” Form

Almost every configuration command has a “no” form. In general, use the no form to reverse the action of a command or reset a value back to the default. For example, the no shutdown interface configuration command reverses the shutdown of an interface. Use the command without the keyword ”no“ to re-enable a disabled feature or to enable a feature that is disabled by default.

3.4.2 Behavior of Command Help (“?”)

The “no” form is treated as a specific form of an existing command and does not represent a new or distinct command. However, the behavior of the “?” and help text differ for the “no” form (the help message shows only options that apply to the “no” form).

- The help message is the same for all forms of the command. The help string may be augmented with details about the “no” form behavior.
- For the (no interface?) and (no inte?) cases of the “?” , the options displayed are identical to the case when the “no” token is not specified as in (interface) and (inte?).
This chapter provides detailed explanation of the Switching commands. The commands are divided into five functional groups:

- Show commands display switch settings, statistics, and other information.
- Configuration commands configure features and options of the switch. For every configuration command, there is a show command that displays the configuration setting.
- Copy commands transfer or save configuration and informational files to and from the switch.
- Clear commands clear
 - some
 (e.g. the "clear arp-table-switch" command which clears the agent’s ARP table) or
 - all
 (e.g. the "clear config" command which resets the whole configuration to the factory defaults)

This chapter includes the following configuration types:

- System information and statistics commands
- Management commands
- Device configuration commands
- User account management commands
- Security commands
- System utilities
- Link Layer Discovery Protocol Commands
- Simple Network Time Protocol Commands
- Precision Time Protocol Commands
- Power over Ethernet Commands
4.1 System Information and Statistics Commands

4.1.1 show address-conflict

This command displays address-conflict settings.

Format

 show address-conflict

Mode

 Privileged EXEC and User EXEC

4.1.2 show arp switch

This command displays the Address Resolution Protocol cache of the switch.

Format

 show arp switch

Mode

 Privileged EXEC and User EXEC
4.1.3 **show bridge address-learning**

This command displays the address-learning setting. The setting can be enable or disable.

Format

```
show bridge address-learning
```

Mode

Privileged EXEC and User EXEC

4.1.4 **show bridge address-relearn-detect**

This command displays the Bridge Address Relearn Detection setting and the Bridge Address Relearn Threshold.

Format

```
show bridge address-relearn-detect
```

Mode

Privileged EXEC and User EXEC

Bridge Address Relearn Detection

- Setting can be enable or disable.

Bridge Address Relearn Threshold

- The threshold can be 1 to 1024.
4.1.5 show bridge aging-time

This command displays the timeout for address aging.

Format

show bridge aging-time

Mode

Privileged EXEC and User EXEC

4.1.6 show bridge duplex-mismatch-detect

This command displays the Bridge Duplex Mismatch Detection setting (Enabled or Disabled).

Format

show bridge duplex-mismatch-detect

Mode

Privileged EXEC and User EXEC

4.1.7 show bridge fast-link-detection

This command displays the Bridge Fast Link Detection setting.

Format

show bridge fast-link-detection

Mode

Privileged EXEC and User EXEC
4.1.8 show bridge framesize

This command displays the maximum size of frame (packet size) setting.

Format

```
show bridge framesize
```

Mode

Privileged EXEC and User EXEC

4.1.9 show bridge vlan-learning

This command displays the bridge vlan-learning mode.

Format

```
show bridge vlan-learning
```

Mode

Privileged EXEC and User EXEC
4.1.10 bridge framesize

Activation of long frames. Configure 1522 or 1632\(^1\) as maximum size of frame (packet size). Default: 1522.

Format

bridge framesize \{1522|1632\(^1\)}

Mode

Global Config

bridge framesize 1522

Configure 1522 as maximum size of frame.

bridge framesize 1632 \(^1\)

Configure 1632 \(^1\) as maximum size of frame.

4.1.11 show config-watchdog

Activating the watchdog enables you to return automatically to the last configuration after a set time period has elapsed. This gives you back your access to the Switch.

Format

show config-watchdog

Mode

Privileged EXEC and User EXEC
4.1.12 show device-status

The signal device status is for displaying

- the monitoring functions of the switch,
- the device status trap setting.

Format

```
show device-status
[monitor|state|trap]
```

Mode

Privileged EXEC and User EXEC

Device status monitor

Displays the possible monitored events and which of them are monitored:

- the detected failure of at least one of the supply voltages.
- the removal of the EAM
- the removal of a media module
- the temperature limits
- the defective link status of at least one port. With the switch, the indication of link status can be masked by the management for each port. Link status is not monitored in the delivery condition.
- the loss of redundancy functionality.
- the status of sub ring monitoring

Ring/network coupling:

- The following conditions are reported in Stand-by mode:
 - interrupted control line
 - partner device running in Stand-by mode.

HIPER-Ring:

- The following condition is reported in RM mode additionally:
 - Ring redundancy functionality. Ring redundancy is not monitored in the delivery condition.

Device status state

- **Error** The current device status is error.
- **No Error** The current device status is no error.

Device status trap

- **enabled** A trap is sent if the device status changes.
- **disabled** No trap is sent if the device status changes.
4.1.13 show authentication

This command displays users assigned to authentication login lists.

Format

 show authentication [users <listname>]

Mode

 Privileged EXEC and User EXEC
4.1.14 show eventlog

This command displays the event log, which contains detected error messages from the system. The event log is not cleared on a system reset.

Format

```
show eventlog
```

Mode

Privileged EXEC and User EXEC

File

The file in which the event originated.

Line

The line number of the event

Task Id

The task ID of the event.

Code

The event code.

Time

The time this event occurred.

Note: Event log information is retained across a switch reset.
4.1.15 **show interface**

This command displays a summary of statistics for a specific port or a count of all CPU traffic based upon the argument.

Format

```
show interface {<slot/port> | ethernet{<slot/port>|switchport} | switchport}
```

Mode

Privileged EXEC and User EXEC

The display parameters, when the argument is `'<slot/port>'`, is as follows:

Packets Received Without Error

The total number of packets (including broadcast packets and multicast packets) received by the processor.

Packets Received With Error

The number of inbound packets that contained detected errors helping prevent them from being deliverable to a higher-layer protocol.

Broadcast Packets Received

The total number of packets received that were directed to the broadcast address. Note that this does not include multicast packets.

Packets Transmitted Without Error

The total number of packets transmitted out of the interface.

Transmit Packets Errors

The number of outbound packets that could not be transmitted because of detected errors.

Collisions Frames

The best possible estimate of the total number of collisions on this Ethernet segment.

Time Since Counters Last Cleared

The elapsed time, in days, hours, minutes, and seconds since the statistics for this port were last cleared.

The display parameters, when the argument is 'switchport', is as follows:
Packets Received Without Error
The total number of packets (including broadcast packets and multicast packets) received by the processor.

Broadcast Packets Received
The total number of packets received that were directed to the broadcast address. Note that this does not include multicast packets.

Packets Received With Error
The number of inbound packets that contained detected errors help preventing them from being deliverable to a higher-layer protocol.

Packets Transmitted Without Error
The total number of packets transmitted out of the interface.

Broadcast Packets Transmitted
The total number of packets that higher-level protocols requested to be transmitted to the Broadcast address, including those that were discarded or not sent.

Transmit Packet Errors
The number of outbound packets that could not be transmitted because of detected errors.

Address Entries Currently In Use
The total number of Forwarding Database Address Table entries now active on the switch, including learned and static entries.

VLAN Entries Currently In Use
The number of VLAN entries presently occupying the VLAN table.

Time Since Counters Last Cleared
The elapsed time, in days, hours, minutes, and seconds since the statistics for this switch were last cleared.
4.1.16 show interface ethernet

This command displays detailed statistics for a specific port or for all CPU traffic based upon the argument.

Format

```
show interface ethernet {<slot/port> | switchport}
```

Mode

Privileged EXEC and User EXEC

The display parameters, when the argument is '<slot/port>', are as follows:

Packets Received

- **Octets Received** - The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including Frame Check Sequence (FCS) octets). This object can be used as a reasonable estimate of Ethernet utilization. If greater precision is desired, the etherStatsPkts and etherStatsOctets objects should be sampled before and after a common interval. The result of this equation is the value Utilization which is the percent utilization of the Ethernet segment on a scale of 0 to 100 percent.

- **Packets Received < 64 Octets** - The total number of packets (including bad packets) received that were < 64 octets in length (excluding framing bits but including FCS octets).

- **Packets Received 64 Octets** - The total number of packets (including bad packets) received that were 64 octets in length (excluding framing bits but including FCS octets).

- **Packets Received 65-127 Octets** - The total number of packets (including bad packets) received that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).

- **Packets Received 128-255 Octets** - The total number of packets (including bad packets) received that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).

- **Packets Received 256-511 Octets** - The total number of packets (including bad packets) received that were between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).

- **Packets Received 512-1023 Octets** - The total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).
octets in length inclusive (excluding framing bits but including FCS octets).

Packets Received 1024-1518 Octets - The total number of packets (including bad packets) received that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets).

Packets Received 1519-1522 Octets - The total number of packets (including bad packets) received that were between 1519 and 1522 octets in length inclusive (excluding framing bits but including FCS octets).

Packets Received > 1522 Octets - The total number of packets received that were longer than 1522 octets (excluding framing bits, but including FCS octets) and were otherwise well formed.

Packets Received Successfully

Total - The total number of packets received that were without detected errors.

Unicast Packets Received - The number of subnetwork-unicast packets delivered to a higher-layer protocol.

Multicast Packets Received - The total number of good packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address.

Broadcast Packets Received - The total number of good packets received that were directed to the broadcast address. Note that this does not include multicast packets.

Packets Received with MAC Errors

Total - The total number of inbound packets that contained detected errors help preventing them from being deliverable to a higher-layer protocol.

Jabbers Received - The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (Detected FCS Error) or a bad FCS with a non-integral number of octets (Detected Alignment Error). Note that this definition of jabber is different than the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms.
Fragments/Undersize Received - The total number of packets received that were less than 64 octets in length (excluding framing bits but including FCS octets).

Alignment Errors - The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had a bad Frame Check Sequence (FCS) with a non-integral number of octets.

Rx FCS Errors - The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had a bad Frame Check Sequence (FCS) with an integral number of octets.

Overruns - The total number of frames discarded as this port was overloaded with incoming packets, and could not keep up with the inflow.

Received Packets not forwarded

Total - A count of valid frames received which were discarded (i.e. filtered) by the forwarding process.

Local Traffic Frames - The total number of frames dropped in the forwarding process because the destination address was located off of this port.

802.3x Pause Frames Received - A count of MAC Control frames received on this interface with an opcode indicating the PAUSE operation. This counter does not increment when the interface is operating in half-duplex mode.

Unacceptable Frame Type - The number of frames discarded from this port due to being an unacceptable frame type.

VLAN Membership Mismatch - The number of frames discarded on this port due to ingress filtering.

VLAN Viable Discards - The number of frames discarded on this port when a lookup on a particular VLAN occurs while that entry in the VLAN table is being modified, or if the VLAN has not been configured.

Multicast Tree Viable Discards - The number of frames discarded when a lookup in the multicast tree for a VLAN occurs while that tree is being modified.

Reserved Address Discards - The number of frames discarded that are destined to an IEEE 802.1 reserved address and are not supported by the system.
Broadcast Storm Recovery - The number of frames discarded that are destined for FF:FF:FF:FF:FF:FF when Broadcast Storm Recovery is enabled.

CFI Discards - The number of frames discarded that have CFI bit set and the addresses in RIF are in non-canonical format.

Upstream Threshold - The number of frames discarded due to lack of cell descriptors available for that packet's priority level.

Packets Transmitted Octets

Total Bytes - The total number of octets of data (including those in bad packets) transmitted into the network (excluding framing bits but including FCS octets). This object can be used as a reasonable estimate of Ethernet utilization. If greater precision is desired, the etherStatsPkts and etherStatsOctets objects should be sampled before and after a common interval.

Packets Transmitted 64 Octets - The total number of packets (including bad packets) transmitted that were 64 octets in length (excluding framing bits but including FCS octets).

Packets Transmitted 65-127 Octets - The total number of packets (including bad packets) transmitted that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).

Packets Transmitted 128-255 Octets - The total number of packets (including bad packets) transmitted that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).

Packets Transmitted 256-511 Octets - The total number of packets (including bad packets) transmitted that were between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).

Packets Transmitted 512-1023 Octets - The total number of packets (including bad packets) transmitted that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).

Packets Transmitted 1024-1518 Octets - The total number of packets (including bad packets) transmitted that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets).

Packets Transmitted 1519-1522 Octets - The total number of packets (including bad packets) transmitted that were between 1519 and
1522 octets in length inclusive (excluding framing bits but including FCS octets).

Max Info - The maximum size of the Info (non-MAC) field that this port will receive or transmit.

Packets Transmitted Successfully

Total - The number of frames that have been transmitted by this port to its segment.

Unicast Packets Transmitted - The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent.

Multicast Packets Transmitted - The total number of packets that higher-level protocols requested be transmitted to a Multicast address, including those that were discarded or not sent.

Broadcast Packets Transmitted - The total number of packets that higher-level protocols requested be transmitted to the Broadcast address, including those that were discarded or not sent.

Transmit Errors

Total Errors - The sum of Single, Multiple, and Excessive Collisions.

Tx FCS Errors - The total number of packets transmitted that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had a bad Frame Check Sequence (FCS) with an integral number of octets

Oversized - The total number of frames that exceeded the max permitted frame size. This counter has a max increment rate of 815 counts per sec. at 10 Mb/s.

Underrun Errors - The total number of frames discarded because the transmit FIFO buffer became empty during frame transmission.

Transmit Discards

Total Discards - The sum of single collision frames discarded, multiple collision frames discarded, and excessive frames discarded.

Single Collision Frames - A count of the number of successfully transmitted frames on a particular interface for which transmission is inhibited by exactly one collision.

Multiple Collision Frames - A count of the number of successfully transmitted frames on a particular interface for which transmission is inhibited by more than one collision.

Excessive Collisions - A count of frames for which transmission on a particular interface is discontinued due to excessive collisions.
Port Membership - The number of frames discarded on egress for this port due to egress filtering being enabled.

VLAN Viable Discards - The number of frames discarded on this port when a lookup on a particular VLAN occurs while that entry in the VLAN table is being modified, or if the VLAN has not been configured.

Protocol Statistics

BPDUs received - The count of BPDUs (Bridge Protocol Data Units) received in the spanning tree layer.

BPDUs Transmitted - The count of BPDUs (Bridge Protocol Data Units) transmitted from the spanning tree layer.

802.3x Pause Frames Received - A count of MAC Control frames received on this interface with an opcode indicating the PAUSE operation. This counter does not increment when the interface is operating in half-duplex mode.

GVRP PDU's Received - The count of GVRP PDU's received in the GARP layer.

GMRP PDU's received - The count of GMRP PDU's received in the GARP layer.

GMRP PDU's Transmitted - The count of GMRP PDU's transmitted from the GARP layer.

GMRP Failed Registrations - The number of times attempted GMRP registrations could not be completed.

STP BPDUs Transmitted - Spanning Tree Protocol Bridge Protocol Data Units sent

STP BPDUs Received - Spanning Tree Protocol Bridge Protocol Data Units received

RST BPDUs Transmitted - Rapid Spanning Tree Protocol Bridge Protocol Data Units sent

RSTP BPDUs Received - Rapid Spanning Tree Protocol Bridge Protocol Data Units received

MSTP BPDUs Transmitted - Multiple Spanning Tree Protocol Bridge Protocol Data Units sent

MSTP BPDUs Received - Multiple Spanning Tree Protocol Bridge Protocol Data Units received

Dot1x Statistics

EAPOL Frames Received - The number of valid EAPOL frames of any type that have been received by this authenticator.
EAPOL Frames Transmitted - The number of EAPOL frames of any type that have been transmitted by this authenticator.

Time Since Counters Last Cleared
The elapsed time, in days, hours, minutes, and seconds since the statistics for this port were last cleared.

The display parameters, when the argument is ‘switchport’, are as follows:
- **Octets Received** - The total number of octets of data received by the processor (excluding framing bits but including FCS octets).
- **Total Packets Received Without Error** - The total number of packets (including broadcast packets and multicast packets) received by the processor.
- **Unicast Packets Received** - The number of subnetwork-unicast packets delivered to a higher-layer protocol.
- **Multicast Packets Received** - The total number of packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address.
- **Broadcast Packets Received** - The total number of packets received that were directed to the broadcast address. Note that this does not include multicast packets.
- **Receive Packets Discarded** - The number of inbound packets which were chosen to be discarded even though no errors had been detected to help prevent their being deliverable to a higher-layer protocol. A possible reason for discarding a packet could be to free up buffer space.
- **Octets Transmitted** - The total number of octets transmitted out of the interface, including framing characters.
- **Packets Transmitted without Errors** - The total number of packets transmitted out of the interface.
- **Unicast Packets Transmitted** - The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent.
- **Multicast Packets Transmitted** - The total number of packets that higher-level protocols requested be transmitted to a Multicast address, including those that were discarded or not sent.
- **Broadcast Packets Transmitted** - The total number of packets that higher-level protocols requested be transmitted to the Broadcast address, including those that were discarded or not sent.
Transmit Packets Discarded - The number of outbound packets which were chosen to be discarded even though no errors had been detected to help prevent their being deliverable to a higher-layer protocol. A possible reason for discarding a packet could be to free up buffer space.

Most Address Entries Ever Used - The highest number of Forwarding Database Address Table entries that have been learned by this switch since the most recent reboot.

Address Entries in Use - The number of Learned and static entries in the Forwarding Database Address Table for this switch.

Maximum VLAN Entries - The maximum number of Virtual LANs (VLANs) allowed on this switch.

Most VLAN Entries Ever Used - The largest number of VLANs that have been active on this switch since the last reboot.

Static VLAN Entries - The number of presently active VLAN entries on this switch that have been created statically.

Dynamic VLAN Entries - The number of presently active VLAN entries on this switch that have been created by GVRP registration.

VLAN Deletes - The number of VLANs on this switch that have been created and then deleted since the last reboot.

Time Since Counters Last Cleared

The elapsed time, in days, hours, minutes, and seconds, since the statistics for this switch were last cleared.
4.1.17 **show interface switchport**

This command displays data concerning the internal port to the management agent.

Format

```
show interface switchport
```

Mode

Privileged EXEC and User EXEC

4.1.18 **show logging**

This command displays the trap log maintained by the switch. The trap log contains a maximum of 256 entries that wrap.

Format

```
show logging [buffered | hosts | traplogs | snmp-requests]
```

Mode

Privileged EXEC and User EXEC

buffered

Display buffered (in-memory) log entries.

hosts

Display logging hosts.

traplogs

Display trap records.

snmp-requests

Display logging SNMP requests and severity level.
4.1.19 show mac-addr-table

This command displays the forwarding database entries. If the command is entered with no parameter, the entire table is displayed. This is the same as entering the optional all parameter. Alternatively, the administrator can enter a MAC Address to display the table entry for the requested MAC address and all entries following the requested MAC address.

Note: This command displays only learned unicast addresses. For other addresses use the command show mac-filter-table. See "show mac-filter-table gmrp" on page 196.

Format

```
show mac-addr-table [<macaddr> <1-4042> | all]
```

Mode

Privileged EXEC and User EXEC

Mac Address

A unicast MAC address for which the switch has forwarding and or filtering information. The format is 6 or 8 two-digit hexadecimal numbers that are separated by colons, for example 01:23:45:67:89:AB.

Slot/Port

The port which this address was learned.

if Index

This object indicates the ifIndex of the interface table entry associated with this port.

Status

The status of this entry. The meanings of the values are:

- **Learned** The value of the corresponding instance was learned by observing the source MAC addresses of incoming traffic, and is currently in use.
- **Management** The value of the corresponding instance (system MAC address) is also the value of an existing instance of dot1dStaticAddress.
4.1.20 show signal-contact

The signal contact is for displaying

► the manual setting and the current state of the signal contact,
► the monitoring functions of the switch,
► the signal-contacts trap setting.

Format

```
show signal-contact
   [1|2|all [mode|monitor|state|trap]]
```

Mode

Privileged EXEC and User EXEC

Signal contact mode

Auto The signal contact monitors the functions of the switch which makes it possible to perform remote diagnostics.
A break in contact is reported via the zero-potential signal contact (relay contact, closed circuit).

Device Status The signal contact monitors the device-status.

Manual This command gives you the option of remote switching the signal contact.

Signal contact monitor

Displays the possible monitored events and which of them are monitored:

– the detected failure of at least one of the supply voltages.
– the removal of the EAM
– the removal of a media module
– the temperature limits
– the defective link status of at least one port. With the switch, the indication of link status can be masked by the management for each port. Link status is not monitored in the delivery condition.
– the loss of redundancy functionality.
– the status of sub ring monitoring.

Ring/network coupling:

– The following conditions are reported in Stand-by mode:
 – interrupted control line
 – partner device running in Stand-by mode.

HIPER-Ring:

– The following condition is reported in RM mode additionally:
-- Ring redundancy functionality. Ring redundancy is not monitored in the delivery condition.

Signal contact manual setting
- **closed** The signal contact’s manual setting is closed.
- **open** The signal contact’s manual setting is open.

Signal contact operating state
- **closed** The signal contact is currently closed.
- **open** The signal contact is currently open.

Signal contact trap
- **enabled** A trap is sent if the signal contact state changes.
- **disabled** No trap is sent if the signal contact state changes.

Note: To show the signal contact’s port related settings, use the command `show port {<slot/port> | all}` (see “show port” on page 203).

4.1.21 show slot

This command is used to display information about slot(s).
For `[slot]` enter the slot ID.

Format

```
show slot [slot]
```

Mode

Privileged EXEC
4.1.22 show running-config

This command is used to display the current setting of different protocol packages supported on the switch. This command displays only those parameters, the values of which differ from default value. The output is displayed in the script format, which can be used to configure another switch with the same configuration.

Format

```
show running-config [all | <scriptname>]
```

Mode

- Privileged EXEC

all

Show all the running configuration on the switch. All configuration parameters will be output even if their value is the default value.

<scriptname>

Script file name for writing active configuration.

Note: Confirm that the file extension is cli, that file name does not exceed 16 characters, that it does not start with a dot (.) and that it does not contain a directory.
4.1.23 show sysinfo

This command displays switch information.

Format

 show sysinfo

Mode

 Privileged EXEC and User EXEC

Alarm

 Displays the latest present Alarm for a signal contact.

System Description

 Text used to identify this switch.

System Name

 Name used to identify the switch.

System Location

 Text used to identify the location of the switch. May be up to 31 alpha-
 numeric characters. The factory default is blank.

System Contact

 Text used to identify a contact person for this switch. May be up to 31
 alpha-numeric characters. The factory default is blank.

System UpTime

 The time in days, hours and minutes since the last switch reboot.

System Date and Time

 The system clock´s date and time in local time zone.

System IP Address

 The system´s IP address.

Boot Software Release

 The boot code´s version number.

Boot Software Build Date

 The boot code´s build date.

Operating system Software Release

 The operating system´s software version number.

Operating system Software Build Date

 The operating system´s software build date.
Backplane Hardware Revision
The hardware’s revision number.

Backplane Hardware Description
The hardware’s device description.

Serial Number (Backplane)
The hardware’s serial number.

Base MAC Address (Backplane)
The hardware’s base MAC address.

Number of MAC Addresses (Backplane)
The number of hardware MAC addresses.

Configuration state
The state of the actual configuration.

Configuration signature
The actual configuration signature.

Memory Backup Adapter, State
The Memory Backup Adapter's state.

Memory Backup Adapter, Serial Number
The Memory Backup Adapter's serial number (if present and operative).

Power Supply Information
The status of the power supplies.

CPU Utilization
The utilization of the central processing unit.

Flashdisk
Free memory on flashdisk (in Kbytes).
4.1.24 show temperature

This command displays the lower and upper temperature limit for sending a trap.

Format

show temperature

Mode

Privileged EXEC and User EXEC
4.2 Management VLAN Commands

4.2.1 network mgmt_vlan

This command configures the Management VLAN ID. If you enter the VLAN ID “0”, the agent can be accessed by all VLANs.

Default
1

Format
network mgmt_vlan <0-4042>

Mode
Privileged EXEC
4.3 Class of Service (CoS) Commands

This chapter provides a detailed explanation of the QoS CoS commands. The following commands are available.

The commands are divided into these different groups:

► Configuration Commands are used to configure features and options of the switch. For every configuration command there is a show command that will display the configuration setting.

► Show commands are used to display device settings, statistics and other information.

Note: The 'Interface Config' mode only affects a single interface, whereas the 'Global Config' mode is applied to all interfaces.
4.3.1 classofservice dot1p-mapping

This command maps an 802.1p priority to an internal traffic class for a device when in ‘Global Config’ mode. The number of available traffic classes may vary with the platform. Userpriority and trafficclass can both be the range from 0-7. The command is only available on platforms that support priority to traffic class mapping on a ‘per-port’ basis, and the number of available traffic classes may vary with the platform.

Format

classofservice dot1p-mapping
 <userpriority> <trafficclass>

Mode

 Global Config or Interface Config

userpriority

 Enter the 802.1p priority (0-7).

trafficclass

 Enter the traffic class to map the 802.1p priority (0-3).

no classofservice dot1p-mapping

This command restores the default mapping of the 802.1p priority to an internal traffic class.

Format

 no classofservice dot1p-mapping

Modes

 Global Config or Interface Config
4.3.2 `classofservice ip-dscp-mapping`

This command maps an IP DSCP value to an internal traffic class. The `<ipdscp>` value is specified as either an integer from 0 to 63, or symbolically through one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef.

Format

```
classofservice ip-dscp-mapping
    <ipdscp> <trafficclass>
```

Mode

Global Config

ipdscp

Enter the IP DSCP value in the range of 0 to 63 or an IP DSCP keyword (af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef).

trafficclass

Enter the traffic class to map the 802.1p priority (0-3).

- **no classofservice ip-dscp-mapping**

 This command restores the default mapping of the IP DSCP value to an internal traffic class.

Format

```
no classofservice ip-dscp-mapping
```

Modes

Global Config

4.3.3 classofservice trust

This command sets the class of service trust mode of an interface. The mode can be set to trust one of the Dot1p (802.1p) or IP DSCP packet markings.

Note: In trust ip-dscp mode the switch modifies the vlan priority for outgoing frames according to
– the a fix mapping table
(see Reference Manual "Web-based Management" for further details).

Format

 classofservice trust dot1p | ip-dscp

Mode

 Global Config

no classofservice trust

This command sets the interface mode to untrusted, i.e. the packet priority marking is ignored and the default port priority is used instead.

Format

 no classofservice trust

Modes

 Global Config
4.3.4 *show classofservice dot1p-mapping*

This command displays the current 802.1p priority mapping to internal traffic classes for a specific interface. The slot/port parameter is required on platforms that support priority to traffic class mapping on a 'per-port' basis.

Platforms that support priority to traffic class mapping on a per-port basis:

Format

```
show classofservice dot1p-mapping
```

Platforms that do not support priority to traffic class mapping on a per-port basis:

Format

```
show classofservice dot1p-mapping
```

Mode

Privileged EXEC and User EXEC
4.3.5 `show classofservice ip-dscp-mapping`

This command displays the current IP DSCP mapping to internal traffic classes for the global configuration settings.

Format

```
show classofservice ip-dscp-mapping [<slot/port>]
```

Mode

Privileged EXEC

The following information is repeated for each user priority.

IP DSCP

The IP DSCP value.

Traffic Class

The traffic class internal queue identifier to which the IP DSCP value is mapped.

slot/port

Valid slot and port number separated by forward slashes.
4.3.6 **show classofservice trust**

This command displays the current trust mode for the specified interface. The slot/port parameter is optional. If specified, the trust mode of the interface is displayed. If omitted, the most recent global configuration settings are displayed.

Format

```
show classofservice trust [slot/port]
```

Mode

- Privileged EXEC

Class of Service Trust Mode

- The current trust mode: Dot1p, IP DSCP, or Untrusted.

Untrusted Traffic Class

- The traffic class used for all untrusted traffic. This is only displayed when the COS trust mode is set to 'untrusted'.

slot/port

- Valid slot and port number separated by forward slashes.
4.3.7 vlan port priority all

This command configures the port priority assigned for untagged packets for all ports presently plugged into the device. The range for the priority is 0-7. Any subsequent per port configuration will override this configuration setting.

Format

 vlan port priority all <priority>

Mode

 Global Config

4.3.8 vlan priority

This command configures the default 802.1p port priority assigned for untagged packets for a specific interface. The range for the priority is 0-7

Default

 0

Format

 vlan priority <priority>

Mode

 Interface Config
4.4 Management Commands

These commands manage the switch and show current management settings.

4.4.1 transport input telnet

This command regulates new telnet sessions. If sessions are enabled, new telnet sessions can be established until there are no more sessions available. If sessions are disabled, no new telnet sessions are established. An established session remains active until the session is ended or a detected abnormal network error ends the session.

Default

enabled

Format

transport input telnet

Mode

Line Config

no transport input telnet

This command disables telnet sessions. If sessions are disabled, no new telnet sessions are established.

Format

no transport input telnet

Mode

Line Config
4.4.2 bridge address-learning

To enable you to observe the data at all the ports, the Switch allows you to disable the learning of addresses. When the learning of addresses is disabled, the Switch transfers all the data from all ports to all ports. The default value is enable.

Format

`bridge address-learning {disable|enable}`

Mode

Global Config

4.4.3 bridge address-relearn detect operation

This command enables or disables Bridge Address Relearn Detection. The default value is disable.

Default

Disabled

Format

`bridge address-relearn detect operation {disable|enable}`

Mode

Global Config

4.4.4 bridge address-relearn detect threshold

This command defines the value of relearned addresses to signal address relearn threshold exceeded.
The default relearn threshold is 1. Possible values to configure threshold count are 1 to 1024.

Default

1

Format

`bridge address-relearn-detect threshold <value>`

Mode

`Global Config`

value

1 to 1024
4.4.5 bridge aging-time

This command configures the forwarding database address aging timeout in seconds.

Default
30

Format
bridge aging-time <15-3825>

Mode
Global Config

Seconds
Confirm that the <seconds> parameter is within the range of 15 to 3825 seconds.

no bridge aging-time

This command sets the forwarding database address aging timeout to 30 seconds.

Format
no bridge aging-time

Mode
Global Config
4.4.6 **bridge fast-link-detection**

This command enables or disables the Bridge Fast Link Detection.

Default
- Enabled

Format

```
bridge fast-link-detection {disable|enable}
```

Mode
- Global Config

4.4.7 **bridge duplex-mismatch-detect operation**

This command enables or disables Bridge Duplex Mismatch Detection.

Reasons for Duplex Mismatch can be:
- A local port is configured to fix full-duplex.
- A port is configured to auto-negotiation and has negotiated HalfDuplex-Mode.

Duplex Mismatch can be excluded, when the local port is configured to auto-negotiation and duplex mode is negotiated to full-duplex.

Note: If counters and configuration settings indicate a Duplex Mismatch, the reason can also be a bad cable and/or EMI.

Default
- Enabled

Format

```
bridge duplex-mismatch-detect operation {disable|enable}
```

Mode
- Global Config
4.4.8 bridge vlan-learning

With "independent" you set the Shared VLAN Learning mode to Independent. The switch will treat equal MAC source addresses from different VLANs as separate addresses.
With "shared" you set the Shared VLAN Learning mode to Shared. The switch will treat equal MAC source addresses from different VLANs as the same address.

Format

```
bridge vlan-learning {independent|shared}
```

Mode

- Global Config

4.4.9 ethernet-ip

This command controls the EtherNet/IP function on the switch. Detailed information you can find in the User Manual Industrial Protocols.

Default

- depends on the order code (standard = disable)

Format

```
ethernet-ip admin-state {enable | disable}
```

Mode

- Global Config

Admin-state

- disable Enables the EtherNet/IP function on this device.
 Note: the relevant MIB objects are still accessible.
- enable Enables the EtherNet/IP function on this device.
4.4.10 network javascriptmode

When the user accesses the switch’s web interface, the switch’s web server will deliver a HTML page that contains JavaScript.

Default
 enabled

Format
 network javascriptmode

Mode
 Privileged EXEC

![no network javascriptmode](image)

When the user accesses the switch’s web interface, the switch’s web server will deliver a HTML page that contains no JavaScript.

Format
 no network javascriptmode

Mode
 Privileged EXEC
4.4.11 network mgmt-access add

This command configures the restricted management access feature (RMA). It creates a new empty entry at the `<index>` (if you enter the command with parameter `<index>`) or at the next free index (if you enter the command without parameter `<index>`).

Format

network mgmt-access add [index]

Mode

Privileged EXEC

[index]

Index of the entry in the range 1..16.

4.4.12 network mgmt-access delete

This command configures the restricted management access feature (RMA). It deletes an existing entry with `<index>`.

Format

network mgmt-access delete <index>

Mode

Privileged EXEC

<index>

Index of the entry in the range 1..16.
4.4.13 network mgmt-access modify

This command configures the restricted management access feature (RMA). The command modifies an existing rule with <index> to change IP address, net mask and allowed services.

Format

```
network mgmt-access modify <index>
  { ip <address> | mask <netmask> | http {enable | disable} | snmp {enable | disable} | telnet {enable | disable} | ssh {enable | disable} }
```

Mode

Privileged EXEC

<index>

Index of the entry in the range 1..16.

<ip>

Configure IP address which should have access to management.

<mask>

Configure network mask to allow a subnet for management access.

<http>

Configure if HTTP is allowed to have management access.

<snmp>

Configure if SNMP is allowed to have management access.

<telnet>

Configure if TELNET is allowed to have management access.

<ssh>

Configure if SSH is allowed to have management access.

enable

Allow the service to have management access.

disable

Do not allow the service to have management access.
4.4.14 network mgmt-access operation

This command configures the restricted management access feature (RMA). It enables or disables the service to have management access. The default value is disable.

Format

```
network mgmt-access operation {disable|enable}
```

Mode

Privileged EXEC

- `enable`
 - Enable the restricted management access function globally.

- `disable`
 - Disable the restricted management access function globally.

4.4.15 network mgmt-access status

This command configures the restricted management access feature (RMA). It activates/deactivates an existing rule with `<index>`.

Format

```
network mgmt-access status <index> {enable | disable}
```

Mode

Privileged EXEC

- `<index>`
 - Index of the entry in the range 1..16.

- `enable`
 - Allow the service to have management access.

- `disable`
 - Do not allow the service to have management access.
4.4.16 network parms

This command sets the IP Address, subnet mask and gateway of the router. Confirm that the IP Address and the gateway are on the same subnet.

Format

network parms <ipaddr> <netmask> [gateway]

Mode

Privileged EXEC

4.4.17 network protocol

This command specifies the network configuration protocol to be used. If you modify this value, change is effective immediately after you saved your changes.

The parameter `bootp` indicates that the switch periodically sends requests to a Bootstrap Protocol (BootP) server or a DHCP server until a response is received.

`none` indicates that the switch should be manually configured with IP information.

Default

DHCP

Format

network protocol {none | bootp | dhcp | ethernet-switch-conf {off | read-only | read-write}}

Mode

Privileged EXEC
4.4.18 network priority

This command configures the VLAN priority or the IP DSCP value for outgoing management packets. The `<ipdscp>` is specified as either an integer from 0-63, or symbolically through one of the following keywords: `af11,af12,af13,af21,af22,af23,af31,af32,af33,af41,af42,af43,be,cs0, cs1, cs2,cs3,cs4,cs5,cs6,cs7,ef`.

Default

0 for both values

Format

```
network priority {dot1p-vlan <0-7> | ip-dscp <ipdscp> }
```

Mode

Privileged EXEC

no network priority

This command sets the VLAN priority or the IP DSCP value for outgoing management packets to default which means VLAN priority 0 or IP DSCP value 0 (Best possible effort).

Format

```
no network priority {dot1p-vlan | ip-dscp }
```

Mode

Privileged EXEC
4.4.19 serial timeout

This command specifies the maximum connect time (in minutes) without console activity. A value of 0 indicates that a console can be connected indefinitely. The time range is 0 to 160.

Default

5

Format

serial timeout <0-160>

Mode

Line Config

no serial timeout

This command sets the maximum connect time without console activity (in minutes) back to the default value.

Format

no serial timeout

Mode

Line Config
4.4.20 set prompt

This command changes the name of the prompt. The length of name may be up to 64 alphanumeric characters.

Format

```
set prompt <prompt string>
```

Mode

- Privileged EXEC

4.4.21 show ethernet-ip

This command displays the admin state of the EtherNet/IP function.

Format

```
show ethernet-ip
```

Mode

- Privileged EXEC and User EXEC
4.4.22 show network

This command displays configuration settings associated with the switch's network interface. The network interface is the logical interface used for in-band connectivity with the switch via any of the switch's front panel ports. The configuration parameters associated with the switch's network interface do not affect the configuration of the front panel ports through which traffic is switched or routed.

Format

 show network

Mode

 Privileged EXEC and User EXEC

System IP Address

 The IP address of the interface. The factory default value is 0.0.0.0

Subnet Mask

 The IP subnet mask for this interface. The factory default value is 0.0.0.0

Default Gateway

 The default gateway for this IP interface. The factory default value is 0.0.0.0

Burned In MAC Address

 The burned in MAC address used for in-band connectivity.

Network Configuration Protocol (BootP/DHCP)

 Indicates which network protocol is being used. The options are bootp | dhcp | none.

DHCP Client ID (same as SNMP System Name)

 Displays the DHCP Client ID.

Ethernet Switch Configurator Protocol

 Indicates in which way the Ethernet Switch Configurator Protocol is being used. Possible values: off | read-only | read-write.

