WARNING

The application of this product requires expertise in the design and
programming of control systems. Only persons with such expertise should
be allowed to program, install, alter, and apply this product. Potential bodily
injury, death, or equipment damage could result if the product is improperly
applied to any equipment application.

CAUTION

SY/MAX devices contain electronic components that are very susceptible to
damage from electrostatic discharge. DO NOT handle this device by the gold
edge contacts.

A static charge can accumulate on the surface of ordinary plastic wrapping or cushioning material. If any
SY/MAX device must be returned to Square D, the following packaging instructions must be followed:

PREFERRED: Use the original packaging material as supplied by Square D. Place the device inside
the metallized static-shielding bag.

ACCEPTABLE: Wrap the device in some type of antistatic material. Antistatic plastic material can be
identified by its pink color, and can be obtained in sheet or bag form.

UNACCEPTABLE: Do not use ordinary plastic film, foam, or styrene chips ("popcorn™ or "peanuts”).
These materials can accumulate static charges in excess of 10,000 volts, resulting in possible damage to
the SY/MAX electronic components.

CAUTION

Improper handling may cause permanent damage to this device.

1) Never remove this device from the rack while power is ON.
Turn power supply switch to OFF and wait until all
indicating lights are off before removing.

2) Do not subject to static discharge.

3) Donottouch gold edge contacts.

NOTICE

The products and services described in this manual are useful in a wide variety of different applications.
Therefore, the user and others responsible for applying the products and services described herein are responsible
for determining their acceptability for each application. While efforts have been made to provide accurate
information within this manual, the Square D Company assumes no responsibility for the application,
completeness or usefulness of the information contained herein.

UNDER NO CIRCUMSTANCE WILL THE SQUARE D COMPANY OR ANY OF ITS SUBSIDIARIES BE
RESPONSIBLE OR LIABLE FOR ANY DAMAGES OR LOSSES, INCLUDING INDIRECT OR
CONSEQUENTIAL DAMAGES OR LOSSES, ARISING FROM EITHER THE USE OF ANY
INFORMATION CONTAINED WITHIN THIS MANUAL OR THE USE OF ANY PRODUCTS OR
SERVICES REFERENCED HEREIN.

No patent liability is assumed by the Square D Company with respect to the use of any of the
information, products, circuits , programming or services referenced herein.

The information contained in this manual is subject to change without notice.

30598-730
Table of Contents
[MODEL 650 PROCESSOR OVERVIEW|
1.1 Description 1-1
1.2 Ethernet Conneclivity 1-1
1.3 SY/MAX Compatibility 1-1
1.4 Hardware Features 1-1
1.5 Instruction Set 1-3
1.6 Technical COoMPariSON 1-3
1.7 FrontPanel Features L 1-4
|2 SPECIFICATIONS |
2.1 Model 650 Specifications 2-1
211 ELECTRICALSPECIFICATIONS ... ottt e e e i 241
212 ENVIRONMENTAL SPECIFICATIONS . . .ottt e e et e e e e e, 241
213 PHYSICAL SPECIFICATIONS et e e et e e 2-2
214 FUNCTIONAL SPECIFICATIONS . . . ottt e et e e e e e e 2-2
2.2 New Features 2-3
23 Register Usageo i 2-4
24 Instruction Setfor All Types 2-5
3 INSTALLATION|
3.1 Differences in Operating Characteristics Compared to
Other SY/MAX Devices and Certain Functions 3-1
3.2 Rack Configuration L 3-4
33 Register Modules 3-4
34 Model 650 Installation 3-5
35 Undervoltage Lockout Circuit Operation and AC Fail Function 3-6
351 TROUBLESHOOTING POWERPROBLEMSot e i 3-7
36 Rack Addressing a Model 650 intheCPUSlot 3-9
361 INITIAL SYSTEM LAYOUT L Lttt e e e e e e e, 3-9
362 PROCEDURE ... e 3-9
363 DETERMINING RACK ADDRESSING NEEDS ittt 3-10
364 RACK ADDRESSING REGISTER ALLOCATION . ..o vttt et i e e e e e 3-1
365 RACK ADDRESSING COMPATIBILITY WITH OTHER SY/MAX PROCESSORS 3-12
3.7 Rack Addressing Multiple Model 650sinthe SameRack 3-15
(4 CONTROLS AND INDICATORS |
4.1 Keyswitch Positions 4-1
4.2 Indicator LEDSs i, 4-2
[5 SY/MAX COMMUNICATIONS |
51 DS PliON . 5-1
5.2 Connecting Programmers 5-1
53 Connecting Other SY/MAX Devices 5-2
531 OTHER PROCESSORS . .ottt ettt et e e e et e e et e e e e e e 5-2
532 SY/NETNETWORK INTERFACE oottt e e e e i 5-2
533 LOADERIMONITOR ..o et et et e e e 5-2
534 CARTRIDGE TAPE LOADERRECORDER . - ..ottt i e e e 5-2
535 PRINTERS . . 5-2
536 D-LOG DATA CONTROLLERMODULEot i 5-2
54 Baud Rates 5-4
541 DESCRIPTION . ..ot et et e e e e e e 5-4
542 ALTERING BAUD RATES

Pagei

Pageii 30598-730
55 Variable ROUTE Statement 5-S
551 DESCRIPTION OF OPERATIONottt et e e e e e, 5-5
552 IMPLEMENTATION . ..ottt e e e e e e e e e e e e 5-5
553 APPLICATION CONSIDERATIONS it e e e e et 5-6
5.5.4 EXAMPLE Lottt 5-6
5.6 Miscellaneous Considerations 5-8
561 IMPROVING COMMUNICATION THROUGHPUT o 5-8
56.2 SY/MAX COMMUNICATION TIMEOUT .. oottt et et et e e it i e e e e e 5-10
5.7 Technical Data For CommunicationPorts 5-12
(6 SECURITY FEATURES |
6.1 DeSCription e 6-1
6.2 Definitions, 6-1
6.3 SUMIMIAIY .. o 6-2
6.4 Hardware Security Jumper e 6-3
6.5 Selective Port & Route Lockout 6-4
6.6 Keyswitch RUNPosition 6-4
6.7 Inhibit RUNG 6-4
6.8 Safeguard Rung L 6-6
68.1 TIMED INTERRUPT OPERATION oottt ettt et e e et e e e e e e e 6-8
6.9 Password and Restriction Registers i iiiiiiai 6-9
6.10 Memory Protect Bit 6-10
6.11 Force Inhibit Bit 6-11
6.12 Register Protect Bit 6-11
6.13 Fencing Registers 6-13
[7 FLOATING-POINT MATH|
71 IntroduCtion 7-1
7.2 Definition of Terms 7-1
7.3 Register Usage e 7-1
731 INTEGER L o o ittt e e e e e e e e e e 7-1
732 FLOATING-POINT OPERATIONS e 7-1
7.4 Addressing Floating-Point Registers 7-2
7.5 Data Transfers (LET) and Comparisons (IF) Using Floating-Point Numbers 7-3
75.1 DATA TRANSFERS ("LET" INSTRUCTION) it et e ettt 7-3
752 COMPARISON (“IF INSTRUCTION) ot e e 7-3
7.6 Entering Floating-Point Values, 7-4
77 Displaying Floating-Point Values i 7-4
7.8 Floating-Point Operations Within LET and IF Instructions 7-6
79 Floating-Point Operation Using Matrices 7-7
7.10 Combining Floating Point With Integer Operations 7-7
7.10.1 LETINSTRUCTIONS . . oottt et e et et e e et e e e e et e ettt e n s 7-7
7.10.2 FFINSTRUCTIONS oot ettt et et et e e e e et e e e e ettt e e 7-8
7.11 Overflow Errors 7-9
710 ACCUMULATOR OPERATION .. .ottt e e e e e 7-9
7112 WHY DO OVERFLOWS OCCUR? oot e 7-10
7.12 Special Math Functions S 7-12
8 SPECIAL INSTRUCTIONS
8.1 DI Pl ON . . o 8-1
8.2 Mathand Trig Operations 8-5
83 Statistical Operations 8-7
8.4 Indirect Register Read Operations ittt 8-8
85 Alternate Accumulator Manipulations 8-7
8.6 Bus WritetoMicrocell 8-8
8.7 Miscellaneous Instructions 8-10

30598-730 Pageiii

9 PID OPERATIONS
9.1 INtrodUCtiON ... 9-1
9.2 Register Allocation 9-1
9.3 Reverse-Acting LOOP o i 9-3
94 DireCt-AcCting LOOR e 9-3
9.5 Manual Loop 9-4
9.6 LEAD/LAG FUNCLIONS ... e e 9-4
9.7 Application Considerationsand Examples 9-6
|10 ASCIl COMMUNICATIONS|(Input and Output)
10.1 ASCH I PUL . 10-1
10.1.1 DESCRIPTION/ANITIATION . . oo ot e e e e e e e e 10-1
10.1.2 PORT CONFIGURATION . .ttt ittt e e et e e e e e e e e e e 10-2
1013 OPERATION . . oottt et et e e e e e e 10-3
10.1.4 APPLICATION CONSIDERATIONSttt et it e e e e e e e e 10-4
1015 ERROR CODES . . it i ittt et it e ettt e e e e e e e e 10-5
10.2 ASCH OUTPUL . . 10-5
1021 STANDARD ASCHFORMAT . . 10-5
1022 RAW BINARY ASCH FORMAT L. et e e e e 10-5
10.2.3 MISCELLANEOUS ASCI EORMATS e e e et 10-7
1024 REPEATED CHARACTER STRINGS ittt e e e e e s 10-7
10.25 XON/XOFF HANDSHAKING .« .. e e e e e e e 10-7
10.3 ASClI Hex/Decimal Conversion 10-8
[11 SEQUENCER |
11 Description and Initiation 11-1
1.2 Register Block Allocation 11-2
1121 CONFIGURATION TABLE REGISTERS\ttt et it et e et e e e e 11-2
1122 STEP TABLE REGISTERSottt ittt e e et e e e e e e e e 11-4
1.3 Application DiSCUSSION e 11-5
1131 REQUIRED ENTRIES . .. oot i ettt et e e e e e e e e i 11-5
1132 OPERATING CHARACTERISTICSottt e et e e e e e 11-6
1133 TYPICALOPERATING MODES et e e e e 11-7
11.4 Application Considerations 11-13
1149 ERROR CONDITIONS . . . o e e e e e 11-13
11.42 OPERATING MODE REGISTER STATUS BITS ottt i it et s et e aas 11-14
11.43 OTHER CONSIDERATIONS . ..o ettt e e e e e 11-14
115 Examples ... 11-15
[12 BATTERY BACKUP AND CLOCK/CALENDAR |
121 BackUp Batlery e 12-1
1211 DESCRIPTION . . oottt e e e e e e 12-1
1212 LOW BATTERY INDICATION .. o i et e e e e e et e 12-1
1213 BATTERY LIFE EXPECTANCY ... e e e e e e i 12-1
1214 REPLACEMENT PROCEDURE - ... ittt ittt ettt et et et e 12-2
1215 BATTERY SPECIFICATIONSot e e et e et e 12-2
12.2 Real-Time Clock/Calendar i 12-2
1221 SPECIFICATIONS . .. ottt e et e e e e e e e e e s 12-2
1222 LOADING THE TIME/DATE . ..o ittt e e e e e e 12-2
1223 SETTING THE CLOCK . ..ot e e e e e e e e e e e e 12-3
1224 CLOCK MANIPULATION . . oot e e e e e e e e e e e e 12-3
(13 CONTROL REGISTERS|
131 Control Register Overview 13-1
13.2 Listing Of ReQisters 13-2

Pageiv 30598-730

14 TECHNICAL DATA

14.1 Memory Utilization 14-1
1411 RELAY CIRCUITS ..ottt e e e e e e e, 14-1
14.1.2 GENERALINSTRUCTIONS . ..ottt e e e e e e e e 14-2
1413 IF,LET, AND MATH INSTRUCTIONSttt e e 14-2
14.2 Scanning Techniques 14-3
14.2.1 DESCRIPTION .. .ottt e 14-3
14.22 SCANNING SPEED . ..o oottt ettt et e e e e e e e 14-4
1423 OPTIMIZING SCANSPEED ittt ettt et e e e e e e e e e 14-6
14.3 Theory Of Operation 14-8
14.4 FOrCiNg ... 14-10
14.5 Power Up/DownSequence 14-13
14.6 Run-Time Operational Checks i ... 14-15
(15 ETHERNET COMMUNICATIONS|

15.0 AGlossaryof Terms 15-1
15.1 INtroduction 15-4
15.2 Hardware 15-4
15.3 Switch Settings 15-6
15.3.1 LEAST SIGNIFICANT DIGITttt et e e e e e 15-6
15322 MOST SIGNIFICANT DIGITo e e i 15-7
15.4 Defining an Ethernet Network with SY/MAX Devices 15-8
15.4.1 SY/MAX DROP NUMBERS . ..ottt ittt it et e e e e e e e e e e 15-8
1542 ROUTING FORPORT 3(Ethernet POrt)ot e et 15-8
15.5 Registers 15-9
15.5.1 MODEL 650 REGISTEROVERVIEWttt e 15-9
155.2 CONTROL PROCESSOR REGISTERS . ..ottt et e e e et e e e e e e 15-9
155.3 ETHERNET NIM REGISTERS . .. oot ittt it e e e e e e e 15-10
15.6 Ethernet Communication Parameters 15-13
1561 OVERVIEW . e e e 15-13
15.6.2 SETTING ETHERNET COMMUNICATION PARAMETERS(7XX0and 7XX1) 15-13
1563 EVALUATING ETHERNET COMMUNICATION PERFORMANCE(7XX2-7XXS) oovuenne o 15-15
15.6.4 MISCELLANEOUS CONSIDERATIONS (7XX2-7XXS5) . . ot v ottt e e e e 15-18
15.7 Ethernet Errors and Diagnostics, 15-19
15.7.1 ETHERNET ERRORCODESttt e e e e e 15-19
1572 ETHERNET DIAGNOSTICCODESottt e e e e e e 15-20

APPENDIXA ERROR CODES/TROUBLESHOOTING

A1

A2

A21
A22
A23
A3

A3
A32
A33
A34
A35
A36
A37
A4

A4

Introductionand Description A-1
Peripheral-to-Programmable Controller System Interaction Errors A-1
PROCESSOR ERRORS . . . o ettt ittt et e e e e e e e e e e e e e A-2
TAPE ERRORS . . . L. it e A-5
TRANSMISSION ERRORSttt e e e i A-5
Programmable Controller System Operational Errors A-5
CPU/LIERRORS (30000-32700) . . - .. o oove ettt e A-6
MISCELLANEOUS ERRORS (29000-29999)ttt e A-7
SLOTREGISTERERROR (20000-28192) ittt ettt e i e e e A-8
SLOT ERROR{19000-19016)ottt ettt e et et A-8
REGISTER READ AFTER WRITE ERROR (10000-18192) o.ouou it .. A-8
PROCESSOR COMMUNICATION PORT ERROR (01000-09999) A-9
GENERAL ERRORS (00001-00999) oo ottt ettt e ettt e e e e e e e e A-10
Using Error Codes To Isolate Programmable Controller System Faults A-11

GENERAL CONCEPTS e e A-11

30598-730
A42 WHAT TO DO IF THE PROGRAMMABLE CONTROLLER SYSTEMSHUTSDOWN A-11
A5 Example Malfunctions A-13
A5.1 EXAMPLE PROGRAMMABLE CONTROLLER SYSTEM SHUTDOWNS A-13
AS52 REMOTE RACK SHUTDOWNo it et e e e e e e e e e e A-16
AS53 “PRGMR*“ OR “COMM” PORTERROR ittt it ittt et A-17
OPERATING CONSIDERATIONS WHEN USED WITH THE LOCAL
TRANSFER INTERFACE SYSTEM
B.1 General DISCUSSION e B-1
B.2 Rack AdAressing B-1
B.3 Startup Transfer Delay B-2
B.4 End-Of-Scan (EOS) Transfer B-2
B.S MO Update B-3
B.6 FOrCING .. B-3
B.7 Primary and Backup READ/WRITEBitExchange B-3
8.8 EOQS Transfer Example B-4
SUPPLEMENTARY RACK ADDRESSING INFORMATION
c1 Model 650 System Register Updating, C-1
C2 Rack Addressinga New System Cc1
c21 GENERAL RULES .« oottt ittt et et e e e e e e C-1
c22 LOCAL INTERFACE (LIVUPDATING . - - - o oottt et e et C-2
ca3 PDD/PDRUPDATING . oot ittt et et et e e e e e e e et e e e et e Cc-3
c3 Compatibility With Existing SY/MAX Processor Rack Addressing Configurations ... C-5
ETHERNET TECHNICAL INFORMATION
D.1 OVeIVIBW . D-1
D.2 SpeCificatioNs D-1
D.3 DeSCri P iON . D-1
D.4 Throughput ... D-3
APPENDIX E CONNECTING THE VAX PROCESSOR TO THE SY/MAX MODEL 650 PROGRAMMABLE
CONTROLLER
E.1 Hardware and Software Requirements E-1
Et HARDWARE ..ottt it e et et e E-1
E1.2 SOFTWARE . L E-1
E.2 Connection Diagram E-1
E.3 Network Configuration Information E-2
EA4 Routing Information E-3
E.4.1 VAX-INITIATED MESSAGING o it ettt e e et et e e et et e e et E-5
EA42 MODEL 650 PROGRAMMABLE CONTROLLER INITIATED MESSAGING, E-8

E43 SPECIAL ROUTING CONSIDERATIONS © ottt e et e e e e e e e e e, E-11

Page v

Bulletin: 30598-730-02B1

Page: lofl

Addendum Date:

October 16, 1997

Subject: @ Class 8055 Type SCP654, 655
smﬂ” Model 650 Processor

(Addendum for Instruction Bulletin 30598-730-01B1)

When using the IO/NET™ Level 1 Communication System with aModel 650 processor, a Revision 4.0 (or later) processor

must be used. This addendum applies to Section 3.6.2, page 3-9 of the referenced Model 650 Instruction Bulletin. It isa
clarification to the “NOTE” at the bottom of the second column on page 3-9.

NOTE: When aRevision 4.0 (or later) processor is used with the Class 8030 Type
CRM250 Local IO/NET™ Interface Module, up to 4096 registers may be transferred
tothe Local Interface for use as external registers.

. SQUARE D COMPANY
Copyright © 1992 Square D Company

1 MODEL 650 PROCESSOR OVERVIEW

1.1 Description

This bulletin describes the hardware and firmware
features and installation procedures for the SYYMAX
Type SCP-654 and SCP-655 processors.

The SY/MAX Model 650 is a powerful single-slot
processor that features a built-in ThinWire Ethernet
communication port. Coupled with SY/MAX support
software running on a host computer, the Model 650
provides a flexible solution for high speed
information transfer between the manufacturing
floor and computer applications. The Model 650 has
a powerful instruction set and can handle more than
8000 I/O in medium to large control applications.
The Model 650 may be regarded as a control
processor along with an equivalent “Ethernet NIM”.
Refer to for an example of how registers
are divided between the Control Processor and the
Ethernet NIM.

1.2 Ethernet Connectivity

The built-in ThinWire Ethernet port on the Model
650 complies with the IEEE 802.3a standard and
provides high speed (10Mbit/second) Ethernet
connectivity to one or more host computers and other
Model 650 processors. Model 650 processors are
networked using standard ThinWire components
and can be connected to existing Ethernet networks.
Model 650 processors can coexist on Ethernet with
other non-SY/MAX devices and protocols such as
DECnet and TCP/IP (Transmission Contrel
Protocol/Internet Protocol). A host computer is not
required for Ethernet communication between Model
650 processors.

Coupling the Model 650 processor with Class 8055
Type SFW390 communication support software for
VAX/VMS provides direct Ethernet connectivity to
any DEC VAX/VMS computer. A combination of up
to 100 Model 650 controllers and VAX host
computers running SFW390 Communication
Software can exist on one network. SFW390 is easily
linked to host application software using callable
subroutines. The support software provides data
register read/write, program upload/
download/verify, external forcing and a variety of
alarm handling functions. Unsolicited messaging
(report by exception) is also supported.

A Model 650 processor uses simple standard
SY/MAX read/write instructions to communicate via
the built-in Ethernet port (SY/MAX Channel 3) to
other Model 650 processors or host computers. Each
Model 650 processor has a switch selectable SYYMAX
address that is inserted in the address field of the
Ethernet packet. This allows standard SY/MAX
routing procedures to be used for Ethernet network
communication.

1.3 SY/MAX Compatibility

In addition to the high speed Ethernet port, the
Model 650 has two RS-422 serial SY/MAX
communication ports (Channels 1 and 2) which
permit communication to other SY/MAX processors
via a direct point-to-point connection or over the
SY/NET® Local Area Network using a SY/NET
Network Interface Module (NIM). The Model 650
can function as a data concentrator to other SY/MAX
compatible processors, collecting data, and sending it
via Ethernet to the host computer.

The Model 650 plugs into a register slot of any
SY/MAX digital or register rack but external /O can
only be directly controlled from the CPU slot in the
rack. Ladder programs from other SY/MAX
controllers can be ported to the Model 650 requiring
only minor modifications involving addition or
modification of SY/MAX read/write instructions to
facilitate Ethernet (Channel 3) communication.

1.4 Hardware Features

The Model 650 takes advantage of multiple
microprocessors and co-processors for optimum
performance. With a powerful scan processor, the
Model 650 offers scan speed of less than 1 millisecond
per K of ladder logic. In addition to the secan
processor, a math co-processor accelerates math
operations while a separate Motorola 68010
processor and an AMD 7992 Ethernet controller
provide efficient Ethernet communications.

Page 1-2

Ch1

30598-730

Model 650

Control Processor : Ethernet NIM
SY/MAX Status/ = 8192 _ 8192
Control Registers l 8001 : Not Used _|__ E 8000
8000 : Ethernet Netw_ork - 7999
: Parameter Reg] | 7000
. 6999
: | 4000
8000 : Storage
Processor - : | (Mailbox)
(Image : Registers
Table) : — 3000
Registers : 2999
: Not Used -
- .
: | 1
— 1 . NIM Status Registers —__ [—— 1-10
: ch3
Ch2
Drop #XX
Ethernet/802.3a (ThinWire)

Figure 1.1 Model 650 Registers

The Model 650 is available in a 16K (SCP-654) or
26K RAM (SCP-655) memory size. Both versions
have an additional 8K of processor image table
registers on-board. Each processor register can be
assigned as a data value, 16 digital 1/0 points, timer,
counter, or other processor functions. In addition to
the 8K of processor registers, another 4000 storage
(mailbox) registers are available in the Ethernet
NIM for use as buffer registers for applications
requiring a data concentrator. The storage (mailbox)
registers can be accessed without impacting the
Model 650 processor scan time,via port 3.

The Model 650 offers a real-time clock/calendar that
may be used for interval timing of task execution and
scanning operations. The clock/calendar and
processor memory are additionally supported by an
onboard lithium battery that allows the clock
accuracy and contents of memory to be maintained
when power is removed from the Model 650. The
charge levels for the onboard lithium battery and the
batteries in the SY/MAX power supply are
monitored, and a front panel “BATTERY LOW” LED
indicates when either or both batteries require
replacement.

To assist in troubleshooting, the Model 650 makes
use of diagnostic LEDs. The LEDs annunciate
processor status such as ETHERNET
COMMUNICATION ERROR. In addition to the
LEDs, status registers can also be monitored for
troubleshooting purposes.

To maintain system security, the Model 650 has a
four-position keyswitch that allows selection of four
operating modes: DISABLE OUTPUTS, HALT,
RUN and RUN/PROGRAM. Multi-level software
security features can be used to prevent data and
control program alteration, restrict 1/0 forcing,
prevent viewing of some or all of the user program,
restrict network access of information, and provide
password security.

1.5 Instruction Set

A versatile and powerful instruction set allows the
Model 650 to perform over 100 functions. The
instruction set includes full program scan control
including GOTO, subroutine, and timed interrupt
capabilities. Also included in the instruction set is
drum sequencer and ASCII input capability. The
Model 650 can process ASCII data as input from
devices such as weigh scales and bar code readers, in
addition to supporting SY/MAX ASCII output
capabilities for ports 1 and 2.

30598-730 Page 1-3

The Model 650 has more than 60 floating point and
special math functions as well as PID instructions for
performing closed loop control. The math processing
power of the Model 650 allows the user to off-load the
host computer from the chore of handling additional
math operations. Refer to the instruction Set Table
for the full list of instructions.

1.6 Technical Comparison
FEATURES

In the terms of SY/MAX processor features and
functionality, the Model 650 is similar to the Model
400’s product characteristics including the
instruction set, method of program execution, real-
time clock/calendar, onboard battery, keyswitch
positioning, operating modes, etc. The major
addition of the Model 650’s features and
functionality lies in the capability to communicate
over a high-speed Ethernet network. Other feature
enhancements include:

® Increased number of onboard data storage
registers to 8000 (retentive).

® Increased memory size to 26Kwords in the SCP-
655.

¢ The ability to install multiple Model 650s in one
rack assembly, though only the processor
residing in the CPU slot can directly control
external I/O.

Noted differences between the Model 650 and the
Model 400 include;

® Physical size is approximately 2.5 inches deeper
than the Model 400.

¢ Increased current requirements to 5500mA @ 5
volts.

® Ethernet-related features such as the BNC
connector, configuration switches, and Ethernet
LED.

® Addition of Ethernet port 3.

Page 1-4 30598-730

MOODEL

SYIMAXe

PROCESSOR

650

RUN

HALT

MEMORY

FORCE

[[[e}

BATTERY
Low

WRITE
PROTECT

ETHERNET
COMM
ERROR

D

DATE

BATTERY
INSTALLED "]

1

RUN

RUN

HALT

PROGRAM

-

DISABLE
OUTPUTS
~
—]
(]

PRGMR
CHNL 1

-~

ETHERNET
DROP

COMM
CHNL 2

. 4

Figure 1.2 Model 650 Front Panel Identification

1.7 FrontPanel Features

LED STATUS INDICATORS (See Section 4.2)

RUN (GREEN) - When ON steady, the processor is scanning ladder
diagram program and operating on 1/O’s. When FLASHING, the
processor is operating on ladder diagram program, but is not
energizing any outputs (Disable Outputs mode).

HALT (RED) - When ON steady or FLASHING, the processor has
halted its execution and is no longer scanning the program.

MEMORY (RED) - When ON steady in combination with the HALT
LED FLASHING, indicates that the processor is halted due to a
memory error.

FORCE (RED) - When ON steady or FLASHING, I/0 have been
forced to an ON or OFF state thereby overriding the ladder
diagram program.

VO (RED) - When ON steady in combination with the HALT LED
FLASHING, indicates the processor has halted due to a
maifunction in the /O system. The I/O system is regarded as any
IO or register module that the processor controls in a rack
assembly.

BATTERY LOW (RED) - When ON steady, indicates that the
onboard battery is low. When FLASHING, indicates that the
power supply batteries are low. The ON steady condition takes
precedence.

WRITE PROTECT (RED) - When ON steady, indicates that the user
memory is protected by the keyswitch positioned in the RUN
mode and/or the internal write-protect jumper is in the NO
PROGRAM position. When FLASHING, indicates some type of
software-generated security is in effect. The ON steady condition
takes precedence.

ETHERNET COMM ERROR (RED) - When ON steady, indicates a
fatal “Ethernet” hardware error. When flashing, each off-on-off
blink of the LED signifies one non-fatal network error. (The LED
flashes for those Ethernet errors that affect this model 650 only)

Refer td Sections 4.4|and|1 5.§.|

BATTERY ACCESS DOOR - Used to gain access to the processor’s
on-board backup battery.

KEYSWITCHGow Section 2]

RUN/PROGRAM - In this mode, the processor executes the ladder
program and allows changes to be made to the program while in
RUN.

RUN - In this mode, the processor executes the ladder program
but does not allow changes to be made to the program while in
RUN, or forcing to occur or be changed.

HALT - In this mode, the processor does NOT execute the ladder
program and all outputs are turned OFF.

DISABLE OUTPUTS - in this mode, the processor executes the
ladder program, but outputs are turned OFF.

COMMUNICATION PORTS (see Section 5)]

RS-422 serial differential ports for connecting programming and
peripheral equipment (COMM CHNL 2 on bottom front of unit).

ETHERNET port (CHNL 3, bottom rear) for connecting the Mode!
650 to a high-speed ThinWire Ethernet network.

30598-730 Page 2-1

2 SPECIFICATIONS

2.1 Model 650 Specifications Undervoltage
Lockout Circuit Halts and resets the Model
2.1.1 ELECTRICAL SPECIFICATIONS 650 and removes it from the
SY/MAX bus when
Current Draw on SY/MAX incoming DC supply
Power Supply 5500 mA *10% @ voltage falls below 4.6VDC.

5VDC+t5% The PS-10, 11,
40, or 41 power supplies
must NOT be used, due to 2.1.2 ENVIRONMENTAL SPECIFICATIONS
the current requirements of

the Model 650. Ambient Temperature
Memory Support Time Operational 32t0 140°F
From SY/MAX Power (0t0 60°C)
Supply Alkaline
D-Cell Batteries 4 month minimum (battery Storage -40to 176 °F
age less than two years (—40 to 80 °C)
with only one Model 650 in
the rack). Primary backup Relative Humidity .. 5-95%, noncondensing
power source for ladder
program, storage memory, Vibration Vibrated in three axes from
and clock/calendar when 5 to 14 Hz at 0.2” (6 mm)
the Model 650 is in a rack displacement, and 14 to 200
during a power outage. Hz (two G acceleration
Battery low voltage status maximum) for 90 minutes
can be monitored via per X, Y and Z axis. Dwell
contact status (bit 17 of at resonance frequencies for
register 8176). Current 10 minutes.
draw is 80 pA @ 4.2 VDC
@40°C. Electrical Noise Passes the following tests
for noise:
Onboard Battery .. 3.5 to 3.6V AA lithium
(Tadiran TL-5104 or SAFT @ NEMA Part ICS 2-230
LS6). Battery low voltage and IEC 65A Part 5
status can be monitored via Section 2.6.2.4.
contact status (bit 32 of (Showering Arc).
register 8176).
® ANSI/IEEE C37.90a,
Memory Support Time IEEE 472 and IEC 65A
From Lithium Battery 9 month minimum (un- Part 5 Section 2.6.2.5.
loaded battery less than (Surge Withstand
two years old). Secondary Capability).
backup power source for
ladder program, storage ® Chattering Relay
memory, and clock/ (Landis) Test.
calendar when the Model
650 is in a rack during a ® Current Spike (Reversing
power outage. Primary Motor) test.
power when Model 650 is
removed from the rack. ® ESD Protection meets
Battery may be replaced IEC 65A Part 5, Section
without powering down the 2.6.2.2,

Model 650. Currentdraw is
189 uA @ 3.6 VDC @ 40°C.

Page 2-2 30598-730

2.1.3 PHYSICAL SPECIFICATIONS

Dimensions
(withoutkey) Width- 1.5” (3.8 cm)
|(Fig'ure 2.1) Height- 12.8” (32.5¢m)
Depth- 9.5” (24.2cm)
(withkey) Key adds an additional .75
inch (1.9 c¢m) to the depth
when installed.
Weight (Approx.) .. 5.3 pounds (2.4 kg)
1 ' L 1067 o
i 1507 i :‘ (26.7 cm) i
i G8cm)i ! e L ::
1 ! 'y (24.2 ¢m) H
e 'y ® ® |
MODEL] b
Bl
P .
Yoy
'
L
'y
128° L
(32.5¢cm) ty
L
"o
® o
Front View Side View

Figure 2.1 Model 650 Physical Dimensions

2.1.4 FUNCTIONAL SPECIFICATIONS

ScanSpeed 0.8 milliseconds per K
(SCP-654 and 655) Boolean
2.9 milliseconds per K
nominal

NOTE: //O update from the image table for 128
local digital points adds a minimum of 0.3

milliseconds per scan. Refer to [Section 14.2

for a discussion of execution times.

Motorola® 68010 processor,
Motorola 68881 math co-
processor, and AMD 29116
for ladder scanning.

802.3/Ethernet and ThinWire

Specifications
Type IEEE 802.3 10BASE2
ThinWire Ethernet
DataRate 10 Mbits per second
Ethernet

Motorola 68010 and AMD
7992 Ethernet Controller

Communication

Nodes Per Segment 30
Nodes Per Network 100 (using repeaters)

Maximum Segment
Length 607 ft. (185m)

Maximum End-to-

End Network Length*

3,034 ft. (925m or five 185m
segments), using repeaters

Minimum Cable
Length between

Nodes 20 in. (0.5m)

Maximum Drop

Length Less than 1 1/2 in (4cm), use
direct connection to ‘T’
connector

Controller AMD AM7990

Serial Link

Interface AMD AM7992

Coaxial Transceiver

Interface National Semiconductor
DP8392

Real-Time

Clock/Calendar Accuracy within one second

per day @ 77°F (25°C), 16
seconds per day over full
ranges:

temp. - 32 to 140°F (0-60°C)
relative humidity- 5-95%

* Applies to 10BASE2 ThinWire Ethernet

networks. Longer distances are possible using
repeaters with other media such as 10BASE5S
Standard (ThickWire) Ethernet.|See Appendix D}

Memory:
PROCESSOR MEMORY
TYPE USER-MEMORY SIZE TYPE
SCP-654 16 Kwords RAM
26 Kwords nominal.
SCP-655 RAM
et tecton 14

User Memory
utilization

User Memory
Overhead

Front Panel LEDs ...

External I/0

Iinternal Relay
Equivalents

Processor
Registers

User-defined
Storage (Mailbox)
Registers

Register Module

Compatibility ...

.. 1 word per contact.

.. 8 words

ERROR.

.. Over 8,000 digital and over
Any mix in
groups of 4, 8, 16, or 32
digital points or 4, 8, or 16

3000 analog.

analog points per module.

.. 16 per unused register (8,000

nominal total).

.. Up to 8000 retentive 16-bit
integer registers or 4000
retentive 32-bit floating-
point registers (in addition to

user program memory)

.. 4000 retentive 16-bit integer
registers (in addition to
processor registers and user

program memory.)

.. All SY/MAX modules except

Class 8030 Type CRM-115
Bus
Expander/Terminator.
(Refer to Section 3.1 for more

and CRM-116

information.)

RUN, HALT, MEMORY,
FORCE, 1/0, BATTERY
LOW, WRITE PROTECT,
and ETHERNET COMM

30598-730 Page 2-3

2.2 New Features

The following lists enhancements to the Model 650
that are not offered in the SY/MAX Models 300, 500,
and 700 processors. The Ethernet feature is also not
available in the Model 400.

Ethernet Communications |(Section 15)

Multiple Model 650s in the Same Rack
(Section 3.7)]
Real-time Clock/Calendar|(Section 12.2)

Automatic Storage of Error Codes
(Control Registen)8107] Section 13.2)
ASCI Input{(Section 10.1)

Drum Sequencer|(Section 11)

Onboard Lithium Battery|(Section 12.1)

RUN and RUN/PROGRAM Modes
(Keyswitch Positions [Section 4.1).

Variable ROUTE Rungs|(Section 5.5).
Undervoltage Lockout Circuit|(Section 3.5)

Page 2-4 30598-730

2.3 Register Usage

The Model 650 can rack address up to 8000 user-
definable registers, each having a unique address
value of 1 to 8000. These registers are located in an
image table in the Model 650 processor and are used
to reflect external I/O and internal relay status, store
data, build shift registers, and accumulate time or
count data in timers and counters. Additional
registers are used to indicate overall programmable
controller system status such as errors and
keyswitch positions.

Each register is composed of 16 data bits and 16
status bits as illustrated i. The data bits
are accessible to the user for data storage and may be
represented in binary or word form. The status bits
cannot be changed or altered directly by the user, but
can be programmed as contacts or indirect status
reads and monitored in the user memory.

Control registers 8001 to 8192 are used to control
and monitor the basic operation of the Model 650.
These registers are user-alterable, with exception of
registers 8179 to 8192 which are read-only system
status registers, and can only be monitored. See
Section 13 for details on the control registers.

The floating point (FLP) mode combines two
contiguous 16-bit data registers to form one 32-bit
floating-point data register. FLP registers allow
manipulation of numbers that contain floating

decimal points. Refer to for an explanation
of “Floating Point Math” .

illustrates the register usage for digital
I/0 points, analog I/0 points, integer storage
registers, and floating-point storage registers. Each
digital I/O point occupies one bit of one register; 16
digital I/O points requires one complete register.
Each analog I/0 point occupies all 16 bits of one
register and two complete registers are needed for
each floating-point register.

32

One Digital /0 Point

16-BIT STORAGE REGISTER

-«—— One Integer Data Storage Register —>»

-«——— One Analog Integer I/O Point ———»

12 ofa

Floating-Point Register.
(two 16-bit registers are
combined to form one
32-bit register)

D ——— B

Figure 2.3 Register Use

The actual hardware I/O capacity of the Model 650 is
over 8000 digital points and 3000 analog points.
Typically, the maximum 26,000 word user memory is
exceeded before the hardware maximum capacity is
reached.

In addition, the Ethernet NIM has its own unique set
of over 5,000 registers. Register addresses 1 through
10 contain NIM status information, 11 through 2999
are not accessible, 3000 through 6999 are retentive
storage registers, and 7000 through 7999 contain
Ethernet network parameters. Ethernet NIM
registers 1-10 and registers 3000-7999 are battery-
backed. Refer to for additional

information.

17 16 1

; 16 STATUS BITS

" 16 DATA BITS ————‘I

I Model 650 REGISTER

Figure 2.2 Model 650 Register Structure

30598-730 Page 2-5
2.4 Instruction Set for All Types
Figure 2.4 Model 650 Instruction Set
Instruction Display Description Remarks
Contacts -4 Represents ON/OFF status of inputs, outputs, | input devices can be monitored in HALT.
—4/+ internal relays, and register bits. Normally
OPEN (NO) or normally CLOSED (NC).
Coil —()— Represents an output connected to the Upon a transition to RUN, all coils are de-

processor.

energized on the first scan. During the
second scan, all coils are updated
depending on the solution of the logic in
that rung.

Internal Relays

Represents control relay functions.

Operation is similar to an output, but
output devices are not directly controlled.

Latch/Unlatch Relays

Duplicates the action of a mechanically-held
latching relay. Thisis accomplished through
the use of two internal relay coils with the
same address. Once a latch coil is energized,
it remains ON until the unlatch coil is
energized, even if power is removed.

Itis recommended that fatch and unlatch
rungs be programmed sequentially.

Transitional Coil

—(T)—

Aninternal or external coil which is only
energized on a transition of the logic from
OPEN to CLOSED. The output remains ON
for asingle processor scan. The logic must
turn the col OFF and transition to ON again
to re-energize the output coil.

Requires two consecutive I/0 addresses, one
to record the transition and one to
remember the last state. A transitional coil
MUST be assigned an ODD address number.
The processor uses the next 1/O address to
record the last state of this same coil.

Master Control MCR MCR ON allows logic to function. MCR OFF
Relay __()_ turns the outputs except latched coils OFF
MCR controls all succeeding rungs until a
new MCR coil 1s pragrammed or the end of
the program is reached.
Timer TMR Timer register stores a four digit decimal Allows for programming ON/OFF delays and
value from 0 109999 Selectable time bases | interval timers
are 0.01sec., 0.1sec,and 0.1 min.
Counter CTR Counter register stores a four digit decimal Counters can be cascaded to obtain a count
value from 0 t0 9999. UP, DOWN, and greater than four digits.
UP/DOWN counters are standard.
Drum Sequencer DRUM Simulates the action of a rotary drum switch. | Manual or automatic time, event, or a
combination of time/event sequencing.
Synchronous Shift SHFT Used to shift individual bits of a storage Used in applications that require the user to
Register register in either a forward or reverse keep track of bit patterns.
direction. 1,8, or 16-bit channels can be
shifted ata time
Asynchronous Shift FIFO Data is loaded into the first zone and exits Used to record the order of events as they

Register (First In First
Out)

out the last zone using IN and OUT
commands respectively. 8 or 16-bit channels
can be shifted at a time.

occur, such as in conveyor or alarm
annunciation.

Page 2-6

30598-730

Instruction Display Description Remarks
Data Comparison IF Compare functions between storage Up to three comparisons can be
=, 2, 2,<] registers, between an integer and a programmed on one line. In integer mode,

constant, or between a floating-point numbers from ~-32,768 to 32,767 can be

storage register and a constant. When anIF | compared. in floating point mode, a range

comparison is true, the IF box acts like a short | from —-3.4 x 1038 t0 3.4 x 1038 and values as

circuit. smallas £ 1.2 x 10 38 are allowed. Math
and SPECIAL functions can be used in IF
statements.

Data Transfer LET Transfers data from one storage register to Ranges are the same as Data Comparison
another or presets a constantinto astorage | (above). Math and SPECIAL functions can
register. be used in LET statements

Transitional T LET Transition-sensitive; restricts the operation

LET, IF TIF of the LET or IF instruction to one operation
for each OPEN to CLOSED transition of the
input condition.
Indlre;tel::glster RDSTAT Indirect register read of status field.
RDDATA indirect register read of data field.
FNDBIT Locate and clear the first bit {lowest bit

number) set in the indirect register being
read.

Binary to BCD BCD Conversion of binary data in a storage Allows the processor to drive a BCD-type
register to its binary coded decimal (BCD) LED display.
equivalent within a LET or IF instruction.

BCD to Binary BIN Conversion of binary coded decimal (BCD) Used in applications to convert the ON/OFF
data to its binary equivalent, within a LET or | thumbwheel switch position status to
IF instruction. binary form for processor readability and

usage.
Standard Math LET, IF Math operations are performed from leftto | The result of any integer math operation
Operations . right, and are programmed into LET or IF must not exceed % 32,767, or an overflow
(Integer and floating instructions. condition will result.
point math):
Value range for integer math operations: The intermediate result of an integer
-32,768 to + 32,767 computation cannot fall outside
Addition . + 2,147,483,647, or an overflow condition
! Value range for floating-point math will result.
Subtraction - . 38 34x1038
Multiplication operations: -3.4x1038to +3.4x : . 4
A X not smaller than £1.2 x 10-38. The result of any floating point math
Division - 38
Square Root g } _ A . operation must not exceed % 3.4x 1038 or
SQRT See Section 7| “Floating-Point Math*™. be smaller than £ 1.2 x 10 38 or an
Absolute Value)
. ABS overflow condition will occur.
Change Sign
Sine NEGATE . , . .
Cosine SIN The intermediate result of a floating point
LOG cos computation cannot fall outside the range
10 of: £3.4x104%32t0 1 1.2x10 *4932
Ln, LOG
vy LN

Y**X

30598-730 Page 2-7
Instruction Display Description Remarks
Advanced Math and INVERT Divide 1 by the current result (1/x).
Trig Operations ROUND Round floating point number to integer.
XSQRD Square the current result.
HYPOT Calculate 2-dimensional hypotenuse.
HYPXYZ Calculate 3-dimensional hypotenuse.
TANGNT Calculate tangent.
COSEC Calculate cosecant.
SECANT Calculate secant.
COTAN Calculate cotangent
ARCSIN Calculate arc sine
ARCCOS Calculate arc cosine.
ARCTAN Calculate arc tangent.
ARCCSC Calculate arc cosecant.
ARCSEC Calculate arc secant.
ARCCOT Calculate arc cotangent.
SETDEG Perform subsequent calculations in degree
mode.
SETRAD Perform subsequent calculations in radians
mode
DEGRAD Convert degrees to radians.
RADDEG Convert radians to degrees.
The following constants are stored to 80-bit
precision:
P! Multiply result by pi (3.14159._.).
L2T Multiply result by log base 2 of 10.
L2E Multiply result by log base 2 of natural Jog e.
LG2 Muitiply result by log base 10 of 2.
LN2 Multiply result by log base e of 2.
EULER Multiply result by Euler’s Constant.
E Multiply resuit by natural log e.
1DEG Multiply result by 1 degree in radians.
1RAD Multiply result by 1 radian in degrees.
ETOPI Multiply result by e P’
PITOE Multiply result by pi €.
ETOE Multiply result by ee.
ETOEULR Multiply result by ef“!®"
SQRTE Multiply result by square roctof e.
SQRTPI Multiply result by square root of pi.
Statistical ADDSTA Store current result in statistical block of
Operations registers consisting of the summation of
previous values, summation of the squares of
previous values , and the accumulated count
of previous values.
VARNCE Calculate statistical variance on the

accumulated totals in the statistical block .

Page 2-8

30598-730

Instruction Display Description Remarks
PID Computations PIDR Calculate reverse-acting PID loop
PIDD Caiculate direct-acting PID loop
PIDM Calculate PID loop in manual
LEDLAG Calculate lead/lag function for PID loop
Accumulator YTOALT Same as (Y)* except X in this case is These manipulations maintain an 80-bit
Manipulations taken from the alternate accumulator precision when performing calculations that
instead of the second argument. extend beyond a single rung.
SWAP 16 Exchange low and high bytes of the
current intermediate result
SWAP 32 Copies high word into low word of the
current intermediate result
ACCALT Exchange current accumulator with the
alternate accumulator.
ADDALT Add current intermediate result from the
alternate accumulator.
SUBALT Subtract current intermediate results from
the alternate accumulator
DUPALT Copy alternate accumulator into current
accumulator.
DUPACC Copy current accumulator (intermediate
result) into alternate accumuiator.
HYPALT Same as HYPOT except the alternate
accumulator is used instead of the second
argument.
ATANYX Similar to ARCTAN except that the
function is performed on the ratio Y/X.
Identify Number NUMTYP Identifies mathematical classification of the
Type current intermediate result.
Forcing CRT INITIATED | Forcing overrides the actual input status or Refer to[Section 14.4
output as controlled by the ladder diagram.
Serial T READ Copy storage register and /O status between | Requires no additional interface hardware.
Communication to T WRITE devices which may be located up to 10,000
Other Processors or :
Peripherals T ALRM feet apart. All four are transition-sensitive.
TPRNT
Read T READ Copies storage register data from remote
device to local processor.
Write T WRTE Copies storage register data from a local
processor to a remote device.
Alarm T ALRM Sends a numerical value from a local Numeric values from -32,768 to + 32,767

processor to a remote device

can be transferred.

30598-730 Page 2-9
Instruction Display Description Remarks
Print T PRNT Sends ASCll-coded messages from the
processor to any device that communicates Simplified means of producing alarm
in ASCII.[See Section 13.2 messages, production reports, etc.

ASCil Input* T PRNT Accommodates a block size of up to 256 Allows the Model 650 to interface directly
characters with block termination based on | with bar code readers and weigh scales, etc.
either character count or a delimiter
character. Supports various word structures
including parity.|See Section 10 * ASCli Input command not applicable

for ETHERNET (Channel 3) port.
AND N\ A logical function used within an IF or LET Integer mode only.
command with the following property: if X
and Y are two logic variables, then the
function "X AND Y* is defined as:
X Y XANDY
0 0 0
0 1 0
1 0 0
1 1 1
OR \V A logical function used within an IF or LET Integer made only.
command with the following property: if P
and R are two logic variables, then the
function “P ORR" is defined as:
4 R PORR
0 0 0
0 1 1
1 0 1
1 1 1
Exclusive OR <] A logical function used within an {F or LET Integer mode only.
(XOR) command with the following property: if §
and T are two logic variables, then the
function “S XOR T* 1s defined as:
s T SXORT
0 0 0
0 1 1
1 0 1
1 1 g
Random Number RANDOM Generates a random integer number Results in a positive random number that
Generator ranges from zero to the value of the
argument minus 1.
GOTO GOTO Instruction to cause the processor to skip Shortens processor scan time during the

over a section of the program to another
specified position in the program. Position is
determined by a MARK rung placed in
memory.

immediate jump to a new rung position in
the program. Can jump forward or
backward.

Page 2-10 30598-730
Instruction Display Description Remarks
GOSUB Group of ladder diagram rungs that can be Applications include vanable sequence
executed from the user’s ladder diagram. machines, recipe programs, and redundant
Only enabled by a GOSUB instruction processes.
programmed in the main program.
Subroutines
MARK Denotes the beginning of the subroutine
STSUB |area.
RTN The end of a subroutine. Causes the
processor to jump out of the subroutine and
return to the main program.
Timed Interrupt, 58165 A special safeguard rung using register 8165 | Protecting programs.
Communications allowing the following features: Used in conjunction with:
and Register
Securlt{,i S‘_a" Time 1. Communications Inhibit 8176
mit 2. Program Viewing Inhibit —{ —
3. Register Safeguarding -16
4. Timed-Interrupt Scan Control
5. ScanTime Limit
(See|Section 6 8|for details)
Matrix M A matrix s a group of storage registers Applications include machine diagnostics
LET M handled as a unit. Formulates multi-register | and menu selection, etc
IFM data transfers and math functions. Also
allows multi-cegister compare statements
TIFM s P
Array A An array is a group of 32-bit floating point
LET A data storage registers operated on as a unit.
IF A Formulates multi-register data transfers,
compares, and math functions
End of Scan $8170 If set to 1, the processor finishes servicing the
Communications —f J— incoming communications message before
Update -16 resuming the ladder scan. See[Section 5 6.1
immediate VO $8176 Setting bit 7 of register 8176 t0 “1" {via a Registers to be updated are user-detined.
Update —(y— ladder rung) causes the Model 650 to
-07 interrupt its memary scan and immediately
update selected external /0 points. Inputs
are written to the image table and outputs
are read from the image table.
BWRITE Allows the processor to immediately update | Refer tgSection 8.6|
Bus Write Microcell storage registers via the backplane.
to Microcell
Immediate 58176 Processes incoming messages from
Communications —() communication ports 1, 2, or 3 received
Update -11.-120r-13 during processor scanning.
58170 Allows the processor to utilize more than 5 Helps preserve data integrity for multipie
Extended EOS — — msec at the end of each ladder scan to finish | register blocks; refer tdSection 5 6.1]
Comm Servicing -16 processing the entire block of registers
assoctated with anincoming COMM
message

30598-730 Page 3-1

3 INSTALLATION

This section defines the following topics for the
Model 650 processor:

¢ Differences in Operating Characteristics
Compared to Other SY/MAX Devices and
Certain Functions

Rack Configurations

Use of Register Modules

Installation Considerations

Undervoltage Lockout Circuit Operation

Power Installation Troubleshooting

Rack Addressing the Model 650 Programmable
Controller System

3.1 Differences In Operating
Characteristics Compared to Other
SY/MAX Devices and Certain
Functions

The Model 650 is compatible with other SY/MAX
devices; however, performance and/or functional
characteristics in relationship to the SY/MAX Model
300, 500, and 700 processors may be different. Note
that replacing another processor in an existing
system with the Model 650 may require additional
changes and the system may not operate exactly as
before. Due to the identical processor architecture
and operating system of the Model 400, aside from
the exceptions off Section 1.2} the Model 650 operates

in a system the same as a Model 400.

For example, the Model 650’s user ladder program is
executed based upon the state of an onboard “image
table”. The image table is updated at the end of
every scan. This process is similar to the Model 300
and 400 operation but is different from the method
used by Model 500 and 700 processors. The 500 and
700 use real-time bus updates; register information
being used to execute the ladder program resides in
modules outside of the processor and not in an
internal image table.

In some cases, the programmable controller system
may respond differently because of the Model 650’s
increased processor speed. Also, differences in how
the Model 650 implements certain functions, such as
forcing, produces results that are not the same as
observed in a Model 500 or 700 system.

CAUTION

If the Model 650 is replacing a SYY MAX
Model 300, 500, or 700 processor in an
existing system, READ the following
SECTIONS to determine if certain
processes must be changed before
installing the Model 650.

The following modules produce characteristic
differences when used with the Model 650:

1. Type CRM-115/116 Bus Expander/Terminator
Modules. Due to bus timing delays, these
modules are NOT compatible with the Model
650. In most cases, the Type EQ5138-G1/G2
Parallel Digital Driver/Receiver (PDD/PDR)
I%i.ules can be substituted. Refer to Appendix
C.3.

2. Local Interface (LI) Modules. These modules are
compatible with the Model 650, but cannot be
used to provide additional storage registers for
the Model 650. The rack addressing that
currently exists for another processor can be used
with a Model 650 system. However, any
registers that are assigned to an LI in the CPU
rack and are not assigned to remote drops will
adversely affect throughput. Refer to Section

3. Local Transfer Interface (LTl) Modules. These
modules are compatible; however, due to the
image table in the Model 650, certain application
considerations must be observed. Refer to
for operating considerations when
using the Model 650 in a redundant LTI-
equipped system.

4. Parallel Digital Driver/Receiver (PDD/PDR)
Modules. These modules (Types EQ5138-G1/G2)
are compatible with the Model 650 as long as
certain rack addressing procedures are observed.

Refer to the “Rack Addressing Register

Allocation” discussion in|Section 3.6.4

NOTE: If a Model 650 replaces a Model 500 or
700 in an existing system that contains
PDD/PDR modules, rack addressing must

be reviewed to determine if it is suitable
or if alterations are required.

Page 3-2

30598-730

The following functions produce different results
when used with the Model 650 in comparison to
SY/MAX processors other than the Models 400 and
600.

1.

Results of Forcing 1/0. Forcing in the Model 650
is implemented outside of the image table and is
actually performed directly on the external I/O.
It is important to note that the forced state may
not be reflected in the image table. For example,
the contacts of a forced output reflect the ladder
logic state and not the forced state of the output.
Refer tofor more information.

Timed Interrupt Subroutine. Due to the end-of-
scan (EOS) update operation of the image table, a
timed interrupt which executes more than once
per ladder scan operates on unchanged external
I/O information. The timed interrupt tolerance
must also now allow for the time required to
complete an EOS update since an interrupt
cannot be called while external I/O are being

serviced. Refer to|Section 6.8.1| for more

information.

Matrix IF Instructions. The Model 650 may not
scan some conditional elements in a rung that
has no effect on the logical solution of the output.
This optimizes scan time and increases processor
scan performance.

For example, if a rung contains a leading contact
that is open, other conditional elements between
the contact and the output element have no effect
on its logical solution. If a rung contains a
matrix IF instruction preceded by FALSE
conditional logic, the matrix IF instruction is
simply skipped over and not scanned. This
differs from the Mode! 500 and Model 700 where
bits 17 and 18 of the status register are reset
when a matrix IF rung is executed FALSE.
Thus, bits 17 and 18 in the status register of the
matrix IF box should be ignored when using a
Model 650 processor.

4,

7.

Matrix Transitional IF Instruction. As explained
previously, the Model 650 does not always scan
all conditional elements. The matrix TIF
instruction executes differently than for the
Model 500 and 700, and because of this the
matrix TIF instruction must be preceded by a
transitional contact.

NOTE: In order that the Model 650 behave as
described in the programming manual,
the Matrix TIF instruction must be
preceded by a transitional contact (i.e., a
contact that is energized by a
transitional coil).

SCP-344 RAM/UVPROM Processor. The SCP-344
requires the programming of two safeguard
rungs that reference TLET S8164 and S8165. If
a Model 650 replaces an SCP-344, these TLET
rungs must either be removed or replaced with a
TLET S8165 safeguard rung with new security

features that are executed in accordance with

NUMTYP Instruction. If the Model 650 replaces a
Model 700 processor, the NUMTYP instruction
yields slightly different results due to the
difference in math coprocessors used. Refer to

Section 8.6(for further details.

Asynchronous Shift Register (FIFO). If the Model
650 replaces a Model 300 processor, the FIFO
operation is different in the handling of the last
zone of the stack. In the Model 300, the DATA
OUT zone is the last zone of the stack. In the
Model 650 (as in the Model 500 and 700), the
second-to-last zone is the bottom of the stack and
the last zone is used as the DATA OUT :zone.
Because of this, the Model 650 does not accept a
FIFO with a defined stack of less than three
registers (ERROR 05 is generated). Refer to the
programming Instruction Bulletin for more
information.

10.

Memory Use. If a Model 650 replaces any
SY/MAX processor other than Models 400 or 600,
more memory is typically required to store the
same program in the Model 650. For example,
each new rung requires an additional 1/3rd of a
word, while each new parallel branch now
consumes a complete word. A good rule of thumb
when transferring a program to a Model 650 is to
allow 10% more memory than the size of the
original program. See for more

details on memory usage.

Counter decode equal to 0. If the Model 650
replaces a Model 300 processor which has a
program containing a counter rung with a decode
of 0, the Model 650 will de-energize its associated
output whenever the logic in the CLEAR line is
false; under the same conditions, the Model 300
will energize the output. Note both processors
will energize the output when the decode value
equals 0 and the logic in the CLEAR line is true.

Editing in RUN/PROGRAM Mode. If a Model 650
replaces a Model 300, 500, or 700 processor, the
scan time may increase substantially for a single
scan when an edit is performed while the
processor is running. The difference in scan
speed is a one-time occurrence and slower system
response may be observed than when editing the
same program in a Model 300, 500, or 700
processor. Refer to for additional
information when editing in the RUN/
PROGRAM mode.

11.

12.

30598-730 Page 3-3

Multiple Model 650s in the same rack. While
multiple Model 650s may reside in the same
rack, only the processor in slot 1 can directly
control external register modules and /0. Also,
communication via the backplane is not
supported. Refer to for rack
addressing multiple Model 650s in the same
rack.

Special note on storing labels in a Model 650.
When using a programming package which
predates the SFW-374 Universal Programming
Package, there may be a situation when labels
cannot be saved to a processor, or when labels
saved to a processor may appear to occupy a large
amount of memory. This only occurs when
saving labels to a Model 650 processor.

Labels can always be saved to disk with any
SYM-xxx packages. The deluxe CRT
programmer (SPR-300) will save labels to tape
and to the processor correctly.

The SFW-374 programming package allows for
full label storage in a Model 650 processor.

Page 3-4 30598-730

3.2 Rack Configuration

Single or multiple Model 650(s) may be installed in
any CPU or register slot of any SY/MAX register or
digital rack assembly. The CPU and register slots
are identified in each rack as shown in [Figure 3.1
The CPU and register slots contain a rear edge
connector that provides the appropriate bus lines,
+5VDC, and common for the Model 650 operation.
To directly control external 1/O and the various /O
modules configured in any rack, the Model 650
MUST be installed in the CPU slot or slot 1.

NOTE: If multiple Model 650s are installed in the
same rack, only the processor in slot 1 can
communicate over the backplane with the
other modules. The only way a Model 650
residing in a slot other than slot 1 can
communicate with other devices is through
the Ethernet or serial ports. Refer to Section
[3.7] for rack addressing a Model 650 not
installed in the CPU slot (slot 1) .

If the Meodel 650 is installed in a single rack
configuration and only four-function or eight-
function digital I/O are used, rack addressing is not
required. The I/O addresses automatically revert to
the default for the local 1/O. If the Model 650 is
installed in a multiple rack configuration and
register modules (including 16 or 32-function digital
I/0) are used, the corresponding registers and
locations must be rack addressed. See Section 3.6 for
details on rack addressing.

3.3 Register Modules

Register modules (also referred to as intelligent 1/0)
usually contain an onboard microprocessor and can
handle more complex input and output data
manipulation than the digital I/0 modules. Register
modules include analog 1/0's, BCD multiplexed 1/0's,
and high-speed counter modules.

The register modules are installed in register slots in
the various racks. Depending upon the type of
digital or register rack used, the number of register
slots vary from 0 to 15. The fol]owing and
identifies the register slots in each type of

digital or register rack:

OF USABLE
CLASS 8030 TYPE
REGISTER SLOTS
CRK-100 (Digital Rack) NONE
CRK-210, CRK-300, DRK-210, DRK 1slot (R2)

300, GRK-110, GRK-210, HRK-100,
HRK-200 (Digital Racks)

HRK-150 (Digital Rack) 3 slots (R2 through R4)

4,8, 0r 15 slots
(R2 and above)

RRK-100, RRK-200, RRK-300
(Register Racks)

R4 R3 R2 Rt R2 R1
R R R C R C D D o] D
E E E [3 P é] | |
G G G [V} G u | <|3 IG ?
! ! ! o|lb|lojo|luv ||t | T H 1 : .
s S s 1 1 | | | i | ! . _Function S A A A A Four-Function
| clelalala|acfcla|]Eghtbunctio T A A DIGITAL Rack
AN R R R R R Y (Type CRK
R R R alalalatalalala {Type HRK-150) R DRK, GRK)
L L L L]t L L L ’
e d e e— —
R1 R2 R3 Ra RS R6 R7 RS RY R2 R1
C R R R R R R R R R C
P E E E 3 E E E £ E P
u G G G G G G G G G u
! ! ! ! ! ! ! ! ! plofol]loloto|lo}o
? ? : ? ? ? 15 : REGISTER Rack s Chrp o b o Eight-Function
¥ 6lealele|6}iGc|Giec
3 £ E £ £ E £ E (Type RRK) ¢ AR R R DIGITAL Rack
R R R R R R R R R ;'\ "\ I‘\ l /{ ,1\ ,'\ l‘\ (Types HRK-
[I A It L | L]t 100, -200)

Figure 3.1

CPU and Registers Slot Locations in a Digital or Register Rack Assembly

3.4

Model 650 Installation

The following procedure describes the Model 650's
physical installation into a SY/MAX digital or
register rack.

1.

Open the battery access door on the front of the
Model 650 and observe the battery contact
polarity as shown on the inside of the battery
compartment cover. Install the lithium battery
by matching the + and - polarities of the battery
and the contacts in the battery compartment.
Close the battery door and tighten the latching
screw. Record the date of the battery installation
on the the door.

If the Model 650 processor is to be installed in a
CRK, DRK, or GRK four-function digital I/0
rack, the side plate shipped with the Model 650
must be removed and replaced with an optional
side plate P/N C30609-350-01A. (Contact Square
D). The optional plate allows sufficient
clearance between the side plate of the Model 650
and the edge connector in the rack.

The Model 650 requires +5VDC, common, and a
proper current rating of 5500 mA to operate.
Make sure that the SY/MAX power supply is
capable of delivering the current required by all
the devices in the rack and any other racks being
driven by the same supply. The number of Model
650s in the same rack is limited to the possible
current output of the power supply used; a single
PS-31 or PS-61 should not be used to power more
than 3 Model 650s.

NOTE: A PS-10, 11, 40, or 41 does NOT supply

enough current for a Model 650 system.
Refer to Instruction Bulletin 30598-159-xx to
calculate the total current requirement for
each module and processor configured in
the system and the proper power supply to
use.

30598-730 Page 3-5

WARNING

Do NOT remove or install a SYYMAX power
supply or power cable to the rack with
power applied. Turn OFF the power at the
power supply and remove or unplug the
incoming AC voltage line. Electrical shock,
bodily injury, or damage to the equipment
may occur if the power is not removed from
the power supply before installation.

Make sure that the rack is mounted in an area
where the temperature around the Model 650
never exceeds 140° F (60°C). Mount the rack so
the Model 650 is installed in a vertical position.

Use a Square D Class 8030 Type CC-10 power
cable to connect the Model 650’s rack to the
SY/MAX power supply. Connect the CC-10 cable
from the power connector on the rack to the P1
connector on the power supply. If the CC-10
cable is not used, the BATTERY LOW LED on
the Model 650 will falsely indicate a low battery.

The DIP switches at the rear of the Model 650
have been set at the factory to all 1's, indicating
non-Ethernet mode. The rotary switch factory
setting will vary, but its setting will not affect
the drop number, in this mode. Refer to Section
or Ethernet mode DIP switch settings before
installing.

To directly control external /O, the Model 650
MUST be installed in the CPU slot in the rack
assembly. For installation into the CPU or any
register slot, apply steadily increasing pressure
to the front of the processor. Press until the
Model 650 is firmly seated in the edge connector
and is against the stud located above the CPU
slot.

NOTE: The Model 650 can ONLY directly control

external I/O if installed in slot 1 (the CPU slot)
of any digital or register rack. Multiple
Model 650 processors can be installed in
other register slots, however external 1/0
control is only provided via the CPU slot (1).

