Altivar ${ }^{\circledR} 71$

Programming Manual 30072-452-92

Retain for future use.

Variable Speed Drives for Synchronous and Asynchronous Motors

Specification 383
Software V2.8

Table of Contents

Please Note 5
Before you begin -6
Documentation structure -7
Software enhancements -8
Steps for setting up 12
Factory configuration 13
Application functions 14
Setup - Preliminary recommendations 18
Graphic display terminal 21
Description of terminal 21
Description of the graphic screen- 22
First power-up - [5. LANGUAGE] menu- 24
Subsequent power ups 25
Programming: Example of accessing a parameter 26
Quick navigation 27
Integrated display terminal 30
Functions of the display and the keys 30
Accessing menus 31
Accessing menu parameters 32
[2. ACCESS LEVEL] (LAC-) 33
Structure of parameter tables 36
Interdependence of parameter values 37
Finding a parameter in this document 38
[1.1 SIMPLY START] (SIM-) 39
[1.2 MONITORING] (SUP-) 49
[1.3 SETTINGS] (SEt-) 58
[1.4 MOTOR CONTROL] (drC-) 73
[1.5 INPUTS I OUTPUTS CFG] (I-O-) 104
[1.6 COMMAND] (CtL-) 133
[1.7 APPLICATION FUNCT.] (FUn-) 146
[1.8 FAULT MANAGEMENT] (FLt-) 229
[1.9 COMMUNICATION] (COM-) 252
[1.10 DIAGNOSTICS] 256
[1.12 FACTORY SETTINGS] (FCS-) 260
[1.13 USER MENU] (USr-) 264
[1.14 PROGRAMMABLE CARD] (PLC-) 265
[3. OPEN/SAVE AS] 266
[4. PASSWORD] (COd-) 268
[6 MONITORING CONFIG.] 270
[7 DISPLAY CONFIG.] 274
[MULTIPOINT SCREEN] 279

Altivar $^{\circledR} 71$ Programming Guide	30072-452-92
Table of Contents	$01 / 2010$

Maintenance - 280
Detected faults and troubleshooting 281
User settings tables 288
Index of functions 290
Index of parameter codes 292

Please Note

The following symbols and special messages may appear in this manual or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

A lightning bolt or ANSI man symbol in a "Danger" or "Warning" safety label on the equipment indicates an electrical hazard which, as indicated below, can or will result in personal injury if the instructions are not followed.

The exclamation point symbol in a safety message in a manual indicates potential personal injury hazards. Obey all safety messages introduced by this symbol to avoid possible injury or death.

Symbol	Name
	Lightning Bolt
ANSI Man	

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in property damage.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

Before you begin

Read and understand these instructions before performing any procedure on this drive. ${ }^{\text {a }}$

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Read and understand this manual before installing or operating the Altivar ${ }^{\circledR} 71$ drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical code requirements with respect to grounding of all equipment.
- Many parts in this drive, including the printed circuit boards, operate at the line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across PA/+ and PC/- or across the DC bus capacitors.
- Before servicing the drive:
- Disconnect all power, including external control power that may be present.
- Place a "DO NOT TURN ON" label on all power disconnects.
- Lock all power disconnects in the open position.
- WAIT 15 MINUTES to allow the DC bus capacitors to discharge. Then follow the "Bus voltage measurement" on page 18 to verify that the DC voltage is less than 42 V . The drive LED is not an indicator of the absence of $D C$ bus voltage.
- Install and close all covers before applying power or starting and stopping the drive.

Failure to follow these instructions will result in death or serious injury.

ACAUTION

DAMAGED EQUIPMENT

Do not operate or install any drive that appears damaged.
Failure to follow these instructions can result in equipment damage.

A WARNING

LOSS OF CONTROL FROM A COMMUNICATION INTERRUPTION

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link. ${ }^{(1)}$
- Each implementation of an Altivar ${ }^{\circledR} 71$ drive must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

1. For additional information refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems."

CAUTION

IMPROPER DRIVE OPERATION

- If the drive is not turned on for a long period, the performance of its electrolytic capacitors will be reduced.
- If the drive is stopped for a prolonged period, turn the drive on every two years for at least 5 hours to restore the performance of the capacitors, then check its operation.
- Do not connect the drive directly to line voltage. Increase the voltage gradually using an adjustable AC source. If the drive is not turned on for a long period, the performance of its electrolytic capacitors will be reduced.

Failure to follow these instructions can result in equipment damage.

[^0]
Documentation structure

The following Altivar ${ }^{\circledR} 71$ (ATV 71) technical documents are available on the Schneider Electric website (www.schneider-electric.us), as well as on the CD-ROM supplied with the drive.

Installation Manual

This describes how to assemble and connect the drive.

Programming Manual

This describes the functions, parameters and use of the drive terminal (integrated display terminal and graphic display terminal). The communication functions are not described in this manual, but in the manual for the bus or network used.

Communication Parameters Manual

This manual describes:

- The drive parameters with specific information for use via a bus or communication network.
- The operating modes specific to communication (state chart).
- The interaction between communication and local control.

Manuals for Modbus ${ }^{\circledR}$, CANopen, Ethernet, Profibus, INTERBUS ${ }^{\circledR}$, Uni-Telway, FIPIO ${ }^{\text {TM }}$, and Modbus ${ }^{\circledR}$ Plus.

These manuals describe the assembly, connection to the bus or network, signalling, diagnostics, and configuration of the communicationspecific parameters via the integrated display terminal or the graphic display terminal. They also describe the communication services of the protocols.

Terminology

Technical terms, terminology and the corresponding descriptions in this manual are intended to use the terms or definitions of the pertinent standards.
In the area of drive systems, this includes, but is not limited to, terms such as "fault", "fault reset", "failure", "error", "error message", "warning", "warning message", "alarm", etc.

Among others, these standards include:

- IEC 61800 series: "Adjustable speed electrical power drive systems"
- IEC 61800-7 series: "Adjustable speed electrical power drive systems
- Part 7-1: "Generic interface and use of profiles for power drive systems - Interface definition"
- IEC 61158 series: "Industrial communication networks - Fieldbus specifications"
- IEC 61784 series: "Industrial communication networks - Profiles"
- IEC 61508 series: "Functional safety of electrical/electronic/programmable electronic safety-related systems"

Software enhancements

Since the Altivar ${ }^{\circledR} 71$ was first launched, it has benefited from the addition of several new functions. The software version has now been updated to V2.8. The new version can be substituted to the previous versions without making any changes.
Although this documentation relates to version V2.8, it can still be used with previous versions, as the updates merely involves the addition of new values and parameters. None of the previous versions parameters have been modified or removed.
The software version is indicated on the nameplate attached to the body of the drive.

Enhancements made to version V1.2 in comparison to V1.1

Factory setting

NOTE: In version V1.1, the analog input was 0 to $\pm 10 \mathrm{~V}$. In the new version this input has been set to 0 to +10 V . In version V1.1, analog output AO1 was assigned to the motor frequency. In the new version, this output is not assigned at all.

With the exception of these two parameters, the factory settings of version V1.1 remain the same in the new version. The new functions are factory-set to disabled.

Motor frequency range

The maximum output frequency has been extended from 1000 to 1600 Hz (depending on the drive rating and control profile).

New parameters and functions

Menu [1.2 MONITORING] (SUP-)

Addition of internal states and values relating to the new functions described below.

Menu [1.3 SETTINGS] (SEt-)

- [High torque thd.] (ttH), page 71.
- [Low torque thd.] (ttL), page 71.
- [Pulse warning thd.] (FqL), page 72.
- [Freewheel stop Thd.] (FFt), page72.

Menu [1.4 MOTOR CONTROL] (drC-)

- [rpm increment] (InSP), page 79.
- Extension of the following configurations to all drive ratings; previously limited to 45 kW (60 hp) for ATV71 $\bullet \bullet \bullet \mathrm{M} 3 \mathrm{X}$ and to 75 kW (100 hp) for ATV71e⿰㇒N4:synchronous motor [Sync. mot.] (SYn), page 74, sinus filter [Sinus filter] (OFI), page 76, noise reduction [Noise reduction] (nrd), page 97, braking balance [Braking balance] (bbA), page 101.

Menu [1.5 INPUTS I OUTPUTS CFG] (I-O-)

- Input Al1 can now be configured to 0 to +10 V or 0 to $\pm 10 \mathrm{~V}$ via [Al1 Type] (Al1t), page 110.
- [Al net. channel] (AIC1), page 114.
- New methods of assigning relays and logic outputs, page 121: rope slack, high torque threshold, low torque threshold, motor in forward rotation, motor in reverse rotation, measured speed threshold reached, load variation detection.
- Analog output AO1 can now be used as a logic output and assigned to relay functions and logic outputs, page 126.
- New method of modifying the scale of analog outputs, page 128: using the parameters [Scaling AOx min] (ASLx) and [Scaling AOx max] (ASHx).
- New methods of assigning logic outputs, page 129: signed motor torque and measured motor speed.
- New methods of assigning alarm groups, page 132: rope slack, high torque threshold, low torque threshold, measured speed threshold reached, load variation detection.

Software enhancements

Menu [1.7 APPLICATION FUNCT.] (Fun-)

- The summing, subtraction and multiplication reference functions can now be assigned to virtual input [Network AI] (AIU1), page 151.
- New parameter [Freewheel stop Thd.] (FFt), page 155 used to set a threshold for switching to freewheel at the end of a stop on ramp or fast stop.
- Brake engage at regulated zero speed [Brake engage at 0] (bECd), page 174.
- Weight [Weight sensor ass.] (PES), page 181 can now be assigned to virtual input [Network AI] (AIU1).
- New rope slack function page 185, with the parameters [Rope slack config.] (rSd) and [Rope slack trq level] (rStL).
- Use of the ramp [Acceleration 2] (AC2), page 193 when starting and waking up the PID function.
- The torque limitation [TORQUE LIMITATION] (tOL-), page 200 can now be configured in whole $\%$ or in 0.1% increments using [Torque increment] (IntP) and assigned to virtual input [Network AI] (AIU1).
- New stop at distance calculated after deceleration limit switch function page 208, with the parameters [Stop distance] (Std), [Rated linear speed] (nLS) and [Stop corrector] (SFd).
- Positioning by sensors or limit switch [POSITIONING BY SENSORS] (LPO-), page 209 can now be configured in positive logic or negative logic using [Stop limit config. (SAL) and [Slowdown limit cfg.] (dAL).
- Parameter set switching [PARAM. SET SWITCHING] (MLP-), page 212 can now be assigned to the frequency thresholds attained [Freq. Th. att.] (FtA) and [Freq. Th. 2 attain.] (F2A).
- New half-floor: [HALF FLOOR] (HFF-) menu, page 226.

Menu [1.8 FAULT MANAGEMENT] (FLt)

- Possibility of reinitializing the drive without turning it off, via [Product reset] (rP), page 231.
- Possibility of reinitializing the drive via a logic input without turning it off, using [Product reset assig.] (rPA), page 231.
- The possibility of configuring the "output phase loss" fault [Output Phase Loss] (OPL), page 235 to [Output cut] (OAC) has been extended to all drive ratings (previously limited to45 kW (60 hp) for ATV71ee0M3X and 75 kW (100 hp) for ATV71e0eN4).
- The external fault [EXTERNAL FAULT] (EtF-), page 238 can now be configured in positive or negative logic via [External fault config.] (LEt).
- New monitoring function based on speed measurement via "Pulse input" page 245, via the [FREQUENCY METER] (FqF-) menu.
- New function for detecting load variation page 247, via the [DYNAMIC LOAD DETECT] (dLd-) menu.
- Short-circuit faults on the braking unit can now be configured via [Brake res. fault Mgt] (bUb), page 249.

Menu [7 DISPLAY CONFIG.]

In [7.4 KEYPAD PARAMETERS] page 278, the [KEYPAD CONTRAST] and [KEYPAD STAND-BY] parameters to adjust the contrast and stand-by mode of the graphic display unit.

Enhancements made to version V1.3 (S383) in comparison to V1.2

New parameters and functions

Menu [1.4 MOTOR CONTROL] (drC-)

New option of operating with Closed-loop synchronous motor page 85

- [Angle auto-test] (ASA), page 86
- [Angle offset value] (ASU), page 87
- [Sync.CL] (FSY) assignment page 75 of parameter [Motor control type] (Ctt)

Menu [1.5 INPUTS I OUTPUTS CFG] (I-O-)

- [Resolver Exct. Freq.] (FrES) and [Resolver poles nbr] (rPPn), page 118

Menu [1.7 APPLICATION FUNCT.] (Fun-)

- New "Inspection" function, page 224, with [Inspection] (ISP) and [Inspection speed] (ISrF) parameters.

Enhancements made to version V1.7 (S383) in comparison to V1.3 (S383)
New parameters and functions
Menu [1.1 SIMPLY START] (SIM-)

- Addition of a [Lift] (LIFt) macro configuration to the [Macro configuration] (CFG) parameter page 45

Menu [1.3 SETTINGS] (SEt-)

New parameters:

- [Fr.Loop.Stab] (StA), page 60
- [FreqLoopGain] (FLG), page 60

Menu [1.4 MOTOR CONTROL] (drC-)

This menu has been reorganized with parameters now appearing in a different order and some grouped under submenus to simplify configuration.
The new submenus are as follows:

- [ENCODER FEEDBACK] (EnS-), page 78
- [ASYNC. MOTOR] (ASY-), page 79
- [SYNCHRONOUS MOTOR] (SYn-), page 83
- [ANGLE TEST SETTING] (ASA-), page 86
- [FLUXING BY LI] (FLI-), page 88
- [AUTOMATIC TUNE] (tUn-), page 89
- [SPEED LOOP] (SSL-), page 92

New parameters:

- [Boost] (bOO), page 97
- [Action Boost] (FAb), page 97
- [Increment EMF] (IPHS), page 83
- [Read motor param.] (rEqP), page 84
- [Status motor param] (rEtP), page 84
- [Angle setting type] (ASt), pages 86 and 89
- [Angle auto test] (ASL), page 87
- [Angle setting activ.] (AtA), page 87
- [Angle setting status] (AStS), page 87
- [Speed loop type] (SSL), page 92
- [Inertia Mult. Coef.] (JMUL), page 92
- [Estim. app. inertia] (JESt), page 92
- [Application Inertia] (JAPL), page 93
- [Fr.Loop.Stab] (StA), page 93
- [FreqLoopGain] (FLG), page 93
- [Feed forward] (FFP), page 93
- [Bandwidth feedfor.] (FFU), page 93

Parameters moved from menu [1.7 APPLICATION FUNCT.] (Fun-):

- [Motor fluxing] (FLU), page 88
- [Fluxing assignment] (FLI), page 88
- [Auto-tune assign.] (tUL), page 91

Menu [1.5 INPUTS / OUTPUTS CFG] (I-O-)

New encoder parameters:

- [Encoder protocol] (UECP), page 119
- [Encoder supply volt.] (UECU), page 119
- [Sincos lines count] (UELC), page 119
- [SSI parity] (SSCP), page 119
- [SSI frame size] (SSFS), page 119
- [Nbr of revolution] (EnMr), page 119
- [Turn bit resolution] (Entr), page 119
- [SSI code type] (SSCd), page 120
- [Encoder filter activ.] (FFA), page 120
- [Encoder filter value] (FFr), page 120

Menu [1.7 APPLICATION FUNCT.] (Fun-)

Removal of the following parameters (now located in the [1.4 MOTOR CONTROL] (drC-) menu):

- [Motor fluxing] (FLU)
- [Fluxing assignment] (FLI)
- [Auto-tune assign.] (tUL)

Enhancements made to version V1.9 (S383) in comparison to V1.7 (S383)

New parameters and functions

Menu [1.4 MOTOR CONTROL] (drC-)

- New method of assigning [Angle setting type] (ASt), page 89 : optimized measurement (without motion with memorization).

New parameter :

- [App. Inertia Coef.] (JACO), page 92.

Removal from the sub-menu [ASYNC. MOTOR] (ASY-) of the following parameters (now located directly in the
[1.4 MOTOR CONTROL] (drC-) menu):

- [Boost] (bOO), page 97.
- [Action Boost] (FAb), page 97.

Menu [1.5 INPUTS / OUTPUTS CFG] (I-O-)

New encoder parameters:

- [Coder rotation inv.] (Enrl), page 117.
- [Clock frequency] (EnSP), page 120.

Menu [1.7 APPLICATION FUNCT.] (Fun-)

- New method of assigning for the parameters set switching [2 Parameter sets] (CHA1), page 212 and [3 Parameter sets] (CHA2), page 212 : switching during braking sequence. This new assignment allows to put higher gain when the brake is open and before the starting of the ramp (useful for lift application).

New sub-menu:

- [TOP Z MANAGEMENT] (tOP-), page 228 (the parameter can be accessed only if an encoder card VW 3A 411 has been inserted and if [Encoder type] (EnS) $=[$ AABB $]$ (AAbb).

New encoder parameter:

- [Stop on top Z] (tOSt), page 228.

Enhancements made to version V2.4 (S383) in comparison to V1.9 (S383)

New parameters and function

Menu [1.7 APPLICATION FUNCT.] (Fun-)

New sub-menu:

- [ROLLBACK MGT] (rbM-), page 179. Menu can be accessed:
- only for ATV71・ゃ०M3X drives up to 45 kW and for ATV71•0०N4 drives up to 75 kW ,
- if [Motor control type] (Ctt), page $74=[$ Sync.CL] (FSY) or [FVC] (FUC),
- if [Brake assignment] (bLC), page 173 is assigned.

New parameter of [ROLLBACK MGT] function:

- [Rollback MGT] (rbM), page 179.
- [Rbk Compensation] (rbC), page 179.
- [Rbk Damping] (rbd), page 179.

Enhancements made to version V2.8 (S383) in comparison to V2.4 (S383)

Menu Menu [1.7 APPLICATION FUNCT.] (FUn-)

- The adjustment range [Time to restart] (ttr), page 175 can now be configured to 0 to 15.00 s .

Menu [7 DISPLAY CONFIG.]

- Addition in [7.4 KEYPAD PARAMETERS] page 278 parameter [Power up menu] to choose the menu displayed on the drive on power up.

Steps for setting up

Factory configuration

Drive factory settings

The Altivar ${ }^{\circledR} 71$ is factory-set for the most common operating conditions:

- Macro configuration: Start/Stop
- Motor frequency: 50 Hz
- Constant torque application with asynchronous motor and sensorless flux vector control
- Normal stop mode on deceleration ramp
- Stop mode in the event of a fault: freewheel
- Linear, acceleration and deceleration ramps: 3 seconds
- Low speed: 0 Hz
- High speed: 50 Hz
- Motor thermal current = rated drive current
- Standstill injection braking current $=0.7 \times$ rated drive current, for 0.5 seconds
- No automatic starts after a fault
- Switching frequency 2.5 kHz or 4 kHz depending on drive rating
- Logic inputs:
- LI1: forward, LI2: Forward (2 operating direction), 2-wire control on transition
- L13, L14, LI5, LI6: inactive (not assigned)
- Analog inputs:
- Al1: speed reference 0-+10 V
- AI2: 0-20 mA, inactive (not assigned)
- Relay R1: The contact opens in the event of a fault (or drive off).
- Relay R2: Inactive (not assigned)
- Analog output AO1: 0-20 mA, inactive (not assigned)

If the above values are compatible with the application, the drive can be used without changing the settings.

Option card factory settings

The option card inputs/outputs are not factory-set.

Application functions

The tables on pages 14 through 17 list the most common combinations of functions and applications, in order to guide your selection.
The applications in these tables relate to the following machines in particular:

- Hoisting: cranes, overhead cranes, gantries (vertical hoisting, translation, slewing), lifting platforms
- Elevators: elevators in retrofit up to $1.2 \mathrm{~m} / \mathrm{s}$
- Handling: palletizers/depalletizers, conveyors, roller tables
- Packing: carton packers, labeling machines
- Textiles: weaving looms, carding frames, washing machines, spinners, drawing frames
- Wood: automatic lathes, saws, milling
- High inertia: centrifuges, mixers, unbalanced machines (beam pumps, presses)
- Process

Each machine has its own special features, and the combinations listed here are neither mandatory nor exhaustive.
Some functions are designed specifically for a particular application. In this case, the application is identified by a tab in the margin on the relevant programming pages.

Motor control functions

Functions	Page	Applications							
			$\stackrel{\text { n }}{\substack{3}}$		-	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{ \pm}}$	0 0 3		岛
V/f ratio	74			\square			\square	\square	
Sensorless flux vector control	74	\square							
Flux vector control with sensor	74	\square							
2-point vector control	74	\square				\square			
Open-loop synchronous motor	75					\square			
Closed-loop synchronous motor	75		\square			\square			\square
Output frequency of up to 1600 Hz	79					\square	■		
Motor overvoltage limiting	98					\square	\square		
DC bus connection (see User's Manual)	-					\square			\square
Motor fluxing using a logic input	88	\square			\square				
Switching frequency of up to 16 kHz	76		-			-	\square		
Auto-tuning	89	-	\square	■	\square	\square	-	\square	\square

Functions on speed references

Functions	Page	Applications							
		읓 ¢ 문	㐌			$\xrightarrow{\text { ¢ }}$	O 0 3		0 0 0 ¢
Differential bipolar reference	107	\square		\square	\square				
Reference delinearization (magnifying glass effect)	109	\square		\square					
Frequency control input	142					\square			\square
Reference switching	$\begin{gathered} 143- \\ 150 \end{gathered}$				\square				
Reference summing	150				\square				
Reference subtraction	150				\square				
Reference multiplication	150				\square				
S ramps	152	\square		\square					
Jog operation	159			\square		\square			\square
Preset speeds	160	\square	\square	\square	\square			\square	
+ speed/- speed using single action pushbuttons (1 step)	163								\square
+ speed/- speed using double action pushbuttons (2 steps)	163	\square							
+/- speed around a reference	165					\square			-
Save reference	167								-
Inspection	224		\square						

Application-specific functions

Functions	Page	Applications							
		읃	第		$\begin{aligned} & \text { 읓 } \\ & \text { 듣 } \\ & \end{aligned}$		7 0 3		u 0 0 ¢0
Fast stop	155						\square	\square	
Limit switch management	168	\square	\square	\square					
Brake control	169	\square	\square	$■$					
Load measurement	180	\square	\square						
High-speed hoisting	182	\square							
Rope slack	185	\square							
PID regulator	187								\square
Torque monitoring	196			\square		\square			\square
Motor/generator torque limit	199			\square		\square		\square	\square
Load sharing	101	\square		\square					
Line contactor control	202	\square		\square			\square		
Output contactor control	204		\square						
Positioning by limit switches or sensors	206			\square	\square				
Stop at distance calculated after deceleration limit switch	208			\square	\square				
ENA system (mechanical with unbalanced load)	96							\square	
Parameter switching	211	■	\square						
Motor or configuration switching	214	\square		\square	\square				
Traverse control	217					\square			
Stop configuration	155			\square		\square	\square	\square	
Evacuation	225		\square						
Half floor	226		\square						
Rollback management	179		\square						

Safety functions/fault management

		Applications							
Functions	Page		㐌		[7 0 3		0 0 0 0 0 0
Power Removal (safety function, see User's Manual)	-	\square							
Deferred stop on thermal alarm	237		\square						
Alarm handling	132	\square							
Fault management	230-251	\square	\square	\square	\square	-	\square	\square	\square
IGBT tests	240	\square							
Catch a spinning load	232					\square	\square	\square	
Braking resistor thermal protection	249	\square	\square	\square	\square				
Motor protection with PTC probes	230	\square	\square	\square	\square	-	\square	\square	\square
Undervoltage management	239					\square	\square	\square	
4-20mA loss	241	\square	\square	\square		\square	\square		\square
Uncontrolled output cut (output phase loss)	235			\square					
Automatic restart	231								
Use of the "Pulse input" input to measure the speed of rotation of the motor	245	\square	\square	\square					
Load variation detection	247	\square							

Setup - Preliminary recommendations

Bus voltage measurement

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH
Read and understand the precautions in "Before you begin" starting on page 6 before performing this procedure.
Failure to follow these instructions will result in death or serious injury.

The DC bus voltage can exceed $1,000 \mathrm{Vdc}$. Use a properly rated voltage-sensing device when performing this procedure. To measure the DC bus voltage:

1. Disconnect all power.
2. Wait 15 minutes to allow the DC bus to discharge.
3. Measure the voltage of the DC bus between the PA/+ and PC/- terminals to ensure that the voltage is less than 42 Vdc. These terminals are clearly labeled on each drive.
4. If the DC bus capacitors do not discharge completely, contact your local Schneider Electric representative. Do not repair or operate the drive.

Turning on and configuring the drive

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Before turning on and configuring the Altivar ${ }^{\circledR} 71$, check that the PWR (POWER REMOVAL) input is deactivated (at state 0) in order to prevent unintended operation.
- Before turning on the drive, or when exiting the configuration menus, check that the inputs assigned to the run command are deactivated (at state 0) since they can cause the motor to start immediately.

Failure to follow these instructions will result in death or serious injury.

CAUTION

INCOMPATIBLE LINE VOLTAGE

Before turning on and configuring the drive, ensure that the line voltage is compatible with the supply voltage range shown on the drive nameplate. The drive may be damaged if the line voltage is not compatible.

Failure to follow these instructions can result in equipment damage.

Separate control section power supply

When the drive control section is powered independently of the power section (P24 and 0V terminals), whenever an option card is added or replaced, only the power section must be supplied with power next time the drive is powered up.
By default the new card would not be recognized and it would be impossible to configure it, thereby causing the drive to lock in fault mode.
Power switching via line contactor

CAUTION

EQUIPMENT DAMAGE

- Avoid operating the contactor frequently (premature aging of the filter capacitors).
- Cycle times <60 s may result in damage to the pre-charge resistor.

Failure to follow these instructions can result in equipment damage.

User adjustment and extension of functions

- The display unit and buttons can be used to modify the settings and to extend the functions described in the following pages.
- Return to factory settings is made easy by the [1.12 FACTORY SETTINGS] (FCS-) menu, see page 260.
- There are three types of parameters:
- Display: Values displayed by the drive
- Adjustment: Can be changed during operation or when stopped
- Configuration: Can only be modified when stopped and no braking is taking place. Can be displayed during operation.

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Verify that changes made to the settings during operation do not present any danger.
- We recommend stopping the drive before making any changes.

Failure to follow these instructions will result in death or serious injury.

Starting

Important:

- In factory settings mode, the motor can only be supplied with power once the "forward", "reverse" and "DC injection stop" commands have been reset:
- On power-up or a manual fault reset or after a stop command

If they have not been reset, the drive will display " nSt " but will not start.

- If the automatic restart function has been configured ([Automatic restart] (Atr) parameter in the [1.8-FAULT MANAGEMENT] (FLt-) menu, see page 231), these commands are taken into account without a reset being necessary.

Test on a low power motor or without a motor

- In factory settings mode, [Output Phase Loss] (OPL) detection page 235 is active (OPL = YES). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives), deactivate [Output Phase Loss] (OPL = no).
- Configure [Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/F 5pts] (UF5) ([1.4-MOTOR CONTROL] (drC-) menu, see page 74).

CAUTION

LOSS OF THERMAL PROTECTION FEATURES
Motor thermal protection will not be provided by the drive if the motor current is less than 0.2 times the rated drive current. Provide an alternative means of thermal protection.

Failure to follow these instructions can result in equipment damage.

Using motors in parallel

- Configure [Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/F 5pts] (UF5) ([1.4-MOTOR CONTROL] (drC-) menu, see page 74)

CAUTION

LOSS OF THERMAL PROTECTION FEATURES

Motor thermal protection is no longer provided by the drive. Provide an alternative means of thermal protection on every motor.
Failure to follow these instructions can result in equipment damage.

Graphic display terminal

The graphic display terminal can be disconnected and connected remotely (on the door of an enclosure for example) using the cables and accessories available as options.

Description of terminal

NOTE: Buttons 3, 4, 5 and $\mathbf{6}$ can be used to control the drive directly, if control via the terminal is activated.

Disconnected terminal

When the terminal is disconnected, 2 LEDs become visible:

Description of the graphic screen

1 Display line. Its content can be configured; the factory settings show:

- The drive state (see page 23)
- The active control channel:
- Term: Terminals
- HMI: Graphic display terminal
- MDB: Integrated Modbus
- CAN: Integrated CANopen
- NET: Communication card
- APP: Controller Inside card
- Frequency reference
- Current in the motor

2 Menu line. Indicates the name of the current menu or submenu.
3 Menus, submenus, parameters, values, bar charts, etc., are displayed in drop-down window format on a maximum of 5 lines. The line or value selected by the navigation button is displayed in reverse video.

4 Section displaying the functions assigned to the F1 to F4 keys and aligned with them, for example:

- Code F1 : Displays the code of the selected parameter, such as, the code corresponding to the 7 -segment display.
- HELP F1 : Contextual help
- << F2 : Navigate horizontally to the left, or go to previous menu/submenu or, for a value, go to the next digit up, displayed in reverse video (see the example on page 23).
- >> F3 : Navigate horizontally to the right or go to next menu/submenu (going to the [2 ACCESS LEVEL] menu in this example) or, for a value, go to the next digit down, displayed in reverse video (see the example on page 23).
- Quick F4 : Quick navigation, see page 27.

The function keys are dynamic and contextual.
Other functions (application functions) can be assigned to these keys via the [1.6 COMMAND] menu.
If a preset speed is assigned to a function key and if the function key is pressed, the motor will run at this preset speed until another preset speed or JOG is pressed, speed reference is changed, or Stop key is pressed.

5

Indicates that there are no more levels below this display window. Indicates that there are more levels below this display window.

6 \square Indicates that this display window does not scroll further up.
Indicates that there are more levels above this display window.

Drive state codes:

- ACC: Acceleration
- CLI: Current limit
- CTL: Controlled stop on input phase loss
- DCB: DC injection braking in progress
- DEC: Deceleration
- FLU: Motor fluxing in progress
- FST: Fast stop
- NLP: No line power (no line supply on L1, L2, L3)
- NST: Freewheel stop
- OBR: Auto-adapted deceleration
- PRA: Power Removal function active (drive locked)
- RDY: Drive ready
- RUN: Drive running
- SOC: Controlled output cut in progress
- TUN: Auto-tuning in progress
- USA: Undervoltage alarm
- ASA: Measurement of the phase-shift angle in progress
- ICC: Configuration encoder incorrect

Example configuration windows:

RDY	Term	+0.00 Hz	0 A
	5 LANGUAGE		
English			
Français Deutsch			\checkmark
Español			
Italiano			
	\ll	\gg	Quick
Chinese			

When only one selection is possible, the selection made is indicated by
Example: Only one language can be chosen.

PARAMETER SELECTION	
1.3 SETTINGS	
Ramp increment	\square
Acceleration	\square
Deceleration	\square
Acceleration 2	\square
Deceleration 2	\square
	Edit

When multiple selection is possible, the selections made are indicated by \checkmark Example: A number of parameters can be chosen to form the [USER MENU].

Example configuration window for one value:

The << and >> arrows (keys F2 and F3) are used to select the digit to be modified, and the navigation button is rotated to increase or decrease this number.

First power-up - [5. LANGUAGE] menu

The first time the drive is powered up, the user will automatically be guided through the menus as far as [1. DRIVE MENU].
The parameters in the [1.1 SIMPLY START] submenu must be configured and auto-tuning performed before the motor is started up.

Subsequent power ups

3 seconds later, switches to
[1. DRIVE MENU] or to [1.14 PROGRAMMABLE CARD].

If no operator inputs are made, switches to "Display" automatically 10 seconds later (the display will vary depending on the selected configuration).

Users can return to [MAIN MENU] by pressing ENT or ESC.

Programming: Example of accessing a parameter

Accessing the acceleration ramp

RDY	Term	$+0.00 \mathrm{~Hz}$	0A
1 DRIVE MENU			
1.1 SIMPLY START			
1.2 MONITORING			
1.3 SETTINGS			
1.4 MOTOR CONTROL			
1.5 INPUTS / OUTPUTS CFG			
Code	<<	>>	Quick

ENT	RDY	Term	$+0.00 \mathrm{~Hz}$	OA
	1.3 SETTINGS			
	Ramp increment:			01
\rightarrow	Acceleration			9.51 s
ESC	Deceleration:			9.67 s
	Acceleration 2:			12.58 s
	Deceleration 2:			13.45 s
	Code	<<	>>	Quick

NOTES:

- To select a parameter:
- Turn the navigation button to scroll vertically.
- To modify a parameter:
- Use the << and >> keys (F2 and F3) to scroll horizontally and select the digit to be modified (the selected digit changes to white on a black background).
- Turn the navigation button to modify the digit.
- To cancel the modification:
- Press ESC.
- To save the modification:
- Press the navigation button (ENT).

Quick navigation

If the "Quick" function is displayed above the F4 key, you can gain quick access to a parameter from any screen.

Example:

RDY	Term	+0.00 Hz
0 OA		
1.4 MOTOR CONTROL		
Standard mot. freq:	50 Hz IEC	
Rated motor power:	$0.37 \mathrm{~kW}(0.5 \mathrm{HP})$	
Rated motor volt.:	206 V	
Rated mot. current:	1.0 A	
Rated motor freq.:		50.0 Hz
Code		\ll

Press F4 to access the Quick screen, which contains 4 selection options.

- [HOME]: Return to [MAIN MENU].

RDY Term +0.00Hz 0A	ENT	RDY	Term	$+0.00 \mathrm{~Hz}$	0A
QUICK NAVIGATION		MAIN MENU			
RETURN TO MAIN MENU		1 DRIVE MENU			
DIRECT ACCESS TO...		2 ACCESS LEVEL			
10 LAST MODIFICATIONS		3 OPEN / SAVE AS			
GOTO MULTIPOINT SCREEN		4 PASSWORD			
		5 LANGUAGE			
Code		Code			Quick

- [DIRECT ACCESS TO...]: Opens the direct access window, which will contain the text "1". The function keys \ll and \gg (F2 and F3) can be used to select each of the numbers and the navigation button to increment or decrement the numbers: 1.3 in the example below.

- [10 LAST MODIFICATIONS]: Opens a window in which the last 10 parameters modified can be accessed directly.

RDY Term	+0.00 Hz 0A		RDY	Term	+0.00Hz	0A
10 LAST MOD	IFICATIONS			Rated m	current	
Acceleration:	10 s	$\xrightarrow{\text { ENT }}$	15.0 A			
ENA prop.gain:	1.2					
Rated mot. current:	15 A					
Preset speed 4:	20 Hz	ESC\|				
Preset speed 5:	30 Hz					
Code				<<	>>	

[MAIN MENU] - Menu mapping

Content of [MAIN MENU] menus

[1 DRIVE MENU]	See page 29
[2 ACCESS LEVEL]	Defines which menus can be accessed (level of complexity)
[3 OPEN / SAVE AS]	Can be used to save and recover drive configuration files
[4 PASSWORD]	Provides password protection for the configuration
[5 LANGUAGE]	Language selection
[6 MONITORING CONFIG.]	Customization of information displayed on the graphic display terminal during operation
[7 DISPLAY CONFIG.]	- Customization of parameters - Creation of a customized user menu Customization of the visibility and protection mechanisms for menus and parameters

[1 DRIVE MENU]

RDY	Term	$+0.00 \mathrm{~Hz}$	0A
1 DRIVE MENU			
1.1 SIMPLY START			
1.2 MONITORING			
1.3 SET 1.4 MO 1.5 INP Code	NGS	ROL	
Code	<<	>>	Quick
1.6 COMMAND			
1.7 APPLICATION FUNCT.			
1.8 FAULT MANAGEMENT			
1.9 COMMUNICATION			
1.10 DIAGNOSTICS			
1.11 IDENTIFICATION			
1.12 FACTORY SETTINGS			
1.13 USER MENU			
1.14 PR	RAMM	BLE CAR	

Content of [1. DRIVE MENU] menus:

[1.1 SIMPLY START]:
[1.2 MONITORING]:
[1.3 SETTINGS]:
[1.4 MOTOR CONTROL]:
[1.5 INPUTS / OUTPUTS CFG]:
[1.6 COMMAND]:
[1.7 APPLICATION FUNCT.]:
[1.8 FAULT MANAGEMENT]:
[1.9 COMMUNICATION]:
[1.10 DIAGNOSTICS]:
[1.11 IDENTIFICATION]:
[1.12 FACTORY SETTINGS]:
[1.13 USER MENU]:
[1.14 PROGRAMMABLE CARD]:

Simplified menu for a quick start
Visualization of current, motor and input/output values
Accesses the adjustment parameters, which can be modified during operation
Motor parameters (motor nameplate, auto-tuning, switching frequency, control algorithms, and so forth)
I/O configuration (scaling, filtering, 2-wire control, 3-wire control, and so forth)
Configuration of command and reference channels (graphic display terminal, terminals, bus, and so forth.)
Configuration of application functions (e.g., preset speeds, PID, brake logic control, and so forth)
Configuration of fault management
Communication parameters (fieldbus)
Motor/drive diagnostics
Identifies the drive and the internal options
Access to configuration files and return to factory settings
Specific menu set up by the user in the [7. DISPLAY CONFIG.] menu
Configuration of optional Controller Inside card

Integrated display terminal

Altivar ${ }^{\circledR} 71$ drives can feature an integrated display terminal with a 7 -segment 4-digit display. The graphic display terminal described on the previous pages can also be connected to these drives.