Ethernet Switch Configurator Protocol Version

 Indicates the version of the Ethernet Switch Configurator Protocol which the device uses. Possible values: v1, v2.

Management VLAN ID

 Specifies the management VLAN ID.
Management VLAN Priority
 Specifies the management VLAN Priority.

Management VLAN IP-DSCP Value
 Specifies the management VLAN IP-DSCP value.

Java Script Mode
 Specifies if the Switch will use Java Script to start the Management Applet. The factory default is enabled.

4.4.23 show network mgmt-access

This command displays the operating status and entries for restricted management access (RMA).

Format

```
show network mgmt-access
```

Mode

- Privileged EXEC and User EXEC

Operation

Indicates whether the operation for RMA is enabled or not. The options are Enabled | Disabled.

ID

- Index of the entry for restricted management access (1 to max. 16).

IP Address

- The IP address which should have access to management. The factory default value is 0.0.0.0.

Netmask

- The network mask to allow a subnet for management access. The factory default value is 0.0.0.0.

HTTP

Indicates whether HTTP is allowed to have management access or not. The options are Yes | No.
SNMP
Indicates whether SNMP is allowed to have management access or not. The options are Yes | No.

TELNET
Indicates whether TELNET is allowed to have management access or not. The options are Yes | No.

SSH
Indicates whether SSH is allowed to have management access or not. The options are Yes | No.

Active
Indicates whether the feature is active or not. The options are [x] | [].
4.4.24 show serial

This command displays serial communication settings for the switch.

Format

```
show serial
```

Mode

- Privileged EXEC and User EXEC

Serial Port Login Timeout (minutes)

Specifies the time, in minutes, of inactivity on a Serial port connection, after which the Switch will close the connection. Any numeric value between 0 and 160 is allowed, the factory default is 5. A value of 0 disables the timeout.

4.4.25 show snmp-access

This command displays SNMP access information related to global and SNMP version settings. SNMPv3 is enabled.

Format

```
show snmp-access
```

Mode

- Privileged EXEC
4.4.26 show snmpcommunity

This command displays SNMP community information. Six communities are supported. You can add, change, or delete communities. The switch does not have to be reset for changes to take effect. The SNMP agent of the switch complies with SNMP Version 1 (for more about the SNMP specification, see the SNMP RFCs). The SNMP agent sends traps through TCP/IP to an external SNMP manager based on the SNMP configuration (the trap receiver and other SNMP community parameters).

Format

show snmpcommunity

Mode

Privileged EXEC

SNMP Community Name

The community string to which this entry grants access. A valid entry is a case-sensitive alphanumeric string of up to 32 characters. Confirm that each row of this table contains a unique community name.

Client IP Address -

An IP address (or portion thereof) from which this device will accept SNMP packets with the associated community. The requesting entity's IP address is ANDed with the Subnet Mask before being compared to the IP Address. Note: that if the Subnet Mask is set to 0.0.0.0, an IP Address of 0.0.0.0 matches all IP addresses. The default value is 0.0.0.0

Client IP Mask -

A mask to be ANDed with the requesting entity's IP address before comparison with IP Address. If the result matches with IP Address then the address is an authenticated IP address. For example, if the IP Address = 9.47.128.0 and the corresponding Subnet Mask = 255.255.255.0 a range of incoming IP addresses would match, i.e. the incoming IP Address could equal 9.47.128.0 - 9.47.128.255. The default value is 0.0.0.0

Access Mode

The access level for this community string.

Status

The status of this community access entry.
4.4.27 show snmp sync

This command displays the status of the synchronization between the SNMPv1/v2 community table and the SNMPv3 password table and reverse.

Format

```
show snmp sync
```

Mode

Privileged EXEC

V1/V2 community to V3 password

Display the status of the synchronization between the SNMPv1/v2 community table and the SNMPv3 password table.

- **Enabled** - Synchronization enabled.
- **Disabled** - Synchronization disabled.

V3 password to V1/V2 community

Display the status of the synchronization between the SNMPv3 password table and the SNMPv1/v2 community table.

- **Enabled** - Synchronization enabled.
- **Disabled** - Synchronization disabled.
4.4.28 show snmptrap

This command displays SNMP trap receivers. Trap messages are sent across a network to an SNMP Network Manager. These messages alert the manager to events occurring within the switch or on the network. Six trap receivers are simultaneously supported.

Format

```
show snmptrap
```

Mode

Privileged EXEC

SNMP Trap Name

The community string of the SNMP trap packet sent to the trap manager. This may be up to 32 alphanumeric characters. This string is case sensitive.

IP Address

The IP address to receive SNMP traps from this device. Enter four numbers between 0 and 255 separated by periods.

Status

A pull down menu that indicates the receiver's status (enabled or disabled) and allows the administrator/user to perform actions on this user entry:

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>send traps to the receiver</td>
</tr>
<tr>
<td>Disable</td>
<td>do not send traps to the receiver.</td>
</tr>
<tr>
<td>Delete</td>
<td>remove the table entry.</td>
</tr>
</tbody>
</table>
4.4.29 show telnetcon

This command displays inbound telnet settings.

Format
 show telnetcon

Mode
 Privileged EXEC and User EXEC

Telnet Connection Login Timeout (minutes)
 This object indicates the number of minutes a remote connection ses-
 sion is allowed to remain inactive before being logged off. May be
 specified as a number from 1 to 160. The factory default is 4.

Maximum Number of Remote Telnet Sessions
 This object indicates the number of simultaneous remote connection
 sessions allowed. The factory default is 2 (4 for version L2P).

Allow New Telnet Sessions
 Indicates that new telnet sessions will not be allowed when set to no.
 The factory default value is yes.
4.4.30 show trapflags

This command displays trap conditions. Configure which traps the switch should generate by enabling or disabling the trap condition. If a trap condition is enabled and the condition is detected, the switch's SNMP agent sends the trap to all enabled trap receivers. The switch does not have to be reset to implement the changes. Cold and warm start traps are generated and cannot be disabled.

Format

 show trapflags

Mode

 Privileged EXEC and User EXEC

Authentication Flag

 May be enabled or disabled. The factory default is enabled. Indicates whether detected authentication failure traps will be sent.

Chassis

 Indicates whether traps that are related to the chassis functionality of the switch will be sent. These functions include the signal contacts, the EAM, temperature limits exceeded, status of power supply has changed and the LLDP and SNTP features. May be enabled or disabled.
 Default: enabled.

Layer 2 Redundancy

 Indicates whether traps that are related to the layer 2 redundancy features of the switch will be sent. The HiPER-Ring and the Redundant Coupling will tell you with these traps when the main line has become inoperative or returned. May be enabled or disabled.
 Default: enabled.

Link Up/Down Flag

 May be enabled or disabled. The factory default is enabled. Indicates whether link status traps will be sent.

Multiple Users Flag

 May be enabled or disabled. The factory default is enabled. Indicates whether a trap will be sent when the same user ID is logged into the switch more than once at the same time (either via telnet or serial port).
Port Security (MAC, IP and 802.1X)
Enable/disable sending port security event traps (for MAC/IP port security as well as for 802.1X).

Spanning Tree Flag
May be enabled or disabled. The factory default is enabled. Indicates whether spanning tree traps will be sent.

4.4.31 snmp-access global
This command configures the global SNMP access setting (for all SNMP versions).

Format
snmp-access global {disable|enable|read-only}

Mode
Global Config

disable
Disable SNMP access to this switch, regardless of the SNMP version used.

enable
Enable SNMP read and write access to this switch, regardless of the SNMP version used.

read-only
Enable SNMP read-only access to this switch (disable write access), regardless of the SNMP version used.
4.4.32 snmp-access version

This command configures the SNMP version specific access mode for SNMPv1 and SNMPv2.

Format

```
snmp-access version {all|v1|v2} {disable|enable}
```

Mode

- **all**

 Enable or disable SNMP access by all protocol versions (v1 and v2).

- **v1**

 Enable or disable SNMP access by v1.

- **v2**

 Enable or disable SNMP access by v2.

Note: The SNMPv3 is allowed and can only be disabled or restricted by the global command (snmp-access global ...).
4.4.33 snmp-server

This command sets the name and the physical location of the switch, and the organization responsible for the network. The range for name, location and contact is from 0 to 64 alphanumeric characters.

Default

None

Format

```
   snmp-server
       {community <name> | 
ipaddr <ipaddr> <name> | 
ipmask <ipmask> <name> | 
mode <name> | 
ro <name> | 
rw <name> | 
contact <con> | 
enable traps { chassis | l2redundancy | 
               linkmode | multiusers | port-sec | stpmode }
   location <loc> | 
sysname <name> }
```

Mode

Global Config
4.4.34 snmp-server community

This command adds a new SNMP community name. A community name is a name associated with the switch and with a set of SNMP managers that manage it with a specified privileged level. The length of name can be up to 32 case-sensitive characters.

Note: Confirm that the community names in the SNMP community table are unique. When making multiple entries using the same community name, the first entry is kept and processed and all duplicate entries are ignored.

Default
Two default community names: Public and Private. You can replace these default community names with unique identifiers for each community. The default values for the remaining four community names are blank.

Format
```
snmp-server community <name>
```

Mode
Global Config

no snmp-server community
This command removes this community name from the table. The name is the community name to be deleted.

Format
```
no snmp-server community <name>
```

Mode
Global Config
4.4.35 `snmp-server contact`

This command adds a new SNMP server contact.

Format

```
snmp-server contact <con>
```

Mode

Global Config

con

Enter system contact up to 63 characters in length. If the name contains spaces, enclose it in quotation marks (").

no snmp-server contact

This command removes this SNMP server contact from the table. `<con>` is the SNMP server contact to be deleted.

Format

```
no snmp-server contact <con>
```

Mode

Global Config
4.4.36 snmp-server community ipaddr

This command sets a client IP address for an SNMP community. The address is the associated community SNMP packet sending address and is used along with the client IP mask value to denote a range of IP addresses from which SNMP clients may use that community to access the device. A value of 0.0.0.0 allows access from any IP address. Otherwise, this value is ANDed with the mask to determine the range of allowed client IP addresses. The name is the applicable community name.

Default

```
0.0.0.0
```

Format

```
snmp-server community ipaddr <ipaddr> <name>
```

Mode

```
Global Config
```

no snmp-server community ipaddr

This command sets a client IP address for an SNMP community to 0.0.0.0. The name is the applicable community name.

Format

```
no snmp-server community ipaddr <name>
```

Mode

```
Global Config
```
4.4.37 snmp-server community ipmask

This command sets a client IP mask for an SNMP community. The address is the associated community SNMP packet sending address and is used along with the client IP address value to denote a range of IP addresses from which SNMP clients may use that community to access the device. A value of 255.255.255.255 will allow access from only one station, and will use that machine's IP address for the client IP Address. A value of 0.0.0.0 will allow access from any IP address. The name is the applicable community name.

Default
0.0.0.0

Format
snmp-server community ipmask <ipmask> <name>

Mode
Global Config

no snmp-server community ipmask

This command sets a client IP mask for an SNMP community to 0.0.0.0. The name is the applicable community name. The community name may be up to 32 alphanumeric characters.

Format
no snmp-server community ipmask <name>

Mode
Global Config
4.4.38 snmp-server community mode

This command activates an SNMP community. If a community is enabled, an SNMP manager associated with this community manages the switch according to its access right. If the community is disabled, no SNMP requests using this community are accepted. In this case the SNMP manager associated with this community cannot manage the switch until the Status is changed back to Enable.

Default

The default private and public communities are enabled by default. The four undefined communities are disabled by default.

Format

```
snmp-server community mode <name>
```

Mode

Global Config

no snmp-server community mode

This command deactivates an SNMP community. If the community is disabled, no SNMP requests using this community are accepted. In this case the SNMP manager associated with this community cannot manage the switch until the Status is changed back to Enable.

Format

```
no snmp-server community mode <name>
```

Mode

Global Config
4.4.39 snmp-server community ro

This command restricts access to switch information. The access mode is read-only (also called public).

Format

```
snmp-server community ro <name>
```

Mode

Global Config

4.4.40 snmp-server community rw

This command restricts access to switch information. The access mode is read/write (also called private).

Format

```
snmp-server community rw <name>
```

Mode

Global Config

4.4.41 snmp-server location

This command configures the system location.

Format

```
snmp-server location <system location>
```

Mode

Global Config
4.4.42 snmp-server sysname

This command configures the system name.

Format

```
snmp-server sysname <system name>
```

Mode

- Global Config
4.4.43 snmp-server enable traps

This command enables the Authentication Trap Flag.

Default
- enabled

Format
```
snmp-server enable traps
```

Mode
- Global Config

no snmp-server enable traps

This command disables the Authentication Trap Flag.

Format
```
no snmp-server enable traps
```

Mode
- Global Config
4.4.44 snmp-server enable traps chassis

Configures whether traps that are related to the chassis functionality of the switch will be sent. These functions include the signal contacts, the EAM, temperature limits exceeded, status of power supply has changed and the LLDP and SNTP features. May be enabled or disabled. Default: enabled.

Default

enabled

Format

snmp-server enable traps chassis

Mode

Global Config

- **no snmp-server enable traps chassis**

 This command disables chassis traps for the entire switch.

 Format

 no snmp-server enable traps chassis

 Mode

 Global Config
4.4.45 snmp-server enable traps l2redundancy

Indicates whether traps that are related to the layer 2 redundancy features of the switch will be sent. The HiPER-Ring and the Redundant Coupling will tell you with these traps when the main line has become inoperative or returned. May be enabled or disabled. Default: enabled.

Default

enabled

Format

```
snmp-server enable traps l2redundancy
```

Mode

Global Config

no snmp-server enable traps l2redundancy

This command disables layer 2 redundancy traps for the entire switch.

Format

```
no snmp-server enable traps l2redundancy
```

Mode

Global Config
4.4.46 snmp-server enable traps linkmode

This command enables Link Up/Down traps for the entire switch. When enabled, link traps are sent only if the Link Trap flag setting associated with the port is enabled (see 'snmp trap link-status' command).

Default

enabled

Format

snmp-server enable traps linkmode

Mode

Global Config

no snmp-server enable traps linkmode

This command disables Link Up/Down traps for the entire switch.

Format

no snmp-server enable traps linkmode

Mode

Global Config
4.4.47 **snmp-server enable traps multiusers**

This command enables Multiple User traps. When the traps are enabled, a Multiple User Trap is sent when a user logs in to the terminal interface (EIA 232 (serial port) or telnet) and there is an existing terminal interface session.

Default

enabled

Format

```
snmp-server enable traps multiusers
```

Mode

Global Config

no snmp-server enable traps multiusers

This command disables Multiple User traps.

Format

```
no snmp-server enable traps multiusers
```

Mode

Global Config
4.4.48 **snmp-server enable traps port-sec**

This command enables port security traps. When the traps are enabled, a Port Security Trap is sent if a port security event occurs (applies to MAC/IP Port Security as well as to 802.1X Port Security.

Default

enabled

Format

```
snmp-server enable traps port-sec
```

Mode

Global Config

no snmp-server enable traps port-sec

This command disables Port Security traps.

Format

```
no snmp-server enable traps port-sec
```

Mode

Global Config
4.4.49 snmp-server enable traps stpmode

This command enables the sending of new root traps and topology change notification traps.

Default
enabled

Format
snmp-server enable traps stpmode

Mode
Global Config

no snmp-server enable traps stpmode

This command disables the sending of new root traps and topology change notification traps.

Format
no snmp-server enable traps stpmode

Mode
Global Config
4.4.50 snmptrap

This command adds an SNMP trap name. The maximum length of name is 32 case-sensitive alphanumeric characters.

Default
The default name for the six undefined community names is Delete.

Format
snmptrap <name> <ipaddr> [snmpversion snmpv1]

Mode
Global Config

no snmptrap
This command deletes trap receivers for a community.

Format
no snmptrap <name> <ipaddr>

Mode
Global Config
4.4.51 `snmptrap ipaddr`

This command assigns an IP address to a specified community name. The maximum length of name is 32 case-sensitive alphanumeric characters.

Note: Confirm that IP addresses in the SNMP trap receiver table are unique. If you make multiple entries using the same IP address, the first entry is retained and processed. All duplicate entries are ignored.

Format

```
snmptrap ipaddr <name> <ipaddr> <ipaddrnew>
```

Mode

Global Config

ipaddr

Enter the old IP Address.

ipaddrnew

Enter the new IP Address.
4.4.52 snmptrap mode

This command activates or deactivates an SNMP trap. Enabled trap receivers are active (able to receive traps). Disabled trap receivers are inactive (not able to receive traps).

Format

 snmptrap mode <name> <ipaddr>

Mode

 Global Config

no snmptrap mode

This command deactivates an SNMP trap. Disabled trap receivers are inactive (not able to receive traps).

Format

 no snmptrap mode <name> <ipaddr>

Mode

 Global Config
4.4.53 `snmptrap snmpversion`

This command configures SNMP trap version for a specified community.

Format

```
snmptrap snmpversion <name> <ipAddr>
{snmpv1 | snmpv2}
```

Mode

Global Config

name

Enter the community name.

ipAddr

Enter the IP Address.

snmpv1

Use SNMP v1 to send traps.

snmpv2

Use SNMP v2 to send traps.
4.4.54 telnetcon maxsessions

Configure the number of remote telnet connections allowed.

Default

5

Format

 telnetcon maxsessions <0-5>

Mode

 Privileged EXEC

no telnetcon maxsessions

This command sets the maximum number of telnet connection sessions that can be established to the default value.

Format

 no telnetcon maxsessions

Mode

 Privileged EXEC
4.4.55 telnetcon timeout

This command sets the telnet connection session timeout value, in minutes. A session is active as long as the session has not been idle for the value set. The time is a decimal value from 1 to 160.

Default

5

Format

```
telnetcon timeout <1-160>
```

Mode

Privileged EXEC

no telnetcon timeout

This command sets the telnet connection session timeout value to the default. Changing the timeout value for active sessions does not become effective until the session is reaccessed. Also, any keystroke activates the new timeout duration.

Format

```
no telnetcon timeout
```

Mode

Privileged EXEC
4.5 Syslog Commands

This section provides a detailed explanation of the Syslog commands. The commands are divided into two functional groups:

- **Show commands** display spanning tree settings, statistics, and other information.
- **Configuration Commands** configure features and options of the device. For every configuration command there is a show command that displays the configuration setting.

4.5.1 logging buffered

This command enables logging to an in-memory log where up to 128 logs are kept.

Default

`enabled`

Format

`logging buffered`

Mode

`Global Config`

no logging buffered

This command disables logging to in-memory log.

Format

`no logging buffered`
4.5.2 logging buffered wrap

This command enables wrapping of in-memory logging when full capacity reached. Otherwise when full capacity is reached, logging stops.

Default
 wrap

Format
 logging buffered wrap

Mode
 Privileged EXEC

no logging buffered wrap

This command disables wrapping of in-memory logging and configures logging to stop when capacity is full.

Format
 no logging buffered wrap
4.5.3 logging cli-command

This command enables the CLI command Logging feature. The Command Logging component enables the switch software to log all Command Line Interface (CLI) commands issued on the system.

Default

disabled

Format

logging cli-command

Mode

Global Config

no logging cli-command

This command disables the CLI command Logging feature.

Format

no logging cli-command
4.5.4 logging console

This command enables logging to the console. The <severitylevel> value is specified as either an integer from 0 to 7 or symbolically through one of the following keywords: emergency (0), alert (1), critical (2), error (3), warning (4), notice (5), informational (6), debug (7).

Default

disabled; alert

Format

logging console [severitylevel] | <[0-7]>

Mode

Global Config

severitylevel | [0-7]
Enter Logging Severity Level (emergency|0, alert|1, critical|2, error|3, warning|4, notice|5, info|6, debug|7).

Note: selecting a lower severity level (larger number) will include all messages from higher severity levels (smaller numbers).
Possible severity levels: see Table 15

no logging console

This command disables logging to the console.

Format

no logging console
4.5.5 logging host

This command enables logging to a host where up to eight hosts can be configured.

Default

`Port - 514; Level - Critical;`

Format

```
logging host <hostaddress>
[<port> [<severitylevel>]]
```

Mode

`Global Config`

<table>
<thead>
<tr>
<th>Severity number</th>
<th>Severity name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>emergency</td>
<td>Minimum severity to be logged is 0. This is the highest level and will result in all other messages of lower levels not being logged.</td>
</tr>
<tr>
<td>1</td>
<td>alert</td>
<td>Minimum severity to be logged is 1.</td>
</tr>
<tr>
<td>2</td>
<td>critical</td>
<td>Minimum severity to be logged is 2.</td>
</tr>
<tr>
<td>3</td>
<td>error</td>
<td>Minimum severity to be logged is 3.</td>
</tr>
<tr>
<td>4</td>
<td>warning</td>
<td>Minimum severity to be logged is 4.</td>
</tr>
<tr>
<td>5</td>
<td>notice</td>
<td>Minimum severity to be logged is 5.</td>
</tr>
<tr>
<td>6</td>
<td>info</td>
<td>Minimum severity to be logged is 6.</td>
</tr>
<tr>
<td>7</td>
<td>debug</td>
<td>Minimum severity to be logged is 7. This is the lowest level and will result in messages of all levels being logged.</td>
</tr>
</tbody>
</table>

Tab. 15: Possible severity levels
4.5.6 logging host reconfigure

The Logging Host Index for which to change the IP Address.

Format

```
logging host reconfigure <hostindex> <hostaddress>
```

Mode

Global Config

4.5.7 logging host remove

The Logging Host Index to be removed.

Format

```
logging host remove <hostindex>
```

Mode

Global Config

4.5.8 logging snmp-requests get operation

This command enables or disables the logging of SNMP GET requests.

Default

Disabled

Format

```
logging snmp-requests get operation
   { enable | disable }
```

Mode

Global Config
4.5.9 logging snmp-requests set operation

This command enables or disables the logging of SNMP SET requests.

Default

Disabled

Format

```
logging snmp-requests set operation
   { enable | disable }
```

Mode

Global Config

4.5.10 logging snmp-requests get severity

With this command you can define the severity level of logging SNMP GET requests.

Default

Disabled

Format

```
logging snmp-requests get severity <level|[0-7]>
```

Mode

Global Config

level | [0-7]

- Enter Logging Severity Level (emergency|0, alert|1, critical|2, error|3, warning|4, notice|5, info|6, debug|7).
- Note: selecting a lower severity level (larger number) will include all messages from higher severity levels (smaller numbers).
4.5.11 logging snmp-requests set severity

With this command you can define the severity level of logging SNMP SET requests.

Default
 Disabled

Format
 logging snmp-requests set severity <level|[0-7]>

Mode
 Global Config

level | [0-7]
 Enter Logging Severity Level (emergency|0, alert|1, critical|2, error|3, warning|4, notice|5, info|6, debug|7).
 Note: selecting a lower severity level (larger number) will include all
 messages from higher severity levels (smaller numbers).
4.5.12 logging syslog

This command enables syslog logging.

Default

 disabled

Format

 logging syslog

Mode

 Global Config

no logging syslog

This command disables syslog logging.

Format

 no logging syslog

4.5.13 logging syslog port

Enter the port number of the syslog server.

Default

 514

Format

 logging syslog port <portid>

Mode

 Global Config
4.6 Scripting Commands

Configuration Scripting allows the user to generate text-formatted script files representing the current configuration. These configuration script files can be uploaded to a PC and edited, downloaded to the system and applied to the system. Configuration scripts can be applied to one or more switches with no/minor modifications.

Use the show running-config command to capture the running configuration into a script. Use the copy command to transfer the configuration script to and from the switch.

Scripts are intended to be used on systems with default configuration but users are not prevented from applying scripts on systems with non-default configurations.

Note:
- Confirm that the file extension is “.cli”.
- A maximum of ten scripts are allowed on the switch.
- The combined size of all script files on the switch shall not exceed 1024 KB.

4.6.1 script apply

This command applies the commands in the script to the switch. We recommend that the system have default configurations but users are not prevented from applying scripts on systems with non-default configurations. The <scriptname> parameter is the name of the script to apply.

Format

script apply <scriptname>

Mode

Privileged EXEC
4.6.2 script delete

This command deletes a specified script where the `<scriptname>` parameter is the name of the script to be deleted. The 'all' option deletes all the scripts present on the switch.

Format

```
script delete {<scriptname> | all}
```

Mode

Privileged EXEC

4.6.3 script list

This command lists all scripts present on the switch as well as the remaining available space.

Format

```
script list [eam]
```

Mode

Privileged EXEC

Configuration Script

Name of the script.
Without the optional EAM parameter: Listing of the scripts in the switch’s flash memory.
With the optional EAM parameter: Listing of the scripts on the external EAM.

Size

Size of the script.
4.6.4 script show

This command displays the contents of a script file. The parameter `<scriptname>` is the name of the script file.

Format

```
script show <scriptname>
```

Mode

Privileged EXEC

The format of display is

Line <no>: <Line contents>

4.6.5 script validate

This command validates a script file by parsing each line in the script file where `<scriptname>` is the name of the script to validate. The validate option is intended to be used as a tool for script development. Validation identifies potential problems. It may or may not identify all problems with a given script on any given device.

Format

```
script validate <scriptname>
```

Mode

Privileged EXEC
4.7 Device Configuration Commands

4.7.1 auto-disable reason

This command enables the port disabling on this device by reason.

Default

Disabled

Format

auto-disable reason {link-flap | crc-error | overload-detection | port-security | speed-duplex}

Mode

Global Config

link-flap

Enable the port disabling on this device by link flap.

crc-error

Enable the port disabling on this device by CRC error.

overload-detection

Enable the port disabling on this device by overload detection.

port-security

Enable the port disabling on this device by port-security.

speed-duplex

Enable the port disabling on this device by speed-duplex.
no auto-disable reason
This command disables the port disabling on this device by reason.

Default
Disabled

Format
no auto-disable reason {link-flap | crc-error | overload-detection | port-security | speed-duplex}

Mode
Global Config

link-flap
Disable the port disabling on this device by link flap.

crc-error
Disable the port disabling on this device by CRC error.

overload-detection
Disable the port disabling on this device by overload detection.

port-security
Disable the port disabling on this device by port-security.

speed-duplex
Disable the port disabling on this device by speed-duplex.
4.7.2 **auto-disable reset**

This command resets the specific interface and reactivates the port.

Format

```
auto-disable reset
```

Mode

`Interface Config`

4.7.3 **auto-disable timer**

This command defines the time after which a deactivated port is activated again.

Default

0

Format

```
auto-disable timer {0 | 30..2147483}
```

Mode

`Interface Config`

{0 | 30..2147483}

- Timer value in seconds after a deactivated port is activated again.
- Possible values:
 - 0 The value 0 disables the timer.
 - 30..2147483.
4.7.4 **show auto-disable brief**

This command displays the Auto Disable summary.

Format

```
show auto-disable brief
```

Mode

- **Global Config**

Intf

- Display the number of the interface in slot/port format.

Error reason

- Display the error reason for auto-disable.
- **Possible values:** no error | link-flap | crc-error | overload-detection | port-security | speed-duplex.

Component name

- Display the name of the component for auto-disable.
- **Possible values:** PORTSEC | PORTMON.

Remaining time (sec.)

- Display the remaining time in seconds for auto-disable.
- **Possible values:** 0 | 30..2147483.

Auto-Disable time (sec.)

- Display the time for auto-disable in seconds.
- **Possible values:** 0 | 30..2147483.

Auto-Disable oper state

- Display the operational state of the auto-disable function.
- **Possible values:** active | inactive.
4.7.5 **show auto-disable reasons**

This command displays the reasons for port auto-disable on this device.

Format

```
show auto-disable reasons
```

Mode

Global Config

Error reason

Display the error reasons of the port auto-disable function

Possible values: link-flap | crc-error | overload-detection | port-security | speed-duplex.

State

Display the state of the port auto-disable function.

Possible values: enabled | disabled.

4.7.6 **auto-negotiate**

This command enables automatic negotiation on a port. The default value is enable.

Format

```
auto-negotiate
```

Mode

Interface Config

no auto-negotiate

This command disables automatic negotiation on a port.

Format

```
no auto-negotiate
```

Mode

Interface Config
4.7.7 cable-crossing

Enable or disable the cable crossing function.

Note: The cable-crossing settings become effective for a certain port, if auto-negotiate is disabled for this port. The cable-crossing settings are irrelevant for a certain port, if auto-negotiate is enabled for this port.

Format

cable-crossing {enable|disable}

Mode

Interface Config

cable-crossing enable

The device swaps the port output and port input of the TP port.

cable-crossing disable

The device does not swap the port output and port input of the TP port.
4.7.8 auto-negotiate all

This command enables automatic negotiation on all ports. The default value is enable.

Format
 auto-negotiate all

Mode
 Global Config

no auto-negotiate all

This command disables automatic negotiation on all ports.

Format
 no auto-negotiate all

Mode
 Global Config
4.7.9 macfilter

This command adds a static MAC filter entry for the MAC address <macaddr> on the VLAN <vlanid>. Confirm that the <macaddr> parameter is specified as a 6-byte hexadecimal number in the format of b1:b2:b3:b4:b5:b6.

The restricted MAC Addresses are: 00:00:00:00:00:00, 01:80:C2:00:00:00 to 01:80:C2:00:00:0F, 01:80:C2:00:00:20 to 01:80:C2:00:00:21, and FF:FF:FF:FF:FF:FF.

Confirm that the <vlanid> parameter identifies a valid VLAN (1 to 4042).

Up to 100 static MAC filters may be created.

Format

 macfilter <macaddr> <vlanid>

Mode

 Global Config

no macfilter

This command removes all filtering restrictions and the static MAC filter entry for the MAC address <macaddr> on the VLAN <vlanid>. Confirm that the <macaddr> parameter is specified as a 6-byte hexadecimal number in the format of b1:b2:b3:b4:b5:b6.

Confirm that the <vlanid> parameter identifies a valid VLAN (1 to 4042).

Format

 no macfilter <macaddr> <vlanid>

Mode

 Global Config
4.7.10 macfilter adddest

This command adds the interface to the destination filter set for the MAC filter with the given <macaddr> and VLAN of <vlanid>. Confirm that the <macaddr> parameter is specified as a 6-byte hexadecimal number in the format of b1:b2:b3:b4:b5:b6. Confirm that the <vlanid> parameter identifies a valid VLAN (1-4042).

Format

macfilter adddest <macaddr> <vlanid>

Mode

Interface Config

no macfilter adddest

This command removes a port from the destination filter set for the MAC filter with the given <macaddr> and VLAN of <vlanid>. Confirm that the <macaddr> parameter is specified as a 6-byte hexadecimal number in the format of b1:b2:b3:b4:b5:b6. Confirm that the <vlanid> parameter identifies a valid VLAN (1-4042).

Format

no macfilter adddest <macaddr> <vlanid>

Mode

Interface Config
4.7.11 monitor session <session-id> destination interface

This command allows you to configure and activate the port mirroring function of the switch. Port mirroring is when the data traffic of a source port is copied to a specified destination port. The data traffic at the source port is not influenced by port mirroring. A management tool connected at the specified port, e.g., an RMON probe, can thus monitor the data traffic of the source port.

This command can be called multiple times with different ports to add more than one source port to the session.

It is possible to add/remove ports to/from an active session.

Note:
- The device supports a maximum of one session.
- The maximum number of source ports is 8.
- Ports configured as mirror source or destination ports have to be physical ports.

Note: In active port mirroring, the specified destination port is used solely for observation purposes.

Default
none

Format

```
monitor session <session-id>
  destination interface <slot/port>
```

Mode

Global Config

session-id

Session number (currently, session number 1 is supported).

destination interface <slot/port>

Configure the probe interface (in slot/port notation).
no monitor session <session-id> destination interface
This command resets the monitor session (port monitoring) destination. The port will be removed from port mirroring

Format
```
no monitor session <session-id>
[destination interface]
```

Mode
Global Config

session-id
Session number (currently, session number 1 is supported).

destination interface
Configure the probe interface.
4.7.12 monitor session <session-id> mode

This command configures the monitor session (port monitoring) mode to enable. Confirm that the probe and monitored ports are configured before enabling the monitor session (port monitoring). If enabled, the probe port will monitor all traffic received and transmitted on the physical monitored port. It is not necessary to disable port monitoring before modifying the probe and monitored ports.

Default

disabled

Format

 monitor session <session-id> mode

Mode

 Global Config

session-id

 Session number (currently, session number 1 is supported).

mode

 Enable/Disable port mirroring session.

Note: This does not affect the source or destination interfaces.

no monitor session <session-id> mode

This command sets the monitor session (port monitoring) mode to disable.

Format

 no monitor session <session-id> [mode]

Mode

 Global Config

session-id

 Session number (currently, session number 1 is supported).

mode

 Enable/Disable port mirroring session.

Note: This does not affect the source or destination interfaces.
4.7.13 `monitor session <session-id>source interface`

This command configures a probe port and a monitored port for monitor session (port monitoring). The first slot/port is the source monitored port. If this command is executed while port monitoring is enabled, it will have the effect of changing the probe and monitored port values.

Format

```
monitor session <session-id>
  source interface <slot/port>
    [direction { rx | tx | tx/rx } ]
```

Mode

Global Config

session-id

Session number (currently, session number 1 is supported).

source interface <slot/port>

Configure the source interface (in `slot/port` notation).

direction

Configure the direction of the interface.

rx

Configure the direction of the interface as rx (receive).

tx

Configure the direction of the interface as tx (transmit).

rx/tx

Configure the direction of the interface as rx/tx (receive and transmit).
no monitor session<session-id>source interface
This command removes the monitor session (port monitoring) designation from both the source probe port and the destination monitored port and removes the probe port from all VLANs. Confirm that the port is manually re-added to any desired VLANs.

Format
```
no monitor session <session-id>
[source interface <slot/port>]
```

Mode
- Global Config

session-id
Session number (currently, session number 1 is supported).

source interface <slot/port>
Configure the source interface (in slot/port notation).
4.7.14 rmon-alarm add

This command adds an RMON alarm.

Format

```
rmon-alarm add <index>
    [<mib-variable>
     <rising-threshold>
     <falling-threshold>]
```

Mode

- Global Config

index

Enter the index of the RMON alarm.

mib-variable

Enter the MIB variable.

rising-threshold

Enter the rising threshold for the RMON alarm.

falling-threshold

Enter the falling threshold for the RMON alarm.

4.7.15 rmon-alarm delete

This command deletes an RMON alarm.

Format

```
rmon-alarm delete <index>
```

Mode

- Global Config

index

Enter the index of the RMON alarm.
4.7.16 `rmon-alarm enable`

This command enables an RMON alarm.

Format
rmon-alarm enable <index>

Mode
- Global Config

index
- Enter the index of the RMON alarm.

4.7.17 `rmon-alarm disable`

This command disables an RMON alarm.

Format
rmon-alarm disable <index>

Mode
- Global Config

index
- Enter the index of the RMON alarm.
4.7.18 `rmon-alarm modify mib-variable`

This command modifies the mib-variable of an RMON alarm.

Format

```bash
rmon-alarm modify <index> mib-variable <mib-variable>
```

Mode

- **Global Config**

index

Enter the index of the RMON alarm.

mib-variable

Enter the MIB variable.

4.7.19 `rmon-alarm modify thresholds`

This command modifies the thresholds of an RMON alarm.

Format

```bash
rmon-alarm modify <index> thresholds
   <rising-threshold>
   <falling-threshold>
```

Mode

- **Global Config**

index

Enter the index of the RMON alarm.

rising-threshold

Enter the rising threshold for the RMON alarm.

falling-threshold

Enter the falling threshold for the RMON alarm.
4.7.20 rmon-alarm modify interval

This command modifies the interval of an RMON alarm.

Format
rmon-alarm modify <index> interval <interval>

Mode
Global Config

index
Enter the index of the RMON alarm.

interval
Enter the interval for the RMON alarm.

4.7.21 rmon-alarm modify sample-type

This command modifies the sample-type of an RMON alarm.

Format
rmon-alarm modify <index> sample-type {absolute|delta}

Mode
Global Config

index
Enter the index of the RMON alarm.

absolute
Sample-type for RMON alarm is absolute.

delta
Sample-type for RMON alarm is delta.
4.7.22 rmon-alarm modify startup-alarm

This command modifies the startup-alarm of an RMON alarm.

Format

```
  rmon-alarm modify <index> startup-alarm
        {rising | falling | risingorfalling}
```

Mode

- **Global Config**

index

Enter the index of the RMON alarm.

rising

Start-up alarm if the value is rising.

falling

Start-up alarm if the value is falling.

risingorfalling

Start-up alarm if the value is rising or falling.
4.7.23 rmon-alarm modify rising-event

This command modifies the rising-event of an RMON alarm.

Format

```
rmon-alarm modify <index> rising-event <rising-event-index>
```

Mode

```
Global Config
```

index

Enter the index of the RMON alarm.

rising-event-index

Enter the index for the rising event for the RMON alarm.

4.7.24 rmon-alarm modify falling-event

This command modifies the falling-event of an RMON alarm.

Format

```
rmon-alarm modify <index> falling-event <falling-event-index>
```

Mode

```
Global Config
```

index

Enter the index of the RMON alarm.

falling-event-index

Enter the index for the falling event for the RMON alarm.
4.7.25 serviceshell

This command executes a service shell command.

Format

```
serviceshell [deactivate] | <argument>
```

Mode

Privileged EXEC

deactivate

Disable the service shell access permanently *(Cannot be undone).*

Note: If you execute this command, the device asks for confirmation:

When you disable the service shell function it is permanently disabled. Please see the Basic Configuration Manual for details.

Are you sure (Y/N)?