Page 3-6 30598-730

9. After the processor is properly seated in slot R1
or a register slot, close the latching bar located
above the module slots (not applicable for four-
function racks).

10. Tighten the captive screw to the bottom of the
processor for a solid connection and ground
between the processor and the edge connector in
any slot.

11. Install the AC power line to the SY/MAX power
supply and turn on the power switch on the
SY/MAX power supply.

12. Multiple Model 650s in the same rack MUST
communicate either via Ethernet or the serial
communications ports. Backplane
communications for multiple processors in the
same rack IS NOT supported.

13. Refer to Section 15 [for additional information on

Ethernet hardware and installation
considerations.
3.5 Undervoltage Lockout Circuit

Operation and AC Fail Function

The Model 650 is designed with an onboard DC
Undervoltage Lockout Circuit (ULC) that monitors
the incoming DC voltage level at the edge connector
in either the CPU or register slots. If the incoming
DC voltage falls below 4.6 volts, the processor enters
the HALT state and disconnects from the backplane
bus. If a DC undervoltage condition occurs, the
processor is not warned ahead of time to execute an
orderly shutdown.

If multiple Model 650s are installed in the same
rack, due to circuit tolerance differences and power
distribution characteristics it is possible that some
processors might continue operating while others
have shut down if the DC power is marginal.

When the incoming DC voltage rises above 4.6 volts,
the Model 650 executes a standard power-up
initialization sequence, but remains in the HALT
mode. To resume the RUN state, the keyswitch must
be toggled from RUN to HALT then back to RUN.
When the ULC is triggered, an ERROR 902 (Section
is posted in register 8175, identifying the
failure.

NOTE: When the ULC system is activated, none of
the LEDs are illuminated on the Model 650.

Since the ULC only resides in the Model 600, 650,
and Model 400, other devices located in the same
rack may remain powered up. Modules under
processor control behave as though the system is in
HALT.

NOTE: Non-bus modules, such as the D-LOG and
Network Interface modules, may remain
operating since their power requirements
are less stringent than the Model 650's.

ACFAIL FUNCTION

The Model 650 also monitors an incoming DC signal
identified as AC FAIL. AC FAIL is generated from
all SY/MAX power supplies and indicates when the
incoming line side voltage to the power supply has
been lost or degraded.

The operation of the AC FAIL is different from the
ULC because the AC FAIL signal alerts the
processor to execute an orderly shutdown. The ULC
is not able to alert the processor of an impending DC
power loss. Abnormal conditions, such as an
overloaded power supply or cable disconnection
between the rack and the power supply, can cause an
unexpected interrupt of DC voltage.

As long as the Model 650 is receiving adequate
power, at least one of the eight LEDs on the
processor’s front panel will be ON. If all of the Model
650 LEDs are OFF (or flashing erratically), a
problem resides in the power source and should be
repaired or replaced. Use the following procedures in
to determine the various power
problems that may be the cause of a malfunctioning
Model 650.

30598-730 Page 3-7

3,51 TROUBLESHOOTING POWER PROBLEMS

If the system is powered up and none of the LEDs If the problem persists:

are illuminated on the Model 650, use the

following procedure to determine the problem:

1. Make sure the SY/MAX power supply is

receiving proper incoming AC voltage.

2. Check the inline AC fuse and replace if

blown.

WARNING

Remove incoming AC power to the power
supply before checking or replacing the AC
inline fuse. Electrical shock or bodily
injury could occur.

3. Check that the power supply is able to
deliver the proper amount of current for the
system configuration. Refer to Instruction
Bulletin 30598-156-xx or 30598-159-xx for a
listing of current draws for various SYYMAX
modules.

NOTE: Fach Model 650 requires 5500mA @
5vDC to operate.

P

5@®] +5vDC
SHIELD Oy
4 O oatam
SIGNAL COMMON Os
3 O ocalam-
SIGNALCOMMON | @ 7
2 O pataout
wsvoc | O s

v O DATA QUT -

~~

Figure3.2 COMM and PRGMR Part Voltage Test

Points

Check for +4.75 to +5.25VDC across pins §
and 7 of the Model 650’s serial port (COMM
or PRGMR port) with a volt meter. Use
for pin and signal identification.

If the voltage across pins 5 and 7 is zero, use the
foliowing to determine the problem:

Power is not reaching the rack:

1. Check that the CC-10 cable between the
power supply and the rack is securely
connected and is making good contact.

2. Visually check that all the pins in the
connectors in the power supply, the rack, and
on both ends of the cable are the same height.
If one or more are lower, pull the $in out
until it is the same height as the other pins.

3. Check the continuity of the wires in the CC-
10 cable with a meter. Replace the cable if
an OPEN is detected.

4. Check the voltage at the P1 connector on the
SY/MAX power supply. If power is not
present at the P1 connector, replace the
power supply.

DC power is being short-circuited:

1. Turn OFF power to the rack and check that
all of the modules are properly seated. Turn
ON power and see if the problem is resolved.

2. If step 1 did not resolve the problem, turn
OFF power to the rack then remove and
reinstall each module one at a time. Turn
ON power to the rack after each module is
reinstalled and check for proper operation.

3. If a voltage problem is found in a slot of the
rack or the rack has been damaged, replace
the rack.

Page 3-8

30598-730

If the voltage across pins 5 and 7 is greater than
zero but less than 4.6 VDC, the ULC has properly
prevented operation of the Model 650. Use the
following procedure to identify why the low input
voltage is being supplied from the power supply.

1. As previously mentioned, the problem could
reside in the integrity of the CC-10 cable or
cable connections. Refer toin
the section “Power is not reaching the rack”
to check the CC-10 cable.

2. Check for excessive current draw from other
modules in the rack. Check the current
requirements for each module in the system
and the power supply current rating (see
Instruction Bulletin 30598-1569-xx). If the
power supply is rated under the total system
current requirement, replace the power
supply with an appropriately rated power
supply.

3. Once these possibilities have been
eliminated, replace the power supply.

If the previous troubleshooting procedures failed
1o resolve the problem, simplify the system by
turning OFF the power to the rack and remove
all of the modules from the CPU rack except for
the Model 650. Turn ON the power to the system
and see if the Model 650 powers up properly.

Power OFF the system, reinstall the next
module, and turn power ON checking for proper
operation. Continue with this procedure for the
modules that are to be reinstalled until the
problem module or slot is identified. Make sure
that the power to the rack is turned OFF before
removing or installing ANY module. This
procedure offers the best systematic approach for
isolating the power or component failure as
quickly as possible.

3.6 Rack Addressing a Model 650 in the

CPU Slot

A Model 650 Programmable Controller system
consists of a Model 650 processor, digital and/or
register racks with SY/MAX power supplies, and
various interface and function modules. A great
amount of flexibility exists when configuring and
addressing Model 650 system components. Because
of this flexibility, proper rack addressing is
extremely important.

NOTE: The following sections ONLY apply to a

Model 650 installed in slot 1, the CPU slot.
For rack addressing a Model 650 that is NOT

installed in slot 1, no registers are assigned
to any slots. Refer td Section 3.Z|

INITIAL SYSTEM LAYOUT

3.6.1

Rack addressing is determined by the physical
layout of a programmable controller system and is
based on the following procedure:

1. Determine the physical location of the CPU rack
and all other desired digital 1/0 and register
racks.

NOTE: Remote racks can be located a total cable
length of 10,000 feet (3050 meters) away
from the CPU rack if LI/RI modules are
used. (Refer to LI/RI Instruction Bulletin
30598-247-03 for more information.)
PDD/PDR modules limit the distance
between the racks to 6 feet.

2. At each drop location, list the digital 1/0
requirements (type and quantity) along with any
needed register modules. This determines the
total number of modules, racks and power
supplies needed.

3. Based on the total number of I/O modules,
determine the number of Local Interface (LI)
modules and Remote Interface (RI) modules
needed. See Instruction Bulletin 30598-247-XX,
“SY/MAX Local/Remote Interface” for further
details.

30598-730 Page 3-9

3.6.2 PROCEDURE

The Model 650 executes the user’s ladder logic
program based on an image table. This image table,
which can be visualized as being composed of
external I/0 and data storage registers, is updated
(inputs are read from, and outputs are written to, the
external world) at the end of every scan. An
immediate I/O instruction can be user-programmed
to momentarily interrupt a scan to update a user-
defined portion of the image table (refer to Section
13.2 for information o] bit 7 of register 8176).

The Model 650 has 8000 on-board registers; in this
respect the Model 650 differs significantly from the
SY/MAX Model 500 or 700. The Model 500 has 460
on-board registers but is able to address up to 2008;
the Model 700, with no on-board registers, can
address up to 8000. These “extra” registers used by
Models 500 and 700 do not actually exist until other
register modules such as the Local Interface are
installed into the CPU rack.

The Model 650 is able to address all 8000 of its on-
board registers. This means that it is no longer
necessary to add Local Interface modules to obtain
extra storage registers, since these extra registers
already exist within the Model 650. Hence, the only
purpose for adding a Local Interface module to the
Model 650’s CPU rack is for the serial
communication link to any remote I/O.

Local Interface modules can be installed in slot R2 of
the four-function and eight-function digital racks,
and in any slot (except slot R1) of the HRK-150 and
register racks.

NOTE: In the RRK-300 rack, slots 17 and 18 cannot
be used for a Local Interface.

Sufficient registers should be assigned to each Local
Interface module to account for all present and
anticipated future external 1/0, both digital and
register, that will exist on remote drops.

NOTE: A single Local Interface module can service
up to 255 external 1/0 registers.

Refer to|Section 14.2|for information on what effects
rack addressing and register allocation have on
system response, and Instruction Bulletin 30598-
247-XX for more information on Local and Remote
Interface modules.

Page 3-10 30598-730

3.6.3 DETERMINING RACK ADDRESSING NEEDS

Use the following procedure to determine addressing
needs:

1. Create a system layout sketch showing the CPU
rack, and all other racks with I/O wiring. This
layout sketch ensures proper assignment of racks
to Local Interface channels. Each Local Interface
module has two channels (1 and 2); each channel
can address 8 racks (drops).

2. Address the programmable controllér system.
Install the Model 650 processor in the R1 CPU
slot in either a digital or register rack. The rack
addressing (RK ADDR) mode of the CRT
programmer or SFW Programming Software can
be used to allocate registers in the system as
discussed below.

3. Install other modules into the register slots of
the CPU rack. Addresses for the modules that are
installed in the register slots should be assigned
in ascending order. If the CPU rack is a digital
rack, assign the CPU slot sufficient registers to
handle the local digital I/O.

4. Assign sufficient registers to the Local Interface
(LI) module to satisfy requirements for external
remote I/0 based on the content and quantity of
remote drops.

5. Assign registers to other register modules in the
CPU rack such as analog I/0's, BCD multiplexed
I/0's and high speed counter modules in
accordance with their Instruction Bulletins.

6. Address remote digital 1/O racks and remote
register racks within the range of registers
previously assigned to the Local Interface
module(s) during the CPU rack addressing.
Local Interface modules communicate with these
racks via a Remote Interface module located in
each remote rack.

Only those addresses assigned to the Local
Interface slot in the CPU rack can be utilized by
the remote racks. Assign registers to all
Channel 1 drops sequentially, followed by all
Channel 2 drops. There is no need to assign
registers to the Local Interface modules to act as
storage registers, since the Model 650 contains
all needed storage registers.

6A. Addressing the remote digital I/0 racks. For
all CRK, DRK, GRK, and HRK racks, slot 1
is always assigned as many registers as
necessary to handle the local digital I/O. The
Remote Interface module is always inserted
into slot 1 of the remote digital I/O rack. Slot
2 is a register slot and should be addressed in
accordance with the register module residing
in that slot.

6B. Addressing the remote register racks.
Register rack slots are numbered from left to
right; slot 1 is the leftmost. The Remote
Interface module resides in slot 1. In the case
of the register racks, the Remote Interface is
not addressed. Register modules are inserted
into the slots to the right of the Remote
Interface. The number of registers assigned
to that slot is dependent on the individual
register module requirement.

Spare address registers, for future expansion,
can be assigned to any unused slot number for
any remote drop. The slot that is assigned with
the spare addresses does not even have to
physically exist. For example, addresses can be
assigned to slot 2 (register slot) of a CRK-100 (a
rack without a register slot). Any register not
assigned to real world /O is data-retentive.

NOTE: Any addresses assigned to remote drops

utilize serial I/0 update times as shown in
the Local/lRemote Interface Instruction
Bulletin. These update times must be taken
into consideration when calculating the
throughput of a system.

Data storage registers exist as a continuous
“block” of registers. This block begins with the
last address assigned to the CPU rack and ends
with register 8000.

NOTE: Unlike the Model 500 and 700
processors, data storage registers do not
have to be assigned to a slot to physically
exist. All 8000 registers exist in the
Model 650, they are ALWAYS available
for use — even if not assigned via rack
addressing. For example, if the last
register assigned to a slot in the CPU rack
is register 200, then registers 201 to 8000
are available for use as internal 110 or
storage registers, despite the fact they
haven’t been assigned as such.

3.6.4 RACKADDRESSING REGISTER ALLOCATION

NOTE:

Default rack addressing (8000 registers in CPU
slot 1) applies when the Model 650 is installed in
a digital I/O rack with no companion register
modules and no remote /O.

If the Model 650 is installed in a digital /O rack
in a system containing register modules and/or
remote [/0, assign enough registers to slot 1 for
the local digital 1/0.

If the Mode! 650 is installed in a register rack,
registers do not need to be assigned to slot 1.

Assign only necessary external 1/0 registers to
Local Interface and other register modules in the
CPU rack; include room for future expansion.
There is no need to assign data storage registers
to a Local Interface; the Model 650’s 8000
register count is fixed and this practice can
adversely affect throughput.

When assigning registers to a slot containing a
Parallel Digital Driver module, some special
application considerations are in order due to the
image table operation of the Model 650. Observe
the following rules:

1. If expansion is to a single remote rack, the
Parallel Digital Receiver MUST be
connected to channel 1 of the Parallel Digital
Driver. The CPU slot containing the driver
should ONLY be assigned as many registers
as required to accommodate the digital I/0 in
the remote rack.

2. If expansion is to two remote racks, the rack
connected to channel 1 of the Parallel Digital
Driver MUST be an HRK-200 (the second
rack can be any digital rack). The CPU slot
containing the driver should be assigned as
many registers as required to accommodate
the digital I/O in the two racks. Thus, the
first eight registers assigned will correspond
to the I/O in the HRK-200 connected to
channel 1, while the balance of the registers
(up to a maximum of 16 if both remote racks
are HRK-200s) will correspond to the /O in
the second rack.

All registers assigned to the Parallel Digital
Driver must have corresponding EXISTING
external I/O. Failure to do this (for example,
an HRK-100 rack connected to a channel
receiving more than four registers) could
result in oscillating outputs in the rack.

30598-730 Page 3-11

Refer to|Appendix C.2.3|for additional information
on PDD/PDR updates.

When assigning registers to digital I/0 in a
register module installed in the CPU rack,
assign one register to a 16-point module or two
registers to a 32-point module. Register modules
should have registers assigned to the slot that
they reside in.

For remote digital 1/O racks, registers for the
digital 1/0 addresses should be assigned to the
slot occupied by the Remote Interface module.

For remote register 1/0 racks, do not assign
registers to the Remote Interface. Instead,
assign them directly to the slots in which the /O
modules are installed, including register
modules that contain digital I/0.

To improve throughput when laying out a
Programmable Controller system, avoid
“fragmenting” registers, i.e., ensure that all 16

bits associated with a register are either all
inputs or all outputs. See[Section 14.2.3

Any external I/0 point can be forced ON or OFF.
See] Section 14.4

Model 650 system availability of 8000 registers
is fixed; adding Local Interface or other register
modules will not increase the available registers.

Any of the 8000 on-board registers in the Model
650 that are not assigned to a slot are available
as storage registers.

For more information on rack addressing, refer to

pendix C|land the programming device’s

Instruction Bulletin.

Page3-12 30598-730

3.6.5 RACKADDRESSING COMPATIBILITY WITH
OTHER SY/MAX PROCESSORS

The Model 650 can use programming and rack
addressing configurations designed for other
SY/MAX processors.

An example of how this is
accomplished is shown in Figure 3.3

CPUSLOT 1 &SLOT 2

SLOT3

¢ REGISTERS >
461-972
MODEL

Registers
500 461-715
are
external VO,

LI
MODULE

Registers

1-460 registers
(Internal /O 716-972 Registers
asnd are 461 - 972
ta Storage .
aa 9 internal VO
and

data storage

| w G e
' MODULES :‘- External
--------- vo
CPUSLOT 1
usLo SLOT 3
REGISTERS
= 461-715 =P
all
External VO
461 - 715
* Registers 973-8000, ittty H
although not assigned, RI 1 Registers
are also available for : MODULES ! 461- 715,
internal 1/0 and data | External
storage. @ @0 0 tTT-=-o=s vo

Figure 3.3 Rack Addressing, Model 650 vs 500

Refer to Figure 3.3. A common Model 500
configuration is to assign the first 460 registers to
slot 1, and registers 461 through 972 to a Local
Interface in slot 3. External 1/0 registers in this
configuration begin at register 461 and could extend
up to register 715 (although consuming all 255
external registers, the maximum for a single Local
Interface, would be unusual).

Internal relays and storage registers in this example
are located in the first 460 registers, and in registers
716 through 972. Note that for internal relays and
data storage, the Model 500 (or 700) will access
registers that physically reside in the Local Interface
module. The Model 650 uses its own on-board
registers for this purpose, however. The only
purpose for the Local Interface when used with a
Model 650 is to provide communication between
Remote Interfaces and the CPU rack.

Because of the image table, only registers that are
exchanged with a Remote Interface need to be updated
by the Model 650 in the Local Interface. 1t would be a
waste of processing time and a large amount of
unneeded bus activity to shuffle storage registers
between the Model 650’s image table and the Local
Interface.

In the case of the "old” Model 500 addressing, the
Model 650 is designed to accept the register
allocation as defined, and will determine which
registers need to be exchanged with the Local
Interface. Since the Model 650 “knows” that the
Local Interface cannot transfer more than 255
registers to the Remote Interface, it will transfer
only registers 461 through 715 to the Local Interface.

This 255-register transfer occurs because the user
has addressed 512 registers to the Local Interface.
The same 255-register transfer would have occurred
had the user addressed 2008 registers to the Local
Interface (as could occur with a type CRM-211).

The important thing to keep in mind is that this
Model 650 “decision-making” process is transparent
to the user, and allows existing rack addressing to be
used “as is”.

When a programmable controller system is being
newly configured for a Model 650, there is no need to
follow old rack addressing conventions for assigning
registers to Local Interface modules.

System throughput will be adversely affected if up to
255 registers are unnecessarily assigned to Local
Interface modules located in the CPU rack. For best
throughput, only registers assigned to Remote
Interfaces should be assigned to the Local Interface.

30598-730 Page 3-13

The example Model 650 configuration pictured in
Figure 3.3|shows the absolute maximum number of
registers (255) being transferred between the
processor and the Local Interface module. The
throughput of this example could be improved
substantially if only the registers associated with
actual drops are transferred between the Model 650

and Local Interface, as shown in Figure 3.3A

CPUSLOT 1
CPUSLOT3
Registers
<4 461-510,
External VO
* Registers 511-8000, ———————— -
although not assigned, ! ! Registers
8 1 RI 1 g
are also available for 1 1 461-510,
internal I/O and data ' MODULES ﬂ—— External
storage. 0 s=e—e-—--a Vo

Figure 3.3A Model 650 Rack Addressed with 50
Remote Registers

If only 50 remote registers need be remotely
addressed, the best configuration of the Model 650
shown in Figure 3.3 that would NOT require the re-
addressing of registers in the program, appears as
shown in Figure 3.3A. This is accomplished by
assigning 460 registers to CPU slot 1, and 50
registers (461-510) to CPU slot 3. Registers above
510 would not need to be assigned, but would still
behave as storage registers.

Refer to [Appendix C.2.2| for additional information
on the Local Interface module.

Page 3-14 30598-730

Rack addressing options when using existing
programs in the Model 650 are therefore reduced to
two:

1. Preserve the existing rack addressing for ease of
transport between different processors, at a
slight cost of throughput.

OR

2. Modify the existing rack addressing and register
allocation to improve system performance.

CAUTION

If additional modules exist to the right of
the Local Interface (LI) module being
addressed by the Model 650, the addresses
of these modules will change when the
number of registers being assigned to the LI
is changed. The Model 650’s program must
be altered to reflect the new addresses.

Refer to Appendix C.3 for a detailed discussion on the
Model 650’s compatibility with existing processor
rack addressing configurations.

The system will operate properly with empty slots in
the CPU rack, or the CPU rack can be altered to
“close up” the empty slots. For example, since slot 2
is left empty when addressing a Model 500 or 700
system, the Local Interface could be placed in slot 2.
An adjustment could then be made when rack
addressing a Model 500-t0-650 conversion to move
all of the register assignments one slot to the left.
This would free up an additional CPU rack slot, and
eliminate the somewhat awkward condition of
having slot 2 empty.

NOTE: This procedure of moving the Local Interface
to slot 2 would not require reallocating
these registers — they would maintain their
relative positions. It would, however,
require adjustments to rack addressing and
also that all modules in the CPU rack be
moved one slot to the left.

Refer to [Appendix C| for supplementary rack

addressing information.

3.7 Rack Addressing Multiple Model
650s in the Same Rack

While multiple Model 650s may be installed in a
rack for coprocessing applications, only the processor
installed in the CPU slot (slot 1) can directly control
digital and register modules via the backplane. Any
coprocessing Model 650s installed in other than slot
1 will only draw power from the rack and cannot
communicate via the backplane.

Rack addressing a Model 650 in slot 1 follows the
same rules and procedures described in section 3.6.
Performing a rack addressing “DELETE/CLR ALL”
procedure on a processor in slot 1 will result in the
default rack addressing of 8000 registers being
assigned to slot 1. If additional Model 650s are
installed in the same rack, and if the Model 650 in
slot 1 has registers assigned to the slots in which
they reside, these registers will behave as though
they are assigned to an empty slot (i.e., as retentive
data storage registers). Since these additional Model
650s only draw power, they are not active on the bus
and any communication with them must occur either
via Ethernet or the two serial ports.

Any processor NOT installed in slot 1 requires
NULL rack addressing (i.e., no registers assigned to
any slots) to be loaded or else it will not run (ERROR
985). NULL rack addressing can be created by
performing a DEL/CLR ALL procedure on a Model
650 when it is NOT installed in slot 1. Following this
procedure, no registers will appear assigned
anywhere. The ladder program (with no entry for
rack addressing) can then be loaded inte the
processor. Once developed, processor memory
(NULL rack addressing and ladder rungs) can be
recorded on tape or disk. Though not actually rack
addressed, the first 8000 registers do exist
internally, while the shared registers also operate as
expected.

30598-730 Page 3-15

In summary, multiple Model 650s installed in the
same rack obey the following rules:

® If installed in Slot 1, the Model 650 must be
loaded with valid rack addressing. Do not assign
registers to any slots in which additional Model
650s reside.

® If installed in other than slot 1, the Model 650
must be loaded with NULL rack addressing i.e.,
no registers assigned to any slots. NULL rack
addressing is generated by performing a
DEL/CLR ALL on the processor while installed
in other than slot 1.

This distinction is essentially a safety measure
which prevents processors from being accidentally
interchanged; a processor intended for slot 1
operation will not run unless it is installed in slot 1,
while a coprocessor (non-slot 1 processor) does not
run unless it is installed in other than slot 1.

30598-730 Page 4-1

4 CONTROLS AND INDICATORS

4.1 Keyswitch Positions

The key-operated selector switch (Figure 4.1) locks
the Model 650 into any one of four operating modes,
each of which is described in this section. The key
can be removed in any position.

M N

RUN
PROGRAM

RUN

DISABLE
OUTPUTS

W

Figure4.1 Model 650 Keyswitch

& RUN/PROGRAM

In this mode the processor functions the same as in
RUN (below), but the program can be altered by the
user via use of the override security position on the
programmer. Forcing can be implemented and
altered in this mode.

¢ RUN

In this mode the processor scans and executes the
ladder program, and all external outputs are under
control of the ladder program. While in this mode,
the processor’s program cannot be altered by any
means. Forcing cannot be implemented in this mode;
if already in effect, it cannot be altered.

IMPORTANT

When keyswitching between RUN and
RUN/PROGRAM, do so as quickly as
possible. An excessively slow transition
(greater than one second in Rev. 2.0 and
later, or one-fourth second in earlier
revisions) may cause the Model 650 to go into
HALT momentarily, then reinitialize before
resuming RUN status.

® HALT

In this mode the processor is not scanning the
program. All external outputs are turned off unless
other special options are utilized.

® DISABLE OUTPUTS

In this mode the processor scans and executes the
ladder program, but all external outputs are kept
OFF. [nternal outputs and storage registers
(counters, timers, etc.) operate according to the
program, as do the LEDs on 1/0 modules. This mode
allows a program to be tested without actually
energizing any external devices, thus eliminating
the possibility of machine or process damage should
the program be flawed in some way.

Page 4-2 30598-730

4.2 Indicator LEDs

As shown in the Model 650 has eight
LEDs located on the front panel. Each LED, except
where noted, has three possible states: ON, OFF, or
FLASHING. The following describes the various
states of the LED indicators.

MEMORY

TTER
Low

WRITE
PROTECT

Ld =
o > |3
> mj
:

2

a
o
4
2

ERROR |)

|

Figured4.2 Model 650 Indicator Lights

CAUTION

If no LEDs illuminate or LED operation is

erratic when power is applied to the Model
650, refer td Section 3.5]

As long as the Model 650 is receiving proper power
from the SY/MAX power supply, at least one LED
will be ON or FLASHING. If all LEDs (except RUN)
come ON and stay ON, the Model 650 has failed to
initialize properly. Check the processor-to-rack
seating. An "all-ON” condition can also be caused by
improper power supplied to the Model 650.

¢ RUN

ON: The processor is scanning the user program
and is operating normally. This LED will
light when the keyswitch is in either the
RUN or RUN/PROGRAM position.

OFF: The RUN LED is off if the processor is halted

by the keyswitch being in the HALT

position, or if the processor is instructed to
halt via the programming equipment or user
program. This LED will also be OFF if the
processor halts due to any Programmable
Controller system malfunction.

FLASHING:The RUN LED flashes if the processor is
in the DISABLE OUTPUTS mode due to one
of the following conditions:

¢ Processor keyswitch is in the DISABLE
OUTPUTS position.

® Processor has been instructed to run in
the DISABLE OUTPUTS mode by the
programming equipment.

® Processor has been instructed to run in
the DISABLE OUTPUTS mode by the
user program,

¢ HALT
ON: If the HALT LED is ON continuously, the
Model 650’s microprocessor is not operating.

Numerous diagnostic checks (power-up, halt-
to-run, and run-time) are performed within
the processor to ensure its proper operation.
If an internal malfunction occurs, the
processor halts, all external outputs are
turned OFF, and the HALT LED
illuminates. Any other non-internal failure
will cause the HALT LED to flash.
OFF: The processor is operating in the RUN,
RUN/PROGRAM or DISABLE OUTPUTS
mode (depending on whether the RUN LED
is ON continuously or flashing).

FLASHING: If the HALT LED is flashing, one of the
following conditions has occurred:

® The key selector switch has been placed
in the HALT position.

® The user program or programming
device has instructed the processor to
halt. In this case, the light will continue
to flash until the HALT bit is cleared.

® A memory or I/O error has occurred in
which case either the MEMORY or I/O
light will also be ON.

If needed, the processor can be forced into the
HALT mode by the ladder diagram program

or by the correct sequence of keystrokes on a
programming device by setting or

control register 8176 within the processor.
These bits are called the HALT bit and the
HALT/RUN bit respectively. For detailed
information on these bits, refer to Section
13.

& MEMORY

ON: The processor has detected an error in the
user memory. This condition can be caused
by trying to run the processor with no ladder
program or rack addressing in memory, or if
a memory fault is detected in the ladder
program. When the MEMORY LED is ON,
the HALT LED will also be flashing.

OFF: User memory is operational.

FLASHING: Not used.

30598-730 Page 4-3

¢ FORCE

ON: Indicates that one or more inputs or outputs
have been forced to an ON or OFF state, and
that forcing via the COMM port (channel 2)
is disabled (control register 1).
Forcing overrides the actual input status or
output commands of the ladder program.
This forcing may have been via either the
programming equipment or communication
system. Seefor information on the
communication ports.

OFF: No1/Os are being forced.

FLASHING: Indicates that one or more inputs or
outputs have been forced to an ON or OFF

state, and forcing is enabled for the COMM
port (control register|8176, bit §=0).

¢ /0

ON: A malfunction has occurred within the
processor’s internal 1/O registers, or within
the external input/output system. When the
1/0 LED is ON, the HALT LED will also be
flashing.

OFF: Internal and external 1/0 systems are
operational.

FLASHING: Not used.

® BATTERY LOW

ON: The lithium backup battery inside the Model
650 is low, and needs to be replaced. See
Section 12.1for battery information.

OFF: Both the onboard lithium battery and the
power supply backup batteries are OK.

FLASHING: The power supply batteries are low, and
must be replaced. If both the lithium battery
and the power supply batteries are low, the
steady ON condition prevails.

This condition also occurs if any cable other
than a Square D Type CC-10 cable is used to
supply the Model 650 with power.

Page 4-4

30598-730

® WRITE PROTECT

ON:

OFF:

All or part of user memory is protected from
alteration. For this LED to be ON, either the
keyswitch is in the RUN position or the
processor's internal write-protect jumper is
in the NO PROGRAM position. See Section

for information on Memory Security
features.

No security locks are active.

FLASHING:

Some type of software security is in
effect. |See Section 6

& ETHERNET ERROR

ON:

OFF:

Indicates that the Ethernet NIM
communication processor is not running and
cannot be communicated with. All
communications attempted out of Ethernet
port 3 will fail (a link error will be returned
in the status register).

When this LED is on, register 8175 will
contain error code 929. This error code refers
the user to look at register 8094 for the
specific cause of the failure. The Ethernet

error codes stored in register 8094 are listed
in/Table 15.11

Indicates that the Ethernet NIM is operating
properly or is in non-Ethernet mode.

FLASHING:

| Table 15.12.

A flashing LED signifies that non-fatal
Ehternet errors are occurring. These errors
(displayed in register 8094) are for
informational purposes, and unless they
occur repeatedly, do not require any
remedial action by the user. During this
time, the Ethernet NIM communication
processor is still running and can be
communicated with. The non-fatal error
codes stored in register 8094 are listed in

30598-730 Page 5-1

5 SY/MAXCOMMUNICATIONS

5.1 Description

This section is intended as an overview of
communication ports. As shown in the
Model 650 has three communications ports
(channels). PRGMR port is port 1, COMM peort is
port 2 and the Ethernet port is port 3. Two 9-pin RS-
422 serial differential ports are for SY/MAX protocol
and ASCII communications. The third, a BNC-type
Ethernet port, connects to a high-speed Ethernet
communication network. This section applies
primarily to the RS-422 ports; refer for
detailed Ethernet information.

)68

(-]
o 0
[a)
x
z
-
-

’é;

ETHERNET
DROP CHNL 2

#

Figure 5.1 Model 650 Communications Ports

The PRGMR and COMM ports work identically
except that the PRGMR port allows complete access
to the Model 650’s systems while the COMM port can
be set up to lock out certain functions. See Sections
@to 6.13 for inhibit functions for all ports.

All three ports support block READ/WRITE
commands for a maximum count of 128 registers. All
ports also have an automatic timeout feature that
monitors communication integrity when using
READ, WRITE, or ALARM statements. Ports 1 and
2 support PRINT statements for both ASCII input
and output. However, port 3 supports ASCII output,
but not ASCII input. Furthermore, although port 3
supports ASCII output, currently no devices are
available on the Ethernet network to receive ASCII.

Refer to for additional ASCII

communication information.

Immediate Communications Update is supported for
ports 1, 2 and 3. Refer to|Section 5.6.1| for more
information on Immediate Communications Update.

The pinout for both RS-422 communications ports is

shown inFigure 5]

o

SHIELD | O 9

+5vDC

40| DpATAIN +
SIGNALCOMMON | O 8

30| pATAIN-
SIGNALCOMMON | O 7

20| opaTaoOUT +
+s5vDC L O 6

1 O] DpATAOUT-

~

Figure5.2 PRGMR and COMM Port Pinout

5.2 Connecting Programmers

Ports 1 and 2 support all SY/MAX programming
devices, including the Class 8010 Hand-held
Programmer. Since the Hand-held Programmer
obtains its power from the Model 650, its cable is
limited to six feet (2 meters) in length. Other
SY/MAX programming devices have their own
power supplies, and can be placed up to 10,000 feet
(3050 meters) from the Model 650.

Refer to the appropriate programmer Instruction
Bulletins for more details on connecting
programmers to the Model 650.

Page5-2 30598-730

5.3 Connecting Other SY/MAX Devices

Many different peripheral or programming devices
can be connected to the communication ports, greatly
expanding the Model 650's capability and range of
applications. Figures@ andon the following
pages give some possibilities for peripheral
connections to communications ports 1 and 2.

Both communication ports on the Model 650 support
any device that uses the SY/MAX serial protocol.
This includes, but is not limited to, the following
devices:

® Other SY/MAX Processors

® SY/NET Network Interface Modules

¢ loader/Monitor

® Cartridge Tape Loader/Recorder

® Printers

¢ D-LOG Modules

® Microcell Controllier

® Speech Modules
Connectable devices are described in this section.
Since the only difference between ports 1 and 2 is in
security access (Section 6), the following devices
shown in Figures|5.3|and(5.4|can be connected to

either communications por{ T or 2. Refer to Section
or information on connectlable Ethernet devices.

5.3.1 OTHERPROCESSORS

Other SY/MAX Processors (Types SCP-1XX, 3XX,
4XX, 5XX, 6XX or 7XX) can be daisy-chained
together, allowing them to share information and to
function as an independent distributed control
system. See the specific processor’s Instruction
Bulletin for more information.

5.3.2 SY/NET NETWORK INTERFACE

The SY/NET Network Interface Module (NIM) is a
local area communications network module capable
of interfacing the Model 650 to an entire network of
other programmable controllers, computers,

programmers, etc. Refer to NIM Instruction Bulletin
30598-257-XX for more information.

NOTE: The Model 650 can use variable ROUTE
statements for all 3 ports via Control
Regqisters 8095, 8097 and 8098. See Section

for details.

5.3.3 LOADER/MONITOR

The loader/Monitor provides a simple and
inexpensive method of monitoring /0 status and
register values. 1t also allows register values to be
changed without having to access the ladder diagram
program.

The Loader/Monitor can display alphanumeric
messages programmed in Model 650 memory,
providing an inexpensive yet powerful method of
signaling alarms, producing reports, and logging
data. Refer to the Loader/Monitor Instruction
Bulletin (30598-163-XX) for more information.

5.3.4 CARTRIDGE TAPE LOADER/RECORDER

By attaching the Cartridge Tape Loader/Recorder to
the Model 650, the user’s program can be stored on
tape for backup purposes. Then if the user program
inside the Model 650 is somehow altered or lost, the
taped copy can be easily downloaded into the Model
650 as a replacement. Refer to the Cartridge Tape
Loader Recorder Instruction Bulletin (30598-162-
XX) for more information.

5.3.5 PRINTERS

Connecting a printer allows messages generated by
the Model 650 to be recorded on hard copy. A
printout ensures a permanent record of any received
alarms or data. The recommended word structure for
printers and other ASCII devices is to set the
receiving device for 7-bits with odd parity and two
stop bits. Alternate word structures are available
via registers{ 8099 and 8100|(see Section 13.2). Refer
to the Printer Instruction Bulletin 30598-176-XX or
30598-180-XX for more information.

5.3.6 D-LOG DATA CONTROLLER MODULE

The D-LOG gathers data from the Model 650
processor to generate documentation such as
reports, alarm messages, and graphic displays. Refer
to the Data Logger Instruction Bulletin 30598-272-
XX.

30598-730 Page 5-3

NETWORK [|
MODEL 650 INTERFACE | | OTHERPROCESSORS
MODULES
A
]
]
]
= -= O
- —
= :- - 10,000 feet (3050 m) max. = = -l
L CRY
I : PROGRAMMER,
i i [~ — 10.000 feet (3050 m) max. == == :::‘;:2:
! | | COMPUTER
! I HH WITH SFW
I ! I | PROGRAMMING
I | 1 SOFTWARE
1 0
= — I

PRGMR e o e can -

PRGME ———]
= e e e six feet (2 m) max = - [} | “awoseLDPROGRAMMER
7 ﬁ

Figure 5.3 Possible PRGMR Port (Channel 1) Connections

PP-102/104 I
PRINTER
MODEL 650 LOADER/ —— 0-.0G MODULE
MONITOR
-
[|
[|
—
— m oo —1
—— l -
f— @ . |
| . l |
1 — 1
: i r_______J
ASChH i
1 Devices " |
1 |
I ! I
| CARTRIDGE
| l l TAPE
| " | LOADER RECORDER
i i I |
l I I |
1 1 i 1
| 1 I :
owm Fm-———————d ! | |
CHNL 2 —-—— e -] |
P L e L . e e e e =

- o L L L L L L L L L L =

Figure 5.4 Possible COMM Port (Channel 2) Connections

Page 5-4 30598-730
5.4 Baud Rates
5.4.1 DESCRIPTION

The default communication rate for both the PRGMR
and the COMM port is 9600 baud, which is the data
rate used when the Model 650 is connected to most
peripheral and programming devices. However,
variable baud rates are not supported by Ethernet
port 3, which operates at a fixed rate of 10 megabits
/sec.

Several methods are available to change the default
baud rate should it be necessary for a Model 650 port
to operate at other than 9600 baud. See|Figure 5.5

NOTE: The BAUD rate can also be changed by using
the DATA ENTER mode of a CRT, the SFW
Programming Software, or a Hand-held
Programmer. Enter the desired code into
Model 650 control register 8169.

EFFECT ON PRGMR
PORT

EFFECT ON COMM

PERATION
° 0 PORT

PRINT command

Alters baud rate
specifying baud rate rsbau

Alters baud rate

Change the contents
of register 8169
using a LET
command, or while
in the programmer’s

Alters baud rate Alters baud rate

DATA ENTER mode
LR ALL

DEL/C No effect No effect

command
Set to 9600 baud, No effect unless

Power u 8-bit word with memory is corrupt.

P even parity and 1 If s0, set to 9600

stop bit. baud.

Corrupt memory

“CLR MEMORY
e " Set to 9600 baud Set to 9600 baud
NEEDED")

Figure 5.5 Altering Baud Rates

5.4.2 ALTERING BAUD RATES

Control register 8169 in the Model 650 contains the
bit patterns which determine baud rate for the
communication ports. Bits 1-4 in register 8169
represent the baud rate for the PRGMR port, while
bits 5-8 contain the baud rate for the COMM ports.
Bit patterns are shown in|Figure 5.6,

8176|543]21}1

<«— COMM Port —» «— PRGMR Port —»

Control Register 8169 (Bits 1-8 shown)

The bit patterns corresponding to the various baud
rates for both communication ports are shown in

[Figure 5 gbelow.

The binary pattern for the PRGMR port is reflected
in bits 1 to 4, while the pattern for the COMM port is
in bits 5 to 8.

BAUD RATE CODE
BAUD RATE
BINARY DECIMAL

0000 0 75
0001 1 110
0010 2 300
0011 3 1200
0100 4 2400
0101 5 4800
0110 6 9600
01N 7 19.2K

Figure 5.6 Baud Rate vs Bit Pattern

Baud rates can also be changed via word attribute
registers 8099 and 8100.|See Section 10

5.5 Variable ROUTE Statement

5.5.1 DESCRIPTION OF OPERATION

The Model 650 can use variables to define routing for
a communication rung. All 3 ports support variable
routes for communication rungs. The format of the
variable communication rung is similar to a rung
that has a constant route, except that a special route
- 205 - is inserted just after the regular source route
identifier in the rung. Three registers, 8095, 8097
and 8098, are used in conjunction with the variable
route.

The generalized rung format for the variable
ROUTE statement is shown below in|Figure 5.7 I

l—— ROUTE — ROUTE —

— TWRITE3 AAA 205
L

Figure 5.7 Variable ROUTE in a COMMS Rung for
Port 3 (Ethernet)

When programming the communication rung that is
to have the variable ROUTE, the first ROUTE in the
rung (AAA) should identify the originating device.
The second ROUTE must be programmed with the
special number 205. The number 205 causes the
Model 650 to examine either register 8095, (if the
ETHERNET port is used) 8097 (if the PRGMR port is
used) or 8098 (if the COMM port is used) for ROUTE
data.

Registers 8095, 8097 and 8098 act as pointers to a
block of from two to eight registers. The user must
load the register number of the first register of this
block into either register 8095, 8097 or 8098; each
register in the block must then be preset with the
intended route.

When the Model 650 executes the communication
rung and encounters special ROUTE 205 as the
message destination, it will check either register
8095, 8097 or 8098 to find out where the variable
ROUTE information is stored. The registers being
pointed to by registers 8095, 8097 and 8098 must
contain the intended routes.

30598-730 Page 5-5

The block of registers containing the ROUTE
information will vary in length, depending upon the
need for net-to-net routing. Since the length is
variable, loading the value -1 (FFFFH) into a
register defines the end of the block. In the majority
of cases (no net-to-net used), the block will consist of
only two registers - the first contains the destination
ROUTE itself while the second (containing -1)
identifies the end of the block.

The user must manipulate the contents of the first
register in the block to obtain the variable ROUTE.
If net-to-net routing is to be used, the size of the
register block simply expands to accommodate the
extra ROUTE information needed. Not until -1 is
encountered in a register will the Model 650 assume
that all intended routing information has been
provided.

Thus, since SY/MAX protocol allows for messages to
accept net-to-net routing information that is up to
eight levels deep, the maximum block size is seven
“route registers” plus the last (terminator) register
that contains —1, up to a maximum total block size of
eight registers. (Note the originating route uses one
of the eight levels.)

5.5.2 IMPLEMENTATION
The following steps are required to use the variable
ROUTE feature in the Model 650.

1. Program a communication (COMM) rung
normally, entering the number 205 as the
destination ROUTE. Note that this also applies
to communications that require multiple routes.

2. Prior to solving the COMM rung TRUE, load the
starting register number of a block of up to eight
registers into register 8095 (for the ETHERNET
port) 8097 (for the PRGMR port) or 8098 (for the
COMM port).

3. Also before solving the rung, preset the “route
register” block with the desired routes. Signify
the end of the block by loading -1 (FFFFH) into
the register that immediately follows the
register containing the final destination route.

4. Reroute the communication message by
changing the routing specified in the contents of
the register block.

Page 5-6 30598-730

5

.5.3 APPLICATION CONSIDERATIONS

The maximum count in a Model 650
communication rung is 128 registers.

The device communicating with the Model 650
may be unable to service the full 128 registers, in
which case a transmission error occurs.
Following is a list of register capacities for
various SY/MAX devices:

Model 100 16

Model300 16 (15 for Series A)

Model400 128

Model500 128 (Series M & later),
64 (Series L & earlier).

Model600 128

Model650 128

Model 700 64

D-LOG Module 128

MicroCell Controller . 128

The communication statements used with
variable ROUTE information are transition-
sensitive.

The status register monitors rung execution and
message completion as in other COMM
statements. In addition, ERROR 03 or 29
indicates an illegal rung configuration has been
generated by the user (illegal route specified,

W NIM

MODEL 650

{Net-to-Net Link)

(SY/NET)Network 1

illegal registers pointed to, etc.).

The “route register block” should not extend
beyond register 8000.

The address of the status register used in the
rung must be less than 8001.

5.54 EXAMPLE

Assume that the contents of registers 61 through 70
will be transferred from a networked Model 650 at
location 101 to registers 91 through 100 in one of two
processors, A and B on the SY/NET network.
Processor A is at location 003. Processor B is on a
separate network, at location 102, via a net-to-net
link. The net-to-net link is at location 009.

The configuration of this example is shown in Figure

below. Note that Network Interface Modules
(NIMs) are used with each processor.

NOTE: All NIMs in this example must be set to the

SY/MAX protocol operating mode, except
for the NET-TO-NET link units.

The steps in[Section 5.5.2|are used to configure the

example.

NIM

PROCESSOR A

NIm
(Net-to-Net Link)

(SY/NET)Network 2

NIM

Figure 5.8 Variable ROUTE Example Configuration for Ports 1 and 2

EXAMPLE PROCEDURE

1. Program the rung shown below in|Figure 5.9(in

the initiating Model 650.

ROUTE ROUTE STAT LOCAL REMOTE COUNT

| rwrite2 101 205 se0 se1 s31 10
|

Figure 5.9 Rung for Variable ROUTE Example on
Port 2

NOTE: The assigning of register S60 as the status
register is arbitrary for this example. Any
unused storage register can be used.

2. The next step is to load the variable ROUTE
information into the Model 650. Do this by
choosing a starting register for the “route
register” block; in this example, register 3901 is
used. The Model 650 uses register 8098 (COMM
port) for storing this variable ROUTE
information; therefore, load 3901 into register
8098. Use the DATA ENTER mode of a
programming device, or a LET rung within the
Model 650’s ladder program, to accomplish this.

3. Assuming that we first wish to transfer registers
61 through 70 to processor A, the value 0003
(processor A’s location) must be loaded into
register 3901. To terminate the block, load the
value ~0001 into register 3902 to show the Model
650 the end of the “route register” block. Again,
a programming device in the DATA ENTER
mode or a LET rung is used for this.

When enabled by the logic, the communication
statement is transmitted out of the Model 650’s
channel 2 (COMM) port through the NIM which
is set as location 101.

30598-730 Page 5-7

When the logic in this communication rung is
enabled, the Model 650 executes the rung with the
following results:

¢ The ROUTE 205 in the rung causes the
Model 650 to interrogate register 8098 for
ROUTE information.

® Register 8098 (containing the value 3901)
directs the Model 650 to examine register
3901.

® Since register 3901 = 3, the value 003
becomes the ROUTE destination.

® The Model 650 next interrogates register
3902. Since 3902 = -1, the Model 650 knows
it has all the necessary ROUTE information.
The contents of registers 61 through 70 are
now sent to processor A’s registers 91
through 100.

4. Now assume the register block 61 to 70 is to go to
processor B’s registers 91 through 100 instead.
Since transmission to processor B involves a net-
to-net link, an additional ROUTE parameter is
needed. Enter the following values into the
indicated registers:

Register 3901 0009 (net-to-
net link)

Register 3902 0102
(processor B's
location)

Register 3903 -0001 (end ROUTE

information)

When the logic in the communication rung is
enabled, registers 61 through 70 in the Model
650 are now routed through location 0009 to
processor B at location 102,

Page 5-8 30598-730

5.6 Miscellaneous Considerations

Because the primary function of a programmable
logic controller is the timely execution of the user
program, communication with external devices is
subject to certain rules and limitations. The
following is a discussion of some of the potential
pitfalls associated with these rules, as well as some
techniques for improving communications
throughput.

Both the sending and receiving of communication
characters in READ, WRITE, ALARM, and PRINT
(ASCII input/output) statements can occur at any
time while the processor is scanning. Typically, the
impact on scan time for servicing these characters is
slight because of separate microprocessors used for
control and communications. The largest single
delay associated with the communication process
occurs when a complete message has been received,
and the register data contained in that message must
be incorporated into the processor’s image table
registers. From 2.5 to 5.0 msec is allowed for the
processor at the end of scan (EQOS) to perform this
task before scanning must resume. Note, processors
which are in HALT can still respond to incoming
messages, but cannot initiate them.

5.6.1 IMPROVING COMMUNICATION THROUGHPUT

The maximum block size of registers (count) which a
user may specify in a message is 128 registers. For
communicating a large quantity of registers,
throughput is optimized by transmitting the largest
blocks possible; a single transmission with 128
registers is over 10 times faster than 128
transmissions of 1 register each. The larger the
message block, however, the more time is required at
EOS to incorporate this data into the processor’s
image table. Because this processing time for 128-
register messages can exceed 5 msec, multiple scans
may be required to update all the registers. This
presents a potential application problem if the new
data needs to be treated as a contiguous block for
control purposes. A simple example is floating point
data, in which an odd/even pair of registers
constitutes one floating point value, and splitting of
this floating point register pair could result in an
invalid value used by the PLC.

30598-730 Page 5-9

Bits Description

1-14

Error Codes (Always Odd - bit 1 set)

15 Remote Device in RUN
16 Successful Completion
17 Message Sent to Buffer
18-21 SY/MAX Timer Value
22 input Ladder Logic Solved True
23 SY/MAX Timeout Occurred
24-32 Register Identification Cade (N/A)

Note:

Bits 1-23 are cleared when bit 22 is reset (input

logic to Communications rung opens up)

Figure 5.10 Communication Rung (READ, WRITE, PRINT, ALARM) SYIMAX Status
Register

To prevent this potential “splitting” of a message
over multiple scans, bit 16 of register 8170 may be
set by the user. Setting this bit causes the processor
to completely finish servicing a message at EOS prior
to resuming scanning the user program, thus, the 2.5
to 5.0 mseec EOS period is extended for as long as
necessary, with worst-case extension being 10 msec
total. Therefore, 8170-16 should be set any time
multiple registers in a message must be updated
during the same scan (as with floating point data)
with the trade-off being a potential 5 additional msec
tacked on to the present 5 msec EOS time,

In the event a contiguous block of data exceeds 128
registers, application programming techniques must
be used to inhibit control logic operation until all the
new data has been incorporated into registers. In the
initiating processor, bit 16 of the associated commun-

ication rung status register is set when an operation
is complete; thus, multiple bit 16’s may be monitored
to ensure that each associated message has been
completed. Refer tofor an overview of
bit descriptions. However, when unsolicited WRITE
commands are initiated by a remote device, the local
device is not advised when an operation is complete.
Therefore, the remote device should use some of the
transmitted registers to advise the local device. One
technique is to increment the first and last register of
the contiguous block each time a block of messages
are sent; the local device would then need to be
programmed to only act upon the data when these
registers were equal, indicating that we are not in
the middle of an update and the data can be
considered valid.

Page 5-10 30598-730

Another way of improving communications
throughput by trading communication servicing
time for scan time is the use of immediate
communications update coils in the user program.
Each time an immediate communications update coil
(bits 8176-11 through 8176-13 for ports 1 through 3,
respectively) is encountered, the processor checks the
indicated port for a received message. If one exists, it
will be serviced for up to 5ms, thus imposing a worst-
case scan time impact of 5 msec. For applications in
which it is desirable to trade scan time for improved
communications throughput on port 3, for example,
coil 8176-13 may be used as often as desired at
multiple program locations to process existing
messages.

5.6.2 SYYMAX COMMUNICATION TIMEOUT

As discussed in the programming bulletin, bits of the
communication status register (which must be
uniquely assigned to the communication statement)
can be used to monitor the communication process.
For example, bit 22 is set to 1 when the input logic to
the rung is true. Bit 17 is set to 1 when the message
has been loaded into a commmunication buffer and is
about to be transmitted. And bit 16 is set to 1 whena
reply is received indicating the message transaction
is successfully completed. (Bit 1, along with some
combination of bits 2 through 14, is set to indicate an
error and indicate an unsuccessful message
transaction). Finally, bit 15, when set, indicates the
remote device is actively scanning logic or executing
a program.

Another feature available to the user is a
communication reply timeout flag. This differs from
the Ethernet timeout discussed in in
several ways. First, it can be applied to
communications through all 3 ports. More
importantly, this timeout is based on message
completion, not just message acknowledgment. For a
READ statement, for example, timing begins when
the message is loaded into a communication buffer
(bit 17 set to 1) and ends when the requested data has
actually been received (bit 16 set to 1) or when time
has expired or an error reply was received (bit 1 set
to 1). Bit 23 of the communication status register is
set any time a complete message response is not
received prior to a user-specified period after the
message has been initiated. This period is
determined by the bit pattern contained in the
appropriate bits of register 8168 at the time the
communication rung is first solved true. If the time
period selected in register 8168 is too short, the reply
could still arrive after the timeout (bit 23) is set and
the appropriate registers updated.

8168 Bits 1-4, 5-8 and 9-12:

BIT PATTERN

(bits 4-1 for PRGMR

bits 8-5 for COMM oy

bits 12-9 for
ETHERNET)

0000 010250
0001 250 t0 500
0010 500 to 750
0011 750 to 1000
0100 1000 t0 1250
0101 1250 to 1500
0110 1500 t0 1750
o111 1750 to 2000
1000 0t0 2000
1001 2000 to 4000
1010 4000 to 6000
1011 6000 to 8000
1100 8000 to 10000
1101 10000 to 12000
110 12000 to 14000
1M1 14000 to 16000

Figure 5.11 Communication Timeout Ranges

As can be seen from Figure 5.11, two ranges are
available: 0 to 2 seconds (with 250 msec resolution)
or 0 to 16 seconds (with 2 sec resolution). Note the
time period associated with a bit pattern is an
interval, with the timeout liable to occur anywhere
within the interval. For example, a bit pattern of
”0000” can result in a timeout being flagged
anywhere from 0 to 250 milliseconds (maximum)
after a message has been sent to the buffer.

When a message is initiated, the user-specified
timeout code for that channel is copied into bits 18 to
21 of the corresponding communication status
register. These bits then “count down ” the time
until a reply is received. If a reply is not received (bit
16 or bit 1 set to 1) within the timeout period, bit 23
will be set.

Note: Each time the comms rung is solved false, all
bits associated with the commmunication
status register are cleared.

COMM STATUS BIT DEFINITIONS:

Bit 16 only is set: A valid reply has been
received; message complete before timeout has
elapsed.

Bits 16 and 23 are set: A valid reply was
received; however, after the timeout had elapsed.

Bit 23 only is set: No reply received at all,
timeout has elapsed.

Bits 1 and 23 are set: A valid error reply was
received either before or after timeout. Check the
data field for the error code.

CONSIDERATIONS FOR USING TIMEOUT

e Bits 1 through 23 in the status register are
cleared every time the rung is executed
FALSE.

® If a message is not acknowledged (no reply),
ERROR 13 is posted in the status register
and a processor communication port error is
sent Lo register 8175 and bit 23 is set. For
ports 1 and 2, this may occur when cabling to
the ports is disconnected. For port 3, this
may occur if the Ethernet NIM portion has
shutdown---a fatal Ethernet commun-
ications error.

® If an error reply is received, the appropriate
error code is posted in the status register and
bit 23 is set, regardless of the actual time
elapsed.

e Ifavalid reply is received after a timeout has
occurred and bit 23 is set, bit 16 is set and bit
23 is latched ON until the communication
rung is executed FALSE.

30598-730 Page 5-11

EXAMPLE: A user wishes to know if a certain ladder-

initiated Ethernet message is receiving a
reply within four seconds after initiation.
The bit pattern 1001 should be loaded
into register 8168 bits 9 through 12 prior
to the communication rung being solved
true (for checking Ethernet port
timeout).

If a reply is not received within 4 seconds
(4000 milliseconds - the upper timeout
limit), bit 23 of the appropriate status
register is set. Keep in mind the bit can
be set anytime after 2 seconds has
elapsed since this is the lower timeout
limit.

Page 5-12 30598-730

5.7 Technical Data For Communication Ports

APPLICABLE PORT

TECHNICAL CHARACTERISTIC

Connector Type
D-type, 9-pin female slide lock (RS-422) X X
ThinWire Ethernet- BNC, with gold-plated conductor X

Communication Method
RS-422 (serial differential) X X
High speed Ethernet X

Communication Rates
(Seor BAUD rate information) X X
10 megabits/sec X

Maximum Cable Length
10,000 ft. (3050m) at 9600 baud (Rs-422[*] x X
Ethernet-maximumlEl 607 ft. (185 m) per segment, 3034 ft. X

{925m or five 185m segments) with repeaters

Cable Type
Belden® #8723 or equivalent {RS-422) X X
Ethernet-type RG58A/U or RG58C/U 50-ohm coaxial cable X

Short Circuit Protection
Driver/receiver circuitry X X
Ethernet No

Surge Protection
Driver/receiver circuitry X X
Ethernet X

Common Mode Voltage Rating
6 volts maximum X X N/A

Auxiliary Power
Powers the hand-held programmer or loader/monitor X X N/A

Figure 5.12 Communication Ports Technical Data.

Actual cable length for RS-422 communitation is subject to installation considerations such as reliable building ground
(signal reference), common mode voltage, signal interference/shielding, etc. If communication problems are experienced
over long cable runs, decreasing the baud rate may result in greater signal integrity.

* Applies to 10BASE2 ThinWire Ethernet networks. Longer distances are possible using repeaters with other media such as
10BASES Standard Ethernet.

30598-730 Page 6-1

6 SECURITY FEATURES

6.1 Description

The Model 650 processor has security features that
prevent unauthorized access to user ladder
programs, labels, rack addressing and storage
registers. This type of security protects
programming equipment and/or other devices
connected directly to the processor via SY/NET or via
Ethernet (Model 650 or SFW390 software).

NOTE: Except where otherwise noted, this section
refers to various security features for all 3
ports (PRGMR, COMM and Ethernet ports---
Channels 1,2 and 3).

Three types of security features are used to protect
each of the following:

1. Ladder memory
2. Data storage registers
3. Communications

Section 6.3|contains three tables that summarize all

of the available security features in the Model 650
processor.

6.2 Definitions

The following terms are used frequently in this
section,
Editing The use of external equipment to
insert, replace, delete or clear
rungs, rack addressing, and
labels that exist in the processor
memory.

....... Storage of I/0 status, data
values, or control information.
Can be either data registers or
control registers.

Register

Non-Priority
Register Read Access to registers to display or
copy (read-only) a value stored in
a Model 650 data register. Non-
priority register reads are
normally done through
programming equipment and
software packages (i.e. Class
8055 and Type SFW-390).

Non-Priority
Register Write

Priority Register

Read ..

Priority Register

Write .

Programming

Device

User Memory

Storage Register

Memory

To enter or store a new value ina
Model 650 data register. Non-
priority reads are normally done
through programming
equipment and software
packages (i.e. Class 8055 and
Type SFW-390).

To read or recall the contents of
one or more SY/MAX registers.
Typically this type of
communication occurs between
processors and software packages
(i.e. Class 8055 and Type SFW-
390).

To write or store a value into a
SY/MAX register. Typically this
type of communication occurs
between processors and software
packages (i.e. Class 8055 and
Type SFW-390).

SY/MAX CRT (SPR-200, 250,
300) SY/MAX hand held
programmer (SPR-100), loader
monitor (SLM-100), or an IBM-
Compatible computer equipped
with SY/MAX Type SFW
Programming Package.

The memory in which user-
created ladder programs, rack
addressing, and labels are stored.

Memory where data register
values are stored in the Model
650, separate from user memory.

Page 6-2 30598-730

6.3 Summary

The three tables on this page deseribe the ladder,
register and communication security features
available in the Model 650 processor:

® |Figure 6.1|covers ladder program security
eatures.
® | Figure 6.2|covers storage register security

features.

® | Figure 6.3|covers communication security
eatures.

In the following tables, the method of protection is
indicated in the left column. What the method
protects is shown in the center column. The right
column gives the subsection of Section 6 where that
protection feature is described.

SEE

SECURITY METHOD SECTION

PROHIBITS

Hardware Jumper Program editing of

any kind.
Port/Route Edit Program editing by
Lockout any port or route

other than the one
used by the init-
iating equipment.

o
w

Keyswitch RUN
position

Program editing of
any kind, including
forcing.

Inhibit Rung Altering rungs
within an area
defined by the

inhibit rungs.

o
~

Displaying, by
programming
equipment, the
ladder areas
defined by the
Inhibit Rungs.

Safeguard Rung

SECURITY METHOD

PROHIBITS

SEE
SECTION

Password and
Restriction Registers
8177

and 8178

® External non-
programming
devices from
altering registers on
a port-by-port basis.

® Programming
equipment from
altering register
data on a port-by-
port basis

® Forcing of IO by
programming
equipmenton a
port-by-port basis

Protect All Registers
Bit

Altering of register
data by any
external device*

—

Force Inhibit Bit

Forcing of I/O by
programming
equipment*

Safeguard Rung

Programming rungs
containing
protected registers

o
~

Fence Registers

Altering of registers
that are defined by
user as fenced*

*

Does not apply to PRGMR port

Figure 6.2 Register Data Security Methods

Password/
Restriction Register

Editing on a port-
by-port basis.

Memory Protect Bit

Ladder
programming or
editing*

* Does not apply to PRGMR port

Figure 6.1

Ladder Program Security Methods

SECURITY METHOD PROHIBITS ssgfou
The programming
of COMM rungs

Safeguard Rung (READ, WRITE,

PRINT, ALARM)
assigned to user-
specified channels
on a port-by-port
basis

Figure 6.3 Communication Security Methods

6.4 Hardware Security Jumper

Prohibits: Ladder editing or programming of any
kind through any of the 3 ports (COMM,
PRGMR or Ethernet).

Uses: Internal jumper, located on a three-pin

header. The jumper is accessed by

removing the Model 650’s side plate.
Refer tq Figure 6.4

‘. Top Front of Model 650

DISABLED SECURITY

ENABLED SECURITY

il

Figure 6.4 Hardware Security Jumper

The security jumper bridges the center pin of the
three-pin header to either the left or right pin (see
Figure 6.4). When the security jumper is in the
ENABLED position, all ladder memory is protected
from alteration of any kind. When DISABLED,
ladder memory is accessible to the extent that other
security methods allow. The WRITE PROTECT
LEDilluminates when the jumper is
enabled.

30598-730 Page 6-3

CONSIDERATIONS

® The CLEAR ALL command will have no effect
when the jumper is enabled.

® An enabled jumper overrides the following

security features:
1. Inhibit Rung (Described i
2. Memory Protect Bit|(Section 6.10)

3. Password & Restriction Register features for
selective disabling of ports{(Section 6.9)

SETTING THE SECURITY JUMPER

CAUTION

Remove power from the rack before
removing the Model 650 processor.

1. Turn off the AC power to the rack where the
Model 650 is installed.

CAUTION

Static damage may occur if board is not
handled properly.

2. Remove the Model 650 from its rack.

3. Remove the side access plate from the Model
650.

4. Using a needlenose pliers, place jumper in
the desired position (ENABLED or
DISABLED) as shown in|Figure 6.4| DO
NOT LEAVE THE JUMPER OFF OF THE
HEADER. [t must be in one of the two
positions.

5. Replace the side cover on the Model 650, and
reinsert il in its rack.

6. Reapply rack power.

Page 6-4 30598-730

6.5 Selective Port & Route Edit Lockout

Prohibits: Ladder program alteration through any
port or by any route except the port and
route used by the initiating programming
device.

Uses: Control Register|8176, bit 15

This security feature ensures that only a single
programming device on the SY/NET network has
access to the Model 650’s memory at any given time.
If the SY/NET network is not in use, the restriction
applies channel-by-channel.

To engage the Port/Route Lockout feature, set bit 15
of Control Register 8176 to “1” using the Data Enter
mode of the programming device. The Model 650
“remembers” the port and route that the
programming device used to set bit 15. Any attempt
to edit the program through any other port or route
other than the “remembered” port/route causes the
Model 650 to generate an ERROR 49.

The lockout feature does not prohibit simple
interrogation or viewing of the ladder program,
unless other security features that prevent these are
active. Register contents can still be altered (unless
other measures are active to prevent this). To
release the lockout, use the programmer that set bit
15 of Register 8176 Lo “1” (the same route/port) to
reset the bit to “0”.

CONSIDERATIONS

® A CLEAR ALL command issued through the
PRGMR port of a Model 650 that has Port/Route
Lockout enabled has no effect unless the device
sending the CLEAR ALL is the same device that
enabled the lockout.

e Cycling power to the Model 650 will disable the
lockout and extinguish the WRITE PROTECT
LED (if no other form of security is active).

e If the lockout is disabled by cycling power, bit 15
of Control Register 8176 may remain set at 1.
This is because the processor retains Control
Register contents, but cannot retain port and
route information, when power is removed.
Thus, the fact that bit 15 of 8176 is set at 1 is not
a guarantee that the lockout feature is active.
Conversely, if bit 15 is set to 0, the lockout
feature may still be active. Only by setting the
bit immediately prior to editing, and resetting
the bit immediately after editing can bit
indication be considered reliable.