Functions of the display and the keys

- 2 Modbus status LEDs
- Four 7-segment displays

- Returns to the previous menu or parameter, or increases the displayed value
- Goes to the next menu or parameter, or decreases the displayed value

Exits a menu or parameter, or aborts the displayed value to return to the previous value in the memory

Enters a menu or parameter, or saves the displayed parameter or value

NOTES • Pressing $\boldsymbol{\Delta}$ or does not store the selection.

- Press and hold down (>2 s) or to scroll through the data quickly.

Save and store the selection: ENT
The display flashes when a value is stored.
Normal display, with no detected fault present and no startup:

- 43.0: Display of the parameter selected in the SUP menu (default selection: motor frequency)
- CLI: Current limit
- CtL: Controlled stop on input phase loss
- dCb: DC injection braking in progress
- FLU: Motor fluxing in progress
- FSt: Fast stop.
- nLP: No line power (no line supply on L1, L2, L3)
- nSt: Freewheel stop
- Obr: Auto-adapted deceleration
- PrA: Power Removal function active (drive locked)
- rdY = Drive ready
- SOC: Controlled output cut in progress
- tUn: Auto-tuning in progress
- USA: Undervoltage alarm
- ASA: Measurement of the phase-shift angle in progress

The display flashes to indicate the presence of a detected fault.

Accessing menus

A dash appears after menu and submenu codes to differentiate them from parameter codes.
Examples: FUn- menu, ACC parameter.

The grayed-out menus may not be accessible depending on the control access (LAC) configuration.

Accessing menu parameters

Save and store the displayed selection :

The display flashes when a value is stored.
(Next parameter)

All the menus are "drop-down" type menus, which means that after the last parameter, if you continue to press $\boldsymbol{\nabla}$, you will return to the first parameter and, conversely, you can switch from the first parameter to the last parameter by pressing $\mathbf{\Delta}$.

Selection of multiple assignments for one parameter

Example: List of group 1 alarms in [INPUTS / OUTPUTS CFG] (I-O-) menu
A number of alarms can be selected by "checking" them as follows.
The digit on the right indicates: selected

$$
\square \text { not selected. }
$$

The same principle is used for all multiple selections.

With graphic display terminal

Standard
This is the factory-set level. Access to 6 menus only, and access to all submenus in the [1. DRIVE MENU] menu.
A single function can be assigned to each input.

Expert
Access to all menus and submenus as for [Advanced] level, and access to additional parameters.
Several functions can be assigned to each input.

RDY	Term $+0.00 \mathrm{~Hz}$	0 A
MAIN MENU		
1 DRIVE MENU		
2 ACCESS LEVEL		
3 OPEN / SAVE AS		
4 PASSWORD		
5 LANGUAGE		
Code		

7 DISPLAY CONFIG.

With integrated display terminal:

Code	Name/Description	Factory setting
L A [-		Std
b H_{5}	- bAS: Limited access to SIM, SUP, SEt, FCS, USr, COd and LAC menus. Only one function can be assigned to each input. - Std: Access to all menus on the integrated display terminal. Only one function can be assigned to each input. - AdU: Access to all menus on the integrated display terminal. Several functions can be assigned to each input. - EPr: Access to all menus on the integrated display terminal and access to additional parameters. Several functions can be assigned to each input.	
5td 月du EPr		

Comparison of the menus that can be accessed on the graphic display terminal/integrated display terminal

[^1]
Structure of parameter tables

The parameter tables in the descriptions of the various menus can be used with both the graphic display terminal and the integrated display terminal. They, therefore, contain information for these two terminals in accordance with the description below.

Example:

1 Name of menu on 4-digit 7-segment display.
2 Submenu code on 4-digit 7-segment display.
3 Parameter code on 4-digit 7-segment display.

6 Name of submenu on graphic display terminal.
7 Name of parameter on graphic display terminal.
8 Value of parameter on graphic display terminal.

4 Parameter value on 4-digit 7-segment display.
5 Name of menu on graphic display terminal.

NOTE:

- The text in square brackets [] indicates what you will see on the graphic display terminal.
- The factory settings correspond to [Macro configuration] (CFG) $=[$ Start/Stop] (StS). This is the macro configuration set at the factory.

Interdependence of parameter values

A DANGER

UNINTENDED EQUIPMENT OPERATION

- The configuration of certain parameters modifies the adjustment range of other parameters.
- Changing the value of certain parameters may result in the modification of a factory setting or value you have already selected.
- Read and understand the ATV71 Programming Manual before configuring parameter values.

Failure to follow these instructions will result in death or serious injury.

Example:

1. [Current Limitation] (CLI), page 66 set to 1.6 In or left at its factory setting, 1.5 In
2. [Switching freq.] (SFr), page 66 set to 1 kHz (and confirmed with "ENT") restricts [Current Limitation] (CLI) to 1.36 In
3. If [Switching freq.] (SFr) is increased to 4 kHz , [Current limitation] (CLI) is no longer restricted, but remains at 1.36 In . If you require 1.6 In , you must reset [Current Limitation] (CLI).

Finding a parameter in this document

The following assistance with finding explanations on a parameter is provided:

- With the integrated display terminal: Direct use of the parameter code index, page 292, to find the page giving details of the displayed parameter.
- With the graphic display terminal: Select the required parameter and press F1: [Code]. The parameter code is displayed instead of its name while the key is held down.

Example: ACC

RDY	Term	+0.00	0A	$\xrightarrow{\text { Code }}$	RDY	Term	+0.00	0A
1.3 SETTINGS					1.3 SETTINGS			
Ramp increment: 01					Ramp increment:			01
Acceleration 9.51 s					ACC			9.51 s
Deceleration: $\quad 9.67 \mathrm{~s}$					Deceleration:			9.67 s
Acceleration 2: 12.58 s					Acceleration 2:			12.58 s
Deceleration 2: 13.45 s					Deceleration 2:			13.45 s
Code	<<	>>	Quick		Code	<<	>>	Quick

Then use the parameter code index, page 292, to find the page giving details of the displayed parameter.

[1.1 SIMPLY START] (SIM-)

With graphic display terminal:

With integrated display terminal:

The [1.1-SIMPLY START] (SIM-) menu can be used for fast startup, which is sufficient for the majority of applications.
The parameters in this menu can only be modified when the drive is stopped and no run command is present, with the exception of Auto-tuning, which causes the motor to start up.
See the adjustment parameters beginning on page 53.
NOTE: The parameters of the [1.1 SIMPLY START] (SIM-) menu must be entered in the order in which they appear, as the later ones are dependent on the first ones.

Example: [2/3 wire control] (tCC) must be configured before any other parameters.

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Changes to parameters in other menus may change the [1.1 SIMPLY START] (SIM-) parameter settings.
- Read and understand the ATV71 Programming Manual before configuring parameter values.

Failure to follow these instructions will result in death or serious injury.

The [1.1 SIMPLY START] (SIM-) menu can be used to quickly configure key parameters to get the drive and motor running. Parameter modifications in other menus may modify the parameter settings in the [1.1 SIMPLY START] (SIM-) menu. As an example, configuration of motor parameters in [1.4 MOTOR CONTROL] (drC-) will be reflected in the [1.1 SIMPLY START] (SIM-) parameters.

Macro configuration

Macro configuration provides a means of speeding up the configuration of functions for a specific field of application. 8 macro configurations are available:

- Start/stop (factory configuration)
- Handling
- General use
- Hoisting
- Lifts
- PID regulator
- Communication bus
- Master/slave

Selecting a macro configuration assigns the parameters in this macro configuration.
Each macro configuration can still be modified in the other menus.

Macro configuration parameters

Assignment of the inputs

Input/ output	[Start/Stop]	[M. handling]	[Gen. Use]	[Hoisting]	[Lift]	[PID regul.]	[Network C.]	[Mast./ slave]
Al1	[Ref. 1 channel]	[Ref. 1 channel] (PID reference)	[Ref. 2 channel] ([Ref. 1 channel] = integrated Modbus) ${ }^{(1)}$	[Ref. 1 channel]				
Al2	[No]	[Summing ref. 2]	[Summing ref. 2]	[No]	[No]	[PID feedback]	[No]	[Torque reference]
AO1	[No]							
R1	[No drive fit]	[No drive fit]	[No drive fit]	[No drive flt]	[No drive fit]	[No drive fit]	[No drive flt]	[No drive fit]
R2	[No]	[No]	[No]	[Brk control]	[Brk control]	[No]	[No]	[No]
LI1 (2wire)	[Forward]							
LI2 (2wire)	[Reverse]							
LI3 (2wire)	[No]	[2 preset speeds]	[Jog]	[Fault reset]	[2 preset speeds]	[PID integral reset]	[Ref. 2 switching]	[Trq/spd switching]
LI4 (2wire)	[No]	[4 preset speeds]	[Fault reset]	[External fault]	[4 preset speeds]	[2 preset PID ref.]	[Fault reset]	[Fault reset]
LI5 (2wire)	[No]	[8 preset speeds]	[Torque limitation]	[No]	[Fault reset]	[4 preset PID ref.]	[No]	[No]
LI6 (2wire)	[No]	[Fault reset]	[No]	[No]	[No]	[No]	[No]	[No]
LI1 (3wire)	Stop							
LI2 (3wire)	[Forward]							
LI3 (3wire)	[Reverse]							
LI4 (3wire)	[No]	[2 preset speeds]	[Jog]	[Fault reset]	[2 preset speeds]	[PID integral reset]	[Ref. 2 switching]	[Trq/spd switching]
LI5 (3wire)	[No]	[4 preset speeds]	[Fault reset]	[External fault]	[4 preset speeds]	[2 preset PID ref.]	[Fault reset]	[Fault reset]
LI6 (3wire)	[No]	[8 preset speeds]	[Torque limitation]	[No]	[Fault reset]	[4 preset PID ref.]	[No]	[No]

1. To start up with integrated Modbus, [Modbus Address] (Add) must first be configured, page 254.

Assignment of the inputs (continued)

Input/ output	[Start/Stop]	[M. handling]	[Gen. Use]	[Hoisting]	[Lift]	[PID regul.]	[Network C.]	[Mast./ slave]
Option cards								
$\begin{aligned} & \text { LI7 to } \\ & \text { LI14 } \end{aligned}$	[No]	[No]	[No]	[No]	[No]	[No]	[No]	[No]
LO1 to LO4	[No]	[No]	[No]	[No]	[No]	[No]	[No]	[No]
R3/R4	[No]	[No]						
Al3, Al4	[No]	[No]	[No]	[No]	[No]	[No]	[No]	[No]
RP	[No]							
AO2	[I motor]	[I motor]	[1 motor]	[1 motor]	[[motor]	[I motor]	[1 motor]	[I motor]
AO3	[No]	[Sign. torque]	[No]	[Sign. torque]	[Sign. torque]	[PID Output]	[No]	[Motor freq.]
Graphic display terminal keys								
F1 key	[No]	Control via graphic display terminal	[No]					
$\begin{aligned} & \text { F2, F3, } \\ & \text { F4 } \\ & \text { keys } \end{aligned}$	[No]	[No]	[No]	[No]	[No]	[No]	[No]	[No]

In 3-wire control, the assignment of inputs LI1 to LI6 shifts.
NOTE: These assignments are reinitialized every time the macro configuration changes.

Macro configuration parameters

Other configurations and settings

In addition to the assignment of I/O, other parameters are assigned only in the Hoisting, Lift and Mast./slave macro configurations.

Hoisting and lift:

- [Movement type] (bSt) = [Hoisting] (UEr), page 173
- [Brake contact] $(\mathrm{bCl})=[\mathrm{No}](\mathrm{nO})$, page 173
- [Brake impulse] (bIP) $=[\mathrm{No}](\mathrm{nO})$, page 173
- [Brake release I FW] (Ibr) = [Rated mot. current] (nCr), page 173
- [Brake Release time] (brt) $=0.5$ s page 174
- [Brake release freq] (blr) = [Auto] (AUtO), page 174
- [Brake engage freq] (bEn) = [Auto] (AUto), page 174
- [Brake engage time] $(\mathrm{bEt})=0.5 \mathrm{~s}$ page 174
- [Engage at reversal] $(\mathrm{bEd})=[\mathrm{No}](\mathrm{nO})$, page 175
- [Jump at reversal] (JdC) $=$ [Auto] (AUtO), page 175
- [Time to restart] (ttr) $=0$ s page175
- [Current ramp time] (brr) $=0$ s page 177
- [Low speed] (LSP) = Rated motor slip calculated by the drive, page 48
- [Output Phase Loss] (OPL), page $235=[\mathrm{Yes}]$ (YES), but it is forced to [No] (nO) if [Motor control type] (Ctt), page $74=[S y n c$. mot.] (SYn). No further modifications can be made to this parameter.
- [Catch on the fly] $(F L r)=[N o](n O)$, page 232. No further modifications can be made to this parameter.

Lift:

- [Feed forward] (FFP) $=0 \%$ page 93

Mast./slave:

- [Motor control type] (Ctt) = [SVC I] (CUC), page 74

Note: These assignments are forced every time the macro configuration changes, except for [Motor control type] (Ctt) for the Mast./slave macro configuration, if it is configured in [FVC] (FUC).

Return to factory settings:
Returning to factory settings with [Config. Source] (FCSI) $=$ [Macro-Conf] (InI), page 262 will return the drive to the selected macro configuration. The [Macro configuration] (CFG) parameter does not change, although [Customized macro] (CCFG) disappears.

Example diagrams for use with the macro configurations

[Hoisting] (HSt) diagram

1. A contact on the Preventa module must be inserted in the brake control circuit to engage it when the Power Removal function is activated (see connection diagrams in the Installation Manual).

[Mast./slave] (MSL) diagram

When the two motors are mechanically connected, the Speed/torque contact closing results in operation in Mast./slave mode. The master drive regulates the speed and controls the slave drive in torque mode to ensure distribution of the load.

Code	Name/Description \quad Factory setting
t [[[2/3 wire control] ${ }^{\text {l }}$ [2 wire] (2C)
$\begin{aligned} & 2[\\ & \exists[\end{aligned}$	[2 wire] (2C) [3 wire] (3C) 2-wire control: This is the input state (0 or 1) or edge (0 to 1 or 1 to 0), which controls running or stopping. Example of "source" wiring: LI1: forward LIx: reverse 3-wire control (pulse commands): A "forward" or "reverse" pulse is sufficient to command starting, a "stop" pulse is sufficient to command stopping. Example of "source" wiring: LI1: stop LI2: forward LIx: reverse WARNING UNINTENDED PROGRAM CHANGES - To change the assignment of [2/3 wire control] (tCC) press and hold down the "ENT" key for 2 s . - The following function will be returned to factory settings: [2 wire type] (tCt), page 105 as will all functions which assign logic inputs. - The macro configuration selected will also be reset it if has been customized (loss of custom settings). - Verify that this change is compatible with the wiring diagram used. Failure to follow these instructions can result in death or serious injury.
LFL	[Macro configuration] ${ }^{\text {[Start/Stop] (StS) }}$
$\begin{aligned} & 5 t 5 \\ & H d L \\ & H 5 t \\ & C E n \\ & P I d \\ & \Pi E t \\ & \Pi 5 L \\ & L I F E \end{aligned}$	[Start/Stop] (StS): Start/stop [M. handling] (HdG): Handling [Hoisting] (HSt): Hoisting [Gen. Use] (GEn): General use [PID regul.] (PId): PID regulation [Network C.] (nEt): Communication bus [Mast./slave] (MSL): Master/slave [Lift] (LIFt): Lifts WARNING UNINTENDED PROGRAM CHANGES - To change the assignment of [Macro configuration] (CFG) press and hold down the "ENT" key for 2 s . - Verify that the selected macro configuration is compatible with the wiring diagram used. Failure to follow these instructions can result in death or serious injury.
CLFL	[Customized macro]
YE 5	Read-only parameter, only visible if at least one macro configuration parameter has been modified. [Yes] (YES)

Code	Name/Description	Adjustment range	Factory setting
b Fr	[Standard mot. freq]		[50 Hz IEC] (50)
$\begin{aligned} & 50 \\ & E \square \end{aligned}$	[50Hz IEC] (50): IEC [60Hz NEMA] (60): NEMA This parameter modifies the presets of the following parameters:[Rated motor volt.] (UnS) below, [High speed] (HSP), page 48, [Freq. threshold] (Ftd), page 72, [Rated motor freq.] (FrS) and [Max frequency] (tFr).		
$I P L$	[Input phase loss]		According to drive rating
$\begin{array}{r} n \square \\ Y E 5 \end{array}$	[Ignore] (nO): Ignored, to be used when the drive is supplied via a single-phase supply or by the DC bus. [Freewheel] (YES): Input phase loss fault is activated and drive freewheel stops. If one phase disappears, the drive switches to fault mode [Input phase loss] (IPL), but if 2 or 3 phases disappear, the drive continues to operate until it trips on an undervoltage fault.		
nPr	[Rated motor power]	According to drive rating	According to drive rating
	Rated motor power given on the nameplate, in kW if [Standard mot. freq] (bFr) $=[50 \mathrm{~Hz} \operatorname{IEC}]$ (50), in hp if [Standard mot. freq] $(\mathrm{bFr})=[60 \mathrm{~Hz}$ NEMA] (60).		
$4 \sim 5$	[Rated motor volt.]	According to drive rating	According to drive rating and [Standard mot. freq] (bFr)
	Rated motor voltage given on the nameplate. ATV71•e०M3: 100 to 240 V ATV71e๗๑N4: 200 to 480 V		
$n[r$	[Rated mot. current]	0.25 to $1.5 \ln { }^{(1)}$	According to drive rating and [Standard mot. freq] (bFr)
	Rated motor current given on the nameplate.		
Fr 5	[Rated motor freq.]	10 to 500 Hz	50 Hz
	Rated motor frequency given on the nameplate. The factory setting is 50 Hz , or preset to 60 Hz if [Standard mot. freq] (bFr) is set to 60 Hz .		
п 5 P	[Rated motor speed]	0 to 60000 RPM	According to drive rating
	Rated motor speed given on the nameplate. 0 to 9999 rpm then 10.00 to 60.00 krpm on the integrated display terminal. If, rather than the rated speed, the nameplate indicates the synchronous speed and the slip in Hz or as a \%, calculate the rated speed as follows: d speed as follows: - Nominal speed $=$ Synchronous speed $\times \frac{100-\text { slip as a \% }}{100}$ or - Nominal speed $=$ Synchronous speed $x \frac{50-\text { slip in Hz }}{50}(50 \mathrm{~Hz}$ motors $)$ or - Nominal speed $=$ Synchronous speed $x \frac{60-\text { slip in Hz }}{60}(60 \mathrm{~Hz}$ motors $)$		
EFr	[Max frequency]	10 to 1600 Hz	60 Hz
	The factory setting is 60 Hz , or preset to 72 Hz if [Standard mot. freq] (bFr) is set to 60 Hz . The maximum value is limited by the following conditions: - It must not exceed 10 times the value of [Rated motor freq.] (FrS) - It must not exceed 500 Hz if the drive rating is higher than ATV71HD37 (values between 500 Hz and 1600 Hz are only possible for powers limited to 37 kW (50 hp).		

[^2]

Parameters that can be changed during operation or when stopped

Code	Name/Description	Adjustment Range	Factory setting
It H	[Mot. therm. current]	0.2 to $1.5 \ln { }^{(1)}$	According to drive rating
	Motor thermal protection current, to be set to the rated current indicated on the nameplate.		
H [[[Acceleration]	0.1 to 999.9 s	3.0 s
	Time to accelerate from 0 to the [Rated motor freq.] (FrS) (page 46). Make sure that this value is compatible with the inertia being driven.		
$d E[$	[Deceleration]	0.1 to 999.9 s	3.0 s
	Time to decelerate from the [Rated motor freq.] (FrS) (page 46) to 0 . Make sure that this value is compatible with the inertia being driven.		
$L 5 P$	[Low speed] Motor frequency at minimum reference, can be set between 0 and [High speed] (HSP).		
H5P	[High speed] 50 Hz Motor frequency at maximum reference, can be set between [Low speed] (LSP) and [Max frequency] (tFr). The factory setting changes to 60 Hz if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}$ NEMA] (60).		
	CAUTION		
	LOSS OF MOTOR FUNCTION For permanent magnet synchronous motors, the maximum permissible speed must not be exceeded, otherwise demagnetization may occur. The maximum speed permitted by the motor, drive chain or application must not be exceeded at any time. Failure to follow these instructions can result in equipment damage.		

[^3]
[1.2 MONITORING] (SUP-)

With graphic display terminal:

With integrated display terminal:

With graphic display terminal

This menu can be used to display the inputs/outputs, the drive internal states and values, and the communication data and values.

I/O

RUN \quad Term $\quad+50.00 \mathrm{~Hz}$	80 A
I/O MAP	
LOGIC INPUT MAP	
ANALOG INPUTS IMAGE	
LOGIC OUTPUT MAP	
ANALOG OUTPUTS IMAGE	
FREQ. SIGNAL IMAGE	
Code	Quick

Move from one screen to another
(from LOGIC INPUT MAP
to FREQ. SIGNAL IMAGE)
by turning the navigation button

State 0
State 1

Access to the selected input or output configuration:
Press ENT.

RUN	Term	+50.00 Hz	80A
LI1 assignment			
Forward			
Pre Fluxing			
LI1 On Delay			
			0 ms
	\ll	Quick	

RUN	Term	+50.00 Hz	80 A
ANALOG INPUTS IMAGE			
Al1		\vdots	
Al2		\vdots	
			2.87 V
Code	\ll	\gg	

Q State 0
(State 1

RUN	Term	+50.00 Hz	80 A
LOGIC OUTPUT MAP			
R1	R2	LO	
LOA:		\bigotimes	
		0000000000000010 b	
	\ll	\gg	Quick

RUN	Term	+50.00 Hz	80 A
LO1 assignment			
No			
LO1 delay time	$:$	0 ms	
LO1 active at	$:$	1	
LO1 holding time	$:$	0 ms	
	\ll		Quick

RUN	Term	+50.00 Hz	80 A
ANALOG OUTPUTS IMAGE			
AO1			9.87 V
Code	\ll	\gg	Quick

RUN	Term	+50.00 Hz	80A
FREQ. SIGNAL IMAGE			
RP input	$:$	25.45 kHz	
Encoder :	225 kHz		
Code	\ll	\gg	Quick

ENT	RUN Term	$+50.00 \mathrm{~Hz}$	80A
	RP assignment		
	Frequency ref. RP min value $R P$ max value RP filter		$\begin{aligned} & 2 \mathrm{kHz} \\ & 50 \mathrm{kHz} \\ & 0 \mathrm{~ms} \end{aligned}$
			Quick

With graphic display terminal

Controller Inside card I/O

RUN \quad Term $+50.00 \mathrm{~Hz} \quad 80 \mathrm{~A}$	
PROG. CARD I/O MAP	
PROG CARD LI MAP	
PROG. CARD AI MAP	
PROG CARD LO MAP	
PROG. CARD AO MAP	
Code	Quick

RUN	Term	+50.00 Hz	80A	
PROG CARD AI MAP				
Al51	$:$		0.000 mA	
Al52	$:$		9.87 V	
Code	\ll	\gg	Quick	

Move from one screen to another
(from PROG CARD LI MAP to PROG. CARD AO MAP)
by turning the navigation button

With graphic display terminal

Communication

RUN	Term	+50.00Hz	80A
COMMUNICATION MAP			
Command Channel: Cmd value: Active ref. channel: Frequency ref.: ETA state word:		Modbus ABCD Hex CANopen $-12.5 \mathrm{~Hz}$ 2153 Hex	
Code			Quick
W3141	: F230		
W2050	: F230		
W4325	: F230		
W0894	: F230		

CMD. WORD IMAGE
FREQ. REF. WORD MAP MODBUS NETWORK DIAG MODBUS HMI DIAG
CANopen MAP
PROG. CARD SCANNER
[COMMUNICATION MAP] indicates the types of bus used for control or reference, the corresponding command and reference values, the status word, the words selected in the [DISPLAY CONFIG.] menu, and so forth.
The display format (hexadecimal or decimal) can be configured in the [DISPLAY CONFIG.] menu.

[COM. SCANNER INPUT MAP] and [COM SCAN OUTPUT MAP]:
Visualization of registers exchanged periodically (8 input and 8 output) for integrated Modbus and for fieldbus cards.

With graphic display terminal

Communication (continued)

The state of the LEDs, the periodic data, the address, the speed, and the format, and so forth is given for each bus.
\otimes LED off
LED on

Communication via Modbus

RUN	Term	+50.00 Hz
MODBUS NETWORK DIAG		80 A
COM LED :		
Mb NET frames nb.		
Mb NET CRC errors		
		Quick
Code		

Communication via the graphic display terminal

RUN	Term
MODBUS HMI DIAG	
COM LED :	
Mb HMI frames nb.	
Mb HMI CRC errors	
Code	

Communication via CANopen			
RUN	Term	+50.00Hz	
CANopen MAP			
RUN LED:			\otimes
ERR LED:			\otimes
PDO1 IMAGE			
PDO2 IMAGE			
PDO3 IMAGE			
Cod			Quick
Canopen NMT state			
Numb	of TX PDO		0
Numb	of RX PDO		0
Error			0
RX Er	Counter		0
TX Err	Counter		0

PDO configuration using the network tool.
Some PDOs cannot be

Communication via CANopen used.

RUN \quad Term	$+50.00 \mathrm{~Hz} \quad$ 80A	
PDO1 IMAGE		
Received PDO1-1:	FDBA Hex	
Received PDO1-2		
Received PDO1-3		
Received PDO1-4		
Transmit PDO1-1:	FDBA Hex	
Code	Quick	
Transmit PDO1-2		
Transmit PDO1-3		
Transmit PDO1-4		

PDO images are only visible if CANopen has been enabled (address other than OFF) and if the PDOs are active.

RUN \quad Term	+50.00 Hz	80A
PDO2 IMAGE		
Received PDO2-1:	FDBA Hex	
Received PDO2-2		
Received PDO2-3		
Received PDO2-4		
Transmit PDO2-1:	FDBA Hex	
Code	Quick	

Transmit PDO2-2
Transmit PDO2-3
Transmit PDO2-4

RUN \quad Term $+50.00 \mathrm{~Hz} \quad 80 \mathrm{~A}$	
PDO3 IMAGE	
Received PDO3-1 :	FDBA Hex
Received PDO3-2	
Received PDO3-3	
Received PDO3-4	
Transmit PDO3-1 :	FDBA Hex
Code	Quick

Transmit PDO3-2
Transmit PDO3-3
Transmit PDO3-4

With graphic display terminal

Communication (continued)

[Input scanner] and [Output scanner]:
Visualization of registers exchanged periodically (8 input and 8 output).

With graphic display terminal: Drive-internal states and values

Name	Description	
[Alarm groups] (ALGr)	Current alarm group numbers	
[HMI Frequency ref.] (LFr)	in Hz . Frequency reference via the graphic display terminal (can be accessed if the function has been configured).	
[Internal PID ref.] (rPI)	as a process value. PID reference via graphic display terminal (can be accessed if the function has been configured).	
[HMI torque ref.] (Ltr)	as a \% of the rated torque. Torque reference via graphic display terminal.	
[Multiplying coeff.] (MFr)	as a \% (can be accessed if [Multiplier ref. -] (MA2,MA3), page 151 has been assigned)	
[Frequency ref.] (FrH)	in Hz	
[Torque reference] (trr)	as a \% of the rated torque (can be accessed if the function has been configured)	
[Output frequency] (rFr)	in Hz	
[Measured output fr.] (MMF)	in Hz : The measured motor speed is displayed if an encoder card has been inserted, otherwise 0 appears.	
[Pulse in. work. freq.] (FqS)	in Hz : Frequency of the "Pulse input" input used by the [FREQUENCY METER] (FqF-) function, page 246.	
[Motor current] (LCr)	in A	
[ENA avg speed] (AUS)	in Hz: The parameter can be accessed if [ENA system] (EnA) = [Yes] (YES) (see page 96)	
[Motor speed] (SPd)	in rpm	
[Motor voltage] (UOP)	in V	
[Motor power] (OPr)	as a \% of the rated power	
[Motor torque] (Otr)	as a \% of the rated torque	
[Mains voltage] (ULn)	in V. Line voltage from the point of view of the DC bus, motor running or stopped.	
[Motor thermal state] (tHr)	as a \%	
[Drv.thermal state] (tHd)	as a \%	
[DBR thermal state] (tHb)	as a \% (can only be accessed on high rating drives)	
[Consumption] (APH)	in Wh, kWh or MWh (accumulated consumption)	
[Run time] (rtH)	in seconds, minutes or hours (length of time the motor has been switched on)	
[Power on time] (PtH)	in seconds, minutes or hours (length of time the drive has been switched on)	
[IGBT alarm counter] (tAC)	in seconds (length of time the "IGBT temperature" alarm has been active)	
[PID reference] (rPC)	as a process value (can be accessed if the PID function has been configured)	
[PID feedback] (rPF)	as a process value (can be accessed if the PID function has been configured)	
[PID error] (rPE)	as a process value (can be accessed if the PID function has been configured)	
[PID Output] (rPO)	in Hz (can be accessed if the PID function has been configured)	
[Date/Time] (CLO)	Current date and time generated by the Controller Inside card (can be accessed if the card has been inserted)	
$\begin{array}{\|l\|l} \hline[-----](o 02) \text { to } \\ {[-----](o 06)} \\ \hline \end{array}$	Words generated by the Controller Inside card (can be accessed if the card has been inserted)	
[Config. active] (CnFS)	Active configuration [Config. ${ }^{\circ} 0,1$ or 2]	
[Utilized param. set] (CFPS)	[Set $\mathrm{n}^{\circ} 1,2$ or 3] (can be accessed if parameter switching has been enabled, see page 212)	
[ALARMS] (ALr-)	List of current alarms. If an alarm is present, a \checkmark appears.	
[OTHER STATE] (SSt-)	List of secondary states:	
	[In motor fluxing] (FLX): In motor fluxing	[HSP attained] (FLA): High speed attained
	[PTC1 alarm] (PtC1): Probe alarm 1	[Load slipping] (AnA): Slipping alarm
	[PTC2 alarm] (PtC2): Probe alarm 2	[Set 1 active] (CFP1): Parameter set 1 active
	[LI6=PTC alarm] (PtC3): LI6 = PTC probe alarm	[Set 2 active] (CFP2): Parameter set 2 active
	[Fast stop in prog.] (FSt): Fast stop in progress	[Set 3 active] (CFP3): Parameter set 3 active
	[Current Th. attained] (CtA): Current threshold attained ([Current threshold] (Ctd), page 71)	[In braking] (brS): Drive braking
	[Freq. Th. attained] (FtA): Frequency threshold attained ([Freq. threshold] (Ftd), page 72)	[DC bus loading] (dbL): DC bus loading
	[Freq. Th. 2 attained] (F2A): 2nd frequency threshold attained ([Freq. threshold 2] (F2d), page 72)	[Forward] (MFrd): Motor running forward
	[Frequency ref. att.] (SrA): Frequency reference attained	[Reverse] (MrrS): Motor running in reverse
	[Motor th. state att.] (tSA): Motor 1 thermal state attained	[High torque alarm] (ttHA): Motor torque overshooting high threshold [High torque thd.] (ttH), page 71.
	[External fault alarm] (EtF): External fault alarm	[Low torque alarm] (ttLA): Motor torque undershooting low threshold [Low torque thd.] (ttL), page 71.
	[Auto restart] (AUtO): Automatic restart in progress	[Freq. meter Alarm] (FqLA): Measured speed threshold attained: [Pulse warning thd.] (FqL) page 72.
	[Remote] (FtL): Line mode control	
	[Auto-tuning] (tUn): Performing auto-tuning	
	[Undervoltage] (USA): Undervoltage alarm	
	[Cnfg. 1 act.] (CnF1): Configuration 1 active	
	[Cnfg. 2 act.] (CnF2): Configuration 2 active	

With integrated display terminal

This menu can be used to display the drive inputs，states and internal values．

Code	Name／Description
$1 \square 17$－	I／O MAP
	Logic input functions Can be used to display the functions assigned to each input．If no functions have been assigned， nO is displayed． Use the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ arrows to scroll through the functions．If a number of functions have been assigned to the same input，check that they are compatible．
L 151	State of logic inputs LII to LI8 Can be used to visualize the state of logic inputs LI1 to LI8 （display segment assignment：high $=1$ ，low $=0$ ） Example above： LI 1 and LI 6 are at $1 ; \mathrm{LI} 2$ to $\mathrm{LI} 5, \mathrm{LI} 7$ and LI 8 are at 0 ．
L 152	State of logic inputs LI9 to LII4 and Power Removal Can be used to visualize the state of logic inputs LI9 to LI14 and PR（Power Removal） （display segment assignment：high $=1$ ，low $=0$ ） Example above：LI9 and LI14 are at $1, \mathrm{LI} 10$ to LI13 are at 0 and PR（Power Removal）is at 1 ．
A IR－ A I IA －I己月 －1ヨ －14月	Analog input functions Can be used to display the functions assigned to each input．If no functions have been assigned， nO is displayed． Use the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ arrows to scroll through the functions．If a number of functions have been assigned to the same input，check that they are compatible．

With integrated display terminal: Drive-internal states and values

Code	Name/Description	Unit
ALGr	Alarm groups: Current alarm group numbers	-
rPI	Internal PID reference: PID reference via graphic display terminal (can be accessed if the function has been configured).	as a process value
MFr	Multiplication coefficient (can be accessed if [Multiplier ref. -] (MA2,MA3), page 151 has been assigned)	\%
FrH	Frequency reference	Hz
trr	Torque reference: Can be accessed if the function has been configured	\%.
rFr	Output frequency	Hz
MMF	The measured motor speed is displayed if an encoder card has been inserted, otherwise 0 appears.	Hz
FqS	Frequency of the "Pulse input" input used by the [FREQUENCY METER] (FqF-) function, page 246.	Hz
LCr	Motor current	A
AUS	ENA avg speed: The parameter can be accessed if EnA = YES (see page 96)	Hz
SPd	Motor speed	rpm
UOP	Motor voltage	V
OPr	Motor power	\%
Otr	Motor torque	\%
ULn	Line voltage: Line voltage from the point of view of the DC bus, motor running or stopped.	V
tHr	Motor thermal state	\%
thd	Drv thermal state	\%
tHb	DBR thermal state: Can be accessed on high rating drives only.	\%
APH	Power consumption	Wh, kWh or MWh
rtH	Run time: Length of time the motor has been turned on	seconds,
PtH	Power on time: Length of time the drive has been turned on	hours
tAC	IGBT alarm counter: Length of time the "IGBT temperature" alarm has been active	seconds
rPC	PID reference: Can be accessed if the PID function has been configured	
rPF	PID feedback: Can be accessed if the PID function has been configured	value
rPE	PID error: Can be accessed if the PID function has been configured	
rPO	PID Output: Can be accessed if the PID function has been configured	Hz
CLO-	tIME, dAY: Current date and time generated by the Controller Inside card (can be accessed if the card has been inserted)	-
002	Word generated by the Controller Inside card (can be accessed if the card has been inserted)	-
003	Word generated by the Controller Inside card (can be accessed if the card has been inserted)	-
O04	Word generated by the Controller Inside card (can be accessed if the card has been inserted)	-
005	Word generated by the Controller Inside card (can be accessed if the card has been inserted)	-
006	Word generated by the Controller Inside card (can be accessed if the card has been inserted)	-
CnFS	Config. active: CnF0, 1 or 2 (can be accessed if motor or configuration switching has been enabled, see page 216)	-
CFPS	Utilized param. set: CFP1, 2 or 3 (can be accessed if parameter switching has been enabled, see page 212)	-

[1.3 SETTINGS] (SEt-)

With graphic display terminal:

RDY \quad Term	+0.00 Hz	0 A
MAIN MENU		
1 DRIVE MENU		
2 ACCESS LEVEL		
3 OPEN / SAVE AS		
4 PASSWORD		
5 LANGUAGE		
Code	Quick	

ENT	RUN	Term	$+50.00 \mathrm{~Hz}$	80A
	1.3 SETTINGS			
	Ramp increment			
	Acceler Decele Acceler Decele	On		
	Code	<<	>>	Quick

With integrated display terminal:

The adjustment parameters can be modified with the drive running or stopped．

4 DANGER

UNINTENDED EQUIPMENT OPERATION

－Verify that changes made to the settings during operation do not present any danger．
－We recommend stopping the drive before making any changes．
Failure to follow these instructions will result in death or serious injury．

Code	Name／Description	Adjustment range	Factory setting
Inr	［Ramp increment］	0，01－0，1－1	0，1
$\begin{gathered} \square . \quad \square \\ \square . \quad I \\ \\ \hline \end{gathered}$	［0，01］：ramp up to 99.99 seconds ［0，1］：ramp up to 999.9 seconds ［1］：ramp up to 6000 seconds This parameter is valid for［Acceleration］（ACC），［Deceleration］（dEC），［Acceleration 2］（AC2）and ［Deceleration 2］（dE2）．		
H［［	［Acceleration］	0.01 to $6000 \mathrm{~s}^{(1)}$	3.0 s
	Time to accelerate from 0 to the［Rated motor freq．］（FrS）（page 79）．Make sure that this value is compatible with the inertia being driven．		
$d E[$	［Deceleration］	0.01 to $6000 \mathrm{~s}^{(1)}$	3.0 s

Time to decelerate from the［Rated motor freq．］（FrS）（page 79）to 0 ．Make sure that this value is compatible with the inertia being driven．

H［2	［Acceleration 2］	0.01 to $6000 \mathrm{~s}^{(1)}$	5.0 s
＊	See page 153 Time to accelerate from 0 to the［Rated motor freq．］（FrS）．Make sure that this value is compatible with the inertia being driven．		
$\pm E 2$	［Deceleration 2］	0.01 to $6000 \mathrm{~s}^{(1)}$	5.0 s

See page 153
Time to decelerate from the［Rated motor freq．］（FrS）to 0 ．Make sure that this value is compatible with the inertia being driven．

ER I	［Begin Acc round］	0 to 100\％	10\％
	See page 153 Rounding of start of acceleration ramp as a \％of the［Acceleration］（ACC）or［Acceleration 2］（AC2）ramp time．		
ヒ月	［End Acc round］	－	10\％
＊	See page 153 Rounding of end of acceleration ramp as a \％of the［Acceleration］（ACC）or［Acceleration 2］（AC2） ramp time． Can be set between 0 and（100\％－［Begin Acc round］（tA1））		
ヒヵコ	Begin Dec round］	0 to 100\％	10\％

See page 153

Rounding of start of deceleration ramp as a \％of the［Deceleration］（dEC）or［Deceleration 2］（dE2）ramp time．

1．Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to［Ramp increment］（Inr）．

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

Code	Name/Description	Adjustment range	Factory setting
$t \rightarrow 4$ \star	See page 153 - Rounding of end of deceleration ramp as a \% of the [Deceleration] (dEC) or [Deceleration 2] (dE2) ramp time. - Can be set between 0 and (100\% - [Begin Dec round] (tA3))		
LSP	[Low speed] Motor frequency at minimum reference, can be set between 0 and [High speed] (HSP).		
H5P	[High speed] Motor frequency at ma setting changes to 60 \square LOSS OF MOTOR FUNC For permanent magnet sy The maximum speed perm Failure to follow these in	d] (LSP) and [Max fre 60). t be exceeded, otherwise exceeded at any time.	50 Hz ency] (tFr). The factory magnetization may occur.
It H	[Mot. therm. current] Motor thermal protectio	$0.2 \text { to } 1.5 \ln { }^{(1)}$ on the nameplate.	According to drive rating
$5 P \square$	[Speed prop. gain]	0 to 1000\%	40\%
*	This parameter can be accessed if [Speed loop type] (SSL), page $92=$ [Standard] (Std). Speed loop proportional gain.		
$51 t$	[Speed time integral]	1 to 1000\%	100\%
*	This parameter can be accessed if [Speed loop type] (SSL), page $92=$ [Standard] (Std). Speed loop integral time constant.		
5 F [[K speed loop filter]	0 to 100\%	0
*	This parameter can be accessed if [Speed loop type] (SSL), page 92 = [Standard] (Std). Speed loop filter coefficient.		
5 ヒ A	[Fr.Loop.Stab]	0 to 100\%	20\%
*	This parameter can be accessed if [Speed loop type] (SSL), page $92=$ [High perfor.] (HPF). Stability: Used to adapt the return to steady state after a speed transient, according to the dynamics of the machine. Gradually increase the stability to increase control loop attenuation and thus reduce any overspeed.		
$F L \square$	[FreqLoopGain]	0 to 100\%	20\%
*	This parameter can be accessed if [Speed loop type] (SSL), page $92=[$ High perfor.] (HPF). Frequency loop gain: Used to adapt the response of the machine speed according to the dynamics. Gradually increase the gain to increase the control loop passband.		