<argument>

Execute a specific service shell command.

Note: If you execute this command the system asks for confirmation:

When you disable the service shell function it is permanently disabled. Please see the Basic Configuration Manual for details.
4.7.26 set garp timer join

This command sets the GVRP join time per port and per GARP. Join time is
the interval between the transmission of GARP Protocol Data Units (PDUs)
registering (or re-registering) membership for a VLAN or multicast group.
This command has an effect only when GVRP is enabled. The time is from
10 to 100 (centiseconds). The value 20 centiseconds is 0.2 seconds.

Default

20

Format

set garp timer join <10-100>

Mode

Global Config
Interface Config

no set garp timer join

This command sets the GVRP join time per port and per GARP to 20
centiseconds (0.2 seconds). This command has an effect only when
GVRP is enabled.

Format

no set garp-timer join

Mode

Global Config
Interface Config
4.7.27 set garp timer leave

This command sets the GVRP leave time per port. Leave time is the time to wait after receiving an unregister request for a VLAN or a multicast group before deleting the VLAN entry. This can be considered a buffer time for another station to assert registration for the same attribute in order to maintain uninterrupted service. Time is 20 to 600 (centiseconds). The value 60 centiseconds is 0.6 seconds.

Note: This command has an effect only when GVRP is enabled.

Default
60

Format
set garp timer leave <20–600>

Mode
Global Config
Interface Config

no set garp timer leave

This command sets the GVRP leave time per port to 60 centiseconds (0.6 seconds).

Note: This command has an effect only when GVRP is enabled.

Format
no set garp timer leave

Mode
Global Config
Interface Config
4.7.28 set garp timer leaveall

This command sets how frequently *Leave All PDUs* are generated per port. A *Leave All PDU* indicates that all registrations will be unregistered. Participants would need to rejoin in order to maintain registration. The value applies per port and per GARP participation. The time may range from 200 to 6000 (centiseconds). The value 1000 centiseconds is 10 seconds.

Note: This command has an effect only when GVRP is enabled.

Default

1000

Format

```
set garp timer leaveall <200-6000>
```

Mode

- Global Config
- Interface Config

no set garp timer leaveall

This command sets how frequently *Leave All PDUs* are generated per port to 1000 centiseconds (10 seconds).

Note: This command has an effect only when GVRP is enabled.

Format

```
no set garp timer leaveall
```

Mode

- Global Config
- Interface Config
4.7.29 set gmrp adminmode

This command enables GARP Multicast Registration Protocol (GMRP) on the system. The default value is disable.

Format

```
set gmrp adminmode
```

Mode

Privileged EXEC and Global Config

no set gmrp adminmode

This command disables GARP Multicast Registration Protocol (GMRP) on the system.

Format

```
no set gmrp adminmode
```

Mode

Privileged EXEC and Global Config
4.7.30 set gmrp interfacemode (Interface Config Mode)

This command enables GARP Multicast Registration Protocol on a selected interface. If an interface which has GARP enabled is enlisted as a member of a Link Aggregation (LAG), GARP functionality will be disabled on that interface. GARP functionality will subsequently be re-enabled if Link Aggregation (LAG) membership is removed from an interface that has GARP enabled.

Default
- enabled

Format
- set gmrp interfacemode

Mode
- Interface Config

no set gmrp interfacemode

This command disables GARP Multicast Registration Protocol on a selected interface. If an interface which has GARP enabled is enlisted as a member of a Link Aggregation (LAG), GARP functionality will be disabled on that interface. GARP functionality will subsequently be re-enabled if Link Aggregation (LAG) membership is removed from an interface that has GARP enabled.

Format
- no set gmrp interfacemode

Mode
- Interface Config
4.7.31 set gmrp interfacemode (Global Config Mode)

This command enables GARP Multicast Registration Protocol on all interfaces. If an interface which has GARP enabled is enabled for routing or is enlisted as a member of a link-aggregation (LAG), GARP functionality will be disabled on that interface. GARP functionality will subsequently be re-enabled if routing is disabled and link-aggregation (LAG) membership is removed from an interface that has GARP enabled.

Default
 disabled

Format
 set gmrp interfacemode

Mode
 Global Config

no set gmrp interfacemode

This command disables GARP Multicast Registration Protocol on a selected interface.

Format
 no set gmrp interfacemode

Mode
 Global Config
4.7.32 set gmrp forward-all-groups

This command enables the GMRP Multicast Registration Protocol feature 'Forward All Groups' for all ports.

Default
disabled

Format
set gmrp forward-all-groups

Mode
Interface Config
Global Config

no set gmrp forward-all-groups

This command disables the GMRP Multicast Registration Protocol feature 'Forward All Groups' for all ports.

Format
no set gmrp forward-all-groups

Mode
Interface Config
Global Config
4.7.33 set gmrp forward-unknown

This command determines whether the device should forward unknown GMRP multicast packets. The setting can be discard or flood. The default is flood.

Default

flood

Format

set gmrp forward-unknown {discard | flood}

Mode

Global Config
discard

The device discards unknown GMRP multicast packets.
flood

The device floods unknown GMRP multicast packets.

no set gmrp forward-unknown

This command disables the GMRP Multicast Registration Protocol feature 'Forward Unknown' for all ports.

Format

no set gmrp forward-unknown

Mode

Global Config
4.7.34 set igmp (Global Config Mode)

This command enables IGMP Snooping on the system. The default value is disable.

Note: The IGMP snooping application supports the following:
- Global configuration or per interface configuration.
- Validation of the IP header checksum (as well as the IGMP header checksum) and discarding of the frame upon checksum error.
- Maintenance of the forwarding table entries based on the MAC address versus the IP address.
- Flooding of unregistered multicast data packets to all ports.

Format
set igmp

Mode
Global Config

no set igmp

This command disables IGMP Snooping on the system.

Format
no set igmp

Mode
Global Config
4.7.35 set igmp (Interface Config Mode)

This command enables IGMP Snooping on a selected interface.

Default

 enabled

Format

 set igmp

Mode

 Interface Config

no set igmp

This command disables IGMP Snooping on a selected interface.

Format

 no set igmp

Mode

 Interface Config
4.7.36 set igmp aging-time-unknown

This command configures the IGMP Snooping aging time for unknown multicast frames (unit: seconds, min.: 3, max.: 3,600, default: 260).

Format

```
set igmp aging-time-unknown <3-3600>
```

Mode

Global Config

4.7.37 set igmp automatic-mode

If enabled, this port is allowed to be set as static query port automatically, if the LLDP protocol has found a switch or router connected to this port. Use the command's normal form to enable the feature, the 'no' form to disable it.

Default

disabled

Format

```
set igmp automatic-mode
```

Mode

Interface Config
4.7.38 set igmp forward-all

This command activates the forwarding of multicast frames to this interface even if the given interface has not received any reports by hosts. N. B.: this applies only to frames that have been learned via IGMP Snooping. The purpose is that an interface (e. g. a HIPER Ring's ring port) may need to forward all such frames even if no reports have been received on it. This enables faster recovery from ring interruptions for multicast frames.

Default
disabled

Format
set igmp forward-all

Mode
Interface Config

no set igmp forward-all

This command disables the forwarding of all multicast frames learned via IGMP Snooping on a selected interface.

Format
no set igmp forward-all

Mode
Interface Config
4.7.39 set igmp forward-unknown

This command defines how to handle unknown multicast frames.

Format

```
set igmp forward-unknown
    { discard | flood | query-ports }
```

Mode

- **Global Config**

discard

Unknown multicast frames will be discarded.

flood

Unknown multicast frames will be flooded.

query-ports

Unknown multicast frames will be forwarded only to query ports.
4.7.40 set igmp static-query-port

This command activates the forwarding of IGMP membership report frames to this interface even if the given interface has not received any queries. The purpose is that a port may need to forward such frames even if no queries have been received on it (e.g., if a router is connected to the interface that sends no queries).

Default

disabled

Format

set igmp static-query-port

Mode

Interface Config

no set igmp

This command disables the unconditional forwarding of IGMP membership report frames to this interface.

Format

no set igmp static-query-port

Mode

Interface Config
4.7.41 set igmp groupmembershipinterval

This command sets the IGMP Group Membership Interval time on the system. The Group Membership Interval time is the amount of time in seconds that a switch will wait for a report from a particular group on a particular interface before deleting the interface from the entry. Confirm that this value is greater than the IGMP Maximum Response time value. The range is 3 to 3,600 seconds.

Default

260

Format

set igmp groupmembershipinterval <3-3600>

Mode

Global Config

no set igmp groupmembershipinterval

This command sets the IGMP Group Membership Interval time on the system to 260 seconds.

Format

no set igmp groupmembershipinterval

Mode

Global Config
4.7.42 set igmp interfacemode

This command enables IGMP Snooping on all interfaces. If an interface which has IGMP Snooping enabled is enabled for port-based routing or is enlisted as a member of a link-aggregation (LAG), IGMP Snooping functionality will be disabled on that interface. IGMP Snooping functionality will subsequently be re-enabled if routing is disabled or link-aggregation (LAG) membership is removed from an interface that has IGMP Snooping enabled.

Format

 set igmp interfacemode

Mode

 Global Config

no set igmp interfacemode

This command disables IGMP Snooping on all interfaces.

Format

 no set igmp interfacemode

Mode

 Global Config
4.7.43 set igmp lookup-interval-unknown

This command configures the IGMP Snooping lookup response time for unknown multicast frames (unit: seconds, min.: 2, max.: 3,599, default: 125).

Format

```
set igmp lookup-interval-unknown <2-3599>
```

Mode

Global Config

<2-3599>

Enter the IGMP Snooping lookup response time for unknown multicast frames (unit: seconds, min.: 2, max.: 3,599, default: 125).

4.7.44 set igmp lookup-resp-time-unknown

This command configures the IGMP Snooping lookup interval for unknown multicast frames (unit: seconds, min.: 1, max.: 3,598, default: 10).

Format

```
set igmp lookup-resp-time-unknown <1-3598>
```

Mode

Global Config

<1-3598>

Enter the IGMP Snooping lookup interval for unknown multicast frames (unit: seconds, min.: 1, max.: 3,598, default: 10).
4.7.45 set igmp maxresponse

This command sets the IGMP Maximum Response time on the system. The Maximum Response time is the amount of time in seconds that a switch will wait after sending a query in response to a received leave message, before deleting the multicast group received in the leave message. If the switch receives a report in response to the query within the maxresponse time, then the multicast group is not deleted. Confirm that this value is less than the IGMP Query Interval time value. The range is 1 to 3,598 seconds.

Default
10

Format
set igmp maxresponse <1-3598>

Mode
Global Config

Note: the IGMP Querier's max. response time was also set. It is the same value as the IGMP Snooping max. response time.

no set igmp maxresponse

This command sets the IGMP Maximum Response time on the system to 10 seconds.

Format
no set igmp maxresponse

Mode
Global Config
4.7.46 set igmp querier max-response-time

Configure the IGMP Snooping Querier's maximum response time. The range is 1 to 3,598 seconds. The default value is 10 seconds.

Default

10

Format

set igmp querier max-response-time <1-3598>

Mode

Global Config

Note: The IGMP Snooping max. response time was also set. It is the same value as the IGMP Querier’s max. response time.

4.7.47 set igmp querier protocol-version

Configure the IGMP Snooping Querier's protocol version (1, 2 or 3).

Default

2

Format

set igmp querier protocol-version {1 | 2 | 3}

Mode

Global Config
4.7.48 set igmp querier status

Configure the IGMP Snooping Querier's administrative status (enable or disable).

Default
disable

Format
set igmp querier status {enable | disable}

Mode
Global Config

4.7.49 set igmp querier tx-interval

Configure the IGMP Snooping Querier's transmit interval. The range is 2 to 3,599 seconds.

Default
125

Format
set igmp querier tx-interval <2-3599>

Mode
Global Config
4.7.50 set igmp query-ports-to-filter

This command enables or disables the addition of query ports to multicast filter portmasks. The setting can be enable or disable.

Default

Disable

Format

```
set igmp query-ports-to-filter {enable | disable}
```

Mode

Global Config

enable

Addition of query ports to multicast filter portmasks.

disable

No addition of query ports to multicast filter portmasks.
4.7.51 set pre-login-banner text

This command sets the text for the pre-login banner. The device displays this banner additionally before login in the CLI and before login in the graphical user interface.

Default

Empty string

Format

set pre-login-banner text <text>

Mode

Privileged Exec

text

Enter the text for the pre-login banner.
Possible values: Max. 255 characters in the range ASCII code 0x20 (space character, “ ”) to ASCII code 0x7E (tilde, “~”), except ASCII code 0x25 (percent sign, “%”).
Use “\n” for new line and ” \t” for tab.
4.7.52 selftest ramtest

Enable or disable the RAM test for a cold start of the device. Deactivating the RAM test reduces the booting time for a cold start of the device. Default: enabled.

Format
selftest ramtest {disable|enable}

Mode
Global Config

selftest ramtest disable
Disable the ramtest.

selftest ramtest enable
Enable the ramtest. This is the default.

4.7.53 selftest reboot-on-error

Enable or disable a restart due to an undefined software or hardware state. Default: disabled.

Format
selftest reboot-on-error {disable|enable}

Mode
Global Config

selftest reboot-on-error disable
Disable the reboot-on-error function. This is the default.

selftest reboot-on-error enable
Enable the reboot-on-error function.
4.7.54 **selftest sysmon**

Enable or disable System Monitor 1 on the device (requires boot software 09.0.00 or higher).
Default: enabled.

Format

```
selftest reboot-on-error {disable|enable}
```

Mode

- **Global Config**

 - **enable**

 Enable System Monitor 1. This is the default.

 - **disable**

 Disable System Monitor 1.
4.7.55 show garp

This command displays Generic Attributes Registration Protocol (GARP) information.

Format

```
show garp
```

Mode

Privileged EXEC and User EXEC

GMRP Admin Mode

This displays the administrative mode of GARP Multicast Registration Protocol (GMRP) for the system.
4.7.56 show gmrp configuration

This command displays Generic Attributes Registration Protocol (GARP) information for one or all interfaces.

Format

```
show gmrp configuration {<slot/port> | all}
```

Mode

Privileged EXEC and User EXEC

Global Admin Mode

This displays the status of the global admin mode
It may be enabled or disabled.

Forwarding of unknown frames

This displays the type of forwarding of unknown frames.

Interface

This displays the slot/port of the interface that this row in the table describes.

Join Timer

Indicates the interval between the transmission of GARP PDUs registering (or re-registering) membership for an attribute. Current attributes are a VLAN or multicast group. There is an instance of this timer on a per-Port, per-GARP participant basis. Permissible values are 10 to 100 centiseconds (0.1 to 1.0 seconds). The factory default is 20 centiseconds (0.2 seconds). The finest granularity of specification is 1 centisecond (0.01 seconds).

Leave Timer

Indicates the period of time to wait after receiving an unregister request for an attribute before deleting the attribute. Current attributes are a VLAN or multicast group. This may be considered a buffer time for another station to assert registration for the same attribute in order to maintain uninterrupted service. There is an instance of this timer on a per-Port, per-GARP participant basis. Permissible values are 20 to 600 centiseconds (0.2 to 6.0 seconds). The factory default is 60 centiseconds (0.6 seconds). The finest granularity of specification is 1 centisecond (0.01 seconds).
LeaveAll Timer

Indicates how frequently LeaveAll PDUs are generated. A LeaveAll PDU indicates that all registrations will shortly be deregistered. Participants will need to rejoin in order to maintain registration. There is an instance of this timer on a per-Port, per-GARP participant basis. The Leave All Period Timer is set to a random value in the range of LeaveAllTime to 1.5*LeaveAllTime. Permissible values are 200 to 6000 centiseconds (2 to 60 seconds). The factory default is 1000 centiseconds (10 seconds). The finest granularity of specification is 1 centisecond (0.01 seconds).

Port GMRP Mode

Indicates the GMRP administrative mode for the port. It may be enabled or disabled. If this parameter is disabled, Join Time, Leave Time and Leave All Time have no effect. The factory default is disabled.

Forward All Groups

Indicates status of the forward all groups function. The factory default is disabled.
4.7.57 show igmpsnooping

This command displays IGMP Snooping information. Configured information is displayed whether or not IGMP Snooping is enabled. Status information is only displayed when IGMP Snooping is enabled.

Format

 show igmpsnooping

Mode

 Privileged EXEC and User EXEC

Admin Mode

 This indicates whether or not IGMP Snooping is globally enabled on the switch.

Forwarding of Unknown Frames

 This displays if and how unknown multicasts are forwarded.
 The setting can be Discard, Flood or Query Ports.
 The default is Query Ports.

Group Membership Interval

 This displays the IGMP Group Membership Interval. This is the amount of time a switch will wait for a report for a particular group on a particular interface before it sends a query on that interface. This value may be configured.

Multicast Control Frame Count

 This displays the number of multicast control frames that are processed by the CPU.

Interfaces Enabled for IGMP Snooping

 This is the list of interfaces on which IGMP Snooping is enabled. Additionally, if a port has a special function, it will be shown to the right of its slot/port number. There are 3 special functions:
 Forward All, Static Query Port and Learned Query Port.

Querier Status (the administrative state).

 This displays the IGMP Snooping Querier's administrative status.

Querier Mode (the actual state, read only)

 This displays the IGMP Snooping Querier's operating status.
4.7 Device Configuration Commands

Querier Transmit Interval
This displays the IGMP Snooping Querier's transmit interval in seconds.

Querier Max. Response Time
This displays the IGMP Snooping Querier's maximum response time in seconds.

Querier Protocol Version
This displays the IGMP Snooping Querier's protocol version number.
4.7 Device Configuration Commands

4.7.58 show mac-filter-table gmrp

This command displays the GARP Multicast Registration Protocol (GMRP) entries in the Multicast Forwarding Database (MFDB) table.

Format

show mac-filter-table gmrp

Mode

Privileged EXEC and User EXEC

Mac Address

A unicast MAC address for which the switch has forwarding and or filtering information. The format is 6 or 8 two-digit hexadecimal numbers that are separated by colons, for example 01:23:45:67:89:AB. In an IVL system the MAC address will be displayed as 8 bytes.

Type

This displays the type of the entry. Static entries are those that are configured by the end user. Dynamic entries are added to the table as a result of a learning process or protocol.

Description

The description of this multicast table entry.

Interfaces

The list of interfaces that are designated for forwarding (Fwd:) and filtering (Flt:).
4.7.59 show mac-filter-table igmpsnooping

This command displays the IGMP Snooping entries in the Multicast Forwarding Database (MFDB) table.

Format
 show mac-filter-table igmpsnooping

Mode
 Privileged EXEC and User EXEC

Mac Address
 A multicast MAC address for which the switch has forwarding and or filtering information. The format is two-digit hexadecimal numbers that are separated by colons, for example 01:23:45:67:89:AB.

Type
 This displays the type of the entry. Static entries are those that are configured by the end user. Dynamic entries are added to the table as a result of a learning process or protocol.

Description
 The text description of this multicast table entry.

Interfaces
 The list of interfaces that are designated for forwarding (Fwd:) and filtering (Flt:).
4.7.60 show mac-filter-table multicast

This command displays the Multicast Forwarding Database (MFDB) information. If the command is entered with no parameter, the entire table is displayed. This is the same as entering the optional `all` parameter. The user can display the table entry for one MAC Address by specifying the MAC address as an optional parameter.

Format

```
show mac-filter-table multicast
[<macaddr> <1-4042>]
```

Mode

- Privileged EXEC and User EXEC

Mac Address

A multicast MAC address for which the switch has forwarding and or filtering information. The format is two-digit hexadecimal numbers that are separated by colons, for example 01:23:45:67:89:AB.

Type

This displays the type of the entry. Static entries are those that are configured by the end user. Dynamic entries are added to the table as a result of a learning process or protocol.

Component

The component that is responsible for this entry in the Multicast Forwarding Database. Possible values are IGMP Snooping, GMRP and Static Filtering.

Description

The text description of this multicast table entry.

Interfaces

The list of interfaces that are designated for forwarding (Fwd:) and filtering (Flt:).

Forwarding Interfaces

The resultant forwarding list is derived from combining all the component’s forwarding interfaces and removing the interfaces that are listed as the static filtering interfaces.
4.7.61 show mac-filter-table static

This command displays the Static MAC Filtering information for all Static MAC Filters. If all is selected, all the Static MAC Filters in the system are displayed. If a macaddr is entered, confirm that a vlan is also entered and the Static MAC Filter information will be displayed only for that MAC address and VLAN.

Format

show mac-filter-table static {<macaddr> <vlanid> | all}

Mode

Privileged EXEC and User EXEC

MAC Address

Is the MAC Address of the static MAC filter entry.

VLAN ID

Is the VLAN ID of the static MAC filter entry.

Source Port(s)

Indicates the source port filter set's slot and port(s).

Destination Port(s)

Indicates the destination port filter set's slot and port(s).
4.7.62 show mac-filter-table staticfiltering

This command displays the Static Filtering entries in the Multicast Forwarding Database (MFDB) table.

Format

```plaintext
show mac-filter-table staticfiltering
```

Mode

Privileged EXEC and User EXEC

Mac Address

A unicast MAC address for which the switch has forwarding and or filtering information. The format is 6 or 8 two-digit hexadecimal numbers that are separated by colons, for example 01:23:45:67:89:AB.

Type

This displays the type of the entry. Static entries are those that are configured by the end user. Dynamic entries are added to the table as a result of a learning process or protocol.

Description

The text description of this multicast table entry.

Interfaces

The list of interfaces that are designated for forwarding (Fwd:) and filtering (Flt:).
4.7.63 show mac-filter-table stats

This command displays the Multicast Forwarding Database (MFDB) statistics.

Format

 show mac-filter-table stats

Mode

 Privileged EXEC and User EXEC

Total Entries

 This displays the total number of entries that can possibly be in the Multicast Forwarding Database table.

Most MFDB Entries Ever Used

 This displays the largest number of entries that have been present in the Multicast Forwarding Database table. This value is also known as the MFDB high-water mark.

Current Entries

 This displays the current number of entries in the Multicast Forwarding Database table.
4.7.64 show monitor session

This command displays the Port monitoring information for the system.

Format

```
show monitor session <Session Number>
```

Mode

Privileged EXEC and User EXEC

Session

Display port monitor session settings.

Session Number

Session Number. Enter 1 for the Session Number.

Port Monitor Mode

indicates whether the Port Monitoring feature is enabled or disabled. The possible values are enable and disable.

Probe Port slot/port

is the slot/port configured as the probe port. If this value has not been configured, 'Not Configured' will be displayed.

Monitored Port slot/port

is the slot/port configured as the monitored port. If this value has not been configured, 'Not Configured' will be displayed.
4.7.65 show port

This command displays port information.

Format

 show port {<slot/port> | all} [name]

Mode

 Privileged EXEC and User EXEC

Slot/Port

 Valid slot and port number separated by forward slashes.

Name

 When the optional command parameter name was specified, the output is different. It specifically includes the Interface Name as the second column, followed by other basic settings that are also shown by the normal command without the command parameter name.

Type

 If not blank, this field indicates that this port is a special type of port. The possible values are:
 - Mon - this port is a monitoring port. Look at the Port Monitoring screens to find out more information.
 - LA Mbr - this port is a member of a Link Aggregation (LAG).
 - Probe - this port is a probe port.

Admin Mode

 Indicates the Port control administration state. Confirm that the port is enabled in order for it to be allowed into the network. - May be enabled or disabled. The factory default is enabled.

Physical Mode

 Indicates the desired port speed and duplex mode. If auto-negotiation support is selected, then the duplex mode and speed will be set from the auto-negotiation process. Note that the port's maximum capability (full duplex -100M) will be advertised. Otherwise, this object will determine the port's duplex mode and transmission rate. The factory default is Auto.

Physical Status

 Indicates the port speed and duplex mode.
4.7 Device Configuration Commands

Link Status
Indicates whether the Link is up or down.

Link Trap
This object determines whether or not to send a trap when link status changes. The factory default is enabled.

Flow
Indicates if enable flow control is enabled on this port.

Device Status
Indicates whether or not the given port's link status is monitored by the device status.

VLAN Prio
This object displays the port VLAN priority.
4.7.66 show rmon-alarm

This command displays switch configuration information.

Format

```
show rmon-alarm
```

Mode

Privileged EXEC and User EXEC

4.7.67 show selftest

This command displays switch configuration information.

Format

```
show selftest
```

Mode

Privileged EXEC and User EXEC

Ramtest state

Possible values: enabled or disabled. The factory default is enabled.

Reboot on error

Possible values: enabled or disabled. The factory default is enabled.

System Monitor 1

Possible values: enabled or disabled. The factory default is enabled.

4.7.68 show serviceshell

This command displays the admin state of the service shell access.
4.7 Device Configuration Commands

Format

show serviceshell

Mode

Privileged EXEC and User EXEC

Admin state of service shell
Display the admin state of the service shell access
Possible values: Disabled, Enabled.
4.7.69 show storm-control

This command displays switch configuration information.

Format

```
show storm-control
```

Mode

Privileged EXEC and User EXEC

Ingress Limiting

May be enabled or disabled. The factory default is disabled.

Egress Broadcast Limiting

May be enabled or disabled. The factory default is disabled.

Egress Limiting (all traffic)

May be enabled or disabled. The factory default is disabled.

802.3x Flow Control Mode

May be enabled or disabled. The factory default is disabled.
4.7.70 show storm-control limiters port

This command displays the limiter settings per port. "0" means that the respective limiter is disabled.

Format

```
show storm-control limiters port {<slot/port>|all}
```

Mode

Privileged EXEC and User EXEC

Ingress Mode

Shows the mode for the ingress limiter. The factory default is: Broadcasts only.

Ingress Limit

Shows the ingress rate limit. The factory default is: 0.

Egress Broadcast Limit

Shows the egress broadcast rate limit. The factory default is: 0.

Egress Limit (all traffic)

Shows the egress rate limit for all frame types. The factory default is: 0.

4.7.71 show vlan

This command displays detailed information, including interface information, for a specific VLAN. The ID is a valid VLAN identification number.

Format

```
show vlan <vlanid>
```

Mode

Privileged EXEC and User EXEC

VLAN ID

There is a VLAN Identifier (VID) associated with each VLAN. The range of the VLAN ID is 1 to 4042.
VLAN Name
A string associated with this VLAN as a convenience. It can be up to 32 alphanumeric characters long, including blanks. The default is blank. VLAN ID 1 has a name of `Default`. This field is optional.

VLAN Type
Type of VLAN, which can be Default, (VLAN ID = 1), a static (one that is configured and permanently defined), or Dynamic (one that is created by GVRP registration).

VLAN Creation Time
Time since VLAN has been created: d days, hh:mm:ss (System Uptime).

Interface
Valid slot and port number separated by forward slashes. It is possible to set the parameters for all ports by using the selectors on the top line.

Current
Determines the degree of participation of this port in this VLAN. The permissible values are:
- Include - This port is a member of this VLAN. This is equivalent to registration fixed in the IEEE 802.1Q standard.
- Exclude - This port is not a member of this VLAN. This is equivalent to registration forbidden in the IEEE 802.1Q standard.
- Autodetect - Specifies to allow the port to be dynamically registered in this VLAN via GVRP. The port will not participate in this VLAN unless a join request is received on this port. This is equivalent to registration normal in the IEEE 802.1Q standard.

Configured
Determines the configured degree of participation of this port in this VLAN. The permissible values are:
- Include - This port is a member of this VLAN. This is equivalent to registration fixed in the IEEE 802.1Q standard.
- Exclude - This port is not a member of this VLAN. This is equivalent to registration forbidden in the IEEE 802.1Q standard.
- Autodetect - Specifies to allow the port to be dynamically registered in this VLAN via GVRP. The port will not participate in this VLAN unless a join request is received on this port. This is equivalent to registration normal in the IEEE 802.1Q standard.
Tagging
Select the tagging behavior for this port in this VLAN.
- **Tagged** - specifies to transmit traffic for this VLAN as tagged frames.
- **Untagged** - specifies to transmit traffic for this VLAN as untagged frames.

4.7.72 show vlan brief

This command displays a list of all configured VLANs.

Format

```
show vlan brief
```

Mode

Privileged EXEC and User EXEC

VLAN ID

There is a VLAN Identifier (vlanid) associated with each VLAN. The range of the VLAN ID is 1 to 4042.

VLAN Name

A string associated with this VLAN as a convenience. It can be up to 32 alphanumeric characters long, including blanks. The default is blank. VLAN ID 1 has a name of `Default`. This field is optional.

VLAN Type

Type of VLAN, which can be Default, (VLAN ID = 1), a static (one that is configured and permanently defined), or a Dynamic (one that is created by GVRP registration).

VLAN Creation Time

Displays the time (as the system time up time) when the VLAN was created.
4.7.73 show vlan port

This command displays VLAN port information.

Format

```
show vlan port {<slot/port> | all}
```

Mode

Privileged EXEC and User EXEC

Slot/Port

Valid slot and port number separated by forward slashes. It is possible to set the parameters for all ports by using the selectors on the top line.

Port VLAN ID

The VLAN ID that this port will assign to untagged frames or priority tagged frames received on this port. Confirm that the value is for an existing VLAN. The factory default is 1.

Acceptable Frame Types

Specifies the types of frames that may be received on this port. The options are 'VLAN only' and 'Admit All'. When set to 'VLAN only', untagged frames or priority tagged frames received on this port are discarded. When set to 'Admit All', untagged frames or priority tagged frames received on this port are accepted and assigned the value of the Port VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance to the 802.1Q VLAN specification.

Ingress Filtering

May be enabled or disabled. When enabled, the frame is discarded if this port is not a member of the VLAN with which this frame is associated. In a tagged frame, the VLAN is identified by the VLAN ID in the tag. In an untagged frame, the VLAN is the Port VLAN ID specified for the port that received this frame. When disabled, all frames are forwarded in accordance with the 802.1Q VLAN bridge specification. The factory default is disabled.

Default Priority

The 802.1p priority assigned to tagged packets arriving on the port.
4.7.74 shutdown

This command disables a port.

Default

enabled

Format

shutdown

Mode

Interface Config

no shutdown

This command enables a port.

Format

no shutdown

Mode

Interface Config
4.7.75 shutdown all

This command disables all ports.

Default
 enabled

Format
 shutdown all

Mode
 Global Config

no shutdown all

This command enables all ports.

Format
 no shutdown all

Mode
 Global Config
4.7.76 `snmp sync community-to-v3`

This command enables the synchronization between the SNMPv1/v2 community table and the SNMPv3 password table.

Format

```
snmp sync community-to-v3
```

Mode

Global Config

no snmp sync community-to-v3

This command disables the synchronization between the SNMPv1/v2 community table and the SNMPv3 password table.

Format

```
no snmp sync community-to-v3
```

Mode

Global Config
4.7.77 **snmp sync v3-to-community**

This command enables the synchronization between the SNMPv3 password table and the SNMPv1/v2 community table.

Format

```
snmp sync v3-to-community
```

Mode

Global Config

no snmp sync v3-to-community

This command disables the synchronization between the SNMPv3 password table and the SNMPv1/v2 community table.

Format

```
no snmp sync v3-to-community
```

Mode

Global Config
4.7.78 snmp trap link-status

This command enables link status traps by interface.

Note: This command is valid only when the Link Up/Down Flag is enabled. See ‘snmp-server enable traps linkmode’ command.

Format

```text
snmp trap link-status
```

Mode

```
Interface Config
```

no snmp trap link-status

This command disables link status traps by interface.

Note: This command is valid only when the Link Up/Down Flag is enabled. See ‘snmp-server enable traps linkmode’ command.

Format

```text
no snmp trap link-status
```

Mode

```
Interface Config
```
4.7.79 snmp trap link-status all

This command enables link status traps for all interfaces.

Note: This command is valid only when the Link Up/Down Flag is enabled (see “snmp-server enable traps linkmode”).

Format
 snmp trap link-status all

Mode
 Global Config

no snmp trap link-status all

This command disables link status traps for all interfaces.

Note: This command is valid only when the Link Up/Down Flag is enabled (see “snmp-server enable traps linkmode”).

Format
 no snmp trap link-status all

Mode
 Global Config
4.7.80 spanning-tree bpdumigrationcheck

This command enables BPDU migration check on a given interface. This will force the specified port to transmit RST or MST BPDUs. The all option enables BPDU migration check on all interfaces.

Format

```
spanning-tree bpdumigrationcheck {<slot/port> | all}
```

Mode

Global Config

no spanning-tree bpdumigrationcheck

This command disables BPDU migration check on a given interface. The all option disables BPDU migration check on all interfaces.

Format

```
no spanning-tree bpdumigrationcheck {<slot/port> | all}
```

Mode

Global Config
4.7.81 speed

This command sets the speed and duplex setting for the interface.

Format

```
speed {<100 | 10> <half-duplex | full-duplex> | 1000 full-duplex}
```

Mode

```
Interface Config
```

Acceptable values are:

- **1000f**
 - 1000BASE-T full duplex

- **100h**
 - 100BASE-T half duplex

- **100f**
 - 100BASE-T full duplex

- **10h**
 - 10BASE-T half duplex

- **10f**
 - 100BASE-T full duplex
4.7.82 storm-control broadcast

This command enables the egress broadcast limiter globally.

Format

```
storm-control broadcast
```

Mode

Global Config

no storm-control broadcast

This command disables the egress broadcast limiter globally.

Format

```
no storm-control broadcast
```

Mode

Global Config
4.7.83 storm-control egress-limiting

This command enables or disables the egress limiter globally for all frame types.

Format

```
storm-control egress-limiting {disable | enable}
```

Mode

Global Config

4.7.84 storm-control ingress-limiting

This command enables or disables the ingress limiter globally.

Format

```
storm-control ingress-limiting {disable | enable}
```

Mode

Global Config

4.7.85 storm-control broadcast (port-related)

This command enables the broadcast limiter per port. Enter the maximum number of broadcasts that the given port is allowed to send (unit: frames per second, min.: 0 (no limit), default: 0 (no limit)).

Format

```
storm-control broadcast <max. broadcast rate>
```

Mode

Interface Config
4.7.86 storm-control egress-limit
Sets the egress rate limit in kbit/s. "0" means: no limit.

Format
 storm-control egress-limit <max. egress rate>

Mode
 Interface Config

4.7.87 storm-control ingress-limit
Sets the ingress rate limit in kbit/s. "0" means: no limit.

Format
 storm-control ingress-limit <max. ingress rate>

Mode
 Interface Config

4.7.88 storm-control ingress-mode
This command sets the frame type for the ingress limiter to:
All, BC, BC+MC, BC+MC+uUC (TCSESM only).

Format
 storm-control ingress-mode {all | bc | mc+bc | uuc+mc+bc}

Mode
 Interface Config
4.7.89 storm-control flowcontrol

This command enables 802.3x flow control for the switch.

Note: This command only applies to full-duplex mode ports.

Default

disabled

Format

storm-control flowcontrol

Mode

Interface Config
Global Config

no storm-control flowcontrol

This command disables 802.3x flow control for the switch.

Note: This command only applies to full-duplex mode ports.

Format

no storm-control flowcontrol

Mode

Interface Config
Global Config
4.7.90 vlan

This command creates a new VLAN and assigns it an ID. The ID is a valid VLAN identification number (ID 1 is reserved for the default VLAN). VLAN range is 1-4042.

Format

```
vlan <1-4042>
```

Mode

VLAN database

no vlan

This command deletes an existing VLAN. The ID is a valid VLAN identification number (ID 1 is reserved for the default VLAN). VLAN range is 1-4042.

Format

```
no vlan <1-4042>
```

Mode

VLAN database
4.7.91 vlan0-transparent-mode

Activate the “Transparent Mode” to be able to switch priority tagged frames without a VLAN affiliation thus with VLAN-ID “0”. In this mode the VLAN-ID “0” persists in the frame, irrespective of the Port VLAN ID setting in the “VLAN Port” dialog.

In transparency mode devices ignore the configured port vlan id. Set the vlan membership of the ports from vlan 1 to untagged or member.

Format

```
vlan0-transparent-mode {disable|enable}
```

Mode

VLAN database
4.7.92 vlan acceptframe

This command sets the frame acceptance mode per interface. For VLAN Only mode, untagged frames or priority frames received on this interface are discarded. For Admit All mode, untagged frames or priority frames received on this interface are accepted and assigned the value of the interface VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance with the IEEE 802.1Q VLAN Specification.

Default

Admit All

Format

vlan acceptframe <vlanonly | all>

Mode

Interface Config

no vlan acceptframe

This command sets the frame acceptance mode per interface to Admit All. For Admit All mode, untagged frames or priority frames received on this interface are accepted and assigned the value of the interface VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance with the IEEE 802.1Q VLAN Specification.

Format

vlan acceptframe <vlanonly | all>

Mode

Interface Config
4.7.93 vlan ingressfilter

This command enables ingress filtering. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Default

disabled

Format

vlan ingressfilter

Mode

Interface Config

no vlan ingressfilter

This command disables ingress filtering. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Format

no vlan ingressfilter

Mode

Interface Config
4.7.94 vlan name

This command changes the name of a VLAN. The name is an alphanumeric string of up to 32 characters, and the ID is a valid VLAN identification number. ID range is 1-4042.

Default
The name for VLAN ID 1 is Default. The name for other VLANs is defaulted to a blank string.

Format
vlan name <1-4042> <newname>

Mode
VLAN database

no vlan name

This command sets the name of a VLAN to a blank string. The VLAN ID is a valid VLAN identification number. ID range is 1-4042.

Format
no vlan name <1-4042>

Mode
VLAN database
4.7.95 vlan participation

This command configures the degree of participation for a specific interface in a VLAN. The ID is a valid VLAN identification number, and the interface is a valid interface number.