6.6 Keyswitch RUN Position

Placing the Model 650 keyswitch in the RUN
position prohibits any changes to be made in a ladder
program. In addition, the ability to force, or to alter
forcing, is disabled while the keyswitch is in RUN (if
changes to a program that is running are to be made,
place the keyswitch in the RUN/PROGRAM
position).

6.7 InhibitRung

Prohibits: Altering rungs within protected ladder
areas that are defined by the Inhibit
Rungs.

Uses: Control Register|8176, bit 16

A maximum of two areas of the user ladder program
can be protected from being edited. The two areas
that make up a typical ladder program are the
MAINLINE ladder area and the SUBROUTINE

ladder area.

The subroutine area consists of all the subroutines
that exist in the user ladder program. This area
starts with the MARK ST SUB rung and proceeds to
the last rung in memory. The mainline ladder area
consists of rung number 1 in memory and proceeds
up to, but not including, the MARK START SUB
rung.

Protected mainline ladder rungs always start with
rung number 1 in the ladder and consecutively
proceed up to the inhibit rung in the mainline area.

The protected subroutine rungs always start with the
MK ST SUB rung and proceed consecutively to the
inhibit rung in that area.

An inhibit rung is inserted into a program by
entering a rung containing only a coil (no conditional
logic) addressed as register 8176 bit 16. See Figure
6.5, below:

8176

| ()|
_/
-16

Figure 6.5 Inhibit Rung

30598-730 Page 6-5

CONSIDERATIONS

1. Protection is not enabled until either the |Figure 6.6|illustrates the operation of the Inhibit
Rung.

processor is power-cycled or the keyswitch is
turned from HALT to RUN.

2. More than one inhibit rung may exist in any
given area, but only the earliest (lowest number)
programmed inhibit rung in an area defines the
end of protected ladder.

3. When a CLEAR ALL command is issued to the
processor over channel 1, the protected areas
defined by the inhibit rungs will not be cleared.
Only the unprotected areas of the ladder
program will be cleared.

CLEARING THE INHIBIT RUNG

Clearing the protected and unprotected areas of a
ladder program that are protected by Inhibit Rungs _| '_-

requires that the entire ladder program and all rack

addressing be cleared from the Model 650. This is _-l l__——_-l I___I ‘.__O_ g
Unprotecte

done by connecting a programmer to the PRGMR Mainline

(channel 1) port, and then performing the following L 11 2R\
steps: —| | i A

1. Confirm that the security jumper|(Section 6.4)|is *-{ |—— ——

in the DISABLED position.

2. Access the RACK ADDRESSING mode.

3. Press the DELETE soft key.

4. Pressthe CLEAR ALL soft key twice.

otected
Subroutines

5. Access the DATA ENTER mode.

6. Store the decimal value -1 in register 8177 (the
password register).

7. Repeat steps 2 through 6.
Figure 6.6 Operation of the Inhibit Rung Coil

The result of the above CLEAR ALL operation is a
completely blank user memory, meaning that:

No Ladder Program

Default Rack Addressing
Zeroed Register Values

No Labels

No Enabled Security Features

...will exist within the Model 650.

Page 6-6

30598-730

6.8 Safeguard Rung

Prohibits:

Uses:

1.

Displaying, by programming
equipment, any rungs protected by
Inhibit Rungs (see. Two
different groups, each with an
Inhibit Rung, can be protected.

Enabled protection applies Lo both
channels.

The programming of any COMM
rungs (READ, WRITE, PRINT,
ALARM) assigned to user-specified
channels on a channel-by-channel
basis.

Programming any rungs that
contain registers which are user-
defined as protected.

Inhibit Rung with Safeguard Rung,
Parameter A below (#1 and 2 above).

Inhibit Rung with Safeguard Rung,
Parameters B and C below (#3
above).

The safeguard rung allows a variety of security
protection features to be enabled. To use the
safeguard features the special TLET rung as
described below must be programmed as the first
rung in ladder memory. To activate the A, B, B;, G,
and C,, parameters in the special TLET rung, an
inhibit rung (with coil addressed as 8176-16) must
also be programmed.

The following rung must be rung #1:

—[TLET 58165 = A;B ;B,:C, ;C,;D;E ;E]—

Where:

A is port safeguard code for COMM-rung/view

inhibit.

B, is STARTING ADDRESS for Group 1
Safeguarded Registers.

B, is ENDING ADDRESS for Group 1
Safeguarded Registers.

Cy isSTARTING ADDRESS for Group 2
Safeguarded Registers.

C, is ENDING ADDRESS for Group 2
Safeguarded Registers.

D isthe SCAN TIME LIMIT in milliseconds

E, is TOLERANCE OF SCAN INTERRUPT in
2.5 millisecond counts.

E, isRATE OF SCANINTERRUPT in2.5
millisecond counts

The parameters above are explained in detail below:
A A number entered here (000 through 007)

prevents Channel 1, Channel 2 and/or Channel 3
ports from being assigned to communication

rungs (READ, WRITE, PRINT, ALARM).
Figure 6.7|shows which number restricts what
port(s):

CODE ETHERN_ET Port COMM Port PRGMI.‘ Port
Restricted Restricted Restricted
X00 NO NO NO
X01 NO NO YES
X02 NO YES NO
X03 NO YES YES
X04 YES NO NO
X05 YES NO YES
X06 YES YES NO
X07 YES YES YES

Figure 6.7 Port Safequard Codes

When “1” is substituted for “X” as the first digit
in the number (i.e., 100, 101, etc. through 107),
the ability to view, display, record or print the
rungs through all ports is also prohibited.

EXAMPLE: To prevent only the PRGMR port
(channel 1) from being assigned to
communication rungs ANDto
inhibit the ability to view, display,
record, or print out the program
through any port, enter the number
“101” as the port safeguard code.

B.

G

G

Safeguarding registers prohibits those registers
from being programmed into counters, timers, or
shift registers. Also, safeguarded registers
cannot be used to the left of an equal sign in a
LET statement, or have their bits programmed
as coils.

Safeguarded registers are also protected from
being written to by other SY/MAX processors
unless the other processor’s WRITE
communication rungs are also protected from
within an Inhibit Rung ladder area.

Starting address for the Ist group of safeguarded
registers. The starting address can be any value
from 1 to 8192.

Ending address for the 1st group of safeguarded
registers. This address must be greater than or
equal to B,.

B4, By, Ci, and C, must be separated by a softkey-
generated semicolon.

Starting address for the 2nd group of
safeguarded registers. The starting address can
be any value from 1 to 8192.

Ending address for the 2nd group of safeguarded
registers. Must be greater than or equal to C;

Scan time limit in milliseconds. If the Model 650
exceeds the scan time limit, it will halt with
“ERROR 970" in error register 8175. When D is
“0”, a default scan time limit of 1 second is
assigned.

SAFEGUARD RUNG CONSIDERATIONS

Zeros should be placed in parameter locations for
features that are unused. For example, if only
one group of registers is to be protected, enter “0”
for the Cy and Cy parameters.

If Timed Interrupt tolerance and rate are the
only parameters used (no Safeguard
parameters), only values for E1 and E2 need be
entered. Because the Safeguard rung
parameters are read from right-to-left, K1 and
E2 will be the first parameters encountered and
are interpreted as Timed Interrupt parameters.
Omitting values for other parameters causes
them to be ignored.

Only register 8165 can be assigned as the
safeguard TLET rung.

30598-730 Page 6-7

Only one safeguard TLET rung is allowed in the
entire ladder program, and it must be the first
rung in the program.

Make sure the Model 650 is in HALT before
entering the Safeguard rung into the program. If
the Model 650 is in RUN while the rung is
entered, the rung will execute normally and
possibly create unwanted values in registers
8165, 8166, 8167, and any others used in the
rung.

Parameters A;B1;B2;C1,C2 of the TLET rung
require that an inhibit rung exists in the ladder
program. If no inhibit rung exists, the safeguard
parameters A;B1;B2;C1;C2 are ignored.

The safeguard TLET rung parameters cannot be
altered once the inhibit rung is programmed and
the Model 650 is power-cycled or is keyswitched
to RUN. All ladder program and rack
addressing must be deleted before the safeguard
rung can be altered.

If password register 8177 is included in the block
of safeguarded registers, the only way to override
and delete the safeguard rung is to remove the
Model 650 from the rack, and then remove the
onboard battery. This allows the memory to
completely discharge.

To override and delete the safeguard rung, the
entire ladder program and all rack addressing
must be cleared from Model 650 memory. This is
accomplished by connecting programming
equipment to channel 1 (PRGMR Port), and
performing the following steps:

1. Confirm that the Security Jumper is in the

DISABLED position|(Section 6.4)

2. Access the RACK ADDRESSING mode.
3. Pressthe DELETE soft key.

4. Pressthe CLEAR ALL soft key twice.

5. Access the DATA ENTER mode.

6. Store the decimal value -1 into register 8177
(the password register).

7. Repeat steps 2 through 6.

Page 6-8 30598-730

The result of the CLEAR ALL operation is a
completely blank user memory, meaning that. . .

¢ No Ladder Program
® Default Rack Addressing
® Zeroed Register Values
® No Labels
® No Enabled Security Features
. will exist within the Model 650.

NOTE: The Rack Address CLEAR ALL operation
clears or resets all processor registers.
However, the Ethernet NIM registers are not
cleared. Those registers not cleared or reset
include the ENIM storage (mailbox) registers
(regs. 3000-6999) and the Ethernet
communication performance data registers
(regs. 7000-7999). Two alternatives for
clearing or resetting the ENIM registers
exist:

1. Remove the Model 650 from the
SY/MAX rack, remove the battery
form the Model 650 and wait for
approximately 2 minutes for the
memory to clear. Then replace the
battery, place the Madel 650 in the
rack and provide power.

2. The second method is to program a
series of WRITE rungs into the
Programmable Controller to clear
the ENIM storage registers (3000-
6999). Cycling power then clears the
performance calculations (7XX2-
7XX5), but not the performance
parameters (7XX0-7XX1) or the
storage registers. Developing a small
utility ladder program to clear the
storage registers and set the default
Ethernet parameters may be useful.
This program could then be run
anytime a Rack Address CLEAR ALL is
issued to clear or reset all the desired
registers.

6.8.1 TIMED INTERRUPT OPERATION

The parameters Eq and Ej in the TLET S8165 rung
define the values for timed interrupt tolerance and
timed interrupt rate, respectively.

This method of scan control interrupts the ladder
program at specified time intervals to execute a
certain group of rungs (a special subroutine), and
then returns to the main program. This method of

interrupt is useful for applications where certain
inputs of data must be continuously sampled within a
particular repeatable time limit.

Subroutine number 8190 is reserved for the timed
interrupt function. The following two rungs are used
to identify the timed interrupt subroutine:

| MARK 8190

RTN 8190

Refer to the “Processor Scan Control” section in the
respective programmer manual for an in-depth
discussion of using GOTO, GOSUB, and TIMED
INTERRUPT scan controlling techniques.

The purpose of the timed interrupt is to ensure that,
regardless of program length, a specific block of
rungs is executed within a given period of time.
Typically this involves monitoring a select group of
inputs while programmed rungs control a select
group of outputs.

The timed interrupt subroutine should not contain
any transition-sensitive rungs, or any rungs that
require multiple program scans to complete their
operation. Examples of these rungs include
communication statements (READ, ALARM,
WRITE), transitional coils or LETs (TLETSs), shift
registers, and timers.

While the programmed interrupt rate specifies the
rate at which the interrupt is to occur, it may not
always be possible to interrupt the Model 650’s scan
precisely at that rate. For example, the processor
cannot be interrupted while it is scanning a rung or
during end-of-scan activities such as updating
external I/O and servicing communication ports.

NOTE: RUN mode programming is not allowed
when the TIMED INTERRUPT is enabled;
attempts will be rejected with ERROR 79
posted by the programmer.

In order to be assured that the processor has
sufficient time to call the timed interrupt subroutine,
the programmed tolerance must exceed the external
1/0 update time plus the communication port
servicing time. The time required to update external
I/0 is a function of system layout and rack
addressing; refer to [Section 14.2|for more
information regarding I/O updating. Servicing the

communication ports can require an additional §
milliseconds per scan if saturated. These factors can
combine to form a substantial time period during
which the Model 650’s scan cannot be interrupted.

CAUTION

A program containing a Timed Interrupt
should ALWAYS be tested first, under
conditions that simulate the rack
addressing and communication demands
that the system will experience when
installed at the actual job site.

In the event that interrupt tolerance errors (ERROR
29102) are encountered, it may be possible to
eliminate these errors by optimizing rack addressing
and/or restricting communication traffic. If errors
persist, the programmed tolerance value needs to be
increased.

In the majority of applications that require speed,
the inherently fast scan speed of the Model 650
eliminates the need for the timed interrupt function.

NOTE: Since the Mode! 650 updates external /O at
the end of each ladder scan, any timed
interrupt that is executed more than once
per scan must also update the external I/0O at
the same rate as the timed interrupt occurs,
as discussed in the following.

Registers|8105 and 8106/ in conjunction with|bit 7 of

register 8176, can be programmed to perform an
immediate 1/0 update within the timed interrupt
(see Section 13.2). This selectively updates any
registers that require fresh information. Thus,
registers used as inputs within the timed interrupt
subroutine should be updated at the beginning of the
subroutine, while output registers within the
subroutine should be updated just prior to exiting the
subroutine.

A scan penalty is paid to accomplish immediate 1/0
updating, and must be considered when determining
the execution time of the timed interrupt subroutine.
Refer to[Figure 14.3] The time needed for this
updating becomes more and more significant when
the ladder portion of the subroutine is short. To
economize these register updates, group together
input and output addresses that are used in the
timed interrupt to minimize the scan time impact of
performing immediate 1/0 updates.

30598-730 Page 6-9

6.9 Password and Restriction Registers
The Model 650 processor uses register 8178 for
storing an access code and register 8177 for storing a
"password" value.

The following restrictions can be imposed on either
port by using Password Register Restriction:

1. Inhibit ladder programming or editing. Restricts
the programming or editing of ladder logic using
any programming device. Bit 4, 8 or 12 of
register 8178.

2. Prevent programming equipment from forcing
1/0 registers. Restricts the forcing of register
outputs using programming equipment. Bit2,6
or 10 of register 8178.

3. Prevent programming equipment from altering
register data. Prevents the using of
programming equipment to write to or change
data values that are stored in all registers. Bit 3,
7or 11 of register 8178.

4. Prevent any non-programming devices from
altering registers. Prevents the use of processor-
to-processor communication (priority
communication) to alter data values stored in all
registers. Bit 1,5 or 9 of register 8178.

The bit pattern in register 8178 (the restriction code
register) determines which port (channel) is
protected, and by which restrictions.
illustrates which bit in register 8178 needs to be
turned ON to achieve the desired restriction and

port.

To enable the restriction code, a non-zero “password
number” must be entered (via the DATA ENTER
mode of a programming device) into register 8177.

Once a password value is entered into register 8177,
a "-1” is displayed when attempts are made to
monitor this register. This keeps the password
confidential. Thus, “~1” cannot itself be used as a
password value.

The restriction code can be altered only by the exact
password value entered into register 8177. When
this is done, register 8177 will display “0”.

Page 6-10 30598-730

REGISTER 8178,
BIT # “ON" RESTRICTION AND PORT

1 PRGMR port -- processor-to-processor
communications. Restricts writing data
to Model 650 registers

2 PRGMR port -- forcing of 110 is
prevented using programming
equipment

3 PRGMR port -- programming
equipment to processor communi-
cations. Restricts writing data to Model
650 data registers.

4 PRGMR port -- restricts altering the
ladder program in any way.

5 COMM port -- same effect as bit 1

6 COMM port -- same effect as bit 2

7 COMM port -- same effect as bit 3

8 COMM port -- same effect as bit 4

9 Ethernet port -- same effect as bit 1

10 Ethernet port -- same effect as bit 2

1 Ethernet port -- same effect as bit 3

12 Ethernet port -- same effect as bit 4

Figure 6.8 Restriction Code Bit Table

To disable the password/restriction code feature,
enter a CLEAR ALL command through the PRGMR
port. This is allowed regardless of the restriction
code in effect, and resets the password register to
zero. All rungs not protected by Inhibit Rungs are
also deleted.

6.10 Memory Protect Bit

Prohibits: Ladder programming or editing through
the COMM or Ethernet ports (does not
affect the PRGMR port).

Control Register|8176, bit #4.

Uses:

When bit 4 of register 8176 is "ON", all user ladder
program, rack addressing, and labels are protected
from editing. This protection feature affects the
COMM and Ethernet ports (channels 2 and 3) only.
It is ignored by the PRGMR port (channel 1).

To enable the Memory Protect Bit, two methods can
be used:

1. Program a rung containing only a coil
addressed as bit 4 of register 8178, like this:

8176

I ()
=

2. With a programming device in the DATA
ENTER mode, enter a “1” in bit 4 of register
8176.

To disable the Memory Protect Bit, delete the rung
AND reset bit 4 to "0".

NOTE: Merely deleting the rung does not turn bit 4
off, and by itself does not disable Memory
Protect.

6.11 Force Inhibit Bit

Prohibits: Forcing of /O by programming equip-
men{ through the COMM or Ethernet
ports (does not affect the PRGMR port).

Uses: Control Register|8176, bil #5.

When bit 5 of register 8176 is "ON" the forcing of /O
registers (with programming equipment) through
the Model 650's COMM and Ethernet ports (channels

2 and 3) is prohibited. This feature is ignored by the
PRGMR port (channel 1). Refer to for
detailed information on forcing.

To enable the Force Inhibit Bit, two methods can be
used:

1. Program a rung containing only a coil
addressed to bit 5 of register 8176, like this:

8176
| ()
\/

-05

nnsele—

2. With a Programming device in the DATA
ENTER mode, enter a 1 in bit 5 of register
8176.

To disable the Force Inhibit Bit, delete the rung
AND THEN reset bit 5 to "0".

NOTE: Merely deleting the rung does not turn bit 5
off, and by itself does not disable Force
Inhibit.

30598-730 Page 6-11

6.12 Registers Protect Bit

Prohibits: Altering of register data by any external
device through the COMM or Ethernet
port (does not affect the PRGMR port).

Control Register] 8176, bit #6

Uses:

When bit 6 of register 8176 is ON, the altering of any
Model 650 data registers through the COMM and
Ethernet ports (Channels 2 and 3) is prohibited. This
restriction feature is ignored by the PRGMR port.

To enable this feature, two methods can be used:

1. Program a rung containing only a coil
addressed to bit 6 of register 8176:

8176

| (—_]
./
06

2. Use a programming device in the DATA
ENTER mode to enter a “1” in bit 6 of
register 8176.

To disable the Register Protect Bit, delete the rung
AND THEN reset bit 6 to "0".

NOTE: Merely deleting the rung does not turn bit 6
off or disable Register Protect.

Page 6-12 30598.-730

6.13 Fenced Registers

Prohibits: Altering of any registers within a user-
defined fenced area through the COMM
or Ethernet ports (does not affect the
PRGMR port).

Uses: Control Registers/8173 and 8174

Registers 8174 and 8173 contain, respectively, the
beginning and ending addresses of an unprotected
user-defined block of data registers. All registers
outside of the defined block are protected from
alteration by outside devices. The default (power-up)
value in register 8174 is “1”; for 8173, it’s “8176”.
Thus, registers 8177 through 8192 are effectively
fenced.

Fenced registers are alterable through the PRGMR
port (Chnl 1) by other processors and programmers
whose security access level is set to OVERRIDE.

30598-730 Page 7-1

7 FLOATING-POINT MATH

7.1 introduction

This section provides information on the Model 650
floating-point (FLP) math capabilities. Floating-
point math allows these Model 650 processors to
perform high-level math operations on data values
containing a floating decimal point.

The Model 650’s floating-point operation conforms to
the ANSI/IEEE Standard 754 pertaining to the 32-
bit standard for floating-peint math.

7.2 Definition of Terms

Compare

{IF Instruction) Comparison of a value in
one data register to a
constant, to the value of a
second register, or to the

result of a math operation.

The result of one math
operation in an expression
containing multiple oper-
ations.

Intermediate Result ...

............ Math funetions + - x =+

Operator
Overflow Exceeding the numerical
storage range of the data
register.

The final value of any
mathematical expression
(result = A + B-0).

Also called a function key.
Multifunction keys locat-
ed above the uppermost
row on the keyboard of a
CRT Programmer or
function keys on an IBM®
keyboard using SFW
Programming Software.

Transfer
(LET Instruction)

Storing a constant num-
erical data value or math
result in a data storage
register.

7.3 Register Usage

The Model 650 processor uses different methods to
deal with data stored in integer and floating-point
registers.l See Figure 7.1

EVEN or ODD Address

INTEGER Storage Register

EVEN Address
(ODD Address + 1) 1

ODD Address
16 1 16

FLOATING-POINT Storage Register

Figure 7.1 Floating Point vs. Integer Register

7.3.1 INTEGER

The range for an integer data value stored in an
integer register (to be used in a math calculation) is
+32,767. The exceptions to the range limitations
are registers used in timers, counters, and matrix
pointers. Registers that store the current time and
count can range from 0 to +9999, while matrix
pointers cannot exceed 8000.

7.3.2 FLOATING-POINT OPERATIONS

The Model 650 uses two consecutively addressed 16-
bit data registers to create a 32-bit floating-point
data register, as shown above in Figure 7.1

A floating-point register can contain a number from
+3.4 X 1038 to £1.2 X 10-38, The mantissa is
limited to seven digits. Values are entered and
displayed using scientific notation. This notation is
shown as “E” followed by an integer representing the
power to which 10 is raised and multiplied by the

mantissa. For example, “25,000” is displayed as “2.5
E+04”. |See Section 7.4

Page7-2 30598-730

7.4 Addressing Floating-Point Registers

Of the register pair that make up a floating-point
register, only the ODD-numbered register can be used
as the address. If the even address is used, an “Illegal
Address” error results. The Model 650 automatically
assigns the even-addressed register that follows the
odd-addressed register. See|Section 7.5 for
instructions on how to directly enter floating-point
numbers.

When a rung containing a floating-point register is
entered into a ladder program, the letter F
(generated by the FLP soft key) precedes the odd
address value of that register. Refer to the following
example.

EXAMPLE: Given - A floating-point register pair,
F0051/F0052, is used to store the value 0.001234567
(1.234567 X 10-3). The rung used to program this
information is shown iff Figure 7.2

LET F0051 = 1.234567E-03
L

Figure 7.2 Example 1 Floating-Point LET Rung

Procedure: Press the LET soft key to produce another
menu of soft keys.

This new menu of soft keys describes and defines the
various data register types as shown below:

REG Integer Register
MATRIX Integer Matrix

FLP.REG Floating-Point Register
FLP.MAT Floating-Point Matrix
FLP.IMD Floating-Point Constant

Since a floating point register is being used here,

press the FLP.REG soft key and enter the odd register
(0051) address. | See Figure 7.3

F0051 FO052

16 Bits 16 Bits

Figure 7.3 Example Register
Structure

In Figure 7.3, F0051 specifies that register pair 0051
and 0052 will store the value 0.001234567 in 32-bit
format.

Register F0052 automatically becomes a part of the
floating-point register addressed as F0051. Once
assigned as half of a floating-point register pair,
register 0052 CANNOT be used for any other
purpose in the same ladder program, since the bit
pattern is only meaningful as part of a floating-point
pair.

NOTE: Attempting to program an even-numbered
floating-point address results in an “illegal
address” error.

After entering the register address, complete the box
using the “=" and "FLP.IMD” soft keys, followed by
the desired floating-point number.

LADDER PROGRAM REGISTER USAGE

Any of the first 8000 user-addressable registers in
the Model 650 can be designated as floating-point
registers. Since each 32-bit floating-point register
requires an odd-even 16-bit register pair (32 bits),
4000 floating-point registers can be used.

While it is not necessary to dedicate a block of
registers to contain floating-point values, it is always
a good idea to group together registers that serve the
same purpose such as external /0, internal 1/0,
integer storage, and floating-point storage.

0001
Designate these registers
as external /O points
0256 These can be
integer storage
0257 registers

These can be
floating-point
starage

registers (3500
register pairs)

Figure 7.4 Sample Register Allocation

7.5 Data Transfers (LET) and
Comparisons (IF) Using Floating-
Point Numbers

Floating-point registers are allowed within two types
of ladder program instructions:

1. LET Instructions
2. IF Instructions

30598-730 Page 7-3

7.5.1 DATA TRANSFERS (“LET" INSTRUCTION)

The LET operation copies a value (a constant, data
value, or math result) from the right of the equal

sign he register(s) on the left side of the equal
sign. | Figure 7.5|shows the operation of an integer

and a floating point data transfer (LET instruction).

I
Integer LET: ____, .y S0011 = 50034

Register contents [+ XXXX J I +YYYY]
before rung
is scanned: So0011 $0034

...

Register contents | +YYYY J[+YYYY]

after rung
is scanned: $0011 50034
0] . r
Floating-Point ____ LET FO011 = FOO35 __

LET:

[xxoxxeoo | fv.vvveoo |
F0011/12 :

Register contents
before rung
is scanned:

F0035/36

[v.vvveoo [F.vvv 5001 :
F0011/12 :

Register contents
after rung
is scanned:

F0035/36

...

Figure 7.5 Operation of LET Instruction

See:Section 7.8|for math operations allowed within
LET and IF instructions.

7.5.2 COMPARISON ("IF” INSTRUCTION)

The IF instruction compares the contents of a an
integer or floating-point register on the left of the
COMPARE symbol to a constant or value stored in
an integer or register to the right of the COMPARE
symbol.

When comparing two floating-point values for
equality, the two values must be exactly equal before
the IF rung executes TRUE.

Page 7-4 30598-730

7.6 Entering Floating-Point Values

SY/MAX family devices that can enter floating-point
data directly into floating-point registers include:

® Type SPR-300 Deluxe CRT Programmer, Series
“i” (Revision 2.6 or later).

® SY/MATE Programming Software.

ENTERING FLOATING POINT NUMBERS VIA THE
PROGRAMMING EQUIPMENT’'S DATA MODE

To enter a floating-point value into a register, the
keystrokes shown in the following table are required.
Assume that the number 0.001234567 (1.234567 x
10-3 is to be entered into odd-addressed register
0051.

The [bracket] notation refers to a soft (“function”)
key, while the bold type is a dedicated keyboard
key(s).

STEP # KEY(S) USED REMARKS

1 | DATA} Accessed from STATUS screen

2 | FLP.REG] Accessed from DATA screen.

3 51 Enters the first address of the
register pair.

4 [BIN.FLP) When pressed, the cursor will
move down one line and will
show the even-numbered
address (0052) of the selected
floating-point register pair.

5 1.234567€-3 | Enter the floating-point value

6 [ENTER) Loads the number into the
register pair

FLOATING POINT CONSIDERATIONS

® A seven-digit mantissa coupled to a double-digit
exponent is the limit of significant figure
accuracy when entering a floating-point number.

® A negative value can be entered by pressing the
[-] key immediately after the [BIN.FLP] soft key
is pressed.

® Ifa value is not entered in scientific notation, the
Model 650 automatically converts the value to
scientific notation when the [ENTER] soft key is
pressed.

® When entering a value in scientific notation, a
negative exponent is specified by pressing the [-]
key after the [E] key.

7.7 Displaying Floating-Point Values

When using a programming device, two methods for
viewing the data stored in floating-point registers
are available: the Data Display Mode and the Ladder
Rung Display Mode. Each of these is explained
below, and illustrated on the next page.

METHOD 1: From the DATA mode, press the
FLP.REG softkey. Next, enter the register’s odd-
numbered address, then press the DISPLAY softkey
(see[Figure 7.6). When using the Programming
Device in the DATA DISPLAY mode, floating-point
values are displayed in the BIN/FLP column in the
even (F0052) register address row.

NOTE: The “decimal” column of the DATA mode
screen displays meaningless data if the
register is a floating point register.

METHOD 2: Display the rung using the floating

point register by searching for_the rung, then
pressing the DISPLAY sofl key (sed Figure 7.7).

Page 7-5

30598-730
DECIMAL HEX 16...... BIN/FLP. 1 32...... STATUS...... 17
FOO51 XXXXX XXXX 1001 1000 0000 0000
FOOS2 XXXXX XXXX 1.234567€-03 1001 1000 0000 0000
MODE: CPU/DATA
REG. FLP.REG || DECIMAL [st BINFLP || DISPLAY || FORCE ENTER tT1AB || ¢ TAB
Figure 7.6 Data Display Mode
+ + + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + + +
T+ + + + + + + + + +
E-03
b Al ¥ ¥ + + + LET FO051 =1.234567€-03
MODE: CPU/SEARCH 1.2345
RUNG 0001 SEARCH OBJECT
4 + ||~)= || rea. NEXT 1 RUNG || + RUNG [} LaBELS || PRINT DISPLAY || ETC.

Figure 7.7 Ladder Rung Display Mode

Page7-6 30598-730

7.8 Floating-Point Operations Within

LET and IF Instructions

The Model 650 processor allows the|following| math

functions to be programmed within "LET" and "IF"
instructions.:

The number of math operations that can be
programmed into a "LET" or "IF" rung is limited by
the areas available in one row of the programming
ce’s ladder matrix display, as shown in Figure
7.9.

The above functions can be performed on any data
values; floating point, integer, or on any constant
floating point or integer.

SEQUENCE OF MATH OPERATIONS

Math operations are performed left to right within
LET and IF instruction boxes and may be placed only

to the right of the equal (=) or compare (<, =, etc.)
symbol, as shown in|Figure 7.8 (math operations can

be placed anywhere within the dotted box).

— LET FO11 = FO21 SIN + F461 SQRT -5.675 EOO; -

o

IN AN “IF” BOX

Figure 7.8 Math Operations in LET and IF Boxes

OPERATION SYMBOL ON CRT
Addition +
Subtraction -
Multiplication X INA“LET” BOX
,.. A (11 "areas” total)
Division -
Square Root SQRT
Sine SIN _
Cosine Ccos
Common (Base 10) Logarithm LOG IN AN “IF ,,BOX
(10 “areas” total)
Natural (Base e) Logarithm LN
Absolute Value ABS
Y to the X power Yoox Figure 7.9 Size Limits to LET and IF Boxes

MATH PROGRAMMING CONSIDERATIONS

® The maximum number of areas available in an
IF instruction is 10 when contacts are not
programmed in the same rung.

¢ The maximum number of areas available in a
LET instruction is 11 when contacts are not
programmed in the same rung.

NOTE: Multiple LET or IF rungs can be used if an
instruction requires too many operations to
be contained within one rung.

7.9 Floating-Point Operation Using
Matrices

In many floating-point applications, the use of
matrixes, in addition to single floating-point
registers, will minimize memory requirements.

A floating-point matrix or array is a group of
consecutively numbered floating-point registers.
The rules governing the use of matrixes are
explained in the Instruction Bulletin of the
programming device.

7.10 Combining Floating Point With
Integer Operations

Combining floating-point and integer registers in
the same LET or IF instruction is allowed in the
Model 650 processor. However, the user (i.e.,
programmer) should be very familiar with
programming techniques before attempting this type
of programming option.

The following sections provide examples and
considerations for combining floating point and
integer math within the same LET or IF instruction.

7.10.1 LETINSTRUCTIONS
If a single LET instruction contains operations
performed on both integer and floating-point values,

the final resul in the floating-point
format. Refer to/Figure 7.10

The final operation stores the math result into the
register specified on the left of the equal sign. If the
math result (floating point or integer) to the right of
the equal sign does not match the register type to the
left of the equal sign, the processor converts the math
result to match it. The following describes four cases
in which this occurs.

30598-730 Page 7-7

LET 50001 = S0002 + FO003 - 4 + S0011 x S0013

v v

. Step 1 Result
(floating point)

v

Step 2 Result

(loating point) _| ¢

Step 3 Result
(floating point)

\ 4 \ 4

Step 4 (Final) Result
(floating point)

Figure 7.10 Operation Sequence ina LET
Instruction Containing Both Integer and Floating-
Point Registers

NOTE: Once a floating-point value is encountered,
the remaining operations are automatically
converted to floating point by the processor.

Since the processor cannot store a floating-point
value in a 16-bit integer register, the floating-point
value is converted to a 16-bit integer value by
rounding the decimal fraction to the nearest whole
number. Values less than 0.5 are rounded down,
values greater than 0.5 are rounded up. For a
decimal exactly equal to 0.5, the rounded result is
the nearest even integer (for example, 2.5 is rounded
down to 2.0 while 3.5 is rounded up to 4.0).

Page7-8 30598-730

Case1- Integer Register on the Left, Floating-
Point Register on the Right:
LET § SXXX : = : Fyyy ———Jp! ConvertFXXX toa 16.

! bitinteger value, :
: rounding fraction to the :
5 nearest whole number

: Store this new integer value :
. inregister Sxxx.

The possibility exists in Case 1 for an overflow
condition. This is due to the transfer of a converted

floating-point value to an integer register. Refer to
Section 7.11] “Overflow Errors”.

Case 2- Floating-Point Register on Left, Integer

on Right:

Syyy ._-> Convert Syyy toa32-bit
: floating point value with

: the fractional portion equal :
 t0..000. :

: Store this new floating point value
inregister Fxxx. :

Case3- Floating-Point Register on Left,
Floating-Point Result on Right:
LET | Fxxx | = : Fyyy |

: Store Fyyy in
: register Fxxx. @

Case4 - Integer Register on Left, Integer
Register on Right:
LET © Sxxx: = ; Syyy

‘ Store Syyy in :
: register Sxxx. :

7.10.2 IFINSTRUCTIONS

When an IF instruction performs math operations on
both integer and floating-point values, the final

result on the right side of the compare will be a
floating-point value. See|Figure T7.11|below:

I S0001 = $0002 + FOOO3 - FOOOS - 50007
Step 1 Result
(floating point)

 Stepa~Convert | Step 2 Result

: $0001 to floating- : (floating point)

: point value. : ‘

Step 3 Result
(floating point)

: Step 5 -Compare 2
: the floating- pomt
values

Figure 7.11 Operation Sequence in a IF Instruction
That Contains Both Integer and Floating-Point
Registers

If the final result of several operations is a floating-
point value for comparison against an integer value,
the integer value is first converted by the Model 650
to an equivalent floating-point value. The four
possible “conversion/comparisons” are as follows:

Case 1 -Compare an Integer Value to a Floating-
Point Result:

Convert Sxxx to
: floating-point
: format.

Case 2-Compare a Floating-Point Result to an
Integer Value:

F Fox:z :§ Convert Syyy to
. : : dYyy —"» floating-point format. :

Case 3-Compare a Floating-Point Result to a
Floating-Point Value:
Cpoo - 2 Fyyy | No conversion

IF ?l:)(xx‘E =
: needed.

Case4-Compare an Integer Value to an Integer
Result:

No conversion
needed.

30598-730 Page 7-9

7.11 Overflow Errors
Overflow errors result from attempts to exceed a
storage register's capacity.

7.11.1 ACCUMULATOR OPERATION

When LET instructions (data transfers) or IF
instructions (data compares) containing math
operations are scanned, the intermediate and final
math results are temporarily stored in an
accumulator. The accumulator contains the current

running total of the math operatjon and is shown as
a shaded rectangle in|Figure 7.12|below:

LET FO001 =F0003 + FO00S + F0007 + FOOO9

1st Result* 2.0
2nd Result* 4.0
v v
Final Result* 7.0

*Given that F0003 = 1.0, FO005 = 1.0, FO007 =2.0, F0009=3.0

Figure 7.12 Accumulator Operation

The accumulator can store a much larger value than
floating point or integer storage registers. Numbers
in the accumulator can range from +3.4 x 10 -4932 to
11.2x10+4932,

NOTE: The operator has no direct control over the
operation or contents of the accumulator
unless one of the "Alternate Accumulator

Manipulations” functions is used. Refer to
Section 8.5|and page#Ean

Page 7-10 30598-730

7.11.2 WHY DO OVERFLOWS OCCUR?

Overflow errors are generated any time an attempt

is made to exceed a storage register's capacity. The indication of Exceedi
. . ndication of Exceeding
following table shovw{s register txpes and allowable Positive Overrange Limit
storage ranges. |Figure 7.14|illustrates where (+3.4x103%8)
REGISTER
overflows can occur.
HEX BIN/FLP
REGISTERTYPE CAPACITY F0051 0000 None
Integer +32,767% F0052 7F80 + INFF
Integer Accumulator +2,147,483,647*
ing Poi +1. -38
Floating Point . ; i X :0 18 to Indication of Exceeding
+34x10 Negative Overrange Limit
-3.4 x 1038
Floating-Point Accumulator +1.2x10 +493210 REGISTER ¢)
+3.4x 104932
HEX BIN/FLP
* Using -32,768 or -2,147,483,648 in a math statement may
produce an overflow error. F0051 0000 None
F0052 FF80 ~INFF

Although the Model 650’s control processor is
designed to prevent the floating-point math
coprocessor from generating a result of infinity from
a calculation (caught by the overflow checking),

infinity may be introduced into a floating-point
register by loading the values shown in|Figure 7.13

CAUTION

Avoid entering any infinity-producing
value into a floating-point register. Infinity
is a mathematically invalid result that
defeats the purpose of the overflow bits,
causing these bits to be unreliable. Once
present, infinity may propagate throughout
other calculations and produce unwanted
results.

Figure7.13 Overflow Indicators

30598-730 Page 7-11

LET* Fxxx = Fyyy + Fzzz x Faaa - Fbbb + Fecc
* For an “IF”instruction, Result #1
. anoverflow error
causes the rung to be
executed FALSE and
alsosetsbit8ofcontrol | ;A -------- It
register 8176 to “1". CYES . : Accumulator :
;__'__54' EOverrow? :
© Forthe "LET", an over- T L o
: flow sets bit 18 of . NO
: the recipient status field .
to “1”. The final result .
does not transfer. . \ 4
. Result #2
0 S o v
YES‘ ° T Overflow?
......... l et
NO :

Result #3

<_

: : Accumulator
i_YES,é" " Overflow?

Result #4 (FINAL RESULT)

: : ! Accumulator : : Floating Point or Integer : ' :
YES" * i Overflow? == NO s’ () 10w ? : VS

el :
E.TRANSFER ; et e : *
 FINAL <——— RESET OVERFLOW FLAG BIT |F SET ressssmmamems NO
RESULT ----- :. . -...... SET APPROPRIATE FLAG :
" ."'..“.'"“““"'.“”’EBIT,ANDDONOTEXECUTEE

Figure 7.14 Overflow Error Points

Page 7-12 30598-730

7.12 Special Math Functions

SY/MAX programming devices such as the SPR-250,
SPR-300, and SYM Programming Software use the
symbols shown in the following table to represent
some of the special math functions.

CRT SYMBOL MATH FUNCTION
SIN Sine
Ccos Cosine

SQRT Square Root

LOG Common (base 10) Logarithm
LN Natural {base e) Logarithm
Y**X Raise Y to the power of X
ABS Absolute Value

The special function always operates on the
intermediate math result created by any math
expressions preceding it (refer to|Figure 7.15).

LET Fxxx = Fyyy* + 2050 + 3000 + 4500 SQRT

4 v v

3500

v

6500

Transfer 11000

Result ‘ 3

1.048808E02 (Final Result)

k J *Assume F,,, = 1.45E03

Figure 7.15 Special Function Operation

RESTRICTIONS

The value that a math function operates on is called
the argument. Certain restrictions apply regarding
the sign and magnitude of the argument.

Figure 7.16 |illustrates the allowable argument

conditions for some of the special math functions.

ARGUMENT CONDITION
(*Y" indicates argument is allowed, “N” means
argument not allowed)
Special
Function Final Inter-
Result med.
ze Over | Value | Value | Result +
1 S - + Over | ByO
FP
Range Range
SQRT in Y N N Y Y N
LETorIF
SIN/COS Y N % Y Y N
nLET or
IF
LOG/AN N N Y Y Y N
nLETor
IF
YXm| oy N N Y Y N
inLET or
IF
YOXx) | v N Y Y Y N
inLET or
IF
ABS in Y N Y Y Y N
LET or IF
Figure 7.16 Allowable Special Function

Arguments

NOTE: Due to the behavior of the math
coprocessor, small inaccuracies may be
observed at function range extremes and
points of discontinuity. See the following.

TRIGONOMETRIC FUNCTION DISCONTINUITIES

The following results may be obtained when nearing
points of discontinuity in calculations:

® The sine of 0, 180 and 360° is 0; the Model 650,
however, may yield very small non-zero results.

® The tangent of 90° is infinity; the Model 650 may
report it to be an extremely large number (-
3.7E19, typically).

® The tangent of 180° is 0; the Model 650 may show
it to be an extremely small number.

Results similar to the above could occur when using
any trig function. If a problem is anticipated, it
should be compensated for in the user program.

30598-730 Page 8-1

8 SPECIAL INSTRUCTIONS

8.1 Description

The Model 650 instruction set has been expanded
beyond the use of floating-point five-function math,
sine, cosine, logarithms (base 10 and natural),
absolute value, and exponential math. Refer to
for a discussion of floating-point math and
the utilization of the listed functions.

NOTE: /t is strongly recommended that the
concepts in| Section 7|be understood before
proceeding with this section.

Programming the following instructions is
accomplished by pressing the SPECIAL soft key,
accessible when constructing an IF or LET rung,
followed by the corresponding function number
associated with the instruction. The appropriate
function is performed on the intermediate
mathematical result that exists just prior to
encountering the SPECIAL instruction.

NOTE: All mathematical operations are performed
from left to right and each operation is
completed before the next operation in the
rung is executed.

Certain functions, by definition, require a double
argument. The user should program a semicolon
(from the soft key display) after the function number,
followed by the second argument (which may be
either a constant or a register value).

Programming any of the single argument functions
results in the indicated operation being performed on
the intermediate result. To program, the user must
begin constructing a rung using the IF or LET box
format. The desired operation can then be applied to
any intermediate result which exists to the right of
the “=” sign.

To implement the desired function, begin with the
following “starting point” soft key display:

REG |MATRIX |FLP [FLP [FLP |+ 1- IX | 4+ |ETC
REG | MAT] IMD

Striking the ETC soft key produces a new display
which looks like the following:

AND [OR | XOR | SPECIAL [SIZE . ETC

Striking the SPECIAL soft key produces the
following display:

SIN | BCD | BIN | COS| SQRT | LN | LOG | ABS| Y**X

The user may now strike the proper soft key if one of
the listed functions is to be used, or may instead
enter from the keyboard the numeric value which
corresponds to one of the additional SPECIAL
functions. In the latter case, the entered number
appears in the IF or LET rung box and the soft key
display reverts to the “starting point” soft key
display.

After entering the desired numeric value, the user
may either exit the box (if finished constructing the
mathematical expression) or continue building the
expression by following the SPECIAL instruction
with either another SPECIAL instruction or a
mathematical operator (+, -, X, +). In either case,
the abbreviation SPEC appears in the box to indicate
the appropriate SPECIAL function has been entered
in the rung.

Page8-2 30598-730

Programming the double argument functions is
similar except that the user has to provide the second
argument in order for the function to be programmed
correctly. This must be provided IMMEDIATELY
after the numeric value which identifies the
SPECIAL double argument function. Thus, the
keystrokes employed for the double argument
functions are the same as for the single argument
function, but require the following additional
keystrokes:

1. After entering the numeric value which
corresponds to the desired SPECIAL function,
the soft key display reverts to the “starting
point” display:

REG | MATRIX | FLP | FLP] FLP | + | - | X | + | ETC

REG | MAT| IMD

2. Striking the ETC soft key changes the display to
the following:

AND | OR | XOR | SPECIAL | SIZE . ETC

3. Striking the semicolon (;) soft key, followed by
the ETC key (the display does not change after

striking the ;” soft key) prepares the box for the
second argument. The following is displayed:

REG | MATRIX | FLP | FLP | FLP | + | - | X | + | ETC

REG | MAT| IMD

The second argument can now be entered as either a
constant (integer or floating point number) or a
variable (integer register or floating point register).
Upon entering the second argument, the user may
either exit the box (if finished constructing the
mathematical expression) or continue building the
expression by entering either another SPECIAL
instruction or a mathematical operator (+, —, X, +).
In either case, the abbreviation “SPEC” appears in
the box to indicate the appropriate SPECIAL
instruction has been entered in the rung.

PROGRAMMING CONSIDERATIONS

® The first element to the right of the ”=" sign
cannot be a mathematical operator (+,-, X, or
+)or a SPECIAL function.

¢ Entering a numeric value for a SPECIAL
function that does not exist (i.e., a “Special
Number® greater than 65) generates
PROCESSOR ERROR 5 when the rung is loaded.

® When programming SPECIAL functions with
two arguments, the EXACT order of entry is
critical. The numeric value for the function must
be followed immediately by the semicolon from
the softkey display, which in turn must be
followed immediately by the second argument.

Along with the terminology in|[Section 7.2

familiarity with the following terms is necessary to
understand the rest of this section:

Floating Point

Accumulator An 80-bit ”scratch-pad”
register which contains
the intermediate result of
the Model 650’s floating
point calculations. It
provides precision that
would normally be lost
when using a normal 32-
bit floating-point register.
Also discussed in Sections

A 32-bit register which
contains the intermediate
result of an integer
operation.

Integer Accumulator ..

A different 80-bit register
that can be accessed by the
user to exchange or swap
information in the
floating-point accum-
ulator.

Alternate Accumulator

Intermediate Result(IR) The data register
immediately to the right of
the ”=" sign, or the
current running total of a
computation. The IR is

stored in the accumulator.

New Intermediate
Result (NIR) The result obtained after
applying a SPECIAL
function to the inter-
mediate result.

The notation for the
second argument of a
double-argument function.

Notation for the contents
of the alternate accum-
ulator.

Figure 8.1 lists all the special (SPEC) instructions
the Model 650 processor can perform, The SPEC
portion of the rung is shown below:

SPEC

H

Both types of the Model 650 can perform all of the
listed instructions.The sample rungs used in Figure
8.1 are for illustrative purposes only and are not
intended to produce practical results. Most of the
registers shown are integer type registers. For
certain functions (in particular the trig functions), a
floating point register would produce more accurate
results. Also, IF statements could have been used in
place of the LETs in most cases.

30598-730 Page 8-3
SI;EC Function Action Example
0 SIN(X) | Calculate sine of x SPEC
LET F11=F21 SIN
Convert binary
BINto | PatterntoBinary
! BCD Coded Decimal SPEC
LET $10=520 BCD
2 BCDto | ConvertBCD SPEC
BIN value to binary LET $10=520 BIN
3 cos(x) | Calculate cosine SPEC
of x LET F11=F21 COS
4 SQRT Calculate square
root of a positive
value SPEC
LET $10=S520 SQR
5 LN(X) | Calculate natural SPEC
log of x LET F11=F21 LN
6 LOG(X) Calculatel . SPEC
commoniogotx 1 er F11=F21 LOG
7 1| Calculate absolute SPEC
value of x LET $10=520 ABS
8 y*xx | Raise Y tothe SPEC
power of X JET S10=520 Y**X;530
Raise Y to the
power of the
value stored in SPEC
9 y**a T | the alternate LET $10=S520 9
accumulator
10 17X Calculate the SPEC
reciprocal of x LET F11=F21 10
High byte and low
1 SWAP 16 | byte of IR are
exchanged SPEC
LET $10=S520 11
Most significant
word in the IR
12 SWAP 32 { becomes the NIR SPEC
LET $S10=S20 12
Indirect register
read of status
field (data in S20
points to register SPEC
13 READ | wherestatusfield| g7 $10=%520 13
STAT is found)
Indirect register
read of data field
(data in S20 points
to the register SPEC
14 READ | where data field LET S10=S520 14
DATA 1slocated)

Figure 8.1

Special Instruction List (1 of 5)

Page 8-4 30598-730
SPEC . .
s;sc Function Action Example # Function Action Example
indirect register Calculate three-
bit search (find glme:\snonal SPEC
and reset the ypotenuse LET F11=F21 28;F31
15 | FINDBIT [lowest bitsetin SPEC 28 pHYPXYZ |
$20. Store 110 16 VIRZ * ARG2? * ALT?
to identify bit, or | LET 510= 520 15)
store -32.768 if all 29 ADD Perfarm statistical
bits are at “0") STAT | summation
$S20=IR
16 NEGATE | Change sign of SPEC = data, SPEC
current number LET $S10=520 16 $30 = ARG2 LET $10=520 29;530
= pointer
17 NUM Returns type of SPEC
Calculate variance
TYPE current number LET $10=S20 17 2 VARI- on statistical cpec
ANCE summation
Exchange current LET F11=530 30
and alternate SPEC
18 ACCALT | accum- LET S10=520 18
ulatars TAN(X) | Calculate tangent
31 of x SPEC
Add $20 to LET F11=F21 31
19 ADD ALT | @lternate accum- SPEC
ulator LET S10=S20 19 32 COSEC | Calculate 1/sin(x)
(X)
Subtract $20 f SPEC
ubtract 520 from LET Fl11=F21 32
alternate accum- SPEC
20 | suBALT | ulator LET $10=520 20 33 | SECANT | Calculate 1/cos(x)
(X}
Copy alternate SPEC
accumulator into SPEC LET F11=F21 33
current accum- =
21 | DUPALT | eurter LET $10=520 21 32 | coTan [calculate 11an(x) SPEC
x) LET F11=F21 34
Copy current
accumulator into SPEC 35 .| ARCSIN | Calculate sin-'(x)
alternate accum- _ (x)
22 DUP ACC | ulator LET $S10=S520 22 SPEC
LET F11=F21 35
Generates a
random number 36 ARCCOS | Calculate cos{x)
(from 0 to value X) SPEC
23 RAN- of curren_t accum- SPEC LET F11=F21 36
DOM ulator minus 1) LET S10=S20 23
ARCTAN | Calculate tan-'(x
54 | ROUND | RoundsFp SPEC 37 x) i
numbers to LET S10=F21 24 SPEC
integers LET F11=F21 37
25 SQUARE | Squares current SPEC 38 ARCTAN | Calculate SPEC
resuft LET $10=520 25 (Y/xy | tan Uy LET F11=F21 38;F31
Calculate two-
dimensional SPEC 39 ARCCSC | Caiculate SPEC
h se X sin-t(1/x -
26 | nyeor | 7P LET F11=F21 26;F31 o (1) LET F11=F21 39
40 ARCSEC | Calculate SPEC
VIRZ + ARG22? :
IR2 + ARG2 (x) cos ! (1/x) LET F11=F21 40
27 HYPALT | Calculate two- a1 ARCXCOT Cakﬁ"l‘lite SPeC
dimensional c Xy |rant (i) LET Fl1=F21 41
hypotenuse SPE
LET F11=F21 27 42 SET Set degree mode
DEGREE | fortrig SPEC
VIiR2 + 2 calculations
IR2 + ALT ulation LET F11=F21 42
Figure 8.1 Special Instruction List (3 of 5)

Figure 8.1

Special Instruction List (2 of 5)

30598-730 Page 8-5
SI;EC Function Action Example SPEC . i
Function Action Example
43 SET Set radian mode -
RADIAN | fortng SPEC 60 PI**E Mylthp:y tt)|¥1 pi SPEC
Iculation raisec to the =F
calculations LET F11=F21 43 power of & LET F11=Ff21 60
a4 DEG RAD | Convert degrees SPEC 61 E**E Multiply by e SPEC
toradians LET F11=F21 44 raised to the LET F11=F21 &1
power e
a5 RAD DEG | Convert radians to SPEC -
degrees LET F11=F21 45 62 E** M_l"nply by e SPEC
EULER raised to the LET F11=F21 62
a6 pPID REV | Calculate reverse- ng:r sz Buler's
acting PID loop SPEC nsta
LET $517=51 46 63 SQR(E) { Multiply by the SPEC
square root ofe LET F11=F21 63
47 piDDIR | Calculate direct-
acting PID loop SPEC 64 SQR(PI) | Multiply by the _ SPEC
LET $517=51 47 squarerootofpi | g7 F11=F21 64
48 PID MAN | Calculate manual 65 DRUM | Initiates Drum
mode for PID loop Sequencer
SPEC operation (the
LET S$517=51 48 second argument
is the number of SPEC
49 LEAD | Performthe steps in the LET $21=521 65;20
ILAG lead/lag function SPEC eguence. See
on a process section 11)
- - 66 - Reserved for
50 Pt Multiply by pi SPEC future use.
(3.1415...) LET F11=F21 50
, BWRITE | Enab}
base 2 0f 10 LET F11=F21 51 to Microceli (the
; second argument
52 L2E Multiply by log SPEC is the register
base 2 of e LET F11=F21 52 count, see Section SPEC
LETS1=51001 67;28
53 LG2 Multiply by log SPEC
base 10 0f 2 LET F11=F21 53
Figure 8.1 Special Instruction List (5 of 5)
54 LN2 Multiply by log SPEC
base e of 2 LET F11=F21 54
55 | EULER | Multiply by Euler's SPEC 8.2 Math and Trig Operations
Constant LET F11=F21 55
” . Maltiply by @ SPEC The operations listed m‘ are designed to
{natural LET F11=F21 56 enhance the functions listed in the programmer’s
logarithm) Instruction Bulletin. A number of high-precision
o7 1DEG | Multiply by one SPEC constap.ts are available in the Mf)del '650., along with
degree (in LET F11=F21 57 the ability to perform trig operations in either degree
radians) or radian mode.
58 1RAD | Multiply by one SPEC
radian (in LET F11=F21 58
degrees)
59 E**Pi Muitiply by e SPEC
raised to the LET F11=F21 59
power of pi

Figure 8.1

Special Instruction List (4 of 5)

Page8-6 30598-730

APPLICATION CONSIDERATIONS

® The default mode for trig operations is degrees ~ ® Although the CRT is limited to displaying seven

(initially set upon a HALT-to-RUN transition). figures, the internal accumulator precision
remains at 80 bits and the floating-point
® The selected mode remains in effect until either a register’s precision is 32 bits.
SPEC 42 or SPEC 43 is encountered or until a
HALT-to-RUN transition occurs. ® All other rules for IF and LET functions apply.
i SPEC e In Figure 8.2 the second column shows the "Special
Instruction # Description Number® which is used in the LET box to generate
that function. The SPEC number is the same that
INVERT 10 Takes the reciprocal of the appears in the first column of the preceding table.
intermediate result
(NIR = 1/IR)
NEGATE 16 | Changes thesign of the TRIG AND MATH CONSTANTS
:S;ermedlate result (NIR = 0-

Figure 8.3 below gives a list of constants available

ROUND 24 Rounds the current et - . . .
intermediate result to the for use in L!le Mode.l 650 programming §Lt. Entermg
nearest integer number. The the numeric function results in the intermediate
value 0.5 is converted to the result being multiplied by the indicated constant,
nearest even integer. which is stored to 80-bit (18 significant digit)

XSQRD 25 Squares the intermediate precision.
result

HYPOT 26 Calculates the two- . SPEC . - .
dimensional hypotenuse Instruction # IR Will be Multiplied by:

This is a double-argument
function. }
PI 50 Pito 18 significant digits

HYPXYZ 28 Calculates the three-
dimensional hypotenuse, a 127 51 tog base 2 of 10
double-argument function.

L2E 52 Log base 2 of the value of e

SETDEG A2 All subsequent calgulatlons
will be performed in degrees LG2 53 Log base 10 of 2

SETRAD a3 All subsequent calculations
wilf be performed in radians LN 54 tog baseeof?2

DEGRAD a4 Converts degrees to radians EULER 55 Euler's Constant

RADDEG 45 Converts radians to degrees E 56 Natural log e

TANGNT 31 Caiculates the tangent 1DEG 57 One degree, in radians

COSEC 32 Calculates the cosecant 1RAD S8 One radian, in degrees

SECANT 33 Calculates the secant ETOPI 59 e raised to the power of pi

COTAN 34 Calculates the cotangent PITOE 60 piraised to the power of e

ARCSIN 35 Calculates the arcsine ETOE 61 e raised to the power of e

ARCCOS 36 Calculates the arc cosine ETOEULR 62 e raised to the power of

Euler's Constant
Calculates the arc tangent

ARCTAN 37 9 SQRTE 63 The square rootof e
Calculates the arc cosecant

ARCCSC 39 SQRTPI 64 The square root of pi

ARCSEC 40 Calculates the arcsecant

ARCCOT 41 Calculates the arc cotangent Figure 8.3 Special Constants

Figure 8.2 Special TrigiMath Operations

NOTE: The new intermediate result in the
following table is denoted as “N ™.

Instruction

SPEC
#

Statistical Operation

ADDSTA

29

Adds the value preceding the

SPEC 29 entry to the statistical
block of registers (defined by

the pointer), as follows:

F1=5UM({X)=2X

F3 = SUM(X2) = X X2

$5 =N, where N is the
number of terms which
have been summed.

To be of practical value, the
LET statement that initiates
the ADDSTA function must be
transition-sensitive. If itisn’t,
the summation operations will
be performed every scan. The
maximum legal value for N s
+32,767.

VARNCE

30

Calculate the variance on the
accumulated statistical block.
The number preceding the
SPEC 30 in the LET box must
point to the same block of
registers used by the ADDSTA
function.

NIR = N*[sumpxd)] - [sumo)?
N*(N-1)

= N*Xx2-(Xx)2
N*(N-1)

Since the standard deviation
is, by definition, the square
root of the variance, the
standard deviation can also be
obtained by taking the square
root of the result of the
VARNCE operation

In the same way, the mean can
be obtained by dividing the
first floating point register
assigned to the statistical
block by the fifth, as in the
following:

MEAN = SUM(X) = 31X = F1
N N $5

Figure 8.4 Statistical Functions

30598-730 Page 8-7

8.3 Statistical Operations

The number preceding SPECIAL 29 in the LET box
(X) represents the numeric quantity to be operated
on and then stored in the statistical block. The
number can be contained in either an integer or
floating-point register.

The second argument (which follows the semicolon)
may be a constant or a variable and must be an odd
integer ranging from 1 to 7995. This integer is used
as a pointer to a user-specified block of 5 registers of
accumulated data. Note that the first four registers
are actually a pair of floating-point registers and the
fifth is an integer register.

SPEC

Instruction # Read Operation

Reads the status field of the
indicated indirect register.
- The status field becomes the
new IR (NIR =status field of
the register pointed at by the
IR).

RDSTAT 13

Reads the data field of the
indicated indirect register.
The data field becomes the
new IR (NIR = data field of the
register pointed at by the IR).

RDDATA 14

Locates and identifies the
lowest bit set in the indirect
register data field. The lowest
bit position that is set becomes
the new IR, then the bit itself
is reset. If no bits are found to
be set, the NIR becomes 8000H
(-32,768). Thus, the only
values which the NIR can
become after execution of
FNDBIT are 1 to 16 (if bit IS
found), or -32,768 (if bit ISN'T
found). To be of practical
value, the LET statement that
initiates the FNDBIT function
should be transition sensitive.
If not, the operation is
performed every scan and the
user may not perceive proper
operation.

FNDBIT 15

Figure 8.5 Register READ Operations

8.4 Indirect Register Read Operations

For the functions listed in Figure 8.5, the number
preceding the SPEC function in the LET box acts as
an indirect pointer to the desired register. The
indirect pointer must be an integer (representing a
number or a storage register) ranging from 1 to 8000
or 8097 to 8192.

Page8-8 30598-730

SPEC

instruction # Manipulation Performed

Similar to the math operation
Yx, except that Y is raised to
the power of the alternate
accumulator (NIR = IRALT)

YTOALT 9

Exchanges the intermediate
result with the alternate
accumulator (IR becomes ALT
and ALT becomes IR)

ACCALT 18

19 Adds the intermediate result
to the alternate accumulator.
The intermediate result
remains the same.

ADDALT

20 Subtracts the intermediate
result from the alternate
accumulator. The
intermediate result remains
the same.

SUBALT

21 Duplicates the alternate
accumulator. The NIR assumes
the value in the alternate
accumulator (NIR = ALT), and
the alternate accumulator
remains unchanged.

DUPALT

Duplicates the accumulator
(intermediate result). The
intermed ate result is copied
Into the alternate accumulator
(ALT = NIR), and the IR remains
unchanged.

DUPACC 22

Calculates the hypotenuse
based on results stored in the
alternate and IR accumulators

HYPALT 27

I NIR= (VIRZ + ALT?)

Calculates the arc tangent for
the ratio of the intermediate
result to the second argument
| NIR = ARCTAN (IR/ARG2)]

ATANYX 38

Figure 8.6 Accumulator Manipulations

8.5 Alternate Accumulator
Manipulations

The functions in Figure 8.6 allow access to the two
80-bit floating-point accumulators in the Model 650.
These accumulators maintain a high accuracy which
might otherwise be lost in a standard 32-bit floating
point register. See also and pages|8-2
andIE '

8.6 Bus Write to Microcell

Instruction SF;EC Action Performed
BWRITE 67 Performs an immediate write

ot data to the specified
register, with the count value
indicated by the second
argument.

Figure 8.7 Bus Write to Microcell

When exchanging data with the Microcell via the
backplane, the image table operation of the Model
650 processor requires some special considerations
not explicitly stated in Section 8 or Section 11.4 of
the Microcell Instruction Bulletin #30598-275-xx.
The following technique for reading and writing
registers applies to Model 650 processors,
Revision 2.00 or later, used with Microcells which
are Revision 4.0 and later. Earlier revision
Microcells will allow Model 650 processors to write
data over the backplane, but not to read any
registers.

Reading Registers

All rack addressed Microcell registers (maximum of
256) are read by the processor into its image table as
part of normal End-of-Scan updating.

Writing Registers

Any rack addressed Microcell registers can be
written to the processor by utilizing the following
SPECIAL command.

SPEC

LET Saaaa = Sbbbb 67; ccc

-

aaaa = first Microcell destination register.
bbbb = processor source register
cce = register count

where:

SPECIAL 67 is similar to an Immediate 170 Update
instruction and results in the contents of the block of
processor registers starting at address bbbb to be
written to the block of Microcell registers starting at
address aaaa, with the block size determined by the
register count ccc. Note this is different from a
standard LET statement which only transfers data

within the image table registers of the processor.
The following application considerations apply:

® The processor must be Rev. 2.00 or greater; the
Microcell must be Rev. 4.0 or greater.

® The format must be exactly as shown above; bit
18 in the status field of reg. aaaa will be set to
indicate the instruction has failed to execute due
to improper formatting.

® The Microcell must be located in the same rack
as the processor.

® A minimum of 28 registers (maximum of 256)
should be rack addressed to the Microcell.

® The SPECIAL 67 instruction, |Figure 8.7] is

intended to be used only for performing direct bus
updates of Microcell registers, and should not be
applied to other modules (use Immediate 1/0
Update instruction instead).

The following examples illustrate the use of the
SPECIAL WRITE command to update registers in
the Microcell. Note any of these registers can be
READ using standard (e.g. IF) instructions.

Example 1— Updating the FILE COMMAND Registers

Section 11.4 of the Microcell Instruction Bulletin
#30598-275-xx shows three examples for
downloading a file, appending an MCM file, and
shutting down the MCM by writing to the first 28
Microcell registers. Each example uses a ladder
rung employing a MATRIX statement to accomplish
the register data transfers. Each of these statements
needs to be replaced by the SPECIAL 67 format, with
the “PNTR” value being replaced by the “count”
value of the new instruction.

Thus, the rung of section 11.4.1 now becomes

SPEC

LET ST = $31 67; 28

-

30598-730 Page 8-9

Example 2 — Reading and Writing
the BUS DATA Registers

Assume the first 156 system registers have been rack
addressed to the Microcell. Registers 29-156 are the
BUS DATA registers, available for reading and
writing register values. Because these Microcell
registers are automatically read into the processor
image table at the end of each scan, they can be
monitored with the standard instruction set.