[^4]

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Standard speed loop - Parameter settings for [K speed loop filter] (SFC), [Speed prop. gain] (SPG) and [Speed time integral] (SIt)

- The following parameters can only be accessed in vector control profiles: [Motor control type] (Ctt), page $74=[\mathrm{SVC} \mathrm{U}]$ (UUC), [SVC I] (CUC), [FVC] (FUC), [Sync. mot.] (SYn) or [Sync.CL] (FSY) if [Speed loop type] (SSL), page 92 = [Standard] (Std) and if [ENA system] (EnA), page $96=[\mathrm{Non}](\mathrm{nO})$.
- The factory settings are suitable for most applications.

General case: Setting for [K speed loop filter] (SFC) $=\mathbf{0}$
The regulator is an "IP" type with filtering of the speed reference, for applications requiring flexibility and stability (hoisting or high inertia, for example).

- [Speed prop. gain] (SPG) affects excessive speed.
- [Speed time integral] (SIt) affects the passband and response time.

Initial response
Reference division

Reduction in SIT
Reference division

Reduction in SIT

Reference division

Increase in SPG
Reference division

Special case: Parameter [K speed loop filter] (SFC) not 0

This parameter must be reserved for specific applications that require a short response time (trajectory positioning or servo control).

- When set to 100 as described above the regulator is a "PI" type, without filtering of the speed reference.
- Settings between 0 and 100 will obtain an intermediate function between the settings below and those on the previous page.

Example: Setting for [K speed loop filter] (SFC) = 100

- [Speed prop. gain] (SPG) affects the passband and response time.
- [Speed time integral] (SIt) affects excessive speed.

Initial response

Reference division

Reduction in SIT
Reference division

Reduction in SIT \backslash

Reference division

Increase in SPG

Reference division

High performance speed loop - Parameter settings for [FreqLoopGain] (FLG) and [Fr.Loop.Stab] (StA)

These parameters can only be accessed if [Speed loop type] (SSL), page $92=$ [High perf.] (HPF).

Inertia

The [Estim. app. inertia] (JESt) parameter, page 92, is the default value of the inertia being driven, estimated by the drive based on the motor parameters. Speed loop default settings are determined by the drive from this inertia.
The value of the actual inertia being driven must be entered in the [Application Inertia] (JAPL) parameter, page 93. This value is then used by the drive to optimize speed loop settings, thus achieving the best results (provided that the exact value has been entered). The [App. Inertia Coef.] (JACO) parameter, page 92, is used to fix the ratio between [Estim. app. inertia] (JESt), page 92 and [Application Inertia] (JAPL).

Gains

These parameters are used to adjust the response of the speed loop obtained from the inertia, in particular when this is not known.

- [Fr.Loop.Stab] (StA): Used to adapt the return to steady state after a speed transient, according to the dynamics of the machine. Gradually increase the stability to increase control loop attenuation and thus reduce any overspeed.
- [FreqLoopGain] (FLG): Used to adapt the response of the machine speed transients according to the dynamics (passband). For machines with high resistive torque, high inertia or fast cycles, increase the gain gradually.

Increase in StA
Reference division

Initial response
Reference division

Expert parameters

Two parameters from the [1.4 MOTOR CONTROL] (drC-) menu are accessible at Expert level and can be used to boost dynamics if necessary. See page 93.

Code	Name/Description	Adjustment range	Factory setting
LPE	[ENA prop.gain]	1 to 9999	250
*	See page 96		
	[ENA integral gain]	0 to 9999	100
*	See page 96		
$U F r$	[IR compensation]	25 to 200\%	100\%
\star	See page 97		
	[Slip compensation]	0 to 300\%	100\%
*	See page 81		
	[Ramp divider]	0 to 10	4
\star	See page 155		
$I d[$	[DC inject. level 1]	0.1 to $1.41 \ln ^{(1)}$	$0.64 \ln ^{(1)}$
	See page 156 Level of DC injection braking current activated via logic input or selected as stop mode.		
	CAUTION		
	LOSS OF MOTOR FUNCTION Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage.		
tal	[DC injection time 1]	0.1 to 30 s	0.5 s
\star	See page 156 Maximum current inje 2] (IdC2).	the injection current	omes [DC inject.
$1 d[2$	[DC inject. level 2]	0.1 ln to [DC inject. level 1] (IdC)	$0.5 \ln { }^{(1)}$
*	See page 156 Injection current activated by logic input or selected as stop mode, once period of time [DC injection time 1] (tdI) has elapsed.		
	CAUTION		
	LOSS OF MOTOR FUNCTION Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage.		
$t d[$	[DC injection time 2]	0.1 to 30 s	0.5 s
*	See page 156 Maximum injection time [DC inject. level 2] (IdC2) for injection selected as stop mode only.		

1. In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

$\star \quad$| These parameters only appear if the corresponding function has been selected in another menu. When the parameters can |
| :--- |
| also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed |
| in these menus, on the pages indicated, to aid programming. |

[^5]

1. In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
}

Code	Name／Description	Adjustment range	Factory setting
$5 P 2$	［Preset speed 2］	0 to 1600 Hz	10 Hz
\star	See page 162 Preset speed 2		
5 Pヨ	［Preset speed 3］	0 to 1600 Hz	15 Hz
\star	See page 162 Preset speed 3		
$5 P 4$	［Preset speed 4］	0 to 1600 Hz	20 Hz
\star	See page 162 Preset speed 4		
$5 P 5$	［Preset speed 5］	0 to 1600 Hz	25 Hz
＊	See page 162 Preset speed 5		
5 P6	［Preset speed 6］	0 to 1600 Hz	30 Hz
＊	See page 162 Preset speed 6		
$5 P 7$	［Preset speed 7］	0 to 1600 Hz	35 Hz
＊	See page 162 Preset speed 7		
5 P日	［Preset speed 8］	0 to 1600 Hz	40 Hz
＊	See page 162 Preset speed 8		
5 P9	［Preset speed 9］	0 to 1600 Hz	45 Hz
\star	See page 162 Preset speed 9		
$5 P 10$	［Preset speed 10］	0 to 1600 Hz	50 Hz
＊	See page 162 Preset speed 10		
5 P I I	［Preset speed 11］	0 to 1600 Hz	55 Hz
＊	See page 162 Preset speed 11		
5 Pİ	［Preset speed 12］	0 to 1600 Hz	60 Hz
＊	See page 162 Preset speed 12		
5 P1ヨ	［Preset speed 13］	0 to 1600 Hz	70 Hz
＊	See page 162 Preset speed 13		
$5 P 14$	［Preset speed 14］	0 to 1600 Hz	80 Hz
＊	See page 162 Preset speed 14		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

1. If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit. For Example: 15.65 for 15650.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name/Description	Adjustment range	Factory setting
PEr	[PID error Alarm]	0 to $65535{ }^{(1)}$	100
*	See page 192 Regulator error monitoring threshold		
	[Speed input \%]	1 to 100\%	100\%
*	See page 193 Multiplying coefficient for predictive speed input.		
rP2	[Preset ref. PID 2]	See page $195{ }^{(1)}$	300
*	See page 195 Preset PID reference		
	[Preset ref. PID 3]	See page $195{ }^{(1)}$	600
*	See page 195 Preset PID reference		
rP4	[Preset ref. PID 4]	See page $195{ }^{(1)}$	900
*	See page 195 Preset PID reference		
	[Brake release I FW]	0 to $1.32 \ln ^{(2)}$	0
\star	See page 173 Brake release current threshold for lifting or forward movement		
	[Brake release I Rev]	0 to 1.32 In ${ }^{(2)}$	0
*	See page 173 Brake release current threshold for lowering or reverse movement		
	[Brake Release time]	0 to 5.00 s	0 s
*	See page 174 Brake release time delay		
$b I r$	[Brake release freq] [Auto] (AUtO) 0 to 10 Hz See page 174 Brake release frequency threshold		[Auto] (AUtO)
bEn	[Brake engage freq] See page 174 Brake engage frequency threshold	[Auto] (AUtO) 0 to 10 Hz	[Auto] (AUtO)
ヒbE	[Brake engage delay]	0 to 5.00 s	0 s
*	See page 174 Time delay before request to engage brake. To delay the engaging of the brake, for horizontal movement only, if you wish the brake to engage when the drive comes to a complete stop.		

1. If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit. For Example: 15.65 for 15650.
2. In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name/Description	Adjustment range	Factory setting
b Et	[Brake engage time]	0 to 5.00 s	0 s
*	See page 174 Brake engage time (brake response time)		
$\int d[$	[Jump at reversal] See page 175	[Auto] (Auto) 0 to 10 Hz	[Auto] (AUtO)
	[Time to restart]	0 to 15.00 s	0 s
*	See page 175 Time between the end of a brake engage sequence and the start of a brake release sequence		
tLIT	[Motoring torque lim]	0 to 300\%	100\%
*	See page 200 Torque limitation in generator mode, as a $\%$ or in 0.1% increments of the rated torque in accordance with the [Torque increment] (IntP) parameter, page 200.		
	[Gen. torque lim]	0 to 300\%	100\%
*	See page 200 Torque limitation in generator mode, as a \% or in 0.1% increments of the rated torque in accordance with the [Torque increment] (IntP) parameter, page 200.		
	[Traverse freq. high]	0 to 10 Hz	4 Hz
*	See page 222		
trL	[Traverse freq. low]	0 to 10 Hz	4 Hz
\star	See page 222		
$\begin{gathered} 95 H \\ \star \end{gathered}$	[Quick step High] See page 222	0 to [Traverse freq. high] (trH)	0 Hz
$95 \mathrm{~L}$	[Quick step Low] See page 222	0 to [Traverse freq. low] (trL)	0 Hz
[td	[Current threshold]	0 to $1.5 \mathrm{ln}{ }^{(1)}$	In ${ }^{(1)}$
	Current threshold for [l attained] (CtA) function assigned to a relay or a logic output (see page 121).		
Et H	[High torque thd.]	-300% to $+300 \%$	100\%
	High current threshold for [High tq. att.] (ttHA) function assigned to a relay or a logic output (see page 121), as a \% of the rated motor torque.		
$t \in L$	[Low torque thd.]	-300% to $+300 \%$	50\%
	Low current threshold for [Low tq. att.] (ttLA) function assigned to a relay or a logic output (see page 121), as a \% of the rated motor torque.		

1. In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name/Description	Adjustment range	Factory setting
$F 7 \mathrm{~L}$	[Pulse warning thd.]	0 Hz to 30.00 kHz	0 Hz
*	Speed threshold measured by the FREQUENCY METER] FqF-) function, page 246, assigned to a relay or a logic output (see page 121).		
Ftd	[Freq. threshold] Frequency threshold for [Freq.Th.att.] (FtA) function assigned to a relay or a logic output (see page 121), or used by the [PARAM. SET SWITCHING] (MLP-) function, page 212.		
F2d	[Freq. threshold 2] Frequency threshold for [Freq. Th. 2 attain.] (F2A) function assigned to a relay or a logic output (see page 121), or used by the [PARAM. SET SWITCHING] (MLP-) function, page 212.		
FFE	[Freewheel stop Thd] See page 155 This parameter supports switching from a ramp stop or a fast stop to a freewheel stop below a low speed threshold. It can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) or [Ramp stop] (rMP). 0.0: Does not switch to freewheel stop. 0,1 to 1600 Hz : Speed threshold below which the motor will switch to freewheel stop.		
$t \in d$	[Motor therm. level] 0 to 118% 100% See page 234 Trip threshold for motor thermal alarm (logic output or relay)		
Lb L	[Load correction] See page 101 Rated correction in Hz .		

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

[1.4 MOTOR CONTROL] (drC-)

With graphic display terminal:

With integrated display terminal:

The parameters in the [1.MOTOR CONTROL] (drC-) menu can only be modified when the drive is stopped and no run command is present, with the following exceptions:

- [Auto tuning] (tUn), page 89 and [Angle auto-test] (ASA), page 86, which can cause the motor to start up.
- Parameters containing the sign () in the code column, which can be modified with the drive running or stopped.

\begin{tabular}{|c|c|}
\hline Code \& Name/Description \quad Factory setting

\hline LEt
UF5

¢ \& | [Motor control type] (continued) |
| :--- |
| [V/F 5pts] (UF5): 5-segment V/F profile: Similar to V/F 2 pts profile but also supports the avoidance of resonance (saturation). |
| [Sync. mot.] (SYn): For permanent magnet synchronous motors with sinusoidal electromotive force (EMF) only. This selection makes the asynchronous motor parameters inaccessible, and the synchronous motor parameters accessible. |
| [Sync.CL] (FSY): Closed-loop synchronous motor. For permanent magnet synchronous motors with sinusoidal electromotive force (EMF) only, with encoder. This selection is only possible if an encoder card has been inserted. It makes the asynchronous motor parameters inaccessible, and the synchronous motor parameters accessible. This function is not possible, however, when using an incremental encoder that generates signal " A " only. |

\hline $t F_{r}$ \& | [Max frequency] |
| :--- |
| The factory setting is 60 Hz , or preset to 72 Hz if [Standard mot. freq] (bFr) is set to 60 Hz . |
| The maximum value is limited by the following conditions: |
| It must not exceed 10 times the value of [Rated motor freq.] (FrS), page 79 for an asynchronous motor or [Nominal freq sync.] (FrSS), page 84 for a synchronous motor. |
| It must not exceed 500 Hz if [Motor control type] (Ctt) (page 74) is not V/F or if the drive rating is higher than ATV71HD37. |
| Values between 500 Hz and 1600 Hz are only possible in V/F control and for powers limited to 37 kW (50 hp). In this case, configure [Motor control type] (Ctt) before [Max frequency] (tFr). |

\hline | PHr |
| :--- |
| Аь |
| Aㄴ | \& | [Output Ph rotation] |
| :--- |
| [ABC] (AbC): Forward |
| [ACB] (ACb): Reverse |
| This parameter can be used to reverse the direction of rotation of the motor without reversing the wiring. |
| NOTE: Do not modify the [Output Ph rotation] (PHr) parameter when [Motor control type] (Ctt), page $74=$ [FVC] (FUC) or [Sync.CL] (FSY). |
| The direction of rotation must be modified, if required, before or during the encoder check procedure detailed on page 77, when [Motor control type] (Ctt) is not [FVC] (FUC) or [Sync.CL] (FSY). Otherwise, checking and measuring procedures must be performed again ([Angle auto-test] (ASA) and [Angle offset value] (ASU) return to $[\mathrm{No}](\mathrm{nO})$). |

\hline
\end{tabular}

Code	Name/Description	Adjustment range	Factory setting
$\square F I$$\square 口 \square$YES	[Sinus filter] (output line filter)		[No] (nO)
	[No l (nO): No sinus filter [Yes] (YES): Use of a sinus filter, to limit overvoltages on the motor and reduce the ground fault leakage current. [Sinus filter] (OFI) is forced to [No] (nO) on ATV71p037M3 and ATV71p075N4. NOTE: The settings for [Current Limitation] (CLI) and [I Limit. 2 value] (CL2), page 66 must be made once [Sinus filter] (OFI) has been set to [Yes] (YES) and [Motor control type] (Ctt), page 74 has been set to [V/F 2pts] (UF2) or [V/F 5pts] (UF5). This is due to the fact that for certain ratings, this configuration will result in a reduced factory setting (1.36 In) for current limitations.		
	CAUTION		
	MOTOR OVERHEATING - If [Sinus filter] (OFI) is set to [Yes] (YES) and the maximum frequency exceeds 100 Hz or the motor type is synchronous, then the motor can overheat and the drive will trip on an overtemperature fault. - Consult the motor manufacturer for the thermal capability of the motor when operating over the desired speed range. Failure to follow these instructions can result in equipment damage.		
${ }^{5 F r}($	[Switching freq.]	According to rating	According to rating
	Switching frequenc Adjustment range: setting, can be limit [Sinus filter] (OFI) If the value is less Adjustment with driv - If the initial value - If the initial value Adjustment with the NOTE: In th and reset it If [Motor co switching fr	m and maximum val W), the rating and th value] (CL2), page 66 ove 1.9 kHz while ru z must be maintaine automatically reduc] (FSY) we do not re e speed instability.	, as well as the factory onfiguration of the e limited to 1.36 In . g. hile running. e switching frequency mend setting the
	CAUTION		
	EXCESSIVE SWITCHING FREQUENCY Do not exceed a switching frequency of 4 kHz when using an ATV71•075N4 to U40N4 drive when the RFI filters are disconnected. Failure to follow these instructions can result in equipment damage.		
	[Current Limitation]	0 to $1.65 \ln { }^{(2)}$	$1.5 \mathrm{ln}{ }^{(2)}$
	Used to limit the motor current. The adjustment range is limited to 1.36 In if [Switching freq.] (SFr) is less than 2 kHz . NOTE: If the setting is less than 0.25 In , the drive may lock in [Output Phase Loss] (OPF) fault mode if this has been enabled (see page 235). If it is less than the no-load motor current, the limitation no longer has any effect.		
	CAUTION		
	LOSS OF MOTOR FUNCTION Verify that the motor will withstand this current, particularly in the case of permanent magnet synchronous motors, which are susceptible to demagnetization. Failure to follow these instructions can result in equipment damage.		

1. Parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

Selecting the encoder

Follow the recommendations in the catalog and the Installation Manual.
NOTE: When an encoder is used with a VW3 A3 408 or VW3 A3 409 card, it is only possible to configure the "encoder" input for speed feedback. Functions can only be configured as references or inputs with a VW3 A3 401 to 407 and VW3 A3 411 card.

When an encoder is used with a VW3 A3 409 card, the drive remains locked in stop mode (and displays nSt) if the encoder is not fully configured.

Encoder check procedure

This procedure applies to all types of encoder.

1. Configure the parameters of the encoder used, pages 117 to 120.
2. Set [Motor control type] (Ctt) to a value other than [FVC] (FUC) and [Sync.CL] (FSY), even if it is the required configuration. For example, use [SVC V] (UUC) for an asynchronous motor and [Sync. mot.] (SYn) for a synchronous motor.
3. Configure the motor parameters in accordance with the specifications on the rating plate.

- Asynchronous motor (see page 79): [Rated motor power] (nPr), [Rated motor volt.] (UnS), [Rated mot. current] (nCr), [Rated motor freq.] (FrS), [Rated motor speed] (nSP).
- Synchronous motor (see page 83): [Nominal I sync] (nCrS), [Nom motor spdsync] (nSPS), [Pole pairs.] (PPnS),
[Syn. EMF constant] (PHS), [Autotune L d-axis] (LdS), [IAutotune L q-axis] (LqS), [Cust. stator R syn] (rSAS).
[Current Limitation] (CLI) must not exceed the maximum motor current, otherwise demagnetization may occur.

4. Set [Encoder usage] $(E n U)=[\mathrm{No}](n O)$.
5. Perform auto-tuning.
6. Set [Encoder check] $(\mathrm{EnC})=[\mathrm{Yes}](\mathrm{YES})$.
7. Verify motor rotation.
8. Run the motor at approximately 15% of the rated speed for at least 3 seconds, and use the [1.2-MONITORING] (SUP-) menu to monitor its behavior.
9. If it trips on an [Encoder fault] (EnF), [Encoder check] (EnC) returns to [No] (nO).

- Check the parameter settings and perform auto-tuning again (see steps 1 to 5 above).
- Check that the mechanical and electrical operation of the encoder, its power supply and connections are all OK.
- Reverse the direction of rotation of the motor ([Output Ph rotation] (PHr) parameter page 75) or the encoder signals.

10. Repeat the operations from step 6 onwards until [Encoder check] (EnC) changes to [Done] (dOnE).
11. If necessary, change [Motor control type] (Ctt) to [FVC] (FUC) or [Sync.CL] (FSY). In the case of [Sync.CL] (FSY), go on to perform the "Procedure for measuring the phase-shift angle between the motor and the encoder" on page 85.

Code	Name/Description ${ }^{\text {a }}$ (Factory setting
E S^{-}	[ENCODER FEEDBACK] Can only be accessed if an encoder card has been inserted.
$E \cap[$ $\begin{array}{r} n \square \\ y E 5 \\ d \square \cap E \end{array}$	[Encoder check] Check encoder feedback. See procedure on previous page. This parameter can be accessed if an encoder card has been installed ${ }^{(1)}$. [$N o t$ done] (nO): Check not performed. [Yes] (YES): Activates monitoring of the encoder. [Done] (dOnE): Check performed successfully. The check procedure checks: The direction of rotation of the encoder/motor The presence of signals (wiring continuity) The number of pulses/revolution If an encoder fault is detected, the drive locks in [Encoder fault] (EnF) fault mode.
$E \cap U$	[Encoder usage] [No$](\mathrm{nO})$
$\begin{aligned} & \text { חロ } \\ & 5 E L \\ & \Gamma E G \end{aligned}$ PGr	This parameter can be accessed if an encoder card has been installed ${ }^{(1)}$. [No] (nO): Function inactive. [Fdbk monit.] (SEC): The encoder provides speed feedback for monitoring only. [Spd fdk reg.] (rEG): The encoder provides speed feedback for regulation and monitoring. This configuration is automatic if the drive is configured for closed-loop operation ([Motor control type] (Ctt) $=[\mathrm{FVC}]$ (FUC) or [Sync.CL] (FSY). If [Motor control type] (Ctt) = [SVC V] (UUC) the encoder operates in speed feedback mode and enables static correction of the speed to be performed. This configuration is not accessible for other [Motor control type] (Ctt) values. [Speed ref.] (PGr): The encoder provides a reference. Can only be selected with an incremental encoder card.

1. The encoder parameters can only be accessed if the encoder card has been installed, and the available selections will depend on the type of encoder card used. The encoder configuration can also be accessed in the [1.5- INPUTS / OUTPUTS CFG] (I/O) menu.

Asynchronous motor parameters:

These parameters can be accessed if [Motor control type] (Ctt), page 74 = [SVC V] (UUC), [SVC I] (CUC), [FVC] (FUC), [V/F 2pts] (UF2) or [V/F 5pts] (UF5). In this case, the synchronous motor parameters cannot be accessed.

Code	Name/Description ${ }^{\text {a }}$ Adjustment range
A 5 -	[ASYNC. MOTOR] Can only be accessed if [Motor control type] (Ctt), page $74=[S V C$ V] (UUC), [SVC I] (CUC), [FVC] (FUC), [V/F 2pts] (UF2), or [V/F 5pts] (UF5).
$n P r$	[Rated motor power] Rated motor power given on the nameplate, in kW if [Standard mot. freq] (bFr) $=[50 \mathrm{~Hz} \operatorname{IEC}]$ (50), in hp if [Standard mot. freq] (bFr) = [60Hz NEMA] (60).
$U \cap 5$	[Rated motor volt.] Rated motor voltage given on the nameplate. ATV71・ゃゃM3X: 100 to 240 V , ATV71 $\bullet \bullet$ N4: 200 to 480 V
$n ¢ r$	[Rated mot. current] Rated motor current given on the nameplate.
Fr 5	[Rated motor freq.] Rated motor frequency given on the nameplate. The factory setting is 50 Hz , or preset to 60 Hz if [Standard mot. freq] (bFr) is set to 60 Hz . The maximum value is limited to 500 Hz if [Motor control type] (Ctt) (page 74) is not V/F or if the drive rating is higher than ATV71HD37. Values between 500 Hz and 1600 Hz are only possible in V/F control and for powers limited to $37 \mathrm{~kW}(50 \mathrm{hp}$). In this case, configure [Motor control type] (Ctt) before [Rated motor freq.] (FrS).
$\text { In } 5$	[rpm increment] Increment of parameter [Rated motor speed] (nSP). [x 1 rpm] (1): Increment of 1 rpm , to be used if [Rated motor speed] (nSP) does not exceed 65535 rpm . [x10 rpm] (10): Increment of 10 rpm , to be used if [Rated motor speed] (nSP) exceeds 65535 rpm . NOTE: Changing [rpm increment] (InSP) will restore [Rated motor speed] (nSP) to its factory setting.
п5P	[Rated motor speed] Rated motor speed given on the nameplate. Adjustable between 0 and 65535 rpm if [rpm increment] (InSP) $=[\mathrm{x} 1 \mathrm{rpm}]$ (1) or between 0.00 and 96.00 krpm if [rpm increment] (InSP) $=[\mathrm{x} 10 \mathrm{rpm}](10)$. 0 to 9999 rpm then 10.00 to 65.53 or 96.00 krpm on the integrated display terminal. If, rather than the rated speed, the nameplate indicates the synchronous speed and the slip in Hz or as a \%, calculate the rated speed as follows:

[^6]| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| H5 4－ | ［ASYNC．MOTOR］（continued） | | |
| Uロ | ［U0］
 V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 2pts］（UF2）or ［V／F 5pts］（UF5） | 0 to 600 or 1000 V according to rating | 0 |
| | | | |
| 41 | [U1] | 0 to 600 or 1000 V according to rating | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | | |
| F I | ［F1］ | 0 to 1600 Hz | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）＝［V／F 5pts］（UF5） | | |
| U | [U2] | 0 to 600 or 1000 V according to rating | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | | |
| $F 2$ | ［F2］ | 0 to 1600 Hz | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | | |
| リヨ | ［U3］ | 0 to 600 or 1000 V according to rating | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | | |
| F ${ }^{7}$ | ［F3］ | 0 to 1600 Hz | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | | |
| 44 | ［U4］ | 0 to 600 or 1000 V according to rating | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | | |
| F 4 | ［F4］ | 0 to 1600 Hz | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）＝［V／F 5pts］（UF5） | | |
| ± 5 | ［U5］
 V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | 0 to 600 or 1000 V according to rating | 0 |
| F 5 | ［F5］ | 0 to 1600 Hz | 0 |
| | V／F profile setting．This parameter can be accessed if［Motor control type］（Ctt）$=$［V／F 5pts］（UF5） | | |

Code	Name/Description	Adjustment range	Factory setting
A 5 y -	[ASYNC. MOTOR] (continued)		
$U[己$ $\begin{array}{r} n \square \\ \text { YE } 5 \end{array}$	[No] (nO): Function inactive. [Yes] (YES): Function active. Used in applications in which the motor rated speed and frequency need to be exceeded in order to optimize operation at constant power, or when the maximum voltage of the motor needs to be limited to a value below the line voltage. The voltage/frequency profile must then be adapted in accordance with the motor's capabilities to operate at maximum voltage UCP and maximum frequency FCP.		
ULP	[V. constant power] This parameter can be accessed if [Vector Control 2pt] (UC2) = [Yes] (YES)	According to drive rating	According to drive rating and [Standard mot. freq] (bFr)
$F[P$	[Freq. Const Power] This parameter can be accessed if [Vector Control 2pt] (UC2) = [Yes] (YES)	According to drive rating and [Rated motor freq.] (FrS)	$=[$ Standard mot. freq] (bFr)
$5 L P$	[Slip compensation] (1)	0 to 300\%	100\%
(2)	This parameter can be accessed if [Motor control type] (Ctt) is not [V/F 2pts] (UF2) or [V/F 5pts] (UF5). Adjusts the slip compensation around the value set by the rated motor speed. The speeds given on motor nameplates are not necessarily exact. - If slip setting < actual slip: The motor is not rotating at the correct speed in steady state, but at a speed lower than the reference. - If slip setting > actual slip: The motor is overcompensated and the speed is unstable.		

1. Parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(1) Parameter that can be modified during operation or when stopped.

Asynchronous motor parameters that can be accessed in [Expert] mode

These include:

- Special parameters.
- Parameters calculated by the drive during auto-tuning, in read-only mode. For example, R1r, calculated cold stator resistance.
- The possibility of replacing some of these calculated parameters with other values, if necessary. For example, R1w, measured cold stator resistance.
When a parameter Xyw is modified by the user, the drive uses it in place of the calculated parameter Xyr.
If auto-tuning is performed or if one of the motor parameters on which auto-tuning depends is modified ([Rated motor volt.] (UnS), [Rated motor freq.] (FrS), [Rated mot. current] (nCr), [Rated motor speed] (nSP), [Rated motor power] (nPr)), parameters Xyw return to their factory setting.

Code	Name/Description \quad Factory setting
A5 4-	[ASYNC. MOTOR] (continued)
r 5Π	[Stator R measured] Cold stator resistance, calculated by the drive, in read-only mode. Value in milliohms ($\mathrm{m} \Omega$) up to 75 kW (100 hp), and in hundredths of milliohms ($\mathrm{m} \Omega / 100$) above 75 kW (100 hp).
1 ± 7	[ldr] Magnetizing current in A, calculated by the drive, in read-only mode.
LF \quad I	[Lfr] Leakage inductance in mH , calculated by the drive, in read-only mode.
ヒrп	[T2r] Rotor time constant in mS , calculated by the drive, in read-only mode.
n 5L	[Nominal motor slip] Nominal slip in Hz, calculated by the drive, in read-only mode. To modify the nominal slip, modify the [Rated motor speed] (nSP) (page 79).
$P P n$	[Poles pair number] Number of pairs of poles, calculated by the drive, in read-only mode.
r 5 A	[Cust stator resist.] Cold state stator resistance (per winding), modifiable value. In milliohms ($\mathrm{m} \Omega$) up to 75 kW (100 hp), and in hundredths of milliohms ($\mathrm{m} \Omega / 100$) above 75 kW (100 hp). On the integrated display unit: 0 to 9999 then 10.00 to 65.53 (10000 to 65536).
$1 d A$	[ldw] Magnetizing current in A, modifiable value.
LFA	[Lfw] Leakage inductance in mH , modifiable value.
trA	[Cust. rotor t const.] Rotor time constant in mS , modifiable value.

Synchronous motor parameters:

These parameters can be accessed if [Motor control type] (Ctt), page $74=[$ Sync. mot.] (SYn) or [Sync.CL] (FSY). In this case, the asynchronous motor parameters cannot be accessed.

Important: For synchronous motors, it is crucial to set the current limit. See [Current Limitation] (CLI), page 76.

CAUTION

LOSS OF MOTOR FUNCTION

Verify that the current limit parameter [Current Limitation] (CLI) is correct. Synchronous motors are susceptible to demagnetization.
Failure to follow these instructions can result in equipment damage.

[^7]| Code | Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| 5リn- | [SYNCHRONOUS MOTOR] (continued) |
| re १Р $\begin{array}{r} n \square \\ Y E S \\ d \square ח E \end{array}$ | [Read motor param.]
 This parameter can only be used with BDH, BRH and BSH type motors from the Telemecanique range.
 Can only be accessed if [Encoder protocol] (UECP), page 119 = [Hiperface] (SCHP).
 Request to load motor parameters from the encoder EEPROM memory.
 [No] (nO): Loading not performed or was not successful.
 [Yes] (YES): Loading is performed as soon as possible, then the parameter automatically changes to [Done] (dOnE). [Done] (dOnE): Loading done.
 The following parameters are loaded: [Angle offset value] (ASU), page 87, [Nom motor spdsync] (nSPS) page 83, [Nominal I sync.] (nCrS), page 83, [Pole pairs] (PPnS), page 83, [Syn. EMF constant] (PHS), page 83, [Cust. stator R syn] (rSAS), page 83, [Autotune L d-axis] (LdS), page 83, and [Autotune L q-axis] (LqS), page 83.
 NOTE: During loading the drive is in "Freewheel Stop" state with the motor turned off.
 If a line contactor or output contactor function has been configured, the contactor closes during loading. |
| $r E \in P$ | [Status motor param]
 Can only be accessed if [Encoder protocol] (UECP), page 119 = [Hiperface] (SCHP).
 Information on the request to load motor parameters from the encoder EEPROM memory (not modifiable).
 [Not done] (tAb): Loading has not been performed, default motor parameters will be used.
 [In Progress] (PrOG): Loading in progress.
 [Failed] (FAIL): Loading was not successful.
 [Done] (dOnE): Loading completed successfully.
 [Customized] (CUS): Loading completed successfully but one or more motor parameters have subsequently been modified by the user via the display terminal or serial link, or auto-tuning has been performed by
 [Auto-tuning] (tUn). |

Synchronous motor parameters that can be accessed in [Expert] mode

Code	Name/Description
5 ¢ -	[SYNCHRONOUS MOTOR] (continued)
$r 5 \Pi 5$	[R1rS] Cold state stator resistance (per winding), in read-only mode. This is the drive factory setting or the result of the auto-tuning operation, if it has been performed. Value in milliohms ($\mathrm{m} \Omega$) up to 75 kW (100 hp), and in hundredths of milliohms ($\mathrm{m} \Omega / 100$) above 75 kW (100 hp). On the integrated display unit: 0 to 9999 then 10.00 to 65.53 (10000 to 65536).
FrS 5	[Nominal freq sync.] Motor frequency at rated speed in Hz , calculated by the drive (rated motor frequency), in read-only mode.

Closed-loop synchronous motor

Operation on a synchronous motor in a closed loop configuration requires an encoder providing the exact position of the motor rotor. The phase-shift angle of the encoder in relation to the rotor must therefore be determined. The drive can perform this measurement automatically.

Selecting a resolver type encoder

The number of poles on the motor must be a whole multiple of the number of poles on the resolver. For example, a 6-pole resolver will not operate with an 8 -pole motor.
To obtain the best resolution, we recommend selecting a resolver with the same number of poles as the motor.

Procedure for measuring the phase-shift angle between the motor and the encoder

Preliminary remarks:
Select the [Angle setting type] (ASt) measuring mode according to the type of machine being driven:

- [Angle setting type] (ASt) = [W/o load] (nLd): Measurement with motion, if the rotation of the motor is free (no load, brake released) and will not cause injury or equipment damage. During measurement current flows through the motor, which may cause it to rotate one full revolution.

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- During phase-shift angle measurement, the motor operates at rated current.
- Do not service the motor during the phase-shift angle measurement process.
- The line contactor or output contactor function is active during the phase-shift angle measurement process.

Failure to follow these instructions will result in death or serious injury.