Format

```
vlan participation
     <exclude | include | auto> <1-4042>
```

Mode

Interface Config

Participation options are:

include

The interface is a member of this VLAN. This is equivalent to registration fixed.

exclude

The interface is not a member of this VLAN. This is equivalent to registration forbidden.

auto

The interface is dynamically registered in this VLAN by GVRP. The interface will not participate in this VLAN unless a join request is received on this interface. This is equivalent to registration normal.
4.7.96 vlan participation all

This command configures the degree of participation for all interfaces in a VLAN. The ID is a valid VLAN identification number.

Format

```
vlan participation all <exclude | include | auto> <1-4042>
```

Mode

Global Config

Participation options are:

include

The interface is a member of this VLAN. This is equivalent to registration fixed.

exclude

The interface is not a member of this VLAN. This is equivalent to registration forbidden.

auto

The interface is dynamically registered in this VLAN by GVRP. The interface will not participate in this VLAN unless a join request is received on this interface. This is equivalent to registration normal.
4.7.97 vlan port acceptframe all

This command sets the frame acceptance mode for all interfaces. For VLAN Only mode, untagged frames or priority frames received on this interface are discarded. For Admit All mode, untagged frames or priority frames received on this interface are accepted and assigned the value of the interface VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance with the IEEE 802.1Q VLAN Specification.

Default
Admit All

Format
```
vlan port acceptframe all <vlanonly | all>
```

Mode
Global Config

no vlan port acceptframe all

This command sets the frame acceptance mode for all interfaces to Admit All. For Admit All mode, untagged frames or priority frames received on this interface are accepted and assigned the value of the interface VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance with the IEEE 802.1Q VLAN Specification.

Format
```
no vlan port acceptframe all
```

Mode
Global Config
4.7.98 vlan port ingressfilter all

This command enables ingress filtering for all ports. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Default
disabled

Format
vlan port ingressfilter all

Mode
Global Config

no vlan port ingressfilter all

This command disables ingress filtering for all ports. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Format
no vlan port ingressfilter all

Mode
Global Config
4.7.99 vlan port pvid all

This command changes the VLAN ID for all interface.

Default

1

Format

vlan port pvid all <1-4042>

Mode

Global Config

no vlan port pvid all

This command sets the VLAN ID for all interfaces to 1.

Format

no vlan port pvid all <1-4042>

Mode

Global Config
4.7.100 vlan port tagging all

This command configures the tagging behavior for all interfaces in a VLAN to enabled. If tagging is enabled, traffic is transmitted as tagged frames. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.

Format

```
vlan port tagging all <1-4042>
```

Mode

Global Config

no vlan port tagging all

This command configures the tagging behavior for all interfaces in a VLAN to disabled. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.

Format

```
no vlan port tagging all <1-4042>
```

Mode

Global Config
4.7.101 vlan pvid

This command changes the VLAN ID per interface.

Default

1

Format

vlan pvid <1-4042>

Mode

Interface Config

no vlan pvid

This command sets the VLAN ID per interface to 1.

Format

no vlan pvid <1-4042>

Mode

Interface Config
4.7.102 vlan tagging

This command configures the tagging behavior for a specific interface in a VLAN to enabled. If tagging is enabled, traffic is transmitted as tagged frames. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.

Format

```
vlan tagging <1-4042>
```

Mode

Interface Config

no vlan tagging

This command configures the tagging behavior for a specific interface in a VLAN to disabled. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.

Format

```
no vlan tagging <1-4042>
```

Mode

Interface Config
4.8 User Account Management Commands

These commands manage user accounts.

4.8.1 disconnect

This command closes a telnet session.

Format

```
disconnect {<sessionID> | all}
```

Mode

Privileged EXEC

Session ID

Enter the session ID (1-11).
4.8.2 show loginsession

This command displays current telnet and serial port connections to the switch.

Format

`show loginsession`

Mode

Privileged EXEC and User EXEC

ID

Login Session ID

User Name

The name the user will use to login using the serial port or Telnet. A new user may be added to the switch by entering a name in a blank entry. The user name may be up to 8 characters, and is not case sensitive. Two users are included as the factory default, ‘admin’ and ‘user’.

Connection From

IP address of the telnet client machine or EIA-232 for the serial port connection.

Idle Time

Time this session has been idle.

Session Time

Total time this session has been connected.
4.8.3 show users

This command displays the configured user names and their settings. This command is only available for users with readwrite privileges. The SNMPv3 fields will only be displayed if SNMP is available on the system.

Format

 show users

Mode

 Privileged EXEC

User Name

 The name the user will use to login using the serial port, Telnet or Web. A new user may be added to the switch by entering a name in a blank entry. The user name may be up to eight characters, and is not case sensitive. Two users are included as the factory default, ‘admin’ and ‘user’

Access Mode

 Shows whether the operator is able to change parameters on the switch (Read/Write) or is only able to view them (Read Only). As a factory default, the ‘admin’ user has Read/Write access and the ‘user’ has Read Only access. There can only be one Read/Write user and up to five Read Only users.

SNMPv3 Access Mode

 This field displays the SNMPv3 Access Mode. If the value is set to ReadWrite, the SNMPv3 user will be able to set and retrieve parameters on the system. If the value is set to ReadOnly, the SNMPv3 user will only be able to retrieve parameter information. The SNMPv3 access mode may be different than the CLI and Web access mode.

SNMPv3 Authentication

 This field displays the authentication protocol to be used for the specified login user.

SNMPv3 Encryption

 This field displays the encryption protocol to be used for the specified login user.
4.8.4 users defaultlogin

This command assigns the authentication login list to use for non-configured users when attempting to log in to the system. This setting is overridden by the authentication login list assigned to a specific user if the user is configured locally. If this value is not configured, users will be authenticated using local authentication only.

Format

users defaultlogin <listname>

Mode

Global Config

listname

Enter an alphanumeric string of not more than 15 characters.
4.8.5 users login <user>

Enter user name.

Format

```
users login <user> <listname>
```

Mode

Global Config

Note:

When assigning a list to the 'admin' account, include an authentication method that allows administrative access even when remote authentication is unavailable (use 'authentication login <listname> [method1 [method2 [method3]]]').

no users login <user>

This command removes an operator.

Format

```
no users login <user> <listname>
```

Mode

Global Config

Note:

The 'admin' user account cannot be deleted.
4.8.6 users access

This command sets access for a user: readonly/readwrite.

Format

 users access <username> {readonly | readwrite}

Mode

 Global Config

<username>

Enter a name up to 32 alphanumeric characters in length.

readonly

Enter the access mode as readonly.

readwrite

Enter the access mode as readwrite.

no users access

This command deletes access for a user.

Format

 no users access <username>

Mode

 Global Config
4.8.7 users name

This command adds a new user (account) if space permits. The account `<username>` can be up to eight characters in length. The name may be comprised of alphanumeric characters as well as the dash (`'-'`) and underscore (`'_'`). The `<username>` is not case-sensitive.
Six user names can be defined.

Format

```
users name <username>
```

Mode

Global Config

no users name

This command removes an operator.

Format

```
no users name <username>
```

Mode

Global Config

Note:

The ‘admin’ user account cannot be deleted.
4.8.8 users passwd

This command is used to change a password. The password should not be more than eight alphanumeric characters in length. If a user is authorized for authentication or encryption is enabled, confirm that the password is at least eight alphanumeric characters in length. The username and password are case-sensitive. When a password is changed, a prompt will ask for the former password. If none, press enter.

Note: Confirm that the passwords of the users differ from each other. If two or more users try to choose the same password, the CLI will display an error message.

Default

No Password

Format

```
users passwd <username> {<password>}
```

Mode

Global Config

no users passwd

This command sets the password of an existing operator to blank. When a password is changed, a prompt will ask for the operator's former password. If none, press enter.

Format

```
no users passwd <username> {<password>}
```

Mode

Global Config
4.8.9 users snmpv3 accessmode

This command specifies the snmpv3 access privileges for the specified login user. The valid accessmode values are readonly or readwrite. The <username> is the login user name for which the specified access mode applies. The default is readwrite for ‘admin’ user; readonly for all other users.

Default
admin -- readwrite; other -- readonly

Format
users snmpv3 accessmode <username> <readonly | readwrite>

Mode
Global Config

no users snmpv3 accessmode

This command sets the snmpv3 access privileges for the specified login user as readwrite for the ‘admin’ user; readonly for all other users. The <username> is the login user name for which the specified access mode will apply.

Format
no users snmpv3 accessmode <username>

Mode
Global Config
4.8.10 users snmpv3 authentication

This command specifies the authentication protocol to be used for the specified login user. The valid authentication protocols are none, md5 or sha. If md5 or sha are specified, the user login password is also used as the snmpv3 authentication password. Therefore confirm that it is at least eight characters in length. The <username> is the login user name associated with the authentication protocol.

Default

 no authentication

Format

 users snmpv3 authentication <username> <none | md5 | sha>

Mode

 Global Config

no users snmpv3 authentication

This command sets the authentication protocol to be used for the specified login user to none. The <username> is the login user name for which the specified authentication protocol will be used.

Format

 users snmpv3 authentication <username>

Mode

 Global Config
4.8.11 users snmpv3 encryption

This command specifies the encryption protocol to be used for the specified login user. The valid encryption protocols are des or none. If des is specified, the required key may be specified on the command line. The key may be up to 16 characters long. If the des protocol is specified but a key is not provided, the user will be prompted for the key. When using the des protocol, the user login password is also used as the snmpv3 encryption password. Therefore confirm that it is at least eight characters in length. If none is specified, confirm that no key is provided. The `<username>` is the login user name associated with the specified encryption.

Default

- no encryption

Format

```
users snmpv3 encryption <username> <none | des[key]>
```

Mode

- Global Config

no users snmpv3 encryption

This command sets the encryption protocol to none. The `<username>` is the login user name for which the specified encryption protocol will be used.

Format

```
no users snmpv3 encryption <username>
```

Mode

- Global Config
This section describes system utilities.

4.9.1 address-conflict

This command configures the setting for detection possible address conflicts of the agent’s IP address with other devices’ IP addresses in the network.

Format

```
address-conflict
   {detection-mode { active-only | disable | enable | passive-only}|
   ongoing-detection { disable | enable } }
```

Mode

- **Global Config**

detection mode

Configure the device's address conflict detection mode (active-only, disable, enable or passive-only). Default: enable.

ongoing detection

 Disable or enable the ongoing address conflict detection. Default: enable.
4.9.2 cablestatus

This command tests the cable attached to an interface for short or open circuit. During the test the traffic is interrupted on this port.

Default
disabled

Format
cablestatus <slot/port>

Mode
Privileged EXEC

4.9.3 clear eventlog

Clear the event log. The CLI will ask for confirmation. Answer \textit{y} (yes) or \textit{n} (no).
The CLI displays the end of this operation.

Format
clear eventlog

Mode
Privileged EXEC

4.9.4 traceroute

This command is used to discover the routes that packets actually take when traveling to their destination through the network on a hop-by-hop basis.
<ipaddr> should be a valid IP address.
The optional port parameter is the UDP port used as the destination of pack-
ets sent as part of the traceroute. This port should be an unused port on the destination system. [port] should be a valid decimal integer in the range of 0 (zero) to 65,535. The default value is 33,434.

Format

`traceroute <ipaddr> [port]`

Mode

Privileged EXEC

4.9.5 clear arp-table-switch

This command clears the agent’s ARP table (cache).

Format

`clear arp-table-switch`

Mode

Privileged EXEC
4.9.6 clear config

This command resets the configuration in RAM to the factory defaults without powering off the switch.

Format
 clear config

Mode
 Privileged EXEC

4.9.7 clear config factory

This command resets the whole configuration to the factory defaults. Configuration data and scripts stored in nonvolatile memory will also be deleted.

Format
 clear config factory

Mode
 Privileged EXEC

4.9.8 clear counters

This command clears the stats for a specified <slot/port> or for all the ports or for the entire switch based upon the argument.

Format
 clear counters {<slot/port> | all}

Mode
 Privileged EXEC
4.9.9 clear hiper-ring

This command clears the HIPER Ring configuration (deletes it).

Format
 clear hiper-ring

Mode
 Privileged EXEC

4.9.10 clear igmpsnooping

This command clears the tables managed by the IGMP Snooping function and will attempt to delete these entries from the Multicast Forwarding Database.

Format
 clear igmpsnooping

Mode
 Privileged EXEC
4.9.11 clear mac-addr-table

This command clears the switch's MAC address table (the forwarding database that contains the learned MAC addresses).

Note: this command does not affect the MAC filtering table.

Format
```
clear mac-addr-table
```

Mode
```
Privileged EXEC
```

4.9.12 clear pass

This command resets all user passwords to the factory defaults without powering off the switch. You are prompted to confirm that the password reset should proceed.

Format
```
clear pass
```

Mode
```
Privileged EXEC
```
4.9.13 clear signal-contact

This command clears the signal-contact output configuration. Switches the signal contact 1’s mode to auto and its manual setting to open. Switches the signal contact 2’s mode to manual and its manual setting to closed. Enables the monitoring of the power supplies for signal contact 1 only. Disables the sending of signal contact traps.

Format

`clear signal-contact`

Mode

Privileged EXEC
4.9.14 clear traplog
This command clears the trap log.

Format
```
clear traplog
```

Mode
```
Privileged EXEC
```

4.9.15 clear ring-coupling
This command clears the ring-coupling configuration.

Format
```
clear ring-coupling
```

Mode
```
Privileged EXEC
```
4.9.16 clear vlan

This command resets VLAN configuration parameters to the factory defaults.

Format

```
clear vlan
```

Mode

Privileged EXEC

4.9.17 config-watchdog

If the function is enabled and the connection to the switch is interrupted for longer than the time specified in “timeout [s]”, the switch then loads the last configuration saved.

Format

```
cfg-watchdog {admin-state {disable|enable}|timeout <10..600>}
```

Mode

Global Config

admin-state

Enable or disable the Auto Configuration Undo feature (default: disabled).

timeout

Configure the Auto Configuration Undo timeout (unit: seconds).
4.9.18 copy

This command uploads and downloads to/from the switch. Remote URLs can be specified using tftp.

`copy` (without parameters) displays a brief explanation of the most important `copy` commands. A list of valid commands is provided below. The command can be used to save the running configuration to nvram by specifying the source as `system:running-config` and the destination as `nvram:startup-config`.

Default

none

Format

```
copy eam:script <sourcefilename> nvram:script
   [targetfilename]

copy nvram:clibanner <url>
copy nvram:capture eam:capture
copy nvram:errorlog <url>
copy nvram:script <sourcefilename> eam:script
   [targetfilename]
copy nvram:script <sourcefilename> <url>
copy nvram:startup-config <url>
copy nvram:startup-config system:running-config
copy nvram:traplog <url>

copy system:running-config nvram:startup-config <url>
copy system:running-config <url>
copy tftp://<server_ip>/<path_to_pem>
   nvram:httpscert
copy <url> nvram:clibanner
copy <url> nvram:script <destfilename>
copy <url> nvram:sshkey-dsa
copy <url> nvram:sshkey-rsa1
copy <url> nvram:sshkey-rsa2
copy <url> nvram:startup-config
copy <url> system:image
copy <url> system:running-config
copy <url> system:bootcode
```
Mode

Privileged EXEC

- **copy eam:script <sourcefilename> nvram:script [targetfilename]**
 Copies the script from the Memory Backup Adapter.
 - `sourcefilename`: Filename of source configuration Script. File-name length may be max. 20 characters, including extension '.cli' or '.CLI'.
 - `targetfilename`: Filename on the switch's NVRAM. Filename length may be max. 20 characters, including extension '.cli'.

- **copy tftp://<server_ip>/<path_to_pem> nvram:httpscert**
 This command uploads a PEM certificate for HTTPS over TFTP.
 Note: Reboot the device or re-enable the HTTPS server after uploading a PEM certificate.

- **copy nvram:clibanner <url>**
 Downloads the CLI banner file via TFTP using `<tftp://ip/filepath/fileName>`.

- **copy nvram:errorlog <url>**
 Uploads Errorlog file.

- **copy nvram:script <sourcefilename> eam:script [targetfilename]**
 Uploads configuration script file. Save the script to the Memory Backup Adapter.
– **sourcefilename**: Filename length may be max. 20 characters, including extension '.cli' or '.CLI'.

– **targetfilename**: Filename length may be max. 20 characters, including extension '.cli' or '.CLI'.

copy nvram:script <sourcefilename> <url>
Uploads Configuration Script file using <tftp://ip/filepath/fileName>. Filename length may be max. 20 characters, including extension '.cli'.

– **sourcefilename**: Filename length may be max. 20 characters, including extension '.cli' or '.CLI'.

copy nvram:startup-config <url>
Uploads config file using <tftp://ip/filepath/fileName>.

copy nvram:startup-config system:running-config
Uploads/Copies config file. The target is the currently running configuration.

copy nvram:traplog <url>

copy system:running-config nvram:startup-config
Copies system config file. Save the running configuration to NVRAM.

copy system:running-config <url>
Copies system config file. Uploads system running-config via tftp using <tftp://ip/filepath/fileName>.
copy <url> nvram:clibanner

This feature provides a privileged user the capability to change the CLI default banner:

```
Copyright (c) 2004-2010 <Company Name>

All rights reserved

<Product Name> Release L3P-06.0.00

(Build date 2010-05-01 00:30)
```

System Name: <Product Name>-518280
Mgmt-IP : a.b.c.d
1.Router-IP: 0.0.0.0
Base-MAC : aa:bb:cc:dd:ee:ff
System Time: 2010-01-02 05:51:11

The command uploads the CLI Banner file by tftp using `<tftp://ip/filepath/fileName>`.
After the upload you logout from CLI and the new CLI banner file will be displayed at the next login.

- **url**: Download CLI banner file using `<tftp://ip/filepath/fileName>`.
If no cli banner file is defined, the default cli banner is displayed (see above).

Note: See that the the CLI banner file you created has the following properties:
- Use ASCII format (character codes 0x20 .. 0x7F, \n and \t as C-like sequences)
- Do not use regular expressions
- Do not exeed the limit of 2048 byte
- Do not exceed the limit of 20 lines
- Do not exceed the limit of 80 characters per line
- A device can only have one banner file at the moment
- Save the CLI banner file as *.bnr.
- **no clibanner**
 This command deletes an existing CLI banner file.

- **copy <url> nvram:script <destfilename>**
 - `destfilename`: Filename length may be max. 20 characters, including extension '.cli' or '.CLI'.

- **copy <url> nvram:sshkey-dsa**
 Downloads IP secure shell (SSH) DSA key file by tftp using `<tftp://ip/filepath/fileName>`.

- **copy <url> nvram:sshkey-rsa1**
 Downloads IP secure shell (SSH) RSA1 key file by tftp using `<tftp://ip/filepath/fileName>`.

- **copy <url> nvram:sshkey-rsa2**
 Downloads IP secure shell (SSH) RSA2 key file by tftp using `<tftp://ip/filepath/fileName>`.

- **copy <url> nvram:startup-config**
 Downloads Config file by tftp using `<tftp://ip/filepath/fileName>`.

- **copy <url> system:image**
 Downloads code file by tftp using `<tftp://ip/filepath/fileName>`.
- **copy <url> system:running-config**
 The target is the currently running configuration.

- **copy <url> system:bootcode**
 Downloads bootcode file by tftp using `<tftp://ip/filepath/fileName>`.
4.9.19 device-status connection-error

This command configures the device status link error monitoring for this port.

Default
ignore

Format
device-status connection-error {ignore|propagate}

Mode
Interface Config

4.9.20 device-status

This command configures the device-status.

Format
device-status monitor
{all | connection-error |
 eam-removal | eam-not-in-sync | hiper-ring |
 power-supply-1 |
 power-supply-2 | ring-coupling |
 sub-ring | temperature }
{error|ignore}
device-status trap {disable|enable}

Mode
Global Config

monitor

Determines the monitoring of the selected event or all events.
- **error** If the given event signals an error, the device state will also signal error,
- **ignore** Ignore the given event - even if it signals an error, the device state will not signal 'error' because of that.
4.9 System Utilities

trap

Configure if a trap is sent when the device status changes its state.
- `enable` enables sending traps,
- `disable` disables sending traps.

4.9.21 logout

This command closes the current telnet connection or resets the current serial connection.

Note: Save configuration changes before logging out.

Format

`logout`

Mode

Privileged EXEC
4.9.22 ping

This command checks if another computer is on the network and listens for connections. To use this command, configure the switch for network (in-band) connection. Confirm that the source and target devices have the ping utility enabled running on top of TCP/IP. The switch can be pinged from any IP workstation with which the switch is connected, as long as there is a physical path between the switch and the workstation. The terminal interface sends, three pings to the target station.

Format

ping <ipaddr>

Mode

Privileged EXEC and User EXEC

4.9.23 signal-contact connection-error

This command configures the signal contact link error monitoring for this port.

Format

signal-contact connection-error {disable|enable}

Mode

Interface Config

disable

A link down event on this port will be not monitored by a signal contact (default).

enable

A link down event on this port will be monitored by a signal contact.
4.9.24 signal-contact

This command configures the signal contacts.

Format

```
signal-contact {1|2|all} 
  {mode {auto|device-status|manual} 
    |monitor {eam-removal|eam-not-in-sync|all| 
    connection-error|hiper-ring| 
    |power-supply-1| power-supply-2 
    |ring-coupling | sub-ring | temperature} 
    {disable|enable} 
  |state {closed|open} 
  |trap {disable|enable} }
```

Mode

Global Config

Contact No.

Selection of the signal contact:
– 1 signal contact 1,
– 2 signal contact 2,
– all signal contact 1 and signal contact 2.

mode

Selection of the operational mode:
– auto function monitoring,
– device-status the device-status determines the signal contact’s status.
– manual manually setting the signal contact.

monitor

Enables or disables the monitoring of the selected event or all events.
– enable monitoring,
– disable no monitoring.

state

Set the manual setting of the signal contact:
– closed,
– open.
Only takes immediate effect in manual mode.
4.9 System Utilities

trap

Configures the sending of traps concerning the signal contact.

- `enable` enables sending traps,
- `disable` disables sending traps.

4.9.25 temperature

This command configures the lower and upper temperature limit for the device. If these limits are exceeded, a trap is sent. The unit for the temperature limit is °C (Celsius), the minimum value is -99, the maximum value is 99. The default for the lower limit is 0, for the upper limit, it is 70. Note: To give the temperature in Fahrenheit, use the suffix f.

Format

```
temperature {lower-limit|upper-limit} <temperature value> [c|f]
```

Mode

Global Config

lower-limit

Configure the lower temperature limit.

upper-limit

Configure the upper temperature limit.
4.9.26 reboot

This command resets the switch (cold start) after a given time delay, for warm start See “reload” on page 271. Reset means that all network connections are terminated and the boot code executes. The switch uses the stored configuration to initialize the switch. You are prompted to confirm that the reset should proceed. A successful reset is indicated by the LEDs on the switch.

Format

 reboot {delay <seconds>}

Mode

 Privileged EXEC

<seconds>

 The number of seconds after which the switch will reboot.
 Value range: None (no reboot scheduled), 0 - 2,147,483 sec (= 596 h + 31 min + 23 sec).

- clear reboot

This command cancels a scheduled reboot.
4.9.27 show reboot

This command displays if a reboot is scheduled for the device. If scheduled, the command displays the number of seconds after which the switch will reboot.

Format

`show reboot`

Modes

- Privileged EXEC
- User Exec

<seconds>

The number of seconds after which the switch will reboot.

Value range: None (no reboot scheduled), 0 - 2,147,483 sec (= 596 h + 31 min + 23 sec).
4.9.28 reload

This command enables you to reset the switch (warm start) after a given time delay, for cold start See “reboot” on page 269.

Note: First, the device is checking the software in the flash memory and then it resets. If a warm start is not possible, the device automatically executes a cold start.
Reset means that all network connections are terminated and the boot code executes. The switch uses the stored configuration to initialize the switch. You are prompted to confirm that the reset should proceed. A successful reset is indicated by the LEDs on the switch.

Format

```
reload {delay <seconds>}
```

Mode

Privileged EXEC

<seconds>

The number of seconds after which the switch will reload.
Value range: 0 - 2,147,483 sec.

- clear reload

This command cancels a scheduled reload.
4.9.29 show reload

This command displays if a reload is scheduled for the device. If scheduled, the command displays the number of seconds after which the switch will reload.

Format

```
show reload
```

Modes

- Privileged EXEC
- User Exec

<seconds>

The number of seconds after which the switch will reload.
Possible values: None (no reload scheduled), 0 - 2,147,483 sec.
4.10 LLDP - Link Layer Discovery Protocol

These commands show and configure the LLDP parameters in compliance with IEEE 802.1 AB.

4.10.1 show lldp

This command shows all LLDP settings.

Format

 show lldp

Mode

 Privileged EXEC and User EXEC

4.10.2 show lldp config

This command shows all LLDP configuration settings.

Format

 show lldp config

Mode

 Privileged EXEC and User EXEC
4.10.3 show lldp config chassis

This command shows all LLDP configuration settings concerning the entire device.

Format

```
show lldp config chassis
```

Mode

Privileged EXEC and User EXEC

4.10.4 show lldp config chassis admin-state

Display the LLDP/IEEE802.1AB functionality on this device. If disabled, the LLDP protocol is inactive but the LLDP MIBs can still be accessed.

Format

```
show lldp config chassis admin-state
```

Mode

Privileged EXEC and User EXEC
4.10.5 show lldp config chassis notification-interval

Display the LLDP minimum notification trap interval (unit: seconds).

Format

```
show lldp config chassis notification-interval
```

Mode

Privileged EXEC and User EXEC

4.10.6 show lldp config chassis re-init-delay

Display the LLDP configuration's chassis re-initialization delay (unit: seconds).

Format

```
show lldp config chassis re-init-delay
```

Mode

Privileged EXEC and User EXEC
4.10.7 show lldp config chassis tx-delay

Display the LLDP transmit delay (unit: seconds). It indicates the delay between successive LLDP frame transmissions.

Format

 show lldp config chassis tx-delay

Mode

 Privileged EXEC and User EXEC

4.10.8 show lldp config chassis tx-hold-mult

Display the LLDP transmit hold multiplier, a time-to-live value expressed as a multiple of the LLDP Message Tx Interval (tx-interval).

Format

 show lldp config chassis tx-hold-mult

Mode

 Privileged EXEC and User EXEC

4.10.9 show lldp config chassis tx-interval

Display the interval (unit: seconds) at which LLDP frames are transmitted on behalf of this LLDP agent.

Format

 show lldp config chassis tx-interval

Mode

 Privileged EXEC and User EXEC
4.10.10 show lldp config port

This command shows all LLDP configuration settings and states concerning one or all ports.

Format

```
show lldp config port <{slot/port|all}>
admin-state | fdb-mode | sa-mode |
max-neighbors | notification | tlv
```

Mode

Privileged EXEC and User EXEC

admin-state

Display the port's LLDP admin state (if LLDP/IEEE802.1AB frames will be transmitted and/or received).

fdb-mode

Display the port's LLDP FDB mode.

sa-mode

Display the port's LLDP Schneider Electric mode.

max-neighbors

Display the port's max. no. of LLDP neighbors.

notification

Display the port's LLDP notification (trap) setting.

tlv

Display the port's LLDP TLV settings (they determine which information is included in the LLDP frames that are sent). The command is a group command and will output several lines of data.
4.10.11 show lldp config port tlv

This command shows all LLDP TLV configuration settings (if the given information is included in the sent LLDP frames or not) concerning one or all ports.

Format

```
show lldp config port <{slot/port|all}> tlv
```

Mode

Privileged EXEC and User EXEC

link-aggregation
Display the port's LLDP TLV inclusion of Link Aggregation.

mac-phy-config-state
Display the port's LLDP TLV inclusion of MAC Phy. Cfg. State.

max-frame-size
Display the port's LLDP TLV inclusion of Max. Frame Size.

mgmt-addr
Display the port's LLDP TLV inclusion of Management Address.

port-desc
Display the port's LLDP TLV inclusion of Port Description.

port-vlan
Display the port's LLDP TLV inclusion of Port VLAN.

protocol
Display the port's LLDP TLV inclusion of Protocol.

sys-cap
Display the port's LLDP TLV inclusion of System Capabilities.

sys-desc
Display the port's LLDP TLV inclusion of System Description.

sys-name
Display the port's LLDP TLV inclusion of System Name.

vlan-name
Display the port's LLDP TLV inclusion of VLAN Name.
4.10.12 show lldp remote-data

This command shows all LLDP remote-data settings and states concerning one or all ports.

Format

```
show lldp remote-data <{slot/port|all}>
  chassis-id | detailed | ether-port-info | inlinepower | link-aggregation-info | mgmt-addr | port-desc | port-id | summary | sys-desc | sys-name | vlan-info
```

Mode

Privileged EXEC and User EXEC

chassis-id

Display the remote data's chassis ID only.

detailed

Display remote data in detailed format (i.e., all available data). Note: most important data is output first (not in alphabetic order of command names). This is the default command if no specific command is given.

ether-port-info

Display the remote data's port Ethernet properties only (group command, outputs: Port Autoneg. Supported, Port Autoneg. Enabled, Port Autoneg. Advertized Capabilities and Port Operational MAU Type).

inlinepower

Displays the remote port's Power over Ethernet capabilities (PoE, IEEE 802.3af). Included are if the remote device is a PSE (Power Source Device) or a PD (Powered Device), if PoE is supported and if the power pairs are selectable.

link-aggregation-info

Display the remote data's link aggregation information only (group command, outputs: Link Agg. Status and Link Agg. Port ID).

mgmt-addr

Display the remote data's management address only.
port-desc
Display the port's LLDP TLV inclusion of Port Description.

port-id
Display the remote data's port ID only.

summary
Display remote data in summary format (table with most important data only, strings will be truncated if necessary, indicated by an appended '>' character).

sys-desc
Display the remote data's system description only.

sys-name
Display the remote data's system name only.

vlan-info
Display the remote data's VLAN information only (group command, outputs: Port VLAN ID, Membership VLAN IDs and their respective names).
4.10.13 show lldp med

This command displays a summary of the current LLDP MED global configuration.

Format

 show lldp med

Mode

 Privileged EXEC

Fast Start Repeat Count

 Display the Fast Start Repeat Count, e.g. the number of LLDP PDUs that will be transmitted when the product is enabled. The range is 1 to 10.

Device class

 Display the Device class.
4.10.14 show lldp med interface

This command displays a summary of the current LLDP MED configuration for a specific interface.

Format

```
show lldp med interface {<unit/slot/port> | all}
```

Mode

Privileged EXEC

<unit/slot/port>

Indicates a specific physical interface.

all

Indicates all valid LLDP interfaces.

Interface

Displays the physical interface.

Link

Displays the link status. Value range: Up, Down.

configMED

Displays if config notification for the Media Endpoint Devices is Enabled/Disabled.

operMED

Displays if operation for the Media Endpoint Devices is Enabled/Disabled.

ConfigNotify

Displays the ConfigNotify. Value range: Enabled, Disabled.

TLVsTx

Displays the TLVsTx.
4.10.15 show lldp med local-device detail

This command displays detailed information about the LLDP MED data that a specific interface transmits. `<unit/slot/port>` indicates a specific physical interface.

Format

```
show lldp med local-device detail {<slot/port>}
```

Mode

Privileged EXEC

<slot/port>

Indicates a specific physical interface.

Interface

Displays the physical interface.

Network Policies

Displays the Network Policies.
4.10.16 show lldp med remote-device

This command displays the summary information about remote devices that transmit current LLDP MED data to the system. You can show information about LLDP MED remote data received on all valid LLDP interfaces or on a specific physical interface.

Format

```
show lldp med remote-device{<slot/port> | all}
```

Mode

Privileged EXEC

<slot/port>

Indicates a specific physical interface.

all

Indicates all valid LLDP interfaces.

Local Interface

Displays the local interface.

RemoteID

Displays the RemoteID.

Device Class

Displays the Device Class.
4.10.17 show lldp med remote-device detail

This command displays detailed information about remote devices that transmit current LLDP MED data to an interface on the system.

Format

show lldp med remote-device detail <slot/port>

Mode

Privileged EXEC

Local Interface

Displays the local interface.

4.10.18 lldp

Enable/disable the LLDP/IEEE802.1AB functionality on this device. If disabled, the LLDP protocol will become inactive, but the LLDP MIBs can still be accessed. This command is a shorthand notation for lldp config chassis admin-state {off|on} (see “lldp config chassis admin-state” on page 286).

The default setting is on.

Format

lldp

Mode

Global Config

no lldp

Disable the LLDP/IEEE802.1AB functionality on this device.

Format

no lldp
4.10.19 lldp config chassis admin-state

Configure the LLDP/IEEE802.1AB functionality on this device. If disabled, the LLDP protocol will become inactive, but the LLDP MIBs can still be accessed.

- off: Disable the LLDP/IEEE802.1AB functionality.
- on: Enable the LLDP/IEEE802.1AB functionality.

The default setting is on.

Format

```
lldp config chassis admin-state {off|on}
```

Mode

Global Config

4.10.20 lldp config chassis notification-interval

Configure the LLDP minimum notification interval (the minimum time after a notification trap has been sent until a new trap can be sent, unit: seconds, min.: 5 sec., max.: 3600 sec., default: 5 sec.).

Format

```
lldp config chassis notification-interval
<notification interval>
```

Mode

Global Config
Notification interval
 Configure the LLDP minimum notification interval (the minimum time after a notification trap has been sent until a new trap can be sent, unit: seconds, min.: 5 sec., max.: 3600 sec., default: 5 sec.).

4.10.21 lldp config chassis re-init-delay

Configure the LLDP re-initialization delay (unit: seconds, min.: 1 sec., max.: 10 sec., default: 2 sec.).

Format
 lldp config chassis re-init-delay <re-init delay>

Mode
 Global Config

Re-init-delay
 Configure the LLDP re-initialization delay (unit: seconds, min.: 1 sec., max.: 10 sec., default: 2 sec.).

4.10.22 lldp config chassis tx-delay

Configure the LLDP transmit delay, the delay between successive LLDP frame transmissions (unit: seconds, min.: 1 sec., max.: 8192 sec., default: 2 sec.).

Format
 lldp config chassis tx-delay <tx delay>

Mode
 Global Config
Tx-delay

Configure the LLDP transmit delay, the delay between successive LLDP frame transmissions (unit: seconds, min.: 1 sec., max.: 8192 sec., default: 2 sec.).

4.10.23 lldp config chassis tx-hold-mult

Configure the LLDP transmit hold multiplier, a time-to-live value expressed as a multiple of the LLDP Message Tx Interval (tx-interval), min.: 2, max.: 10, default: 4.

Format

```
lldp config chassis tx-hold-mult
   <tx hold multiplier>
```

Mode

Global Config

Tx-hold-mult

Configure the LLDP transmit hold multiplier, a time-to-live value expressed as a multiple of the LLDP Message Tx Interval (tx-interval), min.: 2, max.: 10, default: 4.
4.10.24 lldp config chassis tx-interval

Configure the interval at which LLDP frames are transmitted on behalf of this LLDP agent (unit: seconds, min.: 5 sec., max.: 32768 sec., default: 30 sec.)

Format

 lldp config chassis tx-interval <tx interval>

Mode

 Global Config

Tx-interval

Configure the interval at which LLDP frames are transmitted on behalf of this LLDP agent (unit: seconds, min.: 5 sec., max.: 32768 sec., default: 30 sec.).

4.10.25 clear lldp config all

Clear the LLDP configuration, i. e., set all configurable parameters to default values (all chassis- as well as port-specific parameters at once).
Note: LLDP Remote data remains unaffected.

Format

 clear lldp config all

Mode

 Privileged EXEC
4.10.26 lldp admin-state

Configure the port's LLDP admin state (if LLDP/IEEE802.1AB frames will be transmitted to and/or received from the standard IEEE multicast address 01:80:c2:00:00:0e).

The default setting is tx-and-rx.

Format

```
lldp admin-state <{tx-only|rx-only|tx-and-rx|off}>
```

Mode

Interface Config

4.10.27 lldp fdb-mode

Configure the port's LLDP FDB mode.

The default setting is autodetect.

Format

```
lldp fdb-mode <{lldp-only|mac-only|lldp-and-mac|autodetect}>
```

Mode

Interface Config
4.10.28 lldp sa-mode

Configure the port's LLDP Schneider mode (if LLDP/IEEE802.1AB frames will be transmitted to and/or received from the Schneider-specific multicast address 01:80:63:2f:ff:0b).

The default setting is tx-and-rx.

Format

```
 lldp sa-mode <{tx-only|rx-only|tx-and-rx|off}>
```

Mode

Interface Config

tx-only

Port will only transmit LLDP frames but will not process received frames (Schneider-specific multicast address 01:80:63:2f:ff:0b).

rx-only

Port will not transmit any LLDP frames but will process received frames (Schneider-specific multicast address 01:80:63:2f:ff:0b).

tx-and-rx

Port will transmit LLDP frames and will also process received frames (Schneider-specific multicast address 01:80:63:2f:ff:0b). This is the default setting.

off

Port will neither transmit LLDP frames nor process received frames (Schneider-specific multicast address 01:80:63:2f:ff:0b).
4.10.29 lldp max-neighbors

Configure the port's LLDP max. no. of neighbors (min.: 1, max.: 50, default: 10).