In order to write the contents of (for example)
registers 1001-1128 into these registers, use the
SPECIAL instruction.

SPEC

-

LETS29 = S1001 67; 128

Note if a regular LET or MATRIX statement was
used instead to update registers 29 through 156, only
the processor’s internal image table registers would
be updated; these registers would subsequently be
overwritten when the corresponding Microcell
registers were automatically read during normal
ind-of-Scan updating.

Page 8-10 30598-730

8.7 Miscellaneous Instructions

The table in Figure 8.7 lists the various
miscellaneous instructions that are available with
the Model 650 processor.

Instruction

SPEC

Action Performed

RANDOM

23

Generates a random number
The number preceding the
SPEC 23 box is used as the
argument value for the
generator. The new IR will fall
in the range 0 to (IR-1).

NOTE: An argument value of
0 or 1 will return a random
number value of 0, while an
argument greater than 32,767
or less than 0 produces an
error.

SWAP 16

1

Exchanges the high byte (3-16)
and low byte (1-8) of the IR
The IR must be an integer in
the range +32,767.

SWAP 32
(Integers only)

Copies the high word (17-32)
of the IR to the low word (1-
16) of the IR. The high word ts
sign extended, either all “0s
(ifbit16isa “0"), or all “1”s (if
bit161sa“1").

NUMTYP

17

Identifies the number type of
the intermediate result. The IR
becomes a value from 0 to 14,
according to standards applied
to the Motorola 68010
microprocessor and 68881
math coprocessor as shown
below:

0 Positive normalized
or de-normalized

1 Positive not-a-
number

2 Positive infinity
3 Unused

4 Positive zero
5-7 Unused

8 Negative normalized
or de-normalized

9 Negative not-a-
number

10 Negative infinity
11 integer zero

12 Negative zero

13 Negative integer

14 Positive integer

Figure 8.7 Miscellaneous Operations

30598-730 Page 9-1

9 PID OPERATIONS

9.1 Introduction

REGISTER # PURPOSE
NOTE: A more C‘.)mﬁl)’et.e disc::jssion;)fthe e quatl'ogs L1, L2 Integral Summation [SUM (1)]. These two
e suhens s sor oy || SRRy pon
(“PID Closed Loop Control”) or 30598-240-0X L3 Value of the process variable used the last time
(“Process Control Module”). the loop was updated (PVn-1)
14 Not Used
Algorithms are available in the Model 650 processor L5 The output from the loop solution (QUTPUT)

for solving the following three types of PID loops:
Reverse-acting (PIDR)

L6 Value of the process variable used during the
present loop update (PVn)

L7 The set point {(SP)
[2.] Direct-acting (PIDD)
L8 LOOP STATUS
Manual (PIDM)
BIT2: 1 if loop is notin manual

0 if loop isin manual

The number that precedes SPEC 46, 47 or 48 in the _ N '
Special Instruction LET box (an odd integer from 1 to BIT 3: (1)‘; :°°P fsin :qtomta'uc e
7981) is a pointer to a user-defined block of 18 Hioopisnotin automa

storage registers. BIT 10: 1 if loop is direct-acting
0 if loop is reverse-acting

BIT 14: 1if high output limit

exceeded
9.2 Register Allocation 0 if high output limit not
exceeded
The block of 18 storage registers provides BIT15: 1if low output limit
information needed by the Model 650 to execute the g’:ﬁgﬁeg tout limit not
PID algorithms, and must follow the format shown in exceededu P '
Figure 9.1.
BIT 16: 1 if low output limitis
. . T . illegall be high
The “L" prefix in Figure 9.1 indicates the relative Ithi%athyesﬁgr? Ii:\it'g *
position within the 18-register block. For example, if
registers 51 through 68 are set aside for the PID L9,L10 Not Used

algorithm registers, “L1* would refer to register 51,
”L5” would refer to register 55, and so on. The
boldface items in Figure 9.1 are parameters used in

L1 Proportional (gain) constant (K) Thisisa
dimensionless number.

equations. L12 Integral (reset) constant (K)) in repeats per
minute
L13 Derivative (rate) constant (Kp) in seconds
L14 Bias or offset (B) in %
L15 High output limit, in %
L16 Low output fimit, in %
L7 Not Used
L18 Sample interval (Tg) in milliseconds

Figure 9.1 PID Register Allocation

Page 9-2

30598-730

PROGRAMMING CONSIDERATIONS

The tuning parameter values of SP, Kp, K, Kp,
and B are entered with programming equipment
or in the user program.

Registers L5, L6, L7, L14, L15, and L16 are
entered to reflect a percent of scale from 0000 to
9999. The decimal point is implied as XX.XX.
For example, an OUTPUT of 50% is entered as
5000, a PROCESS VARIABLE value of 7475
represents 74.75% of full-scale, etc.

Registers L11, L12, and L13 are entered in the
range of 0 to 32,767 with the decimal point
implied as XXX.XX. For example, a gain of 1.00
is entered as 100, a reset of 27 repeats per minute
is entered as 2700, while a rate of 150 seconds is
entered as 15000.

Register L18’s (sample interval) implied decimal
point is XX .XXX. For example, a sample
interval of 200 milliseconds is entered as 200,
while a sample interval of 10 seconds is entered
as 10,000.

The high and low output limits are entered in the
same format as the tuning parameters, as a
percent of full-scale.

The loop algorithm calculates SUM (1) and
OUTPUT, and stores PV,_q for the next
calculation. The user needs to input PV, and
transfer the calculated OUTPUT to a real-world
analog output register. These manipulations
typically occur through ladder rungs.

Additional ladder rungs are required to set up a
total PID function. See the example in Section

In order to ensure the integrity of the
calculations, the Model 650 performs limit
checks on the variables loaded by the user. Valid
ranges are defined as follows:

0= X=9999 for OUTPUT, PV, SP, Bias, and
High and Low Output Limits.

Xz0 for K, Ky ,and Kp,

X>0 for sample interval Ty

If any of these range limits are not observed, the
PID algorithm is not executed and bit 18 of the
destination register (the register to the left of the
“="gign in the PID rung) is set to flag the error.
In addition, the processor sets bit 18 of the out-of-
range register to facilitate troubleshooting by
identifying the source of the illegal value.

All registers in the user-defined PID register
block must have addresses in the range of 1 to
8000.

9.3 Reverse-Acting Loop

The SPEC 46 entry in a LET box calculates a
reverse-acting (PIDR) loop in the following sequence:

Kp " K * Ts * (SP-PV,,)

1. SUM (1) = +SUM(1)
6*1010
2. LETL1,L2 = SUM{)
Kp* (SP-PV,)
3.0UTPUT = |SUM() +— — +
10,000
Kp* Kp* (PV, 4 —PV,) B
+
T¢* 1000 10 |00

4. LET PV, =PV,

CLEAR bit 10 of register 8 (reverse-acting flag)

6. Iflow output limit exceeds high output limit, set
bit 16 of register 8 to flag this illegal condition

7. Check if output exceeds the high output limit. If
YES,andK; # 0, aback calculation is performed
on the integral sum.

IF OUTPUT > High output limit:
A. Setbit 14 of reqister 8

high output limit-OUTPUT
+SUM(I)

B. LETL1 = 100

C. LET OUTPUT = high output limit

8. i OUTPUT < (high outputlimit + 1), reset bit 14 of
register 8 to indicate that high limit is not exceeded.

9. Check if output s below the low output limit. If
YES,andK; # 0, a back calculation is performed
on the integral sum.

IF OUTPUT < Low output limit:
A. Setbit 15 of register 8
tow output limit-QUTPUT
100

B. LETL! = +SUM(1)

C. LET OUTPUT = low output limit

10. 1f OUTPUT = low output limit, reset bit 15 of
register 8 to indicate that low limit is not
exceeded.

11. The final action in the Reverse-Acting Loop is to
store the newly-calculated loop QOUTPUT value in
L5 and in the SPEC 46 LET box register which is just
to the left of the * =" sign.

30598-730 Page 9-3

9.4 Direct-Acting Loop

The SPEC 47 LET box calculates a direct-acting
(PIDD) loop. The algorithm used is identical to the
one used for the reverse-acting loop, except that the
sign for the mathematical difference between SP and
PV terms is reversed.

The change in sign results in changes to the first,
third, and fifth steps of the sequence in Section 9.3.
All other steps are the same as shown in Section 9.3.

As with the PIDR, the newly-calculated loop
OUTPUT value is stored both in register L5 and in the
register to the left of the ”=" sign in the SPEC 47
LET box.

Kp * K, * T * (PV,—SP)

1.suM() = +SUM(I)
6" 1010
2. SAME AS PIDR
K, * (PV,-SP)
3. outrut = SUM() + ——— — +
10,000
Ko * Kp * (PV, -PV,) B
= | 100
5 * 1000 100

4. SAME AS PIDR

5. SET bit 10 of register 8 (direct-acting flag)

6. SAME AS PIDR

7. SAME AS PIDR

8. SAME AS PIDR

9. SAME AS PIDR

10. SAME AS PIDR

11. SAME AS PIDR

Page 9-4 30598-730

9.5 ManuallLoop

The SPEC 48 instruction in a LET box causes the
PID loop to be manually (PIDM) controlled. The
number preceding SPEC 48 in the LET box must
point to the same block of 18 registers as did the
PIDR or PIDD loop algorithm.

The PIDM loop is executed as follows to facilitate a
bumpless transfer to AUTO:

1. LETSP = PV, (sets the setpoint equal to the
process variable)

2. LETB = OUTPUT (sets bias equal to the loop
output)

3. LETSUM() = 0 (zeroes out the integral
summation)

4. LETPV,, =PV,

5. The final action in the Manual-Acting Loop is to
transfer the OUTPUT value in L5 to the SPEC 48 LET
box register which is just to the left of the “ = *
sign.

NOTE: When adjusting the OUTPUT while under

manual control, the user must make the

adjustments to the LS output register in the

18-register block and not directly to the
egister assigned to the external output. See

in Section 9.7.

9.6 LEAD/LAG Functions

NOTE: This function is also described in Instruction
Bulletin #30598-240-0Ox.

The SPEC 49 (LEDLAG) instruction in a LET box
performs a LEAD/LAG calculation on the process
variable (PV). The number preceding SPEC 49 in
the LET box is used as a pointer to a user-defined
block of seven registers. This number must be an
integer from 1 to 7993.

In the following table] (Figure 9.2)] a ”Z” prefix is
used to denote the seven storage registers that are
used in the LEAD/LAG calculations. Characters in
boldface represent variables used in the equations
that follow.

The LEAD/LAG algorithm calculates Q, based on
user-entered values for T, Ty, and T;. Since these
values are stored in integer registers, they contain
an implied decimal point that must be entered in the
following format:

For Tqand T;
For Ty

REGISTER # FUNCTION
Z1 The resulting calculation for this lead/lag update
Q)
22 The process variable used in this update (PV,,)
Z3 The sample interval in milliseconds (T)
24 The lead time constant in hundredths of a
second (Ty)
z5 The lag time constant in hundredths of a second
(T)
76 The resulting calculation from the previous
update (Q,_¢)
7 The process variable from the previous update
(PVyy)

Figure9.2 LEADILAG Register Allocation

OTHER CONSIDERATIONS

® The process variable (PV) must be loaded into
register Z2.

® The calculated value of Q, must be transferred
into the PIDD or PIDR loop register L6 (the
process variable register).

® The LEAD/LAG algorithm retains Q-1 and PVp,_¢
for the next calculation.

® Inorder to ensure the integrity of the calculations,
the Model 650 performs limit checks on the
variables loaded by the user. Valid ranges are
defined as follows:

0=<X=9999 forPV.
Xz0 forTgand T;
X>0 for sample interval T

If any of these range limits are not observed, the
LEAD/LAG algorithm is not executed and bit 18 of
the destination register (the register to the left of the
“=" sign in the LEDLAG rung) is set to flag the
error. In addition, the processor sets bit 18 of the out-
of-range register to facilitate troubleshooting by
identifying the source of the illegal value.

Seein Section 9.7 for typical ladder rungs

required.

The SPEC 49 entry in a LET box causes the following

steps to occur:

K
—_— K
100

Qn—|

100

+

T,

1000

Ty

100

PV,

100

1.Q.=

2.

3.

NOTE:

Td PV,

*

T, T

1000 100 J

-

LET PV, , = PV, (prepare for next calculation)

LET Q.4 = Q, (prepare for next caiculation)

Since the LEAD/LAG algorithm performs a
calculation, it is governed by the same rules
as any calculation. If the result of the
calculation cannot be represented as a 16-bit
integer (-32767 to 32767), then numerical
overflow errors (refer to (Section 7.11
Overflow Errors) will occur. When this
happens, the LEAD/LAG calculation is not
executed.

Overflow may occur the very first time the
LEADILAG function is calculated whenever
the lag constant (Z5) is set to '0000". As a
strictly lead calculation, the algorithm
simplifies as follows:

x(Py, - PV,

30598-730 Page 9-5

From this relationship it can be shown that if
(TS Ts) is greater than or equal to ’1’, then for
PV, - PV,-1 values greater than 2978
(approximately 29.78 per cent of scale),
numerical overflow will occur. The first time
the calculation is performed, PV,-1 is equal
to ‘0000°. It is also possible for signals with a
low signal to noise ratio for overflow to
occur periodically during normal ladder
scanning.

The LEAD/LAG algorithm in lead only mode
is a differentiator. A differentiator is
designed to amplify signal, with noise
included. The overflow condition can be
detected and appropriate application action
can be taken. Assume the following
LEAD/LAG rung:

- SPEC
LET S0500 = 0201 0049]—

—

If overflow occurs in this ladder rung,
overflow bit 0500-18 will become energized,
and the LEAD/LAG algorithm will not
execute. This overflow bit can be used by an
application rung to compensate for the
overflow condition.

0500 —
}— LET 0207 = $202 [—
18 .

Page 9-6 30598-730

9.7 Application Considerations
and Examples

While the loop algorithms in this section are the
same as shown in Instruction Bulletins 30598-301-
XX and 30598-240-XX, certain differences exist in
the way the Model 650 executes and implements the
results. For example, although the loop update time
is user-specified, the Model 650 scan time and 1/0
update time must be fast enough to accommodate the
loop time.

The concept of throughput must be understood, and
the Special Instruction Set for the Model 650 (Section
of this manual) must be read and understood as
well. A working knowledge of PID operation and a
good grasp of the terminology contained in two
Instruction Bulletins - 30598-3071-0X and 30598-
240-0X - is recommended before proceeding with this
section.

Instruction Bulletin #30598-301-0x, entitled Class
8010 PID Closed-Loop Control, Using the SY/MAX
Model 300 Programmable Controller, describes the
use of a PID control program which can be loaded
into a Model 300 or 500 Processor via cartridge tape.
The discussions of the PID control equation in
Sections 2.0 and 3.1 of that bulletin should be
compared to the algorithms for PIDD and PIDR in
this bulletin; they are identical except for data on
sample interval.

Also, note the similarities between the register
usage table in Section 3.2 of Bulletin 30598-301-0X
and the usage in the Model 650; loop number, alarm
status, and alarm acknowledge registers are not used
in the Model 650, but the loop status does use several
bits. The PV, integral sum Most Significant Digit
and integral sum Least Significant Digil registers
also differ from the 30598-301-0X bulletin.

Instruction Bulletin #30598-240-0X, titled Class
8040 Type PCM-110 Process Control Module,
describes the PID algorithm that is available in the
firmware of the PCM. The PID control equation in
Figure 8.2 of that bulletin should be compared to the
PIDD and PIDR algorithms in this Model 650
bulletin. Note that the PID algorithm A in the PCM
bulletin is the same one used for the Model 650.

The register usage table in the PCM bulletin should
be compared to the usage of the Model 650. Register
differences exist because the PCM, being a dedicated
closed-loop controller, has many features not found
in the Model 650. References to alarm status, remote
setpoint, deadband, etc., as well as listings beyond
loop register 15-do not apply to the algorithm used by
the Model 650 (although applying a LEAD/LAG
function to the process variable does exist in the form
of a SPEC 49 LET box). The following examples
show how some of these special functions are
utilized.

CAUTION

These examples are intended to be used
only as guidelines when implementing the
algorithms. It is the user’s responsibility to
understand these examples before
incorporating these or any other rungs into

a working program.

EXAMPLE ONE:Reverse-acting single PID loop
(PIDR loop)
GIVENS:

® The setpoint (SP) and tuning (K, K, Kp, and B)
parameters are already set.

® The process variable input is in register 513.
® The process variable output is in register 517.

® The 18-register PID definition register block
consists of registers 51-68.

® Reverse-acting PID control will be applied
based on a 200 ms loop update time.

® The loop calculations must be performed at 200
millisecond intervals. For this example, the
necessary repeatability will be achieved with a
timed interrupt subroutine. Note use of timed
interrupt precludes RUN-mode programming.
If RUN-mode programming must be preserved,
some other technique (such as using register
8166 Lo regulate repeatability) must be used to
ensure execution based on the 200 millisecond
sample interval time.

e If the loop is not in AUTO, loop control will
default to MANUAL.

RUNGS NEEDED:

1.

TIMED INTERRUPT RUNG - The following rung
must be the very first rung in the program if a
timed interrupt subroutine is used. It allows the
main program to call the subroutine containing
the PID algorithm at specified intervals. In this
example, the subroutine is called every 200
milliseconds with a tolerance of 15 milliseconds.
[See Section 6.8.1] Note that use of the timed
interrupt subroutine does not allow for RUN-mode
programming.

—
— TLET

S8165 = 6:80

2. SAMPLE INTERVAL RUNG - The following rung

establishes the sample interval in milliseconds in
register 68 (L18). The interval in this example is
200 ms; this value must agree with the value in
rung 1, and represents the frequency with which
the routine must be executed.

—— LET S68 = 200

. HIGH OUTPUT LIMIT RUNG - The following

rung programs the high output limit into register
65 (L15).
limit of 9999 is programmed.

——1 LET S65 = 9999

. LOW OUTPUT LIMIT RUNG - The following

rung programs the low output limit into register
66 (L16). In this example, the minimum low limit
of 0000 is programmed.

—— LET 566 = 0000

4

THE MAINLINE USER PROGRAM EXISTS HERE, BETWEEN
RUNG “4” ABOVE AND RUNG “A” BELOW

{

A.SUBROUTINE AREA RUNG - The following

rung appears only once in any program, and
serves to mark the memory area which holds all
subroutines.

——i

MARK ST. SUB

In this example, the maximum high-

30598-730 Page 9-7

B. START SUBROUTINE RUNG - The following

rung marks the point at which the timed interrupt
subroutine begins.

MARK 8190

.COPY PV RUNG - The following rung copies the

process variable from the external input register
(513 in this example) into the loop process
variable register (56 in this example, defined as
L6 in the register block).

LET 556 = $513

D.EXECUTE PIDM CALCULATION RUNG - The

following rung begins PIDM calculations if bit 2 in
register 58 has been reset; if bit 2 = 0, then loop is
in MANUAL. Register 51 is the pointer that both
points to the register block 51-68 and also defines
register 51 as L1, 52 as L2, etc. Register 517 is
this example’s external output register, where the
calculated output is placed.

58 SPEC
——| / |— LET 517 = 51 48 —l
02

.EXECUTE PIDR CALCULATION RUNG - The

following rung begins PIDR calculations if bits 2
and 3 in register 58 have been set. These two bits
correspond to the "mode status” bits previously
described. Bit 2 set to “1” indicates the loop is
NOT in manual, while bit 3 set to “1” indicates the
loop is in the AUTO mode. Again, register 51 is
the pointer that both points to the register block
51-68 and also defines register 51 as L1, 52 as L2,
etc. Register 517 is this example’s external output
register where the calculated output is placed. To
change this loop to a PIDD (direct) loop, only
change SPEC 46 to SPEC 47 in the following rung.

58 58 SPEC
—HHw sres W]
03 02

.RETURN FROM SUBROUTINE RUNG - The

following rung identifies the end of the timed
interrupt subroutine.

RTN 8190

Page 9-8 30598-730

EXAMPLE ONE PROGRAMMING CONSIDERATIONS

® The execution time of the timed interrupt ® There is no absolute limit to the number of PID

subroutine should be kept as short as possible.
The rungs that establish the loop initialization
constants (for sample interval, high output limit
and low output limit- rungs 2, 3 and 4 in
example 1) are programmed in the mainline
area of the ladder program.

Rung C in the subroutine (which transfers the
process variable into register L6) is executed
immediately prior to the PID rungs (D and E) so
that the most recent input update is used in the
PID computations.

Bit 2 of register 58 controls whether the loop is
under manual or automatic control. In the
Example One program, the loop can be disabled
(no PID computations performed) if bit 2 of
register 58=1 (loop not in MANUAL) and bit 3
of register 58 =0 (loop not in AUTOMATIC).

The order in which rungs D and E are
programmed is irrelevant.

The OUTPUT for rungs D and E also exists in
register 55 (L5). Programming the external
output register 517 avoids programming the
additional rung: LET 8517 = S55.

If the loop is being executed in MANUAL (bit 2
of register 58=0), the output must be adjusted
in register 55, NOT in register §17. For
example, to set the output to 50% of full-scale
range, the value 5000 is entered into register
55. When the Model 650 executes rung D, the
contents of register 55 are transferred into
register 517. If 5000 had been entered into
register 517, it would have been overwritten by
the current contents of S55 in the transfer
operation.

The worst-case execution time for the block of
rungs within the timed interrupt subroutine is
approximately one millisecond.

loops that the Model 650 can execute. Practical
limitations for a given system are a function of
the number of available registers, system
throughput, and the user’s ability to manage
multiple loops. Additional PID loops can be
executed by either adding the necessary blocks
of rungs into the MARK ST. SUB area or by
multiplexing the loop algorithm by changing
the pointer from a constant to a variable and
the output register from a single address to a
matrix. The first method is simple; the second
requires experience in advanced programming.

System throughput is decreased for every PID
loop that is added to the program. The
interrupt rate must be infrequent enough to
allow the Model 650 to scan the remainder of
the program in a reasonable amount of time for
the application.

If the PID algorithm fails to execute as
expected, check to see if bit 18 of register 517 is
set to indicate an out-of-range condition. If set,
monitor the other registers in the block to
determine which register is out of range, as
indicated by bit 18 of the offending register.

If the execution time of the timed interrupt
subroutine exceeds the interrupt rate, ERROR
29100 is generated and the Model 650 halts.

If the interrupt tolerance is too restrictive,
ERROR 29102 is generated and the processor
halts.

LEAD/LAG Function Used With
Example One Program

EXAMPLE TWO:

NOTE: Instruction Bulletin 30598-240-XX contains
more information on the LEAD/LAG
function.

Assume the same conditions exist as in Example One
except that the LEAD/LAG function is to be applied.
Additional given conditions for the LEAD/LAG
portion of the program are therefore required.

LEAD/LAG GIVENS:
® The process variable exists in register 513.

® Registers 71-77 (Z1-Z7) make up the block that
defines the LEAD/LAG function.

® The sample interval T is preset in register 73
(Z3).

NOTE: The user must enter the LEAD/LAG time
constants (Tp and Ty in registers 74 (Z4) and
75 (Z5) respectively.

The following rungs must appear in the timed
interrupt subroutine and replace “RUNG C“ as
shown in the previous Example One in the first
example:

The following rung presets the sample interval (in
milliseconds) into register 73 (Z3). This number
must correspond to the timed interrupt interval
specified in rung 1 and also match the interval
specified for the PIDR or PIDD algorithm.

LET §73 = 200

30598-730 Page 9-9

The following rung loads the process variable into
register 72 (Z2) for use in the LEAD/LAG
calculation.

LET §72 = S513

The following rung performs the LEAD/LAG
function on the process variable currently loaded in
register 72 (Z2). “71” is the pointer that points at
registers 71-77. The calculated Q, is placed in
register 56 for use in the upcoming PIDM or PIDR
calculations.

SPEC
LET §56 = 71 49 A,

30598-730 Page 10-1

10 ASCIl COMMUNICATIONS (Input and Output)

10.1 ASCilInput

NOTE: Since ASCII input may not be assigned to the
Ethernet port (Channel 3), this section
applies only to ports 1 and 2 (PRGMR and
COMM ports).

The Model 650 uses an enhanced PRINT rung format
to allow inputting of ASCIl-coded data. Termination
of the ASCII input string can be done either by
character count, character delimiter, or both.

10.1.1 DESCRIPTION/INITIATION

The ASCII input programming format is similar to
that of ASCII output. A special register address
(S80086) is inserted as the first register in the PRINT
statement and is used to identify the mode.
Subsequent entries in the PRINT statement further

define the function. The ASCII input r
programmed with all entries as shown in| Figure 10.1
LOGIC
r—' BAUD = STAT = REG == REG = REG —— ALPHA
—l TPRINTY X SAAAA 58006 sSBBBB SCCCC DD]

L—

Figure 10.1 ASCll input Rung
Each rung parameter in Figure 10.1 is explained as
follows:

LOGIC upon becoming TRUE, the port specified by
Y is enabled to accept ASCII input
characters. When FALSE, the port ignores
the ASCII input and reverts to SY/MAX
protocol communication, unless a complete
ASCII input string had not been received

when previously TRUE. Refer to Section
ﬂ-IO.I.B

Y is the CHANNEL that receives the input,
being either 1 (PRGMR port) or 2 (COMM
port). The serial word structure for channel
1 is defined in register 8099. The structure
for channel 2 is in register 8100. See Figure
-10.3

X is the BAUD RATE for the selected channel
(Y). See|Figure 10.5(for available baud rates.

SAAAA is the STATUS REGISTER assigned to this

$8006

SBBBB

SCCCC

DD

communication rung. DO NOT use this user-
specified register for any other purpose in the

program. Error codes that may appear in the
status register are listed in|Section 10.1.5
is not actually a register, but is the

COMMAND that defines the box as an
ASCII input box.

identifies the STARTING REGISTER for
storing the data block. The block can hold no
more than 256 ASCII characters. If more
than 256 characters are input, an error is
sent to the status register and ERROR 19 is
posted. This register is the start address, not
a pointer to a start address. Each register in
the block will contain a single character
(stored in the least significant byte).

identifies the register whose contents specify
the number of characters to be inputted.
When this number of ASCII characters has
been received, the ASCII input string is
terminated and bit 16 of the associated
status register is set ON.

are the contents of the ALPHA box that
identifies the ASCII character which the
user specifies as the block terminator
(delimiter). The desired terminator
character should be loaded, followed by a
space (space bar) character to shift the
character into position. When this character
has been received, the ASCII input string is
terminated and bit 16 of the associated
status regiiter is set ON.

CAUTION

At the end of every block of received data,
the Model 650 appends a null (00) character
to mark the end of the block. Due to this
feature, the user MUST reserve one
additional register beyond the maximum
character count for the block size. If
insufficient registers are reserved,
incoming data may overwrite register data
that is used for other purposes in the
program.

Page 10-2 30598-730

NOTES:

1. If no characters are entered for DD in the ALPHA
box, the default block terminator is a space
(20H).

2. Setting the contents of SCCCC to zero defaults to
the maximum input block size of 256 characters.

3. If both SCCCC and DD are specified, the ASClI
input block will stop upon reaching the first
condition to be satisfied.

10.1.2 PORT CONFIGURATION
Both the PRGMR and COMM ports of the Model 650

are configured as RS-422 ports. The pinout for these
ports is shown in[Figure 10.2

NOTE: RTS and CTS hardware handshaking signals
are not supported. Pins 5, 6, 7, and 8 are
used for + 5VDC and signal commons.

50} +s5vDC
sHiEtD | O 9
4 O] DATAIN +
sicgNaLcommon | O 8
3 Ol pATAIN-
SIGNALCOMMON | O 7
20| pataouT+
+5vDC] O 6
1 O| partaout-

~

Figure 10.2 PRGMR and COMM Port Pinout

When configuring each of the PRGMR and COMM
ports for ASCI! input, registers 8099 (for PRGMR)
and 8100 (for COMM) are used.
illustrates what each of the bits in these two
registers is used for and how to configure the port for
the desired word structure.

15 CNTL-CFlag
|(See Section 10.1.4)|

16 Clear Queued

14 Reset bit 8 for
8-bit word length
(ASCII output)

Buffers 1 =Received
[(See Section 10.1.4)| 0 = Not Received A 1 =Reset
1 = Active 0 =Unaltered

Register 8099 PRGMR port
Register 8100 COMM port

0 =Inactive

[(See section 10.2.1)]

=

16 1511413 (12|11 {109 (18 (|7 [|[6 |5 (4 [i3 |2 |1
/ | j Tt Il
13 Activate Periodic \
DLE/ENQ Stream
(ASCll Output) 11 XON/XOFF Select: 14 Baud Rate
, _1 =Actve / (ASCH Output) (See Figure 10.5)
(Se;Seon 132) ! = Enabled
. 0 = Disabled
/ [(See Section 10.2.5)] 5and6 Wwordtength
7and8 Parity I
12 Store NULL I 6 | 5| LengthinBits
Characters 9and 10 Stop Bits 8 | 7| ParityType
1 =YES 101 9 Number of 00 8
0 =NO Stop Bits 0] 0} Even ol 7
0| 1| Odd
o lo 1 1 0 6
1 0 N
0|1 15 one Vi >
1 1 None
1 0 2 * invalid ASCI and SY/MAX protocol word fength
1 1 2 ** Invalid SY/MAX protocol word length

Figure 10.3

PGRMR and COMM Port Configuration Registers

10.1.3 OPERATION

When the logic preceding the ASCII input box
transitions from FALSE to TRUE, the specified port
is enabled to receive ASCII, queueing up an input
buffer. Once enabled, the port remains enabled to
accept an ASCII input string even if the logic
preceding the ASCII input box becomes FALSE.

Incoming characters are then stored in a
communication port buffer until a complete ASCII
string has been received. As soon as the final
character is received, the port buffer ignores future
ASCII characters. These characters are lost unless
another port buffer has been queued to accept them.
A total of 11 buffers exist for both ports. Of these,
up to 9 can be allocated by the processor to a single
port. This makes it possible to anticipate multiple
ASCII input strings by enabling multiple ASCII
input rungs, or even by repeatedly transitioning the
logic of a single rung, since a new buffer is allocated
(queued) upon every transition.

The port buffer is then read by the processor during
its end-of-scan communication port servicing and the
ASCII characters are moved into the registers
specified in the ASCH input rung.

RESULTING BIT STATUS

PORT ASCii
BUFFER
LOGIC QUEUED INPUT BIT 16 | BIT 17 | BIT 22
STATUS
FALSE NO INPUT 0 0 0
DISABLED
TRUE YES INPUT 0 1 1
ENABLED
TRUE NO INPUT 1 1 1
COMPLETE
FALSE YES INPUT 0 0* 0
ENABLED
TRUE NO (all INPUT X 0 1
previously | ENABLED [(don't
allocated) care)

* When LOGIC is FALSE, status bits are cleared but buffer
remains in queue.

Figure 10.4 Bit Status vs Logic and Buffer States

30598-730 Page 10-3

BAUD RATE CODE

BINARY
BITS
4321 DECIMAL | BAUDRATE
0000] 50
0001 1 110
0010 2 300
0011 3 1200
0100 4 2400
0101 5 4800
0110 6 9600
0111 7 19.2K

Figure 10.5 Baud Rate vs Bit

Pattern (See|Figure 10.3]

Bits in the status register reflect Lthe above
situations; bit 22 is set to “1” when the input logic is
TRUE, bit 17 is set when a port buffer is enabled for
input, and bit, 16 is set when a complete ASCII input
string has been received and processed by the CPU.
Figure 10.4 shows which status bits are set based on
the ASCI! input rung’s current logical state and
whether a port buffer is queued for ASCII input from
a previous FALSE-to-TRUE logic transition.

Buffers become “linked” with the ASCII input rungs
in the order in which they are executed TRUE,
unless all 9 buffers have been allocated. In this case,
even though status register bit 22 is set, bit 17 is not.
This indicates that all buffers are queued. A buffer is
not freed up until a complete ASCII string has been
received and the buffer has been read by the Model
650 during its end-of-scan activities.

NOTE: If all 9 buffers are simultaneously used for
ASCIll input while priority SY/MAX
communications (READ, WRITE, ALARM) are
transmitting out the other port, port 2
(COMM) must be used for ASClf input, port 1
(PRGMR) is used for the SY/MAX
communication.

Page 10-4

30598-730

10.1.4 APPLICATION CONSIDERATIONS

ASCII storage registers contain the binary code
for the ASCII character, not the character itself.
For example, the ASCII character “0” is
represented as “48” (decimal), where an ASCII
“A” is represented as “65” (decimal).

One ASCII character is stored per register (in the
least significant byte).

ASCII input information does notl appear in the
storage registers until a complete block, defined
by the block size or the terminator, has been
received.

Null (00) characters may either be disregarded or
stored as valid characters. See in Figure
10.3.

If null charaecters are disregarded, the end of the
input register block is defined either by the block
terminator or by the first register to contain a
null character.

The following description applies to bits 15 and
16 of port attribute registers 8099 and 8100.

Bit 16 - when set, aborts any pending ASCII
input instructions and clears any port
buffers queued for an ASCII input string.
This is a means of error recovery when
characters in an ASCII input string are
lost or garbled. Setting bit 16 to “1” via a
coil in the ladder program gives the user
a means of purging the input buffers in
preparation for a new ASCII string.

NOTE: /n order to work properly, bit 16 MUST
be set via a coil in the ladder program
and NOT by any other means, such as a
LET orvia DATA ENTER, COMMs, etc.

Bit 15 - acts as a flag that recognizes an ASCII
input BREAK command. Upon receiving
a CTRL-C (03H), bit 15 latches ON. For
example, when programmed as a contact
to control bit 16, a CTRL-C character
issued from the ASCII output device
purges any queued ASCII input buffers.

Both bits 15 and 16 of the port attribute registers
are reset to “0” upon power-up.

Upon a power cycle, port 1 (PRGMR) resets to
9600 baud, 8-bit word, even parity, with one stop
bit in order to be compatible with the SY/MAX
protocol. Port 2 (COMM) retains any changes
made to its attributes.

DEL/CLR ALL does not cause port attributes to
reset to the default values unless prompted by a
“CLR MEMORY NEEDED”.

Because valid ASCII characters are defined as
seven bits long, the Model 650 (when configured
to receive an eight-bit ASCII word) masks off the
state of bit 8 in the incoming character.

Halting the Model 650 or setting bit 16 of
register 8099 or 8100 to “1”, while awaiting an
ASCII input string, clears any queued port
buffers, halts the ASCII input instruction, and
generates ERROR 17 in the status register.

The ASCH input function only operates properly
when the device that is outputting the ASCII
characters is directly connected to a Model 650
port. ASCII sent over the network is not
accepted by the ASCII input function.

When a port is queued for ASCII input while
FORCING is active, the “ASCII port” is assumed
to be dedicated to the ASCII input function. If
the cable is removed from the other
communication port, no DLE/ENQ characters
are transmitted out the ASCII port to inquire if a
programming device is present.

If a port’s word structure is altered, it remains
altered even after the port reverts to SY/MAX
protocol. SY/MAX protocol requires an 8-bit
word with even parity, and one stop bit, to
operate correctly.

The ASCII input data block (of up to 256
characters) must be stored in register addresses
8000 or less.

The status register used in the ASCII input rung
MUST have a register address of 8000 or less.

10.1.5 ERROR CODES

The error codes shown in|Figure 10.6(below apply to

the ASCII input operation and may appear in the

status register of the ASCII input rung (“SAAAA”,

ERROR
NUMBER DESCRIPTION

1 Receiver overflow. The Model 650 1s unable
to handle incoming characters fast enough,
due to the servicing of other interrupts.

13 Parity error

15 Framing error. Typically due to baud rate
or word structure problems.

17 Input was terminated before a complete
ASClt string was received. Results from
either the CPU going to HALT or bit 16 of
register 8099 or 8100 being set. 1f bit 1615
set, butfers queued for ASCll input are
cleared.

19 Buffer overflow. The 256-character buffer
was filled before the terminating character
was received.

Figure 10.6 ASCll Input Error Codes

10.2 ASCl Output

The capability for outputting ASCII characters via
PRINT statements exists for all Model 650 ports.
Refer to the appropriate programmer instruction
bulletin 30598-167, 30598-174 or 30598-717 for
general information on programming PRINT rungs.

10.2.1 STANDARD ASCII FORMAT

The standard ASCII characters are output as RS-422
signals (seefor pori pin-out) defaulting
to 8-bit words with even parity and 1 stop bit,
transmitted at 9600 baud.

NOTE: Since ASCH output may be assigned only to
ports 1 and 2 (PRGMR and COMM ports), the
baud rate and ASCll output considerations
do not affect port 3 (Ethernet port).

30598-730 Page 10-5

If the receiving device does not automatically mask
off bit 8 (typically indicated when half the characters
are received correctly, the other half garbled), set bit
14 of register 8100 for port 2 (register 8099 for port 1)
to 1 to cause the processor to perform the mask.
Another alternative to match output default settings
is to set up the receiving device for a 7-bit word with
odd parity and 2 stop bits. Other settings may be

accommodated by adjusting registers 8099 or 8100,
refer td Figure 10.3

Standard PRINT statements allow outputting fixed
ASCII characters (represented by ALPHA entries in
the PRIN'T rung) and register contents (represented
by REG entries in the PRINT rung). This allows an
English language message to be augmented with
variable register data. Each REG entry will result in
6 ASCII characters being transmitted, representing
up to 5 decimal places plus sign (if negative) or space
(if positive). Leading zeros will automatically be
transmitted as spaces. Each standard ASCII PRINT
statement automatically appends a CR and LF to the
ASCII string, unless suppressed with a semicolon (;)
in the last ALPHA position.

10.2.2 RAW BINARY ASCIl FORMAT

While the standard ASCII format will handle the
majority of ASCIl output applications, some of the
special CONTROL CODES (ESC, DLE, etc.) cannot
be accommodated by the ALPHA entries. Any 7-bit
ASCII code (0 through 127) can be output via the
Raw Binary ASCII format.

To invoke the Raw Binary format, utilize the same
PRINT statement as for the standard format with 2
exceptions: REG S8004 must be the first element
following STAT in the horizontal PRINT box (refer to
below) and all subsequent elements of
the box should be REG, not ALPHA.

To output the ASCII codes, store the desired 8-bit
patterns in the registers specified by the REG
elements. The data in each register will be treated
as a pair of 8-bit characters (low-byte bits 1-8, high-
byte bits 9-16) with each byte ranging from 0
through 127. The high-byte character is transmitted
first, followed by the low-byte character. If the
contents of the register is a single byte (0-127), then
that byte, representing a single ASCII character, is
transmitted.

Page 10-6

30598-730

EXAMPLE: This example demonstrates the use of

register 8004 in a print rung to set the
Model 650’s “raw binary” output format.

10 ,—-——— BAUD — STAT - REG — REG — REG

—| |- TerNT2 300 $25

-08

$8004 5501 S502

Figure 10.7 Raw Binary Example

To output a carriage return (CR), a line
feed (LF), and the number “1”, three
bytes are required. This requires
assigning two registers - the first register
contains the CR in the high byte and the
LF in is the low byte. The second
register’s low byte contains the number
“1”. Registers 501 and 502 are used in
this example to contain the ASCII codes

which can be found in|Figure 10.8.

A suggestion on how to store these values
is to multiply the desired high byte of
register 501 (the CR is ASCII 13) by 256
then add the low byte (the LF, ASCII 10)
to the product. This yields 3338 which is
stored in register 501. This leaves the
single byte (the number “17); store its
ASCII value (49) directly in the low byte
of register 502.

When the contact 10-08 is closed in the
above rung, a CR followed by a LF
followed by the number “1” will be sent
out of port 2 at 300 baud.

APPLICATION CONSIDERATIONS

® Default format is standard ASCII for each new
PRINT rung.

® Multiple formats may be used in the same rung
by entering a REG value of S8001 (for standard
ASCII) or S8004 (for Raw Binary ASCII).

® Raw binary format character entries should be
REG elements, not ALPHA.

® The processor automatically appends a CR and
LF at the end of any standard ASCII PRINT
statement unless suppressed by a semicolon; no
characters are appended to a Raw Binary ASCIH
PRINT statement.

® Data is transmitted as a 7-bit ASCII word with
odd parity and 2 stop bits, except for Raw Binary
format, which is an 8-bit data word with even
parity and 1 stop bit.

e BAUD rates up to 19.2 K are allowed, and
BAUD RATE should be specified in each PRINT
rung.

® FEach PRINT rung must have a unique status
register.

o If a PRINT rung is programmed to transmit no
data, a single NULL (00 hex) will be transmitted.

10.2.3 MISCELLANEOUS ASCll FORMATS

Up to this point, the REG elements in a PRINT box
could be output as a standard decimal value (5 digits
plus sign in the standard ASCII format) or as an
ASCII character representation (in the “raw binary”
ASCII format). It is also possible to print out the
register contents in 2 other formats: a 16-digit
binary representation of the register bit pattern (all
characters either “0” or “1”) or a 4-digil hexadecimal
representation (characters 0 through F).

To invoke the 16-digit binary representation, have
REG S8002 be the first element following STAT in
the horizontal PRINT box; for the 4-digit
hexadecimal representation, use REG S8003 as the
first element. All subsequent REG elements of the
PRINT box will be output in the respective format.

NOTE: To cause a PRINT box format to revert to the
standard ASCll default of 5 digits plus sign,
replace 58002 or S8003 with $8001.

30598-730 Page 10-7

10.2.4 REPEATED CHARACTER STRINGS

For applications which require outputting the same
character numerous times, another special format is
available. By having REG S8005 as the first element
following STAT in the horizontal PRINT box,
subsequent REG elements will be interpreted such
that the low byte represents the ASCII character (0-
127) and the high byte the number of times this
character is to be repeated (up to a maximum of 192).
If the high byte = 0 or is greater than 192, no data is
sent.

10.2.5 XON/XOFF HANDSHAKING

For all PRINT formats, the Model 650 can be enabled
to support XON/XOFF software handshaking while
outputting ASCII. Setting bit 11 of register 8099
(PRGMR port) or 8100 (COMM port) to 1 allows a
receiving device (a printer, for example) attached to
the respective port to instruct the Model 650 Lo stop
sending ASCII. The device does this by sending a
“DC3” (13H or CTRL-S) to the Model 650. When the
receiving device is again ready to accept ASCII, it
sends a “DC1” (11H or CTRL-Q) to the Model 650.

NOTE: When XON/XOFF is active while SYIMAX
communications (READ, WRITE, ALARM) are
being transmitted out the other port, port 2
(COMM) must be used for the ASCII
function; port 1 (PRGMR) or port 3
(Ethernet) must therefore be used for the
SY/MAX protoacol device.

Page 10-8

30598-730

10.3 ASCIl Hex/Decimal Conversion

Figure 10.8 provides a conversion table for ASCII
characters in hexadecimal and decimal numbers.

ASClt VALUE ASCH VALUE ASQil VALUE ASCil VALUE
Character | Decimal (Hex) Character | Decimal (Hex) Character | Decimal{Hex) Character | Decimal (Hex)

NUL 00 (0000H) Space 32 (0020H) @ 64 (0040H) ! 96 (0060H)
SOH 01 (0001H) ! 33 (0021H) A 65 (0041H) a 97 (0061H)
STX 02 (0002H) “ 34 (0022H) B 66 (0042H) b 98 (0062H)
ETX 03 (0003H) # 35 (0023H) C 67 (0043H}) C 89 (0063H)
EOT 04 (0004H) $ 36 (0024H) D 68 (0044H) d 100 (0064H)
ENQ 05 (0O005H) % 37 (0025H) E 69 (0045H) e 101 (0065H)
ACK 06 (0006H) & 38 (0026H) F 70 (0046H) f 102 (0066H)
BEL Q7 (0007H) 39 (0027H) G 71 (0047H) g 103 (0067H)
BS 08 (0008H) (40 (0028H) H 72 (0048H) h 104 (0068H)
HT 09 (O009H)) 41 (0029H) | 73 (0049H) i 105 (0069H)
LF 10 (O00AH) * 42 (002AH) J 74 (004AH) J 106 (0O06AH)
vT 11 (000BH) + 43 (OOZBH) K 75 (004BH) k 107 (006BH)
FF 12 (000CH) . 44 (002CH) L 76 (004CH) | 108 (006CH)
CR 13 (000DH) - 45 (002DH) M 77 (004DH) m 109 (0O06DH)
SO 14 (000EH) 46 (002EH) N 78 (004EH) n 110 (O06EH)
Sl 15 (000OFH) / 47 (002FH) o) 79 (004FH) o 111 (006FH)
DLE 16 (0010H) 0 48 (0030H) P 80 (0050H) o] 112 (0070H)
DC1 17 (0011H) 1 49 (003tH) Q 81 (0051H) q 113 (0071H)
DC2 18 (0012H) 2 50 (0032H) R 82 (0052H) 4 114 (0072H)
DC3 19 (0013H) 3 51 (0033H) S 83 (0053H) 5 115 (0073H)
DC4 20 (0014H) 4 52 (0034H) T 84 (0054H) t 116 (0074H)
NAK 21 (0015H) 5 63 (0035H) U 85 (0055H) u 117 (0075H)
SYN 22 (0016H) 6 54 (0036H) v 86 (0056H) v 118 (D076H)
ETB 23 (0017H) 7 55 (0037H) w 87 (0057H) w 119 (0077H)
CAN 24 (0018H) 8 56 (0038H) X 88 (0058H) X 120 (0078H)
EM 25 (0019H) 9 57 (0039H) Y 89 (0059H) y 121 (0079H)
sSuB 26 (001AH) 58 (003AH) z 90 (OOSAH) z 122 (007AH)
ESC 27 (001BH) . 59 (003BH) { 91 (005BH) { 123 (0078BH)
FS 28 (001CH) < 60 (003CH) \ 92 (005CH) | 124 (007CH)
GS 29 (001DH) = 61 (003DH)] 93 (005DH) } 125 (007DH)
RS 30 (001EH) > 62 (003EH) B 94 (O0SEH) - 126 (007EH)
us 31 (001FH) ? 63 (003FH) . 95 (005FH) DEL 127 (007FH)

Figure 10.8 ASCll Hex/Decimal Conversion

30598-730 Page 11-1

1

SEQUENCER

11.1 Description and Initiation

The Model 650 processor is equipped with a
Sequencer function that allows the output of
information based on time driven and/or event
(input) driven conditions.

OPERATIONAL ATTRIBUTES

® Up to 255 steps can be defined in a sequence.

o Up to 64 outputs can be controlled.

® Stepping can be performed forward, reverse, or
non-sequentially.

® Automatic or manual operation is allowed.

® An automatic step advance can be based on time,
events (up to 16 inputs), or both.

® Time accumulated during a step can be held
(paused).

® QOutput state change can be inhibited despite step
completion.

® Individual step times can be programmed with a
resolution of 0.1 second.

® A sequence can be repeated, or halted after a
single pass.

® As many Sequencers can be programmed as
allowed by register availability.

The Sequencer is initiated via the SPEC 65 function
command. This command points to a block of
registers which contain the operating parameters of
the Sequencer.

The minimum rungs needed to program one
Sequencer are shown in Figure 11.1

~ LOGIC

/O—

Sequencer RESET/ENABLE Bit (D2-01)

SPEC
—— LET $ZZ2Z = XXXX 65; YYY
1
Figure 11.1 Sequencer Initiation Rungs

The rung variables in Figure 11.1 are:

LOGIC Logic in the first rung allows the
Sequencer to be reset, or enabled to
operate.

$277Z A dummy output register. The data in
this register will always be the current
step number. The recommended
programming parameter is: ZZZZ =
XXXX.

A value that points to the definition
register block. This value must be a
constant and range from 1 to 7984.
Subtract 6 more for each additional step.
i.e., the next step would be 7984-6 =
7978.

SPEC
65 SPECial Instruction #65. Specifies the
Sequencer function.

The number of steps in the Sequencer.

Must be a constant from 1 to 255.

NOTE: Placing logic in front of the LET box could
result in the Sequencer not being executed.

Page 11-2 30598-730

11.2 Register Block Allocation

The overall length of each Sequencer register block
is variable and changes depending on the number of
steps programmed into the Sequencer.

The first ten registers in the block are always the
configuration table registers and serve to define
conditions for all steps. Each step also requires six
registers to define itself.

Figure 11.2|illustrates how the Sequencer registers
are allocated. Since each step used within the
Sequencer requires six registers, the total number of
registers required per Sequencer is calculated as
follows:

[6 x (number of steps) + 10]

See |Section 11.2.1] for information on the
configuration table registers and|11.2.2|for the step
table registers.

NOTE: The “D” prefix is intended to convey the
idea that the register numbers in Figure 11.2
represent relative positions - NOT fixed
register numbers.

11.2.1 CONFIGURATION TABLE REGISTERS

The first ten registers in each Sequencer register
block are the configuration table registers. Their
function, which affects all steps in the Sequencer, is
described in the table shown in|Fiéure 11.3

D1
D2

D3
D4

D5
D6
D7
D8
D9
D10

D11
D12
D13
D14
D15
D16

D17
D18

Current Step

Operating Mode

Current Step Running Time

Pointer to input Register

Pointer to 1st Output Register

Output Width Definition

1st Non-Sequential Step Register

2nd Non-Sequential Step Register

Step During Previous Scan

Spare

Step #1 Time Condition Advance

Step #1 Input Condition Advance

Step #1 Output States (1st Reg.)

Step #1 Output States (2nd Reg.)

Step #1 Output States (3rd Reg.)

Step #1 Output States (4th Reg.)

Step #2 Input Condition Advance

\/

(In this case, registers 17 through
22 will perform the same functions
as registers 11 through 16 except
that conditions for Step #2 are
defined.)

Configuration
Table
Registers

See Figure

!

Step #1
Table
Registers

igure
115}

A

Step #2
Table
Registers
see Figure
115

Figure 11.2 Register Allocation

30598-730 Page 11-3
PURPOSE REGISTER D2
REG::TER BIT # PURPOSE
D1 Current step number. Indicates which step 1 Reset/Enable Sequencer (“1” = ENABLE,
is presently executing. If changed by the “0” = RESET) When initially enabled,
user, the sequencer will immediately go to sequencer begins with step #1. Outputs
the indicated step. pointed to by registers D5 and D6 will
assume the state dictated by Step
D2 Operating mode register. This register Register D13 {and D14-D16 if D62 17).
defines the sequencer’s operating
conditions. See or a definition 2 Sequence Step Direction
of each bit in this register, and Sections (1" =reverse, "0 = forward)
andor descriptions of the
status bits. 3 RUN/PAUSE Select ("1 = pause, “0" =
run) When this bit = 0, elapsed time for a
D3 Amount of time that the current step has step is allowed to accumulate. When
been executing. When this register is bit=“1", time will not accumulate.
greater than or equal to the “step time”
condition advance (D11, D17, etc), a step 4 Automatic Step Advance Inhibit.
advance based on time is enabled (“1" = hold data, “0” = advance step)
When bit =0, outputs will assume the
D4 Pointer to the input register. Bits in the next state when conditions for an
register being pointed to will be compared automatic step advance have been
with the “step input” condition advance satisfied. When bit = 1, outputs will
(D12, D18, etc.). When the pattern of retain their previous state whether or not
specified”1”s is matched, a step advance the automatic step advance conditions
based on input conditions is enabled. if have been satisfied.
contents are zero, sequencer operates
strictly on time condition advance. 5 AUTO/MANUAL Select (“1” = manual
operation, “0“ = automatic operation)
D5 Pointer to the first output register. The When in AUTO mode, sequencer is
contents of this register point to (define) controlled by time/input advance
the first register address of the output information. When in MANUAL,
field. Bits from the first register of the sequencer advance is controlled by bit 7.
respective “step output” states (D13, D19,
etc.) will be written to the register being 6 SINGLE PASS/REPEAT Select ("0" = single-
pointed at by the contents of DS. pass, “1" = auto recycle) When bit=0,
sequencer will execute the sequence one
D6 Bit width of output data. Validrange is time. At the conclusion of the sequence
from 1to 64 Thisregister defines how (the last step), all outputs will reset and
many bits (beginning with the output the "current step” register D1 will
register defined by register D5) make up indicate “0”. When bit = 1, sequencer will
the output field. A value greater than 16 proceed to step #1 after meeting all
will begin with the low-order bits of the required conditions for advancing
next consecutive register; for example, if beyond the last step.
register 21 is pointed to as the first output
register, and output width = 18, sequencer 7 Manual Advance ("1“ = advance,
outputs will be written to register 21 and “0” = maintain) If bit #5 =1, toggling
the first 2 (least significant) bits of register this bit from “0" to " 1" will advance the
22. Bits 3-16 of register 22, along with sequencer
registers 23 and 24, are unaffected.
8 Sequential/Non-sequential (“1“ = next
D7 Non-sequential step register. Setting bit 8 step not sequential, “0” = next step
of the operating mode register D2 causes sequential) When setto “1“, the next
the sequencer to jump to the step loaded step advance will be to the step indicated
by the user in this register. Note that this nD7.
jump occurs when conditions for advancing
out of the current step are satisfied 9 Same as bit 8, except that the next step is
indicated in register D8.
D8 Same as D7 except that D8 works in
conjunction with bit 9 of the operating 10 Time and/or Input condition Advance
mode register D2. Registers D7 and D8 ("1" =OR, “0” = AND). When “0", step
function identically; two registers are advance 1s enabled when input condition
provided for flexibility and ease of use, is satisfied ONLY AFTER the time advance
specifically to avoid software timing condition has been met. When this bit
problems or race conditions. ="1", the step advance is enabled when
either the time or input condition has
D9 Used by the Model 650 to keep track of the been satisfied.
step executed during the previous scan. If
this register is not equal to the current step 11-16 Spares (not presently used)
register (D1), the sequencer immediately
goes to the new step pointed at by D1 . .
Figure 11.4 Operating Mode Register (D2)
D10 Spare (not presently used) Bit Definition

Figure 11.3 Configuration Table Registers

Page 11-4 30598-730
PURPOSE
REGISTER D2 REGISTER #
BIT # PURPOSE D11/D17/... Time Condition Advance Register.
Contains the user-specified step time of
17* Sequence completed. this step. Entered in 0.1 second
) . increments. When this time is less than or
18* ERROR bit. Seel Section 11.4.1 | equal to the Current Step Running Time
- Register D3, a step advance based on
19* Manual advance history time is enabled. If this register = 0, then
the step is strictly input-driven.
20* Time advance enabled.
D12/D18/... Input Condition Advance Register.
21* Input advance enabled. Indicates the bits that need to be set
- before a step advance based on an input
22* Reset/enable history condition is enabled. If this register =0,
- then step advance is based solely on time.
23* Step advance just occurred. If a step advance is contingent on both
time and inputs, normal sequencer
)) operation is such that a comparison for
* Read-Only Status Bit - See Sectlonand inputs will not be made untit after the
time condition has been satisfied
Figure 11.4 Operating Mode Register (D2) Bit (modifiable by bit 10, register D2).
Definition (continued) D13/D19/... Defines the output states of the first
output register for each respective step.
These bits are written to the “pointed
at“register from the first output register
for the step currently being executed.
11.2.2 STEP TABLE REGISTERS NOTE: Either register D11/17]... or
D12/18/... must contain non-zero
: : numbers before this register is relevant.
The step table registers apply.only to a particular step 1f both of the conditional advance
in a sequence. The fixed size for each step table registers = 0, the step is advanced
register block is six (see|Figure 11.2). through.

. D14/D20/... Same as register D13/D19/._, except that
Since the step registers begin immediately after the these are the output states for the second
configuration registers, the first block of step relgister (_t;its 17-32).this !r)%gi:t?;is only
registers occupy the 11th through the 16th register relevant if output width (D6)2 17.
in the Sequencer’s overall block of registers. D15/D21/... Same as register D13/D19/... except that
Additional step table register blocks occupy the 17th these are the output states for the third

h h the 22nd. the 23rd th h the 28th register (bits 33 to 48). This register is
through the 22nd, the 23rd throug e 28th, etc as only relevant if output width (D6) = 33.
needed.

D16/D22/... Same as register D13/D19/... except that

Figure 11.5 shows the purpose for each of the six step
table registers. Each block of step table registers
contains the same parameters — i.e., register 11
defines the same parameter for the first step register
block as does register 17 for the 2nd step register
block. Similarly, register 12 is the same as register
18, register 13 matches register 19, etc.

these are the output states for the fourth
register (bits 49 to 64). This register is
only valid if output width (D6) =z 49.

Figure 11.5 Step Table Registers

11.3 Application Discussion

The Sequencer provides flexibility for tailoring
Sequencer operation to specific needs. This
translates into developing a basic sequential
algorithm which can then be modified to perform
either semi- or non-sequentially. Up to this point the
functions of the registers and control bits have been
mechanically presented. The purpose of this section
is to discuss, from an application standpoint, how to
put all of these bits and registers to work in practical
situations.

11.3.1 REQUIRED ENTRIES

Regardless of how the Sequencer will be used, the
following are required actions.

1. The two rungs shown in|Figure 11.1| must be

entered. Since the LET rung must be executed
every scan (even when the Sequencer is reset),
there must not be any logic in front of the LET
rung itself.

— LOGIC /O—

Sequencer RESET/ENABLE Bit (D2-01)

SPEC

—— LET S2ZZZ=XXXX 65; YYY
L

Sequencer Initiation Rungs

2. When programming the LET rung, the user-
defined block of registers that regulates the
Sequencer must be entered correctly. Whatever
register is specified to the left of the “=" sign
contains the current step number. It is suggested
that “ZZZZ” be equal to “XXXX” so that the
Sequencer can be located in the program by
SEARCHing for the first register in the block.

3. The rung containing the RESET/ENABLE bit
should precede the LET rung. Other rungs can
then be used to preset register values or control
bits.

30598-730 Page 11-5

The following registers are part of the basic
Sequencer set-up procedure and must be
included in the Sequencer program:

® REGISTER D2, BITS 2 through 10. Note the
default here is all “0”s, meaning forward
step/single-pass automatic operation.

® REGISTER D4. Points to the register that is
used to determine input conditions for
advance. If sequence advance is based solely
on time, register D4 should equal “0”.

® REGISTER D5. Points to the first output
register written to by the step output states.

® REGISTER D6. Identifies the total number of
output bits occupying contiguous registers
beginning with the register pointed at by
register D5.

® REGISTERS D11 (Ist step), D17 (2nd step),
D23 (3rd step), etc. For each step, specifies
the amount of time to be spent in the step
prior to enabling a time-based advance. If
the step advance is based solely on input
conditions, these registers should all be zero.

® REGISTERS D12 (1st step), D18 (2nd step),
D24 (3rd step), etc. For each step, specifies
the binary pattern of “1”s that, when
matched by the binary pattern in the input
register pointed at by D4, enables a step
advance based on inputs. If the step advance
is based solely on time, the specified binary
pattern in these registers should be all “0”s.

® REGISTERS 13 through 16 (1st step), 19
through 22 (2nd step), 25 through 28 (3rd
step), etc. Output bit patterns that are user-
created for each step, in accordance with the
output field width indicated by register D6.

Page 11-6

30598-730

11.3.2 OPERATING CHARACTERISTICS

The Sequencer executes during each scan of the
ladder program to assure program control of the
outputs based on user-defined states. The Sequencer
operates as follows:

1.

When the Sequencer is RESET (bit 1 of the
Operating Mode register = 0), all outputs in the
program that are specified by registers D5 and
D6 in the Sequencer are turned OFF. Current
Step register (D1) is reset to zero. Current Step
Running Time register D3 is also reset to zero.

When the Sequencer is ENABLED (bit 1 of
Operating Mode register =*1”), the specified
output states of step 1 (defined by registers D13
through D16) are transferred to the outputs
defined by both the pointer register D5 and
output width register D6. The Current Step
Running Time register begins to accumulate
time.

Step conditions for the next advance contained in
registers D11 and D12 are compared with the
real-time states of the Current Step Running
Time register D3 and with the bit pattern of the
input register being pointed at by register D4.
Bit 10 of the Operating Mode register is checked
to determine if either or both conditions must be
met prior to a step advance. The Current Step
Running Time register accumulates time as long
as bit 3 of the operating mode register is not set
to “1”.

During every scan, in conjunction with the above
comparisons, the Sequencer checks the status of
bit 5 in the Operating Mode register D1. This is
a check for AUTO or MANUAL operation. If
MANUAL is set, the time and input advance
parameters become meaningless since step
advance is based solely on bit 7 being toggled
from “0” to “1”.

Whether in AUTO or MANUAL, the Sequencer
now knows what criteria to monitor when
determining a step advance.

10.

If the Sequencer is in AUTO and the appropriate
criteria for a step advance are satisfied, bit 4 of
register D2 is checked to see if advance is
inhibited.

Ifbit 4 = “0” (advance not inhibited), bits 8 and 9
of register D2 are checked to see if the advance is
non-sequential.

If the advance is sequential, bit 2 of register D2 is
checked to determine if the advance is forward
(incrementing) or reverse (decrementing).

The Sequencer checks to see if it has just
completed a pass through the final step. If it has,
then bit 6 of register D2 is also checked.

Finally, if a step change is warranted, the output
states for the appropriate step are written to the
outputs being pointed at. The entire process then
restarts.

The values of these Sequencer control registers and
bits can be changed by the user at any time.

NOTE: If the Current Step register (D1) is suddenly

changed to a different valid step number,
the new step is implemented the next time
the Sequencer rung is scanned. New output
states are written, Current Step Running
Time is reset to “0”. New Time Advance
and/or Input Advance conditions associated
with the new step apply.

11.3.3 TYPICAL OPERATING MODES

This section presents insights into setting up the
Sequencer for execution of some typical
configurations. The focus here is on manipulating
bits within the Operating Mode Register (Register
D2, described in Figure 11.4).

As discussed in Section 11.3.1, registers 4, 5 and 6 of
the Configuration Table indicate the Input Pointer,
Output Pointer, and Output Width. These three
registers, along with all the Step Table registers for
Time Advance, Input Advance, and output states of
each step, provide the necessary information for
Sequencer operation. Normally, these registers once
set, remain set in that pattern. However to
guarantee the set pattern, it is advised to program
additional LET rungs while configuring the
Sequencer.

Although only two rungs are mandatory for
Sequencer initiation, it is a good idea to
use as many additiona rungs in the program as
practical. Using "LET presets” to set Sequencer
values eliminates the chance of the values being lost,

since the values are preserved in the ladder program.

A good practice is to locate the LET presets in the
beginning of the program in conjunction with a
GOTO that bypasses these statements after the
Sequencer is initialized. This bypassing procedure
eliminates the time penalty that redundant and
unnecessary scanning of the LET rungs incurs.

Of course, the Operating Mode register bits can also
be programmed into the ladder program. However,
rungs containing these bits must be executed every
scan. To ensure proper set-up, the Operating Meode
register rungs should be located between the two

mandatory rungs as shown in|Figure 11.6.

The Sequencer is now assumed to be properly set up.
Some common Sequencer operating modes dare
explained in the following and include TIME,

[TIME/EVENT| COMBINATION, and
MANUAL(sequencing.

30598-730 Page 11-7

Sequencer RESET/ENABLE Bit (D2-01)
N\

Y

— LoGIC

lace Operating Mode Register rungs in this area

SPEC
r

— LET
L

S$2722 = XXXX 65; YYY

Figure 11.6 Operating Mode Rungs

TIME SEQUENCING ONLY

The following parameters apply for a time-advanced
Sequencer:

® Operation is automatic; bit 5 of register D2 =“0".

¢ Since no Input Advance condition is used, set
register D4 (and D12/D18/etc., depending on the
number of steps) to “0”.

¢ Enter the Time Advance condition into register
D11 (and D17/D23/etc., depending on the
number of steps). The time is entered in tenth-
second (0.1 second) increments.

® Maximum time value for a single step is 32,767
(3,276 seconds, or 54 minutes and 36 seconds).