A DANGER

UNINTENDED EQUIPMENT OPERATION
Verify that the rotation of the motor will not cause any dangerous movements.
Failure to follow these instructions will result in death or serious injury.

- [Angle setting type] (ASt) = [With load] (brC): Measurement without motion, motor with or without load, brake engaged or released. This mode is recommended for a lift, for example. You must adhere to the following instructions:
- The motor rotor must not move during measurement, otherwise the result will be incorrect.
- In some cases, the measurement current can cause tripping on [Overcurrent] (OCF); if so, use [W/o load] (nLd) mode. This occurs when using low-inductance motors, high-speed motors, or motors in which the rated voltage is well below the supply voltage of the drive.
- In some cases, the measurement can cause tripping on [Angle error] (ASF). This occurs if the motor rotor has moved during measurement (only detected in closed-loop mode), a motor phase is disconnected or if the motor inductance is too high, thus limiting the measurement current (in this case, use [W/o load] (nLd) mode).
- [Angle setting type] $(\mathrm{ASt})=[$ Optimized $](\mathrm{brCO})$: measurement without motion, possible with or without load, brake engaged or released. Optimization of the angle detection time starting from the second detection request, even after a power off of the product.

1. First, follow the "Encoder check procedure" on page 77.
2. Set [Motor control type] (Ctt) $=[$ Sync.CL] (FSY).
3. If you have selected [Angle setting type] (ASt) $=[\mathrm{W} / \mathrm{oload}]$ (nLd): measurement without motion, check that the motor rotates safely and can turn freely without resistive or driving torque. If these conditions are not met, the resulting measurement will be inaccurate.
4. Set [Angle auto-test] (ASA) $=[Y e s](Y E S)$. The measurement is performed and [Angle auto-test] (ASA) changes to [Done] (dOnE). The [Angle offset value] (ASU) parameter changes from [No] (nO) to a numerical value proportional to the electrical angle measured $\left(8191=360^{\circ}\right)$.
5. If required, configure automatic measurements using [Angle setting activ.] (AtA). If [Angle setting type] (ASt) = [W/o load] (nLd), ensure that the conditions outlined here are met at all times.
If using a relative encoder (incremental or SinCos), it is recommended that you set [Angle setting activ.] (AtA) = [Power On] (POn) or [Run order] (AUtO).
6. If [Angle error] (ASF) occurs, [Angle auto-test] (ASA) returns to [No] (nO).

- Check that the parameters and instructions relating to this procedure have been carried out correctly and perform the measurement again.

Comments

The phase-shift angle must be re-measured each time:

- The motor is changed
- The encoder is changed
- The coupling between the motor and encoder is removed
- The [Output Ph rotation] (PHr) parameter is modified
- The [Coder rotation inv.] (EnRI) parameter is modified

If a relative encoder (incremental or SinCos) is used, measurement must be repeated each time the motor is turned off/on. It is therefore recommended that you set [Angle setting activ.] (AtA) $=[$ Power On] (POn) or [Run order] (AUtO).

Code	Name/Description ${ }^{\text {a }}$ Adjustment range
A5月-	[ANGLE TEST SETTING] Can only be accessed if [Motor control type] (Ctt), page 74 = [Sync.CL] (FSY)
	Mode for measuring the phase-shift angle between the motor and the encoder. [With load] (brC): Measurement without motion, possible with or without load, brake engaged or released. [W/o load] (nLd): Measurement with motion, only for free motors (brake released), without load. [Optimized] (brCO): Measurement without motion, possible with or without load, brake engaged or released. Optimization of the angle detection time starting from the second detection request, even after a power off of the product. NOTE: If [Angle setting type] (ASt) = [W/o load] (nLd), the motor may rotate one full revolution during measurement. If [Motor control type] (Ctt) = [Sync. mot.] (SYn) or [Sync.CL] (FSY) then [Angle setting type] (ASt) = [Optimized] (brCO)
A 5 月	[Angle auto-test] ${ }^{\text {[}} \times \mathrm{No}$ (nO)
$n \square$ $y E S$ d ¢ ¢	Measurement of the phase-shift angle between the motor and the encoder. [No] (nO): Measurement not performed or has failed, or [Output Ph rotation] ($\mathrm{PHr} \mathrm{)} \mathrm{has} \mathrm{been} \mathrm{modified}$, [Coder rotation inv.] (EnRI) parameter has been modified. [Yes] (YES): Measurement is performed as soon as possible, then the parameter automatically changes to [Done] (dOnE). [Done] (dOnE): Use of the value given the last time the measurement was performed.
	A DANGEER
	HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH - During phase-shift angle measurement, the motor operates at rated current. - Do not service the motor during the phase-shift angle measurement process. - The line contactor or output contactor function is active during the phase-shift angle measurement process. Failure to follow these instructions will result in death or serious injury.
	Important: - It is essential that all the motor parameters are configured correctly before performing measurements: - [Nominal I sync] (nCrS), [Current Limitation] (CLI), [Nom motor spdsync] (nSPS), [Pole pairs.] (PPnS), [Syn. EMF constant] (PHS), [Autotune L d-axis] (LdS), [IAutotune L q-axis] (LqS), [Cust. stator R syn] (rSAS). - Measurement is only performed if no stop command has been activated. If a "freewheel stop" or "fast stop" function has been assigned to a logic input, this input must be set to 1 (active at 0). - Measurement takes priority over any run commands, which will be taken into account after the measurement sequence. - If measurement cannot be read, the drive displays [No] (nO) and changes to [Angle Error] (ASF) mode. - Measurement may take several seconds. Do not interrupt the process. Wait for the display to change to "[Done] (dOnE)" or "[No] (nO)". NOTE: If a line contactor or output contactor function has been configured, the contactor closes during measurement.

Code	Name/Description	Adjustment range
A 5 -	[ANGLE TEST SETTING] (continued)	
$A S L$$\begin{gathered} n \square \\ \angle 11 \end{gathered}$	[Angle auto test]	No] (nO)
	Measurement of the phase-shift angle between the motor and the encoder by means of a logic input or command bit. [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 141. Measurement is performed when the assigned bit or input changes to 1.	
	\boldsymbol{O} DANEE	
	HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH - During phase-shift angle measurement, the motor operates at rated current. - Do not service the motor during the phase-shift angle measurement process. - The line contactor or output contactor function is active during the phase-shift angle measurement process. Failure to follow these instructions will result in death or serious injury.	
	NOTE: If a line contactor or output contactor function has been configured, the contactor closes during measurement.	
A \mathcal{A}	[Angle setting activ.]	[No] (nO)
$\begin{array}{r} n \square \\ P \square ח \\ A \cup E \square \end{array}$	Activation of automatic measurement of the phase-shift angle between the motor and encoder when using a relative encoder (incremental or SinCos). [No l (nO): Function inactive. [Power On] (POn): Measurement is performed on each power-up ${ }^{(1)}$. [Run order] (AUtO): Measurement is performed on each run command if necessary, such as, if parameter [Angle offset value] (ASU) is set to [No] (nO). This option is recommended for use with a VW3 A3 401 to 407 card or with VW3 A3 411 card, when the line contactor function has been configured (loss of angle on each stop) ${ }^{(1)}$. If [Angle setting activ.] (AtA) = [Power On] (POn) or [Run order] (AUtO), it is advisable to set [Angle setting type] (ASt) = [With load] (brC).	

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- During phase-shift angle measurement, the motor operates at rated current.
- Do not service the motor during the phase-shift angle measurement process.
- The line contactor or output contactor function is active during the phase-shift angle measurement process.

Failure to follow these instructions will result in death or serious injury.
NOTE: If a line contactor or output contactor function has been configured, the contactor closes during measurement.

A 51	[Angle offset value] [No$](\mathrm{nO})$
n 0	Phase-shift angle between the motor and the encoder. [No] (nO): Measurement has not been performed or could not be read, or [Output Ph rotation] (PHr) has been modified, or measurement has been lost due to powering down ${ }^{(1)}$. 0 to 8191: Phase-shift angle. 8191 corresponds to 360°.
A 5 t 5	[Angle setting status] ${ }^{\text {] }}$ [Not done] (tAb)
	Information on the phase-shift angle measurement between the motor and the encoder (cannot be modified). [Not done] (tAb): Phase-shift angle not defined.
PEnd	[Pending] (PEnd): Measurement requested but not yet performed.
Prat	[In Progress] (PrOG): Measurement in progress.
FAIL	[Failed] (FAIL): Measurement could not be read.
$d \square \cap E$	[Done] (dOnE): Measurement performed successfully.
LU5	[Customized] (CUS): The phase-shift angle value has been entered by the user via the display terminal or serial link.

1. Powering down causes a loss of measurement data in the following cases:

- With a VW3 A3 401 to 407 card:

Every time the power is turned off, even if the drive control section has a separate power supply (for example, the line contactor function has been configured).

- With a VW3 A3 409 card and a SinCos encoder:
- Every time the power section is turned off, if the drive control section does not have a separate power supply.
- Only when the drive control section is turned off (if it has a separate power supply via the 0 and P24 terminals).
- If the number of poles of the resolver is not a multiple of the number of poles of the motor.

Code	Name/Description ${ }^{\text {a }}$ (Factory setting
FL I-	[FLUXING BY LI] Cannot be accessed if [Motor control type] (Ctt), page $74=[$ Sync.CL] (FSY).
$F L U$ ()	[Motor fluxing]
$F \cap[$ $F[t$ $F \cap \square$	[Not cont.] (FnC): Non-continuous mode [Continuous] (FCt): Continuous mode. This option is not possible if [Angle setting type] (ASt), page 89 is [With load] (brC) or if [Auto DC injection] (AdC), page 157 is [Yes] (YES) or if [Type of stop] (Stt), page 155 is [Freewheel] (nSt). [No] (FnO): Function inactive. This option is not possible if [Motor control type] (Ctt), page $74=[\mathrm{SVCl}]$ (CUC) or [FVC] (FUC). If [Motor control type] (Ctt), page $74=[S V C I]$ (CUC), [FVC] (FUC) or [Sync. mot.] (SYn), the factory setting is replaced by [Not cont.] (FnC). If [Motor control type] (Ctt), page $74=$ [SVC V] (UUC), the factory setting is replaced by [Not cont.] (FnC) at and In order to obtain rapid high torque on startup, magnetic flux needs to already have been established in the motor. In [Continuous] (FCt) mode, the drive automatically builds up flux when it is powered up. In [Not cont.] (FnC) mode, fluxing occurs when the motor starts up. The flux current is greater than nCr (configured rated motor current) when the flux is established and is then adjusted to the motor magnetizing current

CAUTION

LOSS OF MOTOR FUNCTION

Verify that the motor will withstand this current without overheating.
Failure to follow these instructions can result in equipment damage.

If [Motor control type] (Ctt), page $74=$ [Sync. mot.] (SYn), the [Motor fluxing] (FLU) parameter must be active ($[\mathrm{No} \mathrm{l}(\mathrm{FnO})$ is not permitted); this parameter causes rotor angle detection or alignment (according to the configuration of [Angle setting type] (ASt), page 89) and not fluxing.
If [Brake assignment] (bLC), page 173 is not [No] (nO), the [Motor fluxing] (FLU) parameter has no effect.

FLI
[Fluxing assignment]
[No] (nO)
$\square \square$
[No] (nO): Function inactive
L I I [LI1] (LI1)
-
-
-

- [...] (...): See the assignment conditions on page 141.

Assignment is only possible if [Motor fluxing] (FLU) $=$ [Not cont.] (FnC):
If an LI or a bit is assigned to the motor fluxing command, flux is built up when the assigned input or bit is at 1. If an LI or a bit has not been assigned, or if the assigned LI or bit is at 0 when a run command is sent, fluxing occurs when the motor starts.

1. Parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

Parameter that can be modified during operation or when stopped.

[^8](Parameter that can be modified during operation or when stopped.

Code	Name/Description	Adjustment range	Factory setting
$55 L-$	[SPEED LOOP] (continued)		
$\lrcorner A P L$	This parameter can be accessed if [Speed loop type] (SSL) = [High perfor.] (HPF). The value of the actual inertia being driven must be entered in this parameter. This value is then used by the drive to optimize speed loop settings, thus achieving the best results (provided that the exact value has been entered). [Application Inertia] (JAPL) = [Estim. app. inertia] (JESt) x [App. Inertia Coef.] (JACO), with [App. Inertia Coef.] (JACO) = 1 or 30 if [Macro configuration] (CFG), page $45=$ [Lift] (LIFt) and [Motor control type] (Ctt), page $74=[S y n c$. mot.] (SYn) or [Sync.CL] (FSY). Increment given by [Inertia Mult. Coef.] (JMUL): - $0.1 \mathrm{gm}^{2}, 1 \mathrm{gm}^{2}, 10 \mathrm{gm}^{2}, 100 \mathrm{gm}^{2}$ or $1000 \mathrm{gm}^{2}$ NOTE: If a motor parameter is modified, the estimated inertia is recalculated and updated (parameters [Estim. app. inertia] (JESt) and [Inertia Mult. Coef.] (JMUL)). [Application Inertia] (JAPL) is also returned to its default value according to the new value of [Estim. app. inertia] (JESt). If an incorrect value is entered in the [Application Inertia] (JAPL) parameter, it can cause speed instability and loss of motor control, which could lead to a sudden drop (in hoisting and lift applications, for example). The inertia may vary significantly according to the application; in general, it is very high for lifts. As such, the default value does not guarantee correct operation.		
	UNINTENDED EQUIPMENT OPERATION It is essential to determine and enter the exact inertia value in high performance speed loop mode. Failure to follow these instructions will result in death or serious injury.		
5ヒ \boldsymbol{H}	[Fr.Loop.Stab]	0 to 100\%	20\%
(2)	This parameter can Stability: Used to ad Gradually increase th	for.] (HPF). nt, according to the d thus reduce any ov	mics of the machine. eed.
$F L \square$	[FreqLoopGain]	0 to 100\%	20\%
()	This parameter can be accessed if [Speed loop type] (SSL) = [High perfor.] (HPF). Frequency loop gain: Used to adapt the response of the machine speed transients according to the dynamics. For machines with high resistive torque, high inertia or fast cycles, increase the gain gradually.		
Parameters that can be accessed in [Expert] mode			
FFP	[Feed forward]	0 to 200\%	
(2)	This parameter can be accessed if [Speed loop type] (SSL) = [High perfor.] (HPF). Percentage of the high-performance regulator feedforward term. 100\% corresponds to the term calculated using the value of [Application Inertia] (JAPL), page 93.		
FFU	[Bandwidth feedfor.]	20 to 500\%	
()	This parameter can be accessed if [Speed loop type] (SSL) = [High perfor.] (HPF). Bandwidth of the high-performance speed loop feedforward term, as a percentage of the predefined value.		

1. Parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu. Advice on setting the parameters in this menu can be found on pages 61 to 63 .

Parameter that can be modified during operation or when stopped.

Recommended procedure for setting the high-performance speed loop

1. Enter the motor parameters. If you subsequently modify one of these, you will have to perform this entire procedure again.
2. The value of the actual inertia being driven must be entered in the [Application Inertia] (JAPL) parameter, page 93.

NOTE: If a motor parameter is modified, the estimated inertia is recalculated and updated (parameters [Estim. app. inertia] (JESt) and [Inertia Mult. Coef.] (JMUL)). [Application Inertia] (JAPL) is also returned to its default value according to the new value of [Estim. app. inertia] (JESt).
3. Check the speed loop response time by first setting [Feed forward] (FFP) to 0 (see graphs on next page).
4. If necessary, adjust the bandwidth and stability using parameters [Fr.Loop.Stab] (StA) and [FreqLoopGain] (FLG) (see page 63).
5. To optimize ramp following, increase the feedforward parameter [Feed forward] (FFP) as indicated on the next page until the best result is obtained.
6. Under exceptional circumstances, the feedforward term bandwidth can be adjusted (as shown on the next page) to further improve ramp following or to reduce the speed reference's sensitivity to noise.
7. If an incorrect value is entered in the [Application Inertia] (JAPL) parameter, page 93, it can cause speed instability and loss of motor control, which could lead to a sudden drop (in hoisting and lift applications, for example). The inertia may vary significantly according to the application; in general, it is very high for lifts. As such, the default value does not guarantee correct operation.

A DANGER

UNINTENDED EQUIPMENT OPERATION

It is essential to determine and enter the exact inertia value in high performance speed loop mode.
Failure to follow these instructions will result in death or serious injury.

High-performance speed loop - Setting the [Feed forward] (FFP) and [Bandwidth feedfor.] (FFU) parameters

[Feed forward] (FFP)

This is used to adjust the level of dynamic torque feedforward required for accelerating and decelerating the inertia. The effect of this parameter on ramp following is illustrated below. Increasing the value of FFP allows the ramp to be followed more closely. However, if the value is too high, overspeed occurs. The optimum setting is obtained when the speed follows the ramp precisely; this depends on the accuracy of the [Application Inertia] (JAPL) parameter, page 93, and the [Encoder filter value] (FFr) parameter setting, page 120.

Initial response with FFP =0	Increase in FFP	Increase in FFP
Reference division	Reference division	Reference division

Increase in FFP $\pi /$
Reference division

[Bandwidth feedfor.] (FFU)

This is used to adjust the bandwidth of the dynamic torque feedforward term. The effect of this parameter on ramp following is illustrated below. Decreasing the value of FFU reduces the effect of noise on the speed reference (torque ripple). However, too great a decrease in relation to the ramp settings (on short ramps) causes a delay, and ramp following is adversely affected. Increasing the value of FFU allows the ramp to be followed more closely, but also heightens noise sensitivity. The optimum setting is obtained by reaching the best compromise between ramp following and the existing noise sensitivity.

Initial response with FFU = 100\%	Reduction in FFU	Increase in FFU
Reference division	Reference division	Reference division

[ENA SYSTEM]

ENA SYSTEM is a control profile designed for rotating machines with unbalanced load. It only applies to asynchronous motors.
It is used primarily for oil pumps. The operating principle applied:

- Allows operation without a braking resistor
- Reduces mechanical stress on the rod
- Reduces line current fluctuations
- Reduces energy consumption by improving the electric power/current ratio

[ENA prop.gain]

This setting is used to achieve a compromise between the reduced energy consumption (and/or line current fluctuations) and the mechanical stress to which the rod is subject.
Energy is saved by reducing current fluctuations and increasing the current while retaining the same average speed.

[ENA integral gain]

This setting is used to smooth the DC bus voltage.
Start up the machine with a low integral and proportional gain (proportional 25% and integral 10%) in order to avoid an overvoltage trip in the absence of a braking resistor. See if these settings are suitable.

Recommended adjustments to be made during operation:

- To eliminate the braking resistor and, therefore, the increase in the DC bus voltage:

Display the machine speed on the graphic display terminal.
Reduce the integral gain value until the machine speed drops. When this point is reached, increase the integral gain until the machine speed stabilizes.
Use the graphic display terminal or an oscilloscope to check that the DC bus voltage is stable.

- To save energy:

Reducing the proportional gain (gradually) may increase energy savings by reducing the maximum value of the line current, but it will increase speed variations and, therefore, mechanical stress.
The aim is to identify settings that will enable energy to be saved and minimize mechanical stress.
When reducing the proportional gain, it may be necessary to readjust the integral gain in order to avoid an overvoltage trip.
NOTE: Once the adjustments are complete, check that the pump starts up correctly. If the ENA integral gain setting is too low, this may lead to insufficient torque on startup.

[Reduction ratio]

This setting corresponds to the motor speed ahead of gearbox/speed after gearbox ratio. This parameter is used to display the average speed in Hz and the machine speed in customer units (e.g., in strokes per minute) on the graphic display terminal. In order to be displayed on the graphic display terminal, these values must be selected in the [1.2 MONITORING] (SUP-) menu.

Adjustment recommendations for prevention of tripping on an [Overspeed] (SOF) fault

ENA SYSTEM authorizes overspeed, which can trigger an [Overspeed] (SOF) fault. To avoid this, it is advisable to increase the value of the following parameters slightly:

- [Max frequency] (tFr), page 75
- [Overspd. pulse thd.] (FqA), page 246, if the frequency meter function is configured

Code	Name/Description	Adjustment range	Factory setting
55L-	[SPEED LOOP] (continued)		
$E \cap A$ $\begin{array}{r} n \square \\ Y E S \end{array}$	[ENA system] This parameter can be accessed if [Motor control type] (Ctt) = [SVC V] (UUC), see page 74. [No] (nO): Function inactive [Yes] (YES): Function active		
$\begin{gather*} \angle P E \tag{1}\\ \text { (} \end{gather*}$	[ENA prop.gain] This parameter can be accessed if [ENA system] (EnA) = [Yes] (YES)	1 to 9999	250
$\begin{gathered} {[1 E} \\ ()^{2} \end{gathered}$	[ENA integral gain] This parameter can be accessed if [ENA system] (EnA) $=[\mathrm{Yes}]$ (YES)	0 to 9999	100
$\begin{gathered} \text { rAP } \\ \text { () } \end{gathered}$	[Reduction ratio] This parameter can be accessed if [ENA system] (EnA) $=[\mathrm{Yes}](\mathrm{YES})$	10.0 to 999.9	10

1. Parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

Code	Name／Description	Adjustment range	Factory setting
bロロ	The parameter can be accessed if［ACCESS LEVEL］＝［Expert］and if［Motor control type］（Ctt），page 74 is different from［Sync．CL］（FSY）． Adjustment of the motor magnetizing current at low speed，as a \％of the rated magnetizing current．This parameter is used to increase or reduce the time taken to establish the torque．It allows gradual adjustment up to the frequency set by［Action Boost］（FAb）．Negative values apply particularly to tapered rotor motors． Magnetizing current		
F月女	The parameter can be accessed if［ACCESS LEVEL］$=$［Expert］and if［Motor control type］（Ctt），page 74 is different from［Sync．CL］（FSY）． Frequency above which the magnetizing current is not longer affected by［Boost］（bOO）．		
$u F r$	［IR compensation］（1）	25 to 200\％	100\％
（2）	This parameter can be accessed if［Motor control type］（Ctt），page 74 is not［V／F 2pts］（UF2）or［V／F 5pts］（UF5）． Used to optimize the torque at very low speed（increase［IR compensation］（UFr）if the torque is insufficient）． Check that the［IR compensation］（UFr）value is not too high when the motor is warm（risk of instability）．		
nrd	［Noise reduction］		According to rating
nロ YES	［ No ］（nO）：Fixed frequency．Factory setting at and above 55 kW （ 75 hp ）for ATV71••๐M3X and at and above 90 kW （120 hp）for ATV71 $\bullet \bullet 0$ N4． ［Yes］（YES）：Frequency with random modulation．Factory setting up to $45 \mathrm{~kW}(60 \mathrm{hp})$ for ATV71•๗๑M3X and up to 75 kW （100 hp）for the ATV71•e0N4． Random frequency modulation prevents any resonance，which may occur at a fixed frequency．		

1．Parameter can also be accessed in the［1．3 SETTINGS］（SEt－）menu．

Code	Name/Description	Factory setting
$5 U L$	[Motor surge limit.]	[No] (nO)
$\begin{array}{r} n \square \\ Y E 5 \end{array}$	This function limits motor overvoltages and is useful in the following applic - NEMA motors - Japanese motors - Spindle motors - Rewound motors [No] (nO): Function inactive [Yes] (YES): Function active This parameter is forced to [No] (nO) if [Sinus filter] (OFI), page $76=[\mathrm{Yes}]$ This parameter can remain $=[\mathrm{No}](\mathrm{nO})$ for 230/400 V motors used at 230 and the motor does not exceed: - 4 m with unshielded cables - 10 m with shielded cables	able between the drive
$5 \square P$	[Volt surge limit. opt]	$10 \mu \mathrm{~s}$
	Optimization parameter for transient overvoltages at the motor terminals. Accessible if [Motor surge limit.] (SUL) = [Yes] (YES). Set to 6,8 , or $10 \mu \mathrm{~s}$, according to the following table.	

The value of the SOP parameter corresponds to the attenuation time of the cable used. It is defined to prevent the superimposition of voltage wave reflections resulting from long cable lengths. It limits overvoltages to twice the DC bus rated voltage.
The tables on the following page give examples of correspondence between the SOP parameter and the length of the cable between the drive and the motor. For longer cable lengths, a sinus filter or a dV/dt protection filter must be used.

- For motors in parallel, the sum of all the cable lengths must be taken into consideration. Compare the length given in the table row corresponding to the power for one motor with that corresponding to the total power, and select the shorter length. Example: Two $7.5 \mathrm{~kW}(10 \mathrm{hp})$ motors - take the lengths on the $15 \mathrm{~kW}(20 \mathrm{hp})$ table row, which are shorter than those on the 7.5 kW (10 hp) row, and divide by the number of motors to obtain the length per motor (with unshielded GORSE cable and SOP $=6$, the result is $40 / 2=20 \mathrm{~m}$ maximum for each 7.5 kW (10 hp) motor).

In special cases (for example, different types of cable, different motor powers in parallel, different cable lengths in parallel, etc.), we recommend using an oscilloscope to check the overvoltage values obtained at the motor terminals.

To retain the overall drive performance, do not increase the SOP value unnecessarily.

Tables giving the correspondence between the SOP parameter and the cable length, for 400 V line supply

Altivar ${ }^{\text {® }} 71$	Motor		Cable cross-section		Maximum cable length in meters					
Reference	Power				Unshielded GORSE cable Type H07 RN-F 4Gxx (yd)			Shielded GORSE cable Type GVCSTV-LS/LH (yd)		
	kW	hp	in mm ${ }^{\mathbf{2}}$	AWG	SOP = 10	SOP = 8	SOP = 6	SOP = 10	SOP = 8	SOP = 6
ATV71H075N4	0.75	1	1.5	14	109.36	76.55	49.21	114.83	92.96	71.08
ATV71HU15N4	1.5	2	1.5	14	109.36	76.55	49.21	114.83	92.96	71.08
ATV71HU22N4	2.2	3	1.5	14	120.30	71.08	49.21	114.83	92.96	71.08
ATV71HU30N4	3	-	1.5	14	120.30	71.08	49.21	114.83	92.96	71.08
ATV71HU40N4	4	5	1.5	14	120.30	71.08	49.21	114.83	92.96	71.08
ATV71HU55N4	5.5	7.5	2.5	14	131.23	71.08	49.21	114.83	92.96	71.08
ATV71HU75N4	7.5	10	2.5	14	131.23	71.08	49.21	114.83	92.96	71.08
ATV71HD11N4	11	15	6	10	125.77	65.62	49.21	109.36	82.02	60.15
ATV71HD15N4	15	20	10	8	114.83	65.62	43.74	109.36	76.55	54.68
ATV71HD18N4	18.5	25	10	8	125.77	65.62	38.28	164.04	82.02	54.68
ATV71HD22N4	22	30	16	6	164.04	65.62	43.74	164.04	76.55	54.68
ATV71HD30N4	30	40	25	4	164.04	60.15	38.28	164.04	76.55	54.68
ATV71HD37N4	37	50	35	5	218.72	71.08	54.68	164.04	76.55	54.68
ATV71HD45N4	45	60	50	0	218.72	60.15	32.81	164.04	65.62	43.74
ATV71HD55N4	55	75	70	2/0	218.72	54.68	27.34	164.04	60.15	32.81
ATV71HD75N4	75	100	95	4/0	218.72	49.21	27.34	164.04	60.15	32.81

Altivar ${ }^{\text {® }} 71$	Motor Power		Cable cross-section		Maximum cable length in meters							
Reference			Shielded BELDEN cable Type 2950x (yd)	Shielded PROTOFLEX cable Type EMV 2YSLCY-J (yd)								
	kW	hp			in mm ${ }^{\mathbf{2}}$	AWG	SOP = 10	SOP = 8	SOP = 6	SOP = 10	SOP = 8	SOP = 6
ATV71H075N4	0.75	1	1.5	14	54.68	43.74	32.81					
ATV71HU15N4	1.5	2	1.5	14	54.68	43.74	32.81					
ATV71HU22N4	2.2	3	1.5	14	54.68	43.74	32.81					
ATV71HU30N4	3	-	1.5	14	54.68	43.74	32.81					
ATV71HU40N4	4	5	1.5	14	54.68	43.74	32.81					
ATV71HU55N4	5.5	7.5	2.5	14	54.68	43.74	32.81					
ATV71HU75N4	7.5	10	2.5	14	54.68	43.74	32.81					
ATV71HD11N4	11	15	6	10	54.68	43.74	32.81					
ATV71HD15N4	15	20	10	8	54.68	43.74	32.81					
ATV71HD18N4	18.5	25	10	8	54.68	43.74	32.81					
ATV71HD22N4	22	30	16	6				82.02	43.74	27.34		
ATV71HD30N4	30	40	25	4				82.02	43.74	27.34		
ATV71HD37N4	37	50	35	5				82.02	43.74	27.34		
ATV71HD45N4	45	60	50	0				82.02	43.74	27.34		
ATV71HD55N4	55	75	70	2/0				82.02	32.81	16.40		
ATV71HD75N4	75	100	95	4/0				82.02	32.81	16.40		

For $230 / 400 \mathrm{~V}$ motors used at 230 V , the [Motor surge limit.] (SUL) parameter can remain $=[\mathrm{No}](\mathrm{nO})$.

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

Load sharing, parameters that can be accessed at expert level

Principle

The load sharing factor K is determined by the torque and speed, with two factors K 1 and $\mathrm{K} 2(\mathrm{~K}=\mathrm{K} 1 \times \mathrm{K} 2)$.

Code	Name／Description	Adjustment range	Factory setting
LbL I	［Correction min spd］	0 to 999.9 Hz	0
	The parameter can be accessed if［Load sharing］（LbA）$=$［Yes］（YES） Minimum speed for load correction in Hz．Below this threshold，no corrections are made．Used to prevent correction at very low speed if this would hamper rotation of the motor．		
LbL己	［Correction max spd］	［Correction min spd］ $(\mathrm{LbC} 1)+0.1$ at 1000 Hz	0，1
	The parameter can be accessed if［Load sharing］（LbA）$=$［Yes］（YES） Speed threshold in Hz above which maximum load correction is applied．		
Lbくヨ	［Torque offset］	0 to 300\％	0\％
	The parameter can be accessed if［Load sharing］（LbA）＝［Yes］（YES） Minimum torque for load correction as a \％of the rated torque．Below this threshold，no corrections are made．Used to avoid torque instabilities when the torque direction is not constant．		
LbF	［Sharing filter］	100 ms to 20 s	100 ms
	The parameter can be accessed if［Load sharing］（LbA）$=$［Yes］（YES） Time constant（filter）for correction in ms．Used in the event of flexible mechanical coupling in order to avoid instabilities		

0

Parameter that can be modified during operation or when stopped．

[1.5 INPUTS / OUTPUTS CFG] (I-O-)

With graphic display terminal:

	ENT					ENT	RUN Term +50.00Hz 80A			
		RDY	Term	$+0.00 \mathrm{~Hz}$						
		1 DRIVE MENU								
		1.1 SIMPLY START								
		1.2 MONITORING								
RDY Term +0.00Hz 0A		1.3 SE	NGS							
MAIN MENU		1.4 MOTOR CONTROL					1.5 INPUTS / OUTPUTS CFG			
1 DRIVE MENU		1.5 INPUTS / OUTPUTS CFG					2/3 wire control			
2 ACCESS LEVEL		Code	<<	>>	Quick					
3 OPEN / SAVE AS							Reverse assign. LI1 CONFIGURATION LIx CONFIGURATION			
4 PASSWORD										
5 LANGUAGE										
Code Quick							Code	<<	>>	Quick

With integrated display terminal:

The parameters in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu can only be modified when the drive is stopped and no run command is present.

Code	Name/Description	Adjustment range	Factory setting
L I-	[LI1 CONFIGURATION]		
L I A	Read-only parameter, cannot be configured. It displays all the functions that are assigned to input LI1 in order to check for multiple assignments.		
LId	[LI1 On Delay]	0 to 200 ms	0
	This parameter is used to take account of the change of the logic input to state 1 with a delay that can be adjusted between 0 and 200 milliseconds, in order to filter out possible interference. The change to state 0 is taken into account without delay. Check that the delay set does not pose a risk or lead to undesired operation. The relative order in which these inputs are taken into account may be modified according to the delay values of the various logic inputs, and thus lead to unintended operation.		
	A DANCER		
	UNINTENDED EQUIPMENT OPERATION Verify the sequence of logic inputs changing to state 1 when using [LII On Delay]. Failure to follow these instructions will result in death or serious injury.		
L -	[LIx CONFIGURATION]		
	All the logic inputs available on the drive are processed as in the example for LI1 above, up to LI6, LI10 or LI14 depending on whether or not option cards have been inserted.		

Configuration of analog inputs and Pulse input

The minimum and maximum input values (in volts, mA , etc.) are converted to $\%$ in order to adapt the references to the application.

Minimum and maximum input values:

The minimum value corresponds to a reference of 0% and the maximum value to a reference of 100%. The minimum value may be greater than the maximum value:

For $+/-$ bidirectional inputs, the min. and max. are relative to the absolute value, for example, $+/-2$ to 8 V .

Negative min. value of Pulse input:

Range (output values): For analog inputs only

This parameter is used to configure the reference range to $[0 \% \rightarrow 100 \%]$ or $[-100 \% \rightarrow+100 \%]$ in order to obtain a bidirectional output from a unidirectional input.

Delinearization: For analog inputs only

The input can be delinearized by configuring an intermediate point on the input/output curve of this input:
For range $0 \rightarrow 100 \%$
Reference

NOTE: For [Interm. point X], 0\% corresponds to [Min value] and 100\% to [Max value]
For range $-100 \% \rightarrow 100 \%$

Reference

Code	Name/Description	Adjustment range	Factory setting
A 11 -	[AI1 CONFIGURATION]		
A I IA	Read-only parameter, cannot be configured. It displays all the functions associated with input AI1 in order to check, for example, for compatibility problems.		
$\begin{aligned} & \text { A I It } \\ & 104 \\ & 10104 \end{aligned}$	[Voltage] (10U): Positive voltage input (negative values are interpreted as zero: the input is unidirectional). [Voltage $+/-$] (n10U): Positive and negative voltage input (the input is bidirectional).		
UIL I	[Al1 min value]	0 to 10.0 V	0 V
UIH I	[AI1 max value]	0 to 10.0 V	10.0 V
A I IF	[Al1 filter]	0 to 10.00 s	0 s
	Interference filtering.		
A I IE	[AI1 Interm. point X]	0 to 100\%	0\%
	Input delinearization point coordinate. - 0\% corresponds to [AI1 min value] (UIL1). - 100% corresponds to [Al1 max value] (UIH1).		
H 115	[AI1 Interm. point Y]	0 to 100\%	0\%
	Output delinearization point coordinate (frequency reference).		

Code	Name/Description	Adjustment range	Factory setting
A 14-	[AI4 CONFIGURATION] Can be accessed if a VW3A3202 option card has been inserted		
(14\%	Read-only parameter, cannot be configured. It displays all the functions associated with input AI4 in order to check, for example, for compatibility problems.		
$\text { А } 14 t$	[Voltage] (10U): Voltage input [Current] (0 A): Current input		
crL4	[AI4 min value]	0 to 20.0 mA	0 mA
The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Current] (0 A)			
UIL 4	[AI4 min value]	0 to 10.0 V	0 V
The parameter can be accessed if [AI4 Type] (Al4t) = [Voltage] (10U)			
[rH4	[AI4 max value]	0 to 20.0 mA	20.0 mA
The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Current] (0 A)			
U IH 4	[AI4 max value]	0 to 10.0 V	10.0 V
The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Voltage] (10U)			
F 14%	[AI4 filter]	0 to 10.00 s	0 s
Interference filtering.			
H 14 L	[AI4 range] [0-100\%] (POS): Unidirectional input [$+/-100 \%$] (nEG): Bidirectional input Example: On a $0 / 10 \mathrm{~V}$ input - 0 V corresponds to reference -100% - 5 V corresponds to reference 0% - 10 V corresponds to reference $+100 \%$		[0-100\%] (POS)
$\begin{aligned} & P Q S \\ & \text { OEL } \end{aligned}$			
Н 14 E	[AI4 Interm.point X]	0 to 100\%	0\%
	Input delinearization point coordinate. - 0% corresponds to [Min value] if the range is $0 \rightarrow 100 \%$. - 0% corresponds to $\frac{[\text { Max value }]+[\text { Min value }]}{2}$ if the range is $-100 \% \rightarrow+100 \%$. - 100% corresponds to [Max value].		
H 145	[AI4 Interm.point Y]	0 to 100\%	0\%
	Output delinearization point coordinate (frequency reference).		

30072-452-92
Altivar ${ }^{\circledR} 71$ Programming Guide [1.5 INPUTS / OUTPUTS CFG] (I-O-)

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :--- | :--- | :--- | :--- |
| PL I- | [RP CONFIGURATION]
 Can be accessed if a VW3A3202 option card has been inserted | | |
| P IA | [RP assignment]
 Read-only parameter, cannot be configured.
 It displays all the functions associated with the Pulse In input in order to check, for example, for compatibility problems. | | |
| P IL | [RP min value]
 Frequency corresponding to the minimum speed | -30.00 to 30.00 kHz | 0 |
| PFr | [RP max value]
 Frequency corresponding to the maximum speed | 0 to 30.00 kHz | 30.00 kHz |
| PF I | [RP filter]
 Interference filtering. | 0 to 1000 ms | 0 |

Configuration of the encoder input serving as a reference, with a frequency generator

This reference is not signed, therefore the directions of operation must be given via the control channel (logic inputs, for example).