Format

```plaintext
lldp max-neighbors <1..50>
```

Mode

Interface Config
4.10.30 lldp med

LLDP for Media Endpoint Devices (LLDP-MED) is an extension to LLDP that operates between endpoint devices such as IP phones, Voice / Media Gateways, Media Servers, IP Communications Controllers or other VoIP devices or servers, and network devices such as switches. It specifically provides support for voice over IP (VoIP) applications. In this purpose, it provides an additional set of common advertisement messages (TLVs), for capabilities discovery, network policy, Power over Ethernet, inventory management and location information.

Use this command to enable MED. By enabling MED, you will be effectively enabling the transmit and receive function of LLDP.

Default
 Enabled

Format
 lldp med

Mode
 Interface Config

no lldp med

This command disables MED.

Format
 no lldp med

Mode
 Interface Config
4.10.31 lldp med all
This command configures LLDP-MED on all the ports.

Default
 Enabled

Format
 lldp med all

Mode
 Global Config

4.10.32 lldp med confignotification
This command configures all the ports to send the topology change notification.

Default
 Disabled

Format
 lldp med confignotification

Mode
 Interface Config

no lldp med confignotification
This command disables notifications.

Format
 no lldp med confignotification

Mode
 Interface Config
4.10.33 lldp med confignotification all

This command configures all the ports to send the topology change notification.

Default
 Disabled

Format
 lldp med confignotification all

Mode
 Global Config
4.10.34 lldp med faststartrepeatcount

This command sets the value of the fast start repeat count.

Default

3

Format

lldp med faststartrepeatcount [count]

Mode

Global Config

[count]

The number of LLDP PDUs that will be transmitted when the product is enabled. The range is 1 to 10.

no lldp med faststartrepeatcount

This command returns to the factory default value.

Format

no lldp med faststartrepeatcount

Mode

Global Config
4.10.35 lldp med transmit-tlv

This command specifies which optional Type Length Values (TLVs) in the LLDP-MED set will be transmitted in the Link Layer Discovery Protocol Data Units (LLDPDUs).

Default

By default, the capabilities and network policy TLVs are included.

Format

lldp med transmit-tlv [capabilities] [network-policy]

Mode

Interface Config

capabilities

Include/Exclude LLDP capabilities TLV.

network-policy

Include/Exclude LLDP network policy TLV.

no lldp med transmit-tlv

This command removes a TLV.

Format

no lldp med transmit-tlv [capabilities] [network-policy]

Mode

Interface Config
4.10.36 lldp med transmit-tlv all

This command specifies which optional Type Length Values (TLVs) in the LLDP MED set will be transmitted in the Link Layer Discovery Protocol Data Units (LLDPDUs).

Default
By default, the capabilities and network policy TLVs are included.

Format
lldp med transmit-tlv all [capabilities] [network-policy]

Mode
Global Config
capabilities
Include/Exclude LLDP capabilities TLV.
network-policy
Include/Exclude LLDP network policy TLV.

no lldp med med transmit-tlv all

This command removes a TLV.

Format
no lldp med transmit-tlv all [capabilities] [network-policy]

Mode
Global Config
4.10.37 lldp notification

Configure the port's LLDP notification setting (on or off, default: off).

Format

 lldp notification <{off|on}>

Mode

 Interface Config

4.10.38 lldp tlv link-aggregation

Configure the port's LLDP TLV inclusion of Link Aggregation (on or off, default: on).

Format

 lldp tlv link-aggregation <{off|on}>

Mode

 Interface Config

4.10.39 lldp tlv mac-phy-config-state

Configure the port's LLDP TLV inclusion of MAC Phy. Cfg. State (on or off, default: on).

Format

 lldp tlv mac-phy-config-state <{off|on}>

Mode

 Interface Config
4.10.40 lldp tlv max-frame-size

Configure the port's LLDP TLV inclusion of Max. Frame Size (on or off, default: on).

Format

 lldp tlv max-frame-size <{off|on}>

Mode

 Interface Config

4.10.41 lldp tlv mgmt-addr

Configure the port's LLDP TLV inclusion of Management Address (on or off, default: on).

Format

 lldp tlv mgmt-addr <{off|on}>

Mode

 Interface Config

4.10.42 lldp tlv port-desc

Configure the port's LLDP TLV inclusion of Port Description (on or off, default: on).

Format

 lldp tlv port-desc <{off|on}>

Mode

 Interface Config
4.10.43 lldp tlv port-vlan

Configure the port's LLDP TLV inclusion of Port VLAN (on or off, default: on).

Format

```
lldp tlv port-vlan <{off|on}>
```

Mode

Interface Config

4.10.44 lldp tlv gmrp

Configure the port's LLDP TLV inclusion of GMRP (on or off, default: on).

Format

```
lldp tlv gmrp <{off|on (on)}>
```

Mode

Interface Config

4.10.45 lldp tlv igmp

Configure the port's LLDP TLV inclusion of IGMP (on or off, default: on).

Format

```
lldp tlv igmp <{off|on (on)}>
```

Mode

Interface Config
4.10.46 lldp tlv portsec
Configure the port's LLDP TLV inclusion of PortSec (on or off, default: on).

Format
 lldp tlv portsec <{off|on (on)}>

Mode
 Interface Config

4.10.47 lldp tlv ptp
Configure the port's LLDP TLV inclusion of PTP (on or off, default: on).

Format
 lldp tlv ptp <{off|on (on)}>

Mode
 Interface Config

4.10.48 lldp tlv protocol
Configure the port's LLDP TLV inclusion of Protocol (on or off, default: on).

Format
 lldp tlv protocol <{off|on (on)}>

Mode
 Interface Config
4.10.49 lldp tlv sys-cap

Configure the port's LLDP TLV inclusion of System Capabilities (on or off, default: on).

Format
 lldp tlv sys-cap <{off|on}>

Mode
 Interface Config

4.10.50 lldp tlv sys-desc

Configure the port's LLDP TLV inclusion of System Description (on or off, default: on).

Format
 lldp tlv sys-desc <{off|on}>

Mode
 Interface Config

4.10.51 lldp tlv sys-name

Configure the port's LLDP TLV inclusion of System Name (on or off, default: on).

Format
 lldp tlv sys-name <{off|on}>

Mode
 Interface Config
4.10.52 lldp tlv vlan-name

Configure the port's LLDP TLV inclusion of VLAN Name.

Format

```plaintext
lldp tlv vlan-name <{off|on}>
```

Mode

`Interface Config`

4.10.53 name

Set or remove a descriptive name for the current interface (physical ports only).

Format

```plaintext
name <descriptive name>
```

Mode

`Interface Config`

<descriptive name>

Enter a descriptive name for the current interface (physical ports only). Max. length is 20 characters.

Note: If it contains blanks or exclamation marks (!), enclose it in quotation marks ("). Confirm that the description itself does not contain any quotation marks (’ or "), question marks (?) or backslashes (\).

- **no name**

 Delete the descriptive name for the current interface (physical ports only).

Format

```plaintext
no name
```
Mode

Interface Config
4.10 LLDP - Link Layer Discovery Protocol
4.11 SNTP - Simple Network Time Protocol

These commands show and configure the SNTP parameters.

4.11.1 show sntp

This command shows all SNTP settings.

Format

 show sntp

Mode

 Privileged EXEC and User EXEC

SNTP Server Anycast Address

 Show SNTP Server Anycast Address (a.b.c.d).

SNTP Server Anycast Transmit Interval

 Show SNTP Anycast Transmit Interval (in seconds).

SNTP Server Anycast VLAN

 Show SNTP Server Anycast VLAN.

SNTP Server Disable if Timesource is local

 Show SNTP Server Disable if Timesource is local (Yes/No).

SNTP Client Accepts Broadcasts

 Show SNTP Client Accepts Broadcasts (Yes/No).

SNTP Client Disable after Synchronization

 Show SNTP Client Disable after Synchronization (Yes/No).

SNTP Client Request Interval

 Show SNTP Client Request Interval (in seconds).
4.11 SNTP - Simple Network Time Protocol

SNTP Client Local Time Offset
Show SNTP Client Local Time Offset (in minutes).

SNTP Client Primary Server IP Address
Show SNTP Client Primary Server IP Address (a.b.c.d).

SNTP Client Secondary Server IP Address
Show SNTP Client Secondary Server IP Address (a.b.c.d).

SNTP Client Threshold to Server Time
Show SNTP Client Threshold to Server Time (in milliseconds).

SNTP Operation Global
Show SNTP Operation Global (Disabled or Enabled).

SNTP Operation Server
Show SNTP Operation Server (Disabled or Enabled).

SNTP Operation Client
Show SNTP Operation Client (Disabled or Enabled).

SNTP Status
Show SNTP Status

SNTP Time
Show SNTP Time (yyyy-mm-dd hh:mm:ss).

SNTP System Time
Show SNTP system Time (yyyy-mm-dd hh:mm:ss).

4.11.2 show sntp anycast
This command shows all SNTP anycast configuration settings.

Format
show sntp anycast [address|transmit-interval|vlan]
Mode

Privileged EXEC and User EXEC

address

Show the SNTP server's anycast destination IP Address.

transmit-interval

Show the SNTP Server's interval for sending Anycast messages (unit: seconds).

vlan

Show the SNTP server's Anycast VLAN ID (used for sending Anycast messages).

4.11.3 show sntp client

This command shows all SNTP anycast configuration settings.

Format

```
show sntp client [accept-broadcast|disable-after-sync|offset|request-interval|server<primary|secondary>|threshold]
```

Mode

Privileged EXEC and User EXEC

accept-broadcast

Show if the SNTP Client accepts SNTP broadcasts.

disable-after-sync

Show if the SNTP client will be disabled once it is synchronized to the time server.
offset
Show the local time's offset (in minutes) with respect to UTC (positive values for locations east of Greenwich).

request-interval
Show the SNTP Client's request interval (unit: seconds).

server
Show the SNTP Client's server IP addresses.

server primary
Show the SNTP Client's primary server IP addresses.

server secondary
Show the SNTP Client's redundant server IP addresses.

server threshold
Show the SNTP Client's threshold in milliseconds.

4.11.4 show sntp operation
This command shows if the SNTP function is enabled or disabled.

Format
show sntp operation

Mode
Privileged EXEC and User EXEC
4.11.5 show sntp server

This command shows the SNTP Server's configuration parameters.

Format

```
show sntp server [disable-if-local]
```

Mode

Privileged EXEC and User EXEC

disable-if-local

Show if the server will be disabled if the time is running from the local clock and not synchronized to an external time source.

4.11.6 show sntp status

This command shows the SNTP state, synchronization and error messages.

Format

```
show sntp status
```

Mode

Privileged EXEC and User EXEC
4.11.7 show sntp time

This command shows time and date.

Format

```
show sntp time [sntp|system]
```

Mode

- Privileged EXEC and User EXEC

- **sntp**

 Show the current SNTP date and UTC time.

- **system**

 Show the local system's current date and time.

4.11.8 no sntp

This command disables sntp.

Format

```
no sntp
```

Mode

- Global Config
4.11.9 sntp anycast address

Set the SNTP server's anycast destination IP Address, default: 0.0.0.0 (none).

Format

`sntp anycast address <IPAddress>`

Mode

Global Config

no sntp anycast address

Set the SNTP server's anycast destination IP Address to 0.0.0.0.

Format

`no sntp anycast address`

Mode

Global Config

4.11.10 sntp anycast transmit-interval

The transmit interval in seconds, default: 120.

Format

`sntp anycast transmit-interval <1-3600>`

Mode

Global Config
4.11.11 snntp anycast vlan

Set the SNTP server's Anycast VLAN ID used for sending Anycast messages, default: 1.

Format

```
snntp anycast vlan <1-4042>
```

Mode

Global Config

4.11.12 snntp client accept-broadcast

Enable/Disable that the SNTP Client accepts SNTP broadcasts.

Format

```
snntp client accept-broadcast <on | off>
```

Mode

Global Config

no snntp accept-broadcast

Disable the SNTP Client accepts SNTP broadcasts.

Format

```
no snntp client accept-broadcast
```

Mode

Global Config
4.11.13 sntp client disable-after-sync

If this option is activated, the SNTP client disables itself once it is synchronised to a server.

Format

 sntp client disable-after-sync <on | off>

Mode

- Global Config

- **off**

 Do not disable SNTP client when it is synchronised to a time server.

- **on**

 Disable SNTP client as soon as it is synchronised to a time server.

4.11.14 sntp client offset

The offset between UTC and local time in minutes, default: 60.

Format

 sntp client offset <-1000 to 1000>

Mode

- Global Config
4.11.15 sntp client request-interval

The synchronization interval in seconds, default: 30.

Format

```
sntp client request-interval <1-3600>
```

Mode

Global Config

4.11.16 no sntp client server

Disable the SNTP client servers.

Format

```
no sntp client server
```

Mode

Global Config

4.11.17 sntp client server primary

Set the SNTP Client's primary server IP Address, default: 0.0.0.0 (none).

Format

```
sntp client server primary <IP-Address>
```

Mode

Global Config
no sntp client server primary
Disable the primary SNTP client server.

Format
 no sntp client server primary

Mode
 Global Config
4.11.18 sntp client server secondary

Set the SNTP Client's secondary server IP Address, default: 0.0.0.0 (none).

Format

```text
sntp client server secondary <IP-Address>
```

Mode

Global Config

no sntp client server secondary

Disable the secondary SNTP client server.

Format

```text
no sntp client server secondary
```

Mode

Global Config
4.11.19 sntp client threshold

With this option you can reduce the frequency of time alterations. Enter this threshold as a positive integer value in milliseconds. The switch obtains the server timer as soon as the deviation to the server time is above this threshold.

Format

```
sntp client threshold <milliseconds>
```

Mode

Global Config

Milliseconds

Enter the allowed deviation to the server time as a positive integer value in milliseconds.

no sntp client threshold

Disable the sntp client threshold.

Format

```
no sntp client threshold
```

Mode

Global Config
4.11.20sntp operation

Enable/Disable the SNTP function.

Format

```
sntp operation <on | off> | client { on | off } | server { on | off }
```

Mode

Global Config

client

Enable or disable SNTP Client.

server

Enable or disable SNTP Server.

no sntp operation

Disable the SNTP Client and Server.

Format

```
no sntp operation
```

Mode

Global Config
4.11.21 snntp server disable-if-local

With this option enabled, the switch disables the SNTP Server Function if it is not synchronized to a time server itself.

Format

```
sntp server disable-if-local <on | off>
```

Mode

- off
 - Enable the SNTP Server even if it is not synchronized to a time server itself.
- on
 - Disable the SNTP Server if it is not synchronized to a time server itself.

4.11.22 snntp time system

Set the current snntp time.

Format

```
sntp time system <YYYY-MM-DD HH:MM:SS>
```

Mode

- Global Config
4.11 SNTP - Simple Network Time Protocol
4.12 PTP - Precision Time Protocol

These commands show and configure the PTP (IEEE 1588) parameters. The operation parameter is available for all devices.

4.12.1 show ptp

This command shows all PTP settings.

Format

 show ptp

Mode

 Privileged EXEC and User EXEC

4.12.2 ptp clock-mode

Configure the Precision Time Protocol (PTP, IEEE 1588) clock mode. If the clock mode is changed, PTP will be initialized. The default is "disable"

Format

 ptp clock-mode {v1-simple-mode | v2-simple-mode}

Mode

 Global Config
4.12 PTP - Precision Time Protocol

v1-simple-mode
Set the clock mode to 'v1 Simple Mode'. This is a client only mode without hardware support. The device only accepts PTPv1 sync messages and sets the time directly. No BMC algorithm will run.

v2-simple-mode
Set the clock mode to 'v2 Simple Mode'. This is a client only mode without hardware support. The device only accepts PTPv2 sync (or follow_up) messages and sets the time directly. No BMC algorithm will run.

4.12.3 ptp operation
Enable or disable the Precision Time Protocol (IEEE 1588). The default is "disable"

Format
ptp operation {disable|enable}

Mode
Global Config

disable
Disable the Precision Time Protocol (IEEE 1588).

enable
Enable the Precision Time Protocol (IEEE 1588).
These commands show and configure the port monitor parameters.

The port monitor feature monitors certain port (or global) states or changes and performs a certain action, when the specified condition occurs.

Using this commands, you can disable a port and send a trap (see "port admin shutdown").

Disabling a port by condition will not modify the configuration and therefore not keep the port in disabled state after reload/reboot.

To enable the action if a port state occurs
- enable the port monitor globally,
- enable the port monitor on the port,
- configure condition(s) that is (are) performed in port state on a port and
- an action that is performed on that port, when the condition complies.

The condition can be link flapping or CRC/Fragments error, an action can be sending a trap or disabling that port (and send a trap).

If a port was disabled by the Port-Monitor the port can be enabled again with a port monitor reset command (see “port-monitor reset”).
4.13.1 show port-monitor

This command displays the global Port Monitor settings.

Format

 show port-monitor

Mode

 Global Config

Port Monitor

 Display if Port Monitor function is enabled or disabled.

Condition crc-fragment interval (seconds)

 Display the condition of the CRC fragment interval in seconds.

Condition crc-fragment count

 Display the condition of the CRC fragment count.

Condition link flap interval (seconds)

 Display the condition of the link flap interval in seconds.

Condition link flap count

 Display the condition of the link flap count.

Condition overload-detection interval (seconds)

 Display the condition of the overload-detect interval in seconds.
4.13.2 show port-monitor <slot/port>

This command displays the Port Monitor details for the port.

Format

```plaintext
show port-monitor <slot/port>
```

Mode

Global Config

Port Monitor

Display if Port Monitor is enabled or disabled.

Link Flap

Display if Link Flap is enabled or disabled.

Crc-Fragment

Display if CRC Fragment is enabled or disabled.

Overload detection

Display the condition of the overload-detection state.

Possible values: Enabled, Disabled.

Speed-duplex

Display the link speed and duplex condition for the port.

Possible values: Enabled, Disabled.

Active Condition

Display the active condition for the port.

Possible values: Link-Flap, None.

Action

Display the action (disable port or send trap) to be triggered on the port. Possible values: Disable-Port, Trap-Only.

Port Oper State

Display the link state of the port. Possible values: Up, Down.
4.13.3 show port-monitor brief

This command displays the Port Monitor brief summary.

Format

```
show port-monitor brief
```

Mode

```
Global Config
```

Intf

```
Display the number of the interface (slot/port).
```

Admin Mode

```
Display if Port Monitor is enabled or disabled.
```

Link Flap

```
Display if Link Flap is enabled or disabled.
```

Crc Fragment

```
Display if CRC Fragment is enabled or disabled.
```

Overload detection

```
Display the condition of the overload-detection state.
Possible values: Enabled, Disabled.
```

Speed duplex

```
Display the link speed and duplex condition for the port.
Possible values: Enabled, Disabled.
```

Active Condition

```
Display the active condition for the port.
Possible values: Link-Flap, None.
```

Action

```
Display the action (disable port or send trap) to be triggered on the port. Possible values: Disable-Port, Trap-Only.
```

Port Oper State

```
Display the link state of the port. Possible values: Up, Down.
```
4.13.4 show port-monitor crc-fragment

This command displays the CRC fragment counter.

Format

 show port-monitor crc-fragment <slot/port>

Mode

 Global Config

<slot/port>

 Display the Port Monitor interface details.

Crc_fragments in last interval

 Display the CRC fragments in last interval.

Crc_fragments total

 Display the CRC fragments total.

4.13.5 show port-monitor link-flap

This command displays the Link Flap counter for the port.

Format

 show port-monitor link-flap <slot/port>

Mode

 Global Config

<slot/port>

 Display the Port Monitor interface details.

Link flaps in last interval

 Display the Link flaps in last interval.

Link flaps total

 Display the Link flaps total.
4.13.6 show port-monitor overload-detection

This command displays the overload detection details for the port.

Format

```
show port-monitor overload-detection <slot/port>
```

Mode

Global Config

<slot/port>

Display the Port Monitor interface details.

Overload-detection traffic type

Display the overload-detection traffic type for the interface.

Overload-detection threshold type

Display the overload-detection threshold type for the interface.

Overload-detection lower threshold

Display the overload-detection lower threshold for the interface.

Overload-detection upper threshold

Display the overload-detection upper threshold for the interface.
4.13.7 show port-monitor speed-duplex

This command displays the link speed and duplex configured modes.

Format

```
show port-monitor speed-duplex <slot/port>
```

Mode

Global Config

<slot/port>

Display the Port Monitor interface details for link speed and duplex condition.

Intf

Display the number of the interface (slot/port).

Allowed values

Display the allowed values for link speed and duplex combinations for the interfaces of the device.

Possible values: hdx-10, fdx-10, hdx-100, fdx-100, hdx-1000, fdx-1000, fdx-10000.

Allowed modes

Speed-duplex

Display the allowed link speed and duplex combinations for the specific interface.

Possible values: hdx-10, fdx-10, hdx-100, fdx-100, hdx-1000, fdx-1000, fdx-10000.
4.13.8 port-monitor (Global Config)

This command enables or disables the Port Monitor globally.
\textbf{Note:} This command does not reset the port disable states.

\textbf{Default}
Disable

\textbf{Format}
\texttt{port-monitor \{enable | disable\}}

\textbf{Mode}
Global Config

4.13.9 port-monitor (Interface Config)

This command enables or disables the Port Monitor on the port.
\textbf{Note:} This command does not reset the port disable states.

\textbf{Default}
Disable

\textbf{Format}
\texttt{port-monitor \{enable | disable\}}

\textbf{Mode}
Interface Config
4.13.10 port-monitor action

This command configures the Port Monitor action (disable a port or send a trap).

Note: Disable the Port Monitor action will reset the port from port-state.

Default

```
auto-disable
```

Format

```
port-monitor action
    {port-disable | trap-only | auto-disable}
```

Mode

```
Interface Config
```

port-disable

Disable the port when the configured Port Monitor condition triggers.

trap-only

Send a trap when the configured Port Monitor condition triggers.

auto-disable

Notify Auto Disable when the configured Port Monitor condition triggers.
4.13.11 port-monitor condition overload-detection polling-interval (Global Config)

This command configures the polling-interval in seconds for overload-detection condition.

Default
1

Format
port-monitor condition overload-detection polling-interval <interval value>

Mode
Global Config

<interval value>
Enter a polling-interval value for overload-detection.
Possible values: 1..20. Default: 1.

4.13.12 port-monitor condition overload-detection (Interface Config)

This command configures the Port Monitor overload-detection settings.

Format
port-monitor condition overload-detection
 { [traffic-type bc | bc+mc | all] | [threshold-type pps | kbps | link-capacity] | [lower-threshold <threshold value>] |
[upper-threshold <threshold value>] | {enable | disable}

Mode

Interface Config

traffic-type bc
Define traffic class for overload-detection: Broadcast traffic (bc).

traffic-type bc+mc
Define traffic class for overload-detection:
Broadcast and multicast traffic (bc+mc).

traffic-type all
Define traffic class for overload-detection: All traffic types (all).

threshold-type pps
Define threshold type for overload-detection condition:
Packets per second (pps).

threshold-type kbps
Define threshold type for overload-detection condition:
Kilobits per second (kbps).

threshold-type link-capacity
Define threshold type for overload-detection condition:
Link capacity percentage (% of the link capacity).

lower-threshold
Define the lower threshold value for overload-condition (packets per second, kbits or % of the link capacity) for different types of traffic.
<threshold value> Enter a lower-threshold value.
Possible values: 0..10000000.

upper-threshold
Define the upper threshold value for overload-condition (packets per second, kbits or % of the link capacity) for different types of traffic.
<threshold value> Enter a upper-threshold value.
Possible values: 0..10000000.

enable
Enable the overload-detection.

disable
Disable the overload-detection.
4.13.13 show port-monitor overload-detection

This command displays information about port-monitor overload-detection for a specific interface.

Default

1

Format

show port-monitor overload-detection <slot/port>

Mode

User EXEC and Privileged EXEC

<slot/port>

Valid slot and port number separated by forward slashes.

Overload-detection traffic type

Display the traffic type for the port monitor overload detection.
Possible values:
bc (broadcast traffic),
bc+mc (broadcast and multicast),
all (all traffic types).

Overload-detection threshold type

Display the threshold type for the port monitor overload detection.
Possible values:
pps (packets per second),
kbps (kilobits per second),
link-capacity (% of the link capacity).

Overload-detection lower threshold

Display the lower threshold for the port monitor overload detection.
Possible values: 0..10000000

Overload-detection upper threshold

Display the upper threshold for the port monitor overload detection.
Possible values: 0..10000000
4.13.14 port-monitor condition link-flap (Global Config)

This command configures the Link Flap settings (Link Flap counter and interval for Link Flap detection).

Default
 Disable

Format
 port-monitor condition link-flap
 {count <1..100>| interval <1..180>}

Mode
 Global Config

count
 Configure the Link Flap counter.
 Default: 5. Value range: 1 ..100.

interval
 Configure the measure interval in seconds for Link Flap detection.
 Default: 10 seconds. Value range: 1 ..180 seconds.

4.13.15 port-monitor condition link-flap (Interface Config)

This command enables or disables Link Flap condition on a port to trigger an action.

Default
 Disable

Format
 port-monitor condition link-flap {enable | disable}

Mode
 Interface Config
4.13.16 port-monitor condition crc-fragment (Global Config)

This command configures the crc-fragment settings (crc-fragment counter and interval for crc-fragment detection).

Default
Disable

Format

```
port-monitor condition crc-fragment
  {count <1..1000000> | interval <5..180>}
```

Mode
Global Config

count
Configure the crc-fragment counter.
Default: 1000. **Value range:** 1..1000000.

interval
Configure the measure interval in seconds for crc-fragment detection.
Default: 10 seconds. **Value range:** 5..180 seconds.
4.13.17 port-monitor condition crc-fragment
(Interface Config)

This command enables or disables crc-fragment settings on a port to trigger an action.

Default
 Disable

Format
 port-monitor condition crc-fragment
 {enable | disable}

Mode
 Interface Config
This section provides detailed explanation of the Switching commands. The commands are divided into two functional groups:

- **Show commands** display spanning tree settings, statistics, and other information.

- **Configuration Commands** configure features and options of the switch. For every configuration command there is a show command that displays the configuration setting.
5.1 Spanning Tree Commands

5.1.1 show spanning-tree

This command displays spanning tree settings for the common and internal spanning tree, when the optional parameter “brief” is not included in the command. The following details are displayed.

Format

```
show spanning-tree [brief] [drstp]
```

Mode

Privileged EXEC and User EXEC

Spanning Tree Adminmode

Enabled or Disabled

Bridge Priority

Configured value.

Bridge Identifier

The bridge identifier for the CST (CST = Classical Spanning Tree IEEE 802.1d). It is made up using the bridge priority and the base MAC address of the bridge.

Time Since Topology Change

in seconds

Topology Change Count

Number of times changed.

Topology Change

Boolean value of the Topology Change parameter for the switch indicating if a topology change is in progress on any port assigned to the common and internal spanning tree.

Designated Root

The bridge identifier of the root bridge. It is made up from the bridge priority and the base MAC address of the bridge.
Root Path Cost
Value of the Root Path Cost parameter for the common and internal spanning tree.

Root Port Identifier
Identifier of the port to access the Designated Root for the CST.

Root Port Max Age
Derived value

Root Port Bridge Forward Delay
Derived value

Hello Time
Configured value

Bridge Hold Time
Minimum time between transmission of Configuration Bridge Protocol Data Units (BPDUs)

CST Regional Root
Bridge Identifier of the CST Regional Root. It is made up using the bridge priority and the base MAC address of the bridge.

Regional Root Path Cost
Path Cost to the CST Regional Root.

Associated FIDs
List of forwarding database identifiers currently associated with this instance.

Associated VLANs
List of VLAN IDs currently associated with this instance.

show spanning-tree brief

When the “brief” optional parameter is included, this command displays a brief overview of the spanning tree settings for the bridge. In this case, the following details are displayed.

Bridge Priority
Configured value.
Bridge Identifier

The bridge identifier for the selected MST instance. It is made up using the bridge priority and the base MAC address of the bridge.

Bridge Max Age

Configured value.

Bridge Hello Time

Configured value.

Bridge Forward Delay

Configured value.

Bridge Hold Time

Minimum time between transmission of Configuration Bridge Protocol Data Units (BPDUs)

Rstp Mrp Mode

Rapid spanning tree mrp (Media Redundancy Protocol) mode (Enabled/Disabled)

Rstp Mrp configuration error

Configuration error in Rapid spanning tree mrp (Media Redundancy Protocol) (No/Yes)

drstp

Format: `show spanning-tree brief drstp`

When the “drstp” optional parameter is included, this command displays the settings for the common and internal spanning tree for second RSTP Instance.

Note: This command is available for the TCSESM-E devices.

show spanning-tree brief drstp

When the “drstp” optional parameter is included, this command displays a brief overview of the dual rapid spanning-tree (DualRSTP) settings for the bridge.

Note: This command is available for the TCSESM-E devices.
5.1.2 show spanning-tree interface

This command displays the settings and parameters for a specific switch port within the common and internal spanning tree. The <slot/port> is the desired switch port. The following details are displayed on execution of the command.

Format

 show spanning-tree interface <slot/port>

Mode

Privileged EXEC and User EXEC

Port mode

Enabled or disabled.

Port Up Time Since Counters Last Cleared

Time since port was reset, displayed in days, hours, minutes, and seconds.

STP BPDU Transmitted

Spanning Tree Protocol Bridge Protocol Data Units sent

STP BPDU Received

Spanning Tree Protocol Bridge Protocol Data Units received.

RST BPDU Transmitted

Rapid Spanning Tree Protocol Bridge Protocol Data Units sent

RST BPDU Received

Rapid Spanning Tree Protocol Bridge Protocol Data Units received.

MSTP BPDU Transmitted

Multiple Spanning Tree Protocol Bridge Protocol Data Units sent

MSTP BPDU Received

Multiple Spanning Tree Protocol Bridge Protocol Data Units received.
5.1.3 show spanning-tree mst detailed

This command displays settings and parameters for the specified multiple spanning tree instance. The instance <mstid> is a number that corresponds to the desired existing multiple spanning tree instance ID. The following details are displayed.

Format

```
show spanning-tree mst detailed <mstid> <drstp>
```

Mode

Privileged EXEC and User EXEC

mstid

Enter a multiple spanning tree instance identifier.
Valid values: 0 - 4094.

drstp

Display details for dual rapid spanning-tree (DualRSTP).
Note: This command is available for the TCSESME devices.

MST Instance ID

Valid value: 0

MST Bridge Priority

Valid values: 0-61440 in increments of 4096.

Time Since Topology Change

in seconds

Topology Change Count

Number of times the topology has changed for this multiple spanning tree instance.

Topology Change in Progress

Value of the Topology Change parameter for the multiple spanning tree instance.

Designated Root

Identifier of the Regional Root for this multiple spanning tree instance.

Root Path Cost

Path Cost to the Designated Root for this multiple spanning tree instance.
5.1.4 show spanning-tree mst port detailed

This command displays the detailed settings and parameters for a specific switch port within a particular multiple spanning tree instance. The instance <mstid> is a number that corresponds to the desired existing multiple spanning tree instance. The <slot/port> is the desired switch port.

Format

show spanning-tree mst port detailed <mstid> <slot/port>

Mode

Privileged EXEC and User EXEC

MST Instance ID

Valid value: 0

Port Identifier

Port priority as a two digit hex number followed by the port number as a two digit hex number.

Port Priority

Decimal number.

Port Forwarding State

Current spanning tree state of this port
Port Role
 The port’s current RSTP port role.

Port Path Cost
 Configured value of the Internal Port Path Cost parameter

Designated Root
 The Identifier of the designated root for this port.

Designated Port Cost
 Path Cost offered to the LAN by the Designated Port

Designated Bridge
 Bridge Identifier of the bridge with the Designated Port.

Designated Port Identifier
 Port on the Designated Bridge that offers the lowest cost to the LAN

If 0 (defined as the default CIST ID) is passed as the <mstid>, then this command displays the settings and parameters for a specific switch port within the common and internal spanning tree. The <slot/port> is the desired switch port. In this case, the following are displayed.

Port Identifier
 The port identifier for this port within the CST.

Port Priority
 The priority of the port within the CST.

Port Forwarding State
 The forwarding state of the port within the CST.

Port Role
 The role of the specified interface within the CST.

Port Path Cost
 The configured path cost for the specified interface.

Designated Root
 Identifier of the designated root for this port within the CST.

Designated Port Cost
 Path Cost offered to the LAN by the Designated Port.
Designated Bridge
- The bridge containing the designated port

Designated Port Identifier
- Port on the Designated Bridge that offers the lowest cost to the LAN

Topology Change Acknowledgement
- Value of flag in next Configuration Bridge Protocol Data Unit (BPDU) transmission indicating if a topology change is in progress for this port.

Hello Time
- The hello time in use for this port.

Edge Port
- The configured value indicating if this port is an edge port.

Edge Port Status
- The derived value of the edge port status. True if operating as an edge port; false otherwise.

Point To Point MAC Status
- Derived value indicating if this port is part of a point to point link.

CST Regional Root
- The regional root identifier in use for this port.

CST Port Cost
- The configured path cost for this port.
5.1.5 show spanning-tree mst port summary

This command displays the settings of one or all ports within the specified multiple spanning tree instance. The parameter `<mstid>` indicates a particular MST instance. The parameter `{<slot/port> | all}` indicates the desired switch port or all ports.

If 0 (defined as the default CIST ID) is passed as the `<mstid>`, then the status summary is displayed for one or all ports within the common and internal spanning tree.

Format

```
show spanning-tree mst port summary <mstid> {<slot/port> | all}
```

Mode

Privileged EXEC and User EXEC

MST Instance ID

The MST instance associated with this port. Valid value: 0.

Interface

Valid slot and port number separated by forward slashes.

STP Mode

Current STP mode of this port in the specified spanning tree instance.

Type

Currently not used.

Port Forwarding State

The forwarding state of the port in the specified spanning tree instance

Port Role

The role of the specified port within the spanning tree.
5.1.6 show spanning-tree summary

This command displays spanning tree settings and parameters for the switch. The following details are displayed on execution of the command.

Format

```
show spanning-tree summary <drstp>
```

Mode

- Privileged EXEC and User EXEC

drstp

Display details for the second instance of dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.

Spanning Tree Adminmode

- Enabled or disabled.

Spanning Tree Version

Version of 802.1 currently supported (IEEE 802.1s, IEEE 802.1w, or IEEE 802.1d) based upon the Force Protocol Version parameter

Configuration Name

Configured name.

Configuration Revision Level

Configured value.

Configuration Digest Key

Calculated value.

Configuration Format Selector

Configured value.

MST Instances

List of all multiple spanning tree instances configured on the switch
5.1.7 show spanning-tree vlan

This command displays the association between a VLAN and a multiple spanning tree instance. The <vlanid> corresponds to an existing VLAN ID (1-4042).

Format

```
show spanning-tree vlan <vlanid>
```

Mode

Privileged EXEC and User EXEC

vlanid

Enter a VLAN identifier (1 - 4042).

VLAN Identifier

The VLANs associated with the selected MST instance.

Associated Instance

Identifier for the associated multiple spanning tree instance or "CST" if associated with the common and internal spanning tree.
5.1.8 spanning-tree

This command sets the spanning-tree operational mode to enabled.

Default

disabled

Format

spanning-tree <drstp>

Mode

Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.

no spanning-tree

This command sets the spanning-tree operational mode to disabled. While disabled, the spanning-tree configuration is retained and can be changed, but is not activated.

Format

no spanning-tree <drstp>

Mode

Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.
5.1.9 spanning-tree auto-edgeport

This command specifies that this port is an Edge Port within the common and internal spanning tree. This will allow this port to transition to Forwarding State without delay.

Format

```
spanning-tree auto-edgeport
```

Mode

Interface Config

no spanning-tree auto-edgeport

This command specifies that this port is not an Edge Port within the common and internal spanning tree.

Format

```
no spanning-tree auto-edgeport
```

Mode

Interface Config
5.1.10 spanning-tree configuration name

This command sets the Configuration Identifier Name for use in identifying the configuration that this switch is currently using. The <name> is a string of at most 32 characters.

Default

The base MAC address displayed using hexadecimal notation as specified in IEEE 802 standard.

Format

```
spanning-tree configuration name <name>
```

Mode

Global Config

no spanning-tree configuration name

This command resets the Configuration Identifier Name to its default.

Format

```
no spanning-tree configuration name
```

Mode

Global Config
5.1.11 spanning-tree configuration revision

This command sets the Configuration Identifier Revision Level for use in identifying the configuration that this switch is currently using. The Configuration Identifier Revision Level is a number in the range of 0 to 65535.

Default

0

Format

spanning-tree configuration revision <0-65535>

Mode

Global Config

no spanning-tree configuration revision

This command sets the Configuration Identifier Revision Level for use in identifying the configuration that this switch is currently using to the default value, i.e. 0.

Format

no spanning-tree configuration revision

Mode

Global Config
5.1.12 spanning-tree drstp role

This command sets the dual rapid spanning-tree (DualRSTP) bridge role.

Note: This command is available for the TCSESM-E devices.

Default

Format

```
spanning-tree drstp role
{master | slave | single | auto}
```

Mode

Global Config

5.1.13 spanning-tree drstp timeout

This command sets the dual rapid spanning-tree (DualRSTP) bridge timeout.

Note: This command is available for the TCSESM-E devices.

Default

Format

```
spanning-tree drstp timeout <5..60000ms>
```

Mode

Global Config
5.1.14 `spanning-tree drstp port`

This command sets the dual rapid spanning-tree (DualRSTP) port.

Note: This command is available for the TCSESM-E devices.

Default

Format

```
spanning-tree drstp port

  { primary {{inner <slot/port>}}
    |{outer <slot/port>}}
  | secondary {{inner <slot/port>}}
    |{outer <slot/port>}}
```

Mode

Global Config
5.1.15 spanning-tree edgeport

This command specifies that this port is an Edge Port within the common and internal spanning tree. This will allow this port to transition to Forwarding State without delay.