Page 11-8 30598-730

OPERATION: When bit 1 of register D2 is set to “1”,
the output pattern associated with Sequencer step
#1 (registers D13 through D16) is written into the
output register(s) being pointed at by registers D5
and D6 (STEP #1 ACTIVE).

When the time specified by register D11 has
accumulated in register D3, the output pattern
associated with Sequencer step #2 (registers D19
through D22) are written into the output registers
being pointed at by registers D5 and D6 (STEP #2
ACTIVE).

Register D3 resets and begins timing again. When
the time specified by register D17 has accumulated
in D3, the advance to step #3 occurs (STEP #3
ACTIVE).

This process continues as long as bit 1 of register D2
is set to “1” and bit 5 of register D2
(AUTO/MANUAL select) is set to “0”. When the last
step in the Sequencer has been executed, bit 6 of
register D2 (REPEAT/SINGLE PASS select) is
checked to determine whether the Sequencer should
“wrap around” to its step #1 or halt. If the
Sequencer halts (bit 6 = “0”), all outputs are turned
OFF.

POSSIBLE MODIFICATIONS: While the Time-
Advanced Sequencer is running, the following
modifications can be made:

® Instead of incrementing forward, the Sequencer
can be set to operate in reverse (set bit 2 of D2 to
Qlllt)'

® Upon step completion, non-sequential operation
can be obtained (Bits 8 and 9 in register D2: bit 8
set to “1” executes the next step according to
register D7, while bit 9 set to “1” non
sequentially executes the next step in accordance
to the contents in register D8). Instantaneous
non-sequential operation can also be obtained by
altering register D1.

® The Current Step Running Time can be held
(inhibited from timing) by setting bit 3 of
register D2 to “1”.

® If the same output pattern must be maintained
for more than the maximum time value (3,276
seconds), simply repeat the output pattern in
multiple steps with appropriate Time Advance
conditions.

® A step advance inhibit is enabled by setting bit 4
of register D2 to “1”. This inhibits an advance
even if the time requirement for the advance has
elapsed.

INPUT SEQUENCING ONLY

The following parameters apply to an input-
advanced Sequencer:

® Operation is automatic; bit 5 of register D2 =*0”,

® Load register D4 with the address of the input
register being pointed at. This is used for
comparison to determine advance conditions.

NOTE: Register D4 is simply a pointer and is not
the register that is actually compared.

o All Time Condition advance registers (D11, D17,
etc., depending on the number of steps being
used) should be set to “0”.

® Input Condition advance registers (D12, D18,
etc., depending on the number of steps) should be
preset with the bit pattern which, when
compared to the register that's pointed at by D4,
allows a step advance.

NOTE: The bit pattern of "1”s and “0”s does not
have to match exactly, it is only the “1"s in
the Input Condition Advance register which
have to be matched by the corresponding
bits in the pointed to register. The "0”s are
not matched. This means that if an advance
is dependent upon one or more bits being
“0”, these bits need to be inverted prior to
being compared.

EXAMPLE: If the necessary condition for advancing
to the next step is having bits 2 and 3
ON, then these two bits should be the
only bits set in the Input Condition
advance register. As soon as bits 2 and 3
are ON in the pointed-to register, a step
advance is enabled regardless of how
many other bits are ON in the register
being pointed at.

OPERATION: When bit 1 of register D2 is set to “1”,
the output pattern associated with Sequencer step
#1 (registers D13 through D16) is written into the
output register(s) pointed at by registers D5 and D6
(STEP #1 ACTIVE).

When the bit pattern of “1”s specified in register D12
is matched by the pattern in the input register being
pointed at by D4, the following occurs: The output
pattern associated with Sequencer step #2 (registers
D19 through D22) is written into the output
register(s) being pointed at by D5 and D6 (STEP #2
ACTIVE).

Comparison for the third step advance is made with
register D18. This process continues for as long as
bit 1 of register D2 is set to “1” and bit 5 of register
D2 (AUTO/MANUAL select) is set to “0”.

After the last Sequencer step is executed, bit 6 of
register D2 (REPEAT/SINGLE-PASS select) is
checked to determine whether the Sequencer should
“wrap around” to step #1 or halt. If the Sequencer
halts (bit 6 = “0), all outputs are turned OFF.

POSSIBLE MODIFICATIONS: While the Input
Advanced Sequencer is running, the same
modifications apply as for the Time Advanced
Sequencer (Forward/Reverse stepping, non-
sequential stepping, etc.). One exception is the
current step running time parameter, which is not
applicable in a Sequencer based solely on input
conditions.

30598-730 Page 11-9

COMBINATION TIME AND EVENT/INPUT
SEQUENCING

The following parameters apply to a Sequencer
whose advances are based on both time and inputs:

® Operation is automatic; bit 5 of register D2 =*0".

® Register D4 should point to the register address
whose bit pattern is used to compare for a step
advance.

NOTE: Register D4 is simply a pointer and is not
the register that is actually compared.

® The Time Condition advance registers (D11,
D17, etc., depending on the number of steps)
should be loaded with times in tenth-second (0.1
second) increments.

NOTE: If a given step advance is to be based
solely on input, “0” should be entered
into the Time Condition register for that
step.

® The Input Condition advance registers (D12,
D18, etc., depending on the number of steps)
should be loaded with the bit patterns which,
when compared to the register pointed at by D4,
allow a step advance. As explained in the
INPUT SEQUENCING section, it is only the
“1”s in the Input-Condition advance register that
are compared.

NOTE: If a given step advance is based solely on
time conditions, “0” should be entered
into the Input Condition register for that
step.

® If both time and event sequencing are specified in
a step, an advance is not enabled until the input
condition has been met after the time condition is
satisfied (unless bit 10 of register D2="1"). This
occurs even if the input condition has previously
been met. If bit 10 of register D2 = “1”, then a
step advance is enabled upon either condition
being satisfied.

Page 11-10 30598-730

OPERATION: When bit 1 of register D2 is set to 1”7,
the output pattern associated with Sequencer step
#1 (registers D13 through D16) is written into the
output registers being pointed at by registers D5 and
D6 (STEP #1 ACTIVE).

When register D3 is greater than or equal to D11
(i.e., the time condition is satisfied), the pattern of
“1”s specified by register D12 is compared to the
input register pointed at by register D4. When all
the “1”s in D12 are matched by the register pointed
at by D4, the output pattern associated with
Sequencer step #2 (registers D19 through D22) is
written into the output register(s) being pointed at
by D5 and D6 (STEP #2 ACTIVE).

Register D3 resets and begins timing again.
Comparison for the third step advance is made using
registers D17 (for time) and D18 (for input). This
process continues as long as bit 1 of register D2 is set
to “1” and bit 5 of register D2 (AUTO/MANUAL
select) is reset to “0”.

After the last Sequencer step is executed, bit 6 of
register D2 (REPEAT/SINGLE-PASS select) is
checked to determine whether the Sequencer should
“wrap around” to step #1 or halt. If the Sequencer
halts (bit 6 = "0”), all outputs are turned OFF.

POSSIBLE MODIFICATIONS: While the combination
Time and Input Advanced Sequencer is running, the
same modifications apply as for the Time Advanced
Sequencer (Forward/Reverse stepping, non-
sequential stepping, etc.). One exception is the
current step running time parameter, which is not
used if a particular Sequencer step is based solely on
input conditions.

MANUAL SEQUENCING

A manual Sequencer does not rely on time and/or
input conditions to advance. Instead, advance is
determined solely by the state of bit 7 in register D2,
which is toggled manually.

NOTE: If an input condition exists for advance, it is
ignored. If a time condition exists, register
D3 does not accumulate time. If desired, the
input and/or time conditions for advance can
be loaded in anticipation of automatic
operation, because all input and time
conditions are simply ignored in the manual
Sequencer.

The following parameters apply to a manual
Sequencer:

® Operation is manual; bit 5 of register D2 is set to
”1”'

® The Sequencer is advanced by toggling bit 7 of
register D2 from “0” to ”1”.

OPERATION: When bit 1 of register D2 is set to *1”,
the output pattern associated with Sequencer step
#1 (registers D13 through D16) is written into the
output registers being pointed at by D5 and D6
(STEP #1 ACTIVE).

If bit 5 of register D2 is set to “1”, the next step
advance occurs when bit 7 of register D2 is toggled
from “0” to “1”. At this time the output pattern
associated with Sequencer step #2 (registers D19
through D22) is written to the output register(s)
pointed at by D5 and D6.

NOTE: To prepare for another step advance, bit 7 of
register D2 must be reset to “0” before being
toggled back to “1”.

Sequencer behavior can be set to automatic at any
time by resetting bit 5 of register D2 to “0”. After
the last Sequencer step is executed, bit 6 of register
D2 (REPEAT/SINGLE-PASS select) is checked to
determine whether the Sequencer should “wrap
around” to step #1 or halt. If the Sequencer halts
(bit 6 = “0”), all outputs are turned OFF.

POSSIBLE MODIFICATIONS: While the manual
Sequencer is running, the same modifications apply
as for the automatic advance Sequencer
(Forward/Reverse stepping, non-sequential stepping,
etc.). Bit 4 of register D2 only applies to the AUTO
mode operation and cannot be used to inhibit a
MANUAL step advance.

NON-SEQUENTIAL STEPPING

Regardless of whether the Sequencer is operating in
the manual or automatic mode, it is possible to alter
the default incremental-forward stepping mode in
the following ways:

1. Reverse advance (decrement step).

2. Non-sequential advance (i.e., jump to a step not
immediately preceding or following the current
step).

3. Immediate and unconditional non-sequential
advance to another step, even though the
advance conditions for the present step are not
satisfied.

4. Inhibit a step advance while in the AUTO mode,
causing the current step to be maintained despite
any satisfied conditions for automatic advance
that are present.

30598-730 Page 11-11

The non-default advance conditions are as follows:

Reverse (Decremental) Stepping. Set bit 2 of
register D2 to “1”, causing the Sequencer to step
backward (reverse mode). Decrementing from
Sequencer step #1 causes the Sequencer to go to step
0 (all outputs OFF) unless bit 6 of register D2 is set
(REPEAT mode), in which case the Sequencer goes to
the last step.

NOTE: Bit 2 of register D2 has a lower priority than
bits 4 (Step Inhibit), 8 or 9 (Non-Sequential
Step) or setting Register D1 to the desired
step.

If the reverse mode is selected prior to Sequencer
enabling, the Sequencer - upon initialization - jumps
to the last step.

Non-Sequential Advance. Set bit 8 of register D2 to
“1”, and load register D7 (first non-sequential step
register) with the number of the next desired step, or
set bit 9 of register D2 to “1” and load register D8
with the number of the next desired step. Bit
8/Register D7 and Bit 9/Register D8 function
identically; two pairs are provided for user
convenience.

NOTE: /f both register pairs are enabled
simultaneously, Bit 8/Register D7 takes
precedence.

When either of these bit/register pairs is activated,
the Sequencer goes to the step specified in either
register D7 or D8 when the next step advance occurs.
The number entered in these registers must be a
valid step number (zero is NOT a valid step number);
otherwise no advance takes place. Outputs remain
as defined for the current step and bit 18 of register
D2 is set to “1” to indicate an error.

If a non-sequential advance is specified prior to
Sequencer enabling, the Sequencer advances - upon
initialization - to the specified non-sequential step.

Page 11-12 30598-730

Immediate And Unconditional Non-Sequential
Advance. Loading a step number into register D1
(Current Step Number) causes the Sequencer to
jump unconditionally to that step upon the next
program scan. The Sequencer detects this by storing
the step executed during the previous scan in
register D9.

At the beginning of each new scan, D9 is compared
with D1. If they differ, the Sequencer immediately
jumps to the new step specified in D1. Normal
Sequencer operation resumes from that point -
register D3 resets and begins timing, and the Input
Condition advance register for the new step is used
for comparison.

NOTE: The new step that is jumped to must be valid
for the Sequencer range defined. If the step
is invalid, no step change occurs; outputs
remain as defined for the previous step and
bit 18 of register D2 is set to “1” to indicate
the error.

If an immediate and unconditional non-sequential
advance is specified prior to Sequencer enabling, the
Sequencer - upon initialization - advances to the first
step for one scan before jumping to the selected step.
Similarly, if a step advance is enabled while an
immediate and unconditional non-sequential
advance is specified, the advance goes active for one
scan before reverting to the specified step.

inhibit a Step Advance (AUTO mode only). Set bit 4
of register D2 to “1”. This prevents the Sequencer
from advancing beyond the current step, even if
conditions for advance are satisfied when in the
automatic mode.

The Automatic Step Advance Inhibit applies
regardless of whether the step change is to be
forward or reverse.

As soon as bit 4 of register D2 is reset to “0”, output
control reverts to control of the automatic advance
condition. For example, if the only condition for
advance is inputs (which happen to be satisfied), the
step advance occurs the instant that bit 4 is reset to
“0”'

If a step advance is inhibited prior to Sequencer
enabling, the Sequencer - upon initialization -
advances to the first step. The next step advance is
inhibited, provided the inhibit remains selected and
the Sequencer is in AUTO mode.

Bit 4 only applies to automatic mode operation (bit 5
of register D2 = “0”) and does not inhibit a manual
or Immediate And Unconditional Non-sequential
Step Advance.

11.4 Application Considerations

This section presents a collection of miscellaneous
considerations for Sequencer operation.

11.4.1 ERROR CONDITIONS

Bit 18 of the Operating Mode register (register D2) is
used to flag invalid Sequencer operating conditions.
When an invalid operation is detected by the
Sequencer, bit 18 is set to “1”.

If the error is generated while the Sequencer is
running, the condition of the previous step is
retained. If the error exists prior to Sequencer
enabling, no step execution occurs until the error is
corrected.

The most common reasons for bit 18 to be set are
listed below:

1. An undefined (non-existent) step has been
specified in registers D1, D7 or D8.

NOTE: D7 or D8 are not checked until either bit
8 or bit 9 of the Operating Mode
register = "1".

2. The number of steps specified exceeds 255 (the
Sequencer does not commence operation at all
until this error is corrected).

3. An invalid Register Block starting address has

been given in the Sequencer’s configuration rung
(Figure 11.1),

4. An invalid Output Width Definition has been
entered into register D6 (width must be in the
range 1 to 64).

5. Register D4="0", but a Step Input Advance
condition register (D12, D18, etc.) exists and is
not equal to “0”.

When any of these error conditions appear, the
Sequencer is reporting that it has been asked to
perform an illegal operation.

30598-730 Page 11-13

When defining a register block for the Sequencer to
use, make sure that sufficient registers exist
between the start of the block and the last available
register in the Model 650 (register 8000 is the last).
Otherwise, the Sequencer flags an invalid operating
condition and sets bit 18 of the register indicated to
the left of the “=" sign.

To guarantee sufficient registers, apply the following
equation (from Section 11.2):

Total Registers Per Sequencer
= [6x (# of steps) + 10]

Subtract the total registers per Sequencer from 8000
to obtain the highest address that the Sequencer can
be started at.

EXAMPLE: A 50-step Sequencer is to be programmed
into the Model 650. From the equation
above, the registers required for this
Sequencer are:

[6X(50) + 10] =310

The highest address at which this
Sequencer can be located is therefore:

8000 - 310 = register #7690
The Sequencer’s register block must

begin at an address no higher than 7690.

NOTE: Do not use registers allocated for a
Sequencer for any other purpose.

Page 11-14 30598-730

11.4.2 OPERATING MODE REGISTER STATUS BITS

Bits 17 through 23 of the Operating Mode register
(D2) are read-only bits that are used to monitor the
status of the Sequencer. The addresses of these bits
can be programmed as contacts in the Model 650’s
user memory to provide detailed information on
Sequencer operation. All of these status bits are
reset to “0” when the Sequencer is reset (when bit 1
of register D2 is set to "0”). Each of the status bits is
described below:

Bit 17 - Sequence Complete. When set, indicates
that the Sequencer has just completed the final step.
If bit 6 of register D2="0" (SINGLE-PASS
SEQUENCE selected), bit 17 remains set at “1” until
the Sequencer is reinitialized by toggling bit 1 of
register D2 from “0” to “1”. If bit 6 of register D2 =
“1” (REPEAT SEQUENCE selected), bit 17 is set at
“1” for only a single Model 650 scan as the Sequencer
“wraps around” from the final step to the first step.

Bit 18 - Error Bit. This bit is described in Section
11.4.1.

Bit 19 - Manual Advance History. When set to “1”, a
manual advance has occurred. This bit is used to
ensure that the manual advance bit (bit 7 of register
D2) is transition-sensitive.

Bit 20 - Time Advance Enabled. When set to “1”, the
time advance condition for the current step has been
satisfied.

Bit 21 - Input Advance Enabled. When set to “1”, the
input advance condition for the current step has been
satisfied.

Bit 22 - Reset/Enable History. When set to “1”, the
Sequencer has been enabled. This bit is used to
ensure that the reset/enable bit (bit 1 of register D2)
is transition-sensitive.

Bit 23 - Step Advance Flag. When set to “1”, a step
advance has just occurred. Typically this bit is set
for a single scan.

11.4.3 OTHER CONSIDERATIONS

Although all possible operating configurations
cannot be examined, the following items should be
considered when programming the Sequencer:

e OUTPUT STATES. Output states associated
with a given step are written only if a step
change occurs and are not refreshed each time
the Sequencer is scanned. If the CPU is halted or
power is removed when the Sequencer is in the
middle of executing a step, the output states are
not updated when programming execution
resumes until a step change actually occurs.
When the CPU resumes operation from a halt
condition or power cycle, the external output
registers are automatically reset. Sequencer
output states that are directly written to
external outputs remain OFF until the currently
executing step has finished and a step advance
has occurred. If the user wishes to preserve the
Sequencer output conditions for a given state
following a processor halt or power cycle,
specify an internal storage register(s) in D5 and
D6 and perform a data transfer from the storage
register to the external output register.

o EXTERNAL OUTPUTS. Due to Image Table
updating, output states that are associated with
a given step are not written to external outputs
until the end of the Model 650’s ladder scan. The
only exception to this is if the Immediate 1/0
Update function (bit 7 of 8176) is used.

e RUNG PROGRAMMING. It's recommended
that any rungs which are used to modify the
Sequencer’s operation be programmed prior to
the Sequencer initiation rung.

® SUBROUTINES. Since Sequencers are designed
to be executed during each ladder scan, they
should NOT be used in subroutines or in any part
of a ladder diagram that could be skipped. Also,
no logic should be placed in front of the SPEC 65
rung, to ensure the instruction is always
executed.

& MCR. When preceded by a disabled MCR, the
sequencer operation state is frozen: If reset, the
Sequencer remains reset, while if in the middle
of the step, the output of that step is maintained.

® All registers in the user-defined sequencer
register block must have addresses in the range
of 1 to 8000.

11.5 Examples

This section provides a simulated Sequencer to help
clarify the Sequencer’s set-up and operating
procedures.

EXAMPLE SET-UP:

Assume the following Sequencer conditions for the
example:

Number of Steps

130 =
[(6X20) + 10]

Registers Required

Beginning Register Address 0751

Ending Register Address 0880

Output Register Address 0004

OutputWidth 12 bits
(register #4,
bits 1 through
12)

Input Register Address 0001 (any or all
of the 16 bits
can be used to
establish
advance
conditions).

Upon Sequencer initialization (step #1), assume that
bils 2, 3 and 4 of the outlput register (#4) are to be set
to “1”. The initiation rungs needed are shown in
|Figure 11.7}

0752

— LOGIC
-01

I—— SPEC

—— LET S0751=0751 65; 20
t

Figure 11.7 Example One Initiation Rungs

In the first rung shown in Figure 11.7, 0752-01 is the
RESET/ENABLE bit for the Sequencer. In the
second rung, 0751 is the address that identifies the
start of the register block. SPEC 65 identifies the
special instruction as a Sequencer, while 20 is the
number of steps in the Sequencer.

30598-730 Page 11-15

In accordance with [Section 11.3.1] the following

registers have to be set up for the first step (step #1)
in Example One:

0752(D2) Operating Mode (assume for now
the default operation).

Pointer to Input Register 0001.
Presetto 1.

0754 (D4)

0755 (D5) Pointer to Output Register 0004.

Preset to 4.
0756 (D6) Output Width Definition.
Preset to 12,

Time Condition Advance.
Assume that bits 2 through 4 of
register 0004 must be ON for 60
seconds to satisfy the time
advance requirement. Preset to
600 (60 + 0.1 sec. increments).

0761 (D11)

0762 (D12) Input Condition Advance.
Assume a step advance is
enabled when bits 1, 3 and 4 of
register 0001 are set to “1”.

Preset to 13 (decimal value. For
corresponding binary pattern,
see|Figure 11.10).

Step #1 Output States bits 1
through 16. Since bits 2, 3 and 4
of register 0004 is set to “1”,
preset to 14 (decimal value). For

the corresponding binary pattern
seelFigure 11.8I
0764 through 0766

(D14 through
o16)

0763 (D13)

Step #1 Output States bits 17
through 64. Since the
Sequencer’s output width is less
than 17, these registers are not
applicable.

The remaining 19 steps in the Sequencer must be set
up separately and are not shown here.

Page 11-16

30598-730

EXAMPLE OPERATION

Before bit 1 of register 0752 (D2) is energized,
registers 0751 and 0753 equals zero and bits 1
through 12 of register 0004 is reset to “0” every time
the initiation rungs (Figure 11.7) are scanned by the
Model 650.

When bit 1 of register 0752 is set to “1”, the following
occurs:

1.

2.

The Sequencer sets register 0751 to “1”.

(Also see “2A” below). Output information in
registers 0763 through 0766 is transferred to the
output registers specified by 0755 (D5) and 0756
(D6). Since D5 = 4 and D6 = 12, bits 1 through
12 of register 0763 are transferred to bits 1
through 12 of register 0004. Since register 0763
= 14, bits 2 through 4 of this register are set to
“1” while bit 1 and bits 5 through 12 are set to “0”
as shown in Figure 11.8 below:

o LTTIIIIIIIIITTT)

RANRRNARANA

ores LLrlel-fefefelofofefo]o]]]]o]

16 1

x = “Don’t Care” (not transferred)

Figure 11.8 Transfer Of 12-Bit Output Width

2A. If the output width in this example was specified

as 52 instead of 12 (register 0756=52),
additional output registers would be used. As
shown in Figure 11.10, all 16 bits of registers
0763, 0764 and 0765, along with bits 1 through 4
of register 0766 are written to registers 0004,
0005, 0006 and the first four bits of 0007. If the
bit patterns of Figure 11.10 are involved in a
transfer, it is necessary to preset register 0764
with the decimal value -24,562 (AOOEH),
register 0765 with decimal 16,391 (4007H), and
register 0766 with decimal 15 (000FH). These
settings allow the multi-register transfer to take
place.

Figure 11.9

Bit 23 of register 0752 is set to “1” for one scan.

Register 0753 (D3) begins to time (to be
compared with register 0761) to determine Time
Advance enable.

The bit pattern of register 0001 (the Input
Register pointed at by register 0754) is compared
to register 0762 to see if the condition for Input
Advance is satisfied. The Input Advance does
not enable a step advance until the time
condition (register 0753 =register 0761) has been
satisfied.

Step advance to step #1 is now complete.
Assuming no Operating Mode register bits are
set, the next step advance occurs when bits 1, 3
and 4 (specified in register 0762) of register 0001
(pointed at by register 0754) are set to “1” as
shown in Figure 11.9 below.

oo LT T T

o
0762 [1°GI°I°]°I°I°|°l°l°l°|°l°|‘]‘I"I‘]

x = “Don’t Care” (not compared)

Input Advance Condition Satisfied

Before this comparison occurs, the time condition
for advance (60 seconds) must be satisfied.

NOTE: /fitis desired to have the step advance in
this example based solely on time,
presetting register 0762 to zero allows
the advance to occur after 60 seconds. If
a strictly input based advance is desired,
presetting register 0761 to zero allows
an advance as soon as bits 1, 3 and 4 of
register 0001 are setto “1”.

The following is a list of options that are not
necessary for basic Sequencer operation. The
description of Sequencer operation continues (at step
#7) after the options.

OPTIONS:

Now that the Sequencer is enabled, a variety of
operating modes can be selected by altering the bits
in the Operating Mode register (register 0752). Some
possibilities are listed below:

Reverse Sequencing- Set bit 2 of register 0752 to “1”,
and the Sequencer runs in reverse. If the Sequencer
is currently at step #1, enabling bit 2 advances the
Sequencer to step #20 (the last step) instead of to
step #2.

Prevent Time Accumulation - Set bit 3 of register
0752 to “1” and no time accumulates in the Current
Step Running Time register (0753).

oo LITTIITIIIITIITT]

RANRRERRRRERARN
Snnonnnonbonnnnng

woe LTTTTTIITIIIIITT]

11
EAEARRRERAREERN
0765 I%l‘l°[il°|°I°J°|°l°]°|°|°[‘1'l |

1
1

30598-730 Page 11-17

Inhibit A Step Advance - Set bit 4 of register 0752 to
“1” and the Sequencer does not advance from the
current step - even if time (register 753 = 600) and/or
input (bits 1, 3 and 4 of register 0001 = “1”)
conditions are satisfied. Also, output register 0004
does not change.

Manual Operation - Set bit 5 of register 0752 to “1”
and the Sequencer ignores both time and input
advance conditions. Toggle bit 7 of register 0752 to
manually step the Sequencer.

Non-Sequential Stepping - Bits 8 and 9 of register
0752 are used to make the Sequencer jump to a step
that is not in numerical order (for example, jump
from step #1 to step #4, ignoring #2 and #3).
Register 0757 or 0758 needs to be loaded with a valid
step number (1 to 20), otherwise the current step is
maintained. If bit 8 or 9 of 0752 is set, and advance
conditions are satisfied, the Sequencer jumps to the
step specified in register 07567 (if bit 8 is set) or
register 0758 (if bit 9 is set).

NOTE: /f an immediate jump to a non-sequential
step is desired, load the valid step number
(1-20) into register 0751. Step advance
occurs even if time and/or input conditions
are not satisfied.

oo LIIIITITIIIIIIT]

PRETteteeteeees
nhbnobobononbng

0764

[
16

Bits 5-16 are not part of
«— the sequencer

ooo,l’ﬁlmmuuml?

t1
SN nnnnRRRRARRANONN

1
x = “Don’t Care” (not transferred) 1

Figure 11.10 Transfer Of 52-Bit Output Width

Page 11-18 30598-730

Time or Input Condition Advance - Set bit 10 of
register 0752 to “1” and a step advance is enabled as
soon as either register 0753 =600 (60 seconds) or bits
1, 3 and 4 of register 0001 are set to “1”.

7. Sequencer step #2. Assume the initial
conditions of this example are unchanged and
that no Operating Mode register bits are set to
“1”. Fix the output bit pattern for step #2 such
that bits 1, 4 and 5 of register 0004 are to be set
to “1” (all other bits “0”). This is accomplished by
setting register 0769 to 25 (0019H). Figures
11.11A and 11.11B are the requirements and
results of Sequencer step #2.

16 1
soor Lo [[l e[l fe o o o]]

x = “Don’t Care” {not compared)

MATCHES

o762 |le°l°|°l°|°l°l°l°l°l°|°l'I~|°l1

1
1

Figure 11.11A Step #2 Advance

When register 0001 matches register 0762 (as shown
in Figure 11.11A), and register 0753 = register 0761
(step #1 has been running for at least 60 seconds),
the following occurs:

o LTI LIIILL

[TT)
;:ﬁﬁmﬁﬁhmmm+m

oo LTI EEEEEI LT

x = “Don’t Care” (not transferred)

Figure 11.11B Step #2 Result

For manual operation (bit 5 of register 0752 = “1%),
register 0004’s pattern would change from the
pattern in register 0763 to the pattern of 0769 when
bit 7 of 0752 is toggled from “0” to “1”.

This procedure is followed for each step as long as the
Sequencer is enabled. If the Sequencer is disabled by
resetting bit 1 of register 0752, the outputs are
turned OFF and the current step register (0751) is
reset to 0. Upon reaching the last step (step 20), bit 6
of register 0752 is monitored. If bit 6 is set, the next
step advance is to step 1 and the Sequencer operation
continues. If bit 6 is reset, the next step advance
concludes the sequencing operation and all outputs
are turned OFF.

30598-730 Page 12-1

12 BATTERY BACKUP AND CLOCK/CALENDAR

12.1 Backup Battery

12.1.1 DESCRIPTION

The Model 650 uses two methods to supply backup
power to the onboard volatile RAM and real-time
clock/calendar circuitry in the event that power to
the power supply is interrupted:

1. Batteries located in the SY/MAX power supply
(PS-21, 31, ete) are the primary source of backup
power for the Model 650 RAM and real-time
clock/calendar in the event that +5VDC [rom
the power supply is lost. Refer to Instruction
Bulletin 30598-156-XX or 30598-159-XX for
information on the power supply batteries.

2. The Model 650’s onboard lithium battery
supplies power to the RAM and real-time
clock/calendar if the voltage from the batteries in
the power supply is not sufficient to retain valid
data in the RAM. The battery also maintains
the RAM contents and clock/calendar accuracy if
the processor is removed from the rack or shipped
to use in another location. All 8192 Control
Processor registers are battery-backed. Ethernet
NIM registers 1 to 10 and 3000 through 7999 are
battery-backed.

12.1.2 LOW BATTERY INDICATION

The condition of either the SY/MAX power supply
batteries or the Model 650’s onboard lithium battery
is indicated with the BATTERY LOW LED on the
front panel of the processor. Seefor a
complete explanation of this LED. Low battery
condition may also be monitored as the status of a
contactf register 8176 for the power supply
battleries, of register 8176 for the on-board
lithium battery). Refer to Section 13, p. 9-11 for
more information on Register 8176.

NOTE: /f the onboard battery is not installed, the
BATTERY LOW indicator signals a low
internal battery condition.

12.1.3 BATTERY LIFE EXPECTANCY

The life expectancy of the onboard lithium battery is
dependent on the time that the battery must supply
current to the Model 650, and on the physical age of
the battery.

Figure 12.1| gives a rough estimate of how long the
Model 650’s RAM is supported when a battery
ranging from new to five years old is installed in a
Model 650. The BATTERY AGE assumes the
battery has been installed in the Model 650 but not
supplying current, and that the Model 650 has been
at its maximum operating temperature of 60 °C. The
RAM DATA RETENTION TIME is based on a Model
650 at 40 °C, since the processor is not at operating
temperatures while on lithium battery backup.

30

25 ...

20 ..

RAM
DATA
RETENTION
TIME
(MONTHS)
10 ...
Model 650

RAM supported

at40°C

12 24 36 48 60

LITHIUM BATTERY AGE (MONTHS)
Battery Installed in Model 650 Operating at 60 °C
No Current Being Drawn From Battery

Figure 12.1 Backup Lithium Battery Life

Page 12-2 30598-730

12.1.4 REPLACEMENT PROCEDURE

The internal lithium battery is replaced by
unscrewing the small access cover on the front panel
of the Model 650. The battery can be changed while
the Model 650 is operating. If the processor is
installed in a rack which is supplying either regular
or battery power, there is an unlimited time in which
to replace the battery.

NOTE: For maximum onboard battery life, the
Model 650 should remain in the rack,
connected to the power supply, as much as
possible. In this way the power supply
batteries — not the internal battery — are
supplying any needed backup power.

12.1.5 BATTERY SPECIFICATIONS
Square D Part Number 29904-08961

Tadiran Electronic
Industries Inc.

Manufacturer

Mfg. Type Number T1.-5104

Mfg. Catalog Number 15-51-04-210-000

Rated Voltage Lithium AA,
35t036V
Capacity (200uA@3V) ... 1.9 AmpHours

(Typical cells stored at
25 °C for one year).

(alternate manufacturer source is SAFT, battery
type LS6, catalog number 500200)

12.2 Real-Time Clock/Calendar

The Model 650 is equipped with a battery-backed
real-time clock/calendar. The clock/calendar keeps
track of seconds, minutes, hours, day of the week,
day of the month, month, and year and clock
compensates for leap years.

Values for the real-time clock/calendar reside in
registers 8109 through 8115. These registers are
updated in the Model 650 image table each hour by
the regulation circuitry within the real-time clock.
In between the hourly updates, the clock is updated
second-by-second by the software oscillator in the
Model 650.

12.2.1 SPECIFICATIONS
Format 24-hour ("military”)
time. If 12-hour (AM/PM)
mode is desired, user
program must perform
the conversion.

Accuracy Less than one second per
day @ 25 °C, 16 seconds
per day over the 32 to0 140
°F (0 to 60 °C) range.

SetMethod Write to registers using

one of the following

methods:

e Model 650 user
program

s Programming
equipment

e Other processors

o D-LOG Module

12.2.2 LOADING THE TIME/DATE

Model 650 registers 8108 through 8115 are assigned
to the clock/calendar. Figure 12.2 shows the function
of each of these registers:

REGISTER FUNCTION DECIMAL RANGE
8108 et clock -1,0,0r +1
Section 12.2.4)

8109 Seconds 0-59
8110 Minutes 0-59
8111 Hours 0-23
8112 Day of week 1-7

(1 = Sunday)
8113 Day of month 1-31
8114 Month 1-12
8115 Year 1980 - 2079

Figure 12.2 Clock/Calendar Registers

Set the current time of day in the clock by the
following procedure:

1. Using a CRT Programmer or equivalent, load
“-1” into register 8108. This interrupts the
updating of the image table clock registers; it
does not affect the real-time clock itself.

2. Access each of the registers shown in Figure 12.2
by starting with register 8109. Register 8108 is
only used to transfer data to the clock.

3. While in DATA ENTER mode, load each of the
registers 8109-8115 with the appropriate value.
Since these are control registers, it is necessary
to strike the ENTER key multiple times to load
the values.

EXAMPLE: To set the current time as 3:10 PM on
Friday, February 26th, 1988, the

following values would be entered into -

registers 8109--8115:

8109 ...l 00
8110 10
8111 15
8112 .. 6
8113 ..l 26
8114 2
8115l 1988

12.2.3 SETTING THE CLOCK

After the loading procedure in has
been completed, the values in the image table must
be transferred to the clock. This is accomplished by
loading the decimal value 0 into register 8108. The
instant that this value is loaded into register 8108,
the clock resumes keeping time using the loaded
values.

TO UPDATE AND RESTART THE CLOCK:

30598-730 Page 12-3

12.2.4 CLOCK MANIPULATION
NORMAL OPERATION (Register 8108 set to 0)

When manipulating the clock, it's important to
realize that the clock circuitry itself is running
regardless of whether the Model 650 is powered up or
not.

During “normal” clock operation, the user-accessed
image table registers are updated directly from the
clock once each hour. During each hour, the Model
650’s oscillator regulates the updating of the image
table each second. The specified drift of the software
oscillator while the Model 650 is powered up is £ 1.8
seconds per hour. This drift is eliminated each time
the real-time clock performs its hourly updates on
the image table registers.

SET CLOCK OPERATION (Register 8108 set to -1)

To set the clock either via DATA ENTER mode or an
instruction in the user program, it is first necessary
to set register 8108 to “~1”. This prevents the image
table from being updated by either the real-time
clock or by the Model 650’s software oscillator.

NOTE: The clock itself continues to run internally
when register 8108 is set to "-1".

After the desired values have been loaded into
registers 8109-8115 (see Section [12.2 2], reset
register 8108 to “0” (see Section 12.2.3). This action
transfers the values in 8109-8115 to the real-time
clock itself and normal operation resumes (i.e., the
image table registers are updated each second by the
software oscillator and each hour by the real-time
clock).

NOTE: If out-of-range values are entered into any
register, the values are rejected and an
ERROR 42 is displayed on the programmer.

Page 12-4 30598-730

STOPWATCH OPERATION (Register 8108 setto + 1)

A special operational mode is enabled when register
8108 is set to “+1”. In this “stopwatch” mode, the
hourly updates of the image table by the real-time
clock are inhibited, but the second-by-second updates
by the software oscillator continue. When register
8108 is reset to “0”, normal clock operation resumes
and the image table registers are updated with the
most current hourly time in the real-time clock.

This stopwatch mode can be very useful for timing
discrete events. Since the software oscillator
continues to run, time can be accumulated without
being overwritten by an update from the real-time
clock. At the conclusion of the timed event, resetting
register 8108 to “0” resumes normal operation and
registers 8109 to 8115 are updated automatically by
the real-time clock. There is no need to reset the
time of day since this is retained in the real-time
clock during the event’s timing.

The three modes of operation are summarized below

in|Figure 12.3

External Clock Registers
REGISTER Being Updated By:
8108 Clock Mode
Set To:
REAL-TIME
SOFTWARE cLOCK
-1 Set Clock NO NO
0 Normal YES YES
+1 Stopwatch YES NO

Figure 12.3 Clock Operation Modes

In summary, when register 8108 is set to “-1”
external clock registers are not updated by either the
real-time clock or the software oscillator. This
allows a user to preset the clock registers for the
instant when register 8108 is user-reset to “0”. The
preset values are simultaneously transferred to the
real-time clock at this point. If register 8108 is set to
“+1”, the clock registers operate in the “stopwatch”
mode.

30598-730 Page 13-1

13 PROCESSOR CONTROL REGISTERS

131

NOTE: Refer to|Section 15.5.3 |for an overview of
Ethernet NIM (Control) Registers.

Control Register Overview

The Model 650 Control Processor uses a total of 8192
register addresses. These processor registers are
separated into the groups illustrated in[Figure 1.1

Control registers are reserved for Model 650 control
functions. Register addresses 8093-8192 are

reserved for these control functions within the
control processor.

A register consists of 32 bits. Bits 1 through 16 are
referred to as the data field, while bits 17 through 32
are referred to as the status field. The status field is
unalterable, but may contain useful information

about how the register is being used. The structure
of a data register is shown in|Figure 13.i|.

32 €4— StatusField —» 17 16 <«&— DataField —P 1

] j | J
r [| > 1
tiryrvprpvdrdrdgdglzlelstajalal
61514132110
Data Bits
3f3f342¢p212}t272¢12}1212124121)1 1131
21110198 |7]|6|5]4a3]2]|1]0]9]|8]7
Status Bits
Figure 13.1 Register Structure

The control register addresses can be divided into
two groups as follows:

| Group #1|consists of addresses 8093-8178. Both the
data field and status field of group #1 can be
examined by the user, however only the data field
can be altered.

consists of registers 8179-8192. This

group is used by the processor for certain
"bookkeeping” functions. Only the data field is
accessible to the user and can only be examined, not
altered.

The examination of control registers and their
individual bits can be accomplished by viewing them
on a programmer or by using them as contacts within
the ladder program.

WARNING

Altering control register bits with a
programming device may affect actual
equipment under control of the
programmable control system. Make sure
that all effects of altering control bits are
understood prior to their alteration. An
incorrect control register bit setting may
result in equipment damage or bodily
injury.

If eontrol register bits are to be altered, the DATA
mode of a programmer can be used or the bit can be
programmed in the ladder as a coil.

Page 13-2 30598-730

13.2 Listing of Registers

Command identifiers (not actual
storage registers) which identify the
ASCIH output format.

8001-8005:

These registers are used as commands to set the
format of the Model 650’s output data when the
Model 650 is executing a PRINT statement and are
not intended as usable storage registers for other
purposes. Available formats include:

® ASCIl in decimal, hexadecimal, or binary
e “Raw binary” data
® Repeated character strings

Refer to the programming device’s instruction
bulletin for programming information and Section

10.2for application information.

8006: Acts as the command identifier (not an

actual storage register) for the ASCII input
format.|See Section 10

8007-8092: Not available.

GROUP #1: Read/Write Registers
8093: The 16-bit data field stores the SY/MAX drop
number on Ethernet indicated by the rotary
and DIP switches. Refer to[Section 15.5.3]for
Ethernet NIM Register 3 (similar to register
8093). The 16-bit Status field stores the
version for the Ethernet communications
software. Status field information is stored
in a Binary Coded Decimal (BCD) format.
The first two BCD digits (most significant
byte) show the major software revision,
followed by an implied decimal point. The
last two BCD digits (least significant byte)
indicate the minor revision of the software.
For example:

[ofofofo]o]ofo[1]o]o]1]o]ofofo]o]

e | e

Major Rev Minor Rev.

| o

Register 8093 Status field

Register 8093’s status field indicates a major
software revision of 1 and a minor revision of
20. This is read as revision 1.20 of the
Ethernet communications software.
8094: Ethernet Port Comms Error. In those cases
where register 8175 contains error code 929,
register 8175 points to register 8094,
Register 8094 contains additional
information about the nature of the Ethernet

Port Comms error. (See|Section 15.7).

Acts as a pointer for the indirect ROUTE

LIST using the Ethernet (Channel 3) port.
See Section 5.5

Not used.

8095:

8096:

8097: Acts as a pointer for the indirect ROUTE list

using the PRGMR (channel 1) port. See

Same function as 8097, except controls
COMM (channel 2) port.

8098:

8099: PRGMR port (channel 1) attributes. Refer to
the|following tables| and [Section 10| for bit

explanations of this register.

8100: COMM (channel 2) attributes - same bit
- patterns as 8099.

8101 to
8104: Not used.

8099 Bits 1-4: Baud Rate:
BIT PATTERN BAUD RATE
0000 50
0001 110
0010 300
0011 1200
0100 2400
0101 4800
0110 9600
0111 19200

8105:

8099 Bits 5-6: Word Size:

BIT PATTERN WORD SIZE
00 8 bit
01 7 bit
10 6 bit
11 5 bit
8099 Bits 7-8: Parity:
BIT PATTERN PARITY
00 Even
01 Odd
10 None
1 None
8099 Bits 9-10: Stop Bits:
BIT PATTERN STOP BITS
00 1
01 1.5
10 2
1" 2
8099 Bit 11: _ASCII Output Control Function
[tsee Section 10.2.5)]
BIT PATTERN FUNCTION 8106:
0 XON/XOFF Disabled
1 XON/XOFF Enabled
8107:
8099 Bit 12: ASCl Input Null (00) Characters

BIT PATTERN

FUNCTION

Null ignored

Nuli stored

Pointer to the first regi

Update instruction. Se¢

later in this section.

ter for Immediate 1/0
bit 7 of register 8176

30598-730 Page 13-3

8099 Bit13: Transmit Periodic DLE/ENQ
Stream (SY/MAX Protocol-

Handshaking Characters)

BIT PATTERN FUNCTION
4] Suppressed
1 Active

8099 Bit 14: Mask 8th Bit of ASCII Qutput
Word (Reset Model 650°s 8th

ASCli output bit to “0")

BIT PATTERN FUNCTION
0 No mask
1 Mask 8th bit
8099 Bit 15: CTRL-CFlag
BIT PATTERN FUNCTION
0 Not Received
1 Received
8099 Bit 16: Clear Queued ASClI Input
Buffers
BIT PATTERN FUNCTION
0 Inactive
1 Active

Register block size for the Immediate /O
Update instruction. Seq bit 7|of register 8176
later in this section.

Pointer to the Error Register Stack (16
register block). Can be set by the user to
point to the beginning of a block of 16
registers that preserve error codes appearing
in register 8175. Reserve this 16-register
block--which can be assigned to any register
between 1 and 7985 --exclusively for use as
the Error Register block.

In normal operation, error codes appearing
in register 8175 are zeroed when the fault is
cleared. Register 8107 provides a valuable
troubleshooting aid by allowing the user to
create a history of error codes.

Page 13-4

30598-730

As each new error is received, it is inserted
into the first register position in the 16-
register stack. Errors already in the stack
are pushed down one position. When the
stack is full, the oldest error is pushed out of
the stack and is lost.

For example, if a particular error code occurs
more than once consecutively (i.e., if ERROR
20001 enters the stack four consecutive
times), it only appears once in the stack.
Thus, multiple failures may only produce one
error code in the stack if the failures are all
caused by the same error code condition.

8108: Clock - Command Register.

8109: Clock - seconds (0-59).

8110: Clock - minutes (0-59).

8111: Clock - hours (0-23).

8112: Clock - day of week (1-7, 1 =Sunday).

8113: Clock - day of month (1-31).

8114: Clock - month (1-12).

8115: Clock - year (1980-2079).

8116-8118: Not used.

8119: Last register defined for channel 2 of the
15th LI module.

8120-

8163: For use in communicating with Local
Interface modules. Each 2-channel LI
module utilizes up to 3 processor control
registers for monitoring I/0 and system
control communications. Registers 8161-
8163 of this group are reserved for the first
LI module as explained in the following:

(8161) Control Register for channel 2 of the first

Local Interface module, is used to monitor
and control the conditions of the remote
racks that contain the register modules and
1/0 connected to channel 2 of this local

interface. The bit pattern of 8161 is as
follows:
Bits 1-8: The HALT/RUN bit can be set to

force the corresponding drop to
shut down.

NOTE:

(8162)

(8163)

8164:

Bit 9: The FREEZE/RESET bit allows
the user to choose if the channel
should freeze (remain in last
previous state) or reset (turn
OFF) when a communication
error exists. 1 =FREEZE,
0=RESET.

Bit 10: XMIT FAULT TOLERANCE bit.
When set to “1”, allows up to 10
attempts to re-establish
communication prior to
generating an error. When this
bit is reset to “0”, only three
attempts are allowed.

Bit 13: The FAILURE OVERRIDE bit
allows the system to continue
operation should communication
to the remote I/O racks fail.
1=Failure Override Mode
0=Normal Operation.

Bit 15: AUTO RESTART bit. When set,
automatically attempts to re-
establish communication should
an /O fault occur on the channel.
1 = Auto Restart ON; 0 = Auto
Restart OFF. Must be set in
conjunction with bit 13 to be
practical.

The remainder of the bits in register 8161°s
data field are unused.

Channel 1 of the first Local Interface module.
(This register performs the same function as
register 8161 does except it monitors and
controls Channel 1).

Error code control register for the first local
interface. Refer to Appendix A for the error
code table.

A 2.5 ms “tick" register. Increments every
2.5 milliseconds regardless of the
RUN/HALT status of the Model 650. All 32
bits of the register are used to keep track of
accrued time. Maximum accrued time is 4
months. This register is reset upon its
“rollover” or power up and can be preset by a
programmer or from the ladder program.
Whenever the data field of register 8164 is
reset to zero, the status field also reverts to
zero.

8165:

8166:

8167:

If the contents of register 8164 are used in an
IF or LET rung, register 8164 should be
*ORed” with zero before performing the data
compare (IF) or transfer (LET). This
effectively masks off the 16 bits of the status
field, and prevents an overflow condition
from occurring if any of these bits are non-
zZero.

EXAMPLE: LET S3995=S8164 executes as
expected until register 8164 exceeds
+ 32,767, at which time the contents of
register 3995 stops changing. Bit 18
(overflow) of register 3995 is set to indicate
the overflow condition. If register 3995
should remain “free-running”, use the
following rung:

LET $3995 = 58164 /0

After reaching + 32,767, the contents of
register 3995 changes to -32,768 then
decrements back to zero.

Used to establish safeguard rung parameters

[(see Section 6.8)] Also contains the number
of “ticks” remaining before the next timed
interrupt is due to be called.

Programmable minimum scan-time register.
A positive number entered into this register
establishes the minimum CPU ladder
program scan time, to a resolution of 2.5
milliseconds. The Model 650 executes the
user program followed by a series of “idle"
instructions until the minimum scan time
has elapsed. The desired scan time can be
entered in 2.5 ms increments that are
rounded up. For example, entering a
minimum scan time of 98, 99 or 100 ms
results in a ladder program scan time of not
less than 100 ms and not more than 102.5
ms. Any scan time entered is subject to being
increased by the I/0 update time, plus the 5
ms port servicing delay.

This register contains the programmable
scan limit when the special safeguard rung
(TLET S8165) is not used. When the scan
time in milliseconds exceeds the contents of
this register, the processor halts and
generates ERROR 970. Maximum allowable
scan time is 32.765 seconds. If this register
contains zero, the scan time is limited to one
second. If this register contains a value
larger than 1 second (1000), it automatically

8168:

30598-730 Page 13-5

is reset to zero (i.e., 1 second) upon power up.
Accuracy is within 2.5 milliseconds, rounded

up.

Communications monitor timeout. This
register defines the time allocated for
receiving a reply to a READ, WRITE, or
ALARM rung before declaring a message
timeout and setting bit 23 of the
communication status register. Bits 1-4 are
used with the PRGMR (Channel 1) port, bits
5-8 with the COMM (Channel 2) port, and
bits 9-12 with the ETHERNET (Channel 3)

port.

The following table identifies the time
interval range for bits in the 8168 register
and is valid for all ports:

8168 Bits 1-4, 5-8 and 9-12:

BIT PATTERN
(bits 1-4 for PRGMR
bits 5-8 for COMM 3?:5?? CUONJI;PS‘
bits 9-12 for
ETHERNET)
0000 0to 250
0001 250 to 500
0010 500 to 750
0011 750 to 1000
0100 1000 to 1250
0101 1250 to 1500
0110 1500 to 1750
0111 1750 to 2000
1000 010 2000
1001 2000 to 4000
1010 4000 to 6000
1011 6000 to 8000
1100 8000 to 10000
1101 10000 to 12000
1110 12000 to 14000
1M 14000 to 16000

Page 13-6

8169:

30598-730

This register assigns the BAUD rate for the
Model 650’s two communication ports. The
first half of this register's data field is
divided into two groups of 4 bits each. Each
group of bits contains the baud rate for an
individual port (channel).

The following table lists the channel-to-bit
association for the PRGMR (Channel 1) port
and the COMM (Channel 2) port.

8169 Bits 1-4 and 5-8

BIT PATTERN
{bits 1-4 for PRGMR, BAUD RATE
bits 5-8 for COMM)
0000 50
0001 110
0010 300
0011 1200
0100 2400
0101 4800
0110 9600 (defauit)
01 19200

8170:

Bits 1

to15: Not used.

Bit 16: Activates the communication completion
feature of the Model 650. (Also called the
task swap enable/disable bit.) If this bit is
set to 1 by the user, End of Scan
communication servicing could be extended
an additional 5 msec to allow for_complete
message servicing. See Sections|5.6.1‘ and
14.2.2

8171: Contains the remainder of the most recent
integer division performed. Remainder’s
sign (1) agrees with the numerator.

8172: Processor scan time in milliseconds. Scan
time is the length of time required for the
Model 650 to make one pass through user
memory and includes end-of-scan 1/0 update
and communication port servicing times.

8173: Fenced registers ending address (as entered

by user). The ending point of the block of

8174:

8175:

8176:

registers accessible via the COMM port
(Channel 2).

Fenced registers beginning address (as
entered by the user). The beginning point of

the block of register ible via the
COMM port. Refer to[Section 6.13|(security)
for more details on the use of fencing.

Error code storage. Refer to| Appendix A|for

descriptions of these codes.

This register contains the last ERROR
NUMBER which occurred. If there is more
than one error, the most serious or highest
priority error code is stored. The contents of
register 8175 are cleared after a HALT-to-
RUN keyswitch toggle, provided the cause of
the error was eliminated. An exception to
this are errors in serial communication,
which clear as soon as a successflul
communication message has been exchanged
through the indicated port. Errors occurring
in register 8175 can be preserved in an “error
register stack” using register 8107.

Primary Processor Control Register. The
following table explains each bit in this
register.

The individual bits of register 8176 are used
for system monitoring and control. Because
it is possible to alter the state of the data
field bits, the user has the capability to
change specified processor conditions. These
bits can be altered via the CRT programmer
or SFW Software’s DATA ENTER mode or
by a ladder rung in memory. Bits 1 through
16 are alterable. Exceptions to this involve
the use of certain memory write protection
modes. Refer to|Section 6] “Software
Security”.

REGISTER 8176 READ/WRITE BITS - The following

Bit 1:

bits can be altered by the user:

When this bit is set ON, it prevents the
Model 650 from scanning the ladder
program. The processor can be placed in the
HALT mode by either putting the processor
keyswitch in the HALT position or by
programming and energizing coil 8176-1 in
the ladder diagram program. Toggling the
keyswitch into and out of HALT or setling
and resetting 8176-3 rescts this bit to OFF.

30598-730 Page 13-7

Bit2: When this bit is set ON, the processor

operates in the DISABLE OUTPUTS mode. 8176 Bits 1-32

The processor can be placed in the DISABLE

OUTPUTS mode either by putting the BIT USED FOR:

keyswitch in the DISABLE OUTPUTS

position, or by programming and energizing 1 Processor HALT

coil 8176-2 in the ladder diagram program. 5 processor Disable Outputs
Bit3: This bit operates as a remote HALT/RUN 3 Processor HALT/RUN

switch. 1 =Processor Halt, 0 = Processor Run.

The HALT condition overrides the RUN 4 Memory Protection

condition. Putting the keyswitch in HALT or s Force Inhibit

setting bit 3 to ”1” halts the processor. To

put the processor in RUN, however, the 6 Register Protection

keyswitch must be in RUN or

RUN/PROGRAM and bit 3 must be ”0”. 7 Immediate /O Update
NOTE: Performing a DELICLR ALL operation does 8 IF Rung Overflow Flag

NOT reset bit 3; once set, it must be Control Register Data

individually reset by the user. 3 Corruption Flag

10 MATRIX or ARRAY Overfiow
Flag

Immediate Communications
Update, Channel 1

immediate Communications

12 Update, Channel 2

13 Immediate Communications
Update, Channel 3

14 Not used

15 Port and Route Edit Lockout
Control

16 inhibit Coil Address

17 Either internal or Power
Supply Battery is Low

18 OPEN Contact Address

19 SHORT Contact Address

20 Not used

21 First Dummy Scan

22 Second Dummy Scan

23 Normal Program Scan

24-31 Not used

32 Internal Battery Low

Page 13-8

Bit 4:

Bit 5:

Bit 6:

Bit 7:

Bit 8:

30598-730

Setting this bit to ”1” protects user memory
from being altered via the COMM port
(Channel 2) and Ethernet Port (Channel 3).
For further details refer to Section 6.10.

1 = Memory Protected
0 = Memory Accessible.

Setting this bit to ”1” inhibits the forcing of
any 1/O via the COMM port and Ethernet
port {Channel 3). 1=VYorce Inhibit,
0=Forcing Allowed. 1/O can still be forced
using programming equipment through the
PRGMR port (channel 1). Refer to Section

In addition to the fencing capabilities of the
Model 650, setting this bit protects any
registers from being altered via the COMM
port and Ethernet port (Channel 3).
Registers can still be forced or altered

through the PRGMR port using
programming equipment. 1=register
protect, 0 =register accessible. Refer to

Section 6.12

Activates the Immediate 1/0 Update feature
of the Model 650. When the Model 650
encounters a rung containing an energized
bit 8176-7, it momentarily slops scanning
the ladder program and updates the external
I/0 that are defined by registers 8105 and
8106 (inputs are written to the image table,
outputs are read from the image table).
Upon completion of I/O updating, normal
scanning resumes. If either 8105 or 8106 is
set to “0”, only the local digital 1/0 are
updated (this default does not apply to local
register modules).

The Model 650 is capable of complex
COMPARE functions (i.e. IF S50 = S60 X
S70...). If the integer or floating point math
operation within a COMPARE statement
results in a value beyond the processor's
capability, bit 8 is set to ”1”. This bit is reset
to "0” at the beginning of each new scan.

Bit 9:

Bit 10:

Bit 11:

Bit 12:

Bit 13:

Bit 14:

Bit 15:

Bit 16:

This bit is set if the Model 650 detects a
control register checksum error upon power-
up. ERROR 900 or 901 appears in register
8175 unless overwritten by a higher priority
error. Also indicates that all control
registers have been set to their default
values and that all data storage registers
have been reset to “0”. Typically this bit is
set if battery backup has failed for any
length of time. Bit 9 is reset by a CLEAR
ALL or DATA ENTER operation.

This bit is set to ”1” if an overflow occurs
during a MATRIX or ARRAY operation and
is reset at the beginning of a new MATRIX or
ARRAY rung.

When this bit is set to ”1”, the Model 650
interrupts the normal ladder scan and
performs up to 5 milliseconds of servicing on
any pending communication in the buffer for
the PRGMR (Channel 1) port. Normal
ladder scan continues upon completion of the
communication servicing.

Performs the same function as bit 11, except
for the COMM (Channel 2) port.

Performs the same function as bit 11, except
for the Ethernet (Channel 3) port.

Not used.

Setting this bit to ”1” prevents program
editing through either port and any route by
any device other than the device which set
the bit to ”1”. Refer toSection 6.5

This "inhibit rung” can be placed within the
main ladder program to prevent alteration
an iewing of certain rungs. Refer to
Section 6.7|for more details.

REGISTER 8176 READ-ONLY BITS - The following bits

cannot be altered by the user in any way,
however, these can be examined as contacts
in the program:

Bit 17:

Bit 18:

Bit 19:

Bit 20:

Bit 21:

Bit 22:

Bit 23:

This bit is set to ”1” when either the Model
650’s internal lithium battery or the power
supply batteries are low. This bit can be used
in conjunction with bit 32 of this register
which signifies that only the internal
lithium battery is low. Refer to Section

for more information aboutl low
battery indication.

“OPEN”. This bit is always de-energized,
and is used to signify an OPEN in the ladder
program.

“SHORT”. This bit is always de-energized.
A normally-closed contact in the ladder
program uses this bit to signify a SHORT.

Reserved for processor internal use.

Set to “1” during the first power-up dummy
scan.

Set to “1” during the processor’s second
—power-up dummy scan.

This bit is set to ”1” whenever the Model 650
is scanning the ladder program afier
executing the first two dummy scans.

Bits 24

to 31

Bit 32:

8177:

[69

: Reserved.

Set to ”1” when the voltage of the Model
650’s internal lithium battery falls below the
point needed to maintain memory in RAM.
This bit can be used in conjunction with bit
17 to provide a better idea of which battery is
defective or missing. Reler Lo
for more information about low battery
indication.

Password register. Contlains a value that
determines if register 8178 controls editing,
forcing, and register write restrictions. If a
zero is in register 8177, then any value in
register 8178 is ignored. When reading
register 8177, if a zero is stored then a zero is
displayed. If any other value than zero is
stored in register 8177, then ”-1” is displayed
to keep the password a secret. See Section
kor more details.

8178:

30598-730 Page 13-9

Restriction register. Each of the first 12 bits
in this register determines which security
feature is enabled for the PRGMR, COMM,
and the ETHERNET port. See the following
table to determine which security is in effect
when the indicated bits are set to ”1”.

8178 Bits 1-12:

BIT SECURITY MEASURE IN EFFECT WHEN
BITIS SETTO “1*
1 Restricts priority writing to registers
through the PRGMR port.
2 Restricts the forcing of registers through
the PRGMR port.
3 Restricts non-priority writing to registers
through the PRGMR port.
4 Restricts program editing through the
PRGMR port.
5 .. Restricts priority writfng to registers
through the COMM port.
6 Restricts the forcing of registers through
the COMM port.
7 Restricts non-priority writing to registers
through the COMM port.
8 Restricts program editing through the
COMM port.
9 Restricts priority writing to registers
through the ETHERNET port.
10 Restricts the forcing of registers through
the ETHERNETport.
1" Restricts non-priority writing to registers
through the ETHERNET port.
12 Restricts program editing through the
ETHERNET port.

Page 13-10

30598-730

NOTE: The CLEAR ALL operation is always allowed

through the PRGMR port.

GROUP #2: Read-Only Registers

8179:

8180:

8181:

8182:

8183:

8184:

8185:

8186.

Not used.

Percentage of memory used on high-speed
scanning processor (compiled user memory).

Indicates the total amount of ladder program
memory (MSW) in bytes available to the
user. This figure reflects intermediate
memory.

Indicates the amount of ladder memory
(LSW) in bytes that is available for use. This
figure reflects intermediate memory.

Stores information on some types of errors.
[See Appendix Al

Same as 8183.See Appendix Al

Indicates the number of rack addressing
rungs that are programmed into the Model
650.

Primary Processor Status Register. The
individual bits of this register are used for
indicating certain processor conditions.
These bits can be examined, but cannot be
altered in any way. See the|following table]
for an explanation of each of the bils in
register 8186.

8186 Bits 1-16:
BIT MODEL 650 STATUS WHEN
BITISSETTO "1~
1 Halted
2 Outputs disabled
3 Running
4 MEMORY LED is ON
5 FORCE LED is ON
6 /O LED is ON
7 Key is in HALT position
8 Key is in DISABLE OUTPUTS position
Key is in RUN position (if bits 7, 8, and 9
9 are “0”, then key is in RUN/PROGRAM
position)
WRITE PROTECT LED is ON or FLASHING
10 (hardware or software security is
enabled)
1 BATTERY LOW LED is ON or FLASHING.
12-16 NOT USED

8187:

8188:

Indicates the number of ladder rungs that
are programmed in user memory.

The three most significant digits of the 16-bit
data field of this register identify the type of
Model 650. The least significant digit
identifies the major revision level. (i.e., for
the 16K version, rev 1.XX, the digits are
6541; for the 26K version, rev 1.XX, the
digits are 6551). The 16-bit Status field
stores both the major and minor revisions for
the Control Processor software. The data for
this field is stored in a Binary Coded Decimal
(BCD) format. The first two BCD digits
(most significant byte) show the major
software revision, followed by an implied
decimal point. The last two BCD digits (least
significant byte) indicale the minor revision

of the software.

[oJo[o]o[ofo]o[1]o]o]1]0]0]0]0]o]

'...

8189:

8190:
8191:

8192:

o | v [2] o]

Major Rev. Minor Rev.

..

Register 8188 Status field

Register 8188’s status field indicates a major
software revision of 1 and a minor revision of
20. This is read as revision 1.20 of the
control processor software.

Memory word information. Bits 1 through 8
indicate total intermediate memory
available in bytes (MSW). Bits 9 through 16
indicate the number of bytes that make up a
user word.

Total intermediate memory available in
bytes; Least Significant Word (LLSW).

Intermediate memory used in bytes; Most
Significant Word (MSW).

Intermediate memory used in bytes; Least
Significant Word (LSW).

30598-730

Page 13-11

30598-730 Page 14-1

14 TECHNICALDATA

This section provides supplementary technical
details on memory use, scan speed, and general
processor operation.

14.1 Memory Utilization

The Model 650 contains two copies of the user
memory: an intermediate code memory and a
compiled code memory. Intermediate code is the
“universal language” that all SY/MAX programmers
and processors “speak”, while compiled code allows
for fast program execution.

Since these two memories reside in separate
locations, each has its own allocated space. Either
memory can be the limiting factor for the user
program size, depending on which instructions are
used. The programming device’s status screen
displays the amount of intermediate memory used, as
well as the amount of available memory.

The amount of compiled memory used is monitored
in register 8180 as a percentage of the total available
memory. As the user program is developed,
available memory in the compiled area decreases,
indicated by register 8180 approaching 100 (%). In
the SCP-655, compiled memory availability is
normally the limiting factor in user program size.
Therefore, register 8180 needs to be monitored to
determine the amount of user memory actually
remaining for ladder programming.

As can be seen from [Figure 14.2A and 14.2B]
compiled memory use is generally greater than
intermediate memory used for a given instruction.
Thus compiled memory space will usually be
consumed faster than the intermediate memory
space. This means that based on experimentation
and observation, a typical user program may run out
of memory at approximately 26K of intermediate
memory because the compiled memory space has
been used. Program capacity could actually be more
or less than 26K and is dependent upon the
instruction set combination. As the size of the
program increases, both registers 8180 and the
“MEMORY USED” display on the status screen of
the programming device need to be monitored to
determine the remaining memory space.

The following sections explain memory use for relay
circuits, general instructions, and IF/LET/MATH
instructions.

14.1.1 RELAY CIRCUITS

In general, the amount of memory required for relay
circuits can be determined by counting the number of
contacts, parallel branches, and coils in eachrung. A
contact or coil (including its address number),
requires one word of intermediate memory (the coil
requires three words of compiled memory). Spaces do
not require any words of memory.