Minimum and maximum values (input values):

The minimum value corresponds to a minimum reference of 0% and the maximum value to a maximum reference of 100%. The minimum value may be greater than the maximum value. It may also be negative.

Reference

[Freq. min. value] [Freq. max. value] 300 kHz (EIL)
(EFr)

Reference

[Freq. max. value] [Freq. min. value] 300 kHz

A reference can be obtained at zero frequency by assigning a negative value to the minimum value.

The encoder configuration can also be accessed in the [1.4 MOTOR CONTROL] (drC-) menu.
NOTE: When an encoder is used with a VW3 A3 408 or VW3 A3 409 card, it is only possible to configure the "encoder" input for speed feedback. Functions can only be configured as references or inputs with a VW3 A3 401 to 407 or VW3 A3 411 card.
When an encoder is used with a VW3 A3 409 card, the drive remains locked in stop mode (displays nSt or nLP) if the encoder is not fully configured.

Code	Name/Description	Factory setting
	[ENCODER CONFIGURATION] (continued) These parameters can be accessed if a VW3 A3 409 encoder card has been installed.	
$U E[P$	[Encoder protocol]	[Undefined] (Und)
Und End 5LHP 5 [551	Type of encoder used. [Undefined] (Und): Not defined [EnDat 2.1] (End): EnDat encoder [Hiperface] (SCHP): Hiperface encoder [SinCos] (SC): SinCos encoder [SSI] (SSI): SSI encoder	
UELU$\begin{gathered} H n d \\ 5 U \\ 0 U \\ 12 U \end{gathered}$	[Encoder supply volt.]	[Undefined] (Und)
	Rated voltage of encoder used. The pa (Und). [Undefined] (Und): Not defined [5 volts] (5U): 5 Volts. Only possible valu [8 volts] (8U): 8 Volts [12 volts] (12U): 12 Volts To make any changes to this parameter 2 s for the change to be taken into acco	P) is not [Undefined] down the "ENT" key for mation is requested.
UELL	[Sincos lines count]	[Undefined] (Und)
Und	Number of lines. This parameter can be accessed if [Encoder protocol] (UECP) $=[$ SinCos] (SC). [Undefined] (Und): Not defined 1 to 10000: 1 to 10,000 lines	
$55[P$	[SSI parity]	[Undefined] (Und)
$\begin{array}{r} \text { Und } \\ n \square \\ \square d d \\ E U E n \end{array}$	Parity. This parameter can be accessed if [Encoder protocol] (UECP) $=[$ SSI] (SSI). [Undefined] (Und): Not defined [No parity] (nO): No parity [Odd parity] (Odd): Odd parity [Even parity] (EUEn): Even parity	
$55 F 5$	[SSI frame size]	[Undefined] (Und)
Und	Frame length (number of bits). This parameter can be accessed if [Encoder protocol] (UECP) $=[$ SSI] (SSI). [Undefined] (Und): Not defined. Only possible value if [SSI parity] (SSCP) = [Undefined] (Und). 10 to 27: 10 to 25 if [SSI parity] (SSCP) = [No parity] (nO). 12 to 27 if [SSI parity] (SSCP) = [Odd parity] (Odd) or [Even parity] (EUEn).	
En \quad r	[Nbr of revolution]	[Undefined] (Und)
Und	Format of the number of revolutions (in number of bits). This parameter can be accessed if [Encoder protocol] (UECP) = [SSI] (SSI). [Undefined] (Und): Not defined. Only possible value if [SSI frame size] (SSFS) = [Undefined] (Und). 0 to 15: 0 to [SSI frame size] (SSFS) - 10 if [SSI parity] (SSCP) = [No parity] (nO). 0 to [SSI frame size] (SSFS) - 12 if [SSI parity] (SSCP) = [Odd parity] (Odd) or [Even parity] (EUEn).	
Entr	[Turn bit resolution]	[Undefined] (Und)
Und	Resolution per revolution (in number of bits). This parameter can be accessed if [Encoder protocol] (UECP) $=[$ [SSI] (SSI). [Undefined] (Und): Not defined. Only value possible if[Nbr of revolution] (EnMr) = [Undefined] (Und). 10 to 25: If [SSI parity] (SSCP) = [No parity] (nO), the maximum value is: [SSI frame size] (SSFS) - [Nbr of revolution] (EnMr). If [SSI parity] (SSCP) $=$ [Odd parity] (Odd) or [Even parity] (EUEn), the maximum value is: [SSI frame size] (SSFS) - [Nbr of revolution] (EnMr) - 2.	

Code	Name/Description	Adjustment range	Factory setting
	[R1 CONFIGURATION] (continued)		
r Id	[R1 Delay time]	0 to 9999 ms	0
	The change in state only takes effect once the configured time has elapsed, when the information becomes true. The delay cannot be set for the [No drive flt] (FLt) assignment, and remains at 0 .		
r 15	[R1 Active at]		[1] (POS)
$\begin{aligned} & P Q 5 \\ & R E E \end{aligned}$	Configuration of the operating logic: [1] (POS): State 1 when the information is true [0] (nEG): State 0 when the information is true Configuration [1] (POS) cannot be modified for the [No drive flt] (FLt) assignment.		
r IH	[R1 Holding time]	0 to 9999 ms	0
	The change in state only takes effect once the configured time has elapsed, when the information becomes false. The holding time cannot be set for the [No drive flt] (FLt) assignment, and remains at 0 .		
r2-	[R2 CONFIGURATION]		
bLL LLE - [L E b ロ t5y d[0	[R2 Assignment]		[No] (nO)
	Identical to R1 (see page 121) with the addition of (shown for information only as these selections can only be configured in the [1.7 APPLICATION FUNCT.] (Fun-) menu): [Brk control] (bLC): Brake contactor control [Input cont.] (LLC): Line contactor control [Output cont] (OCC): Output contactor control [End reel] (EbO): End of reel (traverse control function) [Sync. wobble] (tSY): "Counter wobble" synchronization [DC charging] (dCO): DC bus precharging contactor control		
$r 2 d$	[R2 Delay time]	0 to 9999 ms	0
	The delay cannot be set for the [No drive fit] (FLt), [Brk control] (bLC), [Output cont] (OCC), [DC charging] (dCO) and [Input cont.] (LLC) assignments, and remains at 0. The change in state only takes effect once the configured time has elapsed, when the information becomes true		
r25	[R2 Active at]		[1] (POS)
$\begin{aligned} & P Q 5 \\ & \mathrm{nEG} \end{aligned}$	Configuration of the operating logic: [1] (POS): State 1 when the information is true [0] (nEG): State 0 when the information is true The configuration [1] (POS) cannot be modified for the [No drive fit] (FLt), [Brk control] (bLC), [DC charging] (dCO), and [Input cont.] (LLC) assignments.		
reH	[R2 Holding time]	0 to 9999 ms	0
	The holding time cannot be set for the [No drive fit] (FLt), [Brk control] (bLC), [DC charging] (dCO), and [Input cont] (LLC) assignments, and remains at 0 . The change in state only takes effect once the configured time has elapsed, when the information becomes false.		

Code	Name/Description	Adjustment range	Factory setting
r ${ }^{-}$	[R3 CONFIGURATION] Can be accessed if a VW3A3201 option card has been installed		
$\left\ulcorner^{3}\right.$	[R3 Assignment]		[No] (nO)
$r \exists d$	[R3 Delay time]	0 to 9999 ms	0
	The delay cannot be set for the [No drive fit] (FLt), [Brk control] (bLC), [Output cont.] (OCC), [DC charging] (dCO) and [Input cont.] (LLC) assignments, and remains at 0. The change in state only takes effect once the configured time has elapsed, when the information becomes true		
r 35	[R3 Active at]		[1] (POS)
$\begin{aligned} & P Q 5 \\ & R E E \end{aligned}$	Configuration of the operating logic: [1] (POS): State 1 when the information is true [0] (nEG): State 0 when the information is true The configuration [1] (POS) cannot be modified for the [No drive flt] (FLt), [Brk control] (bLC), [DC charging] (dCO), and [Input cont.] (LLC) assignments.		
r $\exists \mathrm{H}$	[R3 Holding time]	0 to 9999 ms	0
	The holding time cannot be set for the [No drive flt] (FLt), [Brk control] (bLC), [DC charging] (dCO), and [Input co (LLC) assignments, and remains at 0 . The change in state only takes effect once the configured time has elapsed, when the information becomes fals		
r 4 -	[R4 CONFIGURATION] Can be accessed if a VW3A3202 option card has been installed		
r^{4}	[R4 Assignment] Identical to R2 (see page 122)		[No] (nO)
r4d	[R4 Delay time]	0 to 9999 ms	0
	The delay cannot be set for the [No drive flt] (FLt), [Brk control] (bLC), [Output cont.] (OCC), [DC charging] (dCO), and [Input cont.] (LLC) assignments, and remains at 0. The change in state only takes effect once the configured time has elapsed, when the information becomes true.		
r45	[R4 Active at]		[1] (POS)
$\begin{aligned} & P Q S \\ & R E L \end{aligned}$	Configuration of the operating logic: [1] (POS): State 1 when the information is true [0] (nEG): State 0 when the information is true		[DC charging] (d
r 4 H	[R4 Holding time]	0 to 9999 ms	0
	The holding time cannot be set for the [No drive fit] (FLt), [Brk control] (bLC), [DC charging] (dCO), and [Input cont] (LLC) assignments, and remains at 0 . The change in state only takes effect once the configured time has elapsed, when the information becomes false.		

Code	Name／Description	Adjustment range	Factory setting
L－ו－	［LO1 CONFIGURATION］ Can be accessed if a VW3A3201 option card has been installed		
$b L[$ LLE －［［ Ebロ $t 5 y$ d［0	Identical to R1（see page 121）with the addition of（shown for information only as these selections can only be configured in the［1．7 APPLICATION FUNCT．］（Fun－）menu）： ［Brk control］（bLC）：Brake contactor control ［Input cont．］（LLC）：Line contactor control ［Output cont］（OCC）：Output contactor control ［End reel］（EbO）：End of reel（traverse control function） ［Sync．wobble］（tSY）：＂Counter wobble＂synchronization ［DC charging］（dCO）：DC bus precharging contactor control		
LOId	［LO1 delay time］	0 to 9999 ms	0
	The delay cannot be set for the［No drive flt］（FLt），［Brk control］（bLC），［Output cont．］（OCC），［DC charging］（dCO）， and［Input cont．］（LLC）assignments，and remains at 0. The change in state only takes effect once the configured time has elapsed，when the information becomes true．		
LロI5	［LO1 active at］		［1］（POS）
${ }_{\mathrm{nEG}}^{P Q 5}$	Configuration of the operating logic： ［1］（POS）：State 1 when the information is true ［0］（nEG）：State 0 when the information is true The configuration［1］（POS）cannot be modified for the［No drive flt］（FLt），［Brk control］（bLC），［DC charging］（dCO）， and［Input cont．］（LLC）assignments．		
L I H	［LO1 holding time］	0 to 9999 ms	0
	The holding time cannot be set for the［No drive fit］（FLt），［Brk control］（bLC），［DC charging］（dCO），and［Input cont］ （LLC）assignments，and remains at 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes false．		
Lロこ－	［LO2 CONFIGURATION］ Can be accessed if a VW3A3201 option card has been installed		
Lロコ	［LO2 assignment］ Identical to LO1．		［ No ］（ nO ）
Lロこd	［LO2 delay time］	0 to 9999 ms	0
	The delay cannot be set for the［No drive flt］（FLt），［Brk control］（bLC），［Output cont．］（OCC），［DC charging］（dCO）， and［Input cont．］（LLC）assignments，and remains at 0. The change in state only takes effect once the configured time has elapsed，when the information becomes true．		
Lロこ5	［LO2 active at］		［1］（POS）
$\begin{aligned} & P Q 5 \\ & R E L \end{aligned}$	Configuration of the operating logic： ［1］（POS）：State 1 when the information is true ［0］（nEG）：State 0 when the information is true The configuration［1］（POS）cannot be modified for the［No drive flt］（FLt），［Brk control］（bLC），［DC charging］（dCO）， and［Input cont．］（LLC）assignments．		
LロこH	［LO2 holding time］	0 to 9999 ms	0
	The holding time cannot be set for the［No drive fit］（FLt），［Brk control］（bLC），［DC charging］（dCO），and［Input cont］ （LLC）assignments，and remains at 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes false．		

Use of analog output AO1 as a logic output

Analog output AO1 can be used as a logic output, by assigning DO1. In this case, when set to 0 this output corresponds to the AO1 min. value (0 V or 0 mA , for example), and when set to 1 to the AO 1 max. value (10 V or 20 mA , for example).
The electrical characteristics of this analog output remain unchanged. As these differ from logic output characteristics, it is important to ensure that they are compatible with the intended application.

Configuration of analog outputs

Minimum and maximum values (output values):

The minimum output value, in volts or mA, corresponds to the lower limit of the assigned parameter and the maximum value corresponds to its upper limit. The minimum value may be greater than the maximum value:

Outputs AO2 and AO3 configured as bipolar outputs (strongly recommended for signed parameters):
The [min Output] (UOLx) and [max Output] (UOHx) parameters are absolute values, although they function symmetrically. In the case of bipolar outputs, always set the maximum value higher than the minimum value.
The [max Output] (UOHx) corresponds to the upper limit of the assigned parameter, and the [min Output] (UOLx) corresponds to an average value between the upper and lower limits (0 for a signed and symmetrical parameter such as in the example below).

Scaling of the assigned parameter

The scale of the assigned parameter can be adapted in accordance with requirements by modifying the values of the lower and upper limits by means of two parameters for each analog output.
These parameters are given in \%; 100\% corresponds to the total variation range of the configured parameter, so:

- 100% = upper limit - lower limit For example, [Sign. torque] (Stq) which varies between -3 and +3 times the rated torque, 100% corresponds to 6 times the rated torque.
- The parameter [Scaling AOx min] (ASLx) modifies the lower limit: new value = lower limit + (range x ASLx). The value 0% (factory setting) does not modify the lower limit.
- The parameter [Scaling AOx max] (ASHx) modifies the upper limit: new value = lower limit + (range x ASLx). The value 100% (factory setting) does not modify the upper limit.
- [Scaling AOx min] (ASLx) must always be lower than [Scaling AOx max] (ASHx).

Upper limit of the assigned parameter

Lower limit of the assigned parameter

Application example 1

The value of the signed motor torque at the AO 2 output is to be transferred with $+/-10 \mathrm{~V}$, with a range of -2 Tr to +2 Tr .

- The parameter [Sign. torque.] (Stq) varies between -3 and +3 times the rated torque, or a range of 6 times the rated torque.
- [Scaling AO2 min] (ASL2) must modify the lower limit by $1 x$ the rated torque, or $100 / 6=16.7 \%$ (new value $=$ lower limit + (range x ASL2).
- [Scaling AO2 max] (ASH2) must modify the upper limit by $1 x$ the rated torque, or 100-100/6 $=83.3 \%$ (new value $=$ lower limit + (range x ASH2).

Application example 2

The value of the motor current at the AO2 output is to be transferred with 0-20 mA, range 2 In motor, \ln motor being the equivalent of a 0.8 In drive.

- The parameter [I motor] (OCr) varies between 0 and 2 times the rated drive current, or a range of 2.5 times the rated drive current.
- [Scaling AO2 min] (ASL2) must not modify the lower limit, which therefore remains at its factory setting of 0%.
- [Scaling AO2 max] (ASH2) must modify the upper limit by $0.5 x$ the rated motor torque, or $100-100 / 5=80 \%$ (new value $=$ lower limit + (range \times ASH2).

Code	Name／Description	Adjustment range	Factory setting
H0 I－	［AO1 CONFIGURATION］		
A ${ }^{\text {I }}$	［AO1 assignment］		［ No ］（ nO ）
	［ No ］（ nO ）：Not ass ［I motor］（OCr）：Cu and on the drive n ［Motor freq．］（OFr）： ［Ramp out．］（OrP）： ［Motor torq．］（trq）： ［Sign．torque］（Stq） to the motor mode ［sign ramp］（OrS）： ［PID ref．］（OPS）：P ［PID feedback］（O ［PID error］（OPE）： （PIF1）） ［PID Output］（OPI）： ［Mot．power］（OPr）： ［Mot thermal］（tHr）： ［Drv thermal］（tHd）： ［Torque 4Q］（tqMS） sign correspond to ＂master－slave＂with ［Meas．mot．fr］（OFr） ［Sig．o／p frq．］（OFS） ［Mot therm2］（tHr2） ［Mot therm3］（tHr3 ［Uns．TrqRef］（Utr） ［Uns．TrqRef］（Str）： ［Torque lim．］（tqL）： ［Motor volt．］（UOP）： ［dO1］（dO1）：Assig has been assigned	drive current indicated r） otor torque． he rated motor torqu （tFr）and＋［Max freq ce］（PIP1）and［Max edback］（PIF1）and［ ax PID feedback］（P ）and［High speed］ motor power］（nPr） rated thermal state rated thermal state． the rated motor torq mode（motor or gene 197. uency］（tFr）and＋［M the rated thermal st the rated thermal sta ated motor torque mes the rated motor otor torque ated motor volt．］（Un y appear if［DO1 ass d is only displayed for	the Installation Manua he＋sign corresponds cy］（tFr） reference］（PIP2） PID feedback］（PIF2） －［Min PID feedback］ ） The＋sign and the－ or）．Example of usage requency］（tFr） que ment］（dO1），page 126 formational purposes．
HロIt	［AO1 Type］		［Current］（0A）
$\begin{array}{r} 1 ロ U \\ \square A \end{array}$	［Voltage］（10U）：Voltage output ［Current］（OA）：Current output		
ABL I	［AO1 min Output］	0 to 20.0 mA	0 mA
	The parameter can be accessed if［AO1 Type］（AO1t）$=$［Current］（0A）		
FロH I	［AO1 max Output］	0 to 20.0 mA	20.0 mA
	The parameter can be accessed if［AO1 Type］（AO1t）$=$［Current］（0A）		
UロL I	［AO1 min Output］	0 to 10.0 V	0 V
	The parameter can be accessed if［AO1 Type］（AO1t）＝［Voltage］（10U）		
UロHI	［AO1 max Output］	0 to 10.0 V	10.0 V
	The parameter can be accessed if［AO1 Type］（AO1t）＝［Voltage］（10U）		
H5LI	［Scaling AO1 min］	0 to 100．0\％	0 \％
	Scaling of the lower limit of the assigned parameter，as a \％of the maxiumum possible variation．		
A 5 H	［Scaling AO1 max］	0 to 100．0\％	100.0 \％
	Scaling of the upper limit of the assigned parameter，as a \％of the maxiumum possible variation．		
AD IF	［AO1 Filter］	0 to 10.00 s	0 s
	Interference filtering．This parameter is forced to 0 if［AO1 asisgnment］（AO1）$=[\mathrm{dO} 1]$（dO1）．		

The following submenus group the alarms into 1 to 3 groups, each of which can be assigned to a relay or a logic output for remote signaling. These groups can also be displayed on the graphic display terminal (see [6 MONITORING CONFIG.] menu) and viewed via the [1.2 MONITORING] (SUP) menu.
When one or a number of alarms selected in a group occurs, this alarm group is activated.

Code	Name／Description
H IL－ PLA P I P己月 EFA ப 5 月 Aп月 Lヒ \boldsymbol{H} $F \in A$ F 2 A $5 r$ A $t 5$ A $t 5$ 己 ヒ5 ヨ UPA FLA t H \boldsymbol{H} b 5 月 b \quad म PEE PFA AP己 カРョ คР 4 55 月 t A d $t\lrcorner A$ $r \in A$ டロ APA Ur月 r5dA t $\mathrm{E} H \mathrm{H}$ ヒヒL A F 9 L A $d L d A$	［ALARM GRP1 DEFINITION］ Selection to be made from the following list： ［LI6＝PTC al．］（PLA）：LI6＝PTC probe alarm ［PTC1 alarm］（P1A）：Probe alarm 1 ［PTC2 alarm］（P2A）：Probe alarm 2 ［Ext．fault al．］（EFA）：External fault alarm ［Under V．al．］（USA）：Undervoltage alarm ［slipping al．］（AnA）：Slipping alarm ［l attained］（CtA）：Current threshold attained（［Current threshold］（Ctd），page 71） ［Freq．Th．att．］（FtA）：Frequency threshold attained（［Freq．threshold］（Ftd），page 72） ［Freq．Th． 2 attain．］（F2A）：Frequency threshold 2 attained（［Freq．Th． 2 attain］（F2d），page 72） ［Freq．ref．att］（SrA）：Frequency reference attained ［Th．mot．att．］（tSA）：Motor 1 thermal state attained ［Th．mot2 att］（tS2）：Motor 2 thermal state attained ［Th．mot3 att］（tS3）：Motor 3 thermal state attained ［Uvolt warn］（UPA）：Undervoltage warning ［HSP attain．］（FLA）：High speed attained ［AI．${ }^{\circ} \mathrm{C}$ drv］（tHA）：Drive overheating ［Load mvt al］（bSA）：Braking speed alarm ［Brk cont．al］（bCA）：Brake contact alarm ［PID error al］（PEE）：PID error alarm ［PID fdbk al．］（PFA）：PID feedback alarm ［AI2 AI．4－20］（AP2）：Alarm indicating absence of 4－20 mA signal on input A12 ［AI3 AI．4－20］（AP3）：Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI3 ［AI4 AI．4－20］（AP4）：Alarm indicating absence of 4－20 mA signal on input AI4 ［Lim T／I att．］（SSA）：Torque limit alarm ［Th．drv．att．］（tAd）：Drive thermal state attained ［IGBT alarm］（tJA）：IGBT alarm ［Torque Control al．］（rtA）：Torque control alarm ［Brake R．al．］（bOA）：Braking resistor temperature alarm ［Option al．］（APA）：Alarm generated by an option card． ［Regen．underV．al．］（UrA）：Reserved． ［Rope slack alarm］（rSdA）：Rope slack（see［Rope slack config．］（rSd）parameter page 186） ［High torque alarm］（ttHA）：Motor torque overshooting high threshold［High torque thd．］（ttH），page 71. ［Low torque alarm］（ttLA）：Motor torque undershooting low threshold［Low torque thd．］（ttL），page 71. ［Freq．meter Alarm］（FqLA）：Measured speed threshold attained：［Pulse warning thd．］（FqL），page 72. ［Dynamic load alarm］（dLdA）：Load variation detection（see［DYNAMIC LOAD DETECT．］（dLd－），page 248）． See the multiple selection procedure on page 32 for the integrated display terminal，and page 23 for the graphic display terminal．
A25－	［ALARM GRP2 DEFINITION］ Identical to［ALARM GRP1 DEFINITION］（A1C－）
－\exists［－	［ALARM GRP3 DEFINITION］ Identical to［ALARM GRP1 DEFINITION］（A1C－）

[1.6 COMMAND] (CtL-)

With graphic display terminal:

With integrated display terminal:

The parameters in the [1.6 COMMAND] (CtL) menu can only be modified when the drive is stopped and no run command is present.

Command and reference channels

Run commands (forward, reverse, stop, etc.) and references can be sent using the following channels:

Control	Reference
- Terminals: logic inputs LI	- Terminals: analog inputs AI, frequency input, encoder
- Graphic display terminal	- Graphic display terminal
- Integrated Modbus	- Integrated Modbus
- Integrated CANopen	- Integrated CANopen
- Communication card	- Communication card
- Controller Inside card	- Controller Inside card
	- +/- speed via the terminals
	- +/- speed via the graphic display terminal

The behavior of the Altivar ${ }^{\circledR} 71$ can be adapted according to requirements:

- [8 serie] (SE8): To replace an Altivar 58. See the Migration Manual.
- [Not separ.] (SIM): Command and reference are sent via the same channel.
- [Separate] (SEP): Command and reference may be sent via different channels.

In these configurations, control via the communication bus is performed in accordance with the DRIVECOM standard with only 5 freelyassignable bits (see Communication Parameters Manual). The application functions cannot be accessed via the communication interface.

- [I/O profile] (IO): The command and the reference can come from different channels. This configuration both simplifies and extends use via the communication interface.
Commands may be sent via the logic inputs on the terminals or via the communication bus.
When commands are sent via a bus, they are available on a word, which acts as virtual terminals containing only logic inputs. Application functions can be assigned to the bits in this word. More than one function can be assigned to the same bit.

NOTE: Stop commands from the terminals remain active even if the terminals are not the active command channel.
The integrated Modbus channel has 2 physical communication ports:

- The Modbus network port
- The Modbus HMI port

The drive does not differentiate between these two ports, but recognizes the graphic display terminal irrespective of the port to which it is connected.

Reference channel for [Not separ.] (SIM), [Separate] (SEP) and [I/O profile] (IO) configurations, PID not configured

Instructions

Fr1, SA2, SA3, dA2, dA3, MA2, MA3:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SEP and IO:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SIM:

- Terminals, only accessible if Fr1 = terminals

Fr2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card, and $+/-$ speed NOTE: [Ref.1B channel] (Fr1b) and [Ref 1B switching] (rCb) must be configured in the [1.7 APPLICATION FUNCT.] (Fun-) menu.

Reference channel for [Not separ.] (SIM), [Separate] (SEP) and [I/O profile] (IO) configurations, PID configured with PID references at the terminals

Parameter:
The black square represents the factory setting assignment

Instructions

Fr1:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SEP and IO:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SIM:

- Terminals, only accessible if Fr1 = terminals

SA2, SA3, dA2, dA3:

- Terminals only

Fr2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card, and $+/$ - speed
${ }^{(1)}$ Ramps not active if the PID function is active in automatic mode.
NOTE: [Ref.1B channel] (Fr1b) and [Ref 1B switching] (rCb) must be configured in the [1.7 APPLICATION FUNCT.] (Fun-) menu.

Command channel for [Not separ.] (SIM) configuration

Reference and command, not separate

The command channel is determined by the reference channel. Parameters Fr1, Fr2, rFC, FLO and FLOC are common to reference and command.
Example: If the reference is $\mathrm{Fr} 1=\mathrm{Al}$ (analog input at the terminals), control is via LI (logic input at the terminals).

Key:

Parameter:
The black square represents the factory setting assignment

Command channel for [Separate] (SEP) configuration

Separate reference and command

Parameters FLO and FLOC are common to reference and command.
Example-lf the reference is in forced local mode via AI1 (analog input at the terminals), command in forced local mode is via LI (logic input at the terminals).
The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.

Key:

Parameter:
The black rectangle represents the factory setting assignment, except for [Profile].

Commands

Cd1, Cd2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Command channel for [IIO profile] (IO) configuration

Separate reference and command, as in [Separate] (SEP) configuration

The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.

Key:

Parameter:
The black rectangle represents the factory setting assignment, except for [Profile].

Commands

Cd1, Cd2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Altivar ${ }^{(6)} 71$ Programming Guide

30072-452-92
[1.6 COMMAND] (CtL-)

Command channel for [I/O profile] (IO) configuration

Selection of a command channel:

A command or an action can be assigned:

- To a fixed channel by selecting an LI input or a Cxxx bit:
- By selecting e.g., LI3, this action will always be triggered by LI3 regardless of which command channel is switched.
- By selecting e.g., C214, this action will always be triggered by integrated CANopen with bit 14 regardless of which command channel is switched.
- To a switchable channel by selecting a CDxx bit:
- By selecting CD11, for example, this action will be triggered by LI12 if the terminals channel is active
C111 if the integrated Modbus channel is active
C211 if the integrated CANopen channel is active
C311 if the communication card channel is active
C411 if the Controller Inside card channel is active
If the active channel is the graphic display terminal, the functions and commands assigned to CDxx switchable internal bits are inactive.
NOTE: CD14 and CD15 can only be used for switching between 2 networks. They do not have equivalent logic inputs.

Terminals	Integrated Modbus	Integrated CANopen	Communication card	Controller Inside card	Internal bit, can be switched
-	-	-	-	-	CDOO
LI2 ${ }^{(1)}$	C101 ${ }^{(1)}$	C201 ${ }^{(1)}$	C301 ${ }^{(1)}$	C401 ${ }^{(1)}$	CD01
LI3	C102	C202	C302	C402	CD02
LI4	C103	C203	C303	C403	CD03
LI5	C104	C204	C304	C404	CD04
LI6	C105	C205	C305	C405	CD05
LI7	C106	C206	C306	C406	CD06
LI8	C107	C207	C307	C407	CD07
LI9	C108	C208	C308	C408	CD08
LI10	C109	C209	C309	C409	CD09
LI11	C110	C210	C310	C410	CD10
LI12	C111	C211	C311	C411	CD11
LI13	C112	C212	C312	C412	CD12
LI14	C113	C213	C313	C413	CD13
-	C114	C214	C314	C414	CD14
-	C115	C215	C315	C415	CD15

[^9]
Assignment conditions for logic inputs and control bits

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure.
- Examples of critical control functions are Emergency Stop and Overtravel Stop.
- Separate or redundant control paths must be provided for critical control functions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
The following elements are available for every command or function that can be assigned to a logic input or a control bit:

$\begin{aligned} & \text { [LI1] (LII) } \\ & \text { to } \\ & \text { [LI6] (LI6) } \end{aligned}$	Drive with or without option
$\begin{gathered} \text { [LI7] (LI7) } \\ \text { to } \\ \text { [LI10] (LI10) } \end{gathered}$	With VW3A3201 logic I/O card
$\begin{gathered} \text { [LI11] (LII1) } \\ \text { to } \\ \text { [LI14] (LII4) } \end{gathered}$	With VW3A3202 extended I/O card
$\begin{gathered} {\mathrm{C} 101} \\ \text { to } \\ {\mathrm{C} 110} \end{gathered}$	With integrated Modbus in [I/O profile] (IO) configuration
[C111] (C111) to [C115] (C115)	With integrated Modbus regardless of configuration
$\begin{gathered} {\mathrm{C} 201} \\ \text { to } \\ {\mathrm{C} 210} \end{gathered}$	With integrated CANopen in [I/O profile] (IO) configuration
$\begin{gathered} {\mathrm{C} 211} \\ \text { to } \\ {\mathrm{C} 215} \end{gathered}$	With integrated CANopen regardless of configuration
$\begin{gathered} {\mathrm{C} 301} \\ \text { to } \\ {\mathrm{C} 310} \end{gathered}$	With a communication card in [I/O profile] (IO) configuration
$\begin{aligned} & {\mathrm{C} 311} \\ & \text { to } \\ & {\mathrm{C} 315} \end{aligned}$	With a communication card regardless of configuration
$\begin{gathered} {\mathrm{C} 401} \\ \text { to } \\ {\mathrm{C} 410} \end{gathered}$	With Controller Inside card in [I/O profile] (IO) configuration
$\begin{gathered} {\mathrm{C} 411} \\ \text { to } \\ {\mathrm{C} 415} \end{gathered}$	With Controller Inside card regardless of configuration
$\begin{gathered} \text { [CD00] (Cd00) } \\ \text { to } \\ \text { [CD10] (Cd10) } \end{gathered}$	In [I/O profile] (IO) configuration
$\begin{gathered} \text { [CD11] (Cd11) } \\ \text { to } \\ \text { [CD15] (Cd15) } \end{gathered}$	Regardless of configuration

NOTE: In [I/O profile] (IO) configuration, LI1 cannot be accessed and if [2/3 wire control] (tCC), page $105=[3$ wire] (3C), LI2, C101, C201, C301 and C401 cannot be accessed either. Inactive communication channels are not monitored (no lock following malfunction in the event of a communication bus failure).

A DANGER

UNINTENDED EQUIPMENT OPERATION

Ensure that the commands and functions assigned to bits C 101 to C 415 will not pose a risk in the event of the failure of the associated communication bus.

Failure to follow these instructions will result in death or serious injury.

A DANGER

UNINTENDED EQUIPMENT OPERATION

- The keypad stop key will be disabled if [Stop Key priority] (PSt) is set to [No] (nO). If [Stop Key priority] (PSt) is set to [No] (nO) the motor will not stop if the stop key is pressed.
- An external stop command source must be installed to stop the motor.
- To retain the stop key functionality set [Stop Key priority] (PSt) to [Yes] (YES).

Failure to follow these instructions will result in death or serious injury.
[8 serie] (SE8): ATV58 interchangeability (see Migration Manual). The [8 serie] (SE8) configuration is used to load, via PowerSuite, for example, an ATV58 drive configuration in an ATV71 that has already been set to this configuration. This assignment cannot be accessed if a Controller Inside card has been inserted.
雨
NOTE: Modifications to the configuration of the ATV71 must only be made using PowerSuite when it is in this configuration, otherwise operation cannot be guaranteed.
51Π
$5 E P$
[Not separ.] (SIM): Reference and command, not separate
[Separate] (SEP): Separate reference and command. This assignment cannot be accessed in [I/O profile] (IO).
[I/O profile] (IO): I/O profile
When [8 serie] (SE8) is selected and [I/O profile] (IO) is deselected, the drive automatically returns to the factory setting (this is mandatory). This factory setting only affects the [1 DRIVE MENU] menu. It does not affect either [1.9 COMMUNICATION] or [1.5 PROGRAMMABLE CARD].

- With the graphic display terminal, a screen appears to perform this operation. Follow the instructions on the screen.
- With the integrated display terminal, press ENT and hold it down (for 2 s). This will save the selection and return to the factory setting.

Code	Name／Description \quad Factory setting
$\text { [}[5$ ［d I ［de LII	［Cmd switching］ The parameter can be accessed if［Profile］（CHCF）$=$［Separate］（SEP）or［I／O profile］（IO） ［ch1 active］（Cd1）：［Cmd channel 1］（Cd1）active（no switching） ［ch2 active］（Cd2）：［Cmd channel 2］（Cd2）active（no switching） ［LI1］（LI1） ［．．．］（．．．）：See the assignment conditions on page 141 （not CDOO to CD14）． If the assigned input or bit is at 0 ，channel［Cmd channel 1］（Cd1）is active． If the assigned input or bit is at 1 ，channel［Cmd channel 2］（Cd2）is active．
［dI EEr L［ L Пыb ［月n nEt APP	［Cmd channel 1］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） The parameter is available if［Profile］（CHCF）＝［Separate］（SEP）or［I／O profile］（IO）．
［d $]$ tEr L L L Пdb ［月п nEt APP	［Cmd channel 2］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） The parameter is available if［Profile］（CHCF）$=$［Separate］（SEP）or［I／O profile］（IO）．
$r F[$ Fr I Fre LII	［Ref． 2 switching］ ［ch1 active］（Fr1）：no switching，［Ref． 1 channel］（Fr1）active ［ch2 active］（Fr2）：no switching，［Ref． 2 channel］（Fr2）active ［LI1］（LI1） ［．．．］（．．．）：See the assignment conditions on page 141 （not CDOO to CD14）． If the assigned input or bit is at 0 ，channel［Ref． 1 channel］（Fr1）is active． If the assigned input or bit is at 1 ，channel［Ref． 2 channel］（Fr2）is active．
$F r 2$	［Ref． 2 channel］ ［ No$](\mathrm{nO})$
n A 11 A 1 己 A $1 \exists$ A 14 UPdt L L L Пd ［月n nEt APP P I PL	$[\mathrm{No}](\mathrm{nO})$ ：Not assigned．If［Profile］（CHCF）$=$［Not separ．］（SIM）the command is at the terminals with a zero reference． If［Profile］（CHCF）＝［Separate］（SEP）or［I／O profile］（IO）the reference is zero． ［AI1］（AI1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［＋／－Speed］（UPdt）：＋／－Speed command ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted ［Encoder］（PG）：Encoder input，if encoder card has been inserted

As the graphic display terminal may be selected as the command and/or reference channel, its action modes can be configured. The parameters on this page can only be accessed on the graphic display terminal, and not on the integrated display terminal.

Comments:

- The display terminal command/reference is only active if the command and/or reference channels from the terminal are active with the exception of $[T / K]$ (command via the display terminal), which takes priority over these channels. Press $[T / K]$ (command via the display terminal) again to revert control to the selected channel.
- Command and reference via the display terminal are impossible if the latter is connected to more than one drive.
- The JOG, preset speed and $+/$ - speed functions can only be accessed if [Profile] (CHCF) $=$ [Not separ.] (SIM).
- The preset PID reference functions can only be accessed if [Profile] (CHCF) = [Not separ.] (SIM) or [Separate] (SEP)
- The $[T / K]$ (command via the display terminal) can be accessed regardless of the [Profile] (CHCF).