Format

 spanning-tree edgeport

Mode

 Interface Config

no spanning-tree edgeport

This command specifies that this port is not an Edge Port within the common and internal spanning tree.

Format

 no spanning-tree edgeport

Mode

 Interface Config
5.1.16 spanning-tree forceversion

This command sets the Force Protocol Version parameter to a new value. The Force Protocol Version can be one of the following:

- 802.1d - ST BPDUs are transmitted
 (IEEE 802.1d functionality supported)
- 802.1w - RST BPDUs are transmitted
 (IEEE 802.1w functionality supported)

Default

802.1w

Format

spanning-tree forceversion <802.1d | 802.1w>

Mode

Global Config

no spanning-tree forceversion

This command sets the Force Protocol Version parameter to the default value, i.e. 802.1w.

Format

no spanning-tree forceversion

Mode

Global Config
5.1.17 spanning-tree forward-time

This command sets the Bridge Forward Delay parameter to a new value for the common and internal spanning tree. The forward-time value is in seconds within a range of 4 to 30, with the value being greater than or equal to
"(Bridge Max Age / 2) + 1".

Default
15

Format
spanning-tree forward-time <4-30> <drstp>

Mode
Global Config
drstp
Execute the command for dual rapid spanning-tree (DualRSTP).
Note: This command is available for the TCSESM-E devices.

no spanning-tree forward-time

This command sets the Bridge Forward Delay parameter for the common and internal spanning tree to the default value, i.e. 15.

Format
no spanning-tree forward-time <drstp>

Mode
Global Config
drstp
Execute the command for dual rapid spanning-tree (DualRSTP).
Note: This command is available for the TCSESM-E devices.
5.1.18 spanning-tree guard loop

This command enables loop guard and disables root guard guard on an interface.

Default
 disabled

Format
 spanning-tree guard loop

Mode
 Interface Config

no spanning-tree guard

This command disables the guard for this port.

Format
 no spanning-tree guard

Mode
 Interface Config
5.1.19 spanning-tree guard none

This command disables root guard and disables loop guard guard on an interface.

Default

disabled

Format

spanning-tree guard none

Mode

Interface Config

no spanning-tree guard

This command disables the guard for this port.

Format

no spanning-tree guard

Mode

Interface Config
5.1.20 spanning-tree guard root

This command enables root guard and disables loop guard on an interface.

Default

disabled

Format

spanning-tree guard root

Mode

Interface Config

no spanning-tree guard

This command disables the guard for this port.

Format

no spanning-tree guard

Mode

Interface Config
5.1.21 spanning-tree hello-time

This command sets the Hello Time parameter to a new value for the common and internal spanning tree. The hellotime <value> is in whole seconds within a range of 1 to 2 with the value being less than or equal to
\(\frac{(Bridge Max Age / 2) - 1}{2}\).

Default
2

Format

spanning-tree hello-time <1-2> <drstp>

Mode

- Interface Config
- Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).
Note: This command is available for the TCSESM-E devices.

no spanning-tree hello-time

This command sets the Hello Time parameter for the common and internal spanning tree to the default value, i.e. 2.

Format

no spanning-tree hello-time <drstp>

Mode

- Interface Config
- Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).
Note: This command is available for the TCSESM-E devices.
5.1.22 spanning-tree hold-count

This command sets the bridge hold count parameter.

Default

disabled

Format

spanning-tree hold-count <1-40> <drstp>

Mode

Global Config

<1-40>

Enter the bridge parameter for hold count as an integer in the range 1 - 40.

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.

no spanning-tree hold-count

This command sets bridge hold count to disabled.

Format

no spanning-tree hold-count <drstp>

Mode

Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.
5.1.23 spanning-tree max-age

This command sets the Bridge Max Age parameter to a new value for the common and internal spanning tree. The max-age value is in seconds within a range of 6 to 40, with the value being less than or equal to "2 times (Bridge Forward Delay - 1)".

Default

20

Format

spanning-tree max-age <6-40> <drstp>

Mode

Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.

no spanning-tree max-age

This command sets the Bridge Max Age parameter for the common and internal spanning tree to the default value, i.e. 20.

Format

no spanning-tree max-age <drstp>

Mode

Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.
5.1.24 spanning-tree max-hops

This command sets the Bridge Max Hops parameter to a new value for the common and internal spanning tree. The max-hops value is an integer within a range of 1 to 127.

Format

```
spanning-tree max-hops <6-40>
```

Mode

Global Config

no spanning-tree max-hops

This command sets the Bridge Max Hops parameter for the common and internal spanning tree to the default value, i.e. 20.

Format

```
no spanning-tree max-age
```

Mode

Global Config
5.1.25 spanning-tree mst

This command sets the Path Cost or Port Priority for this port within the multiple spanning tree instance or in the common and internal spanning tree. If the <mstid> parameter corresponds to an existing multiple spanning tree instance, then the configurations are done for that multiple spanning tree instance. If however 0 (defined as the default CIST ID) is passed as the <mstid>, then the configurations are performed for the common and internal spanning tree instance.

This command accepts the value 0 for the mstid, meaning the common and internal spanning tree.

If the ‘cost’ token is specified, this command sets the path cost for this port within a multiple spanning tree instance or the common and internal spanning tree instance, depending on the <mstid> parameter. The pathcost can be specified as a number in the range of 1 to 200000000 or auto. If “auto” is specified, the pathcost value will be set based on Link Speed.

If the ‘port-priority’ token is specified, this command sets the priority for this port within a specific multiple spanning tree instance or the common and internal spanning tree instance, depending on the <mstid> parameter. The port-priority value is a number in the range of 0 to 240 in increments of 16.

Default

cost : auto; external-cost : auto;
port-priority : 128

Format

spanning-tree mst <mstid>
{cost <1-200000000> | auto } |
{external-cost <1-200000000> | auto } |
port-priority <0-240>}

Mode

Interface Config

no spanning-tree mst

This command sets the Path Cost or Port Priority for this port within the multiple spanning tree instance or in the common and internal spanning tree to the respective default values. If the <mstid> parameter corresponds to an existing multiple spanning tree instance, then the configurations are done for that multiple spanning tree instance. If however 0
(defined as the default CIST ID) is passed as the <mstid>, then the configurations are performed for the common and internal spanning tree instance.
This command accepts the value 0 for the mstid, meaning the common and internal spanning tree.
If the 'cost' token is specified, this command sets the path cost for this port within a multiple spanning tree instance or the common and internal spanning tree instance, depending on the <mstid> parameter, to the default value, i.e. a pathcost value based on the Link Speed.
If the 'port-priority' token is specified, this command sets the priority for this port within a specific multiple spanning tree instance or the common and internal spanning tree instance, depending on the <mstid> parameter, to the default value, i.e. 128.

Format

 no spanning-tree mst <mstid> <cost | port-priority>

Mode

 Interface Config
5.1.26 spanning-tree mst priority

This command sets the bridge priority for a specific multiple spanning tree instance. The instance <mstid> is a number that corresponds to the desired existing multiple spanning tree instance. The priority value is a number within a range of 0 to 61440 in increments of 4096.

This command accepts the value 0 for the mstid.

If 0 (defined as the default CIST ID) is passed as the <mstid>, then this command sets the Bridge Priority parameter to a new value for the common and internal spanning tree. The bridge priority value again is a number within a range of 0 to 61440. The twelve least significant bits will be masked according to the 802.1s specification. This will cause the priority to be rounded down to the next lower valid priority.

Default

32768

Format

spanning-tree mst priority <mstid> <0-61440>

<drstp>

Mode

Global Config

drstp

Execute the command for dual rapid spanning-tree (DualRSTP).

Note: This command is available for the TCSESM-E devices.

no spanning-tree mst priority

This command sets the bridge priority for a specific multiple spanning tree instance to the default value, i.e. 32768. The instance <mstid> is a number that corresponds to the desired existing multiple spanning tree instance.

This command accepts the value 0 for the mstid.

If 0 (defined as the default CIST ID) is passed as the <mstid>, then this command sets the Bridge Priority parameter for the common and internal spanning tree to the default value, i.e. 32768.

Format

spanning-tree mst priority <mstid>
Mode

 Global Config
5.1.27 spanning-tree mst vlan

This command adds an association between a multiple spanning tree instance and a VLAN. The VLAN will no longer be associated with the common and internal spanning tree. The instance <mstid> is a number that corresponds to the desired existing multiple spanning tree instance. The <vlanid> corresponds to an existing VLAN ID (1-4042). This command accepts the value 0 for the mstid.

Format

```
spanning-tree mst vlan <mstid> <vlanid>
```

Mode

Global Config

no spanning-tree mst vlan

This command removes an association between a multiple spanning tree instance and a VLAN. The VLAN will again be associated with the common and internal spanning tree. The instance <mstid> is a number that corresponds to the desired existing multiple spanning tree instance. The <vlanid> corresponds to an existing VLAN ID. This command accepts the value 0 for the mstid.

Format

```
no spanning-tree mst vlan <mstid> <vlanid>
```

Mode

Global Config
5.1.28 spanning-tree port mode

This command sets the Administrative Switch Port State for this port to enabled.

Default

disabled

Format

spanning-tree port mode

Mode

Interface Config

no spanning-tree port mode

This command sets the Administrative Switch Port State for this port to disabled.

Format

no spanning-tree port mode

Mode

Interface Config
5.1.29 spanning-tree port mode all

This command sets the Administrative Switch Port State for all ports to enabled.

Default
disabled

Format
spanning-tree port mode all

Mode
Global Config

no spanning-tree port mode all

This command sets the Administrative Switch Port State for all ports to disabled.

Format
no spanning-tree port mode all

Mode
Global Config
5.1.30 **spanning-tree stp-mrp-mode**

This command sets the spanning tree mrp (Media Redundancy Protocol) mode to enabled.

Default

disabled

Format

```
spanning-tree stp-mrp-mode
```

Mode

Global Config

no spanning-tree stp-mrp-mode

This command sets the spanning tree mrp (Medium Redundancy Protocol) mode to disabled.

Format

```
no spanning-tree stp-mrp-mode
```

Mode

Global Config
5.1.31 spanning-tree tcnguard

This command enables tcn guard on an interface.

Default

disabled

Format

spanning-tree guard tcnguard

Mode

Interface Config

no spanning-tree tcnguard

This command disables tcn guard for this port.

Format

no spanning-tree tcnguard

Mode

Interface Config
5.2 MRP

The concept of the MRP-Ring enables the construction of high-availability, ring-shaped network structures.

It is possible to mix the devices that support this function in any combination within the MRP ring.

If a line section becomes inoperable, the ring structure of up to 50 switches typically transforms back to a line-type configuration within 150 ms (maximum 500 ms).

5.2.1 show mrp

This command displays the settings and states of the MRP-Ring. The following details are displayed on execution of the command.

Format

show mrp [current-domain]

Mode

Privileged EXEC and User EXEC

current-domain

Specify the optional keyword "current-domain" to show the current MRP domain's settings. If you omit the keyword "current-domain", the show command will display the settings of all existing MRP domains. Note: currently, it is only possible to configure one MRP domain, so the keyword keyword "current-domain" can be omitted (it exists for future compatibility reasons).
5.2.2 show mrp current-domain

This command displays the settings and states of the MRP-Ring’s current domain. The following details are displayed on execution of the command. If you omit the optional keywords (e. g., advanced-mode), all settings will be displayed.

Format

```
show mrp current-domain [advanced-mode | domain-id | info | manager-priority | mode | name | recovery-delay | operation | port [primary | secondary] | summary| vlan]
```

Mode

- Privileged EXEC and User EXEC

advanced mode

Show the switch's advanced mode setting for the given MRP domain.

domain-id

Show the given MRP domain's ID.

info

Show status information for the given MRP domain.
Note: the information displayed depends on the switch's mode (Client or Manager) because only a subset of them are useful for each mode.

manager-priority

Show the switch's manager priority for the given MRP domain.

mode

Show the switch's mode for the given MRP domain.

name

Show the given MRP domain's name.

recovery-delay

Show the given MRP domain's recovery delay.

operation

Show the switch's administrative setting for the given MRP domain (enabled or disabled).
port
 Show the ports for the given MRP domain

port primary
 Show the primary port for the given MRP domain.

port secondary
 Show the secondary port for the given MRP domain.

summary
 Show a summary for the given MRP domain.

vlan
 Show the VLAN ID for the given MRP domain.
5.2.3 mrp current-domain

Specify that you want to configure the current MRP domain's settings.

Default
none

Format
mrp current-domain {advanced-mode {disable|enable} | manager-priority <0-65535> | mode {client|manager} | name <domain-name> | recovery-delay {500ms|200ms} | operation {disable|enable} | port {primary|secondary} <slot/port> | vlan <0-4042>}

Mode
Global Config

advanced-mode
Enable or disable the switch's advanced mode for the given MRP domain.

manager-priority
Configure the given MRP domain's manager priority (0-65535).

mode
Configure the switch's MRP mode for the given domain (client or manager).
client: Switch is client for the given MRP domain.
manager: Switch is manager for the given MRP domain.

name
Set a name for the given MRP domain.

recovery-delay
Configure the MRP recovery delay for the given domain.
500ms: Recovery delay is 500 ms for the given MRP domain.
200ms: Recovery delay is 200 ms for the given MRP domain.

operation
Enable or disable the switch for the given MRP domain.
port

Specify the switch's ports for the given MRP domain (in slot/port notation).

primary: Specify the switch's primary port for the given MRP domain.

secondary: Specify the switch's secondary port for the given MRP domain.

vlan

Enter the VLAN for the given MRP domain (0 - 4042, default: 0).

5.2.4 mrp delete-domain

Delete current MRP domain.

Format

mrp delete-domain current-domain

Mode

Global Config
5.2.5 mrp new-domain

Create a new MRP domain. The configuration will consist of default parameters and its operation will be disabled.

Default
n/a not set

Format
mrp new-domain (<domain-id> | default-domain)

Mode
Global Config

domain-id
Enter a new MRP domain id. Format: 16 bytes in decimal notation, example: 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16
The MRP domain id 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 is invalid.

default-domain
Create a default MRP domain (ID: 255.255.255.255.255.255.255.255.255.255.255.255.255.255.255).
The concept of the HIPER-Ring enables the construction of high-availability, ring-shaped network structures. Within such a ring topology, network components supporting the HIPER-Ring are connected with each other via their ring ports. Exactly one redundancy manager assumes control of the ring. These commands are for configuring the Schneider Electric High Performance Redundancy Ring.

Further information concerning this function you will find in the User Manual "Redundancy Configuration".
5.3.1 show hiper-ring

This command displays the settings and states of the HIPER-Ring. The following details are displayed on execution of the command.

Format

show hiper-ring

{info | mode | port [primary | secondary] | redundancy-state | rm-state | recovery-delay}

Mode

Privileged EXEC and User EXEC

info
Display the information about the HIPER-Ring configuration (cabling).

mode
Display the HIPER-Ring mode settings.

port
Display the HIPER-Ring's primary and secondary port properties.

port primary
Display the HIPER Ring's primary port properties.

port secondary
Display the HIPER Ring's secondary port properties.

redundancy-state
Display the actual state of the HIPER-Ring redundancy.

rm-state
Display the state of the HIPER Ring redundancy manager.

recovery-delay
Display the value of the recovery delay.
5.3.2 hiper-ring

Configure the HIPER-Ring. Press Enter for a list of valid commands and their recommended order.

Format

 hiper-ring

Mode

 Global Config

no hiper-ring

Clear the HIPER Ring configuration (delete it).

Format

 no hiper-ring

Mode

 Global Config
5.3.3 hiper-ring mode

This command sets the HIPER-Ring mode. Possible values are:

- ring-manager
 Set the switch's HIPER Ring mode to Ring Manager.
- rm
 Abbreviation of Ring Manager.
- ring-switch
 Set the switch's HIPER Ring mode to Ring Switch.
- rs
 Abbreviation of Ring Switch.

Default
none

Format
 hiper-ring mode <{ring-manager|ring-switch|rm|rs}>

Mode
 Global Config

5.3.4 hiper-ring port primary

Enter the switch's primary HIPER Ring port.

Default
n/a (not set)

Format
 hiper-ring port primary <primary ring port>

Mode
 Global Config

primary ring port
 Enter the switch's primary HIPER Ring port (<slot/port>).
5.3.5 hiper-ring port secondary

Enter the switch's secondary HIPER Ring port.

Default
 n/a not set

Format
 hiper-ring port secondary <secondary ring port>

Mode
 Global Config

secondary ring port
 Enter the switch's secondary HIPER Ring port (<slot/port>).

5.3.6 hiper-ring recovery-delay

Defines the maximum recovery delay of ring recovery in the HIPER Ring (500 or 300 ms).

Default
 n/a not set

Format
 hiper-ring recovery-delay (<500/300>)

Mode
 Global Config
5.4 Fast-HIPER-Ring (TCSESM-E)

The concept of the Fast-HIPER-Ring enables the construction of high-availability, ring-shaped network structures. Within such a ring topology, network components supporting the Fast-HIPER-Ring are connected with each other via their ring ports. Exactly one redundancy manager assumes control of the ring. These commands are for configuring the Schneider Electric Fast High Performance Redundancy Ring.

Further information concerning this function you will find in the User Manual "Redundancy Configuration".
5.4.1 show fast-hiper-ring (TCSESM-E)

This command displays the settings and states of the HIPER-Ring. The following details are displayed on execution of the command.

Format

```
show fast-hiper-ring
```

Mode

Privileged EXEC and User EXEC

Ring ID

Display the Ring ID.

Mode of Switch (administrative setting)

Display the HIPER-Ring mode administrative settings.

Mode of Switch (real operating state)

Display the HIPER-Ring operation mode.

Ring Name

Display the Fast-HIPER-Ring's name.

Number of nodes in the ring

Display the number of nodes in the ring.

Port Number, Primary

Display the HIPER-Ring's primary port number and its properties.

Port Number, Secondary

Display the HIPER-Ring's secondary port number and its properties.

Operation

Display the admin state of the HIPER-Ring configuration.

General Operating States

Display general information concerning the fast-hiper-ring state.
5.4.2 show fast-hiper-ring current-id (TCSESM-E)

Specify that you want to show the current Fast HIPER-Ring ID’s settings.

Format

```
show fast-hiper-ring current-id
   {id | info | mode | operation | port |
   port [primary | secondary] | summary |
   ring-name | nodes | vlan}
```

Mode

- **Privileged EXEC and User EXEC**
- **id**
 - Display the given Fast HIPER-Ring's ID.
- **info**
 - Display status information for the given Fast HIPER-Ring ID.
- **mode**
 - Display the switch's mode for the given Fast HIPER-Ring ID.
- **operation**
 - Display the switch's operative setting for the given Fast HIPER-Ring ID.
 - Note: in case of configuration problems, this value may differ from the administrative setting (may become 'Disabled').
- **port**
 - Display the ports for the given Fast HIPER-Ring ID.
- **port primary**
 - Display the primary port for the given Fast HIPER-Ring ID.
- **port secondary**
 - Display the secondary port for the given Fast HIPER-Ring ID.
- **summary**
 - Display a summary for the given Fast HIPER-Ring ID.
- **ring-name**
 - Display the ring name for the given Fast HIPER-Ring ID.
nodes
Display the number of nodes in the ring for the given Fast HIPER-Ring ID.

vlan
Display the VLAN ID for the given Fast HIPER-Ring ID.

5.4.3 fast-hiper-ring

Configure the Fast-HIPER-Ring.

Format

```
fast-hiper-ring {current-id
    {mode {ring-manager|ring-switch|rm|rs} |
    operation {disable|enable} |
    port {primary|secondary} <slot/port> |
    ring-name <ring-name> |
    nodes <1-n> |
    vlan <0-4042>} |
delete-id current-id |
new-id {<id>|default-id}}
fast-hiper-ring current-id mode
    {ring-manager |ring-switch|rm|rs}
fast-hiper-ring current-id operation
    {disable|enable}
fast-hiper-ring current-id port <slot/port>
fast-hiper-ring current-id ring-name <ring-name>
fast-hiper-ring current-id nodes <1-n>
fast-hiper-ring current-id vlan <0-4042>
fast-hiper-ring delete-id current-id
fast-hiper-ring new-id {<id>|default-id}
```

Mode

Global Config
current-id
Specify that you want to configure the current Fast-HIPER-Ring ID's settings.

mode
Configure the switch's Fast HIPER-Ring mode for the given ID (ring-manager or ring-switch).
- **rm**: Abbreviation for 'ring-manager'.
- **rs**: Abbreviation for 'ring-switch'.

mode ring-manager
Switch is ring-manager for the given Fast HIPER-Ring ID.

mode ring-switch
Switch is ring-switch for the given Fast HIPER-Ring ID.

mode rm
Abbreviation for 'ring-manager'.

mode rs
Abbreviation for 'ring-switch'.

operation
Enable or disable the switch for the given Fast-HIPER-Ring ID.

port
Specify the switch's ports for the given Fast-HIPER-Ring ID.

ring-name
Set a ring name for the given Fast HIPER-Ring ID.

nodes
Specify the number of nodes in the ring for the given Fast HIPER-Ring ID.

vlan
Specify the VLAN for the given Fast HIPER-Ring ID.

delete-id
Delete the given Fast HIPER-Ring ID.

new-id
Create a new Fast HIPER-Ring ID. The configuration will consist of default parameters and its operation will be disabled.
<id>

Enter a new Fast HIPER-Ring ID. Format: a number in the range 1-2147483647 (2^31 - 1). An ID of 0 is invalid.

default-id

Create a default Fast HIPER-Ring ID (1).
5.5 Redundant Coupling

The control intelligence built into the switch allows the redundant coupling of HIPER-Rings and network segments. Two network segments can be connected via two separate paths with one of the following switches:
- TCSESM
- TCSESM-E

The switch in the redundant line and the switch in the main line inform each other about their operating states by using control frames via the Ethernet or via the control line.

Note: For redundancy security reasons, the Rapid Spanning Tree protocol and redundant network/ring coupling may not be enabled simultaneously.

Note: Confirm that the network that connects the master and the slave is a HiPER-Ring. Confirm that the coupling switch in single mode also has a HiPER-Ring Configured.

Further information concerning this function you will find in the User Manual "Redundancy Configuration".

These commands allow you to configure the redundant coupling of network segments.
5.5.1 show ring-coupling

This command displays the settings and states of the network coupling / ring coupling.

To set up a new Ring Coupling configuration when no configuration is currently present (e.g., after a clear command), set the local port first. Please refer to: ring-coupling port local <slot/port>.

The following details are displayed on execution of the command.

Format

```
show ring-coupling <config | info | net-coupling | operation | partner-ip | port [ all | control | local | partner] | redundancy-mode>
```

Mode

Privileged EXEC and User EXEC

cfg

Display the Ring Coupling's configuration
- single
- dual-master-inband
- dual-master-outband
- dual-slave-inband
- dual-slave-outband.

info

Display information about the Ring Coupling's states:
- configuration failure,
- Extended diagnosis,
- redundancy functionality.

net-coupling

Display the Ring Coupling's ring/network coupling setting (network/ring-only).

operation

Display the Ring Coupling's operation setting
- on
- off
partner IP

Display the switch's Ring Coupling partner IP address (only valid for remote configurations).

port

Display the switch's Ring Coupling ports
- all
- local
- partner (only takes effect in dual configurations)
- control (only takes effect in outband configurations).

redundancy-mode

Display the Ring Coupling's redundancy mode
- normal
- extended.
5.5.2 ring-coupling

Configure the redundant coupling of HIPER-Rings / network segments. This command, if called without arguments, lists the available subcommands, their recommended order and tips how to set up a new configuration.

Format
 ring-coupling

Mode
 Global Config

no ring-coupling

Clear the ring-coupling configuration (delete it).

Format
 no ring-coupling

Mode
 Global Config
5.5.3 ring-coupling config

This command sets the Ring Coupling configuration.

Possible values are:

- **single** Configure the Ring Coupling's basic setting to single (both coupling ports are local to the switch, switch performs master and slave functions).
- **dual-master-inband** Configure the Ring Coupling's basic setting to dual-master-inband (2nd coupling port is on a remote switch, local switch is master, communication over network).
- **dual-master-outband** Configure the Ring Coupling's basic setting to dual-master-outband (2nd coupling port is on a remote switch, local switch is master, communication over dedicated control port).
- **dual-slave-inband** Configure the Ring Coupling's basic setting to dual-slave-inband (2nd coupling port is on a remote switch, local switch is slave, communication over network).
- **dual-slave-outband** Configure the Ring Coupling's basic setting to dual-slave-outband (2nd coupling port is on a remote switch, local switch is slave, communication over dedicated control port).
- **dmi** Abbreviation for dual-master-inband.
- **dmo** Abbreviation for dual-master-outband.
- **dsi** Abbreviation for dual-slave-inband.
- **dso** Abbreviation for dual-slave-outband.

Default

- **none**

Format

```
ring-coupling config <{ single | dual-master-inband | dual-master-outband | dual-slave-inband | dual-slave-outband | dmi | dmo | dsi | dso }>
```

Mode

- Global Config
5.5.4 **ring-coupling net-coupling**

Coupling mode refers to the type of coupled network.

Possible values are:
- network, if you wish to couple a line-type configuration.
- ring-only, if you wish to couple a HIPER-Ring.

Default
none

Format

```
ring-coupling net-coupling <{network|ring-only}>
```

Mode

Global Config

5.5.5 **ring-coupling operation**

Configure the Ring Coupling's operation setting. Possible values are:
- on Enable the current Ring Coupling configuration.
- off Disable the current Ring Coupling configuration.

Default
off

Format

```
ring-coupling operation <{off|on}>
```

Mode

Global Config
5.5.6 ring-coupling port

Configure the Ring Coupling's ports. Possible values are:

- **control** Enter the Ring Coupling's control coupling port in outband configurations.
- **local** Enter the Ring Coupling's local coupling port.
- **partner** Enter the Ring Coupling's partner coupling port in single mode configuration.

Default

none

Format

ring-coupling port <{control|local|partner}> <slot/port>

Mode

Global Config

5.5.7 ring-coupling redundancy-mode

Configure the Ring Coupling's redundancy mode. Possible values are:

- **extended** Slave responds to a detected failure in the remote ring or network.
- **normal** Slave does not respond to a detected failure in the remote ring or network.

Default

extended

Format

ring-coupling redundancy-mode <{extended|normal}>

Mode

Global Config
5.6 Port Security

With the Port Security function you can specify for each port from which terminal devices data can be received and sent to other ports. This function helps to protect the network from unauthorized access.

5.6.1 show port-sec mode
Display the MAC/IP Based Port Security global setting for all ports.

Format
```
show port-sec mode
```

Mode
Privileged EXEC and User EXEC

5.6.2 show port-sec port
Display the MAC/IP Based Port Security port-related settings (allowed MAC address, current MAC address, allowed IP address, current action and current port state).

Format
```
show port-sec port <{all|<slot/port>}>  
```

Mode
Privileged EXEC and User EXEC
5.6.3 port-sec mode

Configure the global MAC/IP Based Port Security mode:

- `ip-based` Port security is based on a given, allowed source IP address.
- `mac-based` Port security is based on a given, allowed source MAC address.

Format

```
port-sec mode <{ip-based|mac-based}>
```

Mode

Global Config
5.6.4 port-sec action

Configure the action to be taken if port security is violated at this port.

▶ none
 No action is taken if port security is violated at this port.
▶ auto-disable
 The port is auto-disabled for traffic if port security is violated
▶ port-disable
 The port is disabled for traffic if port security is violated.
▶ trap-only
 A trap is sent if port security is violated at this port (this port remains open for traffic).

Configure the allowed IP source address for this port.
Configure the allowed MAC source address for this port.

Format

```
port-sec {action {none | auto-disable | port-disable | trap-only}
           |allowed-ip <IP1> [IP2 [IP3 [IP4 [IP5
           [IP6 [IP7 [IP8 [IP9 [IP10]]]]]]]]
           |allowed-mac <MAC1> [MAC2 [MAC3 [MAC4
           [MAC5 [MAC6 [MAC7 [MAC8 [MAC9
           [MAC10]]]]]]]]
}
```

Mode

Interface Config

■ no port-sec

No action is taken if port security is violated at this port.

Format

```
no port-sec
```

Mode

Interface Config
5.6.5 port-sec allowed-ip

Enter the allowed IP source address for this port, format: nnn.nnn.nnn.nnn (nnn: decimal number 0..255) (up to 10).

Format

```
port-sec allowed-ip <IP Address 1> <IP Address 2> ...
```

Mode

```
Interface Config
```

5.6.6 port-sec allowed-mac

Format

```
port-sec allowed-mac <MAC Address 1>
<MAC Address 2> ...
```

Mode

```
Interface Config
```

5.6.7 clear port-sec

Clear the MAC/IP Based Port Security by setting each port's security action (applied when port security is violated) to None. Additionally, the global mode is set to MAC Based.

Note: This does not clear the 802.1X Port Security.
Format
 clear port-sec

Mode
 User EXEC and Global Config
5.7 DHCP Relay Commands

These commands configure the DHCP Relay parameters. The commands are divided by functionality into these different groups:

- Configuration Commands are used to configure features and options of the switch. For every configuration command there is a show command that will display the configuration setting.
- Show commands are used to display switch settings, statistics and other information.
- Commands that start with the keyword 'no' (so-called 'no commands') are used to clear some or all of the settings to factory defaults.

5.7.1 show dhcp-relay

Display the settings of the BOOTP/DHCP relay.

Format

```
show dhcp-relay [opt82 | port {<slot/port>|all} | server-address]
```

Mode

Privileged EXEC and User EXEC
5.7.2 dhcp-relay (Global Config Mode)

Set different options for BOOTP/DHCP relay and option 82 inclusion.

Format

dhcp-relay
 {opt82
 {operation {disable|enable}|
 man-id <Manual Remote ID>|
 remote-id-type {client-id|ip|mac|other}}|
 server-address <Server-ID (1..4)> <Server IP Address>}

Mode
Global Config

dhcp-relay opt82 operation {disable|enable}

Enable/Disable option 82 globally. Default: enable.

dhcp-relay opt82 man-id <Manual Remote ID>

Configure the DHCP Relay’s Option 82 Manual Value for the Remote ID Type (only effective, if Remote ID is set to ”other“). Default: no ID.

dhcp-relay opt82 remote-id-type {client-id|ip|mac|other}

Configure the DHCP Relay’s Option 82 Remote ID Type. Default: mac

dhcp-relay server-address <Server ID (1..4)> <Server IP Address>

Set the server IP address for one of the 4 possible server IDs. Default: 0.0.0.0

no dhcp-relay

Clear the DHCP Relay configuration (set all server addresses to 0.0.0.0).

Format
 no dhcp-relay

Mode
Global Config
5.7.3 dhcp-relay (Interface Config Mode)

Set different port specific options for option 82 inclusion.

Format

```
dhcp-relay {operation {disable|enable} | schneider-device {disable|enable} | schneider-agent {disable|enable}}
```

Mode

Interface Config

dhcp-relay operation {disable|enable}

Enable or disable the DHCP Relay's Option 82 on this port. Default: enable.

dhcp-relay schneider-device {disable|enable}

Enable this parameter if a Schneider DHCP client is connected to this port.
- It disables the forwarding of DHCP multicast requests that are received on this port.
- It will send its own DHCP multicast requests to be relayed by the DHCP relay; this will reduce the load in your network.

Disable this parameter if a Non-Schneider DHCP client is connected to this port (these devices send normal broadcast DHCP requests; this enables the relaying of DHCP broadcast requests that are received on this port).

dhcp-relay schneider-agent {disable|enable}

Enable or disable the forwarding of DHCP requests that are received on this port. Enable this parameter if a Schneider DHCP client is connected to this port. Default: disable.

Disable this parameter if a Non-Schneider DHCP client is connected to this port (these devices send normal broadcast DHCP requests; this enables the relaying of DHCP broadcast requests that are received on this port).

Enable this parameter if a Schneider DHCP client is connected to this port (it will send its own DHCP multicast requests to be relayed by the DHCP relay; this will reduce the load in your network).
5.8 Sub-Ring Commands (TCSESM-E)

These commands configure the sub-ring parameters. The commands are divided by functionality into these different groups:

- Configuration commands are used to configure features and options of the switch. For every configuration command there is a show command that will display the configuration setting.
- Show commands are used to display switch settings, statistics and other information.

5.8.1 show sub-ring

Display sub-ring information for all sub-rings or detailed information for a specific sub-ring.

Format

```
show sub-ring {all-ids | <id>}
{id | info | mode | operation | protocol | port | summary | ring-name | vlan | mrp-domainID | partner-mac}
```

Mode

Privileged EXEC and User EXEC

show sub-ring

Display the sub-ring information.

show sub-ring all-ids

Display the sub-ring information for all existing Sub-Ring IDs.

show sub-ring <id>

Display the sub-ring information for the specified ID.
id
Display the given Sub-Ring's ID.

info
Display status information for the given Sub-Ring ID.

mode
Display the switch’s mode for the given Sub-Ring ID.

operation
Display the switch’s operative setting for the given Sub-Ring ID.
Note: in case of configuration problems, this value may differ from the administrative setting (may become 'Disabled').

protocol
Display the switch’s protocol setting for the given Sub-Ring ID.
Note: in case of configuration problems, this value may differ from the administrative setting (may become 'Disabled').

port
Display the ports for the given Sub-Ring ID.

summary
Display a summary for the given Sub-Ring ID.

ring-name
Display ring name for the given Sub-Ring ID.

vlan
Display the VLAN ID for the given Sub-Ring ID.

mrp-domainID
Display the MRP domain ID for the given Sub-Ring ID.

partner-mac
Display the partner MAC for the given Sub-Ring ID.
5.8.2 `sub-ring <id> mode`

Configure the switch's Sub-Ring mode for the given ID (manager or redundant-manager).

Format

```
sub-ring <id> mode {manager | redundant-manager | single-manager}
```

Mode

Global Config

<id>

Specify the Sub-Ring ID whose settings you want to configure.

manager

Switch is manager for the given Sub-Ring ID.

redundant-manager

Switch is redundant-manager for the given Sub-Ring ID.

single-manager

Switch is single-manager for the given Sub-Ring ID.
5.8.3 sub-ring <id> operation

Enable or disable the switch for the given Sub-Ring ID.

Format

 sub-ring <id> operation {enable|disable}

Mode

 Global Config

{id}

Specify the Sub-Ring ID whose settings you want to configure.

enable

Enable the switch for the given Sub-Ring ID.

disable

Disable the switch for the given Sub-Ring ID.

5.8.4 sub-ring <id> protocol

Set MRP or FHR as sub-ring protocol for the given Sub-Ring ID.

Format

 sub-ring <id> protocol standard_mrp

Mode

 Global Config

{id}

Specify the Sub-Ring ID whose settings you want to configure.

standard_mrp

Set MRP as sub-ring protocol for the given Sub-Ring ID.
5.8.5 sub-ring <id> port

Specify the switch's ports for the given Sub-Ring ID.

Format

```
sub-ring <id> port <slot/port>
```

Mode

Global Config

<id>

Specify the Sub-Ring ID whose settings you want to configure.

<slot/port>

Specify the port (in slot/port) notation.

5.8.6 sub-ring <id> ring-name

Set a ring name for the given Sub-Ring ID.

Format

```
sub-ring <id> ring-name <ring-name>
```

Mode

Global Config

<id>

Specify the Sub-Ring ID whose settings you want to configure.

<ring-name>

Enter a name for the given Sub-Ring ID. The name may be up to 254 characters long and contain only printable characters. If you do not give a name, the current name will be set to an empty string ("").
5.8.7 sub-ring <id> vlan

Specify the VLAN for the given Sub-Ring ID.

Format

```
sub-ring <id> vlan <0-4042>
```

Mode

Global Config

<iid>

Specify the Sub-Ring ID whose settings you want to configure.

<0-4042>

Enter the VLAN for the given Sub-Ring ID (min.: 0, max.: 4042, default: 0).
5.8.8 sub-ring <id> mrp-domainID

Set an MRP domain ID for the given Sub-Ring ID.

Format

```
sub-ring <id> mrp-domainID {<id> | default-domainID}
```

Mode

Global Config

<id>

`sub-ring <id>`: Specify the Sub-Ring ID whose settings you want to configure.

<id>

Enter an MRP domainID for the given Sub-Ring ID. The ID has to be 16 bytes long and contain only printable characters.

default-domainID

Enter the default MRP domainID for the given Sub-Ring ID. The MRP domainID will be set to 255.255.255.255.255.255.255.255.255.255.255.255.255.255.255.
5.8.9 sub-ring delete-ring

Delete all existing Sub-Rings IDs or a specific Sub-Ring ID.

Format

```
sub-ring delete-ring {all-ids | <id>}
```

Mode

```
Global Config
```

all-ids

Delete all existing Sub-Ring IDs.

<id>

Delete the given Sub-Ring ID. Format: a number in the range 1-2147483647 (2^{31} - 1). An ID of 0 is invalid.

5.8.10 sub-ring new-ring

Create a new Sub-Ring ID. The configuration will consist of default parameters and its operation will be disabled.

Format

```
sub-ring new-ring <id>
```

Mode

```
Global Config
```

<id>

Enter a new Sub-Ring ID. Format: a number in the range 1-2147483647 (2^{31} - 1). An ID of 0 is invalid.
6 CLI Commands: Security

This chapter provides a detailed explanation of the Security commands. The following Security CLI commands are available in the software Switching Package. Use the security commands to configure security settings for login users and port users.