The sample rung in requires eleven
words of intermediate memory and 13 words of
compiled memory (*), as illustrated by the numbers
associated with each contact and output:

1 11

it TT%{)—

(11-13)*

f j l
8 9 10 7
~\ /-
PARALLEL BRANCHES (4)

Figure 14.1 Rung Using 11 Words of Intermediate
Memory and 13 Words of Compifed Memory

Each rung of intermediate memory also requires an
additional 1/3rd of a word. This 1/3rd word cannot be
represented by the "Memory Used” display on the
programmer.

For example, if a contact and a coil are added to user
memory, the programmer may indicate that three
words of intermediate memory were consumed. The
third word here is the fractional (1/3rd) word
rounded up to a whole word.

Page 14-2 30598-730

14.1.2 GENERAL INSTRUCTIONS

Figure 14.2A shows memory use for most Model 650
instructions. See Section 14.1.3 for special consider-
ations on the IF, LET, and math functions. INT
refers to intermediate memory, while COMP refers
to compiled memory. Each instruction will consume
the indicated number of words from the respective
memories.

14.1.3 IF, LET, AND MATH INSTRUCTIONS

In an IF or LET instruction, the amount of memory
required is a function of the type(s) of operation
being performed. In addition to intermediate
memory (INT) used, Figure 14.2B also shows entries
for compiled memory (COMP A and COMP B).
From the table in Figure 14.2B, any IF or LET
statement (including matrix) requires a fixed
quantity of words for the basic instruction, plus one
or more additional words for each addition,

» Addoneword per route.

»» Add one word per register or one word for each two
characters.

»»» Add one word if more than three registers or ALPHA boxes,
two words if more than six registers or ALPHA boxes.

Figure 14.2A Memory Use

omory omoey subtraction, AND, OR, or EXCLUSIVE OR
INSTRUCTION Used Used performed in the horizontal box.
INT comp
GENERAL RUNGS Words of | Words of | Words of
Memory | Memory | Memory
Contact 1 1 Used Used Used
INSTRUCTION

Parallel Branch 1 1 comp | comp
Coil 1 3 INT A B
Coil, Latch/Unlatch 1 2 LET, IF, AND, OR
Coil, Transitional 1 5 LET (data transfer) 3 > 2
Master Control Relay 1 3 LET (matrix data transfer) 5 5 q**
Timer 6 7 IF {compare) 3 5 3%
Counter 6 IF (matrix compare) 5 4**
Shift Register (sync. or asynch) 6) AND/OR/EXCLUSIVE OR ! 2 !
SUBROUTINES Binary-to-BCD, BCD-TO-Binary 1 - 1
MARK/GOTO/Start of Subroutine 4 1 INTEGER MATH
GOSUB a 3 Addition /Subtraction 1 2 1

Multiplication /Division / 1 - 1
RETURN 3 ! Square Root
PRIORITY COMMUNICATIONS FLOATING POINT MATH
Register READWRITE 6> 4 Addition/Subtraction/Multi- 1* - 1

plication/Division/Square
ALARM Message 3 4 Root/Sine/Cosine/Base 10 and
Print ASC!I 25 Ippp Base E Logarithms/Y to the X
Immediate 1/O or 1 1 * Ifany numberina LET or IF box is a floating point constant,
Communication Update then two words of memory are required.

** If the first number in the LET or IF box is a floating-point
constant, then one extra word is used.

Figure 14.2B Memory Use

In Figure 14.2B, the COMP A column should be
used when an IF or LET box contains only integer
values and performs ONLY the following operations:
compare (=, #, <, =), addition, subtraction, logical
AND, OR, or EXCLUSIVE OR.

The sample rung illustrates this memory

use:

0003
R teTsi01 = s201-10
-0t

This rung requires a total of five words of
intermediate memory: one word for the contact,
three words for the basic LET itself, and one word for
the subtraction operation, as well as eight words of
compiled memory (one for the contact, five for the
basic LET, and two for the subtraction). If the above
rung was changed to a MATRIX LET, the
intermediate memory consumed would increase to
seven words, while the compiled memory would
remain at eight.

Use the COMP B column in Figure 14.2B whenever
a floating-point operation is used within an IF or
LET box or if the box includes any operation other
than compare, addition, subtraction, AND, OR, or
EXCLUSIVE OR. If an IF or LET box meets this
condition, word usage for the entire box should be
calculated using the COMP B column. The
following|sample rung illustrates this procedure.

0003
— |__FETS101 = $201-10 x S005
-0t

Since this LET box now contains a multiplication,
the rung requires a total of six intermediate memory
words: (three for the basic LET, one for the contact,
one each for the subtraction and multiplication
operations, and five words of compiled memory (one
for the contact, two for the basic LET, and one each
for the subtraction and multiplication)).

30598-730 Page 14-3

14.2 Scanning Techniques
14.2.1 DESCRIPTION

The Model 650 contains a high-speed scan processor,
math coprocessor, and control processor. The scan
processor executes certain types of tasks in parallel
and executes the ladder program faster than the
control processor for better throughput. The Model
650 control program execution time is based
primarily on 3 factors:

1. Scan time of the user ladder program itself.

2. External I/0 Update time (including forcing,
if active).

3. Servicing of external communications.

The Model 650 makes use of an Image Memory to
hold the state of the first 8000 registers to make
logical program decisions. The contents of the Image
Memory are exchanged with the external I/O. The
present 1/0 state is transferred to the Image Memory
at the end of every scan.

The time necessary to perform this external I/O
update is a function of the number of I/O registers
assigned to other modules in the system and how
many of these registers are fragmented (containing
both input and output data in the same register).

Servicing of external communications is normally
limited to 5 msec. per scan unless the user sets bit

8170-16 or requests an immediate communications
update; refer tq Section 14.2.2

Page 14-4 30598-730

14.2.2 SCANNING SPEED

In addition to the time needed to execute the ladder
program, the scan time of the Model 650 is composed
of the time needed to update the external I/O plus the
time to service the communication ports. In general,

the[following|equation can be used to estimate scan
speed:

ST = [K x (LUP)] + [0.04 x (ER)] + [0.45 x (FER)] + COM
In the above equation:

ST is the SCAN TIME in milliseconds.

K is the LADDER SCAN SPEED per K of

user program (estimated from execution
times inl Figure 14.3|on the next page).

Lup is the LENGTH of USER PROGRAM in
thousands of words (k words).
ER is the number of EXTERNAL

REGISTERS.

FER is the number of FRAGMENTED
EXTERNAL REGISTERS

COM is the time required to service the three

communication ports.

Figure 14.3| provides a list of typical operations and

an approximation of associated execution times. For
operations not listed, execution times are difficult to
estimate because of the complexity of certain
operations. Thus, Figure 14.3 provides the user with
relative comparison times, indicating which
functions are more processor-intensive,

The user is advised that scan times may not be
consistent, depending on rung true/false conditions
and the amount of communication traffic from
Figure 14.3, numerous instructions are listed which
are not executed when their input logic is false. For
example, executing a repeat MATRIX LET of 100
registers will increase scan time by almost 10 msec
when true. The PID instruction is also shown to be
scan-intensive. Scan time is also clearly affected by
non-sequential program control instructions such as
GOTO, GOSUB, and TIMED INTERRUPT. For
scan-critical applications, user should be aware of
the scan impact of worst-case logical execution paths.
Register 8166 (minimum scan time register) can be
used to “smooth out” widely varying scan times.

Refer to|Section 14.2.3|for information on optimizing

scan speed.

CAUTION

When editing while the processor is in
RUN/PROGRAM, the program scan time
may increase significantly as discussed
below.

When performing an edit while the processor is
executing the user program, the normal processor
scan time may be momentarily increased. The
increased scan time is a one-time occurrence and is
caused by the processor loading the new rung(s) into
the location in memory where the program resides.

Depending upon the program complexity, the type of
edit performed, and the memory location where the
edit takes place, the scan-time may increase several
hundred milliseconds. The longer and more complex
the program (i.e., multiple MARK rungs, GOTO, and
SUBROUTINE commands) and the earlier in
memory that the edit takes place, the greater the
scan-time increase.

For any given program, the worst-case scan time can
be measured by monitoring register 8172 (scan-time
register) while performing an insert of rung 1. If an
excessive increase in scan time cannot be tolerated
while scanning the user program, edits can be
prevented by leaving the keyswitch in RUN.
Alternately, register 8167 (programmable scan
limit) may be preset to halt program execution based
on a user-specified maximum scan time limit.

A processor which is called upon to service its
communications ports (such as when a programmer
is connected) will also experience a worst-case scan
time extension up to 5 msec at End of Scan (EOS).
Note this is 5 msec total for all 3 ports. An
Immediate Comms Update instruction also exists
(bit 11, 12, or 13 of register 8176) which allows the
user to interrupt scanning to service the
communication ports more frequently, allowing
better Comms throughput at the expense of longer
overall scan time.

Also, a special control bit (8170-16) may be set by the
user to cause the processor to completely finish
servicing an entire message block at the end of scan.
This ensures a given message block will have all
registers incorporated into the image table at the end
of the same scan. The potential scan time impact is
to add on up to an extra sec (10 msec total) at
EOS. Refer to Sectionnd for more about
Register 8170-16.

30598-730 Page 14-5

INSTRUCTION TO
BE EXECUTED

EXECUTION TIME IN
MICROSECONDS

(Except where noted)

ALL MODEL 650s

FIFO

102 + 2 per register

PID* (Rev. or Dir.)

740 (typical)

PID* (Manual)

116 (typical)

m’::g:te o 140 + 40 per register
T WRITE, TREAD, 133

T ALARM

T PRINT 183 (typical)
SIN/COS/TAN 239

LnLOG 154

Y**X 352

Add Stat 335
Variance 273
TWRITE, TREAD, T 133

ALARM

EXECUTION TIME IN
MICROSECONDS
(Except where noted)
INSTRUCTION TO
BE EXECUTED ALL MODEL 650s
Contact* 0.8
Coil (including
MCR and 14
latch/unlatch)
Transitional Coil 14
Timer
(Disabled/Enabled) 14.4/18.2
Counter
(Disabled/Enabled) 20.523.0
IF* (Integer/
Floating-point) 12.0n22
LET* (Integer/
Floating-point) 10.0128
Matrix LET*)
(integer) 97 per register
Math
(Integer/Floating-
point):
ADDITION 5.3/46.0
SUBTRACTION 5.3/46.0
MULTIPLICATION 122/86.4
DIVISION 122/46.4
Logical AND, OR, 37
XOR :
Shift 96 + 2 perregister

Figure 14.3 Execution Times For
Typical Operations

TPRINT 183 (typical)
SIN/COS/TAN 239
Ln/LOG 154

Y X 352

Add Stat 135
Variance 273
MARK ST SUB 0
MARK 05
GOTO* 14

*

?\ﬁ: lgTN) 720
External 1O 320 per 8 local

Update Timet

unfragmented registers
per scan

MIX #1**

0.8 milliseconds per K of

ladder
[T T 3.2 milliseconds per K of

MIX #2 ladder
MIX #3*%** 2 7 milliseconds per K of

ladder

Figure 14.3 Execution Times
(continued)

Page 14-6 30598-730

FIGURE 14.3 CODES

T 123 microseconds per register for Class 8030
Type RIM121 analog input, 75 microseconds
per register for Class 8030 Type ROM121
analog output.

* If rung is TRUE up to that point; if FALSE,
the instruction is not executed and time is
reduced. See|Section 14.2.3) "Rung Execution
Algorithm Guidelines™.

** Mix #1 is composed of all Boolean rungs.

*EE Mix #2 is 50% Boolean, 34% IF and LET
rungs, 8% counters, and 8% timers.

REE

Mix #3 is 80% Boolean, 5% timers, 5%
counters, and 10% addition/subtraction.

CONSIDERATIONS FOR “TIME MIXES” #1-#3

® Onanaverage, only 66% of any rung must be
executed.

¢ Boolean assumes an average of two contacts for
each coil.

e External 1/0 Update or communication
processing time is not included in any of the mix
execution times.

14.2.3 OPTIMIZING SCAN SPEED

In some ways, optimizing the scan speed of a Model
650 processor is no different than the procedure used
for any computing device. For example, the Model
650 program is compiled from intermediate code into
a 64-bit word compiled format that allows rapid
execution by the scanning processor.

While this intermediate to 64-bit compiled code
conversion operation is transparent to the user, the
Model 650’s instruction set contains scan control
instructions like GOTO and GOSUB that allow
skipping over sections of a program that do not
require scanning at a particular time. This
“skipping over” process saves scan time and
improves performance (throughput). This simple
technique should not be overlooked when dealing
with programs containing sections that do not
require constant scanning.

When laying out and programming any system,
applying knowledge of how that system behaves to
the system’s configuration can optimize its
performance.

Over the next few pages are some simple guidelines
(most of which have been previously discussed in this
manual) for economizing scan time.

RACK ADDRESSING GUIDELINES

Minimizing external 1/0 update time using good rack
addressing techniques is demonstrated by the
example in[Section 3.6.5] When Rack Addressing a
system containing Lecal Interface (LI) module(s),
scan speed is optimized by assigning only those
registers necessary for remote 1/0 operation to an LI
Any registers (up to 255 - recall that registers above
255 aren’t transferred) unnecessarily assigned to an
individual LI results in needless end-of-scan register
transfers between the Model 650 and the LI's data
storage registers.

The equation of Section 14.2.2 shows that updating
an unfragmented register on the bus requires 40
microseconds. If the conditions of the example in
Section 3.6.5 are used, the unnecessary assignment
of all 512 LI module registers decreases throughput:
Update Time for 512 registers = 255 x 0.04 ms =
10.2 ms per scan, and the Update Time for 50
registers = 50 x 0.04 ms = 2.0 ms per scan

SUMMARY:In the scan time calculations, 8.2
milliseconds is needlessly added to the scan time for
unnecessarily updating over the bus. Thus, assign
only needed registers for external 1/0 to the LI
module(s).

When assigning registers to other register modules
in the CPU rack, ONLY assign as many registers as
needed by the module. For example, assign only one
register to a 16-point digital 1/0 module, or four
registers to a four-channel analog module. Any
registers needlessly assigned to the module results in
the 40 microsecond per register scan penalty.

EXTERNAL I/0 REGISTER GUIDELINES

The equation of|Section 14.2.2(also shows that the
time required to update a register increases tenfold
when the register is fragmented instead of
unfragmented. A fragmented register refers to an
external I/O register that contain both input and
output points. Thus, when using four-point and
eight-point digital /O modules, lay out the
programmable control system so that all points of a
particular external I/O register are assigned as either
inputs or outputs.

For example, if a Model 650 is being used in an HRK-
type rack (eight-function rack), both modules
associated with an external I/O register should be
either inputs or outputs. This principle applies to
remote 1/O registers as well.

NOTE: Fragmenting registers forces the processor
to make decisions that consume valuable
processing time. These time-consuming
decisions can be eliminated if external 1/10
registers are made up strictly of inputs or
outputs.

RUNG EXECUTION ALGORITHM GUIDELINES

The Model 650 executes ladder rungs in such a way
that elements of conditional logic may actually be
skipped over if the logical outcome of the rung is no
longer in doubt. This applies to logically TRUE as
well as logically FALSE rungs.

A good example of this is shown in the following :

4 HF mso1 = —O—

The matrix IF instruction shown above only executes
if the leading contact is CLOSED. If OPEN, the
matrix IF is skipped over (no pointer information is
updated) and the coil is turned OFF. If the leading
contact is CLOSED, the matrix IF is scanned to
determine the state of the coil. If the order of the
conditional elements was inverted (i.e., the matrix IF
came before the contact), although logically
equivalent, the execution time could increase
dramatically for the FALSE condition since in this
configuration the matrix IF would always be
executed.

30598-730 Page 14-7

If proven FALSE, the contact is skipped over; the
savings in scan time, however, would be negligible
compared to the savings if the matrix IF were not
scanned at all.

A similar principle applies to saving processor time
for the TRUE condition shown below:

1 O-

AN

IF M501 =]-——

If the contact shown above is closed, the coil is ON
regardless of the condition of the matrix IF
instruction. In this case, the matrix IF doesn’t need
to be executed and some scan time could be saved in
the process.

However, if the matrix IF and the contact were
interchanged, the matrix IF always executes first.
This may have an adverse effect on the rung’s
execution time.

Another simple rung execution technique can be
applied to LET statements. Since the LET only
executes if the rung is TRUE, any initialization
constants scanned more than once will needlessly
consume processing time and should be avoided in
the user program.

SUMMARY:When placing a premium on optimizing
scan time, examine rungs for logical equivalence to
see if interchanging conditional elements will reduce
the execution time.

SCANNING PROCESSOR VERSUS CONTROL
PROCESSOR GUIDELINES

Any functions that cannot be handled by the
scanning processor must be “handed off” to the
control processor. Since the control processor is also
tasked with handling other system interrupts, longer
scan times can result.

Such multitasking operation makes it very difficult
to quantify precise execution times for these
instructions since it cannot be predicted in advance
how many other demands (such as communication
handling) are being made on the control processor at
the time of the “hand-off”.

Page 14-8 30598-730

As shown in the table of|Figure 14.3]/ execution times

can vary widely. This variation occurs because some
of the instructions are executed by the scan processor
while others must be handled by the control
processor. For example, integer addition and
subtraction are handled by the scan processor, while
integer multiplication division and all floating-point
operations are handled by the math coprocessor.

Since integer multiplication and division and
floating-point math operations are handled by the
math coprocessor, the control processor must act as
an intermediary between the scanning processor and
the math coprocessor. While this is occurring, the
scanning processor remains idle until the result is
computed. This makes for an efficient use of
processing power.

The following provide additional considerations
when comparing the operation of the scanning
processor with the control processor:

® Although GOSUB and RETURN instructions
have to be executed by the control processor,
their careful use can result in a great savings in
throughput.

® Shift register and FIFO operations are executed
by the control processor; their execution times
are affected by the number of registers involved.

® Matrix operations must be performed by the
control processor and can significantly influence
scan time depending on their size and pointer
configuration. Each matrix operation requires
approximately 97 microseconds to calculate a
new element.

- When using matrix LET statements, use
“level” or “incremental” LETs over “repeat”
LETs wherever possible. This distributes the
increased processing time over many scans.

- For matrix IFs, use “level” instead of
“repeat” whenever possible. If “repeat” must
be used, follow the principles given in the
previous Rung Execution Algorithm
Guidelines section to save scan time.

14.3 Theory Of Operation

The Model 650 consists of several major subsystems,
all under the control of a central processing unit.
Refer to the block diagram ianigure 14.4| while

reading this section.

The control processor is a Motorola Type 68010 and
is responsible for performing and/or coordinating all
functions of the Model 650, including interrupts and
error conditions from the serial communications
interface, SY/MAX bus, scan processor, and math co-
processor.

Scanning in the Model 650 Processors is performed
by an Advanced Micro Devices Type 29116 processor
utilizing a 64-bit compiled word.

Floating-point operations are performed by a
Motorola Type 68881 math coprocessor. The system
clock runs at 8 MHz.

Each subsystem within the Model 650 is briefly
explained in the following.

Control Processor: This device either performs or
coordinates all of the processor’s functions, including
communication via the two serial RS-422 ports. The
control processor also compiles the ladder program in
the Compiled User Memory, controls interrupts and
error conditions, and handles SY/MAX bus duties.

Math Coprocessor: Allows the Model 650 processor
to perform floating-point math operations.

Scan Processor: Performs computation of the Model
650’s output states based on the current condition of
inputs and registers. The computations and
sequence in which they are performed are
determined by the Compiled User Memory. The /O
states and register values are obtained from the
Image Memory.

Image Memory: The Image Memory consists of
battery-backed RAM that provides 16-bit data and
status fields for user registers 1 through 8000 and
control registers 8093 through 8192. Parity
protection is provided for this memory. This memory
contains both the internal and external I/O and
registers.

Between scans, the control processor outputs the
current values in this memory to the appropriate
external devices. The control processor also updates
the Image Memory according to the external I/Q
registers to prepare for the next scan.

User Memory: Partitioned into two distinct portions
for maximum efficiency in scanning and program
manipulation:

1. Intermediate Code User Memory: This battery-
backed memory occupies 32K words of the
control processor’s operating (scratch) memory.

Intermediate
User
Memory

Real-Time
Clock

t

30598-730 Page 149

The Intermediate User Memory is only
accessible by the control processor. It serves as
the source for the compile operations which
generate the instructions for the Compiled User
Memory.

2. Compiled Code User Memory: Consists of
battery-backed CMOS static RAM that provides
32K of 64-bit word user program storage. Each
word is composed of the scan processor
instructions and control codes. This memory
serves as the executive memory for the scan
processor and can be randomly accessed by the
control processor for program loading and editing
purposes.

Serial Communication Interface: Controls the two
RS-422 ports on the front of the Model 650
(PRGMR/Channel 1 and COMM/Channel 2). More
information on these ports is found i

Floating-
I’\’g:ﬁ: Compiled
Coprocessor User
{Motorola 68881) Memory

7y
'3 IL

Serial
Communication CONTROL Scan
———————P
Interface PROCESSOR <4—— ¥ Processor
(Motorola 68010) (AMD 29116)
P = . e e
| Ethernet 7y 4
1 Interface* |
oo o e o oo oy of
v e SY/MAX
Keyswitch ot Bus
and Detect Interface ,;:,:gfy
Status LEDs 3-State
Control
I for a block diagram of
Ethernet components
Y/MAX BUS :

Figure 14.4 Model 650 Block Diagram

Page 14-10 30598-730

ThinWire Ethernet

!

. Ethernet Transceiver

!

Ethernet Controller
Interface

!

Scan Processor

Processor
Registers

$

Address .| Communication [
ﬁ Dual-Port N All
Switches Processor Registers ﬁ Control Processor LEDs :
Bus .
Interface :

Ethernet NIM
Storage Registers

Figure 14.5

SY/MAX Bus Interface: Allows the Model 650 to
control a SY/MAX digital or register rack as a bus
master.

Ethernet Interface: Controls the Ethernet port
(Channel 3). The Ethernet Interface converts data
from the Ethernet packet into SY/MAX format so it
can be processed by the control processor. Refer to
Figure 14.5 above.

Real-Time Clock/Calendar: Provides the Model 650
with time-of-day and date information. This
information can be used throughout the entire

programmable controller system. For more
information on the clock see| Section I2.2l

Model 650 Ethernet Interface

14.4 Forcing

WARNING

Since forcing overrides the actual logic of
the control program, ONLY QUALIFIED
PROGRAMMERS who understand the
contents of this section should use the
forcing capability. Mistakes in forcing may
cause equipment damage or bodily injury.

Forcing allows an external input or output to be
turned ON or OFF via the programmer’s keyboard
and overrides the ladder logic state of the external
field device. Forcing is permitted from all ports.

In the Model 650, forcing is implemented just prior to
updating the external I/O at the end of scan. The
forced state of an output WILL NOT be reflected in the
image table, meaning that the user program logic
executes and is based on the actual image table logic
state and not on the forced state. 'This operation
differs in comparison to other SY/MAX processors.

The forced state of an input IS written to the image
table. Since forcing is only implemented in the
external I/0 at the end of scan, forcing an internal
relay or data storage register does not alter the
actual logic state in the user ladder program. The
programmer indicates the bits of an internal relay or
data register to be forced even though they are not
actively changed. This operation differs from other
SY/MAX processors and is discussed in the following.

Since forcing is implemented on external 1/0 and not
in the image table, the following rules govern what is
observed and how the programmable controller
system behaves.

FORCING AN EXTERNAL OUTPUT

A forced external output causes the associated
external field device to assume the forced state. The
programming device reflects this when displaying a
forced rung by displaying an “F” within the forced
element. If relay contacts with the output address
are used in the program, they will assume the logic
state of the output as executed in the image table.
Since the relay contacts and coil displayed on the
programmer reflect the forced state and not the
image table logic state, this may conflict with the
way the logic is actually being executed.

EXAMPLE: Consider the rungs shown in|Figure 14.6

Contact 13-02 is an external input, while
coils 14-16,13-11, and 13-12 are external
outputs. The following conditions apply
to the rungs:

30598-730 Page 14-11

O:s

o
[
'
P
o

o
Y
o
-
w

:0)

o
it
&
o
w

O

-
o
'
-
~N

Figure 14.6 Forcing Example

CONDITION: Output 14-16 is forced ON, while
input 13-02 is OPEN.

RESULT: The external device wired to output
14-16 is energized, and the
programmer inserts an “F” inside the
coil and relay contacts with address
14-16. The programming device
displays the output contacts and coil
forced ON to reflect the forced state.

COMMENTS: Even though the N.O. relay contact
14-16 is forced "ON”, output 13-11 is
OFF while output 13-12 is ON. This
occurs because coil 14-16 and its
associated relay contacts are actually
OFF in the image table (because
contact 13-02 is OPEN).

If contact 13-02 is CLOSED instead of OPEN, the
image table logic coincidentally agrees with the
forced state; output 13-11 is ON while output 13-12is
OFF.

Page 14-12 30598-730

If it is desired to have the contacts of coil 14-16 follow
the logic state of the coil, the proper technique is to
force external input 13-02 as discussed in the
following:

WARNING

Forcing an unlatch coil "ON” actually
latches the coil. Beware of the potential
damage to equipment or bodily injury.

FORCING AN EXTERNAL INPUT

A forced external input overrides the actual
condition of the input field device and causes the
associated bit address in the Model 650’s image table
to assume the forced state. The programming device
indicates the forced state. As long as the forced
external input bit is not altered in the ladder
program (can only happen if the input bit was
incorrectly programmed as a coil), this forced bit
state is used when the ladder program is executed.

EXAMPLE: Assume the same rungs are used in this
example as in the previous

“EXTERNAL OUTPUT” example.

CONDITION: Input 13-02 forced ON, external field
input is OFF.

RESULT: As long as the state of bit 13-02 is not
altered in the user ladder program,
the forced state is preserved in the
image table no matter what the state
of the external field device’s input is.
This means that output 14-16 is
actually turned ON in the image
table along with the external device
connected to output 14-16. The relay
contacts of coil 14-16 properly reflect
the state of the coil. Output 13-11 is
ON, while output 13-12 is OFF.

FORCING AN INTERNAL RELAY EQUIVALENT OR
DATA STORAGE REGISTER

As discussed previously, forcing is a condition which
applies only to external 1/0.

NOTE: Attempting to FORCE an internal relay
equivalent or a bit in a data storage
register has NO EFFECT on its state in the
image table when used to execute the
ladder program. This is true even though
the programming device displays the

FORCED state.

Since there is no external 1/0 associated with a
forced internal relay equivalent or storage register
bit, the Model 650 has no way of implementing the
forced state. However, the programming device
shows the bit as forced; this may conflict with the way
the rung is actually being executed.

This situation is somewhat analogous to the
behavior of contacts that use the same address as a
forced coil. The contacts indicate a forced state, but
in actuality assume the logic state of the output as
executed in the image table. In the case of an
internal relay there is no external output associated
with the address. The Model 650 has nothing to force
externally, and the internal relay contacts continue
to follow the logic of the coil as instructed by the user
program.

To summarize, perform forcing ONLY on external
inputs and outputs. Forcing an internal relay
equivalent or bit in a data storage register has no
effect on the register and can produce information
that is subject to misinterpretation on the
programming device screen.

APPLICATION CONSIDERATIONS FOR FORCING

® Any external 1/0 register is forcible. This
includes local digital I/0 in a register rack and
digital I/O controlled via the Parallel Digital
Driver/Receiver (PDD/PDR) modules.

¢ Registers above 8000 are not forcible.

® Bits in a maximum of 256 registers can be forced
simultaneously.

Forcing can always be cleared by cycling power
to the Model 650.

Forcing can be inhibited or if already in effect,
prevented from being altered by placing the
keyswitch in the RUN (as opposed to
RUN/PROGRAM) position. See the note
following these application considerations.

When the TIMED INTERRUPT subroutine is
programmed and the Model 650 is in the
RUN/PROGRAM mode, forced 1/0 can be
released by the FORCE - CLEAR ALL
command.

Software security can be invoked to restrict
forcing on a port basis; refer to Sections and

Each forced register adds approximately 100
microseconds to the I/O update time at the end of
the processor’s scan, regardless of the number of
bits forced in the register. Thus, forcing one bit
in a register causes the same time penalty as
forcing all 16 bits in that register.

NOTE: 3 Special Cases of Forcing Exist:

Case 1 If a force command is issued
through port 3 only, and both
ports 1 and 2 are disconnected or
powered down, forcing is not
released.

Case2 If a force command is issued
through port 1 or port 2 and
both ports 1 and 2 are
disconnected or powered down,
forcing is released.

Case3 If a force command is issued
through port 1 or port 2 and port
3 and both ports 1 and 2 are
disconnected or powered down,
forcing is released.

30598-730 Page 14-13

14.5 Power Up/Down Sequence
PROCESSOR POWER-UP SEQUENCE

Upon application of power to the Model 650, the
following start-up sequence occurs:

1. External outputs are turned OFF.

2. A self-test sequence is performed to determine
proper operation, If any part of the self-test
sequence fails, the Model 650 will not go into
RUN.

The following components are checked when the self-
tests are run:

¢ The executive PROM is checksummed and
validated

¢ User memory
¢ Intermediate User Memory
¢ Internal RAM
® Compiled User Memory
¢ Image Memory
® Scan Processor operation
o Control Processor operation
¢ Watchdog Timer
® Math Coprocessor

3. Memory Corruption Test. If an error is found,
the MEMORY LED is turned ON and the Model
650 does not execute the existing programmed
memory.

4. A minimum 1-second delay is generated in order
to allow I/O data to stabilize. The delay may be
longer depending on the register cards installed

in the processor system and the quantity of
memory in the processor.

Page 14-14 30598-730

5. The /O forcing memory is reset inside the Model
650, thereby releasing all forced VO.

6. Input status is updated in the Image Memory.

NOTE: The total time required for all power-up
sequence activities is about twelve seconds.
During this time, the Model 650 does not
respond to any communication activity, and
any attached programming device appears
to be inactive (in reality, the programming
device is being requested to “wait” by the
Model 650).

7. If the processor keyswitch is in the RUN,
RUN/PROGRAM, or DISABLE OUTPUTS
position, the sequence continues with the
“Processor Scan Start-up Sequence” described in
the following.

PROCESSOR SCAN START-UP SEQUENCE

Upon changing the processor keyswitch from any
position to either the DISABLE OUTPUTS, RUN, or
RUN/PROGRAM position, the following sequence
occurs:

1. A self-test is run which checks that:
® A valid user program is loaded

® All user-programmed MARKs and related
GOTO and GOSUB rungs are properly
programmed.

e All programmed /O devices are checked
2. Two dummy scans are conducted:

® Dummy Scan #I simulates the presence of
an MCR in the OFF state and executes the
scan so that DISABLE OUTPUTS is ON.
Subroutines are scanned first, then the
regular ladder program is scanned. This
scan has the effect of turning OFF all coils,
except for those programmed as internal
latches. Outputs in the image table are not
transferred to the /O devices during this
scan. The timed interrupt is not executed.
During this scan, bit 21 of register 8176 is set
to “1”.

® Dummy Scan #2 removes the simulated
MCR, but keeps DISABLE OUTPUTS set
ON. The ladder is scanned normally.
During this scan, timed interrupts are not
executed. At the end of this scan the image
table is transferred to the external 1/O and
programmable interrupt scheduling begins.
During this scan, bit 22 of register 8176 is set.
to “1”.

3. Normal ladder program scanning begins. Bit 23
of register 8176 is set to “1”.

NOTE: The total time for keyswitched start-up
activities is about five seconds. During this
time the Model 650 does not respond to any
communication activity. An attached
programming device appears to be inactive
(although in reality its simply being asked to
“wait” by the Model 650). If the
programmable control system includes a
serial interface module (LI, LTI, or LAI), start-
up time may be up to 15 seconds if the serial
interface is showing an error condition.

PROCESSOR POWER-DOWN SEQUENCE

When the Model 650 processor enters a halted state
or if power is removed from the system, the Model
650 performs an orderly shutdown procedure that
resets all external outputs to their OFF state and
halts the memory scan. If Local Interface (LI)
modules are used in the system, outputs can be
specified to FREEZE instead of turning OFF; refer to
the Local Interface Instruction Bulletin #30598-247-
XX.

The programmable controller system power supply
continues operating, with no interruptions in the
operation, through any power loss or "brown-out"
condition of approximately 16 milliseconds or less.
After this period of time, the processor shuts down
and restarts when proper power is resumed.

In addition to all external outputs being reset to OFF
in the modules, the registers that are rack addressed
to the output modules are also reset to 0 in the
processor image table. This occurs not only during
the CPU power-down sequence, but also during run-
to-halt transitions.

14.6 Run-time Operational Checks

The Model 650 performs a number of internal
diagnostic checks. Among these are:

1.

A continuous check made to ensure that the
internal clock driving the processor logic is fully
operational (hardware watchdog timeout).

Hardware circuitry halts the processor in the
event the microprocessor fails to report every 2.5
milliseconds (software watchdog timeout).

Each word of user ladder and register memory
incorporates a parity bit. The processor checks
each examined word as it is executed for proper
parity. If an error is detected, the processor halts
operation and turns external outputs off. (In this
case, the HALT LED flashes and the MEMORY
LED is illuminated.)

The control processor gives the scan processor a
rung to execute at the end of each scan (a “fault
rung”). If the rung is executed incorrectly, all
outputs are turned OFF and an error is
generated.

30598-730

Page 14-15

30598-730 Page 15-1

15

ETHERNET COMMUNICATIONS

15.0 A Glossary Of Terms

The following terms are commonly used throughout
this manual and the SFW390 (30598-737-XX)
Instruction Bulletin. They apply primarily to the
Model 650 and SFW390’s version of Ethernet.:

ACK - A response from an external device to the
sender of a data message. An ACK indicates that
one or more messages were received and accepted by
the destination.

Alarm Queues - Areas of memory supported by the
SFW390 software and designed to hold three
different classifications of alarms: Faults, Alerts and
Warnings. Faults are classified as the most severe
and Warnings are classified as the least severe.

Application - A specific process or task, such as
tracking and comparing production per machining
device, to which a computer solution can be applied.

Asynchronous - A mode of processing in which a
user task can continue to execute after a read or
write without having to wait for the request to be
fulfilled. (See synchronous.) This would allow
multiple reads and/or writes to be outstanding at the
same time, for example. Register reads and writes
using SFW390 or Model 650’s can be either
synchronous or asynchronous.

Bridge - Similar to a repeater in its ability to
connnect segments of a network. It also has the
capability to screen information being transferred
between segments of a network.

CSMA/CD - Carrier Sense Multiple Access with
Collision Detection. This is a method for controlling
access by devices all sharing a single transmission
medium. Other methods include token passing and
token ring.

Ethernet or Equivalent NIM - The hardware and
firmware internal to the Model 650 programmable
controller that serves as an embedded Network
Interface Module and functions to:

» Send/receive Ethernet packets to/from the VAX
computers and other Model 650 programmable
controllers.

» Store/retrieve SY/MAX data to/from the Ethernet
(Equivalent) NIM registers;

» Send/receive SY/MAX packets to/from the Model
650 programmable controller.

» Thereis also an equivalent NIM component of the
SFW390 software that functions in the same manner
as the Model 650’s equivalent NIM. The equivalent
NIM portion of the SFW390 is often referenced in the
SFW390 manual as the SFW390 Ethernet
Configuration Registers. |Figure E.2|in Appendix E
illustrates the location of the equivalent NIM in both
the programmable controller and SFW390.

Ethernet - A specification for local communication
networks that employs coaxial cable as a passive
communications medium to interconnect different
kinds of computers, information processing products,
and office equipment at a local site.

External Device - Refers to a Model 650
programmable controller, or another computer
running SFW390 software (or equivalent) connected
to the host computer via the Ethernet network.

Gateway - In LANs, a computer system and its
associated software that permit 2 networks using
different protocols to communicate with each other.
A gateway translates all protocol levels from
physical layer up through applications layer, and can
thus be used to interconnect networks that differ in
every detail.

Page 15-2 30598-730

Global Alarm Queues - System-wide alarm queues,
accessible from any application program. SFW390
supports global alarm queues which are specified in
the configuration file. Any external device or
internal process can write to a global queue and any
application program can view, clear or acknowledge
entries from them.

Global Mailbox Registers - System-wide registers,
accessible from any application program. Global
mailbox parameters are specified in the
configuration file. Any external device or
application program can read or write the global
mailbox registers.

Host Computer - A computer attached to a network
that provides such services as computation, database
access, or special processes or programming
languages. The VAX computer running with VMS
operating system is the host computer when using
SFW390.

IEEE 802.3 - IEEE 802.3 is a specification for a
communications standard written by the Institute of
Electrical and Electronic Engineers based on the
Ethernet specification. Sometimes referred to as
ThickWire Ethernet (10BASES5)

|EEE 802.3a - This is a sub-specification of 802.3,
which is based on the ThinWire Ethernet
specification (10BASE2).

LAN - Local Area Network. A cabling system,
usually installed at the periphery of a building,
which uses a proprietary protocol and enables a
single vendor’s equipment to transmit or receive
data.

Local Alarm Queues - Alarm queues belonging to
and managed by an individual application program.
The SFW390 supports both local mailboxes and local
alarm queues. Any external device or internal
process can write to a task’s local queue but only the
owner task can view, clear or acknowledge entries
from them.

Local Mailbox Registers - Mailbox registers
belonging to and managed by an individual
application program.

Mailbox Registers - Areas of memory used to
emulate a set of SY/MAX general purpose registers.
Also called a “register file.” Each application
program may have a set of local mailbox registers.
In addition, there may be a set of global mailbox
registers. The principal purpose of these mailbox
registers is to allow application programs to receive
unsolicited messages.

NAK - A response from an external device to the
sender of a data message. A NAK may cause several
messages to be retransmitted.

Network - A group of computing devices
(computers, programmable controllers, etc.) that are
connected to each other by communication lines to
share information and resources.

Node - An end point of any branch of a network, or a
junction common to two or more branches of a
network.

Protocol - A set of mutually agreed rules for
exchanging information between computers and
computer-based equipment.

Reference - A calling convention in which a
variable’s address is passed to the function, that is,
by reference.

Repeater - A device used to extend transmission
ranges/distances by restoring signals to their
original size or shape.

Reply Timeout - When a reply to a command
originated by a user process is not received within
the reply timeout period, the function generating the
command will set the status variable appropriately
and (for synchronous operation) return an error in
the function return.

Response Timeout - When a response (an ACK or
NAK) from a destination device is not received
within the timeout period, the message will be
retried. This timeout applies to a response (i.e. ACK
or NAK) from a transport protocol entity on an
external device, and should not be confused with a
reply timeout.

The response timeout period is user-adjustable.

Refer to|Section 15.6.2[for more information.

Retry - After a NAK or a response timeout a
message will be retransmitted. The number of
retries that will be attempted for a message is user-
adjustable.

30598-730 Page 15-3

Segment - A continuous length of cable used to
connect devices. ThinWire Ethernet defines a
segment as being RG-58 cable and extending no
more than 185m.

Synchronous - A mode of processing in which a user
task issues a read or write request and then waits
until that request is fulfilled before continuing to
execute. (See asynchronous.) All register reads and
writes using SFW390 can be either synchronous or
asynchronous.

Terminator - A special connector used on both ends
of an Ethernet segment. This connector provides the
50-ohm (or other value) termination resistance
needed for the cable.

ThickWire (10BASES) - Standard Ethernet baseband
coaxial cable that serves as the backbone
transmission medium for the Local Area Network.
Primarily used for facility-wide installations.

ThinWire (10BASE2) - A wiring scheme which uses a
type of (thin) coaxial cable for use in Ethernet.
Primarily used in office environments. A DEC
trademark used to describe its IEEE 802.3 compliant
Ethernet products used for local distribution of data
communications,

Page 15-4 30598-730

15.1 Introduction

Ethernet is a data communications network used to
allow computers and electronic devices to 'talk' to
each other. This is accomplished with a coaxial cable
and the appropriate Ethernet software on each
device connected to the cable (and hence the
network). Ethernet is a non-deterministic network,
which essentially means that it can not be
determined when a particular device will have an
opportunity to 'talk’ on the network to another
device. Ethernet operates on a first-come, first-serve
basis. Other devices must wait until the first device
is done communicating, and then attempt to be the
first one to talk again. (This method is known as
CSMA/CD or Carrier Sense, Multiple Access/
Collision Detect. CSMA/CD is a data
communications networking standard classified in
the IEEE 802.3 standard.) Since Ethernet is non-
deterministic, there must be some method of waiting
and attempting to access the network if it is
currently serving some other device. Thus the
concept of timeouts and retries are utilized to provide
for multiple attempts to 'talk' on Ethernet. The
SY/MAX Model 650 provides a way for
Programmable Controllers to 'talk' on Ethernet by
using standard ladder programming communication
rungs (READ, WRITE and ALARM) for
communication port 3. See for detailed
information on SY/MAX communications.

This section is intended as a more detailed analysis
of the inherently non-deterministic nature of
Ethernet communications. The SY/MAX Model 650
is designed to get up and running with minimal
configuration. Upon setting up the Model 650 for the
first time, a user simply needs to select a unique
SY/MAX drop number for Ethernet and follow
standard network connection practices to get up and
running. Communications on Ethernet is then as
simple as programming a communications rung into
a ladder program in the Programmable Controller.
Default values are set up for the Ethernet
parameters, but can be altered by a user to help
optimize Ethernet communications. Section 15.6
explains how to set these parameters and interpret
performance data to further fine tune the Ethernet
network.

The topics discussed here may be different for
communications on ports 1 and 2 of the Model 650.
Consult the appropriate SY/NET instruction bulletin
for information pertaining to SY/NET and/or point-
point SY/MAX communications.

The SY/MAX Model 650 processor has the ability to
directly connect to a ThinWire Ethernet Local Area
Network (LAN) and communicate with up to 29
other SY/MAX Ethernet compatible devices, with
unique drop numbers. Through the use of Ethernet
repeaters, this number can be expanded to up to 99
other devices, for a total of 100 SY/MAX devices.

The connection is accomplished with standard
ThinWire cables, terminators and connectors. A
unique SY/MAX address (drop #) on Ethernet is
assigned to each Model 650 using a small rotary
switch and 4 DIP switches located at the rear of its
cabinet.

15.2 Hardware

All processors sharing the same Ethernet segment
must be located within 607 feet (185 meters) of each
other, as illustrated in|/Figure 15.1{ unless repeaters
are used.

The following hardware is required to connect each
Model 650 processor in any size Ethernet
configuration (also refer to Table 15.1):

® CABLE- Standard RG58 A/U or RG58 C/U
coaxial cable, 0.2” diameter, 50-ohm,

single shield. Belden® Type 8219,
8259, or equivalent.

e TEE CONNECTOR - Square D Class 8030 Type
CCK-612. One of these is required
for each 650 on the network. BNC
Tee connector with jack-plug-jack
(FMF) arrangement.

o TERMINATOR (50 ohm) - Square D Class 8030
Type CCK-613 (contains qty. 2). Two
terminators are required, one for
each end of the network.

® PRE-ASSEMBLED CABLE - Square D Class
8030 Type CC-601, 20 inches long
(1/2 meter). This is the only pre-
assembled cable available from
Square D.

NOTE: The 20 inch (1/2 meter) cable is the
mandatory MINIMUM cable length between
processors. Fach Ethernet ThinWire
segment may not exceed 607 ft.(185m); the
total end-to-end length of the link (with
repeaters) may not exceed 3,034 feet (925
meters).

Refer to |Appendix D| for
information on cabling other than Thinwire.

Model 650

Drop #0

coneses|

[
0
1

Terminator
(50 ohms)
Type CCK-613

Y

Modet 650

Drop #1 Drop #2

H:I o D-j

Model 650

H:[O[] veveeer]

Minimum Cable Length
Between Units 20 inches (1/2 meter)

A

Figure 15.1
ITEM DESCRIPTION
RG58 A/U or RG58 C/U single shielded,
Cable 5042 cable with BNC plug connectors
(Belden 8219, 8259, or equivalent).
T K-61
Tee Connector Class 8030 Type CCK-612

(AMP P/N 221543-2)

Terminators (2)

Class 8030 Type CCK-613 (50Q, 1 watt
BNC terminators - AMP P/N 221629-4,
contains gty 2)

Cable End Connector

Class 8030 Type CCK-611 contains two
maie crimp-style BNC plug connectors
(AMP P/N 227079-5)

Pre-assembled Cable

1/2 meter length, Class 8030 Type CC-
601. Other cable lengths must be
assembled by the user.

Table 15.1

e CABLEENDS-

Ethernet Hardware

Square D Class 8030 Type

CCK-611 contains two male crimp-
style BNC plugs. Cable and crimp
tool (AMP CERTI-CRIMP Hand Tool
P/N 220187-1) must be purchased
separately.

Maximum overall
cable length for

Thinwire =

607 feet (185 meters)

30598-730 Page 15-5
Model 650
Drop #N —'_‘
(max.30) | £
Other .
*
non-
SY/MAX D
Thinwire & BNC devices 0 Terminator
| Drop on —{ (50 ohms)
ength = zero Type CCK-613
Ethernet I
::l:.\ __.I@ <
A
Tee Connector
Type CCK-612

Possible Ethernet Configuration

NOTE: I/t is extremely important that cable

connections within the Ethernet be solidly
made. Cold soider joints, poor connections,
and other assembly flaws can cause
intermittent communication problems. For
highest reliability, all connectors should
have gold-plated conductors. Also, avoid
crushing the cable, or placing sharp bends in
it.

CONSIDERATIONS

For proper operation, the LAN to which the
Model 650 is connected must conform to all IEEE
802.3 specifications.

See [Appendix D| for more Ethernet
considerations.

Model 650s may be installed in any register slot
in any SY/MAX rack. While multiple Model
650s may be installed in the same rack, only the
processor in slot 1 can directly control I/O.

Each Model 650 draws 5,500 mA. While a single
rack can hold multiple Model 650s, the power
supply must be properly sized to handle the large
load imposed by multiple processors. Loading
restrictions preclude powering more than 3
Model 650s from the same power supply.

For future expansion, empty tee or barrel
connectors can be inserted at minimum intervals
of 1/2 meter in a cable.

Page 15-6 30598-730

® The tee connector must be directly attached to
the BNC connector on the Model 650, i.e., no
“dropline” length is allowed between the tee
connector and the processor.

® When adding processors to a functioning
Ethernet, the cable connection should be made
while the new member is powered down. In this
way, network members can be added or removed
from the Ethernet without powering down the
link or interrupting network operation.

® Ensure the rubber insulating “boots” provided
with the cable ends and terminators are
installed. These are to prevent the link from
being unintentionally grounded by accidentally
coming into contact with the rack chassis or
other means of current conduction.

® The Ethernet circuitry and cable is isolated
from processor digital circuitry (300VDC,
transformer-coupled). While bonding the cable
conductors, tee connectors, or terminators to
chassis/earth ground is not required for proper
operation of the link, local electrical code
requirements must be observed when laying out
the installation. At no time, however, should
the link be grounded in more than one
location.

® To ensure reliable communications, it is
recommended that all connectors have gold-
plated conductors.

® The Ethernet cable should not be included in the
same tray or conduit with power wiring, and
should be routed so as to avoid passing in close
proximity to electrically noisy devices such as
power transformers, arc welders, contactors, etc.

15.3 Switch Settings
Refer 1o Figure 15.3.] The Model 650 has a sixteen-

position rotary switch and a four DIP switch bank for
configuring the Ethernet. Accessible from the rear of
the processor, both switches are used to encode a
unique drop number from 0-99. Switch functions are
described in the following sections.

/ Rotary
Switch

| __—— 4-DIP switch
bank

Bottom rear view
of Model 650

Figure 15.3 Rotary and DIP Switch Locations

CAUTION

Each device attached to Ethernet MUST be
selected for a unique DROP NUMBER or
the network will not operate properly.

15.3.1 LEAST SIGNIFICANT DIGIT

The decimal rotary switch (see [Figure 15.3]
establishes the least significant digit (LSD) of the

SY/MAX drop number on Ethernet. Each rotary
switch setting (0 to 9) corresponds to a unique
SY/MAX drop number on Ethernet ranging from 0 to
9. Other switch settings are invalid. Refer to Table

[52]

NOTE: Use care when adjusting the rotary switch,
since the separation between positions is
very small. The data field of register 8093
reports the selected rotary switch position
(in addition to the DIP switch settings). If the
contents of register 8093 do not reflect the
apparent switch position, rotate the switch
one full turn to “wipe” the contacts.

SWITCH SETTING LSD
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Table 15.2 Rotary Switch LSD
Setting

15.3.2 MOST SIGNIFICANT DIGIT

Immediately below the rotary switch is a DIP switch
bank containing four switches. The four switches
encode the high or most significant digit (MSD) digit
of the drop number. The 4-bit binary code must be

between 0 and 9 for network operation; other
settings are invalid. Refer to|Figure 15.4{and Table
15.3|for MSD switch settings.

LEFT = OPEN = OFF

RIGHT = CLOSED = ON

W - swirciTo66LED TO THIS

. POSITION
Bottom rear view

of Model 650

Figure 15.4 DIP Switch Identification

30598-730 Page 15-7

MOST SIGNIFICANT DIGIT SWITCH SETTING*

1 2 3 a4 MSD
Open Open Open Open 0
Open Open Open Closed 1
Open Open Closed Open 2
Open Open Closed Closed 3
Open Closed Open Open 4
Open Closed Open Closed 5
Open Closed Closed Open 6
Open Closed Closed Closed 7

Closed Open Open Open 8

Closed Open Open Closed 9

Closed Closed Closed Closed | pisabled
Table 15.3

* Switch settings other than those in Table 15.3 are invalid.

After the drop number is set on the rotary and DIP
switches, record the number on the front panel label

for visual SY/MAX drop number on Ethernet
identification, as shown in[Figure 15.5l

PRGMR
CHNL 1

ETHERNET oMM

CHNL 2

Write in SY/MAX Drop No. on / w

Ethernet Here

Figure 15.5 Location of SY/MAX Drop Number on

Ethernet

Page 15-8 30598-730

NOTE: The DIP switches have been set at the factory
to all 1’s, indicating non-Ethernet mode.
The rotary switch factory setting will vary,
but its setting will not affect the drop
number, in this mode. Refer to

for further error message information.

15.4 Defining an Ethernet Network with
SY/MAX Devices
15.4.1 SY/MAX DROP NUMBERS

Each SY/MAX device on Ethernet must contain a
valid drop number, in order to communicate with
other SY/MAX devices on Ethernet. The rotary
switch and 4 dip switches select the SY/MAX drop
number for each device on Ethernet. SY/MAX
devices must be numbered 0-99. See[Section 15.3|for
a complete explanation on valid and invalid switch
settings.

NOTE: All SYIMAX drop numbers on Ethernet

MUST BE UNIQUE.

15.4.2 ROUTING FOR PORT 3 (Ethernet port)

In order to communicate with other SY/MAX devices
on the network, the drop number of the originating
(source) device and the drop number of the
destination (target) device must be known. In some
situations, additional drop numbers must also be
known. Refer to|Appendix E|for additional Ethernet
routing information. '

How to Use Routing

This section consists of three sample access routes
from the Control Processor and Ethernet NIM
portions of a Model 650. Refer tofor a
map of the access routes. Also, knowledge of variable
route statements fromis assumed.
Routing information is programmed into the
Communication rung (READ, WRITE or ALARM) of
the device initiating communications.

® Example 1--Control Processor to Control Processor

Figure 15.6| shows drop #36 reading control

processor (image table) register 1001 of drop #84
into its own control processor register 2001.

ROUTE = ROUTE = STAT — LOCAL — REMOTE — COUNT _]

—{} wmeaos 36 84 2000 2001 1001 1
i

Figure 15.6 Rung for reading one image table
register into another on Ethernet Port 3.

® Example 2--Control Processor to another Processor’s ENIM

|Figure 15.7|consists of drop #36 reading drop #84's

ernet NIM storage (mailbox) register 3001 into
drop #36’s control processor (image table) register
2101.

I'— ROUTE ROUTE * ROUTE ~ STAT - LOCAL REMOTE COUNT

H—-mma 36 200 84 2100 2101 3001 1
|

Figure 15.7 Rung for reading a mailbox register
into an image table register on Ethernet Port 3.

® Example 3--Control Processor to its own ENIM

|Figure 15.8 |writes drop #36’s control processor
image e) registers 4001 to 4128 into its 6wn
Ethernet NIM storage (mailbox) registers 5001 to
5128.

r ROUTE * ROUTE * ROUTE = STAT = LOCAL REMOTE COUNT

H—Twmrea 36 200 36 4000 4001 5001 128

Figure 15.8 Rung for writing an image table
register into its own mailbox register.

NOTE: Routes 202, 203 and 233-254 apply only to
ports 1 & 2, not to Ethernet port 3. Further
information is available in Instruction
Bulletin 30598-365-01A1, Multi-media
Network Interface Module or 30598-257-02,
Network Interface Module Instruction
Bulletins.

Port
Route Type
1123
200 | Access NIM/ENIM registers X | x| x

201 “whoeverlam“(firstroute) | X | X | X

Port-to-Port (in-out same

202 X | x |wa
0 module)
203 Module Pair (last route) x | x |NnA
204 {?on t care - no action taken X X X
(ignored)
205 Variable Route X | X | X
206-
Not N/A | N/A | N/
232 ot Used A
;gz Broadcast Capability x | x |[NA

Table 15.4 2XX Routing Types by Port

When your Model 650 is received from the factory,
the switch settings will be configured for non-
Ethernet mode. This mode allows a user to power up
the Model 650 and use it as a Programmable
Controller control processor, but will NOT allow
Ethernet communications. Non-Ethernet mode is
indicated by all four dip switches set down (all ones),
regardless of the rotary switch position. Any switch
settings other than valid drop numbers (0-99) or
Non-Ethernet mode will result in an error 918,
illegal drop number.

NOTE: If the Model 650 is being used to
communicate on Ethernet via port 3 and
on SY/NET via connection to a NIM on
ports 1 or 2, the Model 650 may
represent a different SY/MAX device
drop number on each network. The
Ethernet drop number is determined by
the switch settings on the Model 650
while the SY/NET drop number is
determined by the switch settings on
the NIM. It may therefore be
convenient to coordinate the two
networks when possible to use the same
drop number for both Ethernet and
SY/NET networks.

30598-730 Page 15-9

15.5 Registers

This section lists the Model 650 registers related to
Ethernet. [Figure 15.9| shows a spatial
representation of the Control Processor, Ethernet
NIM and Channels 1, 2 and 3 in the ¢ontext of the
Model 650.

15.5.1 MODEL 650 REGISTER OVERVIEW

Tables and outline the function of all Model
650 Control Processor and Ethernet NIM registers.
Specific information about Control Processor
registers can be found inSection 13

15.5.2 CONTROL PROCESSOR REGISTERS

The Control Processor portion of the Model 650
consists of two parts. Registers 1-8000 are standard
SY/MAX read/write registers, and registers 8001-
8192 are SY/MAX control registers with several

registers added for Ethernet considerations. Refer to
Section 13|for specific control register information.

TYPE
R/W:
REGISTER CONTROL PROCESSOR .
RANGE FUNCTION Read/Write
R: Read
Only
1-8000 Processor registers R/W
8001-8178 Model 650 controt registers RW
(see Section 13)
8179-8192 Model 650 control registers R
(see Section 13)
Table 15.5 Model 650 Control Processor Register

Use

Page 15-10 30598-730

15.5.3 ETHERNET NIM REGISTERS

The Ethernet NIM (ENIM) portion of the Model 650

contains another 8192 registers. See|Section 15.4.2

for examples of how to access the ENIM registers.

Registers 1-10 are “read-only” ENIM status
registers:

® Register 1 - has the device type (i.e. Model
650) stored in its data field.

® Register 2 - has the Ethernet NIM processor
revision number within it. This register
contains the ENIM processor revision
number in decimal. For example, a Revision
3.30 ENIM processor will have 0330D in this
field.

® Register 3 - contains the SY/MAX drop
number on Ethernet, indicated by the DIP
and rotary switches.

® Registers 4-10 - (currently not used) have
zeros in them and are read only.

Registers 11-2999 are not accessible. Reading or
writing to these registers will yield a
communications status register error 03, illegal
address.

Registers 3000-6999 are user-defined standard read/
write SY/MAX storage registers.

Registers 7000-7999 are user-selectable read/write
registers for storing Ethernet performance
parameters and data. The following are the
Ethernet network parameters that can be accessed
from read/write registers 7000-7999 (note that XX is
the address or drop number of the receiving SY/MAX
device on Ethernet):

- Timeout time =the amount of time,
in 10msec units, that each SYYMAX
device will wait before assuming that
no ACK has been received.

- Total number of retries =number of
communication retries (in addition to
the original communication attempt)
attempted with each SY/MAX device
before declaring an error.

® | 7XX2[Average time to complete a SYMAX
transaction on Ethernet with each
indicated drop number.

- Total number of retries for each 1024
attempted transactions (milli-
retries). This number divided by
1024 yields the average number of
retries per SY/MAX transaction
attempted.

- Maximum time to complete a trans-
action (maximum time it takes to
send a COMMAND or REPLY and
receive an ACK).

7XX5(- Maximum number of retries to
complete a transaction.

® 7XXé6-
7XX9 - Reserved for future use.

Registers 8000-8192 are not accessible. Reading or
writing to these registers will yield a
communications status register error 03, illegal
address.

30598-730 Page 15-11

NOTE: The Rack Address CLEAR ALL operation
clears or resets all processor registers.

However, the Ethernet NIM registers are not TYPE
cleared. Those registers not cleared or reset REGISTER RW:
include the ENIM storage (mailbox) registers RANGE ETHERNETNIMFUNCTION | Read/Write
(regs. 3000-6999) and the Ethernet Only
communication performance data registers
(regs. 7000-7999). Two alternatives for 1-10 NIM status registers R
clearing or resetting the ENIM registers exist
(Refer tO for more information 11-2999 Reserved for future use. N/A
onCLRALL): 3000-6999 | NIM Storage registers RW
1. Remove the Model 650 from the 7000-7999 Contains Ethernet network RW
SY/MAX rack, remove the battery Parameters.
form the Model 650 and wait for 8000-8192 Reserved for future use. N/A
approximately 2 minutes for the
memory to clear. Then replace the Table 15.6 Ethernet NIM Register Use
battery, place the Model 650 in the
rack and provide power.

2. The second method is to program a
series of WRITE rungs into the
Programmable Controller to clear
the ENIM storage registers (3000-
6999). Cycling power then clears the
performance calculations (7XX2-
7XX5), but not the performance
parameters (7XX0-7XX1) or the
storage registers. Developing a small
utility ladder program to clear the
storage registers and set the default
Ethernet parameters may be useful.
This program could then be run
anytime a Rack Address CLEAR ALL is
issued to clear or reset all the desired
registers.

Page 15-12

Ch1

30598-730

Model 650
Control Processor Ethernet NIM
SY/MAX Status/ = 8132 _ 3192
Control Registers 8001 : Not Used —L_ E 2000
— 8000 . —
. Ethernet Network _ | 1999
. 4 Regi L 7000
— 6999
- | 4000
8000 : Storage
Processor : | (Mailbox)
(Image : Registers
Table) . — 3000
Registers : 2998
. Notused
E | 1
b 1 : NIM Status Registers —{_ |] 1-10
Ch3
Ch2
Drop #XX
Ethernet/802.3a (ThinWire)

Figure 15.9 Model 650 Registers

15.6 Ethernet Communication Parameters

15.6.1 OVERVIEW

NOTE: Again ensure that g_u SY/MAX on Ethernet
devices have a unique SY/MAX address
ranging from 0 to 99.

1000 registers have been set aside in the ENIM of the
Model 650 Programmable Controller to store
Ethernet communication parameters for
communicating with up to 99 other SY/MAX devices
(100 total SY/MAX devices) on Ethernet. The
distinction “SY/MAX?” devices is made because other
non-SY/MAX devices may be on Ethernet, but have
their own unique Ethernet address and will not
affect SY/MAX or be affected by non-SY/MAX
products on the network. Thus, the total number of
devices on Ethernet is only limited by Ethernet
physical and electrical limitations, while the total
SY/MAX limit is 100 devices, providing other
requirements are met also. These 1000 ENIM
parameter registers are numbered 7000-7999 and
are Read/Write registers. They are organized in
groups of 10 registers for each of the 100 SY/MAX
drops on Ethernet, although only 6 of these 10
registers (7XX0-7XX5) are currently being utilized,
with the 4 remaining registers (7XX6-7XX9)
reserved for future product enhancements to the
Model 650. Avoid using these 4 reserved registers
for storage, so as to maintain compatibility with
future releases of this product. This helps preserve
ladder program and operational upward
compatibility.

The registers are organized by the SY/MAX
Ethernet drop number. For SY/MAX address 00
(drop 00), the registers start at 7000 and end at 7009.
For SY/MAX address 01 (drop 01), the registers start
at 7010 and end at 7019 (and so on up to 7999). Thus
the 1000 registers divided by 10 registers per drop
number =100 drops (the maximum number of
devices of any combination of Model 650’s, VAX
computers and other SY/MAX devices). The middle
two numbers of the register indicate which drop that
register is associated with. For example, register
7010 is associated with SY/MAX drop 01. The
shorthand notation for this encoding method is
7XX0, where XX indicates the SY/MAX drop
number.

30598-730 Page 15-13

15.6.2 SETTING ETHERNET COMMUNICATION
PARAMETERS (7XX0 and 7XX1)

Since the Ethernet Local Area Network (LAN) is a
non-deterministic network, there are no guarantees
as to when or if you can begin communication on the
LAN. The first two registers for each drop, 7XX0
and 7XX1, allow the user/programmer to establish
the length of the Ethernet timeout and the number of
retries, respectively, when the Programmable
Controller is communicating (e.g. via READ or
WRITE rung for port 3) with a device on_Ethernet
with SY/MAX drop number XX. Refer tg Table 15.7
The timeout register, 7XX0, indicates how many 10
msec units to wait before it is assumed that no ACK
has been received from a remote device and attempt
another retry. The total number of retries (in
addition to the original communication attempt) is
indicated in the retry register, 7XX1. Upon power
up of the Model 650, the 7XX0 registers default to a
value of 100. This means 100 10msec units (which is
equivalent to 1 second) is the time the Ethernet
processor in the Model 650 will wait before
attempting to retransmit the COMMAND. Register
7XX1 defaults to 2 retries, before posting an error 17,
indicating a remote device is inactive. However, a
valid ACK and retry can still occur in spite of the fact
that an error message has been posted.

XX
Ethernet
(SY/MAX)
Drop No.
or address

Default | Max. | Min.

Register
Address | Parasieter | Units
Range

]

Timeout
7XX0 meout | soms | 100 | ess36 | 1
22 Time

No. of 1
7XX1 0.0 2 55 | 0
- Retries retry

Table 15.7 Timeout Time and Retries

Page 15-14

30598-730

7XX0 Timeouttime

16

is the amount of time in 10 msec units, each
SY/MAX device waits before assuming a
message was lost (no acknowledgment
returned on Ethernet). The default is 100
units or 1 second.

of timeout units X 10 msec = total time

e.g., 100 timeout units X 10 msec=1 sec.
Timeout time may be set for a maximum of
65535 units X 10 msec or = 11 minutes. The
minimum is 1 unit or 10 msec. If the timeout
is set to 0, it defaults to 1. The timeout time
for that address or drop number being
communicated to is set up in the initiating
device’'s TXXO0 register (not the receiver’s
7XX0 register).

7XX0--Full 16 Bits used as unsigned integer

Timeout - 65535 is the maximum value (full
16 bits used) a user can place in this register.
This is treated as an unsigned integer. Any
attempts to use a negative number (signed
integer) will result in the corresponding
unsigned integer being used. If a zero (0) is
placed in this register, the system will use a
count of 1 for actual communications. The
zero (0) will still remain in the register and
will appear in any attempt to READ this
register, but the value of 1 will actually be
used for communication. Thus, with the
above exceptions, there is no explicit range
checking on the data put in by the user.