Name/Description	Factory setting
[F1 key assignment]	[No]
- [No]: Not assigned	
- [Jog]: JOG operation	
- [Preset spd2]: Press the key to run the drive at the 2nd preset speed [Preset speed 2] (SP2), page 162. Press STOP to stop the drive.	
- [Preset spd3]: Press the key to run the drive at the 3rd preset speed [Preset speed 3] (SP3), page 162. Press STOP to stop the drive.	
- [PID ref. 2]: Sets a PID reference equal to the 2nd preset PID reference [Preset ref. PID 2] (rP2), page 195, without sending a run command. Only operates if [Ref. 1 channel] (Fr1) = [HMI] (LCC). Does not operate with the [T/K] function.	
- [PID ref. 3]: Sets a PID reference equal to the 3rd preset PID reference [Preset ref. PID 3] (rP3), page 195, without sending a run command. Only operates if [Ref. 1 channel] (Fr1) $=[\mathrm{HMI}]$ (LCC). Does not operate with the [T/K] function.	
- [+speed]: Faster, only operates if [Ref. 2 channel] (Fr2) $=[\mathrm{HMI}](\mathrm{LCC})$. Press the key to run the drive and increase the speed. Press STOP to stop the drive.	
- [- speed]: Slower, only operates if [Ref. 2 channel] (Fr2) = [HMI] (LCC) and if a different key has been assigned to [+ speed]. Press the key to run the drive and decrease the speed. Press STOP to stop the drive.	
[T/K]: Command via the display terminal: takes priority over [Cmd switching] (CCS) and over [Ref. 2 switching] (rFC)	

[F2 key assignment]	
Identical to [F1 key assignment].	[No]
[F3 key assignment]	
Identical to [F1 key assignment].	[No]
[F4 key assignment]	
Identical to [F1 key assignment].	[No]
[HMI cmd.]	[Stop]

When the $[T / K]$ function is assigned to a key and that function is active, this parameter defines the behavior at the moment when control returns to the graphic display terminal.

- [Stop]: Stops the drive (although the controlled direction of operation and reference of the previous channel are copied (to be taken into account on the next RUN command)).
- [Bumpless]: Does not stop the drive (the controlled direction of operation and the reference of the previous channel are copied).

［1．7 APPLICATION FUNCT．］（FUn－）

With graphic display terminal：

7 DISPLAY CONFIG．

Summary of functions：

Code	Name	Page
r EF－	［REFERENCE SWITCH．］	150
－1－	［REF．OPERATIONS］	151
rPt－	［RAMP］	152
5tt－	［STOP CONFIGURATION］	155
Ad［－	［AUTO DC INJECTION］	157
」	［JOG］	159
P55－	［PRESET SPEEDS］	161
UPd－	［＋／－SPEED］	164
$5 r E-$	［＋／－SPEED AROUND REF．］	166
$5 P$－	［MEMO REFERENCE］	167
LSt－	［LIMIT SWITCHES］	168
bL［－	［BRAKE LOGIC CONTROL］	173
rb－	［ROLLBACK MGT］	179
EL－	［EXTERNAL WEIGHT MEAS．］	181
H5 H－	［HIGH SPEED HOISTING］	186
P Id－	［PID REGULATOR］	191
Pr I－	［PID PRESET REFERENCES］	195
ヒロr－	［TORQUE CONTROL］	197
EDL－	［TORQUE LIMITATION］	200
CLI－	［2nd CURRENT LIMIT．］	201
LL［－	［LINE CONTACTOR COMMAND］	203
－［－	［OUTPUT CONTACTOR CMD］	205
LPD－	［POSITIONING BY SENSORS］	209
$L P-$	［PARAM．SET SWITCHING］	212
［－	［MULTIMOTORS／CONFIG．］	216
tr－	［TRAVERSE CONTROL］	222
15P－	［INSPECTION MODE］	224
$r F E-$	［EVACUATION］	225
HFF－	［HALF FLOOR］	226
d［口－	［DC BUS SUPPLY］	227
$t \square P-$	［TOP Z MANAGEMENT］	228

The parameters in the [1.7 APPLICATION FUNCT.] (FUn-) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

NOTE: Compatibility of functions-The choice of application functions may be limited by the number of I/O and by the fact that some functions are incompatible with one another. Functions that are not listed in the table below are fully compatible.
If there is an incompatibility between functions, the first function configured will prevent the others being configured.

Each of the functions on the following pages can be assigned to one of the inputs or outputs.
A single input can activate several functions at the same time (reverse and 2nd ramp for example), The user must therefore ensure that these functions can be used at the same time. It is only possible to assign one input to several functions at [Advanced] (AdU) and [Expert] (EPr) levels.

Before assigning a command, reference or function to an input or output, the user must make sure that this input or output has not already been assigned and that another input or output has not been assigned to an incompatible or undesirable function.
The drive factory setting or macro configurations automatically configure functions, which may prevent other functions being assigned. It may be necessary to unconfigure one or more functions in order to be able to enable another. Check the compatibility table on page 148.

Compatibility table

Reference operations (page 151)				\uparrow	$\bullet^{(4)}$		\uparrow									$\bullet^{(1)}$					
+/- speed (3) (page 164)						-	-									$\bullet{ }^{(1)}$					
Management of limit switches (page 168)					-																
Preset speeds (page 161)	\leftarrow						\uparrow									$\bullet{ }^{(1)}$					
PID regulator (page 191)	$\bullet^{(4)}$		-			-	-	-						\bullet	-	${ }^{(1)}$	\bullet	\bullet			
Traverse control (page 222)		-			\bullet		-							-	-	${ }^{(1)}$					
JOG operation (page 159)	\leftarrow	\bullet		\leftarrow	\bullet	\bullet		\bullet						\bullet	-	${ }^{(1)}$					
Brake logic control (page 173)					\bullet		-		-	-						\bullet			\bullet		$\bullet^{(5)}$
Catch on the fly (page 232)								\bullet								$\bullet{ }^{(1)}$					
DC injection stop (page 155)								\bullet			${ }^{(2)}$	\uparrow	${ }^{(2)}$						-	\bullet	
Fast stop (page 155)										${ }^{(2)}$		\uparrow	$\bullet^{(2)}$								
Freewheel stop (page 155)										\leftarrow	\leftarrow		\leftarrow								
Stop on top Z (page 228)										${ }^{(2)}$	${ }^{(2)}$	\uparrow									
+/- speed around a reference (page 166)					-	\bullet	\bullet									${ }^{(1)}$					
High speed hoisting (page 186)					\bullet	\bullet	\bullet									-		\bullet			
Torque control (page 197)	$\bullet^{(1)}$	${ }^{(1)}$		${ }^{(1)}$	${ }^{(1)}$	${ }^{(1)}$	${ }^{(1)}$	-	${ }^{(1)}$					${ }^{(1)}$	-		\bullet	$\bullet^{(1)}$	\bullet		
Load sharing (page 101)					\bullet											\bullet					
Positioning by sensors (page 209)					-										\bullet	${ }^{(1)}$					
Open-loop synchronous motor (page 83)								\bullet		\bullet						\bullet					
Closed-loop synchronous motor (page 85)										\bullet											
Measure of the angle motor/encoder (page 86)								$\bullet^{\text {(5) }}$													

1. Torque control and these functions are only incompatible while torque control mode is active.
2. Priority is given to the first of these two stop modes to be activated.
3. Excluding special application with reference channel Fr2 (see diagrams on pages 135 and 136).
4. Only the multiplier reference is incompatible with the PID regulator.
5. These 2 functions are incompatible only if [Angle setting type] (ASt) $=[\mathrm{W} / \mathrm{o}$ load] ($n L d$).
\square Incompatible functions \square Compatible functions \square Not applicable

Priority functions (functions, which cannot be active at the same time):

Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.
NOTE: This compatibility table does not affect commands that can be assigned to the keys of the graphic display terminal (see page 145).

Incompatible functions

The following functions will be inaccessible or deactivated in the cases described below:
Automatic restart
This is only possible for control type $[2 / 3$ wire control $](\mathrm{tCC})=[2$ wire $](2 \mathrm{C})$ and $[2$ wire type $](\mathrm{tCt})=[$ Level $]$ (LEL) or [Fwd priority] (PFO).
See page 105.
Catch a spinning load
This is only possible for control type [2/3 wire control] $(\mathrm{tCC})=[2$ wire $](2 \mathrm{C})$ and $[2$ wire type] (tCt) $=[$ Level] (LEL) or [Fwd priority] (PFO).
See page 105.
This function is locked if automatic injection on stop [Auto DC injection] (AdC) = [Continuous] (Ct). See page 157.
The SUP- monitoring menu (page 55) can be used to display the functions assigned to each input in order to check their compatibility.
When a function is assigned, a \checkmark appears on the graphic display terminal, as illustrated in the example below:
If you attempt to assign a function that is incompatible with another function that has already been assigned, a message screen will appear:

RDY \quad Term $\quad+0.00 \mathrm{~Hz} \quad 0 \mathrm{~A}$		
1.7 APPLICATION FUNCT.		
REFERENCE SWITCH.		
REF. OPERATIONS		
RAMP		
STOP CONFIGURATION		
AUTO DC INJECTION		
Code $\quad \ll \quad$ Quick		
JOG		

With the graphic display terminal:

RDY \quad Term $+0.00 \mathrm{~Hz} \quad 0 \mathrm{~A}$
INCOMPATIBILITY
The function can't be assigned
because an incompatible
function is already selected. See
programming book.
ENT or ESC to continue

With the integrated display terminal:

COMP flashes until ENT or ESC is pressed.
When you assign a logic input, an analog input, a reference channel or a bit to a function, pressing the HELP button will display the functions that may already have been activated by this input, bit or channel.
When a logic input, an analog input, a reference channel or a bit that has already been assigned is assigned to another function, the following screens appear:

With the graphic display terminal:

| RUN $\quad+50.00 \mathrm{~Hz} \quad 1250 \mathrm{~A} \quad+50.00 \mathrm{~Hz}$ |
| :--- | :--- |
| WARNING - ASSIGNED TO |
| Ref. 2 switching |
| |
| |
| ENT->Continue \quad ESC->Cancel |

If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT results in the following display:

RUN $\quad+50.00 \mathrm{~Hz} \quad 1250 \mathrm{~A}+50.00 \mathrm{~Hz}$
ASSIGNMENT FORBIDDEN
Un-assign the present functions, or select Advanced access level

With the integrated display terminal:
The code for the first function, which is already assigned, is displayed flashing.
If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT has no effect, and the message continues to flash. It is only possible to exit by pressing ESC.

Summing input／Subtracting input／Multiplier

$A=(F r 1$ or $\operatorname{Fr} 1 \mathrm{~b}+\mathrm{SA} 2+\mathrm{SA} 3-\mathrm{dA} 2-\mathrm{dA} 3) \times \mathrm{MA} 2 \times \mathrm{MA} 3$
－If SA2，SA3，dA2，dA3 are not assigned，they are set to 0 ．
－If MA2，MA3 are not assigned，they are set to 1 ．
－A is limited by the minimum LSP and maximum HSP parameters．
－For multiplication，the signal on MA2 or MA3 is interpreted as a \％；100\％corresponds to the maximum value of the corresponding input． If MA2 or MA3 is sent via the communication bus or graphic display terminal，an MFr multiplication variable， page 55 must be sent via the bus or graphic display terminal．
－Reversal of the direction of operation in the event of a negative result can be inhibited（see page 142）．

Code	Name／Description ${ }^{\text {a }}$（ Factory setting
r EF－	［REFERENCE SWITCH．］
$r[b$ $\begin{aligned} & \text { Frl } \\ & \text { Frlb } \end{aligned}$ LII	［Ref 1B switching］ See the diagrams on pages 135 and 136. ［ch1 active］（Fr1）：no switching，［Ref． 1 channel］（Fr1）active ［ch1B active］（Fr1b）：no switching，［Ref．1B channel］（Fr1b）active ［LI1］（LI1） ［．．．］（．．．）：See the assignment conditions on page 141 （not CDOO to CD14）． －If the assigned input or bit is at 0 ，［Ref． 1 channel］（Fr1）is active（see page 142）． －If the assigned input or bit is at 1, ［Ref．1B channel］（Fr1b）is active． ［Ref 1B switching］（rCb）is forced to［ch1 active］（Fr1）if［Profile］（CHCF）＝［Not separ．］（SIM）with［Ref． 1 channel］ （Fr1）assigned via the terminals（analog inputs，encoder，pulse input）；see page 142.
Fr Ib A 12 －1 ヨ A 14 L［ $[$ П』 ［月п nEt APP P I $P L$	［Ref．1B channel］ ［ No ］（nO）：Not assigned ［AI1］（Al1）：Analog input ［AI2］（Al2）：Analog input ［AI3］（AI3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（nEt）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted ［Encoder］（PG）：Encoder input，if encoder card has been inserted NOTE：In the following instances，only assignments via the terminals are possible： －［Profile］（CHCF）＝［Not separ．］（SIM）with［Ref． 1 channel］（Fr1）assigned via the terminals（analog inputs，encoder，pulse input）；see page 142. －PID configured with PID references via the terminals

The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr).
() Parameter that can be modified during operation or when stopped.

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr), page 152.

Code	Name/Description	Adjustment range	Factory setting
5tヒ-	NOTE: Some types of stop cannot be used with all other functions. Follow the instructions on page 147.		
$5 t t$ r п F 5 n 5 t d[1	[Type of stop] Stop mode on disappearance of the run command or [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop [Freewheel stop] (nSt): Freewheel stop [DC injection] (dCI): DC injection stop NOTE: f the "brake logic" function on page 173 page 67 or 194 is not 0 , only ramp type stops	ce of a stop command n enabled, or if [Low nfigured.	[Ramp stop] (rMP) ed time out] (tLS),
FFt	[Freewheel stop Thd.]	0.0 to 1600 Hz	0.0 Hz
(This parameter supports switching from a ramp stop or a fast stop to a freewheel stop below a low speed threshold. It can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) or [Ramp stop] (rMP). - 0.0: Does not switch to freewheel stop. - 0.1 to 1600 Hz : Speed threshold below which the motor will switch to freewheel stop.		
n5t	[Freewheel stop ass.]		[No] (nO)
	[No] (nO): Not assigned [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/ [C101] (C101) to [C115] (C115): With integrated Modb [C201] (C201) to [C215] (C215): With integrated CAN [C301] (C301) to [C315] (C315): With a communicatio [C401] (C401) to [C415] (C415): With a Controller Insi [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] can be [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] can be The stop is activated when the input or the bit changes is still active, the motor will only restart if $[2 / 3$ wire cont $(\mathrm{tCt})=[$ Level] (LEL) or [Fwd priority] (PFO). If not, a new	inserted as been inserted profile] (IO) O profile] (IO) [//O profile] (IO) [I/O profile] (IO) with possible logic without logic inputs input returns to stat , page $105=$ [2 wire] mmand must be sen	ts and the run command) and the [2 wire type]
F5t	[Fast stop assign.]		[No] (nO)
	NOTE: This function cannot be used with certai page 147. [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 141. The stop is activated when the input changes to 0 or th - If the input returns to state 1 and the run com control] (tCC), page $105=[2$ wire] (2C) and (PFO). - If not, a new run command must be sent.	nctions. Follow the in ges to 1 (bit in [I/O p still active, the moto e type] $(\mathrm{tCt})=[$ Level $]$	uctions on e] (IO) at 0). Ill only restart if [2/3 wire EL) or [Fwd priority]
$\pm L F$	[Ramp divider]	0 to 10	4
	The parameter can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) and if [Fast stop assign.] (FSt) is not $[\mathrm{No}](\mathrm{nO})$. The ramp that is enabled (dEC or dE) is then divided by this coefficient when stop requests are sent. Value 0 corresponds to a minimum ramp time.		

[^10]| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| | [STOP CONFIGURATION] (continued) | | |
| $d[1$ | [DC injection assign.]
 NOTE: This function cannot be used with certain oth
 [No o (nO): Not assigned [LI1] (LI1)
 [...] (...): See the assignment conditions on page 141.
 DC injection braking is initiated when the assigned input or b If the input returns to state 1 and the run command is still active page $105=[2$ wire $](2 \mathrm{C})$ and [2 wire type] $(\mathrm{tCt})=[$ Level $](\mathrm{LEL})$ be sent. | ons. Follow the instru
 es to state 1.
 motor will only restart priority] (PFO). If not | $[\mathrm{No}](\mathrm{nO})$
 ons on page 147.
 [2/3 wire control] new run command |
| $1 d 5$ | [DC inject. level 1] (1) (3) | 0.1 to $1.41 \ln ^{(2)}$ | $0.64 \mathrm{ln}{ }^{(2)}$ |
| | Level of DC injection braking current activated via logic input or selected as stop mode. The parameter can be accessed if [Type of stop] (Stt) = [DC injection] (dCI) or if [DC injection assign.] (dCI) is not [No] (nO). | | |
| | CAUTION | | |
| | OVERHEATING OF MOTOR
 Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage. | | |
| tdI | [DC injection time 1] (1) (3) | 0.1 to 30 s | 0.5 s |
| () | Maximum current injection time [DC inject. level 1] (IdC). A level 2] (IdC2).
 The parameter can be accessed if [Type of stop] $(\mathrm{Stt})=[\mathrm{DC}$ [No o (nO). | time the injection curr (dCI) or if [DC inje | becomes [DC inje
 n assign.] (dCl) is |
| $1 d[2$ | [DC inject. level 2] | $0.1 \ln { }^{(2)}$ to [DC inject. level 1] (IdC) | $0.5 \ln { }^{(2)}$ |
| | Injection current activated by logic input or selected as stop mode, once period of time [DC injection time 1] (tdI) has elapsed.
 The parameter can be accessed if [Type of stop] (Stt) = [DC injection] (dCI) or if [DC injection assign.] (dCI) is not $[\mathrm{No}](\mathrm{nO})$. | | |
| | CAUTION | | |
| | OVERHEATING OF MOTOR
 Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage. | | |
| $t d[$ | [DC injection time 2] (1) (3) | 0.1 to 30 s | 0.5 s |
| | Maximum injection time [DC inject. level 2] (IdC2) for injection The parameter can be accessed if [Stop type] (Stt) = [DC in | cted as stop mode on (dCl). | |

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
3. Warning: These settings are independent of the [AUTO DC INJECTION] (AdC-) function.

Code	Name/Description	Adjustment range	Factory setting
Ad[-	[AUTO DC INJECTION]		
	[Auto DC injection] Automatic current injection on stopping (at the end of the ramp) [No] (nO): No injection. [Yes] (YES): Adjustable injection time. [Continuous] (Ct): Continuous standstill injection. NOTE: There is an interlock between this function and [M (FLU) $=$ [Continuous] (FCt) [Auto DC injection] (Adc) mus NOTE: This parameter gives rise to the injection of curren be accessed with the drive running.	or fluxing] (FLU), pag [No] (nO). ven if a run command	[Yes] (YES) 8. If [Motor fluxing] s not been sent. It can
5d[1	[Auto DC inj. level 1]	0 to $1.2 \ln ^{(2)}$	0.7 ln ${ }^{(2)}$
	Level of standstill DC injection current. This parameter can be accessed if [Auto DC injection] (AdC) is not [No] (nO) and cannot be accessed if [Motor control type] (Ctt), page $74=[F V C]$ (FUC) or [Sync.CL] (FSY). This parameter is forced to 0 if [Motor control type] (Ctt), page $74=$ [Sync. mot.] (SYn).		
	C AUTMN		
	OVERHEATING OF MOTOR Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage.		
$t \pm[1$	[Auto DC inj. time 1]	0.1 to 30 s	0.5 s
	Standstill injection time. The parameter can be accessed if [Auto DC injection] (AdC) is not [No] (nO). If [Motor control type] (Ctt), page $74=[\mathrm{FVC}](\mathrm{FUC})$ or [Sync. mot.] (SYn) this time corresponds to the zero speed maintenance time.		
$5 d[2$	[Auto DC inj. level 2]	0 to $1.2 \ln { }^{(2)}$	$0.5 \ln { }^{(2)}$
	$2^{\text {nd }}$ level of standstill DC injection current. This parameter can be accessed if [Auto DC injection] (AdC) is not [No] (nO) and cannot be accessed if [Motor control type] (Ctt), page $74=[F V C]$ (FUC) or [Sync.CL] (FSY). This parameter is forced to 0 if [Motor control type] (Ctt), page $74=[$ Sync. mot.] (SYn).		
	CAUTION		
	OVERHEATING OF MOTOR Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage.		

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

Parameter that can be modified during operation or when stopped.

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Parameter that can be modified during operation or when stopped.

[^11](2) Parameter that can be modified during operation or when stopped.

Preset speeds

$2,4,8$, or 16 speeds can be preset, requiring 1,2,3 or 4 logic inputs respectively.
NOTE: You must configure 2 and 4 speeds in order to obtain 4 speeds.
You must configure 2, 4 and 8 speeds in order to obtain 8 speeds.
You must configure 2, 4, 8, and 16 speeds in order to obtain 16 speeds.
Combination table for preset speed inputs

16 speeds LI (PS16)	8 speeds LI (PS8)	4 speeds LI (PS4)	2 speeds LI (PS2)	Speed reference
0	0	0	0	Reference $^{(1)}$
0	0	0	1	SP2
0	0	1	0	SP3
0	0	1	1	SP4
0	1	0	0	SP5
0	1	0	1	SP6
0	1	1	0	SP7
1	0	1	1	SP8
1	0	0	0	SP9
1	0	1	1	SP10
1	0	1	0	SP11
1	1	0	1	SP12
1	1	0	0	SP13
1	1	1	1	SP14
1	1	0	1	SP15

1. See the diagram on page 135 : Reference $1=(S P 1)$.

Code	Name/Description	Factory setting
P55-	[PRESET SPEEDS] NOTE: This function cannot be used with certain other functions. Follow the instructions on page 147.	
P5 2 $n \square$ L I I	[2 preset speeds] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141.	[No$](\mathrm{nO})$
$P 54$ $n \square$ L I I	[4 preset speeds] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. To obtain 4 speeds you must also configure 2 speeds.	[No] (nO)
P5日 $\because \square$ LII	[8 preset speeds] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. To obtain 8 speeds you must also configure 2 and 4 speeds.	[No] (nO)
$\text { P } 516$ $n \square$ LII	[16 preset speeds] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. To obtain 16 speeds you must also configure 2,4 and 8 speeds.	[Noj (nO)

Code	Name／Description		Adjustment range	Factory setting
	［PRESET SPEEDS］（continued）			
$5 P 2$ （）	［Preset speed 2］	（1）	0 to 1600 Hz	10 Hz
$5 P^{7}$	［Preset speed 3］	（1）		15 Hz
$5 P 4$ （）	［Preset speed 4］	（1）		20 Hz
$5 P 5$	［Preset speed 5］	（1）		25 Hz
$5 P_{6}$	［Preset speed 6］	（1）		30 Hz
$5 P 7$	［Preset speed 7］	（1）		35 Hz
$5 \text { P日 }$	［Preset speed 8］	（1）		40 Hz
$5 P 9$	［Preset speed 9］	（1）		45 Hz
$5 P I \square$	［Preset speed 10］	（1）		50 Hz
$5 P \mid$	［Preset speed 11］	（1）		55 Hz
$5 P 12$	［Preset speed 12］	（1）		60 Hz
$5 P \text { ノヨ }$	［Preset speed 13］	（1）		70 Hz
$5 P 14$	［Preset speed 14］	（1）		80 Hz
$5 P 15$	［Preset speed 15］	（1）		90 Hz
$5 P 16$	［Preset speed 16］	（1）		100 Hz
	The appearance of these［Preset speed x ］（SPx）parameters is determined by the number of speeds configured．			

1．The parameter can also be accessed in the［1．3 SETTINGS］（SEt－）menu．
（】）Parameter that can be modified during operation or when stopped．

+l- speed

Two types of operation are available.
1 Use of single action buttons: Two logic inputs are required in addition to the operating direction(s).
The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.
2 Use of double action buttons: Only one logic input assigned to "+ speed" is required.
+/- speed with double-press buttons:
Description: 1 button pressed twice (2 steps) for each direction of rotation. A contact closes each time the button is pressed.

	Released (- speed)	$1^{\text {st }}$ press (speed maintained)	$2^{\text {nd }}$ press (faster)
Forward button	-	a	a and b
Reverse button	-	c	c and d

Example of wiring:

Do not use this +/-speed type with 3-wire control.
Whichever type of operation is selected, the max. speed is set by [High speed] (HSP) (see page 60).
NOTE: If the reference is switched via rFC (see page 143) from any one reference channel to another reference channel with
" $+/-$ speed", the value of reference rFr (after ramp) may be copied at the same time in accordance with the
[Copy channel 1 --> 2] (COP) parameter, see page 144.
If the reference is switched via rFC (see page 143) from one reference channel to any other reference channel with " $+/$ - speed", the value of reference rFr (after ramp) is always copied at the same time.

This prevents the speed being incorrectly reset to zero when switching takes place.

Code	Name/Description \quad Factory setting
UPd-	[+/- SPEED] Function can be accessed if reference channel [Ref. 2 channel] (Fr2) = [+/-Speed] (UPdt) see page 143. NOTE: This function cannot be used with certain other functions. Follow the instructions on page 147
U 5 P	[+ speed assignment] [No] (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] can be switched without logic inputs Function active if the assigned input or bit is at 1.
	[-Speed assignment] [No] (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] can be switched without logic inputs Function active if the assigned input or bit is at 1.
5 tr n \square r月П EEP	[Reference saved] Associated with the "+/-speed" function, this parameter can be used to save the reference: - When the run commands disappear (saved to RAM) - When the line supply or the run commands disappear (saved to EEPROM) Therefore, the next time the drive starts up, the speed reference is the last reference saved. [No] (nO): No save (the next time the drive starts up, the speed reference is [Low speed] (LSP), see page 48) [RAM] (rAM): Saved in RAM [EEprom] (EEP): Saved in EEPROM

+l- speed around a reference

The reference is given by Fr1 or Fr1b with summing/subtraction/multiplication functions and preset speeds if relevant (see the diagram on page 135). For improved clarity, we will call this reference A. The action of the +speed and -speed buttons can be set as a \% of this reference A. On stopping, the reference ($A+/-$ speed) is not saved, so the drive restarts with reference $A+$ only.
The maximum total reference is always limited by [High speed] (HSP) and the minimum reference by [Low speed] (LSP), see page 60.
Example of 2-wire control:

Code	Name/Description	Adjustment range	Factory setting
$5 r \mathrm{E}$ -	[+/-SPEED AROUND REF.] The function can be accessed for reference channel [Ref. 1 channel] (Fr1). NOTE: This function cannot be used with certain other functions. Follow the instructions on page 147.		
451	[+ speed assignment] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. Function active if the assigned input or bit is at 1.		[No] (nO)
$\begin{array}{rrr} d 5 & 1 \\ & n & 0 \\ & L & 1 \\ & 1 \\ & - \\ & - \\ & - \end{array}$	[-Speed assignment] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. Function active if the assigned input or bit is at 1.		[No] (nO)
$5 r P$	[+/-Speed limitation] This parameter limits the variation range with $+/$-speed as a $\%$ of the reference. The ramps used in this function are[Acceleration 2] (AC2) and [Deceleration 2] (dE2). The parameter can be accessed if $+/$ - speed is assigned.		
H[2	[Acceleration 2]	0.01 to $6000 \mathrm{~s}^{(2)}$	5.0 s
	Time to accelerate from 0 to the [Rated motor freq.] (FrS) or [Nominal freq sync.] (FrSS), page 84. Make sure that this value is compatible with the inertia being driven. The parameter can be accessed if $+/$ - speed is assigned.		
$\triangle E 2$	[Deceleration 2]	0.01 to $6000 \mathrm{~s}^{(2)}$	5.0 s
	Time to decelerate from the [Rated motor freq.] (FrS) or [Nominal freq sync.] (FrSS), page 84 to 0 . Make sure tha this value is compatible with the inertia being driven. The parameter can be accessed if $+/$ - speed is assigned.		

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr), page 152.
(2 Parameter that can be modified during operation or when stopped.

Save reference

Saving a speed reference value using a logic input command lasting longer than 0.1 s .

- This function is used to control the speed of several drives alternately via a single analog reference and one logic input for each drive.
- It is also used to confirm a line reference (communication bus or network) on several drives via a logic input. This allows movements to be synchronized by getting rid of variations when the reference is set.
- The reference is acquired 100 ms after the rising edge of the request. A new reference is not then acquired until a new request is made.

F: Motor frequency

Code	Name/Description	Factory setting
5РП-	[MEMO REFERENCE]	
$5 Р \square$	[Ref. memo ass.]	[No] (nO)
n 0	[No l (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted Assignment to a logic input Function active if the assigned input is at 1.	
LII		
$L 114$		

Limit switch management

This function can be used to manage trajectory limits using limit switches.
The stop mode is configurable.
When the stop contact is activated, startup in the other direction is authorized.
Example:

The stop is activated when the input is at 0 (contact open).

Code	Name/Description ${ }^{\text {a }}$ Factory setting
L5t-	[LIMIT SWITCHES] NOTE: This function cannot be used with certain other functions. Follow the instructions on page 147.
LAF	[Stop FW limit sw.] [No] (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] (IO) can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [//O profile] (IO) can be switched without logic inputs
L Ar	[Stop RV limit sw.] Same assignments possible as for [Stop FW limit sw.] (LAF) below.
$\begin{aligned} & \text { LAS } \\ & \text { rnP } \\ & \text { F5t } \\ & \text { n5t } \end{aligned}$	[Stop type] [Ramp stop] (rMP) [Fast stop] (FSt) [Freewheel] (nSt) When the assigned input changes to 0 , the stop is controlled in accordance with the selected type. Restarting is only authorized for the other operating direction once the motor has stopped. If the two inputs [Stop FW limit sw.] (LAF) and [Stop RV limit sw.] (LAr) are assigned and at state 0 , restarting is not possible. The parameter can be accessed if [Stop FW limit sw.] (LAF) or [Stop RV limit sw.] (LAr) is assigned.

Brake logic control

Used to control an electromagnetic brake by the drive, for horizontal and vertical hoisting applications, and for unbalanced machines.

Principle:

Vertical hoisting movement:

In order to hold the load, maintain motor torque in the driving load holding direction during brake opening and closing, start smoothly when the brake is released and stop smoothly when the brake is engaged.

Horizontal movement:

Synchronize brake release with the build-up of torque during startup and brake engage at zero speed on stopping, to prevent jolting.

Recommended settings for brake logic control for a vertical hoisting application:

A DANGER

UNINTENDED EQUIPMENT OPERATION
Check that the selected settings and configurations will not result in the dropping or loss of control of the load being lifted.
Failure to follow these instructions will result in death or serious injury.

1. Brake impulse (bIP): YES. Ensure that the direction of rotation FW corresponds to lifting the load.

For applications in which the load being lowered is very different from the load being lifted, set BIP $=2 \mathrm{lbr}$ (e.g., ascent with a load and descent without a load).
2. Brake release current (lbr and Ird if BIP = 2 lbr): Adjust the brake release current to the rated current indicated on the motor. During testing, adjust the brake release current in order to hold the load smoothly.
3. Acceleration time: For hoisting applications it is advisable to set the acceleration ramps to more than 0.5 seconds. Ensure that the drive does not exceed the current limit.
The same recommendation applies for deceleration.
Reminder: For a hoisting movement, a braking resistor should be used.
4. Brake release time (brt): Set according to the type of brake. It is the time required for the mechanical brake to release.
5. Brake release frequency (blr), in open-loop mode only: Leave in [Auto], adjust if necessary.
6. Brake engage frequency (bEn): Leave in [Auto], adjust if necessary.
7. Brake engage time (bEt): Set according to the type of brake. It is the time required for the mechanical brake to engage.

Recommended settings for brake logic control for a horizontal hoisting application:

1. Brake impulse (bIP): No
2. Brake release current (lbr): Set to 0 .
3. Brake release time (brt): Set according to the type of brake. It is the time required for the mechanical brake to release.
4. Brake engage frequency (bEn), in open-loop mode only: Leave in [Auto], adjust if necessary.
5. Brake engage time (bEt): Set according to the type of brake. It is the time required for the mechanical brake to engage.

Brake logic control, horizontal movement in open-loop mode

Key:

- (bEn): [Brake engage freq]
- (bEt): [Brake engage time]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (SdC1): [Auto DC inj. level 1]
- (tbE): [Brake engage delay]
- (ttr): [Time to restart]

Brake logic control, vertical movement in open-loop mode

Key:

- (bEn): [Brake engage freq]
- (bEt): [Brake engage time]
- (blr): [Brake release freq]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (JdC): [Jump at reversal]
- (tbE): [Brake engage delay]
- (ttr): [Time to restart]

Brake logic control, vertical or horizontal movement in closed-loop mode

Key:

- (bEt): [Brake engage time]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (tbE): [Brake engage delay]
- (ttr): [Time to restart]

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
(Parameter that can be modified during operation or when stopped.

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Parameter that can be modified during operation or when stopped.

Brake control logic expert parameters

(2) Parameter that can be modified during operation or when stopped.

Rollback management

In some lift applications (gearless with high inertia), a jerk can be felt in the car at the very beginning of the movement when the break is opened. At this time, because no external weight sensor is used, the torque applied by the motor is not yet at the level required to hold the car. A little movement (up or down, depending on the overall balance occurs). This movement is know as "rollback".

The rollback management function is only available in closed loop ([Motor control type] (Ctt), page $74=[$ Sync.CL] (FSY) or [FVC] (FUC)). It increases drive control stiffness during the mechanical brake release to cancel any movement during the brake opening time ([Brake Release time] (brt), page 174).

The [Rollback MGT] (rbM) function can be used to avoid the rollback effect once the following settings are done:

- The speed loop parameters must be set and must not be modified after the [Rollback MGT] (rbM) function activation.
- An adequate [Encoder filter value] (FFr), page 120 should be set and must not be modified after the [Rollback MGT] (rbM) function activation.
- An appropriate [Brake release I FW] (Ibr), page 173 can be set to apply a current level that corresponds to the more frequent load case (about 25% of the full load).
- The opening brake sequence must be set with adequate [Brake Release time] (brt) (typically brt > 1 second).

Adjustment recommandations:

- Good speed loop setting is essential for satisfactory rollback compensation results (good tracking of the ramp and well damped response) The speed loop setting optimization initially has to be done with the rollback function disable ([Rollback MGT] (rbM) $=[\mathrm{No}]$ (no)).
- It is recommended to increase gradually [Rbk Compensation] (rbC) starting from 0 until rollback motion is reduced to the desired level.
- If vibrations occur while increasing [Rbk Compensation] (rbC) reduce the setting until the vibrations stop. It is possible to increase the damping by increasing the [Rbk Damping] (rbd) setting. This may allow an increase in [Rbk Compensation] (rbC).
- Note: Elevated [Rbk Damping] (rbd) setting may amplify the encoder quantization noise, so it is recommended to keep this setting as low as possible.
- Depending on the elevator system resonant frequencies and encoder feedback resolution, there will be a practical limit on the performance of the rollback compensation function. Low resolution encoders may not allow desired rollback management.

NOTE: Sufficient time must be allowed after the brake opening and prior the launch of the speed ramp for the rollback control stabilizes the elevator position.

Load measurement

This function uses the information supplied by a weight sensor to adapt the current [Brake release I FW] (Ibr) of the [BRAKE LOGIC CONTROL] (bLC-) function. The signal from the weight sensor can be assigned to an analog input (usually a 4-20 mA signal), to the pulse-in input or to the encoder input, according to the type of weight sensor.

Examples:

- Measurement of the total weight of a hoisting winch and its load
- Measurement of the total weight of an elevator winch, the cabin and counterweight

The current [Brake release I FW] (Ibr) is adapted in accordance with the curve below.

This curve can represent a weight sensor on an elevator winch, where zero load on the motor occurs when the load in the cabin is not zero.

[^12]
High-speed hoisting

This function can be used to optimize the cycle times for hoisting movements for zero or lightweight loads. It authorizes operation at "constant power" in order to reach a speed greater than the rated speed without exceeding the rated motor current.
The speed remains limited by the [High speed] (HSP) parameter, page 60.
The function acts on the speed reference pedestal and not on the reference itself.

Principle:

CAUTION

LOSS OF MOTOR FUNCTION

For permanent magnet synchronous motors, the maximum permissible speed must not be exceeded, otherwise demagnetization may occur. The maximum speed permitted by the motor, drive chain or application must not be exceeded at any time.

Failure to follow these instructions can result in equipment damage.

There are 2 possible operating modes:

- "Speed reference" mode: The maximum permissible speed is calculated by the drive during a speed step that is set so that the drive can measure the load.
- "Current limitation" mode: The maximum permissible speed is the speed that supports current limitation in motor mode, in the "Ascending" direction only. For the "Descending" direction, operation is always in "Speed reference" mode.

Speed reference mode

OSP: Adjustable speed step for load measurement tOS: Load measuring time

Two parameters are used to reduce the speed calculated by the drive, for ascending and descending.

Current limiting mode

SCL: Adjustable speed threshold, above which current limitation is active CLO: Current limitation for high-speed function

Rope slack

The "rope slack" function can be used to prevent starting up at high speed when a load has been set down ready for lifting but the rope is still slack (as illustrated below).

NOTE: Operation will only be optimized in speed reference mode: [High speed hoisting] (HSO) = [Speed ref] (SSO).

The speed step (OSP parameters) described on page 183 is used to measure the load. The effective measurement cycle will not be triggered until the load reaches the adjustable threshold rStL, which corresponds to the weight of the hook.

A logic output or a relay can be assigned to the indication of the "rope slack" state in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu.

[^13]
PID regulator

Block diagram

The function is activated by assigning an analog input to the PID feedback (measurement).

1. Ramp AC2 is only active when the PID function starts up and during PID "wake-ups".

PID feedback:
The PID feedback must be assigned to one of the analog inputs AI1 to AI4, to the frequency input or the encoder, according to whether any extension cards have been inserted.