The commands are divided into these different groups:

- Show commands are used to display device settings, statistics and other information.
- Configuration Commands are used to configure features and options of the switch. For every configuration command there is a show command that will display the configuration setting.
6.1 Security Commands

6.1.1 authentication login

This command creates an authentication login list. The `<listname>` is up to 15 alphanumeric characters and is not case sensitive. Up to 10 authentication login lists can be configured on the switch. When a list is created, the authentication method “local” is set as the first method. When the optional parameters “Option1”, “Option2” and/or “Option3” are used, an ordered list of methods are set in the authentication login list. If the authentication login list does not exist, a new authentication login list is first created and then the authentication methods are set in the authentication login list. The maximum number of authentication login methods is three. The possible method values are `local`, `radius` and `reject`. The value of `local` indicates that the user’s locally stored ID and password are used for authentication. The value of `radius` indicates that the user’s ID and password will be authenticated using the RADIUS server. The value of `reject` indicates the user is not authenticated. To authenticate a user, the authentication methods in the user’s login will be attempted in order until an authentication attempt succeeds or fails.

Note: The default login list included with the default configuration can not be changed.

Note: When assigning a list to the 'admin' account, include an authentication method that allows administrative access even when remote authentication is unavailable.

Format

```
authentication login <listname> [method1 [method2 [method3]]]
```

Mode

Global Config
no authentication login

This command deletes the specified authentication login list. You will be unable to delete if any of the following conditions are true:

- The login list name is invalid or does not match an existing authentication login list
- The specified authentication login list is assigned to any user or to the non configured user for any component
- The login list is the default login list included with the default configuration and was not created using ‘authentication login’. The default login list cannot be deleted.

Format

no authentication login <listname>

Mode

Global Config
6.1.2 authorization network radius

This command enables the switch to accept VLAN assignment by the RADIUS server.

Format
authorization network radius

Mode
Privileged EXEC

no authorization network radius

This command disables the switch to accept VLAN assignment by the RADIUS server.

Format
no authorization network radius

Mode
Global Config

6.1.3 clear dot1x statistics

This command resets the 802.1X statistics for the specified port or for all ports.

Format
clear dot1x statistics {<slot/port> | all}

Mode
Privileged EXEC
6.1.4 clear radius statistics

This command clears the RADIUS statistics.

Format

 clear radius statistics

Mode

 Privileged EXEC

6.1.5 dot1x defaultlogin

This command assigns the authentication login list to use for non-configured users for 802.1X port security. This setting is over-ridden by the authentication login list assigned to a specific user if the user is configured locally. If this value is not configured, users will be authenticated using local authentication only.

Format

 dot1x defaultlogin <listname>

Mode

 Global Config
6.1.6 **dot1x dynamic-vlan enable**

This command enables the switch to create VLANs dynamically when a RADIUS-assigned VLAN does not exist in the switch.

Default

 disabled

Format

 dot1x dynamic-vlan enable

Mode

 Global Config

no dot1x dynamic-vlan enable

This command disables the switch to create VLANs dynamically when a RADIUS-assigned VLAN does not exist in the switch.

Default

 disabled

Format

 no dot1x dynamic-vlan enable

Mode

 Global Config
6.1.7 **dot1x guest-vlan**

This command configures VLAN as guest vlan on an interface. The command specifies an active VLAN as an IEEE 802.1x guest VLAN. The range is 1 to the maximum VLAN ID supported by the platform.

Format

dot1x guest-vlan <vlan-id>

Mode

 Interface Config

<vlan-id>

 Enter an existing VLAN ID.

no dot1x guest-vlan

This command disables Guest VLAN for the port.

Format

 no dot1x guest-vlan

Mode

 Global Config
6.1.8 **dot1x initialize**

This command begins the initialization sequence on the specified port. This command is only valid if the control mode for the specified port is 'auto'. If the control mode is not 'auto' an error will be returned.

Format

```
dot1x initialize <slot/port>
```

Mode

Privileged EXEC

6.1.9 **dot1x login**

This command assigns the specified authentication login list to the specified user for 802.1X port security. Confirm that the `<user>` parameter is a configured user and that the `<listname>` parameter is a configured authentication login list.

Format

```
dot1x login <user> <listname>
```

Mode

Global Config
6.1.10 **dot1x mac-auth-bypass**

This command enables the MAC-authorized-bypass on that interface.

Default

disabled

Format

dot1x mac-auth-bypass

Mode

Interface Config

- **no dot1x mac-auth-bypass**

This command disables the MAC-authorized-bypass on that interface.

Default

disabled

Format

no dot1x mac-auth-bypass

Mode

Interface Config
6.1.11 dot1x max-req

This command sets the maximum number of times the authenticator state machine on this port will transmit an EAPOL EAP Request/Identity frame before timing out the supplicant. Confirm that the <count> value is in the range 1 - 10.

Default
2

Format
 dot1x max-req <count>

Mode
 Interface Config

no dot1x max-req

This command sets the maximum number of times the authenticator state machine on this port will transmit an EAPOL EAP Request/Identity frame before timing out the supplicant.

Format
 no dot1x max-req

Mode
 Interface Config
6.1.12 dot1x max-users

This command sets the maximum number of clients supported on an interface when MAC-based 802.1X authentication is enabled on the port. The count value is in the range 1-16 and the default value is 16.

Default

16

Format

dot1x max-users <count>

Mode

Interface Config

no dot1x max-users

This command resets the maximum number of clients allowed to its default value of 16.

Format

no dot1x max-users

Mode

Interface Config
6.1.13 dot1x port-control

This command sets the authentication mode to be used on the specified port. The control mode may be one of the following.

- **force-unauthorized**: The authenticator PAE unconditionally sets the controlled port to unauthorized. Thus the port is blocked.
- **force-authorized**: The authenticator PAE unconditionally sets the controlled port to authorized. Thus the port is opened.
- **auto**: The authenticator PAE sets the controlled port mode to reflect the outcome of the authentication exchanges between the supplicant, authenticator and the authentication server. The port mode is controlled by the protocol.
- **mac-based**: Enable multi-client authentication on the port.

Default

force-authorized

Format

dot1x port-control {force-unauthorized | force-authorized | auto | mac-based}

Mode

Interface Config

no dot1x port-control

This command sets the authentication mode to be used on the specified port to auto.

Format

no dot1x port-control

Mode

Interface Config
6.1.14 `dot1x port-control all`

This command sets the authentication mode to be used on all ports. The control mode may be one of the following.

- **force-unauthorized**: The authenticator PAE unconditionally sets the controlled port to unauthorized. Thus the ports are blocked.
- **force-authorized**: The authenticator PAE unconditionally sets the controlled port to authorized. Thus the ports are opened.
- **auto**: The authenticator PAE sets the controlled port mode to reflect the outcome of the authentication exchanges between the supplicant, authenticator and the authentication server. The port mode is controlled by the protocol.
- **mac-based**: Enable multi-client authentication.

Default

- `force-authorized`

Format

```
dot1x port-control all {force-unauthorized | force-authorized | auto | mac-based}
```

Mode

Global Config

no `dot1x port-control all`

This command sets the port-control mode for the ports to the default mode (`force-authorized`).

Format

```
no dot1x port-control all
```

Mode

Global Config
6.1.15 dot1x re-authenticate

This command begins the re-authentication sequence on the specified port. This command is only valid if the control mode for the specified port is *auto*. If the control mode is not *auto*, an error will be returned.

Format

```
dot1x re-authenticate <slot/port>
```

Mode

- Privileged EXEC

6.1.16 dot1x re-authentication

This command enables re-authentication of the supplicant for the specified port.

Default

disabled

Format

```
dot1x re-authentication
```

Mode

- Interface Config

no dot1x re-authentication

This command disables re-authentication of the supplicant for the specified port.

Format

```
no dot1x re-authentication
```

Mode

- Interface Config
6.1.17 dot1x safe-vlan

This command enables the safe-vlan assignment on the switch.

Default

disabled

Format

dot1x safe-vlan

Mode

Global Config

- no dot1x safe-vlan

This command disables the safe-vlan assignment on the switch.

Default

disabled

Format

no dot1x safe-vlan

Mode

Global Config
6.1.18 dot1x system-auth-control

This command enables the dot1x authentication support on the switch. By default, the authentication support is disabled. While disabled, the dot1x configuration is retained and can be changed, but is not activated.

Default

disabled

Format

dot1x system-auth-control

Mode

Global Config

no dot1x system-auth-control

This command disables the dot1x authentication support on the switch.

Format

no dot1x system-auth-control

Mode

Global Config
6.1.19 dot1x timeout

This command sets the value, in seconds, of the timer used by the authenticator state machine on this port. Depending on the token used and the value (in seconds) passed, various timeout configurable parameters are set. The following tokens are supported.

- **reauth-period**: Sets the value, in seconds, of the timer used by the authenticator state machine on this port to determine when re-authentication of the supplicant takes place. Confirm that the reauth-period is a value in the range 1 - 65535.

- **quiet-period**: Sets the value, in seconds, of the timer used by the authenticator state machine on this port to define periods of time in which it will not attempt to acquire a supplicant. Confirm that the quiet-period is a value in the range 0 - 65535.

- **tx-period**: Sets the value, in seconds, of the timer used by the authenticator state machine on this port to determine when to send an EAPOL EAP Request/Identity frame to the supplicant. Confirm that the quiet-period is a value in the range 1 - 65535.

- **supp-timeout**: Sets the value, in seconds, of the timer used by the authenticator state machine on this port to timeout the supplicant. Confirm that the supp-timeout is a value in the range 1 - 65535.

- **server-timeout**: Sets the value, in seconds, of the timer used by the authenticator state machine on this port to timeout the authentication server. Confirm that the supp-timeout is a value in the range 1 - 65535.

Defaults

- reauth-period: 3600 seconds
- quiet-period: 60 seconds
- tx-period: 30 seconds
- supp-timeout: 30 seconds
- server-timeout: 30 seconds

Format

dot1x timeout {{reauth-period <seconds>} | {quiet-period <seconds>} | {tx-period <seconds>} | {supp-timeout <seconds>} | {server-timeout <seconds>}}

Mode

Interface Config
no dot1x timeout

This command sets the value, in seconds, of the timer used by the authenticator state machine on this port to the default values. Depending on the token used, the corresponding default values are set.

Format

```plaintext
no dot1x timeout {reauth-period | quiet-period | tx-period | supp-timeout | server-timeout}
```

Mode

```
Interface Config
```
6.1.20 dot1x timeout guest-vlan-period

This command configures the timeout value for the guest-vlan-period. The time, in seconds, for which the authenticator waits to see if any EAPOL packets are received on a port before authorizing the port and placing the port in the guest vlan (if configured). The guest vlan timer is only relevant when guest vlan has been configured on that specific port.

Default guest-vlan-period: 90 seconds.

Default 90

Format
dot1x timeout guest-vlan-period <seconds>

Mode
Interface Config

<seconds>
Enter an integer in the range of 1-300.

no dot1x timeout guest-vlan-period

This command resets the timeout value for the guest-vlan-period to its default value (90 seconds).

Format
no dot1x timeout guest-vlan-period

Mode
Interface Config
6.1.21 dot1x unauthenticated-vlan

This command configures the unauthenticated VLAN associated with the specified interface. The unauthenticated VLAN ID can be a valid VLAN ID from 0 to maximum supported VLAN ID. Confirm that the unauthenticated VLAN is statically configured in the VLAN database to be operational. By default, the unauthenticated VLAN is 0, i.e. invalid and not operational.

Default
0

Format
```
dot1x unauthenticated-vlan <vlan-id>
```

Mode
Interface Config

<vlan-id>
Enter an existing VLAN ID.

- **no dot1x unauthenticated-vlan**

This command resets the value for the unauthenticated VLAN to its default value.

Format
```
no dot1x unauthenticated-vlan
```

Mode
Interface Config

6.1.22 dot1x user

This command adds the specified user to the list of users with access to the specified port or all ports. Confirm that the <user> parameter is a configured user.
Format
 dot1x user <user> {<slot/port> | all}

Mode
 Global Config

no dot1x user
 This command removes the user from the list of users with access to the specified port or all ports.

Format
 no dot1x user <user> {<slot/port> | all}

Mode
 Global Config
6.1.23 ip ssh protocol

This command configures the IP secure shell (SSH) parameters, the first and the optional second SSH protocol level).
Possible settings: v1, v2 or v1 & v2.

Format

 ip ssh [protocol <protocollevel1>]
 [<protocollevel2>]]

Default

 2 1

Mode

 Privileged Exec

<protocollevel1>

Enter the first SSH Protocol Level (Version).
Possible values: 1, 2

<protocollevel2>

Optionally enter the second SSH Protocol Level (Version).
Possible values: 1, 2

no ip ssh

This command sets IP secure shell (SSH) parameters to default value.

Format

 no ip ssh

Mode

 Privileged Exec
6.1.24 radius accounting mode

This command enables the RADIUS accounting function.

Default
 disabled

Format
 radius accounting mode

Mode
 Global Config

no radius accounting mode

This command sets the RADIUS accounting function to the default value - i.e. the RADIUS accounting function is disabled.

Format
 no radius accounting mode

Mode
 Global Config
6.1.25 radius server host

This command configures the RADIUS authentication and accounting server.

If the 'auth' token is used, the command configures the IP address to use to connect to a RADIUS authentication server. Up to 3 servers can be configured per RADIUS client. If the maximum number of configured servers is reached, the command will fail until one of the servers is removed by executing the no form of the command. If the optional \texttt{<port>} parameter is used, the command will configure the UDP port number to use to connect to the configured RADIUS server. In order to configure the UDP port number, confirm that the IP address matches that of a previously configured RADIUS authentication server. Confirm that the port number lies between 1 - 65535, with 1812 being the default value.

If the 'acct' token is used, the command configures the IP address to use for the RADIUS accounting server. Only a single accounting server can be configured. If an accounting server is currently configured, confirm that it is removed from the configuration using the no form of the command before this command succeeds. If the optional \texttt{<port>} parameter is used, the command will configure the UDP port to use to connect to the RADIUS accounting server. Confirm that the IP address specified matches that of a previously configured accounting server. If a port is already configured for the accounting server then the new port will replace the previously configured value. Confirm that the port is a value in the range 1 - 65535, with 1813 being the default value.

\textbf{Format}

\texttt{radius server host \{auth | acct\} <ipaddr> [\texttt{<port>}]}

\textbf{Mode}

Global Config

\textbf{no radius server host}

This command removes the configured RADIUS authentication server or the RADIUS accounting server. If the 'auth' token is used, the previously configured RADIUS authentication server is removed from the configuration. Similarly, if the 'acct' token is used, the previously configured RADIUS accounting server is removed from the configuration. Confirm that the \texttt{<ipaddr>} parameter matches the IP address of the previously configured RADIUS authentication / accounting server.
6.1 Security Commands

6.1.26 radius server key

This command configures the shared secret between the RADIUS client and the RADIUS accounting / authentication server. Depending on whether the 'auth' or 'acct' token is used, the shared secret will be configured for the RADIUS authentication or RADIUS accounting server. Confirm that the IP address provided matches a previously configured server. When this command is executed, the secret will be prompted. Confirm that the secret is an alphanumeric value not exceeding 20 characters.

Format

 no radius server host {auth | acct} <ipaddress>

Mode

 Global Config

6.1.27 radius server msgauth

This command enables the message authenticator attribute for a specified server.

Default

 radius server msgauth <ipaddr>
Mode

Global Config
6.1.28 radius server primary

This command configures the primary RADIUS authentication server for this RADIUS client. The primary server is the one that is used by default for handling RADIUS requests. The remaining configured servers are only used if the primary server cannot be reached. A maximum of three servers can be configured on each client. Only one of these servers can be configured as the primary. If a primary server is already configured prior to this command being executed, the server specified by the IP address used in this command will become the new primary server. Confirm that the IP address matches that of a previously configured RADIUS authentication server.

Format

radius server primary <ipaddr>

Mode

Global Config
6.1.29 **radius server retransmit**

This command sets the maximum number of times a request packet is retransmitted when no response is received from the RADIUS server. The `retries` value is an integer in the range of 1 to 15.

Default

10

Format

```
radius server retransmit <retries>
```

Mode

Global Config

- **no radius server retransmit**

This command sets the maximum number of times a request packet is re-transmitted, when no response is received from the RADIUS server, to the default value, i.e. 10.

Format

```
no radius server retransmit
```

Mode

Global Config
6.1.30 radius server timeout

This command sets the timeout value (in seconds) after which a request has to be retransmitted to the RADIUS server if no response is received. The timeout value is an integer in the range of 1 to 30.

Default

6

Format

radius server timeout <seconds>

Mode

Global Config

no radius server timeout

This command sets the timeout value (in seconds) after which a request has to be retransmitted to the RADIUS server if no response is received, to the default value, i.e. 6.

Format

no radius server timeout

Mode

Global Config
6.1.31 show radius accounting

This command is used to display the configured RADIUS accounting mode, accounting server and the statistics for the configured accounting server.

Format

```
show radius accounting [statistics <ipaddr>]
```

Mode

- **Privileged EXEC and User EXEC**

If the optional token 'statistics <ipaddr>' is not included, then only the accounting mode and the RADIUS accounting server details are displayed.

Mode

- **Enabled or disabled**

IP Address

- The configured IP address of the RADIUS accounting server

Port

- The port in use by the RADIUS accounting server

Secret Configured

- Yes or No

If the optional token 'statistics <ipaddr>' is included, the statistics for the configured RADIUS accounting server are displayed. Confirm that the IP address parameter matches that of a previously configured RADIUS accounting server. The following information regarding the statistics of the RADIUS accounting server is displayed.

Accounting Server IP Address

- IP Address of the configured RADIUS accounting server

Round Trip Time

- The time interval, in hundredths of a second, between the most recent Accounting-Response and the Accounting-Request that matched it from the RADIUS accounting server.

Requests

- The number of RADIUS Accounting-Request packets sent to this accounting server. This number does not include retransmissions.
Retransmission
The number of RADIUS Accounting-Request packets retransmitted to this RADIUS accounting server.

Responses
The number of RADIUS packets received on the accounting port from this server.

Malformed Responses
The number of malformed RADIUS Accounting-Response packets received from this server. Malformed packets include packets with an invalid length. Bad authenticators and unknown types are not included as malformed accounting responses.

Bad Authenticators
The number of RADIUS Accounting-Response packets containing invalid authenticators received from this accounting server.

Pending Requests
The number of RADIUS Accounting-Request packets sent to this server that have not yet timed out or received a response.

Timeouts
The number of accounting timeouts to this server.

Unknown Types
The number of RADIUS packets of unknown types, which were received from this server on the accounting port.

Packets Dropped
The number of RADIUS packets received from this server on the accounting port and dropped for some other reason.
6.1.32 show authentication

This command displays the ordered authentication methods for all authentication login lists.

Format

```
show authentication
```

Mode

Privileged EXEC and User EXEC

Authentication Login List

This displays the authentication login listname.

Method 1

This displays the first method in the specified authentication login list, if any.

Method 2

This displays the second method in the specified authentication login list, if any.

Method 3

This displays the third method in the specified authentication login list, if any.
6.1.33 show authentication users

This command displays information about the users assigned to the specified authentication login list. If the login is assigned to non-configured users, the user “default” will appear in the user column.

Format

```
show authentication users <listname>
```

Mode

Privileged EXEC and User EXEC

User

This field displays the user assigned to the specified authentication login list.

Component

This field displays the component (User or 802.1X) for which the authentication login list is assigned.
6.1.34 show dot1x

This command is used to show a summary of the global dot1x configuration, summary information of the dot1x configuration for a specified port or all ports, the detailed dot1x configuration for a specified port and the dot1x statistics for a specified port - depending on the tokens used.

Format

```
show dot1x [{summary {<slot/port> | all} | {detail <slot/port>} | {statistics <slot/port>}}]
```

Mode

Privileged EXEC and User EXEC

If none of the optional parameters are used, the global dot1x configuration summary is displayed.

Administrative mode

Indicates whether authentication control on the switch is enabled or disabled.

VLAN Assignment Mode

Indicates whether the VLAN Assignment Mode is enabled or disabled.

Dynamic VLAN Creation Mode

Indicates whether the Dynamic VLAN Creation Mode is enabled or disabled.

Safe VLAN Mode

Indicates whether the Safe VLAN Mode is enabled or disabled.

If the optional parameter 'summary {<slot/port> | all}' is used, the dot1x configuration for the specified port or all ports are displayed.

Interface

The interface whose configuration is displayed.

Control Mode

The configured control mode for this port. Possible values are `force-unauthorized` | `force-authorized` | `auto`
Operating Control Mode
 The control mode under which this port is operating. Possible values are authorized | unauthorized

Reauthentication Enabled
 Indicates whether re-authentication is enabled on this port

Key Transmission Enabled
 Indicates if the key is transmitted to the supplicant for the specified port

Port Status
 Displays the status of the specified port

If the optional parameter 'detail <slot/port>' is used, the detailed dot1x configuration for the specified port are displayed.

Port
 The interface whose configuration is displayed

Protocol Version
 The protocol version associated with this port. The only possible value is 1, corresponding to the first version of the dot1x specification.

PAE Capabilities
 The port access entity (PAE) functionality of this port. Possible values are Authenticator or Supplicant.

Authenticator PAE State
 Current state of the authenticator PAE state machine. Possible values are Initialize, Disconnected, Connecting, Authenticating, Authenticated, Aborting, Held, ForceAuthorized, and ForceUnauthorized.

Backend Authentication State
 Current state of the backend authentication state machine. Possible values are Request, Response, Success, Fail, Timeout, Idle, and Initialize.

Quiet Period
 The timer used by the authenticator state machine on this port to define periods of time in which it will not attempt to acquire a
supplicant. The value is expressed in seconds and will be in the range 0 and 65535.

Transmit Period

The timer used by the authenticator state machine on the specified port to determine when to send an EAPOL EAP Request/Identity frame to the supplicant. The value is expressed in seconds and will be in the range of 1 and 65535.

Supplicant Timeout

The timer used by the authenticator state machine on this port to timeout the supplicant. The value is expressed in seconds and will be in the range of 1 and 65535.

Server Timeout

The timer used by the authenticator on this port to timeout the authentication server. The value is expressed in seconds and will be in the range of 1 and 65535.

Maximum Requests

The maximum number of times the authenticator state machine on this port will retransmit an EAPOL EAP Request/Identity before timing out the supplicant. The value will be in the range of 1 and 10.

Reauthentication Period

The timer used by the authenticator state machine on this port to determine when reauthentication of the supplicant takes place. The value is expressed in seconds and will be in the range of 1 and 65535.

Reauthentication Enabled

Indicates if reauthentication is enabled on this port. Possible values are 'True" or “False”.

Key Transmission Enabled

Indicates if the key is transmitted to the supplicant for the specified port. Possible values are True or False.

Control Direction

Indicates the control direction for the specified port or ports. Possible values are both or in.
If the optional parameter 'statistics <slot/port>' is used, the dot1x statistics for the specified port are displayed.

Port

The interface whose statistics are displayed.

EAPOL Frames Received

The number of valid EAPOL frames of any type that have been received by this authenticator.

EAPOL Frames Transmitted

The number of EAPOL frames of any type that have been transmitted by this authenticator.

EAPOL Start Frames Received

The number of EAPOL start frames that have been received by this authenticator.

EAPOL Logoff Frames Received

The number of EAPOL logoff frames that have been received by this authenticator.

Last EAPOL Frame Version

The protocol version number carried in the most recently received EAPOL frame.

Last EAPOL Frame Source

The source MAC address carried in the most recently received EAPOL frame.

EAP Response/Id Frames Received

The number of EAP response/identity frames that have been received by this authenticator.

EAP Response Frames Received

The number of valid EAP response frames (other than resp/id frames) that have been received by this authenticator.

EAP Request/Id Frames Transmitted

The number of EAP request/identity frames that have been transmitted by this authenticator.
EAP Request Frames Transmitted
The number of EAP request frames (other than request/identity frames) that have been transmitted by this authenticator.

Invalid EAPOL Frames Received
The number of EAPOL frames that have been received by this authenticator in which the frame type is not recognized.

EAP Length Error Frames Received
The number of EAPOL frames that have been received by this authenticator in which the frame type is not recognized.
6.1.35 show dot1x users

This command displays 802.1X port security user information for locally configured users.

Format

```
show dot1x users <slot/port>
```

Mode

Privileged EXEC and User EXEC

User

Users configured locally to have access to the specified port.
6.1.36 show dot1x clients

This command displays 802.1X port security client information for locally configured clients.

Format

 show dot1x clients <slot/port>

Mode

 Privileged EXEC

Logical Interface

 Display the Logical Interface.

Interface

 Display the Interface.

User Name

 Display the User Name.

Supp MAC Address

 Display the Supp MAC Address.

Session Time

 Display the Session Time.

Vlan Id

 Display the Vlan Id.

Vlan Assigned Reason

 Display the Vlan Assigned Reason.
 Possible values: RADIUS,

Session Timeout

 Display the Session Timeout.

Session Termination Action

 Display the Session Termination Action.
 Possible values: Reauthenticate,
6.1.37 show ip ssh

This command displays the IP secure shell (SSH) information.

Format

 show ip ssh

Mode

 Privileged EXEC

Administrative Mode

 Display the SSH administrative mode setting.
 Possible values: Disabled, Enabled.

Protocol Levels

 Display the SSH protocol levels setting.
 Possible values: Versions 1 and 2, Version 1, Version 2
 (default setting: Versions 1 and 2).

SSH Sessions Currently Active

 Display the number of SSH sessions being currently set up.
 Possible values: 1..5.

Max SSH Sessions Allowed

 Display the max. number of SSH sessions that can be set up simultaneously.
 Possible values: 1..5 (default setting: 5).

SSH Timeout

 Display the SSH timeout in minutes.
 Possible values: 1..160 (default setting: 5).
6.1.38 show radius

This command is used to display the various RADIUS configuration items for the switch as well as the configured RADIUS servers. If the optional token 'servers' is not included, the following RADIUS configuration items will be displayed.

Format

show radius [servers]

Mode

Privileged EXEC and User EXEC

Primary Server IP Address

Indicates the configured server currently in use for authentication

Number of configured servers

The configured IP address of the authentication server

Max number of retransmits

The configured value of the maximum number of times a request packet is retransmitted

Timeout Duration

The configured timeout value, in seconds, for request re-transmissions

Accounting Mode

Yes or No

If the optional token 'servers' is included, the following information regarding the configured RADIUS servers is displayed.

IP Address

IP Address of the configured RADIUS server

Port

The port in use by this server

Type

Primary or secondary

Secret Configured

Yes / No
6.1.39 show radius statistics

This command is used to display the statistics for RADIUS or configured server. To show the configured RADIUS server statistic, confirm that the IP Address specified matches that of a previously configured RADIUS server. On execution, the following fields are displayed.

Format

```
show radius statistics [ipaddr]
```

Mode

Privileged EXEC and User EXEC

If ip address is not specified than only Invalid Server Address field is displayed. Otherwise other listed fields are displayed.

Invalid Server Addresses

The number of RADIUS Access-Response packets received from unknown addresses.

Server IP Address

Round Trip Time

The time interval, in hundredths of a second, between the most recent Access-Reply | Access-Challenge and the Access-Request that matched it from the RADIUS authentication server.

Access Requests

The number of RADIUS Access-Request packets sent to this server. This number does not include retransmissions.

Access Retransmission

The number of RADIUS Access-Request packets retransmitted to this RADIUS authentication server.

Access Accepts

The number of RADIUS Access-Accept packets, including both valid and invalid packets, which were received from this server.
Access Rejects
The number of RADIUS Access-Reject packets, including both valid
and invalid packets, which were received from this server.

Access Challenges
The number of RADIUS Access-Challenge packets, including both
valid and invalid packets, which were received from this server.

Malformed Access Responses
The number of malformed RADIUS Access-Response packets
received from this server. Malformed packets include packets with an
invalid length. Bad authenticators or signature attributes or unknown
types are not included as malformed access responses.

Bad Authenticators
The number of RADIUS Access-Response packets containing invalid
authenticators or signature attributes received from this server.

Pending Requests
The number of RADIUS Access-Request packets destined for this
server that have not yet timed out or received a response.

Timeouts
The number of authentication timeouts to this server.

Unknown Types
The number of RADIUS packets of unknown types, which were
received from this server on the authentication port.

Packets Dropped
The number of RADIUS packets received from this server on the
authentication port and dropped for some other reason.
6.1.40 show users authentication

This command displays all user and all authentication login information. It also displays the authentication login list assigned to the default user.

Format

 show users authentication

Mode

 Privileged EXEC

User

 This field lists every user that has an authentication login list assigned.

System Login

 This field displays the authentication login list assigned to the user for system login.

802.1x Port Security

 This field displays the authentication login list assigned to the user for 802.1X port security.
6.1.41 users login

This command assigns the specified authentication login list to the specified user for system login. Confirm that the `<user>` is a configured `<user>` and that the `<listname>` is a configured login list. If the user is assigned a login list that requires remote authentication, all access to the interface from all CLI, web, and telnet sessions will be blocked until the authentication is complete. Note that the login list associated with the 'admin' user can not be changed to help prevent accidental lockout from the switch.

Format

```
users login <user> <listname>
```

Mode

Global Config

user

Enter user name.

listname

Enter an alphanumeric string of not more than 15 characters. Note: when assigning a list to the 'admin' account, include an authentication method that allows administrative access even when remote authentication is unavailable (use 'authentication login <listname> [method1 [method2 [method3]]]').
6.2 HTTP Commands
6.2.1 ip http server

This command enables access to the switch through the Web interface. When access is enabled, the user can login to the switch from the Web interface. When access is disabled, the user cannot login to the switch's Web server.

Disabling the Web interface takes effect immediately. All interfaces are effected.

Default
- enabled

Format
- ip http server

Mode
- Privileged EXEC

no ip http server

This command disables access to the switch through the Web interface. When access is disabled, the user cannot login to the switch's Web server.

Format
- no ip http server

Mode
- Privileged EXEC
6.2.2 ip https certgen

This command generates an X509/PEM certificate in-place.

Format

```
    ip https certgen
```

Mode

Privileged EXEC

6.2.3 ip https port

This command sets the HTTPS listening port.
The acceptable range is 1-65535. The default is 443

Note: After this setting, re-enable the HTTPS server.
See “ip https server” on page 474.

Default

443

Format

```
    ip https port <port_no>
```

Mode

Privileged EXEC

no ip https port

This command resets the https port to the default value.

Format

```
    no ip https port
```

Mode

Privileged EXEC
6.2.4 ip https server

This command turns on the HTTPS server. This command enables access to the switch’s graphical user interface (web-based interface) via a web browser. When access is enabled, the user can login to the switch from the web interface. When access is disabled, the user cannot login to the switch’s web server.

Default

disabled

Format

 ip https server

Mode

 Privileged EXEC

no ip https server

This command turns off the HTTPS server. This command disables access to the switch’s graphical user interface (web-based interface) via a web browser. When access is disabled, the user cannot login to the switch’s web server.

Format

 no ip https server

Mode

 Privileged EXEC
6.2.5 show ip http

This command displays the http settings for the switch.

Format

 show ip http

Mode

 Privileged EXEC and User EXEC

Secure-Server Administrative Mode

 This field indicates whether the administrative mode of secure HTTP
 is enabled or disabled.

Secure Protocol Level

 The protocol level may have the values of SSL3, TSL1, or both SSL3
 and TSL1.

Secure Port

 This field specifies the port configured for SSLT.

HTTP Mode

 This field indicates whether the HTTP mode is enabled or disabled.
6.2.6 show ip https

This command displays the status of the HTTPS server (status of the server and port number).

Format

 show ip https

Mode

 Privileged EXEC and User EXEC

HTTPS Mode

 Displays the status of the HTTPS server (enabled, disabled).

HTTPS Port

 Displays the port number of the HTTPS server (default: 443).
LAN switches can segment networks into logically defined virtual workgroups. This logical segmentation is commonly referred as a virtual LAN (VLAN). This logical segmentation of devices provides better LAN administration, security, and management of broadcast activity over the network. Virtual LANs have become an integral feature of switched LAN solutions. The VLAN example below demonstrates a simple VLAN configuration.

If a single port is a member of VLANs 2, 3 and 4, the port expects to see traffic tagged with either VLAN 2, 3 or 4.

The PVID (Port Virtual Identification) could be something entirely different, for example ‘12’ and things would still work fine, just so incoming traffic was tagged.

Example:
Project A = (VLAN2, ports 1,2)
Project B = (VLAN3, ports 3,4)
Project C = (VLAN4, ports 5,6)
Project P = (VLAN 9, port 7)

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Command</th>
</tr>
</thead>
</table>
| create VLAN 2 | vlan database
| | vlan 2
| | exit
| | config
| | interface 1/1
| | vlan participation include 2
| | exit
| | interface 1/2
| | vlan participation include 2
| | exit |

Table 16: Creating VLANs
<table>
<thead>
<tr>
<th>VLAN</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>create VLAN 3</td>
<td>vlan database
vlan 3
exit
config
interface 0/3
vlan participation include 3
exit
interface 0/4
vlan participation include 3
exit</td>
</tr>
<tr>
<td>create VLAN 4</td>
<td>vlan database
vlan 4
exit
config
interface 0/5
vlan participation include 4
exit
interface 0/6
vlan participation include 4
exit</td>
</tr>
<tr>
<td>create VLAN 9</td>
<td>vlan database
vlan 9
exit
config
interface 0/1
vlan participation include 9
exit
interface 0/2
vlan participation include 9
exit
interface 0/3
vlan participation include 9
exit
interface 0/4
vlan participation include 9
exit
interface 0/5
vlan participation include 9
exit
interface 0/6
vlan participation include 9
exit
interface 0/7
vlan participation include 9
exit</td>
</tr>
</tbody>
</table>

Table 16: Creating VLANs
7.1 SOLUTION 1

All traffic entering the ports is tagged traffic. Since the traffic is tagged, the PVID configuration for each port is not a concern.

- Confirm that the network card configuration for devices on Project A is set to tag all traffic with 'VLAN 2'
- Confirm that the network card configuration for devices on Project B is set to tag all traffic with 'VLAN 3'
- Confirm that the network card configuration for devices on Project C is set to tag all traffic with 'VLAN 4'
- Confirm that the network card configuration for devices on Project P is set to tag all traffic with 'VLAN 9'
7.2 SOLUTION 2

The network card configuration for devices on Project A, B and C should be set to NOT tag traffic.

To take care of these untagged frames configure the following:

- `vlan pvid 2 (in interface 0/1)`
- `vlan pvid 2 (in interface 0/2)`
- `vlan pvid 3 (in interface 0/3)`
- `vlan pvid 3 (in interface 0/4)`
- `vlan pvid 4 (in interface 0/5)`
- `vlan pvid 4 (in interface 0/6)`
8 Glossary

Numerics

802.1D. The IEEE designator for Spanning Tree Protocol (STP). STP, a link management protocol, is part of the 802.1D standard for media access control bridges. Using the spanning tree algorithm, STP provides path redundancy while helping to prevent endless loops in a network. An endless loop is created by multiple active paths between stations where there are alternate routes between hosts. To establish path redundancy, STP creates a logical tree that spans all of the switches in an extended network, forcing redundant paths into a standby, or blocked, state. STP allows only one active path at a time between any two network devices (this helps prevent the loops) but establishes the redundant links as a backup if the initial link should fail. If STP costs change, or if one network segment in the STP becomes unreachable, the spanning tree algorithm reconfigures the spanning tree topology and reestablishes the link by activating the standby path. Without spanning tree in place, it is possible that both connections may be simultaneously live, which could result in an endless loop of traffic on the LAN.

802.1P. The IEEE protocol designator for Local Area Network (LAN). This Layer 2 network standard improves support of time critical traffic, and limits the extent of high bandwidth multicast traffic within a bridged LAN. To do this, 802.1P defines a methodology for introducing traffic class priorities. The 802.1P standard allows priority to be defined in all 802 MAC protocols (Ethernet, Token Bus, Token Ring), as well as in FDDI. For protocols (such as Ethernet) that do not contain a priority field, 802.1P specifies a method for indicating frame priority based on the new fields defined in the 802.1Q (VLAN) standard.

802.1Q VLAN. The IEEE protocol designator for Virtual Local Area Network (VLAN). This standard provides VLAN identification and quality of service (QoS) levels. Four bytes are added to an Ethernet frame to allow eight priority levels (QoS) and to identify up to 4096 VLANs. See “VLAN” on page 496 for more information.

A

Address Resolution Protocol. An Internet Protocol that dynamically maps Internet addresses to physical (hardware) addresses on a LAN.

Aging. When an entry for a node is added to the lookup table of a switch, it is given a timestamp. Each time a packet is received from a
node, the timestamp is updated. The switch has a user-configurable timer that erases the entry after a certain length of time with no activity from that node.

Application Programming Interface. An API is an interface used by a programmer to interface with functions provided by an application.

AVL tree. Binary tree having the property that for any node in the tree, the difference in height between the left and right subtrees of that node is no more than 1.

B

BPDU. See “Bridge Protocol Data Unit” on page 484.

BootP. See “Bootstrap Protocol.” on page 484.

Bootstrap Protocol. An Internet protocol that enables a diskless workstation to discover its own IP address, the IP address of a BootP server on the network, and a file to be loaded into memory to boot the machine. This enables the workstation to boot without requiring a hard or floppy disk drive.

Bridge Protocol Data Unit. BPDU is the IEEE 802.1D MAC Bridge Management protocol that is the standard implementation of STP (Spanning Tree Protocol). It uses the STP algorithm to insure that physical loops in the network topology do not result in logical looping of network traffic. Using one bridge configured as root for reference, the BPDU switches one of two bridges forming a network loop into standby mode, so that only one side of a potential loop passes traffic. By examining frequent 802.1d configuration updates, a bridge in the standby mode can switch automatically into the forward mode if the other bridge forming the loop fails.