7XX1

16

Number of retries

is the number of attempts by a Model 650 to
communicate with other SY/MAX devices
before indicating an error. Retries keep
occurring until a positive Acknowledgment
is returned over Ethernet. The number of
retries defaults to 2, has a maximum of 255
and a minimum of 0. The number of retries
for the address or drop number being
communicated to are set up in the initiating
device’s TXX1 register.

7XX1--Lower 8 Bits used as unsigned integer

X = Don't care bits

255 retries is the maximum value (lower 8
bits of register used only) used by the
Programmable Controller for Ethernet
communications. Anything greater than 255
put in the register will result in the high byte
of 7XX1 being truncated and the lower byte
used for actual communications, although
the full 16-bit value will remain in the
register. Similiarly, if a negative number is
used, the number of retries corresponding to
the lowest byte (high byte truncated) will
result. A value of zero (0) can be legitimately
used, resulting in no retries (only the
original communication attempted).
However, this is usually not a practical
parameter, since the Ethernet network may
be busy. Thus, there is no explicit range
checking on the data put in by the user.

Timeout and Retry Example

Both the 7XX0 and the 7XX1 registers for SYYMAX
drop #22 can be changed by using the following
rungs in a ladder program:

NOTE: Bit 8176-22 may be used to set up new
Ethernet parameters prior to program
execution. This is made possible by using the
second dummy scan of the control processor
to set up the parameters. Adding the ladder
rung below enables you to set up the
parameters prior to program execution. This
particular example sets up timeouts and
retries in drop #36. Refer to
(Primary Control Processor) in Section 13 for
more information.

8176

— H LET S5000 = 55;5 I—
22

Ladder Rung to Establish ENIM Preset Value

—F wames 22 200

22 |

Ladder Rung to Transfer Preset Values to ENIM
Register

RQUTE — ROUTE - STAT = LOCAL ~ REMOTE = COUNT
8176 | ‘l

8176 l—-— RQUTE - ROUTE ROUTE STAT LOCAL REMOTE - COUNT
22 S0100 $5000 S7360 2

—F wames 22 36 50200 $4000 $4200 128

.22 |
Figure 15.10 User-Modified Timeout and Retry
Example Rungs

In this example, rungs from a Model 650 with a
SY/MAX drop number of 22 on Ethernet will set up
Ethernet parameters for communication with
SY/MAX drop 36 on Ethernet. The first rung presets
register S5000 = 55 (representing a timeout of 550
msec) and S5001 = 5 (for 5 retries). The second rung
then writes from drop 22 to its own ENIM parameter
registers 7360 and 7361. This sets up the Ethernet
communication parameters for communicating with
SY/MAX drop 36. Finally, at some later point in the
program, the last rung shown writes from drop 22,
registers 4000 through 4127, to drop 36, registers
4200 through 4327, using the Ethernet
communication parameters established in registers
7360 (550 msec timeouts) and 7361 (5 retries).

Figure 15.11| represents 3 SY/MAX drops with 1000

read/write registers each (7000-7999) available for
network parameters.

30598-730 Page 15-15

For instance, at the top center of| Figure 15.11} the

timeout time was left at the default of 100 (register
7220) for communications between drop #36 to drop
#22. And the number of retries (2) is also left at the
default set in register 7221. So the timeout time is
100 units (also the default) or 100 X 10 ms or 1
second. Register 7221 also specifies that the message
will be transmitted once and then retried twice, if
necessary, until it is acknowledged by drop # 22.

Registers 7230 to 7239 are available for when drop
#36 communicates with drop #23; registers 7240 to
7249 are available for when drop #36 communicates
with drop #24, and so on.

The box on the bottom left of [Figure 15.11| represents

drop #22’s Ethernet network parameters. The
timeout time of 55 is set in register 7360 for when
drop #22 communicates with drop #36. The number
of retries is set in register 7361 for drop #22 to retry
another 5 times, if necessary, until it receives an
acknowledgment. The remaining parameters in
registers 7362 through 7369 contain transmission
performance data. So all drops may have their 1000
registers (10 per drop) set up for each of the 100
drops. However, if values are not placed in the

registers, they will default to the values shown in
Table 15.

15.6.3 EVALUATING ETHERNET COMMUNICATION
PERFORMANCE (7XX2 - 7XX5)

Registers 7XX2-7XX5 represent performance
information for communicating with various
SY/MAX devices on Ethernet. They provide a means
of monitoring Ethernet communications and
changing parameters in 7XX0 and 7XX1 based on
these performance values. These registers are
read/write registers, but are intended to be examined
only, as data is calculated and updated by the
Programmable Controller periodically and placed in
these registers. Writing to these registers may only
have a temporary effect, as new data is calculated
dynamically and replaces previous data in these
registers. These registers are only updated when
communications (COMMANDs and REPLYs) are
active with drop XX. The specific times at which
they are updated are explained below.

NOTE: Writing zeros to 7XX2-7XX3 does NOT
have the effect of zeroing out
calculations performed previously.
However, writing zeros to 7XX4 and
7XX5 does zero out previously

performed calculations.

Page 15-16 30598-730

7220 Timeout = 100 (for drop #22)
7221 Retries =2 Ethernet
7222 Avg. Timeout parameters
7223 Avg. Retries set up for
7224 Max.Timeout when drop
7225 Max.Retries #36

— 17226 to 7229 Reserved for future use communicates
7230 Timeout = 132 (for drop #23) with drop #84

7231 Retries = 26

Ethernet 7236 to 7239 Reserved for future use
parameters 7XX0-7XX9 Parameters for drops not shown
set up for 7840 Timeout =50
when drop 7841 Retries=17
#36
communicates
with drop #22 .
7846 to 7849 Reserved for future use
. Ethernet
7850 Timeout =187
. parameters
7851 Retries =77
set up for
7852 to 7999 Etc. #36
when drop
L #84
Model 650 drop # communicates
36 with drop #22
]
]]
Model 650 drop # Modet 656 drop #
22 84
Ethernet T
l parameters —
7360 Timeout =55 {for drop #36) — set up for 7220 Timeout = 243 (for drop #22)
7361 Retries =5 || whendrop 7221 Retries =56
7362 Avg.Timeout / #22 7222 Avg.Timeout
7363 Avg. Retries communicates | | 7223 Avg. Retries -—
7364 Max.Timeout with drop 7224 Max.Timeout
7365 Max.Retries #36 7225 Max.Retries
7366 to 7369 Reserved for future use_| 7226 to 7229 Reserved for future use |
7XX0-7XX9 Parameters for drops not shown 7XX0-7XX9 Parameters for drops not shown
7840 Timeout =13 (for drop #84) 7360 Timeout = 655 (for drop #36)
7841 Retries = 149 7361 Retries = 254
7842 to 7999 Etc. #22 7362 to 7999 Etc. #84

Figure 15.11 Examples of Ethernet parameters set up on Registers 7ZXX0-7XX9

As mentioned above, Registers 7XX2-7XX5 are
ordinarily computed by the Ethernet NIM. Table
(15.8 [summarizes 7XX2-7XX5's communication

performance parameters.

transaction

Register
Address Parameter Units
Range
Avg. Time to complete a
TXX2 9 P 10 msec

Avg. number of retries for

Retries per 1024

transaction

7XX3 .
each attempted transaction attempted
Maximum time to complete
7XX4 . omp 10 msec
a transaction
Maximum number of retries Retries per
7XX5 for each attempted p
transaction

Table 15.8 Ethernet Communication
Performance Parameters (7XX2-7XX5)

7XX2 Average time to complete a SY/MAX

transaction on Ethernet

This is the average total time it takes to send
a SY/MAX COMMAND or REPLY to drop
XX and receive an ACK. All transmissions
(the original plus the retries) are included in
this calculation. Like 7XX0 and 7XX4, this
is expressed in 10msec units.

7XX3

7XX4

TXXS

30598-730 Page 15-17

Total number of retries for each 1024
attempted transactions (milli-retries).

This number divided by 1024 yields the
average number of retries per SY/ MAX
transaction attempted. This was done to
preserve the accuracy of the average in an
integer format.

Maximum time to complete a transaction

This is the maximum time it takes to send a
COMMAND or REPLY and receive an ACK.
Assuming 7XX0 has not been decreased,
TXX4’s value will be equal or less than
7XX0’s value. 7XX4’s value can be cleared
to generate a new maximum time.

Maximum number of retries for each
attempted transaction.

This is the maximum number of retries that
occurred during a SYYMAX COMMAND or
REPLY transaction. Assuming that 7XX1's
value was not decreased, 7XX5’s value would
be equal to or less than 7XX1’s. Like 7XX4,
TXX5's value can be cleared to generate a
new maximum.

Page 15-18 30598-730

The previous example |(Figure 15.10, (User-Modified

Timeout and Retry Example Rungs) illustrates the
process needed to set Ethernet communication
parameters (TXX0 and 7XX1). This is a result of
ladder programming packages having no access
directly to monitor and edit data in the ENIM
registers and must therefore do so through ladder
programming. It may be helpful, if the required
registers are not needed for other purposes, to map
the active ENIM parameter registers into registers
7000-7999 of the processor registers. In reference to
the example configuration in[Figure 15.12] the
following rungs in drop 36 could be used to map
performance data for drops 22 and 84 into the
processor image table registers.

8164
—”—muoz 36 200 36 S2000 S7222 S7222 4
10 |

r ROUTE * ROUTE ROUTE STAT LOCAL ~ REMOTE COUNT 7]

8164 r ROUTE ROUTE = ROUTE * STAT * LOCAL * REMOTE COUNT
“”‘ TREADI 35 200 36 52001 S7842 57842 4
10

Figure 15.12 Example Ethernet Communication
Performance Rungs

In this example 8164-10 is used to trigger the read
rungs. Register 8164 is the Programmable
Controller timer register and bit 10 is set
approximately once every 2 seconds. Thus the
performance data for drops #22 and #84 is updated
about once every 2 seconds. Of course other methods
could be used to trigger when the update actually
takes place.

Now since the data is updated in the processor
registers, it can be viewed via a ladder programming
device on a data screen. It should be noted that to
change the parameters (7XX0 or 7XX1), the
appropriate WRITE rungs still need to be added to
the ladder program, as the ENIM registers cannot be
changed via a ladder programming device.

The previous two examples allow the user to set the
communication parameters for drops 22 (7220 and
7221) and 84 (7840 and 7841) and then examine the
performance (7222-7225 and 7842-7845) and make
adjustments accordingly. For example, if the
performance data (averages and maximums) are
near the maximum value set by the user (as
indicated in 7220-7221 and 7840-7841), perhaps the
timeout should be extended and/or the replies
increased.

MISCELLANEOUS CONSIDERATIONS
(7XX2-7XX5)

15.6.4

Upon power up, registers are set to zero (0) and
updated under the following circumstances. The
retry variables (7XX3 and 7XX5) are updated when:

1) an ACK is received in response to a command
that is sent out

2) the maximum number of retries is met (timed
out).

The time variables (7XX2 and 7XX4) are updated
when:

1) an ACK is received,

2) a NAK isreceived

3) a timeout occurs

4) a transmission error is received.

All the above registers are cleared when the
Ethernet communication port fails or the
Programmable Controller is powered up.

If registers 7XX0 and/or 7XX1 were changed prior to
any communications with drop XX or if the default
values were used for communcications, then 7XX3
and 7XX5 should always be less than the value
specified in 7XX1. It is possible however, that if
7XX1 was subsequently changed to a lower value
after communications had been activated, that the
previous running average (7XX3) and peak retries
(7XX5) could be higher than the newly updated
maximum user specified in 7XX1 (which is now set
lower than before). Keep in mind that 7XX3 is in
milli-retries, that is the number of retries for 1024
attempted transactions. Writing zeros to these
registers for a specific drop after communications
have already been active will NOT clear these
calculations in 7XX2 and 7XX3. Thus, care must be
exercised when interpreting these values if timeouts
(7XXO0) or retries (7XX1) have been changed after
communications have been active for drop XX.

If ENIM registers 7XX0 and 7XX1 are changed
while comms rungs are still waiting for ACKs to
outstanding COMMANDS, the new values entered
will be used in determining timeouts and retries.
For example, assume initially 7XX0 is set to 200 (2
seconds) and 7XX1 is set to 10 retries, and 5
READ/WRITE rungs are solved true and sent to the
communication buffers. If 7XX0 and 7XX1 are
changed back to 100 and 2 respectively (the default
values), the new values (1 second and 2 retries) will
govern communications with drop XX.

Reserved Registers (Registers 7XX6-7XX9)

Registers 7XX6-7XX9 are not available at this time.
These registers should not be used for storage
purposes, so that upward compatibility with future
SY/MAX devices may be maintained.

15.7 Ethernet Errors and Diagnostics

This section describes errors related to Ethernet
only. For other Model 650 operational errors, refer to
Appendix A. Any errors and/or diagnostic conditions
which are related to Ethernet communications are
posted in processor control register 8094. Ethernet
Errors also post a value of 929 in processor control
registers 8175 to indicate that an Ethernet error has
occurred and informs the user to examine register
8094 for more specific information. Ethernet
Diagnostic codes are posted to 8094 under various
conditions, but do NOT post an error indicator in
8175 and usually do not require any action by the
user to fix them. Refer to|Section 15.7.2|for more
explanation. They are primarily intended for
informational purposes. Each group of codes has
various effects on processor execution, Ethernet
communications, and LED activity. Refer to Table
[15.9 [for various Ethernet LED and processor states
by error code.

EFror Ethernet Port3
o Ladder Scan
Codes LED Activity
<900 flashing continuous continuous
900-919 solid halt continuous
2920 solid halt hatt
Table 15.9 Register 8094 Ethernet Error Codes by
LED and Processor

Processor LED states are described inm
Depending on the nature of the Ethernet Comm
Error, the status of the processor and/or the network
is indicated.

30598-730 Page 15-19

15.7.1 ETHERNET ERROR CODES

Register 8175 represents the starting point for all
SY/MAX error code investigations, including
Ethernet errors. In those cases where register 8175
contains error code 929, register 8094 will contain
additional information about the nature of the
Ethernet failure. :mpists Ethernet-related
errors which may be found in register 8175.

ERROR
CODE DESCRIPTION
929 Ethernet communication error, refer to
register 8094.
Processor installed in slot 1 with rack
979 - L
addressing missing
Processor is not installed in slot 1 though
985 o
rack addressing is present.
30600 Handshake failure between control
processor and communication processor.
Table 15.10 SY/MAX-Ethernet Errors in Register

8175

Error 985 or 979 typically occurs when using
multiple Model 650s in the same rack.

Model 650 register 8094 is used to store
communication error codes related to error 929.

Table 15.11|shows error codes that may appear in

register 8094, along with a brief description of each.

Page 15-20

30598-730

ERROR
CODE DESCRIPTION
916 Ethernet Connector Problem
917 Duplicate Drop Number*
918 illegal Drop Number*
919 General Hardware Failure
920 Local RAM READ-after-WRITE test faifure.
Local RAM destructive READ-after-WRITE
921)
test failure.
922 Shared RAM READ-after-WRITE test failure.
Shared RAM destructive READ-after-WRITE
923 .
test failure.
924 Link controlier initialization test failure.
927 Link controlter run-time failure.
30500 Bus signal error due to time out.
30600 Handshake faifure between control
processor and communication processor.
30800 Software diagnostic error.
30900 Parity error.
31100 Ethernet NIM PROM Checksum error.
32700 Main processor failure.
Table 15.11 Ethernet Errors in Register 8094

v Check DIP and/or rotary switch settings and examine register 8093.

15.7.2 ETHERNET DIAGNOSTIC CODES

There are several conditions which may occur on
Ethernet which post diagnostic codes in the processor
control register 8094. Refer to[Table 15.12] Unlike
the error codes in[section 15.7.1], there will be NO
corresponding error code posted in 8175 to indicate a
diagnostic code in 8094. The Ethernet network LED
will blink when a diagnostic error code is occurring.
These codes remain in 8094 until another diagnostic
condition occurs and the proper code replaces the
previous one. These codes result from transient
errors and, unless they occur frequently, do not
require any action by the user. Both the processor
and Ethernet communications will continue as
usual. These codes may prove useful in determining
network problems if any of these codes occur
repeatedly and/or often. The following diagnostic
codes reference errors detected by the Local Area
Network Contoller for Ethernet (LANCE) chip used
in the Model 650.Additional troubleshooting insights
can be found in |Appendix Al If any of these error
codes occurs repeatedly, an Ethernet 802.3 protocol
analyzer should be used to troubleshoot and
determine which device(s) on Ethernet may be
sending and/or receiving improper Ethernet packets.

when a processor connected to the network and having
a valid Ethernet SY/MAX drop number is no longer able
to communicate on the network. Probable cause is a
loose or disconnected “T” connector at the Model 650
Processor. In pre-Rev 1.21 processors this condition was
indicated by error code 916 and required that the error
condition be removed and power be cycled to the
processor in order to resume Ethernet communications

30598-730 Page 15-21
DIAGNOSTIC
CODE DESCRIPTION SOLUTION

800 Unable to connect to Ethernet. This error occurs when Connect and/or check cable and cable terminations.
the processor is set to a valid Ethernet SY/MAX drop
number, but is unable to initially connect to the
network. Probably due to an improper cannection or
termination of the network cable. This is similar to
error 916, the difference being that error 916 occurs
after Ethernet communications have already been
active, whereas diagnostic 800 occurs after power-up
but before any communications are initiated.

801 LANCE-Collision. No heartbeat collision after packet No user action required. Possible faulty device.
sent by this device.

802 LANCE-Missed packet. This error indicates that an Transmitting device will probably retransmit packet.
Ethernet packet intended for a device was missed by Analyze traffic patterns on network.
that device due to all butfers currently being used.

803 LANCE-Improper frame size. This error indicates that Ethernet packet is discarded. Analyze Ethernet
the incoming packet contains a non-integer multiple of packets.

8 bits AND there was an incorrect CRC.

804 LANCE-Buffer Overflow condition. This error indicates No user action required. Ethernet packet is discarded.
that the LANCE has overflowed internal LANCE buffers Jabber-related error.
to service incoming messages.

805 LANCE-incorrect CRC detected. This error indicates the No user action required. Ethernet packet is discarded.
Cyclic Redundancy Check (CRC) code in the Ethernet Due to noise, faulty or improper cable connection or
packet does not match the CRC calculated for the data incorrect packet transmission/reception.
contained in the packet.

806 LANCE-Doesn’'t own any more bufters. This error No user action required. Ethernet packet is discarded.
indicates that the LANCE cannot store any more of the Jabber-related error.
packet due to no available buffers.

807 LANCE-End of Ethernet Packet not detected. An Check cable and terminator on the network. Ethernet
Ethernet packet larger than the maximum allowed was packet is discarded.
received This type of packet is called a jabber.

808 LANCE-Late collision on Ethernet. A collision has Check cable and terminators on the network. Ensure
occurred on Ethernet after the time allowed for a that distance specifications have not been violated.
‘normal’ collision. This does not cause the LANCE to
retry any messages.

809 LANCE-Loss of carrier detected. The LANCE cannot Check cable and terminations on the network.
detect the Ethernet carnier on the network.

810 LANCE-Maximum number of collisions occurred. 16 Check cable and terminations on the network. Analyzd
collisions have occurred on the network while trying to traffic volume on the network.
transmit a message This may cause a RETRY of the
message.

811 Unable to communicate on Ethernet. This error occurs Connect and/or check Ethernet “T” connector, cable

and cable terminations. Reconnecting the “T"
connector should allow resumption of Ethernet
communications without the need to cycle power to
the processor.

Troubleshooting Notes: 1.

Table 15.12 Ethernet Diagnostic Codes in Register 8094

Packet errors can be analyzed with a LAN 802 .3 protocol analyzer.

Cable, connector and terminator errors can be analyzed by physical inspection
and with a device with Time Domain Reflectometer (TDR) capabilities.
3. Noisy networks can be analyzed with oscilloscopes or spectrum analyzers.

30598-730 Page A-1

APPENDIX A ERROR CODES AND TROUBLESHOOTING

A.1 Introduction and Description

Errors detected by the processor, and error codes
displayed on a CRT programmer, provide
information that is useful for isolating problems.

Some errors appear as self-explanatory messages on
the programmer’s screen. Other types of errors
involve error code numbers. This appendix deals
only with the errors that appear as codes.

Error code numbers can be separated into two
general categories which appear in different
locations on the programming equipment’s screen.
The two categories are Peripheral to Programmable
Controller System iInteraction Errors and
Programmable Controller System Operational
Errors.

Peripheral to Programmable Controller Interaction
Errors are caused either by an attempted illegal
operation with the Model 650 or by malfunctioning
communication hardware. These errors comprise
three types of error codes, and are displayed at the
bottom of the programming equipment’s screen. In
some special cases, these codes appear in the status

register of a communications rung. See|Section A.2

for details.

Programmable Controller System operational errors
are errors detected within the Model 650 or in any of
the modules in the overall programmable controller
system. These errors are displayed in the STATUS
mode of the programming equipment next to a
“"ERROR NUMBER” message. The number
displayed is also the number contained in the Model
650’s Control Register 8175, or possibly in a Local
Interface Module’s error code control register (when
using remote 1/O).

Normaily when correct programmable controller
system operation is restored, the error code is
cleared. The Model 650 contains a valuable
troubleshooting feature that allows a user to store up
to 16 of the most recent error codes in a user-defined

register block. See Section 13.2, “Control Registers"™
(register 8107)

A.2 Peripheral-to-Programmable

Controller System Interaction Errors

These types of errors are caused either by attempts to
perform illegal operations with the Model 650 or by
improperly functioning communication hardware.
This type of error is generated only when using
programming equipment to perform Model 650
operations, or when communication between the
Model 650 and another device is interrupted.

The three types of peripheral-to-programmable
controller interaction error codes are Processor
Errors, Transmission Errors and Tape Errors. Each is
displayed as a message combined with a code on the
programmer’s screen, and is described in Sections
A21 to A.2.3. If a peripheral-to-programmable
controller error occurs while a programmer is
connected to the Model 650, one of the three
messages (processor, transmission, or tape error) is
shown on the display along with a number, such as:

TRANSMISSION ERROR 74

If an error occurs while the Model 650 is executing a
communication rung, a processor error is generated.
The error code number also appears in the status
register of the communication rung which failed to
execute properly.

Page A-2 30598-730

A.2.1 PROCESSOR ERRORS

ERROR

DESCRIPTION
These errors indicate that an attempted operation
was not successfully completed. Error code numbers 15% Communication overflow. Check the baud rate
for processor errors range from 01 to 99. To isolate for compatibility between devices, and re-enter
the error, find the programmer-displayed code the operation.
number in the table of Figure A.1. Use the 16 The register count in a communication rung is
CLEAR/DEL key to clear the error indication, and too Izrge ;Of this type of processor. Reduce the
then take appropriate corrective action. number of registers.
17* Remote device inactive (this error is generated
by the Network Interface Module - check
N . . cabling between devices).
NOTE: Error codes indicated by an asterisk (*) in the abhing be n devices)
following Error Code Tables are displayed in 18 Illegal rung number. Re-enter.
the status register of a communications 19* Illegal READ parameter assigned. Re-enter.
rung.
20 lllegal, or no, channel number assigned. Re-
enter.
21* An attempt to change a forced register or write
ERROR to an external output while the bus master is
DESCRIPTION OF PROCESSOR ERROR halted was made.
00 No Error 22 Forcing is inhibited at this time. Check Control
Register 8176 or 8178, and keyswitch position.
01~ lilegal protocol opcode - not a valid Model 650 - -
instruction. Re-enter the instruction. 23* An attempt to alter data in a fenced register
has been made.
02 lllegal intermediate code format. Re-enter the -
desired operation. 24 An attempt to force an unforceable register
was made.
03* Illegal address attempted.
25* CPU error, check Control Register 8175.
04 lllegal rack addressing -
26 Rack addressing/user-memory overlap.
05* Instruction not allowed in this type of Redefine one or both.
processor.
27* Memory error - a CLEAR ALL operation is
06 ltem searched tor was not found needed to reset all data 1o the default state.
o7* An attempt to aiter data in a protected register 28 lllegal baud rate selected. Re-enter.
has been made. Check Control Register 8176 or - -
8178. 29* An attempt to send a message with an illegal
route was made. Re-assign route.
08 An attempt to access protected memory has
been made. Check Control Register 8176 or 30 An attempt to alter memory protected by the
8178. inhibit coil was made.
09* An attempt to alter a read-only register, or a 3N Tape error - see|Section A.2.2
egister containing external inputs, has been " . .
:ngde. AIning inputs. ha 32 Rung editing operation not allowed in
protected memory.
10 An attempt to exceed memory limitations has "
been mad‘:e. y 33* Tape error - see|Section A.2.2
11+ Communication error - receiver overflow. Re- 34 Not used
enter the desired operation. 35+ Tape error - see[Section A.2 2
12 lllegal CPU rack addressing - register w P - -
; P 36 Replace Rung” operation not allowed on this
assignments must be divisible by four. rung. Use DELETE or INSERT operations only.
13* Communication error - link error. Check -
Control Register 8175, the status register of the 37t Tape error - seejSection A.2.2
communications rung, or the cabling between L s
the Model 650 and attached devices. 38 Program view inhibit s in effect
. ; o y
14 The operation entered is not allowed while the 39 Alarm is already set within the D-LOG module
processor is running. 40 Hardware memory security is active

Figure A.1 Processor Error Codes

Figure A.1 Processor Error Codes (continued)

30598-730 Page A-3

ERROR ER:;OR DESCRIPTION OF PROCESSOR ERROR
DESCRIPTION
67 RTN rungs must have an associated MARK rung.
a1* lllegal register WRITE into the D-LOG module.
Some of the D-LOG registers will not accept a 68 Enter only one RTN rung for each MARK
WRITE operation. number.
42 Illegal clock data. 69 GOSUB rung cannot call a subroutine that has
no RTN rung
43* lllegal operation attempted - D-LOG module is
protected. 70 GOTO rung cannot jump to a MARK reserved
for a subroutine
a4 The indicated file is not resident in memory.
- n Cannot delete a MARK rung without first
45* Operation not allowed - D-LOG tape operation deleting all GOSUB and GOTO rungs associated
isin progress. with it.
46 An attempt has been made to access a 72 Rung cannot have unused MARK number/
protected file.. GOTO or GOSUB with an undefined MARK is
- - - not allowed / MARK rung must be programmed
47* Operation not allowed in present keyswitch before the GOTO or GOSUB is programmed.
position.
- - - - 73 Not used
48 Programming a MCR in the subroutine area is
not allowed. 74 Processor error generated by a programming
- - device--not by a processor.
49 10 register or channel is safeguarded.
- - 75-78 Not used
50 Rack addressing is not alterable while forcing is
in effect. 79 Operation not allowed while the Timed
- - Interruptis enabled.
51* Module addressing error - module is not seated
properly or is missing, no rack addressing is 80 Operation cannot be initiated due to
assigned to the module, or rack address exceeds insufficient data. Too few parameters are
limitations of the Model 650. indicated after a command word.
52 Hllegal file type. 81 The command is not recognized. Examine for
- validity.
53* Tape error - seel Section A.2.2|
82 Illegal parameter. Re-check command syntax
54 lllegal MARK number. for valid numeric values, register addresses,
= register values, route values and filespec.
55 Tape error - seg Section A 2.2
83 lllegal source parameter. Out of range or nota
56 Not used. numeric value.
57 COMMS queue buffer forced emptied. 84 llega! destination parameter. Out of range or
i lue.
<8 Notused. not a numeric value
85 Invalid filespec. Improper use of BUS portin
59 Battery low. command device, ID doesn’t match device in
60 lllegal MARK number - GOTO or GOSUB with fdp. or channel number above 5.
numbers above 8190 are illegal. 86 Invalid input channe!. Improper use of BUS
] rtin command device, ID doesn’t match
61 MARK ST. SUB rung cannot be inserted - only an portin '
APPEND operation is allowed. device in fdp, or channel number above 5.
G2 | KTNrungsarenotalowed mthe maimine [et outputcrannel mproser seofous
ladder program area. device in fdp, or channel number above 5.
63 This MARK number was previously used in the . - ; ;
program. Each MARK must be assigned a 88 giv;ce not available. Bubble ‘dead’ (no 12VDC,
unique number. s
. . ; 89 A serial link cannot be established. No
64 Operation not allowed while the Model 650 is :
running - cannot delete a RTN rung if any acknowledgement received.
GOSUB rung contains the same number. 90 Hardware read fault. Checksum mismatch.
65 Cannot delete MARK ST. SUB rung without first 91 Hardware write fault
deleting all subroutines. :
- - 92 An attempt to read data failed. Software
66 Cannot delete a MARK rung without first checksums mismatch outside of bubble/RAM
deleting the associated RTN rung. disk.
Figure A.1 Processor Error Codes (continued) Figure A.1 Processor Error Codes (continued)

Page A-4

30598-730

EREOR DESCRIPTION EREOR DESCRIPTION
93 An attempt to write data failed. 120 A device f(d)p must be indicated in the
command syntax.
94 An attempt to read from the directory has -
failed. 121 A port number fd(p) must be specified in the
command syntax.
95 An attempt to write to the directory has failed.
122 The communication routing must be defined in
96 Space reserved for directory data is full. the filespec syntax.
97 Device space is full. Bubble or RAM full. 123 The selected group of data must be defined
with a filename.
98 The indicated file is not found in MCM memory.
- - 124 The offset defining the starting point for data
99 The file has been restricted and may not be retrieval within the file is not valid. Check value
accessed. Attribute is limiting access. and format for out of range, non-data.
100 File already exists. 125 The count specified is invalid. Check if needed,
out of range, non-data.
101 The indicated file is already opened. 9
— - 126 The device indicated in the source and
102 An error exists in the format of the file. Format destination filespec cannot be identical.
doesn‘t match filetype.
127 A duplicate label already exists.
103 The wrong type of file was indicated. P y
. 128 File mismatch. Compare command.
104 Open attempt to open file.
- 129 The register address attempted is not valid.
105 An external /0 attempted to unopen a file. Addre?s above 8192 or bek;)w 0.
106 An attempt was made to write to a read only 130 The filename indicated is invalid.
file.
131 Write data error.
107 Record out of range. Offset is outside of
program size. 132 Unused
108 Too many files are open. The attempt to open 133 Insufficient data For write.
another file exceeds MCM limitations.
- 134 Unused
109 Operation aborted by user.
- - - 135 invalid Read parameter.
110 A source filespec is required before the
intended operation will initiate. 136 A communication parity error exists.
11 A destination filespec is required before the 137 Busy data transfer or weld in progress.
intended operation will initiate.
138 Communication overrun error
112 The maximum number of files has been
opened. Subsequent attempts to open files 139 Communication framing error
without first closing a selected or open file will
not be allowed. 140 Dropped unexpected reply message. Reply
message received after device timeout (error
113 The indicated source device and filetype are not 115), or no command expecting a reply.
in agreement. Re-check the fdp specification.
141 Job space full. Maximum of eight jobs.
14 The indicated destination device and filetype : —
are not in agreement. Re-check the fdp 145 Write sequence not initiated.
specification.
146 Unused
115 Device timeout. Received acknowledgement,
but no reply. 147 Memory full.
116 An attempt has been made to access a 148 Unused
otected system file.
pr ed system hie 149 No data found.
17 illegal filetype. Filetype number out of range. -
9 yP yp 9 150 Cannot stop attached batch job.
118 Device number out of range. -
9 151 lilegal communication to COMM Port.
119 Afilet f)dp must be indicated in the
commggg (sy)ntpaxA 153 Errar noted during a transfer.
Figure A.1 Processor Error Codes (continued) Figure A.1 Processor Error Codes (continued)

A.2.2 TAPEERRORS

These errors are generated when performing tape
operations and are displayed on the programmer as a
“PROCESSOR ERROR”. Refer to the table in Figure
A 2 for a description of these errors.

EREOR DESCRIPTION OF TAPE ERROR

31 The end of the tape was encountered before
the operation could be completed.

33 Tape data error detected - the block of data
involved with the READ or WRITE operation
was defective.

35 The tape cartridge is missing or is not seated
properly, or the erasure prevention tab on the
cartridge is set to the “write inhibit” position.

37 An attempt to skip or read a file was made
when already past the last file on the tape.

53 lllegal tape format - an “erase track” is
required.

55 The tape operation has been aborted. Retry
the operation.

Figure A.2 Tape Error Codes

A.2.3 TRANSMISSION ERRORS

Errors due to problems with communication
hardware (especially cables) are displayed on the
programmer’s screen as the message
"TRANSMISSION ERROR", followed by a number.

The error codes that most frequently appear are the
numbers 15, 17 and 74, and typically result from
improperly fastened cables or baud rate mismatches.
When an error with one of these three codes appears,
check all cable connections and use the CLEAR/DEL
key to clear the error indication. When all
connections are secure, retry the operation. If the
error persists, halting and cycling power to the
processor causes the PRGMR port to revert to default
baud and word structure and may allow successful
communication with the programmer.

30598-730 Page A-5

A.3 Programmable Controller System

Operational Errors

These codes indicate errors somewhere in the overall
programmable controller system and consist of a
five-digit integer. These error codes are the contents
of the data field (bits 1-16) of Control Register 8175.
Seven possible classifications of operational error
codes exist and are listed in the table in
Each of these classifications is explained later in this
section,

NOTE: The higher the error number, the higher the
priority that the error has. For example, a
“Slot Register Error” of any type will
override any type of "Read After Write”
error.

OPERATIONAL

ERROR # DESCRIPTION

00001-00999 General error

01000-09999 Processor communication port error

10000-18192 Read after write error

19000-19016
20000-28192
29000-29999

Sloterror

Slot register error

Miscellaneous error

30000-32700 CPU/Ll error

Figure A.3 System Operational Error Categories

When an error condition occurs, the appropriate
error eode is loaded into Control Register 8175 only if
the register contains either zero or an error code of
lower priority (a smaller number). The previous
error code(s), if any, can then be stored in a 16-
register block that is pointed to by pointer register
8107|(see Section 13.2).

The same operational errors are used by the
Local/Remote Interface systems to indicate errors in
devices under their control. Register 8175 or the
error code in the programmer’s status display
indicates the problem slot of the Local Interface.
Once located, inspect the error control register inside
the Local Interface to determine which remote device
contains the error.

Page A-6 30598-730

A.3.1 CPU/LI ERRORS {30000-32700)

This error indicates a problem with either the Refer to the table in Figure A.4 for the possible two-
processor (CPU) or Local Interface Module. Each of digit type numbers ("T'T*).

the five digits in this code represents a certain

parameter as shown below:

ERROR
TYPE # DESCRIPTION
(M)
3|TIT|C|D
K 00 Status register-READ/WRITE parity error.
g'r'gg T,‘a‘u“"’e' 01 Image RAM-READ/WRITE parity error.
indicates error is i
CPU or Ll error. 02 Internal register data error.
Drop> 0" 03 lllegal PROM format.
indicates Remote 9
Interface error . 04 lllegal opcode encountered while Model 650 in
RUN mode .
Channel Number 05 Bus signal error (interrupt detected on bus
Channel “0” indicates J (e)
erroris CPU or Ll error. 06 Software watchdog error.
Channel >"0"
indicates Remote 07 Not used.
Interface error .
08 Software diagnostic error.
Type Number 09 User memory-READ/WRITE parity error.
(See Figure A.4) 10 lllegal data in user memory.
1 PROM memory corrupted.
12 lllegal addressing map code.
13 Transmission error exceeded tolerance.
14 Loss of transmission.
15 Number of external /O registers assigned
exceeds the modufe’s capacity.
16 Too many registers assigned to the drop.
17 More than 8 drops per channel are assigned.
18 Number of channels addressed exceeds module
capacity, or channel 2 of LTI system is not rack-
addressed.
19 Addressing map checksum error.
20 Bus error - watchdog timeout.
21 BPU diagnostic error.
22 Parity circuit non-functional.
23 Clear line error.
24 Executive scratch RAM error.
25 Watchdog tolerance error.
26 Hardware diagnostic error.
27 Module is inactive.

Figure A.4 CPU/LI (30000 - 32700) Error Codes

A.3.2 MISCELLANEOUS ERRORS (29000-29999)

The following illustration and Table A.5 identifies
the miscellaneous error codes that may appear in the
Model 650 processor.

*&

*kk

Error Code
(See Figure A5)

Control register 8184 contains the rung number
where the error occurred. If8184 is zero, check the
rack addressing.

The data field of Control Register 8184 contains the
bit table of primary or backup status (bit set means
primary), while the status field of control register
8175 identifies the slots that contain LTIs (bit set
means LTl is present).

The data field of Control Register 8184 identifies the
first register assigned to the LTI that caused the error.
The status field of 8175 contains the elapsed time (in
milliseconds) that the scan was held.

30598-730 Page A-7

ERROR

CODE#

(EEE) DESCRIPTION

000 Subroutine nesting error*.

100 The time to process the timed interrupt
subroutine has exceeded the time base*.

101 Timed interrupt routine is missing.

102 The time required to solve a rung has exceeded
the tolerance set within a timed interrupt®*.

103 Attempted to set up timed interrupt while
interrupt is already running.

104 Attempted to return from a timed interrupt
that wasn't running.

300 Mixed Primary/Back-up LTls in CPU rack**.

301 LT timeout on €OS transfer***.

302 LTI timeout on start-up transfer***,

500 Register assignment conflict - number of
assigned Local Interface registers must be at
least 8 for one defined channel and 12 for two
defined channels.

501 Insufficient number of local interface control
registers.

510 RT! wired improperly-Ports A & B are mixed.

511 LTIs in CPU racks A and B have equal states of
operation and no primary determination can
be made in HALT.

512 Backup transfer system cannot be in RUN when
primary transfer system is in DISABLE OQUTPUTS.

513 Rack addressing between LTls in racks A & B are
not the same.

514 Backup cannot be run with test bit set when
primary goes to HALT. Backup must also go to
HALT.

515 Backup cannot become primary untif
synchronization has occurred and primary goes
to HALT.

516 Backup unable to become primary because a
remote bus error exists. This error is also
produced by the primary to allow transfer to
backup when primary is keyswitched to HALT.

517 Backup has lost synchronization and does not
have RTC Failure Override bit set.

518 Two primary processors were found in RUN;

this processor was halted with a bus error.

Figure A.5 Miscellaneous (29000-29999) Errors

Codes

Page A-8 30598-730

A.3.3 SLOTREGISTER ERROR (20000-28192)

In the event of a slot register error, the error code will
consist of the last four digits of the five-digit error
number as shown below. This four-digit number
points out the first register number assigned to the
slot containing a faulty register module. Further
inspection of that register's status field will provide
additional diagnostics.

Error Code

Points to the starting
register of the module
reporting the error.

A.3.4 SLOT ERROR (19000-19016)

In the event of a slot error, the error code will consist
of the last two digits in the five-digit error number,
and will point out the slot number experiencing the
error:

1|/9]0]E|E

& Error Code

Points to the slot
number experiencing
the error.

A.3.5 REGISTER READ AFTER WRITE ERROR
(10000-18192)

A read after write error indicates a particular bit in a
register has not maintained the condition written to
it by the Model 650. The error code consists of the
last four digits of the five-digit error number, and
will point out which register encountered the
problem.

1|EJE|E|E

& Error Code

Points to the register
that encountered the
problem.

By displaying the status field (bits 17-32) of the
control register containing the read after write error
code, the bit or bits causing the malfunction will be
indicated by a ”1”. Since each register contains both
a status field and a data field, control register 8184 is
used to indicate which set of bits contains the

HHHUE

Bits in Control Register 8184 0 = DataField

1 = Status Field

If the faulty register is used to control outputs, and
Control Register 8184 indicates the bad bits are
contained in the data field, the most likely cause for
the problem is an output module.

The following diagram can help isolate the output
module having a read after write problem. The
status field of register 8175 is divided either four
ways (for 4-function output modules), or two ways
(for 8-function modules):

32 29 | 28 25124 21120 17

D T e B
I

4-Function 4-Function 4-Function 4-Function
Module #4 Module #3 Module #2 Module #1
or
32 25 || 24 17
- T > - T >
8-Function 8-Function
Module #2 Module #1

STATUS FIELD (BITS 17-32) OF REGISTER 8175

If any of the bits in the status field of register 8175
are set to ”1”, that bit was read incorrectly. If,
however, all bits in the register are at ”0”, then a
parity error was detected. At least one bit should
normally be ”1”.

A.3.6 PROCESSOR COMMUNICATION PORT ERROR
(01000-09999)

A communication port error occurs whenever the
Model 650 does not receive a valid reply to a message
it sends out of one of its serial ports. The error is
cleared if a subsequent transmission does receive a
valid reply.

To clear a communication port error, toggle the
Model 650’s keyswitch from HALT to RUN, or clear
register 8175. Also, check remote device and cable
connections.

30598-730 Page A-9

The third and fourth digits in the five-digit error
number identify what type of communication error
occurred, while the second digit in the error number
is the port in which the error occurred. The following
diagram and table in Figure A.6 identifies the
communication port errors.

O|P|E]JE|O

& Error Code

(See the Figure A.6)

Port Number
Indicates which Model 650 port
is experiencing the error (1 =Ch

1,2=Ch2)
ERROR
CODE DESCRIPTION
#
1" Communications overflow
12 Buffer overflow
13 tllegal data
14 Wrong reply (odd/even)
15 Checksum error
16 Framing error
17 Parity error
18 Unable to communicate through indicated port
19 Retry timeout

Figure A.6 Communication Errors

Page A-10 30598-730

A.3.7 GENERAL ERRORS (00001-00999)

The error code for general errors consists of the last
three digits in the five-digit error number as seen in
the status display. Refer to the table in Figure A.7
for a description of the general error codes.

NOTE: 91X or 929 error codes indicate an Ethernet
problem; refer to|Section 15.7|for more
information.

OJOJE|E|E

A& Error Code

See Figure A.7

ERROR

CODE

(EEE) DESCRIPTION

900 Control registers corrupted *.

901 Data registers corrupted *.

902 Undervoltage Lockout is engaged
(see Section 3.5).

Figure A.7 General Errors

ERROR
CODE
(EEE) DESCRIPTION
960 HALT or HALT/RUN bit is set.
962 Tolerance is equal to or greater than the rate.
963 Timed interrupt timebase is less than 3.
964 GOTO and GOSUB are assigned same MARK**.
965 lllegal internal error code.
966 User subroutine stack error**.
A MARK rung with the
967 ; .
same number is required**.
968 GOTO to MARK doesn’t require a RTN rung**.
969 A subroutine MARK is lacking a RTN (return).
Scan time of Model 650 is greater than 1
970 second, or scan limit in register 8167 has been
exceeded***.
971 Long scan due to LTI start-up transfer (check
register 8184 for elapsed time in milliseconds).
979 Rack addressing is missing.
980 Keyswitch in RUN, but no program in memory.
983 Safeguarding rung is illegally programmed or
missing.
Undefined register is programmed in user
984 AP
memory ***.
Processor is not installed in slot 1 though rack
985 S
addressing is present.

* Toggling the keyswitch allows the CPU to RUN. Control
registers are normalized and data registers are cleared.

** 58184 will contain the MARK number.

*** $8184 will contain the rung number being executed when
the error occurred.

Figure A.7 General Errors (contiued)

A.4 Using Error Codes To Isolate
Programmable Control System Faults

A.4.1 GENERAL CONCEPTS
When a system malfunctions, one of three situations
can arise:

1. The whole system shuts down.

2. One or more drops shut down.

3. A run-time communication port error is
detected.

Once the malfunction is observable as one of these
three situations, the system operational error codes
can be used to isolate the fault.

Recognition of the first category (entire system
shutdown) is obvious; however, the second category
(individual drop shutdown) can exist only when the
system incorporates remote I/O and the override bit
is set in the Local Interface Module (Refer to LI/RI
Interface Instruction Bulletin 30598-175-01). The
third category of malfunction (run-time COMM
errors) deals with communications to external
devices and requires that control register 8175 be
monitored by the program for errors in the range
01000 to 09999. These types of errors are different
from those described in the "Processor Errors”
section in that they are generated by the processor
itself and not by the external device. Each of the
three malfunction situations is explained in the
following sections.

30598-730 Page A-11

A.42 WHATTO DO IF THE PROGRAMMABLE
CONTROLLER SYSTEM SHUTS DOWN

When the Model 650 halts, register 8175 should be
the first place to check. The error code indicated will
be within one of the following number ranges:

30000-32700 Processor/LI Error
29000-29999 Misc. Error
20000-28192 Slot Register Error
10000-18192 Read After Write Error
00001-00999 General Errors

If a slot register error (code 20000-28192) is indicated,
one of two courses of action can be taken depending
on the specific register number indicated by the last
four digits of the error code.

1. If the indicated register is the first assigned
to a register module, interrogating the status
field of that register will indicate the error.
Refer to the appropriate register module
Instruction Bulletin.

2. If the indicated register is the first assigned
to a Local Interface Module (when using
remote 1/0), further interrogation of the LI
error code register is required. Refer to
Appendix D of the LI/RI Instruction Bulletin
#30598-247-xx to determine the address of
the LI error code register(s). If only a single
LI exists in the system, register 8163 is the
LI error code register.

When the LI error code register is
interrogated, the number will be in the
following ranges:

30000-32728 Processor/LI Error
20000-28192 Slot Register Error
10000-18192 Read After Write Error

Page A-12 30598-730

In the case of a read after write error (code numbers
10000-18192), the affected bit or bits are indicated in
the status field of the LI error code register.

The following checklist illustrates the procedure for
examining a Programmable Controller system if it
shuts down completely.

INTERROGATE CONTENTS OF
REGISTER 8175:

IF 30000-32700, Refer tq Processor Error

IF 29000-29999, Refer to["Mi 0
IF 20000-28192, Refer to followmg

IF 10000-18192, Look at status ﬁeld of S8175
for bits and refer to["Read After Write Error”|

STEP 1:

e IF 0001-9999, Refer to "General Errors", and
interrogate control register S8184 when
indicated.

STEP 2: DETERMINE THE SLOT TO WHICH
THE REGISTER IS ASSIGNED USING
THE ERROR CODE (REGISTER
NUMBER) INDICATED BY THE LAST
FOUR DIGITS OF THE ERROR
NUMBER.

® If the indicated register is assigned to a
register module, examine the status field of
the register number indicated by the error
code. Refer to the appropriate register
module Instruction Bulletin for the meaning
of the error number.

® If the indicated register is assigned to a local
interface register, interrogate the LI error
code and then refer to STEP 3, below.
STEP 3: INTERROGATE THE LI ERROR CODE
REGISTER

® If the LI error code is 30000-32728, refer to
[Processor Error|

e If LI code is 20000-28192, use the register
number shown by the error code (last four
digits). Determine the slot to which the
register is assigned. The register module in
that slot is the module that generated the
error. Look at the status field of that
register, then refer to appropriate register
module Instruction Bulletin for the meaning
of the error number.

® If the LI code is 10000-18192, look at the
status field of the LI error code register for an
indication of the affected bits and then refer
td"Read After Write Errors."]

STEP4: MAKE SURE THAT THE LI MODULE

ISSEATED PROPERLY

A.5 Example Malfunctions

Shown in is an arbitrary programmable
controller system experiencing one of four different
malfunctions. Each area of malfunction is indicated
by a circled number. The steps needed to isolate each
type of problem, based on the previous checklist, are
also explained.

The problem areas are :

The Model 650 Itself

The Local Register Module
The Remote Register Module
The Remote I/O Module

The Interconnecting Cables

N

30598-730 Page A-13

A.5.1 EXAMPLE PROGRAMMABLE CONTROLLER

SYSTEM SHUTDOWNS

The following example "breakdowns™ are not
intended to show all possible Programmable
Controller system malfunctions, but attempts to
show some of the more typical problems encountered
with programmable controller systems.

Refer to|Figure A.8(and to the checklists on the

previous pages when reviewing the following
examples.

NOTE: Arbitrary register assignments have been
added to this diagram to aid in the following
explanation.

4-POINT DIGITAL /O MODULES

\ 1 2 3 4 5

AY

A ATV

101 17 9 1 \ 25 a1
REG || REG gee | wi @ Rl || ReG || ReG
3
2
116 132 2 8 w© .
Z

___;/__/
CPU RACK DROP ONE DROP TWO

Figure A.8 Typical Programmable Controller System

Page A-14 30598-730

@ MALFUNCTION IN MODEL 650

A malfunction in the Model 650 itself would cause
the system to shut down; the Programmable
Controller system checklist on should be
used when working with this example.

Result of STEP 1: Since the malfunction occurred in
the Model 650 itself, interrogating
control register 8175 will result in
an error code number which will
help further identify the processor
fault. A typical error code in this
instance would range from 30000 to
32700.

MALFUNCTION IN A LOCAL REGISTER MODULE
(LOCATED IN CPU RACK)

A major malfunction in a register module located in
the CPU rack would cause the system to shut down,
regardless of whether any failure override bits are

set. The Programmable Controller system checklist
on|page A-12/should therefore be used.
Resultof STEP1: Interrogating control register

8175 would result in a 20101
error code.

Result of STEP 2: The error code indicates the register
module existing in slot #3 of the
CPU rack has malfunctioned, since
it is the module containing register
101 as the first register address. By
looking at the status field of
register 101 and then referring to
the appropriate register module
Instruction Bulletin, the specific
error can be determined.

@ MALFUNCTION IN A REMOTE REGISTER MODULE

A malfunction in a register module located in a
remote rack will cause the system to shut down if the
failure override bit in the LI module is not set. If this
is the case, the "REMOTE RACK SHUTDOWN"

checklist inmlshould be used.

Result of STEP 1: Interrogating control register 8175
would result in a 20001 error code.

Result of STEP 2: The register number indicated in
the error code is 001, which is the
first register in the LI.
Interrogating the LI error code
register (in this case 8163) will
provide additional information as to
which module in the remote I/O
system caused the shut down.

Result of STEP 3: Interrogating the LI error code
register would result in a 20041.
Since the register module in drop
#2, slot #3 contains register 41,
that module is responsible for the
system shut down. By looking at
the status field of register 41 and
then referring to the appropriate
register module Instruction
Bulletin, the specific error can be
determined.

@ MALFUNCTION IN A REMOTE DIGITAL I/O MODULE

A malfunction in a digital output module located in a
remote rack will cause the system to shut down if the
failure override bit in the LI module is not set. If this

is the case, the "REMOTE RACK SHUTDOWN"

checklist in[Section A.5.2/should be used.

Result of STEP 1: Interrogating control register 8175
would result in a 20001 error code.

Result of STEP 2: The register number indicated in
the error code is 001, which is the
first register in the LI.
Interrogating the LI error code
register (in this case 8163) will
provide additional information as to
which module in the remote 1/0
system caused the shut down.

Result of STEP 3: Interrogating the LI error code
register would result in a 10001.
Looking at the status field of 8163
will provide the bit mask that
indicates which output module
associated with register 001 caused
the failure.

30598-730 Page A-15

COMMUNICATION ERROR BETWEEN LI AND RI
MODULES

A communication error that occurs between local
and remote interface modules will cause the system
to shut down if the failure override bit in the LI
module is not set. If this is the case, the "REMOTE

RACK SHUTDOWN?" checklist in|Section A.5.2

should be used.

Result of STEP 1: Interrogating control register 8175
would result in a 20001 error code.

Result of STEP 2: The register number indicated in
the error code is 001, which is the
first register in the LI.
Interrogating the LI error code
register (in this case, 8163) provides
additional information as to which
module in the remote I/0 system
caused the shutdown.

Result of STEP 3: Interrogating the LI error code
register would result in a 31412,
Referring to reveals
that a transmission error has
occurred on channel 1, drop 2.
Transmission errors result from
many causes, including defective
cable, electrical noise, LI or RI
communication chip malfunction,
inadequate power, improperly set
DIP switches, etc. Further
investigation is required to
pinpoint the problem.

Setting the failure override bit for the respective
channel experiencing the failure (bit 8162-13 for this
example) allows the processor to ignore the error and
remain in RUN, although information associated
with the failed drop is no longer valid. Similarly,
setting the auto restart bit for the channel (bit 8162-
15) causes the LI module to keep attempting to
reestablish communication. Thus, in the event the
transmission error was caused by a transient
condition, the failed drop experiences only a
momentary disruption.

Page A-16 30598-730

A5.2 REMOTE RACK SHUTDOWN

When a remote rack(s) halts without causing the rest
of the system to halt (Failure Override bit set for that
channel), the error code register of the Local
Interface module controlling that drop will contain
the error number of the fault. When the LI error
code register is interrogated, the number will be in
the following ranges:

30000-32700 Model 650/L.1 Error
20000-28192 Slot Register Error
10000-18192 Read After Write Error

In the case of the 10000-18192 Read After Write
Errors, the affected bits are indicated in the LI error
code register.

The following checklist illustrates the ”"REMOTE
RACK SHUTDOWN?” scenario:

INTERROGATE CONTENTS OF
APPROPRIATE LOCAL INTERFACE
ERROR CODE REGISTER

STEP 1:

If 30000-32728: Refer t.o|Processor Errors|

If 20000-28192: Using the register number from
the error code (last four digits),
determine the slot to which the
register is assigned. The register
module in that slot generated the
error. Look at status field of that
register, then refer to the
appropriate register module
Instruction Bulletin for the
meaning of the error number.

If 10000-18192: Look at the status field of the LI

error code register for an
indication of the affected bits.

Refer to "Read After Write
|Errors."

Using malfunctions #3 and #4 ianigure Allas
examples, and the above checklist, go through the

following steps to isolate each type of problem.

The two main problem areas are the (1) remote
register module and (2) the remote I/O module

1. A malfunction in a register module located in a
remote rack will cause only that rack (drop) to
shut down, assuming the failure override bit in
the LI module is set. If this is the case, the
"REMOTE RACK SHUTDOWN?®" checklist
should be used.

Following are results of applying the "remote rack
shuts down" checklist:

Result of STEP 1: Interrogating the LI error code
register (8163 in this case) would
result in a 20041. Since the register
module in Drop #2, Slot #3
contains register 41, that module is
responsible for the system shut
down. By looking at the status field
of register 41 and then referring to
the appropriate register module
Instruction Bulletin, the specific
error can be determined.

A malfunction in a digital output module located in a
remote rack will cause only that rack (drop) to shut
down, assuming the override bit in the LI module is
set. If this is the case, the "REMOTE RACK
SHUTDOWN?" checklist should be used.

Result of STEP 1: Interrogating the LI error code
register (8163 in this case) would
result in a 10001. Looking at the
status field of 8163 will provide the
bit mask indicating which output
module associated with register 001
caused the failure.

A.5.3 “PRGMR” OR "COMM"” PORT ERRORS

These errors are different from the processor errors
associated with communications listed earlier in this
Appendix in that processor communication port
errors are detected by the Mode! 650 rather than the
external communicating device.

The only processor error that has any relationship to
processor communication port errors (01000-09999)
is processor error code 13. When error 13 is indicated
in a status register of a communication rung,
interrogation of control register 8175 will result in
the display of one of the processor communication
port errors (01000-09999).

Communication port errors can also be detected
when an external device is asking for information
from the Model 650 or other local processor.

NOTE: /In these examples, there is no
communication rung status register to
indicate a fault. It is up to the user to
program monitoring and annunciation of
these types of errors.

30598-730

Page A-17

30598-730 Page B-1

APPENDIX B

OPERATING CONSIDERATIONS WHEN THE MODEL 650 IS USED WITH THE
LOCAL/REMOTE TRANSFER INTERFACE MODULES

The purpose of this appendix is to point out some of
the operating characteristics to be expected when
using the Local/Remote Transfer Interface (LTI/RTI)
modules (Class 8030 Type CRM-230/232 modules)
with the Model 650 processor.

NOTE: FAMILIARITY WITH THE LTI/RTI
INSTRUCTION BULLETIN (BULLETIN #30598-
251-XX) IS REQUIRED WHEN USING THIS
APPENDIX.

Because the LTI/RTI Instruction Bulletin (#30598-
251-XX) is geared to the Model 500 and 700
processors and was written prior to the Model 650’s
creation, some of the information contained in that
bulletin DOES NOT APPLY TO Model 650
OPERATION.

WARNING

Certain application considerations must be
observed when using the Model 650 in
systems with Transfer Interfaces. THIS IS
PARTICULARLY TRUE IN SYSTEMS
ORIGINALLY DESIGNED FOR MODEL
500 OR MODEL 700 PROCESSORS. Until
this section has been read and understood,
DO NOT use Model 650s in LTI/RTI
systems. Equipment damage or bodily
injury may result if this section is not
followed in detail.

B.1 General Discussion

As described in the Local/Remote Transfer Interface
System Instruction Bulletin (30598-251-XX), system
redundancy is actually accomplished via the LTI
modules, not the processor. Through the LTI-to-LTI
high-speed Register Transfer Channel (RTC) link
and the respective LTI-to-RTI I/O channel links, the
primary and backup LTI modules exchange the
information necessary to maintain the backup in a
state of readiness to seize control of the system’s 1/0
in the event of a failure in the primary rack.

Because the register data actually resides in the
image table of the Model 650, it must be passed from
the primary Model 650 CPU to the primary LTIs,
then to the backup LTIs, and finally to the backup
Model 650 CPU. The quantity of registers to update
is a function of rack addressing and the type of
transfer (startup or end-of-scan) that is occurring.

B.2 Rack Addressing

Since the Model 650 occupies a single slot, the first
LTI module can be installed in slot 2 of the CPU
rack. When rack addressing the system, assign only
as many registers to the LTI slot as is required by the
user program. Because registers assigned to the
LTI(s) are exchanged during a startup transfer, any
registers that are unnecessarily assigned will extend
the startup transfer time. Thus, when laying out the
system, use storage registers with low-numbered
addresses.

Startup transfer time can be further reduced by
setting the Startup Transfer Register equal to the
number of registers that are assigned to the LTI slot
(the Startup Transfer Register is the first of four
registers assigned to LTI channel 2, drop 1). As
explained ibelow and in Section 5.4.2 of
the LTI/RTI bulletin, this practice minimizes the

number of registers that the primary LTI writes to
the backup LTI

In a multiple LTI system, group the data storage
registers in the last (rightmost) LTI, as is shown in
Section 5.3.6 of the LTI/RTI bulletin. As previously
mentioned, assign only as many registers to the LTI
slot as is required by the user program. Also, the
Startup Transfer Register for each LTI should be set
equal to the last (highest) register assigned to the
LTI slot.

PageB-2 30598-730

B.3 Startup Transfer Delay

Use the following equation to estimate total startup
transfer delay time:

(0.03 x RA) + (0.26 x ERT) +
(0.17 x IRT)

DELAY (msec) =

Where:

RA is the total number of registers RACK
ADDRESSED to the LTI, ERT is the number of
EXTERNAL 10 REGISTERS in the LTI being
transferred, and IRT is the number of internal
storage registers in the LTI being transferred.

Assume, from the example of the LTI/RTI
Instruction Bulletin Section 5.4.2, that 1,000
registers are to be transferred from the primary to
the backup (as specified by setting S73 = 1,000). In
accordance with Section B.2 and the above equation,
if 1,000 registers are rack addressed to the LTI, total
startup transfer delay is:

{0.03 x 1000) + (0.26 x 76) + (0.17 x924)
= 207 milliseconds.

If the startup transfer was not preset to limit (to
1000) the number of registers transferred and the
maximum number of registers were rack addressed
to the LTI (4096), the startup delay would be much
longer. The startup delay now becomes:

(0.03 x 4096) + (0.26 x 76) + (0.17 x 4,020)
= 826 milliseconds

In a multiple LTI system, startup transfer delay time
will be longer than indicated by the above equation.
In many cases, the delay time will exceed one second,
and will be based on system configuration factors
such as the number of LTIs present and the register
distribution between them. When this occurs, error
971 will appear in register 8175 and the actual
elapsed time in milliseconds will be posted in
register 8184. It may be possible to decrease this
time by following the recommendations of Section
B.2, especially rack addressing to the LTIs only the
quantity of registers utilized in the user program.

NOTE: The processor’s scan time limit (default is
one second) is not active during a startup
transfer. If the scan limit is exceeded, error
971 is posted in the backup processor as a
flag to note the long transfer time, and is
not indicative of a system error or improper
operation.

B.4 End-Of-Scan (EOS) Transfer

At the end of each ladder scan, 32 registers can be
transferred from the primary LTI to the backup LTI
via the Register Transfer Channel (RTC).
Transferring these registers is intended to maintain
synchronization of critical internal registers that
might otherwise differ. This difference may be due to
communication with external devices, timer drift,
etc.

NOTE: Unlike the SYIMAX Models 500 or 700, the
position of the Model 650°s 32-register EOS
transfer block is FIXED. IT MUST OCCUPY
RELATIVE REGISTERS 260-291 ASSIGNED TO
AN LTI. Thus, any program written for the
Model 500 or 700 that uses the EOS Transfer
feature must be configured for this
restriction.

To set up the EOS transfer, preset the contents of the
EOS Transfer Register to the address of the 260th
register assigned to the LTI (the EOS Transfer
Register is the second of four registers assigned to
LTI channel 2 drop 1). To execute the transfer, set
the EOS Transfer Register bit (bit 16 of the backup
LTPs RTC Control Register). This causes the values
of the 32 registers (registers 260 through 291) to be
transferred at the end of every scan.

NOTE: Enabling the EOS Transfer feature adds
approximately six milliseconds to the Model
650's scan time.

Refer to the multiple LTI example in Section 5.3.6 of
the LTI/RTI bulletin. Since the first two LTIs do not
have at least 291 registers assigned to them, no EOS
transfer is possible. The rightmost LTI, however,
could transfer registers 396-427 (relative registers
260-291). To activate the transfer, preset the EOS
Transfer Register (S202) equal to 396, and set Lthe
EOS Transfer Register bit to “1” (bit 16 of register
8155).

NOTE: An easy way to determine the starting
address for the EOS transfer block is to add
259 to the first register assigned to the LTI
slot (provided, of course, that at least 291
registers are assigned to the LTI).

If more than 32 registers need to be transferred, use
a matrix instruction within the application program
to transfer different 32-register blocks into the EOS
Transfer block (registers 396-427 in the above

example). Refer to|Section B.8|for an application
example.
B.5 1/O Update

As described in Section 14,2 of this bulletin, the
Model 650 performs an 1/0 update of modules in the
CPU rack at the end of every scan. For an LTI, the
first 291 registers (if this many are assigned) MUST
be transferred between the image table of the Model
650 and the LTI(s). This transfer, along with some
“overhead” due to LTI-to-processor handshaking,
results in an 1/0 update time of about 15 milliseconds
per LT1. This 15 milliseconds must be added to the
scan speed equation oof this bulletin,

NOTE: The “ER” (unfragmented register) and "FER”
(fragmented register) terms in the scan
speed equation apply to NON-LTI modules in
the CPU rack, and will therefore be zero or
so close to zero that they can typically be
disregarded.

The I/0 update time of 15 milliseconds per LTI
assumes that the assigned registers are
unfragmented; LT1 update times will increase by
0.45 milliseconds for every fragmented register (a
register containing both input and output points).

NOTE: /n a multiple LTI system, the /O updates are
additive. If fewer than 291 registers are
assigned to a given LTI the I/O update time
for that LTl is proportionally less than 15
milliseconds.

30598-730 Page B-3

B.6 Forcing

WARNING

The forced state of 1/O0 DOES NOT
TRANSFER when system control is
switched from Primary to Backup.
During a transfer, BE AWARE OF ANY
CHANGES IN SYSTEM BEHAVIOR
THAT MAY OCCUR DUE TO ACTIVE
FORCING. Incorrectly forced /O may
cause personal injury and equipment
damage.

Forcing is implemented differently in the Model 650
than in Model 500 or 700 processors. As described in
[Section 14.4]of this manual, forcing in a Model 650 is
a condition that should be applied to external I/O
only. Forcing bits of an internal storage register
causes a programming device to display the forced
state, while the image table in the Model 650
actually processes the information based on the logic
state.