PID reference:

The PID reference must be assigned to the following parameters:

- Preset references via logic inputs (rP2, rP3, rP4)
- In accordance with the configuration of [Act. internal PID ref.] (PII), pages 191:
- Internal reference (rPI) or
- Reference A (Fr1 or Fr1b, see page 136)

Combination table for preset PID references

$\mathrm{LI}(\operatorname{Pr} 4)$	$\mathrm{LI}(\mathrm{Pr} 2)$	$\mathrm{Pr} 2=\mathrm{nO}$	Reference
			rPI or A
0	0	rPI or A	
0	1	$\mathrm{rP2}$	
1	0	$\mathrm{rP3}$	
1	1	$\mathrm{rP4}$	

A predictive speed reference can be used to initialize the speed on restarting the process.

Scaling of feedback and references:

- PIF1, PIF2 parameters

Can be used to scale the PID feedback (sensor range).
This scale MUST be maintained for all other parameters.

- PIP1, PIP2 parameters

Can be used to scale the adjustment range, such as, the reference. The adjustment range MUST lie within the sensor range.
The maximum value of the scaling parameters is 32767 . To facilitate installation, we recommend using values as close as possible to this maximum level, while retaining powers of 10 in relation to the actual values.

Example (see graph below): Adjustment of the volume in a tank, between $6 \mathrm{~m}^{3}$ and $15 \mathrm{~m}^{3}$.

- Sensor used 4-20 mA, $4.5 \mathrm{~m}^{3}$ for $4 \mathrm{~mA}, 20 \mathrm{~m}^{3}$ for 20 mA , with the result that PIF1 $=4500$ and PIF2 $=20000$.
- Adjustment range 6 to $15 \mathrm{~m}^{3}$, with the result that PIP1 $=6000$ (min. reference) and PIP2 $=15000$ (max. reference).
- Example references:
- rP1 (internal reference) $=9500$
- rp2 $($ preset reference $)=6500$
- rP3 $($ preset reference $)=8000$
- rP4 $($ preset reference $)=11200$

The [DISPLAY CONFIG.] menu can be used to customize the name of the unit displayed and its format.

Other parameters:

- rSL parameter:

Can be used to set the PID error threshold, above which the PID regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed (tLS).

- Reversal of the direction of correction (PIC): If PIC $=\mathrm{nO}$, the speed of the motor will increase when the error is positive, for example: pressure control with a compressor. If PIC = YES, the speed of the motor will decrease when the error is positive, for example: temperature control using a cooling fan.
- The integral gain may be short-circuited by a logic input.
- An alarm on the PID feedback may be configured and indicated by a logic output.
- An alarm on the PID error may be configured and indicated by a logic output.

"Manual - Automatic" operation with PID

This function combines the PID regulator, the preset speeds and a manual reference. Depending on the state of the logic input, the speed reference is given by the preset speeds or by a manual reference input via the PID function.

Manual reference (PIM)

- Analog inputs Al1 to Al4
- Frequency input
- Encoder

Predictive speed reference (FPI)

- [AI1] (AI1): Analog input
- [AI2] (AI2): Analog input
- [AI3] (Al3): Analog input, if VW3A3202 extension card has been inserted
- [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted
- [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted
- [Encoder] (PG): Encoder input, if encoder card has been inserted
- [HMI] (LCC): Graphic display terminal
- [Modbus] (Mdb): Integrated Modbus
- [CANopen] (CAn): Integrated CANopen
- [Com. card] (nEt): Communication card (if inserted)
- [C.Insid. card] (APP): Controller Inside card (if inserted)

Setting up the PID regulator

1. Configuration in PID mode

See the diagram on page 187.
2. Perform a test in factory settings mode (in most cases, this will be sufficient).

To optimize the drive, adjust rPG or rIG gradually and independently and observe the effect on the PID feedback in relation to the reference.
3. If the factory settings are unstable or the reference is incorrect

- Perform a test with a speed reference in Manual mode (without PID regulator) and with the drive on load for the speed range of the system:
- In steady state, the speed must be stable and comply with the reference and the PID feedback signal must be stable.
- In transient state, the speed must follow the ramp and stabilize quickly, and the PID feedback must follow the speed. If this is not the case, see the settings for the drive and/or sensor signal and wiring.
- Switch to PID mode.
- Set brA to no (no auto-adaptation of the ramp).
- Set the PID ramp ($\operatorname{PrP)~to~the~minimum~permitted~by~the~mechanism~without~triggering~an~ObF~fault.~}$
- Set the integral gain (rIG) to minimum.
- Leave the derivative gain (rdG) at 0 .
- Observe the PID feedback and the reference.
- Switch the drive ON/OFF a number of times or vary the load or reference rapidly a number of times.
- Set the proportional gain (rPG) in order to ascertain the best compromise between response time and stability in transient phases (slight overshoot and 1 to 2 oscillations before stabilizing).
- If the reference varies from the preset value in steady state, gradually increase the integral gain (rIG), reduce the proportional gain (rPG) in the event of instability (pump applications), find a compromise between response time and static precision (see diagram).
- Lastly, the derivative gain may permit the overshoot to be reduced and the response time to be improved, although this will make it more difficult to obtain a compromise in terms of stability, as it depends on 3 gains.
- Perform in-production tests over the whole reference range.

The oscillation frequency depends on the system kinematics.

Parameter	Rise time	Overshoot	Stabilization time	Static error
rPG	4		$=$	
rIG				
rdG	4			

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit. For Example: 15.65 for 15650.

3. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
4. If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit. For Example: 15.65 for 15650.

5. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
6. If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit. For Example: 15.65 for 15650.
7. Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr), page 152.

Parameter that can be modified during operation or when stopped.

Code	Name/Description	Adjustment range	Factory setting
	[PID REGULATOR] (continued)		
$t L 5$	[Low speed time out] (1)	0 to 999.9 s	0 s
()	Maximum operating time at [Low speed] (LSP) (see page 48) Following operation at LSP for a defined period, a motor stop is requested automatically. The motor restarts if the reference is greater than LSP and if a run command is still present. Caution: Value 0 corresponds to an unlimited period. NOTE: If [Low speed time out] (tLS) is not 0, [Type of stop] (Stt), page 155 is forced to [Ramp stop] (rMP) (only if a ramp stop can be configured).		
r 5L	[PID wake up thresh.]	0.0 to 100.0	0
	If the PID and Low speed operating time tLS functions ar attempt to set a speed lower than LSP. This results in unsatisfactory operation, which consists of Parameter rSL (restart error threshold) can be used to se at prolonged LSP. The function is inactive if $\mathrm{tLS}=0$ or if $\mathrm{rSL}=0$.	d at the same time, erating at low speed m PID error threshold	PID regulator may stopping, and so on... restarting after a stop
	UNINTENDED EQUIPMENT OPERATION Verify that unintended restarts will not present any danger. Failure to follow these instructions will result in death or serious injury.		

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Parameter that can be modified during operation or when stopped.

Code	Name/Description	Factory setting
Pr I-	[PID PRESET REFERENCES] Function can be accessed if [PID feedback ass.] (PIF) is assigned.	
$\operatorname{Pr} 2$ $\begin{gathered} n 0 \\ L 11 \end{gathered}$	[2 preset PID ref.] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. If the assigned input or bit is at 0 , the function is inactive. If the assigned input or bit is at 1 , the function is active.	[No] (nO)
$\operatorname{Pr} 4$ $\begin{array}{r} n 0 \\ \text { LI } \\ \\ \\ \\ \\ \\ - \end{array}$	[4 preset PID ref.] Make sure that [2 preset PID ref.] (Pr2) has been assigned before assigning this function. [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. If the assigned input or bit is at 0 , the function is inactive. If the assigned input or bit is at 1 , the function is active.	[No] (nO)
${ }^{r P Z}$	[2 preset PID ref.] (1) The parameter can be accessed if [Preset ref. PID 2] (Pr2) is assigned. Adjustment range from [Min PID reference] (PIP1) to [Max PID reference] (PIP2) ${ }^{(2)}$.	300
${ }^{-P \exists}()$	[3 preset PID ref.] (1) The parameter can be accessed if [Preset ref. PID 4] (Pr4) is assigned. Adjustment range from [Min PID reference] (PIP1) to [Max PID reference] (PIP2) ${ }^{(2)}$.	600
${ }^{-P 4}$	[4 preset PID ref.] (1) The parameter can be accessed if [Preset ref. PID 4] (Pr4) is assigned. Adjustment range from [Min PID reference] (PIP1) to [Max PID reference] (PIP2) ${ }^{(2)}$.	900

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit. For Example: 15.65 for 15650.

Torque regulation

The function can be used to switch between operation in speed regulation mode and operation in torque control mode.
In torque control mode, the speed may vary within a configurable "deadband". When it reaches a lower or upper limit, the drive automatically reverts to speed regulation mode (fallback) and remains at this limit speed. The regulated torque is therefore no longer maintained and two scenarios may occur.

- If the torque returns to the required value, the drive will return to torque control mode.
- If the torque does not return to the required value at the end of a configurable period of time, the drive will switch to fault or alarm mode.

A DANGER

UNINTENDED EQUIPMENT OPERATION

Verify that the changes in the behavior of the motor do not present any danger.
Failure to follow these instructions will result in death or serious injury.

- $A B$ and CD: Fallback to speed regulation
- BC: Torque control zone
- E: Ideal operating point

The torque sign and value can be transmitted via a logic output and an analog output.

Code	Name／Description	Adjustment range	Factory setting
	［TORQUE CONTROL］（continued）		
$\stackrel{A b P}{()}$	［Positive deadband］	0 to $2 \times[\operatorname{Max}$ frequency］（tFr）	10 Hz
	Positive deadband． Value added algebraically to the speed reference． Example for dbP＝10： －If reference $=+50 \mathrm{~Hz}:+50+10=60$ －If reference $=-50 \mathrm{~Hz}$ ：$-50+10=-40$		
(Q	［Negative deadband］	0 to $2 \times[\mathrm{Max}$ frequency］（tFr）	10 Hz
	Negative deadband． Value subtracted algebraically from the speed reference． Example for dbn＝10： －If reference $=+50 \mathrm{~Hz}:+50-10=40$ －If reference $=-50 \mathrm{~Hz}:-50-10=-60$		
$r \in \square$	［Torque ctrl time out］	0 to 999.9 s	60
	Time following automatic exit of torque control mode in the event of a fault or alarm．		
ヒロレ	［Torq．ctrl fault mgt］ Response of drive once time［Torque ctrl time out］（rtO）has elapsed． ［Alarm］（ALrM） ［Fault］（FLt）：Fault with freewheel stop．		［Alarm］（ALrM）
$\begin{array}{r} \text { FLr } \\ F L E \end{array}$			

NOTE：If the motor is equipped with an encoder assigned to speed feedback，the torque control function will trigger a［Load slipping］（AnF）fault．One of the following solutions should be applied：
－Set［Load slip detection］（Sdd），page $244=[\mathrm{No}](\mathrm{nO})$ ．
－Set［Positive deadband］（dbP）and［Negative deadband］（dbn）each to a value less than 10% of the rated motor frequency．

Torque limitation

There are two types of torque limitation:

- With a value that is fixed by a parameter
- With a value that is set by an analog input (AI, pulse or encoder)

If both types are enabled, the lowest value is taken into account. The two types of limitation can be configured or switched remotely using a logic input or via the communication bus.

[^14]

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

Line contactor command

The line contactor closes every time a run command (forward or reverse) is sent and opens after every stop, as soon as the drive is locked. For example, if the stop mode is stop on ramp, the contactor will open when the motor reaches zero speed.

NOTE: The drive control power supply must be provided via an external 24 V source.

Example circuit:

A CAUTION

EXCESSIVE LINE CONTACTOR SWITCHING

- Avoid operating the contactor frequently to avoid premature aging of the filter capacitors.
- Do not have cycle times less than 60 seconds.

Failure to follow these instructions can result in injury or equipment damage.

Output contactor command

This allows the drive to control a contactor located between the drive and the motor. The request for the contactor to close is made when a run command is sent. The request for the contactor to open is made when there is no longer any current in the motor.

A WARNING

NO HOLDING TORQUE

- DC injection braking does not provide holding torque at zero speed.
- DC injection braking does not function during loss of power or detected faults.
- When required, use a separate brake for holding torque.

Failure to follow these instructions can result in death, serious injury or equipment damage.

A WARNING

EXCESSIVE DC INJECTION BRAKING

- Application of DC injection braking for long periods of time can cause motor overheating and damage.
- Protect the motor from extended periods of DC injection braking.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Output contactor feedback

The corresponding logic input should be at 1 when there is no run command and at 0 during operation.
In the event of an inconsistency, the drive trips on an FCF2 fault if the output contactor fails to close (LIx at 1) and on an FCF1 fault if it is stuck (LIx at 0).
The parameter [Delay to motor run] (dbS) can be used to delay tripping in fault mode when a run command is sent and the [Delay to open cont.] (dAS) parameter delays the fault when a stop command is set.

The [Out. contactor ass.] (OCC) and [Output contact. fdbk] (rCA) functions can be used individually or together.

0

 Parameter that can be modified during operation or when stopped.
Positioning by sensors or limit switches

This function is used for managing positioning using position sensors or limit switches linked to logic inputs or using control word bits:

- Slowing down
- Stopping

The action logic for the inputs and bits can be configured on a rising edge (change from 0 to 1) or a falling edge (change from 1 to 0). The example below has been configured on a rising edge:
\wedge

The slowdown mode and stop mode can be configured.
The operation is identical for both directions of operation. Slowdown and stopping operate according to the same logic, described below.

Example: Forward slowdown, on rising edge

- Forward slowdown takes place on a rising edge (change from 0 to 1) of the input or bit assigned to forward slowdown if this rising edge occurs in forward operation. The slowdown command is then memorized, even in the event of a power outage. Operation in the opposite direction is authorized at high speed. The slowdown command is deleted on a falling edge (change from 1 to 0) of the input or bit assigned to forward slowdown if this falling edge occurs in reverse operation.
- A bit or a logic input can be assigned to disable this function.
- Although forward slowdown is disabled while the disable input or bit is at 1 , sensor changes continue to be monitored and saved.

Example: Positioning on a limit switch, on rising edge

Operation with short cams:

In this instance, when operating for the first time or after restoring the factory settings, the drive must initially be started outside the slowdown and stop zones in order to initialize the function.

Operation with long cams:

In this instance, there is no restriction, which means that the function is initialized across the whole trajectory.

Forward slowdown \qquad
Forward slowdown zone

Stop at distance calculated after deceleration limit switch

This function can be used to control the stopping of the moving part automatically once a preset distance has been traveled after the slowdown limit switch.

On the basis of the rated linear speed and the speed estimated by the drive when the slowdown limit switch is tripped, the drive will induce the stop at the configured distance.
This function is useful in applications where one manual-reset overtravel limit switch is common to both directions. It will then only respond to help ensure safety if the distance is exceeded. The stop limit switch retains priority in respect of the function.

The [Deceleration type] (dSF) parameter can be configured to obtain either of the functions described below:

NOTE:

- If the deceleration ramp is modified while stopping at a distance is in progress, this distance will not be observed.
- If the direction is modified while stopping at a distance is in progress, this distance will not be observed.

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Check that the parameters configured are consistent and that the required distance is possible.
- This function does not replace the stop limit switch, which remains necessary.

Failure to follow these instructions will result in death or serious injury.

Code	Name/Description \quad Factory setting
LPG-	[POSITIONING BY SENSORS] NOTE: This function cannot be used with certain other functions. Follow the instructions on page 147.
5月F	[Stop FW limit sw.] [No] (nO): Not assigned [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [//O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] (IO) can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] (IO) can be switched without logic inputs
5 Rr	[Stop RV limit sw.] Same assignments possible as for [Stop FW limit sw.] (SAF) above.
5 月L $\begin{gathered} L \square \\ H \quad I L \end{gathered}$	[Stop limit config.] The parameter can be accessed if at least one limit switch or one stop sensor has been assigned. It defines the positive or negative logic of the bits or inputs assigned to the stop. [Active low] (LO): Stop controlled on a falling edge (change from 1 to 0) of the assigned bits or inputs. [Active high] (HIG): Stop controlled on a rising edge (change from 0 to 1) of the assigned bits or inputs.
d F F	[Slowdown forward] Same assignments possible as for [Stop FW limit sw.] (SAF) above.
Δr^{\prime}	[Slowdown reverse] Same assignments possible as for [Stop FW limit sw.] (SAF) above.
d AL $\begin{gathered} L \square \\ H \quad I L \end{gathered}$	[Slowdown limit cfg.] The parameter can be accessed if at least one limit switch or one slowdown sensor has been assigned. It defines the positive or negative logic of the bits or inputs assigned to the slowdown. [Active low] (LO): Slowdown controlled on a falling edge (change from 1 to 0) of the assigned bits or inputs. [Active high] (HIG): Slowdown controlled on a rising edge (change from 0 to 1) of the assigned bits or inputs.

Parameter set switching [PARAM. SET SWITCHING]

A set of 1 to 15 parameters from the [1.3 SETTINGS] (SEt-) menu on page 58 can be selected and 2 or 3 different values assigned. These 2 or 3 sets of values can then be switched using 1 or 2 logic inputs or control word bits. This switching can be performed during operation (motor running).
It can also be controlled on the basis of one or two frequency thresholds, whereby each threshold acts as a logic input ($0=$ threshold not reached, $1=$ threshold reached).

	Values 1	Values 2	Values 3
Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15	Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15	Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15	Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15
Input LI or bit or frequency threshold 2 values	0	1	0 or 1
Input LI or bit or frequency threshold 3 values	0	0	1

NOTE: Do not modify the parameters in the [1.3 SETTINGS] (SEt-) menu, because any modifications made in this menu ([1.3 SETTINGS] (SEt-)) will be lost on the next power-up. The parameters can be adjusted during operation in the [PARAM. SET SWITCHING] (MLP-) menu, on the active configuration.

A DANGER

UNINTENDED EQUIPMENT OPERATION

After switching to a parameter set, verify that the parameter assignments of the set are as intended for the motor selected.
Failure to follow these instructions will result in death or serious injury

NOTE: Parameter set switching cannot be configured from the integrated display terminal.
Parameters can only be adjusted on the integrated display terminal if the function has been configured previously via the graphic display terminal, by PowerSuite or via the bus or communication network. If the function has not been configured, the MLP-menu and the PS1-, PS2-, PS3- submenus will not appear.

Code	Name／Description					Factory setting
$\Pi L P-$	［PARAM．SET SWITCHING］					
［ H \％I	［2 parameter sets］$\quad[\mathrm{No}](\mathrm{nO})$					
$\begin{aligned} & \because \square \\ & F \in A \\ & F 己 A \\ & E A P \end{aligned}$ LII	［ $\mathrm{No} \mathrm{]}$（nO）：Function inactive． ［Freq．Th．att．］（FtA）：Switching via［Freq．threshold］（Ftd），page 72. ［Freq．Th． 2 attain．］（F2A）：Switching via［Freq．threshold 2］（Ftd），pa ［Ramp Mode］（tAP）：Switching during braking sequence．This new assigr is open and before the starting of the ramp（useful for lift application）				low 	gain when the brake
［H月己	［3 parameter sets］ ［ No ］（ nO ）：Function inactive． ［Freq．Th．att．］（FtA）：Switching via［Freq．threshold］（Ftd），page 72. ［Freq．Th． 2 attain．］（F2A）：Switching via［Freq．threshold 2］（Ftd），page 72. ［Ramp Mode］（tAP）：Switching during braking sequence．This new assignment allows for higher gain when the brake is open and before the starting of the ramp（useful for lift application）． ［LI1］（LI1） ［．．．］（．．．）：See the assignment conditions on page 141. Switching 3 parameter sets NOTE：In order to obtain 3 parameter sets，［2 parameter sets］must also be configured．					
$\begin{aligned} & n \square \\ & F E A \\ & F ट A \\ & E A P \end{aligned}$ L I I						

Code	Name/Description ${ }^{\text {a }}$ (Factory setting
	[PARAM. SET SWITCHING] (continued)
$5 P 5$	[PARAMETER SELECTION] The parameter can only be accessed on the graphic display terminal if [2 parameter sets] is not [No]. Making an entry in this parameter opens a window containing all the adjustment parameters that can be accessed. Select 1 to 15 parameters using ENT (a tick then appears next to the parameter). Parameter(s) can also be deselected using ENT. Example
P5 I-	[SET 1] The parameter can be accessed if at least 1 parameter has been selected in [PARAMETER SELECTION]. Making an entry in this parameter opens a settings window containing the selected parameters in the order in which they were selected. With the graphic display terminal: With the integrated display terminal: Proceed as in the Settings menu using the parameters that appear.
P52-	[SET 2] The parameter can be accessed if at least 1 parameter has been selected in [PARAMETER SELECTION]. Procedure identical to [SET 1] (PS1-).
P5ヨ-	[SET 3] The parameter can be accessed if [3 parameter sets] is not [No] and if at least 1 parameter has been selected in [PARAMETER SELECTION]. Procedure identical to [SET 1] (PS1-).

NOTE: We recommend that a parameter set switching test is carried out while stopped and a check is made to ensure that it has been performed correctly.
Some parameters are interdependent and in this case may be restricted at the time of switching.
Interdependencies between parameters must be respected, even between different sets.
Example: The highest [Low speed] (LSP) must be below the lowest [High speed] (HSP).

Motor or configuration switching [MULTIMOTORS/CONFIG.]

The drive may contain up to 3 configurations, which can be saved using the [1.12 FACTORY SETTINGS] (FCS-) menu, page 260.
Each of these configurations can be activated remotely, enabling adaptation to:

- 2 or 3 different motors or mechanisms (multimotor mode)
- 2 or 3 different configurations for a single motor (multiconfiguration mode)

The two switching modes cannot be combined.
な
NOTE: The following conditions MUST be observed:

! DANGER

UNINTENDED EQUIPMENT OPERATION

- Motor or configuration switching can only take place when the drive is stopped.
- If a switching request is sent during drive operation, it will not be executed until the next stop.

Failure to follow these instructions will result in death or serious injury.

- In the event of motor switching, the following additional conditions apply:
-When the motors are switched, the power and control terminals concerned must also be switched as appropriate.
-The maximum power of the drive must not be exceeded by any of the motors.
- All the configurations to be switched must be set and saved in advance in the same hardware configuration, this being the definitive configuration (option and communication cards). Failure to follow this instruction can cause the drive to lock on an [Incorrect config.] (CFF) fault.

Menu and parameters switched in multimotor mode

- [1.3 SETTINGS] (SEt-)
- [1.4 MOTOR CONTROL] (drC-)
- [1.5 INPUTS / OUTPUTS CFG] (I-O-)
- [1.6 COMMAND] (CtL-)
- [1.7 APPLICATION FUNCT.] (FUn-) with the exception of the [MULTIMOTORS/CONFIG.] function (to be configured once only)
- [1.8 FAULT MANAGEMENT] (FLt)
- [1.13 USER MENU]
- [USER CONFIG.]: The name of the configuration specified by the user in the [1.12 FACTORY SETTINGS] (FCS-) menu

Menu and parameters switched in multiconfiguration mode

As in multimotor mode, except for the motor parameters that are common to the three configurations:

- Rated current
- Thermal current
- Rated voltage
- Rated frequency
- Rated speed
- Rated power
- IR compensation
- Slip compensation
- Synchronous motor parameters
- Type of thermal protection
- Thermal state
- The auto-tuning parameters and motor parameters that can be accessed in expert mode
- Type of motor control

[^15]
Switching command

Depending on the number of motors or selected configuration (2 or 3), the switching command is sent using one or two logic inputs. The table below lists the possible combinations.

2 motors or configurations	3 motors or Configurations	Number of configuration or active motor
0	0	0
1	0	1
0	1	2
1	1	2

Schematic diagram for multimotor mode

Configuration 0 if the 2 contacts are open

Auto-tuning in multimotor mode

This auto-tuning can be performed:

- Manually using a logic input when the motor changes
- Automatically each time the motor is activated for the $1^{\text {st }}$ time after switching on the drive, if the [Automatic autotune] (AUt) parameter on page $90=[\mathrm{Yes}]$ (YES).

Motor thermal states in multimotor mode:

The drive helps to protect the three motors individually. Each thermal state takes into account all stop times, including drive shutdowns. It is, therefore, not necessary to perform auto-tuning every time the power is switched on. It is sufficient to auto-tune each motor at least once.

Configuration information output

In the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu, a logic output can be assigned to each configuration or motor (2 or 3) for remote information transmission.

NOTE: As the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu is switched, these outputs must be assigned in all configurations in which information is required.

Code	Name/Description	Factory setting
ппг -	[MULTIMOTORS/CONFIG.]	
ᄃНп	[Multimotors]	[No] (nO)
$\begin{array}{r} n \square \\ Y E 5 \end{array}$	[No l (nO): Multiconfiguration possible [Yes] (YES): Multimotor possible	
$[\cap F I$	[2 Configurations]	[No] (nO)
n 0	[No] (nO): No switching [LI1] (LII) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C111] (C111) to [C115] (C115): With integrated Modbus [C211] (C211) to [C215] (C215): With integrated CANopen [C311] (C311) to [C315] (C315): With a communication card [C411] (C411) to [C415] (C415): With a Controller Inside card Switching of 2 motors or 2 configurations	
L I I		
-		
[111		
-		
-		
LnF	[3 Configurations]	[No] (nO)
пロ	[No] (nO): No switching	
L I I	[LI1] (LI1) to [LI6] (LI6)	
-	[LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted[LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted	
[111	[C111] (C111) to [C115] (C115): With integrated Modbus	
-	[C211] (C211) to [C215] (C215): With integrated CANopen	
-	[C311] (C311) to [C315] (C315): With a communication card	
-	[C411] (C411) to [C415] (C415): With a Controller Inside card	
	Switching of 3 motors or 3 configurations	
	NOTE: In order to obtain 3 motors or 3 configurations, [2 Configurations] (CnF1) must also be configured.	

Traverse control

Function for winding reels of yarn (in textile applications)

The speed of rotation of the cam must follow a precise profile to ensure that the reel is steady, compact and linear:

The function starts when the drive has reached its base reference and the traverse control command has been enabled. When the traverse control command is disabled, the drive returns to its base reference, following the ramp determined by the traverse control function. The function then stops, as soon as it has returned to this reference. Bit 15 of word LRS1 is at 1 while the function is active.

Function parameters:

These define the cycle of frequency variations around the base reference, as shown in the diagram below:

- trC: [Yarn control]: Assignment of the traverse control command to a logic input or to a communication bus control word bit
- tdn: [Traverse ctrl. decel] time, in seconds
- tUP: [Traverse ctrl. accel.] time, in seconds
- $\mathrm{trH}: \quad$ [Traverse freq. high], in Hertz
- trL: [Traverse Freq. Low], in Hertz
- qSH: [Quick step High], in Hertz
- qSL: [Quick step Low], in Hertz

Reel parameters:

- tbO:
[Reel time]: Time taken to make a reel, in minutes.
This parameter is intended to signal the end of winding. When the traverse control operating time since command trC reaches the value of tbO, the logic output or one of the relays changes to state 1, if the corresponding function EbO has been assigned.
The traverse control operating time EbOt can be monitored online by a communication bus and in the Monitoring menu.
- dtF: [Decrease ref. speed]: Decrease in the base reference.

In certain cases, the base reference has to be reduced as the reel increases in size. The dtF value corresponds to time tbO. Once this time has elapsed, the reference continues to fall, following the same ramp. If low speed LSP is at 0 , the speed reaches 0 Hz , the drive stops and must be reset by a new run command.
If low speed LSP is not 0 , the traverse control function continues to operate above LSP.

[Init. traverse ctrl] Reinitialize traverse control.
This command can be assigned to a logic input or to a communication bus control word bit. It resets the EbO alarm and the EbOt operating time to zero and reinitializes the reference to the base reference. As long as rtr remains at 1 , the traverse control function is disabled and the speed remains the same as the base reference.
This command is used primarily when changing reels.
Motor speed

Counter wobble

The "Counter wobble" function is used in certain applications to obtain a constant yarn tension when the "Traverse control" function is producing considerable variations in speed on the yarn guide motor (trH and trL, see page 222). Two motors must be used (one master and one slave).
The master controls the speed of the yarn guide, the slave controls the winding speed. The function assigns the slave a speed profile, which is in antiphase to that of the master. This means that synchronization is required, using one of the master's logic outputs and one of the slave's logic inputs.

Connection of synchronization I/O

The starting conditions for the function are:

- Base speeds reached on both drives
- [Yarn control] (trC) input activated
- Synchronization signal present

NOTE: On the slave drive, the [Quick step High] (qSH) and [Quick step Low] (qSL) parameters should generally be left at zero.

[^16](】 Parameter that can be modified during operation or when stopped.

Inspection

The inspection function is designed for "elevator" applications.
It can only be accessed if the "brake logic control" and "output contactor command" functions have already been assigned.
It is used for operation at a fixed preset speed that is independent of all other references and over which it takes priority. The whole trajectory of the elevator can thus be covered and the necessary checks performed.

This function requires:

- A logic input to control the inspection mode
- An appropriate frequency reference (inspection speed)

When the assigned logic input is at state 1 , inspection mode is activated:

- When a run command is given, the motor starts up normally, with output contactor command and brake logic control, until it reaches the inspection speed.
- When the run command is disabled, the motor changes to freewheel stop and brake logic control and output contactor command functions are triggered immediately.

Evacuation function

The evacuation function is designed for "elevator" applications. It is only accessible for ATV71•eゃN4 ($380 / 480 \mathrm{~V}$) drives, up to 75 kW (100 hp) only.
When an elevator is stuck between 2 floors due to a power outage, it must be possible to evacuate its occupants within a reasonable period of time.
This function requires an emergency power supply to be connected to the drive.
This power supply is at a reduced voltage, and only allows a derated operating mode, at reduced speed, but with full torque.
The function requires:

- One logic input to control "evacuation" operation
- Reduction of the voltage monitoring threshold
- An appropriate low speed reference

Following a power outage, the drive can restart without going into [Undervoltage] (USF) fault mode if the corresponding logic input is at 1 at the same time.

CAUTION

INCORRECT CONFIGURATION

- This input must not be at 1 when the drive is powered from the line supply. To ensure this and also avoid any short-circuits, supply changeover contactors must be used.
- Set this input to 0 before connecting the emergency power supply to the line supply.

Failure to follow these instructions can result in equipment damage.

Half floor

The "half floor" function is designed for "elevator" applications.
When an elevator sets off from floors and half floors, the cycle time for half floors can be too long, as the elevator does not have time to reach full speed before crossing the slowdown limit switch. As a result, the slowdown time is unnecessarily long.
The "half floor" function can be used to compensate this by not triggering slowdown until the speed reaches a preset threshold [Half-floor speed] (HLS) in order that the final part of the path will be the same as for a standard floor.

The graphs below illustrate the various operating scenarios with and without the function:
Frequency
Slowdown
Frequency
Slowdown floor
frequency

The function is only activated if, when the slowdown limit switch is tripped, the motor frequency is less than [Half-floor speed] (HLS). Acceleration is then maintained up to this value prior to slowing down.
The final part of the path is identical to that of the standard floor.

Code	Name/Description	Factory setting
HFF-	[HALF FLOOR]	
HLS	[Half-floor speed]	[No] (nO)
$\square \square$	Activation and adjustment of the "half floor" function. This function has priority over all speed reference functions (preset speeds, for example) with the exception of those generated via fault monitoring (fallback speed, for example). [No] (nO): Function inactive 0.1 Hz to 500.0 Hz : Activation of the function by adjusting the motor frequency to be reached prior to slowing down.	

Direct power supply via DC bus

NOTE: This function is only accessible for ATV71•⿰๑M3 ${ }^{3} 18.5 \mathrm{~kW}$ (25 hp) and ATV71 $\bullet \bullet \bullet \mathrm{N} 4{ }^{3} 18.5 \mathrm{~kW}(25 \mathrm{hp})$ drives.

Direct power supply via the DC bus requires a protected direct current source with adequate power and voltage as well as a suitably dimensioned resistor and capacitor precharging contactor. Consult Schneider Electric for information about specifying these components.

The "direct power supply via DC bus" function can be used to control the precharging contactor via a relay or a logic output on the drive.
Example circuit using R2 relay:

Menu

Top Z management

This function is only accessible if an encoder card VW3 A3 411 has been inserted and if [Encoder type] (EnS) = [AABB] (AAbb).
This function can be used for homing but it is necessary to have a low approach speed otherwise the drive trips on [Overbraking] (ObF) fault.

Code	Name/Description ${ }^{\text {a }}$ (Factory setting
ヒロP-	[TOP Z MANAGEMENT]
$t \square 5 t$ $\begin{array}{cc} n \\ L \\ 1 \end{array}$	[Stop on top Z] NOTE: This function cannot be used with certain other functions. Follow the instructions on page 147. [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 141. The stop is activated when the input changes to 1 or the bit changes to 1 and after the detection of the following Top Z. If the input returns to state 0 and the run command is still active, the motor will only restart if [$2 / 3$ wire control] (tCC), page $105=[2$ wire $](2 C)$ and the [2 wire type] (tCt) $=[$ [Level] (LEL) or [Fwd priority] (PFO). If not, a new run command must be sent.

［1．8 FAULT MANAGEMENT］（FLt－）

With graphic display terminal：

With integrated display terminal：

Summary of functions：

Code	Name	Page
Pt［－	［PTC MANAGEMENT］	230
r5t－	［FAULT RESET］	230
Atr－	［AUTOMATIC RESTART］	231
FLr－	［CATCH ON THE FLY］	232
EHE－	［MOTOR THERMAL PROT．］	234
ロPL－	［OUTPUT PHASE LOSS］	235
IPL－	［INPUT PHASE LOSS］	235
ロHL－	［DRIVE OVERHEAT］	236
5月t－	［THERMAL ALARM STOP］	237
EtF－	［EXTERNAL FAULT］	238
U5レ－	［UNDERVOLTAGE MGT］	239
E IE－	［IGBT TESTS］	240
LFL－	［4－20mA LOSS］	241
InH－	［FAULT INHIBITION］	242
CLL－	［COM．FAULT MANAGEMENT］	243
5dd－	［ENCODER FAULT］	244
Eld－	［TORQUE OR I LIM．DETECT］	244
F ¢ F－	［FREQUENCY METER］	246
dLd－	［DYNAMIC LOAD DETECT．］	248
brP－	［DB RES．PROTECTION］	249
bUF－	［BU PROTECTION］	249
EnF－	［AUTO TUNING FAULT］	249
PP I－	［CARDS PAIRING］	250
LFF－	［FALLBACK SPEED］	251
F5t－	［RAMP DIVIDER］	251
d［ 1－	［DC INJECTION］	251

The parameters in the [1.8 FAULT MANAGEMENT] (FLt-) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

PTC probes

3 sets of PTC probes can be managed by the drive in order to help protect the motors:

- 1 on logic input LI6 converted for this use by switch SW2 on the control card.
- 1 on each of the 2 option cards VW3A3201 and VW3A3202.

Each of these sets of PTC probes is monitored for the following faults:

- Motor overheating
- Sensor break fault
- Sensor short-circuit fault

Protection via PTC probes does not disable protection via $I^{2} t$ calculation performed by the drive (the two types of protection can be combined).

Code	Name/Description ${ }^{\text {a }}$ Factory setting
r5t-	[FAULT RESET] (continued)
$r P$ $\begin{array}{r} n \square \\ Y E S \end{array}$	[Product reset] Parameter can only be accessed in [ACCESS LEVEL] = [Expert] mode. Drive reinitialization. Can be used to reset all faults without having to disconnect the drive from the power supply. [No] (nO): Function inactive [Yes] (YES): Reinitialization. Press and hold down the "ENT" key for 2 s . The parameter changes back to [No] (nO) automatically as soon as the operation is complete. The drive can only be reinitialized when locked. NOTE: Make sure that the cause of the fault that led to the drive locking has been removed before reinitializing.
rPA $\begin{array}{ccc} & n & \square \\ & L & 1 \\ & 1 \\ L & 1 & 1 \\ \hline \end{array}$	[Product reset assig.] Parameter can only be modified in [ACCESS LEVEL] = [Expert] mode. Drive reinitialization via logic input. Can be used to reset all faults without having to disconnect the drive from the power supply. The drive is reinitialized on a rising edge (change from 0 to 1) of the assigned input. The drive can only be reinitialized when locked. [No] (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted. To assign reinitialization, press and hold down the "ENT" key for 2 s . NOTE: Make sure that the cause of the fault that led to the drive locking has been removed before reinitializing.
R r^{-}	[AUTOMATIC RESTART]
Atr	
$\begin{array}{r} n \square \\ Y E 5 \end{array}$	[No] (nO): Function inactive [Yes] (YES): Automatic restart, after locking on a fault, if the fault has disappeared and the other operating conditions permit the restart. The restart is performed by a series of automatic attempts separated by increasingly longer waiting periods: $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, then 1 minute for the following attempts. The assigned fault relay remains activated if this function is active. The speed reference and the operating direction must be maintained. Use 2-wire control ([2/3 wire control] $(\mathrm{tCC})=[2$ wire $](2 \mathrm{C})$ and $[2$ wire type $](\mathrm{tCt})=[$ Level $](\mathrm{LEL})$ see page 105$)$. A DANGER UNINTENDED EQUIPMENT OPERATION Verify that an automatic restart will not endanger personnel or equipment. Failure to follow these instructions will result in death or serious injury.