C

Checksum. A simple error-detection scheme in which each transmitted message is identified with a numerical value based on the number of set bits in the message. The receiving station then applies a formula to the message and checks to confirm that the accompanying numerical value is the same. If not, the receiver can assume that the message has been corrupted.

CLI. See “Command Line Interface” on page 484.

Command Line Interface. CLI is a line-item interface for configuring systems.

Complex Programmable Logic Device. CPLD is a programmable circuit on which a logic network can be programmed after its construction.
CPLD. See “Complex Programmable Logic Device.” on page 484.

D

DAPI. See “Device Application Programming Interface” on page 485.

Device Application Programming Interface. DAPI is the software interface that facilitates communication of both data and control information between the Application Layer and HAPI, with support from System Support.

Differentiated Services. Diffserv is a protocol for specifying and controlling network traffic by class so that certain types of traffic get precedence - for example, voice traffic, which requires a relatively uninterrupted flow of data, might get precedence over other kinds of traffic. Differentiated Services is the most advanced method for managing traffic in terms of what is called Class of Service (CoS). Unlike the earlier mechanisms of 802.1P tagging and Type of Service (ToS), Differentiated Services avoids simple priority tagging and depends on more complex policy or rule statements to determine how to forward a given network packet. An analogy is made to travel services, in which a person can choose among different modes of travel - train, bus, airplane - degree of comfort, the number of stops on the route, standby status, the time of day or period of year for the trip, and so forth. For a given set of packet travel rules, a packet is given one of 64 possible forwarding behaviors - known as per hop behaviors (PHBs). A six-bit field, known as the Differentiated Services Code Point (DSCP), in the Internet Protocol (Internet Protocol) header specifies the per hop behavior for a given flow of packets. Differentiated Services and the Class of Service approach provide a way to control traffic that is both more flexible and more scalability than the Quality of Service approach.

Dynamic Host Configuration Protocol. DHCP is a protocol for assigning dynamic IP addresses to devices on a network. With dynamic addressing, a device can have a different IP address every time it connects to the network. In some systems, the device's IP address can even change while it is still connected. DHCP also supports a mix of static and dynamic IP addresses. Dynamic addressing simplifies network administration because the software tracks IP addresses rather than requiring an administrator to manage the task. A new computer can be added to a
network without the hassle of manually assigning it a unique IP address.

E

EEPROM. See “Electronically Erasable Programmable Read Only Memory” on page 486.

Electronically Erasable Programmable Read Only Memory. EEPROM is also known as Flash memory. This is re-programmable memory.

F

Fast STP. A high-performance Spanning Tree Protocol. See “STP” on page 495 for more information.

FIFO. First In First Out.

Flash Memory. See “EEPROM” on page 486.

Flow Control. The process of adjusting the flow of data from one network device to another to help ensure that the receiving device can handle all of the incoming data. This is particularly important where the sending device is capable of sending data much faster than the receiving device can receive it. There are many flow control mechanisms. One of the most common flow control protocols for asynchronous communication is called xon-xoff. In this case, the receiving device sends a an “xoff” message to the sending device when its buffer is full. The sending device then stops sending data. When the receiving device is ready to receive more data, it sends an “xon” signal.

Forwarding. When a frame is received on an input port on a switch, the address is checked against the lookup table. If the lookup table has recorded the destination address, the frame is automatically forwarded on an output port.

Frame Check Sequence. The extra characters added to a frame for error detection and correction. FCS is used in X.25, HDLC, Frame Relay, and other data link layer protocols.

G

GARP. See “Generic Attribute Registration Protocol.” on page 487.

GARP Information Propagation.

GIP is the propagation of information between GARP participants for the same application in a bridge is carried out by a GIP component.

GARP Multicast Registration Protocol. GMRP provides a mechanism that allows Bridges and end stations to dynamically register (and subsequently, de-register) Group membership information with the MAC Bridges attached to the same LAN segment, and for that
information to be disseminated across all Bridges in the Bridged LAN that support Extended Filtering Services. The operation of GMRP relies upon the services provided by the GARP.

GARP VLAN Registration Protocol. GVRP allows workstations to request admission to a particular VLAN for multicast purposes.

GE. See “Gigabit Ethernet” on page 487.

General Purpose Chip-select Machine. GPCM provides interfacing for simpler, lower-performance memory resources and memory mapped-devices. The GPCM does not support bursting and is used primarily for boot-loading.

Generic Attribute Registration Protocol. GARP provides a generic attribute dissemination capability that is used by participants in GARP Applications (called GARP Participants) to register and de-register attribute values with other GARP Participants within a Bridged LAN. The definition of the attribute types, the values that they can carry, and the semantics that are associated with those values when registered are specific to the operation of the GARP Application concerned.

Gigabit Ethernet. A high-speed Ethernet connection.

GIP. See “GARP Information Propagation” on page 486.

GMRP. See “GARP Multicast Registration Protocol” on page 486.

GPCM. See “General Purpose Chip-select Machine” on page 487.

GVD. GARP VLAN Database.

GVRP. See “GARP VLAN Registration Protocol.” on page 487.

H

.h file. Header file in C code. Contains function and coding definitions.

HAPI. See “Hardware Abstraction Programming Interface” on page 487.

Hardware Abstraction Programming Interface. HAPI is the module that contains the NP specific software that interacts with the hardware.

hop count. The number of routers that a data packet passes through on its way to its destination.

ICMP. See “Internet Control Message Protocol” on page 488.

IGMP. See “Internet Group Management Protocol” on page 488.

IGMP Snooping. A series of operations performed by
intermediate systems to add logic to the network to optimize the flow of multicast traffic; these intermediate systems (such as Layer 2 switches) listen for IGMP messages and build mapping tables and associated forwarding filters, in addition to reducing the IGMP protocol traffic. See “Internet Group Management Protocol” on page 488 for more information.

Internet Control Message Protocol. ICMP is an extension to the Internet Protocol (IP) that supports packets containing error, control, and informational messages. The PING command, for example, uses ICMP to test an Internet connection.

Internet Group Management Protocol. IGMP is the standard for IP Multicasting on the Internet. IGMP is used to establish host memberships in particular multicast groups on a single network. The mechanisms of the protocol allow a host to inform its local router, using Host Membership Reports, that it wants to receive messages addressed to a specific multicast group. All hosts conforming to Level 2 of the IP Multicasting specification require IGMP.

IP. See “Internet Protocol” on page 488.

IP Multicasting. Sending out data to distributed servers on the MBone (Multicast Backbone). For large amounts of data, IP Multicast is more efficient than normal Internet transmissions because the server can broadcast a message to many recipients simultaneously. Unlike traditional Internet traffic that requires separate connections for each source-destination pair, IP Multicasting allows many recipients to share the same source. This means that just one set of packets is transmitted for all the destinations.

Internet Protocol. The method or protocol by which data is sent from one computer to another on the Internet. Each computer (known as a host) on the Internet has at least one IP address that uniquely identifies it among all other computers on the Internet. When you send or receive data (for example, an e-mail note or a Web page), the message gets divided into little chunks called packets. Each of these packets contains both the sender's Internet address and the receiver's address. Any packet is sent first to a gateway computer that understands a small part of the Internet. The gateway computer reads the destination address and forwards the packet to an adjacent gateway that in turn reads the destination address and so forth across the Internet until one gateway recognizes the packet as belonging to a computer within its immediate neighborhood or domain. That gateway then forwards the
packet directly to the computer whose address is specified.

Because a message is divided into a number of packets, each packet can, if necessary, be sent by a different route across the Internet. Packets can arrive in a different order than they were sent. The Internet Protocol just delivers them. It's up to another protocol, the Transmission Control Protocol (TCP) to put them back in the right order. IP is a connectionless protocol, which means that there is no continuing connection between the end points that are communicating. Each packet that travels through the Internet is treated as an independent unit of data without any relation to any other unit of data. (The reason the packets do get put in the right order is because of TCP, the connection-oriented protocol that keeps track of the packet sequence in a message.) In the Open Systems Interconnection (OSI) communication model, IP is in Layer 3, the Networking Layer. The most widely used version of IP today is IP version 4 (IPv4). However, IP version 6 (IPv6) is also beginning to be supported. IPv6 provides for much longer addresses and therefore for the possibility of many more Internet users. IPv6 includes the capabilities of IPv4 and any server that can support IPv6 packets can also support IPv4 packets.

J

Joint Test Action Group. An IEEE group that specifies test framework standards for electronic logic components.

JTAG. See “Joint Test Action Group” on page 489.

L

LAN. See “Local Area Network” on page 490.

Lightweight Directory Access Protocol. A set of protocols for accessing information directories. LDAP is based on the standards contained within the X.500 standard, but is significantly simpler. Unlike X.500, LDAP supports TCP/IP, which is necessary for any type of Internet access. Although not yet widely implemented, LDAP should eventually make it possible for almost any application running on virtually any computer platform to obtain directory information, such as e-mail addresses and public keys. Because LDAP is an open protocol, applications need not worry about the type of server hosting the directory.

Learning. The bridge examines the Layer 2 source addresses of every frame on the attached networks (called listening) and then maintains
a table, or cache, of which MAC addresses are attached to each of its ports.

Link-State. In routing protocols, the declared information about the available interfaces and available neighbors of a router or network. The protocol's topological database is formed from the collected link-state declarations.

LLDP. The IEEE 802.1AB standard for link layer discovery in Ethernet networks provides a method for switches, routers and access points to advertise their identification, configuration and capabilities to neighboring devices that store the data in a MIB (management information base). Link layer discovery allows a network management system to model the topology of the network by interrogating the MIB databases in the devices.

Local Area Network. A group of computers that are located in one area and are connected by less than 1,000 feet of cable. A typical LAN might interconnect computers and peripherals on a single floor or in a single building. LANs can be connected together, but if modems and telephones connect two or more LANs, the larger network constitutes what is called a WAN or Wide Area Network.

M

MAC. (1) Medium Access Control. In LANs, the sublayer of the data link control layer that supports medium-dependent functions and uses the services of the physical layer to provide services to the logical link control (LLC) sublayer. The MAC sublayer includes the method of determining when a device has access to the transmission medium. (2) Message Authentication Code. In computer security, a value that is a part of a message or accompanies a message and is used to determine that the contents, origin, author, or other attributes of all or part of the message are as they appear to be. *(IBM Glossary of Computing Terms)*

Management Information Base.

When SNMP devices send SNMP messages to the management console (the device managing SNMP messages), it stores information in the MIB.

MBONE. See “Multicast Backbone” on page 491.

MDC. Management Data Clock.

MDI. Management Data Interface.

MDIO. Management Data Input/Output.

MDIX. Management Dependent Interface Crossover.
MIB. See “Management Information Base” on page 490.

MOSPF. See “Multicast OSPF” on page 491.

MPLS. See “Multi-Protocol Label Switching” on page 491.

Multicast Backbone. The MBONE is a virtual network. It is layered on top of portions of the physical Internet to support routing of IP multicast packets since that function has not yet been integrated into many production routers. The network is composed of islands that can directly support IP multicast, such as multicast LANs like Ethernet, linked by virtual point-to-point links called "tunnels". The tunnel endpoints are typically workstation-class machines having operating system support for IP multicast and running the "mrouted" multicast routing daemon.

Multicasting. To transmit a message to specific recipients across a network. A simple example of multicasting is sending an e-mail message to a mailing list. Teleconferencing and videoconferencing also use multicasting, but require more robust protocols and networks. Standards are being developed to support multicasting over a TCP/IP network such as the Internet. These standards, IP Multicast and Mbone, will allow users to easily join multicast groups. Note that multicasting refers to sending a message to a select group whereas broadcasting refers to sending a message to everyone connected to a network. The terms multicast and narrowcast are often used interchangeably, although narrowcast usually refers to the business model whereas multicast refers to the actual technology used to transmit the data.

Multicast OSPF. With a MOSPF specification, an IP Multicast packet is routed based both on the packet's source and its multicast destination (commonly referred to as source/destination routing). As it is routed, the multicast packet follows a shortest path to each multicast destination. During packet forwarding, any commonality of paths is exploited; when multiple hosts belong to a single multicast group, a multicast packet will be replicated only when the paths to the separate hosts diverge. See “P” on page 493 for more information.

Multiplexing. A function within a layer that interleaves the information from multiple connections into one connection.

Multi-Protocol Label Switching.

An initiative that integrates Layer 2 information about network links (bandwidth, latency, utilization) into Layer 3 (IP) within a particular autonomous system—or ISP—in order to simplify and improve IP-
packet exchange. MPLS gives network operators a great deal of flexibility to divert and route traffic around detected link failures, congestion, and bottlenecks. From a QoS standpoint, ISPs will better be able to manage different kinds of data streams based on priority and service plan. For instance, those who subscribe to a premium service plan, or those who receive a lot of streaming media or high-bandwidth content can see minimal latency and packet loss. When packets enter into a MPLS-based network, Label Edge Routers (LERs) give them a label (identifier). These labels not only contain information based on the routing table entry (i.e., destination, bandwidth, delay, and other metrics), but also refer to the IP header field (source IP address), Layer 4 socket number information, and differentiated service. Once this classification is complete and mapped, different packets are assigned to corresponding Labeled Switch Paths (LSPs), where Label Switch Routers (LSRs) place outgoing labels on the packets. With these LSPs, network operators can divert and route traffic based on data-stream type and Internet-access customer.

MT-RJ connector. A type of fiber-optic cable jack that is similar in shape and concept to a standard telephone jack, enabling duplex fiber-optic cables to be plugged into compatible devices as easily as plugging in a telephone cable.

MUX. See “Multiplexing” on page 491.

N

NM. Network Module.

nm. Nanometer (1×10^9) meters.

NP. Network Processor.

O

Open Systems Interconnection.

OSI is a seven (7) layer architecture model for communications systems developed by the ISO for the interconnection of data communications systems. Each layer uses and builds on the services provided by those below it.

Operating System Application Programming Interface. OSAPI is a module within the System Support software that provides a set of interfaces to OS support functions.

OS. Operating System.

OSAPI. See “Operating System Application Programming Interface” on page 492.

OSI. See “Open Systems Interconnection” on page 492.
PDU. See “Protocol Data Unit” on page 493.

PHY. The OSI Physical Layer: The physical layer provides for transmission of cells over a physical medium connecting two ATM devices. This physical layer is comprised of two sublayers: the Physical Medium Dependent (PMD) sublayer, and the Transmission Convergence (TC) sublayer.

PMC. Packet Mode Channel.

Port Mirroring. Also known as a roving analysis port. This is a method of monitoring network traffic that forwards a copy of each incoming and outgoing packet from one port of a network switch to another port where the packet can be studied. A network administrator uses port mirroring as a diagnostic tool or debugging feature, especially when fending off an attack. It enables the administrator to keep close track of switch performance and alter it if necessary. Port mirroring can be managed locally or remotely. An administrator configures port mirroring by assigning a port from which to copy all packets and another port where those packets will be sent. A packet bound for or heading away from the first port will be forwarded onto the second port as well. The administrator places a protocol analyzer on the port receiving the mirrored data to monitor each segment separately. The analyzer captures and evaluates the data without affecting the client on the original port. The monitor port may be a port on the same SwitchModule with an attached RMON probe, a port on a different SwitchModule in the same hub, or the SwitchModule processor. Port mirroring can consume significant CPU resources while active. Better choices for long-term monitoring may include a passive tap like an optical probe or an Ethernet repeater.

Protocol Data Unit. PDU is a packet of data passed across a network. The term implies a specific layer of the OSI model and a specific protocol.

QoS. See “Quality of Service” on page 493.

Quality of Service. QoS is a networking term that specifies a guaranteed level of throughput. Throughput is the amount of data transferred from one device to another or processed in a specified amount of time - typically, throughputs are measured in bytes per second (Bps).
R

Real-Time Operating System.

RTOS is a component of the OSAPI module that abstracts operating systems with which other systems can interface.

RFC. Request For Comment.

RMON. Short for remote monitoring, a network management protocol that allows network information to be gathered at a single workstation. Whereas SNMP gathers network data from a single type of Management Information Base (MIB), RMON 1 defines nine additional MIBs that provide a much richer set of data about network usage. For RMON to work, network devices, such as hubs and switches, confirm that they are designed to support it. The newest version of RMON, RMON 2, provides data about traffic at the network layer in addition to the physical layer. This allows administrators to analyze traffic by protocol.

RP. Rendezvous Point. Used with IP Multicast.

RPU. Remote Power Unit.

RTOS. See “Real-Time Operating System” on page 494.

S

SDL. Synchronous Data Link.

Simple Network Management Protocol. SNMP is the protocol governing network management and the monitoring of network devices and their functions. It is not necessarily limited to TCP/IP networks. The versions have the following differences:

SNMPv1 (full): Security is based on community strings.

SNMPsec (historic): Security is based on parties. Few, if any, vendors implemented this version of the protocol, which is now largely forgotten.

SNMPv2p (historic): For this version, much work was done to update the SNMPv1 protocol and the SMIv1, and not just security. The result was updated protocol operations, new protocol operations and data types, and party-based security from SNMPsec.

SNMPv2c (experimental): This version of the protocol is called community string-based SNMPv2. It is an update of the protocol operations and data types of SNMPv2p, and uses community-based security from SNMPv1.

SNMPv2u (experimental): This version of the protocol uses the protocol operations and data types of SNMPv2c and security based on users.

SNMPv2* (experimental): This version combined the best possible
features of SNMPv2p and SNMPv2u. (It is also called SNMPv2star.) The documents defining this version were not published as RFCs.

SNMPv3 (proposed): This version of the protocol is a combination of user-based security and the protocol operations and data types from SNMPv2p and support for proxies. The security is based on that found in SNMPv2u and SNMPv2*, and updated after much review. The documents defining this protocol will soon be published as RFCs.

SimpleX signaling. SX is one of IEEE 802.3’s designations for media. For example, 1000SX indicates 1000 gigabit Ethernet over "short haul" or "short wavelength" optical fiber.

SMC1. A model of Serial Management Controller from Motorola.

SMII. Serial Media Independent Interface.

SNMP. See “Simple Network Management Protocol” on page 494.

SODIMM. Small Outline Dual Inline Memory Module.

SRAM. Static Random Access Memory.

STP. Spanning Tree Protocol. See “802.1D” on page 483 for more information.

T

TBI. Ten Bit Interface.

Telnet. A character-based UNIX application that enables users with a Telnet server account to log on to a UNIX computer and utilize its resources.

TFTP. See “Trivial File Transfer Protocol” on page 495.

Trivial File Transfer Protocol.

TFTP is a simple form of the File Transfer Protocol (FTP). TFTP uses the User Datagram Protocol (UDP, a direct protocol used to communicate datagrams over a network with little error recovery) and provides no security features. It is often used by servers to boot diskless workstations, X-terminals, and routers.

Trunking. The process of combing a set of trunks that are traffic-engineered as a unit for the establishment of connections between switching systems in which all of the communications paths are interchangeable.

U

UPM. User Programmable Machine.

UPMA. The first of two UPMs in Motorola’s MPC855T processor.
UPMB. The second of two UPMs in Motorola's MPC855T processor.

USP. An abbreviation that represents Unit, Slot, Port.

V

Virtual Local Area Network.

Operating at the Data Link Layer (Layer 2 of the OSI model), the VLAN is a means of parsing a single network into logical user groups or organizations, as if they physically resided on a dedicated LAN segment of their own. In reality, this virtually defined community may have individual members peppered across a large, extended LAN. The VLAN identifier is part of the 802.1Q tag, which is added to an Ethernet frame by an 802.1Q-compliant switch or router. Devices recognizing 802.1Q-tagged frames maintain appropriate tables to track VLANs. The first three bits of the 802.1Q tag are used by 802.1P to establish priority for the packet.

VLAN. See “Virtual Local Area Network” on page 496.

vMAN. Virtual Metropolitan Area Network.

W

WAN. See “Wide Area Network” on page 496.

Web. Also known as World-Wide Web (WWW) or W3. An Internet client-server system to distribute information, based upon the hypertext transfer protocol (HTTP).

Wide Area Network. A WAN is a computer network that spans a relatively large geographical area. Typically, a WAN consists of two or more local-area networks (LANs).

X

X.500. A directory standard that enables applications like e-mail to access information that can either be central or distributed. The benefit of a directory is the ability to minimize the impact on the user of changes to a network. The standard is broken down under subsequent standards, as follows:

- **X.501 Models**
- **X.509 Authentication framework**
- **X.511 Abstract service definition**
- **X.518 Procedures for distributed operation**
- **X.519 Protocol specifications**
- **X.520 Selected attribute types**
- **X.521 Selected object types**

XModem. One of the most popular file transfer protocols (FTPs). Xmodem is fairly effective at detecting errors. It sends blocks of data together with a checksum and then waits for acknowledgment of the block’s receipt. The waiting
slows down the rate of data transmission considerably, but it helps ensure accurate transmission. Xmodem can be implemented either in software or in hardware. Many modems, and almost all communications software packages, support Xmodem. However, it is useful only at relatively slow data transmission speeds (less than 4,800 bps). Enhanced versions of Xmodem that work at higher transmission speeds are known as Ymodem and Zmodem.
9 Index

A
- address-conflict 249
- areaid 26
- authentication login 425
- authorization network radius 427
- auto-disable reason 145
- auto-disable reset 147
- auto-disable timer 147
- auto-negotiate 149
- auto-negotiate all 152

B
- bridge address-learning 88
- bridge address-relearn detect operation 88
- bridge address-relearn detect threshold 88
- bridge aging-time 90
- bridge duplex-mismatch-detect operation 91
- bridge fast-link-detection 91
- bridge framesize 56
- bridge vlan-learning 92
- broadcasts
 - broadcast storm recovery mode 220, 221, 222

C
- cable-crossing 151
- cablestatus 250
- classofservice dot1p-mapping 80
- classofservice ip-dscp-mapping 81
- classofservice trus 82
- clear arp-table-switch 251
- clear commands
 - clear arp-table-switch 251
 - clear config 252
 - clear pass 254
 - clear traplog 255, 256
 - clear vlan 257
- clear config 252
- clear config factory 252
- clear counters 252
- clear dot1x statistics 427
- clear eventlog 250
- clear hiper-ring 253
- clear igmp-snooping 253
- clear mac-addr-table 254
- clear pass 254
- clear port-sec 408
- clear radius statistics 428
- clear ring-coupling 256
- clear signal-contac 255
- clear traplog 256
- clear vlan 257
- config commands
 - config loginssesion 237
 - config port admin-mode 212, 213
 - config port linktrap 214, 215, 216, 217
 - config port physical-mode 219
 - config switchconfig broadcast 220, 221, 222
 - config switchconfig flowcontrol 223
 - config users add 241, 242, 243
 - config users delete 241, 242, 243
 - config users passwd 244
 - config vlan add 224
 - config vlan delete 224
 - config vlan interface acceptframe 226, 231
- config vlan name 228
- config vlan participation 229, 230
- config vlan ports ingressfilter 227, 232
- config vlan ports pvid 233, 235
- config vlan ports tagging 234, 236
- config switchconfig flowcontrol 223
- config users delete 241, 242, 243, 244
- config users passwd 241, 242, 243, 244
- config vlan delete 224
- config vlan ports acceptframe 235
- config vlan ports ingressfilter 226, 231, 232, 233
- configuration reset 252
- config-watchdog 257
- copy 258

D
- device configuration commands 201
- device-status 264
- device-status connection-error 264
- dhcp-relay (Global Config Mode) 412
- dhcp-relay (Interface Config Mode) 413
- disconnect 237
- dot1x defaultlogin 428
- dot1x dynamic-vlan enable 429
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x guest-vlan</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>dot1x initialize</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>dot1x login</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>dot1x mac-auth-bypass</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>dot1x max-req</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>dot1x max-users</td>
<td>434</td>
<td></td>
</tr>
<tr>
<td>dot1x port-control</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>dot1x port-control all</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>dot1x re-authenticate</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>dot1x re-authentication</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>dot1x safe-vlan</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>dot1x system-auth-control</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>dot1x timeout</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>dot1x timeout guest-vlan-period</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>dot1x unauthenticated-vlan</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>dot1x user</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>duplex settings</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethernet-ip</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast-hiper-ring</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>flow control</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>frame acceptance mode</td>
<td>226, 231</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Config Mode</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hiper-ring</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>hiper-ring mode</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>hiper-ring port primary</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>hiper-ring port secondary</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>hiper-ring recovery-delay</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE 802.1Q</td>
<td>226, 231</td>
<td></td>
</tr>
<tr>
<td>ingress filtering</td>
<td>227, 232</td>
<td></td>
</tr>
<tr>
<td>Interface Config Mode</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>inventory</td>
<td>191, 192, 194, 196, 197, 198, 200, 201, 425</td>
<td></td>
</tr>
<tr>
<td>ip http server</td>
<td>472</td>
<td></td>
</tr>
<tr>
<td>ip https certgen</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>ip https port</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>ip ssh protocol</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>ipaddr</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Config Mode</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>link traps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface</td>
<td>214, 215, 216, 217</td>
<td></td>
</tr>
</tbody>
</table>
logout command 265

M
macaddr 26
macfilter 153
macfilter adddest 154
macfilter adddest all 155
media-module remove 153
monitor session destination interface 155
monitor session mode 157
monitor session source interface 158
mrp current-domain 382
mrp delete-domain 383
mrp new-domain 384

N
name 304
network javascriptmode 93
network mgmt-access add 94
network mgmt-access delete 94
network mgmt-access modify 95
network mgmt-access operation 96
network mgmt-access status 96
network mgmt_vlan 78
network parms 97
network priority 98
network protocol 97
no lldp 285
no snntp anycast address 313, 314, 320
no snntp client server 316
no snntp client server primary 317, 318
no storm-control broadcast 220

P
passwords 244
changing user 244
resetting all 254
ping 266
ping command 264, 266, 267
port-monitor (Global Config) 332
port-monitor (Interface Config) 332
port-monitor action 333
port-monitor condition crc-fragment 339
port-monitor condition crc-fragment 338
port-monitor condition link-flap 337
port-monitor condition link-flap 337
port-monitor condition overload-detection 334
port-monitor condition overload-detection polling 334
ports 212, 213
frame acceptance mode 226, 231
information 203
ingress filtering 227, 232
link traps 214, 215, 216, 217
physical mode 219
tagging 234, 236
VLAN IDs 233, 235
VLAN information 211
port-sec action 407
port-sec allowed-ip 408
port-sec allowed-mac 408
port-sec mode 406
Privileged Exec Mode 45
ptp clock-mode 323
ptp operation 324

S
script apply 142
script delete 143
script list 143
script show 144
script validate 144 show classofservice ip-dscp-mapping 84
selftest ramtest 189 show classofservice trust 85
selftest reboot-on-error 189 show commands
selftest sysmon 190 show inventory 191, 192, 194, 196, 197,
serial timeout 99 198, 200, 201, 425
sessions 166 show login sesson 238
settings 203
 closing 237, 265 show session config 205, 207, 208
 displaying 238 show users 239
set garp timer join 167 show vlan detailed 208
set garp timer leave 168 show vlan interface 211
set garp timer leaveall 169 show vlan summary 210
set gmrp adminmode 170 show config-watchdog 56
set gmrp forward-all-groups 173 show device-status 57
set gmrp forward-unknown 174 show dhcp-relay 411
set gmrp interfacemode 171 show dot1x 457
set gmrp interfaceadmin 172 show dot1x clients 463
set igmp (Interface Config Mode) 176 show dot1x users 462
set igmp aging-time-unknown 177 show ethernet-ip 100
set igmp automatic-mode 177 show eventlog 59
set igmp forward-all 178 show fast-hiper-ring 392
set igmp forward-unknown 179 show fast-hiper-ring current-id 393
set igmp groupmembershipinterval 181 show hiper-ring 386
set igmp interfacemode 182 show igmpsnoping 194
set igmp lookup-time 183 show interface 60
set igmp lookup-resp-time-unknown 183 show interface ethernet 62
set igmp maxresponse 184 show interface switchport 70
set igmp querier max-response-time 185 show inventory 227
set igmp querier protocol-version 185 show ip http 475
set igmp querier status 186 show ip https 476
set igmp querier tx-interval 186 show ip ssh 464
set igmp query-ports-to-filter 187 show lldp 273
set igmp static-query-port 180 show lldp chassis tx-interval 276
set pre-login-banner text 188 show lldp config 273
set prompt 100 show lldp config chassis 274
show address-conflict 52 show lldp config chassis admin-state 274
show arp switch 52 show lldp config chassis notification-interval 275
show authentication 58, 455 show lldp config chassis re-init-delay 275
show authentication users 456 show lldp config chassis tx-delay 276
show auto-disable brief 148 show lldp config chassis tx-delay 276
show auto-disable reasons 149 show lldp config chassis tx-delay 276
show bridge address-learning 53 show lldp config port 277
show bridge address-relearn-detect 53 show lldp config port tlv 278
show bridge aging-time 54 show lldp med 281
show bridge duplex-mismatch-detect 54 show lldp med interface 282
show bridge fast-link-detection 54 show lldp med local-device detail 283
show bridge framesize 55 show lldp med remote-device 284
show bridge vlan-learning 55 show lldp med remote-device detail 285
show classofservice dot1p-mapping 83 show lldp remote-data 279
<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging</td>
<td>70</td>
<td>show spanning-tree drstp</td>
</tr>
<tr>
<td>show login-session</td>
<td>238, 245, 246, 247</td>
<td>show spanning-tree interface</td>
</tr>
<tr>
<td>show mac-addr-table</td>
<td>71</td>
<td>show spanning-tree mst detailed</td>
</tr>
<tr>
<td>show mac-filter-table gmrp</td>
<td>196</td>
<td>show spanning-tree mst port detailed</td>
</tr>
<tr>
<td>show mac-filter-table igmpsnooping</td>
<td>197</td>
<td>show spanning-tree mst port summary</td>
</tr>
<tr>
<td>show mac-filter-table multicast</td>
<td>198</td>
<td>show spanning-tree vlan</td>
</tr>
<tr>
<td>show mac-filter-table static</td>
<td>199</td>
<td>show storm-control</td>
</tr>
<tr>
<td>show mac-filter-table staticfiltering</td>
<td>200</td>
<td>show storm-control limiters port</td>
</tr>
<tr>
<td>show mac-filter-table stats</td>
<td>201</td>
<td>show sub-ring</td>
</tr>
<tr>
<td>show monitor session</td>
<td>202</td>
<td>show switchconfig</td>
</tr>
<tr>
<td>show mrt</td>
<td>379</td>
<td>show sysinfo</td>
</tr>
<tr>
<td>show mrt current domain</td>
<td>380</td>
<td>show telnetcon</td>
</tr>
<tr>
<td>show network</td>
<td>90, 101</td>
<td>show temperature</td>
</tr>
<tr>
<td>show network mgmt-access</td>
<td>102</td>
<td>show trapflags</td>
</tr>
<tr>
<td>show port</td>
<td>203, 223</td>
<td>show users</td>
</tr>
<tr>
<td>show port-monitor</td>
<td>326</td>
<td>show users authentication</td>
</tr>
<tr>
<td>show port-monitor brief</td>
<td>328</td>
<td>show vlan</td>
</tr>
<tr>
<td>show port-monitor link-flap</td>
<td>329</td>
<td>show vlan brief</td>
</tr>
<tr>
<td>show port-monitor overload-detection</td>
<td></td>
<td>show vlan brief</td>
</tr>
<tr>
<td>show port-monitor overload-detection</td>
<td></td>
<td>show vlan port</td>
</tr>
<tr>
<td>show radius</td>
<td>465</td>
<td>snmp sync v3-to-community</td>
</tr>
<tr>
<td>show radius accounting</td>
<td>453</td>
<td>snmp trap link-status</td>
</tr>
<tr>
<td>show radius statistics</td>
<td>466</td>
<td>snmp trap link-status all</td>
</tr>
<tr>
<td>show reboot</td>
<td>270</td>
<td>snmp trap link-status all</td>
</tr>
<tr>
<td>show reload</td>
<td>272</td>
<td>snmp-access global</td>
</tr>
<tr>
<td>show ring-coupling</td>
<td>398</td>
<td>snmp-access version</td>
</tr>
<tr>
<td>show rmon-alarm</td>
<td>205</td>
<td>snmp-server</td>
</tr>
<tr>
<td>show running-config</td>
<td>74</td>
<td>snmp-server community</td>
</tr>
<tr>
<td>show selftest</td>
<td>205</td>
<td>snmp-server community ipaddr</td>
</tr>
<tr>
<td>show serial</td>
<td>104</td>
<td>snmp-server community ipmask</td>
</tr>
<tr>
<td>show serviceshell</td>
<td>205</td>
<td>snmp-server community mode</td>
</tr>
<tr>
<td>show signal-contact</td>
<td>72</td>
<td>snmp-server community ro</td>
</tr>
<tr>
<td>show slot</td>
<td>73</td>
<td>snmp-server community rw</td>
</tr>
<tr>
<td>show snmp sync</td>
<td>106</td>
<td>snmp-server contact</td>
</tr>
<tr>
<td>show snmp-access</td>
<td>104</td>
<td>snmp-server enable traps</td>
</tr>
<tr>
<td>show snmpcommunity</td>
<td>105</td>
<td>snmp-server enable traps chassis</td>
</tr>
<tr>
<td>show snmptrap</td>
<td>107</td>
<td>snmp-server enable traps l2redundancy</td>
</tr>
<tr>
<td>show sntp</td>
<td>307</td>
<td>snmp-server enable traps linkmode</td>
</tr>
<tr>
<td>show sntp anycast</td>
<td>308</td>
<td>snmp-server enable traps multiusers</td>
</tr>
<tr>
<td>show sntp client</td>
<td>309</td>
<td>snmp-server enable traps port-sec</td>
</tr>
<tr>
<td>show sntp operation</td>
<td>310</td>
<td>snmp-server enable traps stpmode</td>
</tr>
<tr>
<td>show sntp server</td>
<td>311</td>
<td>snmp-server location</td>
</tr>
<tr>
<td>show sntp status</td>
<td>311</td>
<td>snmp-server sysname</td>
</tr>
<tr>
<td>show sntp time</td>
<td>312</td>
<td>snmptrap</td>
</tr>
<tr>
<td>show spanning-tree</td>
<td>343</td>
<td>snmptrap ipaddr</td>
</tr>
<tr>
<td>show spanning-tree brief</td>
<td>344</td>
<td>snmptrap mode</td>
</tr>
</tbody>
</table>
Index

snmptrap snmpversion 130
SNTP - Simple Network Time Protocol 307
snntp anycast address 313
snntp anycast transmit-interval 313
snntp anycast vlan 314
snntp client accept-broadcast 314
snntp client disable-after-sync 315
snntp client offset 315
snntp client request-interval 316
snntp client server primary 316
snntp client server secondary 318
snntp client threshold 319
snntp operation 320
snntp server disable-if-local 321
snntp time system 321
spanning-tree 354
spanning-tree bdumigrationcheck 218
spanning-tree configuration name 356
spanning-tree configuration revision 357
spanning-tree drstp port 359
spanning-tree drstp role 358
spanning-tree drstp timeout 358
spanning-tree edgeport 360
spanning-tree forceversion 361
spanning-tree forward-time 362
spanning-tree guard loop 363
spanning-tree guard none 364
spanning-tree guard root 365
spanning-tree hello-time 366
spanning-tree hold-count 367
spanning-tree max-age 368
spanning-tree max-hops 369
spanning-tree mst 370
spanning-tree mst vlan 374
spanning-tree port mode 375
spanning-tree port mode all 376
spanning-tree stp-mrp-mode 377
spanning-tree tcnguard 378
speed 219
speeds 219
storm-control broadcast 220
storm-control broadcast (port-related) 221
storm-control egress-limit 222
storm-control egress-limiting 221
storm-control flowcontrol 223
storm-control ingress-limit 222
storm-control ingress-limiting 221
storm-control ingress-mode 221, 222
sub-ring mode 417
sub-ring mrp-domainID 421
sub-ring operation 418
sub-ring port 419
sub-ring protocol 418
sub-ring ring-name 419
sub-ring vlan 420
sub-ring delete-ring 422
sub-ring new-ring 422
switch information, related 201
inventory 191, 192, 194, 196, 197, 198, 200, 201, 425
system utilities 249–266
T	tagging 234, 236
telnet sessions, closing 237, 265
sessions, displaying 238
telnetcon maxsessions 131
telnetcon timeout 132
temperature 268
trace route 250
transport input telnet 87
trap log clearing 255, 256
U
User Account Management Commands 237
user account management commands 201
User Exec Mode 45
users adding 242, 243
deleting 241, 242, 243
displaying 239
passwords 244, 254
users access 242
users defaultlogin 240
users login 241, 469
users name 243
users passwd 244
users snmpv3 accessmode 245
users snmpv3 authentication 246
users snmpv3 encryption 247
V
vlan 224
vlan acceptframe 226
vlan ingressfilter 227
Index

VLAN Mode 45
vlan name 228
vlan participation 229
vlan participation all 230
vlan port acceptframe all 231
vlan port ingressfilter all 232
vlan port priority all 86
vlan port pvid all 233
vlan port tagging all 234
vlan priority 86
vlan pvid 235
vlan tagging 236
vlan0-transparent-mode 225

VLANs
 adding 224
 changing the name of 228
 deleting 224
 details 208
 frame acceptance mode 226, 231
 IDs 233, 235
 ingress filtering 227, 232
 participation in 229, 230
 port information 211
 resetting parameters 257
 summary information 210
 tagging 234, 236

W
 Web connections, displaying 238