NOTE: I/f a bit of an internal storage register is
forced in a primary, a Startup Transfer will
cause the same bit in the backup to reflect
the forced state. This is a “one-shot”
transfer that may cause unintended results,
especially if the bit(s) are within a data
storage register not controlled by the user
ladder program. Avoid this situation by
following recommendations
to perform forcing ONLY ON EXTERNAL
INPUTS AND OUTPUTS.

B.7 Primary and Backup

READ/WRITE Bit Exchange

Section 5.4.5 of the LTI/RTI bulletin describes a
method for exchanging the status of eight user-
selectable bits residing in the fourth register that is
assigned to the RTC (Channel 2, Drop 1). THE
Model 6560 DOES NOT SUPPORT THIS BIT-
EXCHANGING CAPABILITY.

Page B-4 30598-730

B.8 EOS Transfer Example

This example describes how to implement an end of
scan (EQS) register block transfer between the
primary and backup LTI's when the block to be
transferred is outside the fixed register location.
Because the block of 32 registers associated with this
EOS in a Model 400, 600 or 650 is fixed as relative
registers 260 through 291, additional registers
outside this range must be multiplexed through
them to the backup processor. The following
provides an example of how to accomplish this
multiplexing operation using GOTO/MARK loops
with INCREMENTAL LET MATRIX ladder rungs.

The ladder rungs are divided into two groups:

The primary group of rungs controls the
uploading of the fixed block of transfer registers
into the primary LTI from other locations in the
primary processor.

The secondary or backup group of rungs
downloads the register data transferred
through the fixed block area to their correct
locations in the backup processor.

Since either processor can become primary or backup
at any time, it is necessary to have both sets of ladder
rungs resident in each processor. To determine
which set of rungs are operated on in each processor,
the primary/backup status bit 8161-20 from the LTI's
Remote Transfer Channel (RTC) Status register is
used in conjunction with a GOTO branch to allow the
correct rungs to be scanned depending on that
processor's current primary or back-up status.

The primary group of ladder rungs should always be
placed at the end of the processor's mainline ladder
program but before any MARK START
SUBROUTINE area. The backup group of ladder
rungs should always be placed ahead of the
processor's mainline ladder program but after the
LT1I's configuration setup rungs. Placing these rungs
in different areas of the processor's scan ensures that
all ladder functions that could affect the primary's
registers are completed before they are transferred to
the backup, and then uploaded by the backup
processor's scan prior to using these register values
in the backup.

The following describes the rungs used to accomplish
the register transfer multiplexing operation between
the primary and backup processors.

Rack addressing for this example assumes that at
least 1000 registers are assigned to the LTI slot, that
registers 5 through 8 are assigned as the RTC
registers (LTI Channel 2, Drop 1), and has registers
5260 through S291 acting as the fixed 32 register
transfer block or window between the primary and
backup LTIs.

To manage the multiplexing operation, a pointer
value indicating the location where the transfer
block was uploaded from the primary processor must
be sent to the backup processor so the registers can
be downloaded to the correct location. The first
register (5260) of the fixed transfer block of 32 is
reserved for this duty. The remaining 31 registers of
the fixed transfer block contain the actual
multiplexed register data to be transferred.

The following RTC and Control registers are
important to LTI operations:

REGISTER DESCRIPTION
S5 Startup Transfer Register - determines

the number of registers transferred from
the primary processor to the backup
processor al startup. A default value of
zero will cause all 4096 registers of the
LTI to be transferred.

S6 ‘nd-of-Scan Transfer Register -
determines the starting register location
of the block of 32 registers to be
transferred from the primary to backup
processors. In the Model 400, 600 and
650 processors, the relative starting
location of this block of 32 end-of-scan
transfer registers is fixed and is defined
as the 260th register assigned to the
LTI; the user must preset this
information as part of the ladder
program.

S7 Processor Scan Synchronization
Register - determines the allowed
variation between scan times of the
Primary and Backup processors. Setto 0
for default value of 100 msec.

S8 Primary/Backup Read/Write Bit
Exchange - not supported by the Model
400, 600, or 650 processors. Should be
set to 0.

$8176 Processor Control Register - Bit 23
(Normal Program Scan) allows the
ladder rung in which it is used to
establish preset conditions prior to a
processor commencing normal ladder
scanning.

$8161 Remote Transfer Channel (RTC) Status
Register - Bit# 20 of this status register
determines whether the LTI being used
is either the primary (Bit# 20 is ON or
1) or backup (Bit# 20 is OFF or 0).

Bit# 16 - EOS Transfer: When set ON
(1) in a Backup LTI that is scanning
ladder, the Backup LTI will request an
End-of-Scan Transfer of the fixed 32
register transfer block from the primary.

The following internal processor registers were
chosen as temporary storage locations for the
multiplexing of data registers through the fixed 32
register block between the primary and backup
processors. These registers should be chosen from an
unused internal register area not involved in the
end-of-scan block transfer or other storage purposes.
The registers shown below were arbitrarily chosen
for this example only.

REGISTER DESCRIPTION

5260 First register of the fixed transfer
register block. Used as the pointer to
identify the starting address of the block
currently being multiplexed.

$292 Starting location of a block of data
registers to be transferred from the
primary processor to the backup
processor at end-of-scan.

This starting lecation can be calculated
by subtracting one (1) from the starting
register address of the block of internal
data registers to be transferred at end-
of-scan. This starting location will be
passed to the backup processor through
the first relative fixed register (S260) of
the transfer window.

This register is later used as a pointer in
one of the multiplexing matrixes to keep
track of the starting location for the next
block of registers to be transferred
through the fixed register window
(S8260-S291).

30598-730 Page B-5

$293 This register is used as a pointer in one
of the multiplexing matrixes to keep
track of the next register to be loaded or
unloaded. This register should be
initialized to zero and cleared after each
32 register end-of-scan transfer is

complete.

The status bit# 17 of the above matrix pointer
registers is used in the example as a contact to exit
the GOTO/MARK loops since it will come ON (1)
whenever the incremental matrix PNTR register
value equals its SIZE.

S294 This intermediate register is used in the
matrix routines to pass the register data
between the fixed transfer block register
and the processor’s storage location.

The following example can be broken up into three
groups of rungs, each regulating an aspect of the
End-of-Scan (EOS) register transfer. The first group,
rungs 1 through 3, will set-up or initialize the RTC
registers, EOS Transfer Bit and the first data
register's starting location of the block of registers to
be transferred. The second group, rungs 4 through
11, are the rungs required by the backup processor to
download or distribute the data registers passed to it
through the fixed transfer register block by the
primary processor. These first two groups of rungs
should always be placed ahead of the processor's
operational ladder program to allow early
initialization of the transfer process and the
downloading of current data from the primary
processor. The last of the three groups of rungs in
this example, rungs 12 through 20, are used by the
primary processor to upload the block of data
registers for transfer to the backup processor
through the fixed transfer block. This last group of
rungs should always be placed at the end of the
mainline ladder program, before the MARK START
SUBROUTINE rung. This will allow the primary
processor to upload current data register values to
the backup processor.

The following is an example of the ladder rungs used
to perform this EOS register block transfer. The
word "block" must be emphasized here since this
routine will only operate on one continuous
unbroken sequence or block of internal processor
data registers. Note that these registers must be
rack addressed to the LTI slot in order to be
exchanged. In this example, data registers 501
through 1000 will be transferred from the primary to
the backup Model 650 processor.

PageB-6 30598-730

This 500-register transfer will require 17 processor
ladder scans to complete, since only 31 registers can
be transferred per each EOS interval. Because
either processor in a transfer system can be primary
or back-up, all twenty of the following rungs used in
this multiplexing example should be included in both
the primary and backup processor ladder programs.
This will allow the status of either processor to
change at any time and still maintain the EOS
register transfer multiplexing process. Each ladder
rung of this routine is preceded by a brief description
of its purpose.

SETUP AND INITIALIZATION RUNGS (1 through 3)
RUNG 0001

This set-up rung presets the RTC registers assigned
to LTI channel 2, drop 1. The second argument’s (S6)
value of “260” matches the relative starting register
address of the fixed register block window used for
EOS transfers. Note S5 should normally be set equal
to the largest register address assigned to the LTI
slot; this example uses the default value of 0.

—[{ =

RUNG 0002

$0005 = 0; 0260;0;0

This rung loads register 5292 with the starting
location (501 - 1 = 500) of the first register of the
block of 500 to be transferred by the primary
processor after system startup.

—JH

$0292 = 500

RUNG 0003

This rung sets the EOS Transfer Bit in the backup
LTI only.

?16'1 8161
I/ | O—
-20 16

BACK-UP (REGISTER DOWNLOAD)
RUNGS (4 through 11)

RUNG 0004

Branch around rungs 5 through 10 if this is the
primary processor.

8161
GOTO 0001

-20
RUNG 0005

Initializes subsequent matrix rung’s pointer (PNTR)
register to zero.

— LET 50293 = 0000

RUNG 0006

Load data register 5292 with the starting location
where the following block of 31 registers transferred
to the backup processor are to be located.

—1 LET 50292 = 50260

RUNG 0007

The start of the backup processor’s download loop.

MARK 0002

RUNG 0008

Incremental LET matrix rung that uploads each of
the 31 fixed transfer block registers into register
S294. PNTR register 5293 increments for each pass
through the loop (note--pointers used in
"incremental matrix" statements pre-increment
before execution of the rung). The size of this matrix
rung is always 31 since the first register (5260)
transfers the starting location of the block of 31
registers that follow to the backup processor.

SIZE PNTR

LET $0294 = M0261 0031 +50293

RUNG 0009

Incremental LET matrix rung that downloads each
of the 31 registers transferred at the EOS to the
correct location in the backup processor. The
starting location for this storage operation was
passed to pointer register S292 through transfer
block register S260 in rung 6. The size of this matrix
should always be equal to the last address of the total
block of data registers Lo be transferred to the backup
processor (in this case, register 1000).

SIZE PNTR

LET MO0001 = S0294 1000 +S50292

RUNG 0010

Continue to loop until all 31 registers transferred at
EOS to the backup processor have been downloaded
to the correct locations before proceeding to the
mainline ladder program.

0293

I

GOTO 0002

RUNG 0011

Last rung of the backup group, branched to from
rung 4 if processor is primary.

MARK 0001

JU 4 s o S e EES S MR ¢ SEE G GNS S TED C SR s ML ¢ GEe s s W & my

: This area (following the last rung of the backup |
. group) should contain the processor's mainline .
| ladder program. The following primary group of |
: rungs should be placed at the end of the mainline i
. ladder program but before any MARK START .
| SUBROUTINE rung. |

Gum v com ¢ En ¢ WE . I R EE S e s EE e s R s e s e o el

30598-730 Page B-7

PRIMARY (REGISTER UPLOAD) RUNGS
(12 through 20)

RUNG 0012

Branch around rungs 13 through 19 if this is the
backup processor.

8161

—/=

GOTO 0003

RUNG 0013

Initializes subsequent matrix rung’s pointer (PNTR)
register to zero.

$0293 = 0000

—_—_ LET

RUNG 0014

Load the first register (S260) of the fixed register
transfer block with the starting location of the
following block of 31 registers to be uploaded to the
backup processor.

LET S0260 = S0292

RUNG 0015

The start of the primary processor’s upload loop.

MARK 0004

PageB-8 30598-730

RUNG 0016

Incremental LET matrix rung that preloads each of
the 31 registers to be transferred at the EOS from the
locations in the primary processor. The starting
block location for this routine was loaded into pointer
register S292 by either rung 2 or 19. The size of this
matrix should always be equal to the last address of
the total block of data registers to be transferred to
the backup processor (in this case, register 1000).

SIZE PNTR

1000 +50292

LET 50294 = M0001

RUNG 0017

Incremental LET matrix rung that loads each of the
31 fixed transfer block registers through register
S294. The size of this matrix rung is always 31, the
maximum number of registers that can be
transferred by this routine to the backup processor at
EOQS.

SIZE PNTR

LET MO0261 = 50294 0031 +50293

RUNG 0018

Branch to rung 15 and continue to loop until all 31
registers to be transferred to the backup processor at
EOS have been loaded into the fixed register transfer
block.

0293

U

GOTO 0004

RUNG 0019

The pointer register S292 was incremented until
equal to the last address (1000) of the register block
transferred, and activated contact $292-17 to restart
the process again. This rung then reloads pointer
register S292 with the original starting location (501
- 1 = 500) of the entire register block.

0292

LET $0292 = 500

17

RUNG 0020

Last rung of the primary group, branched to from
rung 12 if processor is backup.

MARK 0003

This example illustrates the ladder rungs required
for multiplexing more than 32 registers (in this case,
registers 501 through through 1000)"\t.‘1rough the
LTI's EOS transfer block. The End-of-Scan transfer
ladder rung routine shown in this example can be
modified to fit any desired size register block to be
transferred by changing the values of the starting
location and last register address of the block in
rungs 2, 9, 16 and 19. Further modification of this
routine will be required if relative fixed register
block transfer window addresses other than S260-
S291 are used by the LTI's, as could happen in a
multiple LTI system.

30598-730 Page C-1

APPENDIX C SUPPLEMENTARY RACK ADDRESSING INFORMATION

This appendix provides additional information on
register allocation and updating, and supports

Sections@and 4.2

o)

C.1 Model 650 System Register Updating
The Model 650 contains 8000 on-board registers; this
is the maximum number it is capable of addressing.
Adding a Local Interface (LI) module will not
increase the addressing capability beyond this
number. Thus, the Model 650 already has all of the
data storage registers it can handle. By the same
token, any registers that have to be updated in other
modules will add to the scan time.

Simply stated, the more registers the Model 650
needs to read and write on the bus, the longer the
scan time will be, as indicated in the scan speed

equation of|Section 14.2.2

To some extent, the Model 650 makes “decisions” to
optimize throughput. For example, the Model 650
will interrogate register modules in the CPU rack
which have had registers assigned to them to
determine the module type. If the module is not a
Local Interface, the Model 650 determines whether it
is an input or output device and then simply reads or
writes the assigned number of registers at the end of
each scan. If the module interrogated is a Local
Interface, some additional decision making will
occur, as discussed below.

If no module is present, the assigned registers revert
to the image table of the Model 650 and behave like
regular storage registers.

C.2 Rack Addressing A New System

For a listing of ground rules to follow when rack
addressing, refer to[Section 3.6|for discussions on
"Determining Rack Addressing Needs" and "Rack
Addressing Register Allocation”.

C.2.1 GENERAL RULES

The Model 650 initially defaults to 8000 registers
assigned to CPU slot #1; this applies to installations
in which the Model 650 is installed in a digital I/O
rack with no other register modules and no remote
/0.

Registers may or may not require assignment to
CPU slot #1, depending on whether the processor is
installed in a digital or register rack as discussed
below.

When assigning registers, start with the CPU rack.
If installed in a digital I/O rack, slot #1 needs to have
sufficient registers assigned to handle the local
digital 1/0. If installed in a register rack, it is not
necessary to assign registers to slot #1. Each slot in
the CPU rack should have as many registers
assigned to it as required to satisfy external 1/0
needs. Once registers have been allocated in the
CPU rack, whatever registers remain unassigned
(up to 8000) are available for data storage.

There is no need to assign registers in multiples of
four. Also, it is now possible to force the 16-point and
32-point digital I/O when used in the CPU rack. Ifa
slot contains a Local Interface, assign only enough
registers to service external 1/0; any data storage
registers assigned to a Local Interface will adversely
affect throughput. However, be sure to anticipate
any future expansion.

Avoid "fragmenting" registers when setting up a

rogrammable controller system (discussed in
[Section 14.2.3|of this manual). A fragmented
register is one that contains both inputs and outputs,
as could occur in systems which use four-peint or
eight-point digital I/0. For example, if bits 1
through 8 of register 1 are inputs, and bits 9 through
16 are outputs, then register 1 is fragmented. If,

however, all bits of register 1 are inputs or outputs
then no fragmentation exists.

PageC-2 30598-730

Fragmenting registers increases scan time. From

the scan time equation in Section 14.2.2:

ST = [K x (LUP)] + [0.04 x (ER)] + [0.45 x (FER)] + COM

ST is the SCAN TIME in milliseconds.

K is the LADDER SCAN SPEED per K of
user program.

LUP is the LENGTH OF USER PROGRAM in
Kwords.

ER is the number of EXTERNAL

REGISTERS.

FER is the number of FRAGMENTED
EXTERNAL REGISTERS.

COM is the time requiered to service the

communication ports, 5§ msec maximum.

Note how scan time is extended an additional 450
microseconds for each fragmented register.

As with the Model 300 (which also uses an image
table), the Model 650 uses bit 7 of primary control
register 8176 to activate an immediate 1/0 update.
Unlike the Model 300, the registers to be updated are
now variable and can be user-specified. Refer to the
description of [bit 7] of register 8176, and control

registers [B105 and 8106} in Section 13.2 of this

manual.

MODEL 650 IN A DIGITAL RACK

If the Model 650 is used in a digital 1/O rack which
contains one or more register modules (as could occur
with the HRK-150 rack), assign enough registers for
all local digital I/0 to the CPU slot (slot #1). Next,
assign registers in ascending order to slot 2 (and to
slots #3 and #4 if the rack used is an HRK-150).

MODEL 650 IN A REGISTER RACK

If the Model 650 is used in a register rack, registers
DO NOT need to be assigned to the Model 650 itself
(CPU slot 1); assign registers in ascending order
beginning with slot #2.

NOTE: For systems which use a PDD/PDR
combination, refer to (Section C.2.3); for

Local Transfer Interface considerations, see

C.2.2 LOCALINTERFACE (L) UPDATING

If the Model 650 detects that registers are assigned
to a Local Interface module in a CPU rack slot, more
decision-making occurs to optimize throughput.

When a Local Interface is detected, the Model 650
next checks to see if any remote drops are assigned.
If not, no registers will be transferred from the image
table of the Model 650 to the LI. In essence, the
Model 650 makes a decision to not "waste" any
processing time writing storage registers to an LI,
since storage registers already exist in the Model 650
itself.

As soon as one or more remote drops are assigned,
however, the Model 650 must update the LI registers
that are used on the remote drops. These LI registers
are now assigned to external /O instead of simply
data storage. Since an LI cannot exchange more
than 255 registers assigned to remote drops, the
Model 650, in an attempt to optimize throughput,
never transfers more than 255 registers to an LI,
even if the user has assigned the additional registers
to the LI slot. This could occur if an existing rack
addressing configuration is being used. This relates
to a previously described principle for optimizing
throughput: only assign those registers to a LI
necessary to service external I/0.

EXAMPLE: If an LI has four drops assigned, with
eight registers per drop, a total of 32 registers are
required for external 1/0. Use the scan time
equation on the previous page to estimate the scan
speed impact. Assuming no fragmented registers, if
32 registers are assigned to the LI, scan time is
increased by 0.04 milliseconds x 32 = 1.3
milliseconds.

If, however, the LI had 512 registers assigned to it,
the scan time increases by 0.04 milliseconds x 255 =
10.2 milliseconds for the same user configuration.
Thus, rack addressing can have a substantial impact
on system scan time.

30598-730

Page C-3

Page C-4 30598-730

Note how the Model 650 tries to compensate for poor
register allocation: even though 512 registers were
assigned to the LI, the Model 650 is intelligent
enough to only update the first 255. This helps in
situations where existing rack addressing
configurations are used.

CRM-210/211/214

There is no reason to use a CRM-211 Local Interface
Module in place of a CRM-210 in a Model 650 system,
since the extra data storage registers are not used by
the Model 650. Also, the CRM-214 (LAI) register
allocation and updating methods are identical to
Local Interface register updating.

C.2.3 PDD/PDR UPDATING

The Parallel Digital Driver/Receiver modules (Class
8030 Type EQ5138-G1 and -G2) were originally
designed to allow real-time digital I/O bus updates
with the Model 500 and Model 700, which don ¥ have
the Model 650’s on-board image table. Since the
Model 650 does use an image table, oscillating
output behavior may be observed when the Model
650 is used with the PDD/PDR. This behavior is due
to register wraparound.

Wraparound is discussed in the PDD/PDR
Instruction Bulletin under “Application
Considerations With the Model 300“. It is a
phenomenon in which registers that are assigned to
the PDD, but do not correspond to physically existing
external I/0, cause digital bus update problems.
Wraparound occurs because the registers that do not
correspond to physically existing external I/0O
interfere with the registers that do. Wraparound can
be avoided by properly addressing the PDD/PDR.

For COMPLETE information on proper rack
addressing, seelSection 3.6.4|for a discussion on
"Rack Addressing Register Allocation".

In brief, the guidelines for proper PDD/PDR rack
addressing are:

1. If a single remote rack is used, it must be
connected to channel 1 of the PDD. When rack
addressing, only assign as many registers to the
PDD as required by the external /O of the rack
(consistent with one of the previously established
"general rules”). For example, if the remote rack
is a CRK-300, DRK-300, or HRK-100, assign 4
registers to the PDD; if the remote rack is an
HRK-200, assign 8 registers to the PDD.

2. If two remote racks are used, the rack connected
to channel 1 of the PDD must be an HRK-200.
When rack addressing, again only assign as
many registers to the PDD as required by the
external I/O. In this way, the first eight registers
are automatically allocated to the HRK-200
attached to channel 1, while the remaining
registers beginning with register 9 (up to 16 if
the second rack is also an HRK-200) will be
allocated to the second rack.

NOTE: If the second rack is a CRK-300, DRK-300, or
HRK-100, assign ONLY a total of 12 registers
to the PDD.

Another thing to note is that the original design
intent of the PDD/PDR was to allow for real-time bus
updates which, by definition, no longer occur due to
the Model 650’s image table operation and end-of-
scan updating.

Finally, one advantage of using the Model 650 is that
/O points accessed via a PDD/PDR are now forcible.

C.3 Compatibility With Existing SY/MAX
Processor Rack Addressing

Configurations

Existing rack addressing configurations for Model
300, 500, and 700 systems can normally be used with
a Model 650, although system characteristics may
change due to the faster ladder program scan speed
and image table updating technique employed by the
Model 650.

From the discussion thus far, it should be apparent
that existing rack addressing configurations may not
represent an optimum register allocation, at least in
terms of throughput. An exception to compatibility
is the CRM-115/116 Bus Expander/Terminator
module set, although this exception can usually be
accommodated by replacing them with either
PDD/PDR or LI modules, as discussed below.

Other potential exceptions are given in|Section 3.6.5

Keep them in mind while reading the remainder of
this appendix.

Example #1: A Model 300 in a DIGITAL I/O rack

(shown below ir] Figure C.1).

Ribbon Cable to Second Rack if R2 Contains a CRM-115.
R2 R /Model 300

Digital 170

jiaant

CRK, DRK, GRK, or HRK {except HRK-150) Rack

Figure C.1 Processor Location in CRK, DRK, GRK,

HRK Racks

30598-730 Page C-5

Slot 1 in would typically be assigned
1,2,4,8,96,108, or 112 registers; any registers
remaining (up to 112) are assigned to slot 2. If slot 2
of the CPU rack contains a module other than a
CRM-115, the existing rack addressing can be used.
As always, registers up to 8000 will now be available
for data storage.

MODEL 300 WITH A CRM-115 IN THE CPU RACK

If slot 2 in| Figure C1|contains a CRM-115, slot 1 has

been assigned 112 registers, except for those rare
systems which use a register module in slot R2 of the
second rack.

If slot 2 of the second rack is unused, the best
solution is to replace the CRM-115/116 with the
PDD/PDR (Class 8030 Type EQ5138-G1 and G2).
Although the rack addressing will have to be aitered
so that registers 1 to 4 are assigned to CPU slot 1,
and registers 5 to 8 are assigned to CPU slot 2, no
registers need be re-addressed in the ladder program.
Registers 9 to 8000 will be available as storage
registers.

If slot 2 of the second rack contains a register
module, the PDD/PDR is no longer an option and an
LI/RI must be used. In the event that slot 2 of the
second rack contains a register module other than an
LI, rack addressing will have to be adjusted to
accommodate the change (the Remote Interface gets
coded as drop 1, with digital /O registers assigned to
slot 1 of drop 1 while the registers for siot 2 are
assigned to slot 2 of drop 1). As before, no registers
need be re-addressed in the ladder program and the
balance of the registers (out to 8000) are available as
storage registers.

Page C-6 30598-730

If slot 2 of the second rack contains an LI, the LI
should be moved to the CPU rack to replace the
CRM-115, and a Remote Interface should replace the
CRM-116. Rack addressing will have to be adjusted
to accommodate the change, and the existing drops
will have to be re-coded. The new Remote Interface
will become drop 1, and the other drops will have to
increment by 1. The good news is that, once again,
no registers will need to be re-addressed in the ladder
program, as the drop re-coding will preserve their
relative position.

Model 300 in an HRK-150 rack
(Figure C.2).

Example #2:

Model 300, 400, 600 or 650

R4 R3 R2 R1 Z

Digital 110

HRK-150 Rack

Figure C.2 Processor Location in HRK-150 Rack

By virtue of the digital 1/0, slot 1 will typically be
assigned 4 registers. Modules in slots 2, 3, and 4 will
have registers assigned in accordance with their
requirements. Existing rack addressing can be used.

Example 3: Models 300, 400, 600, 650, 500, or
700 in an RRK-type rack (Figure

C.3).

R3 R4 RS R6 R7 R8

Type RRK-XXX Rack With Model 300, 400, 600 or 650
Instatled

R3 R4 R5 R6 R7 RS

Type RRK-XXX Rack With Model 500 (Double-Width)
or 700 {Dual-Module) Installed

Figure C.3 Processor Location in RRK-Type Racks

The Model 500 would normally have registers
assigned to siot 1; whether registers are assigned to
slot 1 or not, existing rack addressing configurations
will not present a problem for the Model 650, which
could be used to replace any of the existing
processors.

Replacing a Model 300 is the "cleanest” replacement,
since like the Model 650 it is a single-width module.
When replacing a Model 500 or 700, the question
arises how to treat the newly-empty slot 2. The
answer is it can either be left empty, or the rest of the
modules can be moved one slot to the left, with a
corresponding adjustment of rack addressing. This
can be accomplished without changing register
assignments in the ladder program, as the relative
positions of the registers are preserved.

30598-730 Page D-1

APPENDIX D
ETHERNET TECHNICAL INFORMATION

D.1 Overview

The unique feature of the Model 650 processor is its
ability to directly connect to an IEEE
802.3a/ThinWire Ethernet Local Area Network
(LAN) and communicate with other SY/MAX
devices. Because the Model 650 communicates on
Ethernet, a communications standard used by many
vendors, it is important to understand its operating
characteristics and how they affect the operation of
SY/MAX devices. This Appendix is not intended as a
comprehensive explanation of the theory and
operation of Ethernet, but rather a review of the
terminology and overall concepts as they relate to
the Model 650.

D.2
The following 802.3a specifications in| Table D.ll
apply to the LAN on which the Model 650 resides.
The specifications for 802.3 are also included as

reference for applications in which a repeater is used
to connect ThinWire to ThickWire.

Specifications

802.3a 802.3

Data Rate 10Mb/s 10Mb/s
Signalling Baseband (Baseband
M t

ax Segmen 185m 500m
Length
Max D bl

ax Drop Cable om 50m
Length
Max Cable segments |5 5
Max repeaters 4 4
Max Total Distance * *
M des pe

ax nodes per 30 100
segment
Min segment length | 0.5m 2.5m

Table D.1 802.3avs. 802.3 Specs

* Maximum total distance is determined by
IEEE 802.3 configuration rules.

IEEE 802.3 Network Configuration Rules

CAUTION

To ensure safety and reliable data
communication, the IEEE/ANSI Std. 802.3-1985
(1SO/D1S8802/2) and IEEE/ANSI Std. 802.2a-
1988 standards documents, or an equivalent
reference, should be consulted when laying
out Ethernet networks.

Aside from the previous specifications, IEEE defines

rules that must be adhered to when laying out a
system. These rules deal mainly with the number of
segments, the cable for these segments, and the
number of repeaters to tie these segments together.
These rules must be followed in order to ensure
proper Model 650 communications.

Repeaters

The Model 650 will communicate through IEEE
802.3-compliant repeaters as long as the IEEE rules
on the number of repeaters, cable type, and
maximum segments are met.

Bridges

The Model 650 will also communicate through IEEE
802.3-compliant bridges. It will not communicate
through protocol-dependent devices such as
translator bridges or Gateways.

Cabling

The Model 650 has hardware on board that allows it
to directly connect to ThinWire Ethernet (RG-58)
cabling. The use of other cable such as ThickWire
and fiber optics are only supported through the use of
repeaters and bridges.

Page D-2 30598-730

6 6
5 5
0 0
-
RG-58 Cable - 185m max.
30 Devices M/

BNC T Type
Connectors

50 Ohm
Terminator

50 Ohm
Terminator

Figure D.1 Base Configuration for 802.3a
ThinWire

D.3 Description

Physical Layout

An IEEE 802.3a/ThinWire Ethernet LAN consists of
up to 30 devices with unique addresses connected by
up to 185 meters of RG-58 cable. Each device is
connected to the cable by a BNC T-type connector
and the cable is terminated at each end with a 50
ohm terminator. Refer to Figure D.1. T-connectors
must be at least 1/2 meter apart. Devices can be
added and removed from the network without
disruption of the network.

To expand a network, repeaters are added to extend
beyond the 185m segment limit. The 802.3a
specifications call for no more than five segments,

assuming the appropriate cable types are used.
Refer to|Figure D.2

To further expand, repeaters that allow for ThinWire
to ThickWire and/or fiber optics Ethernet are added
to a network to allow for communications between
other than ThinWire devices. Using ThickWire the
network can extend 500m per segment and up to 100
devices. Refer mm Refer to IEEE 802.3
standards for additional multimedia Ethernet
connection information.

Access Method

Access to an Ethernet LAN is accomplished using a
CSMA/CD (Carrier Sense Multiple Access with
Collision Detection) protocol. A device on a
CSMA/CD network gains access by first checking to
see if any other device is currently communicating
on the network. If the network is busy, the node
waits until the network is available. If the network
is available, the device begins to send its message to
another device or group of devices. Upon completion
the network is again freed for another device to send
a message. If two devices begin to send a message at
the same time, a collision occurs. In that case, both
devices would back off for a random period of time
before trying to resend. What this means to a Model
650 on an Ethernet network is that other devices and
the amount of network traffic can have a significant
effect on the time taken to access the network and
communicate.

Other Non-SY/MAX Device Issues

Ethernet specifications define the physical and data
layers for devices to communicate. That is, it
provides a means by which devices can share a
common signalling medium and pass messages.
Messages can only be “understood”, however,
between devices having the same higher level
protocols.

The Model 650 contains hardware and software
which allow it to pass information to other devices on
a ThinWire Ethernet network. But since the upper
level protocol of the Model 650 is SY/MAX protocol,
only those devices on the network that have the
ability to interpret this SY/MAX language
(currently Mode! 650’s and VAX/VMS-based
computers running Square D Class 8055 Type
SFW390) are able to understand the information
being transferred.

Example

Let’'s assume we have a ThinWire Ethernet LAN
with the following devices:

5-Model 650 processors

1-DEC VAX Computer running SFW390

1-DEC VAX Computer without SFW390

2-IBM Personal computers with Ethernet
interface cards installed

30598-730 Page D-3
6 6 6
5 3 >
0 0 0
—(R) i S—

RG-58 Cable - 185m max.
30 Devices Max.

50 Ohm
Terminator

U RG-58 Cable - 185m max.

80235 50 Ohm
Thinwire Terminator -
Repeater :

Figure D.2 Base Configuration with Repeater

The Model 650’s can theoretically send messages to
any device on the network. The DEC VAX with
SFW390 and the other Model 650’s receive and
understand these messages. Even though other DEC
VAX and IBM computers receive the messages and
are able to tell from what node numbers they were

sent, the messages are not understood and are
discarded.

The reverse is also true. Non-SY/MAX devices can
send messages to a Model 650, but because the
Square D devices understand a different protocol, the
messages are not understood and are discarded.

6 6 DEC VAXVMS
3 (5) Computer
Transceiver

8023, H
S0 Ohm M edi: Terminator -
Terminator RG-58 Cable - 185m max. converting ThickWire or for .
30 Devices Max. repeater Fiber optic cable ThickWire, :
(ThinWire} fiiber optics, :

etc.

Figure D.3 Base Configuration with Repeater to ThickWire Ethernet

Page D-4 30598-730

D.4 Throughput

The throughput of a communication system is
composed of 3 basic elements.

1. The sending device's time to prepare a message
and process it up to the point of its being sent out
onto the network.

2. The network transfer time---the time to gain
access to the network, send the message at one
end, and receive it at the other end.

3. The receiving device’s time to process the
information and move it into the user memory.

In this case, the sending and receiving device can be
either a L}odel 650 or a VAX computer running Class
8055 Type SFW390 software. With the Model 650,
we can determine (using processor scan times) the
number of registers transferred, the number of other
communication packets being sent, the worst case
time to prepare a message to be sent, or the time for a
message to be processed after receipt.

In the case of network transfer time,
802.3a/Ethernet, like all CSMA/CD networks, is a
non-deterministic means of communication. That is,
the time required for a node to gain access to the
network is directly dependent on the number of
nodes on the network, the average length of
messages being sent, etc. Because of this, the worst
case time for a node to gain access to the network and
send a message cannot be determined.

Because it is impossible to offer an equation to
determine worst case time for a Model 650 to gain
control of network, care should be taken when
designing a system in which time-critical or real
time control information must be transferred in a
specified time period.

30598-730 Page E-1

E CONNECTING THE VAX PROCESSOR TO THE SY/MAX
MODEL 650 PROGRAMMABLE CONTROLLER

E.1 Hardware and Software

Requirements

SFW390 allows SY/MAX Model 650 programmable
controllers and VAX computers to effectively
communicate over an Ethernet Communications
Network. The SFW390 software requires that the
host computer is equipped with appropriate Ethernet
controller hardware and driver software.

E.1.1 HARDWARE

The SFW390 software is designed to work with any
of the Digital Equipment Corporation (DEC)
Ethernet controller hardware available for VAX
computers. A listing of Ethernet controllers
available for VAX computers, as of this writing,
follows. Part numbers and installation hardware are
available through DEC.

Controller Bus Architecture

DELUA UNIBUS

DEUNA UNIBUS

DELQA Q-BUS

DESQA Q-BUS

DEQNA Q-BUS

DEBNI VAXBI

DEBNA VAXBI

DESVA MVAX2000 (ThinWire)

Other Ethernet hardware, such as cabling,
transceivers, repeaters, T-connectors, terminators,
etc. are also required to set up an Ethernet network.
These are available from DEC and other sources.

The same cabling, T-connectors, and terminators
used with a SY/MAX Model 600 programmable
controller are also used to connect a Model 650
programmable controller to the ThinWire Ethernet

Network. Specific information about the required
cabling can be found in| Section 15| andlAppendix DI

E.1.2 SOFTWARE

The host computer must have appropriate Ethernet
driver software. The Ethernet driver software is
supplied as an integral component of VMS operating
system by DEC. No special installation
requirements for the Ethernet driver software
currently exist. SFW390 does not require that users
have a DECnet license.

E.2 Connection Diagram

Figure E.1 shows a sample network of five SY/MAX
devices: three VAX computers (SY/MAX drops 3, §
and 6) and two Model 650 programmable controllers
(SY/MAX drops 10 and 15). The SFW390 software
uses the Ethernet driver to communicate with
programmable controllers and other VAX
computers.

As shown in the below, any other non-

SY/MAX devices, like terminal servers and other
computers, can share the Ethernet without
interference. Ethernet network segments connected
by a repeater are treated as a single Ethernet
network for the purposes of communication between
VAX computers and Model 650 programmable
controllers.

Page E-2 30598-730
VAX
Applications
Terminal LAT ?fé 53':9\8/
Server
Ethernet driver

Drop 5
=

VAX

Applications
DEC] SFW
LAT | Net | 390

Ethernet driver

ThickWire Ethernet Drop 6
i # =]

Repeater @

VAX

Applications

SFW
390

DEC

LAT Net

Ethernet driver

Thin Wire Ethernet h Drop 3
Drop 10 Drop 15
Model 650 Model 650
1 ol
PLC Equiv. PLC Equiv.
g8' 3BH ywm g 3FH nwm
B2 B 2

Figure E.1 - Thin Wire Ethernet Network Connected to a
ThickWire Ethernet Network via a Repeater

E.3 Network Configuration Information
The Type SFW390 software supports communication
between a VAX computer and up to 99 other devices,
consisting of Model 650 Programmable Controllers
and host computers running SFW390 (or equivalent)
software, for a total of 100 devices. Devices such as
terminal servers and other host computers not
running SFW390 software (or equivalent) do not
count towards the 100 device total. They can,
however, coexist on the same Ethernet network.

Mode! 650 programmable controllers are connected
together by means of a ThinWire (Type 10BASEZ2)
Ethernet network. Host computers having a
ThinWire (10BASE2) Ethernet interface can attach
directly to this network. Host computers having a
standard (10BASES5) Ethernet interface may connect
to Model 650 programmable controllers through the
use of an appropriate repeater. Refer to Figure E. 1.

The IEEE/ANSI Std. 802.3-1985 (ISO/DIS 8802/2)
and IEEE/ANSI Std. 802.3a-1988 specify a
maximum of 100 stations per 10BASE5 coax
segment and a maximum of 30 stations per 10BASE2
coax segment. Through the use of repeaters, it is
possible to have a large number of stations on an
Ethernet network. Minimum cable length between
two stations on a 10BASE2 coax segment is 2 feet
(approximately 0.5 meter). The maximum distance
between any two stations on a 10BASE2 coax
segment is limited to 607 feet (approximately 185
meters), in accordance with the above specifications.

More information about the Class 8055 Type
SCP65X Programmable Controller as well as cabling
information and specifications can be found in
[Section 15/and|Appendix 1.

CAUTION

To ensure safety and reliable data
communication, the IEEE/ANS! Std. 802.3-1985
(ISO/DIS8802/2) and IEEE/ANSI Std. 802.2a-1988
standards documents or an equivalent
reference should be consulted when laying out
Ethernet networks.

30598-730 Page E-3

E.4 Routing Information

Standard SY/MAX routing is used with the SFW390
software and the Model 650. Routing is the data
instruction that controls how messages are
communicated from one device to another. A route
actually consists of a route block structure, but is
identified by a user as a series of numbers separated
by commas. The series of commas which comprise a
route include the numbers that identify the sender of
a data message (this can be a specific task running in
a VAX computer, or it can be a specific Model 650
programmable controller) and the numeric identifier
of the intended destination location (this can be a
specific task in a VAX computer, a certain Model 650
programmable controller on the SY/NET network, a
global queue, mailbox register, or Ethernet
configuration register).

Route values of (000-199) are the general route
values used to direct a communication to specific
devices on the network. However, above this range,
are three special route values that may also be used;
route 200, route 201 and oute 204. Route 200 directs
the communication to the equivalent NIM within the
VAX computer or the programmable controller.
Route 201 indicates a “whoever-I-am” source route
and route 204 indicates a “don’t care” route and is
typically ignored as if it were not there. These

special routes are explained in greater detail in
Section E.4.3| “Special Routing Considerations” and
Section 15.4.2,

Page E-4

30598-730
TASK
_— VAX
User Ik T :
Application \‘~~.‘ —
Program | b T~~l
Local | Local User User
Mailboxf§ Alarm Appl. Appl. Appl.
Regs. fQueue]| __________- -
- |]
Virtual Virtual Virtual
NIM NIM NiM SYSTEM
TASK
| s 13 | 99 S
Internat SY/NET l 6 Global
- Resource
Virtual //’ Manager
VAX NIM Jitad Global | Global
_ 1 Z Mailbox} Alarm
Application Eqm_ 106 | sccem Regs. | Queue
N —
Task | @ B __.------
DEC | SFW . -
] LAT
Terminal Net | 390 Regs
Server
Ethernet Driver
Drop 5 Drop 6
=T ThickWire Ethernet
o T
VAX
Application
Repeater
DEC | SFW
LAT Net 390
Ethernet Driver
Drop 3
O Thin Wire Ethernet L O
i S
Drop 10 Drop 15
Port 3 Port3
o m
PLC Regs PLC Regs
PGR EJ-E 1 _ PGR g1 1
EqQuiv. = = Equiv.
com o2 ::J,:; ovgQ? ::‘,::
Model 650 Model 650

Figure E.2 - Possible Ethernet Network Configuration with Model 650 Programmable controllers
and VAX Computers Running SFW390, Including lllustrations of VAX Architecture

E.4.1 VAX-INITIATED MESSAGING
Depending upon your operation, the routing from
source device to destination device is done
differently. The following tables describe the
methods used to route communications for each
of three categories of VAX computer initiated
message transmissions. These categories
include local register Read and Write operations,
Reads and Writes to global mailboxes or global

30598-730 PageE-5

alarm queues, and Reads and Writes to Ethernet
Configuration registers. Notes referenced
within each of the tables can be found in Section
(E.4.3] Also,| Figure E.2|on the previous page can
be used as a reference for the examples provided
with each explanation. In Figure E.2 the
enlargement representing VAX 6 illustrates the
internal architecture of the tasks, mailboxes,
and alarm queues.

When performing local register Read and Write operations:

Examples:

: Task 5 on VAX 6 reads register
; from Task 99 on VAX &

See[note #5|

on page E-1

Task 1 on VAX 3 reads from its
i own local mailbox registers

Source task
number

2. FromaVAXComputertoa
second VAX Computer:

Task 1 on VAX 3 reads register
i from Task 13 on VAX 6

Source task
number

From a VAX Computer toa
Programmable Controller:

Example:

Task 5 on VAX 6 writes to

FIRST SECOND THIRD FOURTH
ROUTE # ROUTE # ROUTE # ROUTE #
1. From a VAX Computer to Source task | Destination
the same VAX Computer: number task number None None

Destination
task number

Destination
VAX number

Source VAX
number

Destination
programmable
controller

Source VAX
number

programmable controller
¢ registers in Model 650 #15

Page E-6 30598-730

When performing Read and Write operations with global mailboxes and alarm queues:

xample:

An unspecified task on VAX 3
reads from its own global
mailbox registers

2.

3.

Example:

From a VAX Computer to a
second VAX Computer:

Task 4 on VAX 3 writes an
i alarm to a global alarm queue
on VAX 6

From a VAX Computer to a
Programmable Controller:

Task 4 on VAX 5 writes to the
Equivalent NIM mailbox
egisters of Model 650 #15

201,

see note 4)

Source task
number

FIRST SECOND THIRD FOURTH
ROUTE # ROUTE # ROUTE # ROUTE #
1. From a VAX Computer to Source task]} Source VAX | Source VAX
the same VAX Computer: number number number plus None
‘100°
(see note 1)

Source VAX
number

Destination
VAX number

plus ‘100°

None

Source task
number

Source VAX
number

‘200°
(see note 2)

Destination
programmable
controller

30598-730 Page E-7

When performing Reads or Writes to Ethernet configuration registers

FIRST SECOND THIRD FOURTH
ROUTE # ROUTE # ROUTE # ROUTE #
1. From a VAX Computer to Source task ‘200
the same VAX Computer: number (see note 3) VAX number None

Task 1 on VAX 3 reads from its

own Ethernet configuration
registers

Source task | Source VAX 200° Destination
number number (see note 2) VAX number

2. FromaVAX Computertoa
second VAX Computer:

Task 1 on VAX 3 reads writes to
the Ethernet configuration
registers of VAX 5

3. FromaVAXComputer toa | Sourcetask | Source VAX 200 Destination
Programmable Controller: number number programmable
controller

: Example:

%:f;Task 12 on VAX 5 reads from
i the Ethernet configuration
i registers of Model 650 #10

Page E-8 30598-730

E.4A2 MODEL 650 PROGRAMMABLE
CONTROLLER INITIATED MESSAGING

Depending upon your operation, the routing from
source device to destination device is done
differently. The following tables describe the
methods used to route communications for each
of three categories of programmable controller
initiated message transmissions. These
categories include local register Read and Write
operations, Reads and Writes to global mailboxes
or global alarm queues, and Reads and Writes to

Ethernet Configuration registers. Notes
referenced within each of the tables can be found
in[Section E.4.3] Also,[Figure E.2|on page E-4
can be used as a reference for the examples
provided with each explanation. In Figure E.2
the enlargement representing VAX 6 illustrates
the internal architecture of the tasks, mailboxes,
and alarm queues.

When performing local register Read and Write operations:

xample:

Model 650 #15 reads mailbox
egisters from Task 7.

2. From one Model 650 Source
programmable controller

to another: controller

xample:

odel 650 #15 writes to
egisters in programmable
ontroller #10.

FIRST SECOND THIRD FOURTH
ROUTE # ROUTE # ROUTE # ROUTE #
1. From a Model 650 Source Destination Destination
programmable controller programmable | VAX number] task number None
to a VAX Computer: controller

programmable | programmable

Destination

controller

30598-730 Page E-9

When performing Read and Write operations with global mailboxes and alarm queues:

E?“Example:

Model 650 #10 writes an alarm
i to a global alarm queue on
: VAX 5.

FIRST SECOND THIRD FOURTH
ROUTE # ROUTE # ROUTE # ROUTE #
1. From a Model 650 Source Destination
programmable controller programmable | VAX number None None
to a VAX Computer: controller

blus ‘100

2. From one Model 650
programmable controller
to another:

: Model 650 #15 writes to
¢ Equivalent NIM mailbox

: registers in programmable
. controller #10.

Source
programmable
controller

|

200°

Destination
programmable
controller

None

Page E-10

30598-730

When performing Read and Write operations to Ethernet configuration registers

: Model 650 #15 reads Ethernet

onfiguration registers from
AX 6.

From one Model 650
programmable controller
to another:

: Example:

i An unspecified programmable
: controller reads Ethernet

: configuration registers from

| the equivalent NIM of

. Model 650 #15.

Source
programmable
controller

200’

Destination
programmable
controller

FIRST SECOND THIRD FOU RTH
ROUTE # ROUTE # ROUTE # ROUTE #
1. From a Model 650 Source ‘200 Destination
programmable controller programmable | | (see note 2) VAX number None
to a VAX Computer: controller

E.4.3 SPECIAL ROUTING CONSIDERATIONS

Note ! -

When the destination of a route instruction is a
VAX computer’s global queue or mailbox, the
destination drop number is 100 plus the VAX
computer’s drop number. For example: The
global alarm queue in VAX 6 would be specified
as 106, and if task 10 on VAX 3 writes to the
global alarm queue in VAX 6, the entire route
would be: 10, 3, 106.

Note 2 -

Route 200 is a special route whose function
indicates that registers in the Equivalent NIM of
a programmable controller, or the Ethernet
configuration registers in the VAX are to be read
in the form of register data. For example: When
reading from the Ethernet configuration
registers in VAX 6, the destination route
instruction will be ..., 200, 6; and when reading
from the equivalent NIM in programmable
controller 10, the destination route instruction
will be ..., 200, 10.

Note 3 -

When a Task within a VAX reads from the
Ethernet Configuration registers within that
same VAX, the route consists of the source task
number, followed by the number 200, followed
by the VAX number. For example: When Task 4
on VAX 5 reads from the Ethernet Configuration
registers within VAX 5, the route is: 4, 200, 5.

30598-730 Page E-11

Note 4 -

The route instruction ‘201’ can be used in the
source route when the initiating task chooses to
communicate over the network without
specifying its own route address. For example:
If an unspecified task on VAX 3 reads from
programmable controller #15, the route is: 201,
3,15.

The special 201 route, which can only be used in
the first routing instruction (with one exception)
can replace either a task number (VAX initiated
message) or a programmable controller number
(programmable controller initiated message).
The 201 route can appear in the last routing
instruction only when the destination drop is the
same as the source drop (for example, 201, 200,
201 from a programmable controller will read its
Equivalent NIM registers).

Route 201 is sometimes referred to as the
“whoever I am” route.

Note 5 -

When a task reads its own local mailbox, it reads

an empty route, which is signified by “255” in the
first route number.

	SY/MAX Model 650 Processor
	Table of Contents
	Chap01.pdf
	SY/MAX Model 650 Processor
	1: Model 650 Overview
	1.1 Description
	1.2 Ethernet Connectivity
	1.3 SY/MAX Compatibility
	1.4 Hardware Features
	Fig 1.1: Model 650 Registers

	1.5 Instruction Set
	1.6 Technical Comparison
	1.7 Front Panel Features

	Chap02.pdf
	SY/MAX Model 650 Processor
	2: Specifications
	2.1 Model 650 Specifications
	2.1.1 Electrical Specifications
	2.1.2 Environmental Specifications
	2.1.3 Physical Specifications
	Fig 2.1: Dimensions

	2.1.4 Functional Specifications

	2.2 New Features
	2.3 Register Usage
	Fig 2.2 Register Structure
	Fig 2.3 Register Use

	2.4 Instruction Set for All Types

	Chap03.pdf
	SY/MAX Model 650 Processor
	3: Installation
	3.1 Differences in Operating Characteristics
	3.2 Rack Configuration
	Fig 3.1: CPU and Registers Slot Locations

	3.3 Register Modules
	3.4 Model 650 Installation
	3.5 Undervoltage Lockout Circuit
	AC Fail Function
	3.5.1 Troubleshooting Power Problems
	Fig 3.2: Voltage Test Points

	3.6 Rack Addressing
	3.6.1 Initial System Layout
	3.6.2 Procedure
	3.6.3 Rack Addressing Needs
	3.6.4 Register Allocation
	3.6.5 Addressing Compatibility
	Fig 3.3: Model 650 vs 500
	Fig 3.3A: Rack Addressed with 50 Remote Registers

	3.7 Addressing Multiple 650s

	Chap04.pdf
	SY/MAX Model 650 Processor
	4: Controls and Indicators
	4.1 Keyswitch Positions
	4.2 Indicator LEDs

	Chap05.pdf
	SY/MAX Model 650 Processor
	5: SY/MAX Communications
	5.1 Description
	Fig 5.1: Communication Ports
	Fig 5.2: Port Pinout

	5.3 Connecting Other Devices
	5.3.1 Other Processors
	5.3.2 SY/NET Network Interface
	5.3.3 Loader/Monitor
	5.3.4 Cartridge Tape Loader/Recorder
	5.3.5 Printers
	5.3.6 D-LOG Data Controller Module
	Fig 5.3: PRGMR Port Connections
	Fig 5.4: COMM Port Connections

	5.4 Baud Rates
	5.4.1 Description
	5.4.2 Altering Baud Rates
	Fig 5.5: Altering Baud Rates
	Fig 5.6: Baud Rate vs. Bit Pattern

	5.5 Variable ROUTE Statement
	5.5.1 Description of Operation
	Fig 5.7: Example

	5.5.2 Implementation
	5.5.3 Application Considerations
	5.5.4 Example
	Fig 5.8: Example Configuration
	Procedure

	5.6 Miscellaneous Considerations
	5.6.1 Improving Throughput
	Fig 5.10: Status Register

	5.6.2 Communication Timeout
	Fig 5.11: Timeout Ranges
	Bit Definitions
	Considerations
	Example

	5.7 Technical Data for Ports

	Chap06.pdf
	SY/MAX Model 650 Processor
	6: Security Features
	6.1 Description
	6.2 Definitions
	6.3 Summary
	Fig 6.1: Ladder Program Security
	Fig 6.2: Register Data Security
	Fig 6.3: Communication Security

	6.4 Hardware Security Jumper
	6.5 Selective Port & Route Edit Lockout
	6.6 Keyswitch RUN Position
	6.7 Inhibit Rung
	Fig 6.5: Inhibit Rung
	Considerations
	Clearing the Rung
	Fig 6.6: Inhibit Rung Operation

	6.8 Safeguard Rung
	Fig 6.7: Port Safeguard Codes
	Safeguard Rung Consideration
	6.8.1 Timed Interrupt Operation

	6.9 Password & Restriction Registers
	Fig 6.8: Restriction Code Bit Table

	6.10 Memory Protect Bit
	6.11 Force Inhibit Bit
	6.12 Registers Protect Bit
	6.13 Fenced Registers

	Chap07.pdf
	SY/MAX Model 650 Processor
	7: Floating-Point Math
	7.1 Introduction
	7.2 Definition of Terms
	7.3 Register Usage
	Fig 7.1: Floating Point vs Integer Register
	7.3.1 Integer
	7.3.2 Floating-Point Operations

	7.4 Addressing Floating-Point Registers
	Fig 7.2: Example 1 LET Rung
	Fig 7.3: Example Register Structure
	Ladder Program Register Usage
	Fig 7.4: Sample Register Allocation

	7.5 LET & IF Using Floating-Point Numbers
	7.5.1 Data Transfers (LET)
	Fig 7.5: LET Operation

	7.5.2 Comparison (IF)

	7.6 Entering Floating-Point Values
	7.7 Displaying Floating-Point Values
	Fig 7.6: Data Display Mode
	Fig 7.7: Ladder Rung Display Mode

	7.8 Operations with LET & IF
	Sequence of Math Operations
	Fig 7.8: Math Operations in LET & IF Boxes
	Fig 7.9: Size Limits to LET & IF Boxes

	Math Programming Considerations

	7.9 Operation Using Matrices
	7.10 Combining Floating-Point with Integer Operations
	7.10.1 LET Instructions
	Fig 7.10: LET Operation Sequence

	7.10.2 IF Instructions
	Fig 7.11: IF Operation Sequence

	7.11 Overflow Errors
	7.11.1 Accumulator Operation
	Fig 7.12: Accumulator Operation

	7.11.2 Why Do Overflow Errors Occur?
	Fig 7.13: Overflow Indicators
	Fig 7.14: Overflow Error Points

	7.12 Special Math Functions
	Fig 7.15: Special Function Operation
	Fig 7.16: Allowable Arguments

	Chap08.pdf
	SY/MAX Model 650 Processor
	8: SPECIAL Instructions
	8.1 Description
	Programming Considerations
	Fig 8.1: Instruction List

	8.2 Math & Trig Operations
	Application Considerations
	Trig and Math Constants
	Fig 8.2: Special Trig/Math Operations
	Fig 8.3: Special Constants

	8.3 Statistical Operations
	Fig 8.4: Statistical Functions
	Fig 8.5: Register READ Operations

	8.4 Indirect Register READ Operations
	8.5 Alternate Accumulator Manipulations
	Fig 8.6 Accumulator Manipulations

	8.6 Bus Write to Microcell
	Reading Registers
	Writing Registers
	Example 1
	Example 2

	8.7 Miscellaneous Instructions
	Fig 8.7: Miscellaneous Operations

	Chap09.pdf
	SY/MAX Model 650 Processor
	9: PID Operations
	9.1 Introduction
	9.2 Register Allocation
	Fig 9.1: PID Register Allocation
	Programming Considerations

	9.3 Reverse-Acting Loop
	9.4 Direct-Acting Loop
	9.5 Manual Loop
	9.6 LEAD/LAG Functions
	Fig 9.2: Register Allocation
	Other Considerations

	9.7 Application Considerations & Examples
	Example One
	Givens
	Rungs Needed
	Programming Considerations

	Example Two

	Chap10.pdf
	SY/MAX Model 650 Processor
	10: ASCII Communications
	10.1 ASCII Input
	10.1.1 Description/Initiation
	Fig 10.1: ASCII Input Rung

	10.1.2 Port Configuration
	Fig 10.2: Port Pinout
	Fig 10.3: Configuration Registers

	10.1.3 Operation
	Fig 10.4: Bit Status vs Logic & Buffer States
	Fig 10.5: Baud Rate vs Bit Pattern

	10.1.4 Application Considerations
	10.1.5 Error Codes
	Fig 10.6: ASCII Input Error Codes

	10.2 ASCII Output
	10.2.1 Standard ASCII Format
	10.2.2 Raw Binary ASCII Format
	Example
	Application Considerations

	10.2.3 Miscellaneous ASCII Formats
	10.2.4 Repeated Character Strings
	10.2.5 XON/XOFF Handshaking

	10.3 ASCII Hex/Decimal Conversion

	Chap11.pdf
	SY/MAX Model 650 Processor
	11: Sequencer
	11.1 Description and Initiation
	Fig 11.1: Sequencer Initiation Rungs

	11.2 Register Block Allocation
	11.2.1 Configuration Table Registers
	Fig 11.2: Register Allocation
	Fig 11.3: Configuration Table Registers
	Fig 11.4: D2 Bit Definition

	11.2.2 Step Table Registers
	Fig 11.5: Step Table Registers

	11.3 Application Discussion
	11.3.1 Required Entries
	11.3.2 Operating Characteristics
	11.3.3 Typical Operating Modes
	Fig 11.6: Operating Mode Rungs
	Time Sequencing Only
	Input Sequencing Only
	Time & Event/Input Sequencing
	Manual Sequencing
	Non-Sequential Stepping

	11.4 Application Considerations
	11.4.1 Error Conditions
	11.4.2 Operating Mode Register Status Bits
	11.4.3 Other Considerations

	11.5 Examples
	Example Set-Up
	Example Initiation Rungs
	Example Operation
	Options

	Chap12.pdf
	SY/MAX Model 650 Processor
	12: Battery Backup & Clock/Calendar
	12.1 Backup Battery
	12.1.1 Description
	12.1.2 Low Battery Indication
	12.1.3 Battery Life Expectancy
	Fig 12.1: Backup Lithium Battery Life

	12.1.4 Replacement Procedure
	12.1.5 Battery Specifications

	12.2 Real-Time Clock/Calendar
	12.2.1 Specifications
	12.2.2 Loading the Time/Date
	Fig 12.2: Clock/Calendar Registers

	12.2.3 Setting the Clock
	12.2.4 Clock Manipulation
	Fig 12.3: Clock Operation Modes
	Normal Operation
	Set Clock Operation
	Stopwatch Operation

	Chap13.pdf
	SY/MAX Model 650 Processor
	13: Processor Control Registers
	13.1 Control Register Overview
	Fig 13.1: Register Structure

	13.2 Listing of Registers
	8001 - 8092
	Group #1: Read/Write Registers
	8093 - 8104
	8099 Bit Patterns
	8105 - 8107
	8108 - 8164
	8165 - 8168
	8169 - 8176
	8176 Read/Write Bits 2 & 3
	8176 Read/Write Bits 4 - 16
	8176 Read-Only Bits 17 - 32
	8177 & 8178

	Group #2: Read-Only Registers
	8179 - 8188
	8189 - 8192

	Chap14.pdf
	SY/MAX Model 650 Processor
	14: Technical Data
	14.1 Memory Utilization
	14.1.1 Relay Circuits
	Fig 14.1: Memory Example

	14.1.2 General Instructions
	Fig 14.2A: Memory Use

	14.1.3 IF, LET, and Math Instructions
	Fig 14.2B: Memory Use

	14.2 Scanning Techniques
	14.2.1 Description
	14.2.2 Scanning Speed
	Fig 14.3: Execution Times

	14.2.3 Optimizing Scan Speed
	Rack Addressing Guidelines
	External I/O Register Guidelines
	Rung Execution Algorithm Gudielines
	Scanning vs Control Processor Guidelines

	14.3 Theory of Operation
	Fig 14.4: Model 650 Block Diagram
	Fig 14.5: Model 650 Ethernet Interface

	14.4 Forcing
	Fig 14.6: Forcing Example
	Forcing an External Output
	Forcing an External Input
	Forcing an Internal Relay Equivalent
	Forcing a Data Storage Register
	Considerations for Forcing

	14.5 Power Up/Down Sequence
	Processor Power-Up Sequence
	Processor Scan Start-Up Sequence
	Processor Power-Down Sequence
	14.6 Run-Time Operational Checks

	Chap15.pdf
	SY/MAX Model 650 Processor
	15: Ethernet Communications
	15.0 A Glossary of Terms
	ACK - Gateway
	Global - Node
	Protocol - ThinWire

	15.1 Introduction
	15.2 Hardware
	Fig 15.1: Sample Ethernet Configuration
	Table 15.1: Ethernet Hardware
	Considerations

	15.3 Switch Settings
	Fig 15.3: Rotary & DIP Switch Locations
	15.3.1 Least Significant Digit (LSD)
	15.3.2 Most Significant Digit (MSD)
	Fig 15.4: DIP Switch Identification
	Fig 15.5: Location of Drop Number

	15.4 Defining an Ethernet Network
	15.4.1 SY/MAX Drop Numbers
	15.4.2 Routing for Port 3
	Table 15.4: 2XX Routing Types

	15.5 Registers
	15.5.1 Register Overview
	15.5.2 Control Processor Registers
	Table 15.5: Register Use

	15.5.3 Ethernet NIM Registers
	Table 15.6: Register Use
	Fig 15.9: Model 650 Registers

	15.6 Ethernet Communication Parameters
	15.6.1 Overview
	15.6.2 Setting Parameters
	Table 15.7: Timeout Time and Retries

	15.6.3 Evaluating Performance
	Table 15.8: Performance Parameters
	Fig 15.11: Parameter Examples
	Fig 15.12: Example Rungs

	15.6.4 Miscellaneous Considerations

	15.7 Ethernet Errors and Diagnostics
	Table 15.9: Register 8094 Error Codes
	15.7.1 Ethernet Error Codes
	Table 15.10: Register 8175 Error Codes
	Table 15.11: Register 8094 Error Codes

	15.7.2 Ethernet Diagnostic Codes
	Table 15.12: Diagnostic Codes

	_AppndA.pdf
	SY/MAX Model 650 Processor
	A: Error Codes & Troubleshooting
	A.1 Introduction & Description
	A.2 Peripheral-to-PLC System Errors
	A.2.1 Processor Errors
	Fig A.1: Processor Error Codes

	A.2.2 Tape Errors
	Fig A.2: Tape Error Codes

	A.2.3 Transmission Errors

	A.3 PLC Operational Errors
	Fig A.3: Error Categories
	A.3.1 CPU/LI Errors (30000-32700)
	A.3.2 Miscellaneous Errors (29000-29999)
	A.3.3 Slot Register Error (20000-28192)
	A.3.4 Slot Error (19000-19016)
	A.3.5 Register Read After Write Error (10000-18192)
	A.3.6 COMM Port Error (01000-09999)
	A.3.7 General Errors (00001-00999)

	A.4 Diagnosing PLC System Faults
	A.4.1 General Concepts
	A.4.2 What to Do When System Shuts Down

	A.5 Example Malfunctions
	A.5.1 Example Shutdowns
	Fig A.8: Typical PLC System

	A.5.2 Remote Rack Shutdown
	A.5.3 Port Errors

	_AppndB.pdf
	SY/MAX Model 650 Processor
	B: Operating Considerations for LI Modules
	B.1 General Discussion
	B.2 Rack Addressing
	B.3 Startup Transfer Delay
	B.4 End-of-Scan (EOS) Transfer
	B.5 I/O Update
	B.6 Forcing
	B.7 READ/WRITE Bit Exchange
	B.8 EOS Transfer Example

	_AppndC.pdf
	SY/MAX Model 650 Processor
	C: Supplementary Rack Addressing Information
	C.1 System Register Updating
	C.2 Rack Addressing a New System
	C.2.1 General Rules
	C.2.2 Local Interface (LI) Updating
	C.2.3 PDD/PDR Updating

	C.3 Compatibility with Existing Systems

	_AppndD.pdf
	SY/MAX Model 650 Processor
	D: Ethernet Technical Information
	D.1 Overview
	D.2 Specifications
	Table D.1: 802.3a vs 802.3 Specs
	Fig D.1: ThinWire Base Configuration

	D.3 Description
	Physical Layout
	Access Method
	Other Non-SY/MAX Device Issues
	Example
	Fig D.2: Base Configuration with Repeater
	Fig D.3: Base to ThickWire Ethernet

	D.4 Throughput

	_AppndE.pdf
	SY/MAX Model 650 Processor
	E: Connecting to VAX Processor
	E.1 Hardware & Software Requirements
	E.1.1 Hardware
	E.1.2 Software

	E.2 Connection Diagram
	Fig E.1: ThinWire/ThickWire Network

	E.3 Network Configuration Information
	E.4 Routing Information
	Fig E.2: Sample Network
	E.4.1 VAX-Initiated Messaging
	E.4.2 PLC-Initiated Messaging
	E.4.3 Special Routing Considerations