If the restart has not taken place once the configurable time tAr has elapsed, the procedure is aborted and the drive remains locked until it is turned off and then on again. The faults, which permit this function, are listed on page 285:

thr	
5	[5 min] (5): 5 minutes
10	[10 minutes] (10): 10 minutes
$\exists \square$	[30 minutes] (30): 30 minutes
1 h	[1 hour] (1h): 1 hour
2h	[2 hours] (2h): 2 hours
$\exists \mathrm{H}$	[3 hours] (3h): 3 hours
[t	[Unlimited] (Ct): Unlimited
	This parameter appears if [Automatic restart] (Atr) $=[\mathrm{Yes}](\mathrm{YES})$. It can be used to limit the number of consecutive restarts on a recurrent fault.

Motor thermal protection

Function:

Thermal protection by calculating the $\mathrm{I}^{2} \mathrm{t}$.

君
NOTE: The memory of the motor thermal state is saved when the drive is switched off. The power-off time is used to recalculate the thermal state the next time the drive is switched on.

- Naturally-cooled motors:

The tripping curves depend on the motor frequency.

- Force-cooled motors:

Only the 50 Hz tripping curve needs to be considered, regardless of the motor frequency.

Trip time in seconds

The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
2. Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.
(2) Parameter that can be modified during operation or when stopped.

Code	Name/Description	Adjustment range	Factory setting
- HL -	[DRIVE OVERHEAT]		
$\begin{aligned} & \square H L \\ & \\ & \cap \square\end{aligned}$	[Overtemp fault mgt] Behavior in the event of the drive overheating [lgnore] (nO): Fault detection ignored.		[Freewheel] (YES)
	CAUTION		
	RISK OF EQUIPMENT DAMAGE - The drive and motor are no longer protected in the event of thermal alarm stops. This invalidates the warranty. - Verify that the possible consequences do not present any risk. Failure to follow these instructions can result in equipment damage.		
YES SEE LFF LS r r	[Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [$2 / 3$ wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed ${ }^{(1)}$. [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed ${ }^{(1)}$. [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147. NOTE: A fault trip will occur when the thermal state reaches 118% of the rated state and reactivation will occur when the state falls back below 90%.		
EHA	[Drv therm. state al]	0 to 118\%	100\%
	Trip threshold for drive thermal alarm (logic output or relay)		

1. Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

0 Parameter that can be modified during operation or when stopped.

Deferred stop on thermal alarm

This function is designed in particular for elevator applications. It prevents the elevator stopping between two floors if the drive or motor overheats, by authorizing operation until the next stop. At the next stop, the drive is locked until the thermal state falls back to a value, which undershoots the set threshold by 20\%. Example: A trip threshold set at 80% enables reactivation at 60%.
One thermal state threshold must be defined for the drive, and one thermal state threshold for the motor(s), which will trip the deferred stop.

Code	Name/Description	Adjustment range	Factory setting
5月t -	[THERMAL ALARM STOP]		
	[Thermal alarm stop] [No] (nO): Function inactive (in this case, the following parameters cannot be accessed) [Yes] (YES): Freewheel stop on drive or motor thermal alarm		[No] (nO)
	CAUTION		
	OVERHEATED EQUIPMENT - The drive and motor are no longer monitored if Thermal Alarm Stop is set to No. - Verify that the possible consequences do not present any danger. Failure to follow these instructions can result in equipment damage.		
EHA ()	[Drv therm. state al]	0 to 118\%	100\%
	Thermal state threshold of the drive tripping the deferred stop.		
ttd	[Motor therm. level]	0 to 118\%	100\%
	Thermal state threshold of the motor tripping the deferred stop.		
$\operatorname{ttd}(\mathbf{Q}$	[Motor2 therm. level]	0 to 118\%	100\%
	Thermal state threshold of the motor 2 tripping the deferred stop.		
ttdg	[Motor3 therm. level]	0 to 118\%	100\%
	Thermal state threshold of the motor 3 tripping the deferred stop.		

()

Parameter that can be modified during operation or when stopped.

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
EtF-	[EXTERNAL FAULT]
$E \in F$ $\begin{gathered} n \square \\ L 11 \end{gathered}$	[External fault ass.] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 141. If the assigned bit is at 0 , there is no external fault. If the assigned bit is at 1 , there is an external fault. Logic can be configured via [External fault config] (LEt) if a logic input has been assigned.
LEE $\begin{array}{r} L O \\ H I L \end{array}$	[External fault config] Parameter can be accessed if the external fault has been assigned to a logic input. It defines the positive or negative logic of the input assigned to the fault. [Active low] (LO): Fault on falling edge (change from 1 to 0) of the assigned input. [Active high] (HIG): Fault on rising edge (change from 0 to 1) of the assigned input.
$E P L$ $\begin{aligned} & n \square \\ & \text { YES } \\ & 5 t E \end{aligned}$ LFF $r L 5$ F 5 t d[1	[External fault mgt] Type of stop in the event of an external fault [lgnore] (nO): Fault detection ignored. [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [$2 / 3$ wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed ${ }^{(1)}$. [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed ${ }^{(1)}$. [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147.

[^17]| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| U5レ－ | ［UNDERVOLTAGE MGT］ | | |
| ப 5 $\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$ | Behavior of the drive in the event of an undervoltage
 ［FIt\＆R1open］（0）：Fault and fault relay open．
 ［FIt\＆R1close］（1）：Fault and fault relay closed．
 ［Alarm］（2）：Alarm and fault relay remains closed．The alarm can be assigned to a logic output or a relay． | | |
| UrEs | ［Mains voltage］ | According to drive voltage rating | According to drive voltage rating |
| $\begin{aligned} & 200 \\ & 220 \\ & 240 \\ & 260 \\ & \\ & 780 \\ & 400 \\ & 440 \\ & 460 \\ & 480 \end{aligned}$ | Rated voltage of the line supply in V ．
 For ATV71ATV71•eッM3：
 ［200V ac］（200）： 200 Volts AC
 ［220V ac］（220）： 220 Volts AC
 ［240V ac］（240）： 240 Volts AC
 ［260V ac］（260）： 260 Volts AC（factory setting） | | |
| $45 L$ | Undervoltage trip level setting in V．The adjustment range and factory setting are determined by the drive voltage rating and the［Mains voltage］（UrES）value． | | |
| U5t | ［Undervolt．time out］ | 0.2 s to 999.9 s | 0.2 s |
| | Time delay for taking undervoltage into account | | |
| $5 E P$ | ［UnderV．prevention］ | | ［ No ］（nO） |
| $\begin{aligned} & n \square \\ & n \Pi 5 \\ & r ח P \\ & \operatorname{nif} \end{aligned}$ | Behavior in the event of the undervoltage fault prevention level being reached
 ［ No ］（nO）：No action
 ［DC Maintain］（MMS）：This stop mode uses the inertia to maintain the DC bus voltage as long as possible．
 ［Ramp stop］（rMP）：Stop following an adjustable ramp［Max stop time］（StM）．
 ［Lock－out］（LnF）：Lock（freewheel stop）without fault | | |
| t 5Π | ［UnderV．restart tm］ | 1.0 s to 999.9 s | 1.0 s |
| | Time delay before authorizing the restart after a complete stop for［UnderV．prevention］（StP）＝［Ramp stop］（rMP）， if the voltage has returned to normal． | | |
| $\triangle P L$ | Undervoltage fault prevention level setting in V ，which can be accessed if［UnderV．prevention］（StP）is not［ No ］（nO） The adjustment range and factory setting are determined by the drive voltage rating and the［Mains voltage］（UrES） value． | | |
| $5 \in \Pi$ | ［Max stop time］
 Ramp time if［UnderV．prevention］（StP）＝［Ramp stop］（rMP）． | 0.01 to 60.00 s | 1.00 s |
| | | | |
| $\text { ヒロ } 5$ | ［DC bus maintain tm］ | 1 to 9999 s | 9999 s |
| | DC bus maintain time if［UnderV．prevention］（StP）$=$［DC Maintain］（MMS）． | | |

Parameter that can be modified during operation or when stopped．

Code	Name/Description	Factory setting
$t 1 t-$	[IGBT TESTS]	
5trt	[IGBT test]	[No$](\mathrm{nO})$
$\begin{array}{r} n \square \\ Y E S \end{array}$	[No] (nO): No test [Yes] (YES): The IGBTs are tested on power up and every time a run command is sent. These tests cause a slight delay (a few ms). If the tests are not passed, the drive will lock. The following conditions can be detected: - Drive output short-circuit (terminals U-V-W): SCF display - IGBT did not pass the test: $x t F$, where x indicates the number of the IGBT concerned - IGBT short-circuited: x2F, where x indicates the number of the IGBT concerned	

Code	ame/Description ${ }^{\text {a }}$
LFL-	[4-20mA LOSS]
	[lgnore] (nO): Fault detection ignored. This configuration is the only one possible if [Al2 min. value] (CrL2), page 111 is not greater than 3 mA or if [AI2 Type] (Al2t), page $111=$ [Voltage] (10U). [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [2/3 wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed ${ }^{(1)}$. [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed ${ }^{(1)}$. [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147.
LFLヨ	[AI3 4-20mA loss
	[lgnore] (nO): Fault detection ignored. This configuration is the only one possible if [AI3 min. value] (CrL3), page 112 is not greater than 3 mA . [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [2/3 wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed ${ }^{(1)}$. [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed ${ }^{(1)}$. [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147.
L F	
	[lgnore] (nO): Fault detection ignored. This configuration is the only one possible if [AI4 min. value] (CrL4), page 113 is not greater than 3 mA or if [AI4 Type] (AI4t), page $113=$ [Voltage] (10U). [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [2/3 wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed ${ }^{(1)}$. [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed ${ }^{(1)}$. [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147.

[^18]Parameter can be accessed in [Expert] mode.

Code	Name/Description	Factory setting
$1 \cap H-$	[FAULT INHIBITION]	
InH	[Fault inhibit assign.] To assign fault inhibit, press and hold down the "ENT" key for 2 s . 4 DANGER LOSS OF PERSONNEL AND EQUIPMENT PROTECTION - Enabling the fault inhibition parameter (InH) will disable the drive protection features. - InH should not be enabled for typical applications of this equipment. - InH should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection poses a greater risk than personnel injury or equipment damage. Failure to follow these instructions will result in death or serious injury. [No] (nO): Function inactive [LI1] (LI1) : [...] (...): See the assignment conditions on page 141. If the assigned input or bit is at 0 , fault monitoring is active. If the assigned input or bit is at 1 , fault monitoring is inactive. Active faults are cleared on a rising edge (change from 0 to 1) of the assigned input or bit. NOTE: The Power Removal function and any assigned faults that prevent any form of operation are not affected by this function. A list of faults affected by this function appears on pages 282 to 287 .	
$\begin{gathered} n \square \\ \angle \quad I \quad 1 \end{gathered}$		

\begin{tabular}{|c|c|}
\hline Code \& Name/Description \({ }^{\text {a }}\) (Factory setting \\
\hline [LL- \& [COM. FAULT MANAGEMENT] \\
\hline \begin{tabular}{l}
\[
[L L
\]
\[
\begin{aligned}
\& \text { חI } \\
\& \text { YES } \\
\& 5 \text { t }
\end{aligned}
\] \\
LFF \\
\(r<5\) \\
\(r П P\) \\
F5t \\
d[1
\end{tabular} \& \begin{tabular}{l}
[Network fault mgt] \\
Behavior of the drive in the event of a communication fault with a communication card \\
[lgnore] (nO): Fault detection ignored. \\
[Freewheel] (YES): Freewheel stop. \\
[Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [\(2 / 3\) wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. \\
[fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed \({ }^{(1)}\). \\
[Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed \({ }^{(1)}\). \\
[Ramp stop] (rMP): Stop on ramp. \\
[Fast stop] (FSt): Fast stop. \\
[DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147.
\end{tabular} \\
\hline \begin{tabular}{l}
LFF \\
\(r L 5\) \\
г П \\
F5t \\
d[I
\end{tabular} \& \begin{tabular}{l}
[CANopen fault mgt] \\
Behavior of the drive in the event of a communication fault with integrated CANopen \\
[lgnore] (nO): Fault detection ignored. \\
[Freewheel] (YES): Freewheel stop. \\
[Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [\(2 / 3\) wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. \\
[fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed \({ }^{(1)}\). \\
[Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed \({ }^{(1)}\). \\
[Ramp stop] (rMP): Stop on ramp. \\
[Fast stop] (FSt): Fast stop. \\
[DC injection] (dCI): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147.
\end{tabular} \\
\hline SLL

n
YES
StE

LFF \& | [Modbus fault mgt] |
| :--- |
| Behavior of the drive in the event of a communication fault with integrated Modbus |
| [lgnore] (nO): Fault detection ignored. |
| [Freewheel] (YES): Freewheel stop. |
| [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt), page 155, without tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [$2 / 3$ wire control] (tCC) and [2 wire type] (tCt), page 105 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. |
| [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed ${ }^{(1)}$. |
| [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed ${ }^{(1)}$. |
| [Ramp stop] (rMP): Stop on ramp. |
| [Fast stop] (FSt): Fast stop. |
| [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 147. |

\hline
\end{tabular}

[^19]

[^20]
Use of the "Pulse input" input to measure the speed of rotation of the motor

This function uses the "Pulse input" input from the VW3A3202 extension card and can, therefore, only be used if this card has been inserted and if the "Pulse input" input is not being used for another function.

Example of use

An indexed disk driven by the motor and connected to a proximity sensor can be used to generate a frequency signal that is proportional to the speed of rotation of the motor.

When applied to the "Pulse input" input, this signal supports:

- Measurement and display of the motor speed: signal frequency $=1 / \mathrm{T}$. This frequency is displayed by means of the [Pulse in. work. freq.] (FqS) parameter, page 55 or 57.
- Overspeed detection (if the measured speed exceeds a preset threshold, the drive will trip on a fault).
- Brake failure detection, if brake logic control has been configured: If the speed does not drop sufficiently quickly following a command to engage the brake, the drive will trip on a fault. This function can be used to detect worn brake linings.
- Detection of a speed threshold that can be adjusted using [Pulse warning thd.] (FqL), page 72 and is assignable to a relay or logic output, see page 121.

Code	Name／Description	Adjustment range	Factory setting
F ¢ F－	［FREQUENCY METER］ Can be accessed if a VW3A3202 option card has been inserted		
F 9 F	［Frequency meter］		［ No ］（ nO ）
$\begin{array}{r} n \square \\ \text { YE } \end{array}$	Activation of the speed measurement function． ［ No l （ nO ）：Function inactive，In this case，none of the function parameters can be accessed． ［Yes］（YES）：Function active，assignment only possible if no other functions have been assigned to the＂Pulse input＂ input．		
F 9 ［	［Pulse scal．divisor］$\quad 1.0$ to 100.0\begin{tabular}{l\|l	}	
\hline			
\end{tabular} －Scaling factor for the＂Pulse input＂input（divisor）．The frequency measured is displayed by means of the［Pulse in． work．freq．］（FqS）parameter，page 55 or 57.			
F ¢ ${ }^{\text {¢ }}$	［Overspd．pulse thd．］		［ No ］（ nO ）
	Activation and adjustment of overspeed monitoring：［Overspeed］（SOF）fault． ［ No l （ nO ）：No overspeed monitoring． 1 Hz to 30.00 Hz ：Adjustment of the frequency tripping threshold on the＂Pulse input＂input divided by［Pulse scal． divisor］（FqC）．		
$t d 5$	［Pulse overspd delay］ Time delay for taking overspeed fault into account	0.0 s to 10.0 s	0.0 s
$\begin{aligned} & \text { Fdt } \\ & \\ & \sim \square\end{aligned}$	［Level fr．pulse ctri］		［ No ］（ nO ）
	Activation and adjustment of monitoring for the input Pulse input（speed feedback）：［Speed fdback loss］（SPF）fault． ［ No ］（ nO ）：No monitoring of speed feedback． 0.1 Hz to 500.0 Hz ：Adjustment of the motor frequency threshold for tripping a speed feedback fault（difference between the estimated frequency and the measured speed）．		
Fヶt $\begin{aligned} & \\ & \\ & \sim \square\end{aligned}$	［Pulse thd．wo Run］		［ No ］（ nO ）
	Activation and adjustment of brake failure monitoring：［Brake feedback］（brF）．If brake logic control［Brake assignment］（bLC），page 173 is not configured，this parameter is forced to $[\mathrm{No}](\mathrm{nO})$ ． ［ No l （ nO ）：No brake monitoring． 1 Hz to 1000 Hz ：Adjustment of the motor frequency threshold for tripping a brake failure fault（detection of speeds other than zero）．		
ヒ ワ	［Pulse thd．wo Run］	0.0 s to 10.0 s	0.0 s

Load variation detection

This detection is only possible with the "high-speed hoisting" function. It can be used to detect if an obstacle has been reached, triggering a sudden (upward) increase or (downward) decrease in the load.
Load variation detection triggers a [Dynamic load fault] (dLF) fault. The [Dyn. load Mgt.] (dLb) parameter can be used to configure the response of the drive in the event of this fault.
Load variation detection can also be assigned to a relay or a logic output.
There are two possible detection modes, depending on the configuration of high-speed hoisting:

"Speed reference" mode

[High speed hoisting] (HSO), page $186=$ [Speed ref] (SSO).
Torque variation detection.
During high-speed operation, the load is compared to that measured during the speed step. The permissible load variation and its duration can be configured. If exceeded, the drive switches to fault mode.

"Current limitation" mode

[High speed hoisting] (HSO), page $186=$ [Current Limit] (CSO).
On ascend, during high-speed operation, an increase in load will result in a drop in speed. Even if high-speed operation has been activated, if the motor frequency drops below the [I Limit Frequency] (SCL) threshold page 186 the drive will switch to fault mode.
On descend, operation takes the form of "speed reference" mode.

[^21]| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| brP- | [DB RES. PROTECTION] | | |
| bra | [DB res. protection] | | [No] (nO) |
| $\begin{aligned} & \text { חロ } \\ & \text { YES } \\ & F L E \end{aligned}$ | [No] (nO): No braking resistor protection (thereby preventing access to the other function parameters).
 [Alarm] (YES): Alarm. The alarm may be assigned to a logic output or a relay (see page 121)
 [Fault] (FLt): Switch to fault code (bOF) and stop the drive (freewheel stop). | | |
| $b r P$
 () | [DB Resistor Power] | 0.1 kW (0.13 hp) to 1000 kW (1333 hp) | 0.1 kW (0.13 hp) |
| | This parameter can be accessed if [DB res. protection] (brO) is not [No] (nO). Rated power of the resistor used. | | |
| bru | [DB Resistor value] | 0.1 to 200 ohms | 0.1 ohms |
| | This parameter can be accessed if [DB res. protection] (brO) is not [No] (nO). Rated value of the braking resistor in ohms. | | |
| bUF- | [BU PROTECTION]
 This can be accessed from 55 kW (75 hp) upwards for the ATV71ecoM3X and from 90 kW (120 hp) upwards for the ATV71•00N4. | | |
| b b$\begin{array}{r} n \square \\ Y E S \end{array}$ | [Brake res. fault Mgt] | | [Freewheel] (YES) |
| | Management of short-circuit [DB unit sh. circuit] (bUF) and overheating [Internal- th. sensor] (InFb) in the braking unit.
 [Ignore] (nO): Fault detection ignored. Configuration to be used if there is no resistor or braking unit connected to the drive.
 [Freewheel] (YES): freewheel stop. | | |
| $t \cap F-$ | [AUTO TUNING FAULT] | | |
| $t \cap L$ | [Autotune fault mgt]
 [lgnore] (nO): Fault detection ignored. [Freewheel] (YES): Freewheel stop. | | [Freewheel] (YES) |
| $\begin{array}{r} \because \square \\ \text { YE } \end{array}$ | | | |

Card pairing

Function can only be accessed in [Expert] mode.
This function is used to detect whenever a card has been replaced or the software has been modified in any way.
When a pairing password is entered, the parameters of the cards currently inserted are stored. On every subsequent power-up these parameters are verified and, in the event of a discrepancy, the drive locks in HCF fault mode. Before the drive can be restarted you must revert to the original situation or re-enter the pairing password.

The following parameters are verified:

- The type of card for: all cards.
- The software version for: the two control cards, the VW3A3202 extension card, the Controller Inside card and the communication cards.
- The serial number for: the two control cards.

Code	Name/Description	Adjustment range	Factory setting
PP I-	[CARDS PAIRING]	OFF to 9999	[OFF] (OFF)
PP I	[Pairing password] The [OFF] (OFF) value signifies that the card pairing function is inactive. The [ON] (On) value signifies that card pairing is active and that an access code must be entered in order to start the drive in the event of a card pairing fault. As soon as the code has been entered the drive is unlocked and the code changes to [ON] (On). $-\quad$ The PPI code is an unlock code known only to Schneider Electric Product Support.		

Code	Name/Description	Adjustment range	Factory setting
LFF-	[FALLBACK SPEED]		
LFF	[Fallback speed] Selection of the fallback speed	0 to 1600 Hz	0 Hz
F5t-	[RAMP DIVIDER]		
$d[F$	[Ramp divider] (1)	0 to 10	4
	The ramp that is enabled (dEC or dE 2) is then divided by this coefficient when stop requests are sent. Value 0 corresponds to a minimum ramp time.		
d[1-	[DC INJECTION]		
$I d[$	[DC inject. level 1] (1) (3)	0.1 to $1.41 \ln ^{(2)}$	$0.64 \mathrm{ln}{ }^{(2)}$
	Level of DC injection braking current activated via logic input or selected as stop mode.		
	CAUTION		
	EXCESSIVE MOTOR TEMPERATURE Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage.		
$\operatorname{td1}$	[DC injection time 1] (1) (3)	0.1 to 30 s	0.5 s
	Maximum current injection time [DC inject. level 1] (IdC). After this time the injection current becomes [DC injec level 2] (IdC2).		
$1 \Delta[2$ ()	[DC inject. level 2] (1) (3)	$\begin{aligned} & 0.1 \text { In }^{(2)} \text { to [DC } \\ & \text { inject. level 1] (IdC) } \end{aligned}$	$0.5 \ln { }^{(2)}$
	Injection current activated by logic input or selected as stop mode, once period of time [DC injection time 1] (tdI) has elapsed		
	CAUTION		
	EXCESSIVE MOTOR TEMPERATURE Verify that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage.		
$\operatorname{tal}[$ ()	[DC injection time 2] (1) (3)	0.1 to 30 s	0.5 s
	Maximum injection time [DC inject. level 2] (IdC2) for injection, selected as stop mode only. (Can be accessed if [Type of stop] (Stt) = [DC injection] (dCI)).		

1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) and [1.7 APPLICATION FUNCT.] (FUn-) menus.
2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
3. Warning: These settings are independent of the [AUTO DC INJECTION] (AdC-) function.

0

Parameter that can be modified during operation or when stopped.

[1.9 COMMUNICATION] (COM-)

With graphic display terminal:

With integrated display terminal:

Code	Name／Description	Factory setting
	［COM．SCANNER INPUT］ Only accessible via graphic display terminal	
пПН I	［Scan．IN1 address］ Address of the $1^{\text {st }}$ input word．	
пПНこ	［Scan．IN2 address］ Address of the $2^{\text {nd }}$ input word．	
пПトヨ	［Scan．IN3 address］ Address of the $3^{\text {rd }}$ input word．	
пПН4	［Scan．IN4 address］ Address of the $4^{\text {th }}$ input word．	
пПН 5	［Scan．IN5 address］ Address of the $5^{\text {th }}$ input word．	
пПАв	［Scan．IN6 address］ Address of the $6^{\text {th }}$ input word．	
пПН 7	［Scan．IN7 address］ Address of the $7^{\text {th }}$ input word．	
п П 月 日	［Scan．IN8 address］ Address of the $8^{\text {th }}$ input word．	
	［COM．SCANNER OUTPUT］ Only accessible via graphic display terminal	
n［ \square^{\prime}	［Scan．Out1 address］ Address of the $1^{\text {st }}$ output word．	
пLA己	［Scan．Out2 address］ Address of the $2^{\text {nd }}$ output word．	
п【月ヨ	［Scan．Out3 address］ Address of the $3^{\text {rd }}$ output word．	
n¢月4	［Scan．Out4 address］ Address of the $4^{\text {th }}$ output word．	
n［月5	［Scan．Out5 address］ Address of the $5^{\text {th }}$ output word．	
пLAE	［Scan．Out6 address］ Address of the $6^{\text {th }}$ output word．	
п［日 7	［Scan．Out7 address］ Address of the $7^{\text {th }}$ output word．	
пLA日	［Scan．Out8 address］ Address of the $8^{\text {th }}$ output word．	

Code	Name／Description	Factory setting
П 己－	［MODBUS HMI］ Communication with the graphic display terminal	
tbrz	［HMI baud rate］	19.2 kbps
	9.6 or 19.2 kbps via the integrated display terminal． 9600 or 19200 bauds via the graphic display terminal． The graphic display terminal only operates if［HMI baud rate］（tbr2）＝ 19200 bauds（19．2 kbps）． In order for any change in the assignment of［HMI baud rate］（tbr2）to be taken into account you must： －Provide confirmation in a confirmation window if using the graphic display terminal －Press the ENT key for 2 s if using the integrated display terminal	
EFロ	［HMI format］	8E1
	Read－only parameter，cannot be modified．	
П＋1－	［MODBUS NETWORK］	
Add	［Modbus Address］	OFF
	OFF to 247	
	［Modbus add Prg C．］	OFF
	Modbus address of the Controller Inside card OFF at 247	
＊\quad－	［Modbus add Com．C．］	OFF
	Modbus address of the communication card OFF to 247 The parameter can be accessed if a communication card has been inserted and depending on its configuratio （please consult the specific documentation）．	
tbr	［Modbus baud rate］	19.2 kbps
	4．8－9．6－19．2－38．4 kbps on the integrated display terminal． $4800,9600,19200$ or 38400 bauds on the graphic display terminal．	
EFD	［Modbus format］$801-8 E 1-8 n 1,8 n 2$	
ヒヒロ	［Modbus time out］	10.0 s
	0.1 to 30 s	
ᄃпロ－	［CANopen］	
Hd［	［CANopen address］	OFF
	OFF to 127	
$b d[\square$	［CANopen bit rate］	125 kbps
	50－125－250－500 kb	
Erco	［Error code］	
	Read－only parameter，cannot be modified．	

\begin{tabular}{|c|c|c|}
\hline Code \& Name/Description \& Factory setting \\
\hline - \& \multicolumn{2}{|l|}{\begin{tabular}{l}
[COMMUNICATION CARD] \\
See the specific documentation for the card used.
\end{tabular}} \\
\hline L LF- \& \multicolumn{2}{|l|}{[FORCED LOCAL]} \\
\hline \[
F L \square
\]
\[
\begin{array}{ccc}
\& n \& 0 \\
\& 1 \& 1 \\
L \& 1 \& 1 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
[Forced local assign.] \\
[No] (nO): Function inactive \\
[LI1] (LI1) to [LI6] (LI6) \\
[LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted \\
[LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted \\
Forced local mode is active when the input is at state 1. \\
[Forced local assign.] (FLO) is forced to [No] (nO) if [Profile] (CHCF), page \(142=[/ / \mathrm{O}\) profile]
\end{tabular} \& No] (nO)

IO).

\hline \& | [Forced local Ref.] |
| :--- |
| [No l (nO): Not assigned (control via the terminals with zero reference). |
| [AI1] (Al1): Analog input |
| [AI2] (Al2): Analog input |
| [AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted |
| [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted |
| [HMI] (LCC): Assignment of the reference and command to the graphic display terminal. |
| Reference: [HMI Frequency ref.] (LFr), page 55, command: RUN/STOP/FWD/REV buttons |
| [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted |
| [Encoder] (PG): Encoder input, if encoder card has been inserted |
| If the reference is assigned to an analog input, $[\mathrm{RP}](\mathrm{PI})$ or $[$ Encoder $](\mathrm{PG})$ the command is to the terminals as well (logic inputs) | \& | $[\mathrm{No}](\mathrm{nO})$ |
| :--- |
| utomatically assigned |

\hline FLDE \& | [Time-out forc. local] |
| :--- |
| 0.1 to 30 s |
| The parameter can be accessed if [Forced local assign.] (FLO) is not [No] (nO). |
| Time delay before communication monitoring is resumed on leaving forced local mode. | \& \[

10.0 \mathrm{~s}
\]

\hline
\end{tabular}

[1.10 DIAGNOSTICS]

This menu can only be accessed with the graphic display terminal.

This screen indicates the state of the drive at the moment the selected fault occurred.

RUN \quad Term	+50.00 Hz	80 A
MORE FAULT INFO		
Network fault	0	
Application fault	0	
Internal link fault 1	0	
Internal link fault 2	0	
Encoder Fault	0	
Code	Quick	

This screen indicates the number of communication faults, for example, with the option cards. Number: from 0 to 65535

For [Encoder Fault], which is only visible if a VW3 A3 408 or VW3 A3 409 has been inserted, the figure displayed corresponds to one of the fault codes summarized in the table on page 257.

Summary table of types of［Encoder Fault］

Code	Description of the error
0	No error，except if the control section has a separate power supply，in which case the power section must be turned on to display the actual code．
1	Internal UE／MC communication fault（CRC fault）
2	Internal UE／MC communication fault（time out）
16	Synchronization error（PLL error）
17	Encoder signal cut or short－circuited
18	PUC emulation fault
19	Resolver：Unstable feedback signal
20	Internal card communication fault
21	Resolver：Feedback signal too weak
22	Resolver：Feedback signal too strong
23	Encoder overcurrent
32	EnDAT：CRC error
33	EnDAT：Start bit not detected
34	EnDAT：EEP access error
35	EnDAT：Incorrect EEP value
48	Hiperface：Incoherent SinCos signal
49	Hiperface：Time out
50	Hiperface：Unknown encoder
51	Hiperface：CRC error
64	SinCos：Incoherent SinCos signal
80	SSI：Parity error
81	SSI：Invalid data
96	The position is not available
4096	ABZ Esim ：Top Z error

［THYRISTORS TEST］is only accessible for ATV71eeゃM3 $\geqslant 18.5 \mathrm{~kW}$ and ATV71eゃゃN4 $\geqslant 18.5 \mathrm{~kW}$ drives．

The result for each IGBT is displayed on 2 lines:

- The first line shows whether or not the transistor has short-circuited.
- The second line shows whether or not the transistor is open.

RDY	Term
TRANSISTOR RESULT	
IGBT 1	OK
IGBT 1	OK
IGBT 2	OK
IGBT 2	OK
IGBT 3	Open
	OK
IGBT 3	Quick
IGBT 4	OK
IGBT 4	OK
IGBT 5	OK
IGBT 5	OK
IGBT 6	OK
IGBT 6	short-circuit
	OK

NOTE: To start the tests, press and hold down (2 s) the ENT key.

[1.11 IDENTIFICATION]

The [1.11 IDENTIFICATION] menu can only be accessed on the graphic display terminal.
This is a read-only menu that cannot be configured. It enables the following information to be displayed:

- Drive reference, power rating and voltage
- Drive software version
- Drive serial number
- Type of options present, with their software version

[1.12 FACTORY SETTINGS] (FCS-)

With graphic display terminal:

With integrated display terminal:

The [1.12 FACTORY SETTINGS] (FCS-) menu is used to:

- Replace the current configuration with the factory configuration or a previously saved configuration.

All or part of the current configuration can be replaced: select a group of parameters in order to select the menus you wish to load with the selected source configuration.

- Save the current configuration to a file.

RUN Term 1250A +50.00 Hz	ENT	RUN	Term	1250A	$+50.00 \mathrm{~Hz}$
1.12 FACTORY SETTINGS		Config. Source			
Config. source : Macro-Conf.		Macro			\checkmark
PARAMETER GROUP LIST		Config			
Goto FACTORY SETTINGS		Confi			
Save config : No					
Code << >> Quick					Quick

Selection of source configuration

Selection of the menus to be replaced

Note: In factory configuration and after a return to "factory settings", [PARAMETER GROUP LIST] will be empty.

Command to return to "factory settings"

This window appears if no group of parameters is selected.

Code	Name/Description
$\text { F [} 51$ $\begin{array}{rl} \ln 1 \\ C F G & 1 \\ C F & 2 \end{array}$	[Config. Source] Choice of source configuration. [Macro-Conf] (InI) Factory configuration, return to selected macro configuration. [Config 1] (CFG1) [Config 2] (CFG2) If the configuration switching function is configured, it will not be possible to access [Config 1] (CFG1) and [Config 2] (CFG2).
$\begin{gathered} \text { Fry- } \\ \text { ALL } \\ \text { dr ח } \\ \text { SEL } \\ \text { חロt } \\ \text { Cロח } \\ \text { PLL } \\ \Pi \square ח \\ d I 5 \end{gathered}$	[PARAMETER GROUP LIST] Selection of menus to be loaded [All] (ALL): All parameters. [Drive menu] (drM): The [1 DRIVE MENU] menu without [1.9 COMMUNICATION] and [1.14 PROGRAMMABLE CARD]. In the [7 DISPLAY CONFIG.] menu, [Return std name] page 286 returns to [No]. [Settings] (SEt): The [1.3 SETTINGS] menu without the [IR compensation] (UFr), [Slip compensation (SLP) and [Mot. therm. current] (ItH) parameters [Motor param] (MOt): Motor parameters, see list below. The following selections can only be accessed if [Config. Source] (FCSI) = [Macro-Conf.] (InI): [Comm. menu] (COM): The [1.9 COMMUNICATION] menu without either [Scan. In1 address] (nMA1) to [Scan. In8 address] (nMA8) or [Scan.Out1 address] (nCA1) to [Scan.Out8 address] (nCA8). [Prog. card menu] (PLC): The [1.14 PROGRAMMABLE CARD] menu [Monitor config.] (MOn): The [6 MONITORING CONFIG.] menu [Display config.] (dIS): The [7 DISPLAY CONFIG.] menu See the multiple selection procedure on page 32 for the integrated display terminal and page 23 for the graphic display terminal. In factory configuration and after a return to "factory settings", [PARAMETER GROUP LIST] will be empty.
LF5 $\begin{array}{r} n \square \\ Y E S \end{array}$	[Goto FACTORY SETTINGS] It is only possible to revert to the factory settings if at least one group of parameters has previously been selected. With the integrated display terminal: - No - Yes: The parameter changes back to nO automatically as soon as the operation is complete. With the graphic display terminal: see previous page
	[Save config] [No] (nO): [Config 0] (Str0): Press and hold down the "ENT" key for 2 s. [Config 1] (Str0): Press and hold down the "ENT" key for 2 s. [Config 2] (Str0): Press and hold down the "ENT" key for 2 s. The active configuration to be saved does not appear for selection. For example, if it is [Config 0] (Str0), only [Config 1] (Str1) and [Config 2] (Str2) appear. The parameter changes back to $[\mathrm{No}](\mathrm{nO})$ as soon as the operation is complete.

List of motor parameters

[1.4 MOTOR CONTROL] (drC-) menu:

[Rated motor power] (nPr) - [Rated motor volt.] (UnS) - [Rated mot current] (nCr) - [Rated motor freq.] (FrS) - [Rated motor speed] (nSP) [Auto tuning] (tUn) - [Auto tuning status] (tUS) - [Angle auto-test] (ASA) - [Angle offset value] (ASU) - [U0] (U0) to [U5] (U5) - [F1] (F1) to [F5] (F5) - [V. constant power] (UCP) - [Freq. Const Power] (FCP) - [Nominal I sync] (nCrS) - [Nom motor spdsync] (nSPS) -
[Pole pairs.] (PPnS) - [Syn. EMF constant] (PHS) - [Autotune L d-axis] (LdS) - [Autotune L q-axis] (LqS) - [Cust. stator R syn] (rSAS) -
[IR compensation] (UFr) - [Slip compensation] (SLP) - motor parameters that can be accessed in [Expert] mode pages 79, 82 and 84.

[1.3 SETTINGS] (SEt-) menu:

[Mot. therm. current] (ItH)

Example of total return to factory settings

1. [Config. Source] (FCSI) $=[$ Macro-Conf] (Inl)
2. [PARAMETER GROUP LIST] (FrY-) $=[$ All $]$ (ALL)
3. [Goto FACTORY SETTINGS] (GFS = YES)

[1.13 USER MENU] (USr-)

This menu contains the parameters selected in the [7 DISPLAY CONFIG.] menu on page 274.
With graphic display terminal:

With integrated display terminal:

[1.14 PROGRAMMABLE CARD] (PLC-)

This menu can only be accessed if a Controller Inside card has been inserted. Please refer to the documentation specific to this card.

With graphic display terminal:

With integrated display terminal:

[3. OPEN/SAVE AS]

This menu can only be accessed with the graphic display terminal.

[Open]: To download one of the 4 files from the graphic display terminal to the drive. [SAVE AS]: To download the current drive configuration to the graphic display terminal.

NOTE: Download between drive and graphic display terminal (and vice-versa), can be done only when the motor is stopped.

Various messages may appear when the download is requested:

- [IN PROGRESS]
- [DONE]
- Error messages if download not possible
- [Motor parameters are NOT COMPATIBLE. Do you want to continue?]: In this case the download is possible, but the parameters will be restricted.
[DOWNLOAD GROUP]

[None]:		No parameters
[All]:		All parameters in all menus
[Drive menu]:		The entire [1 DRIVE MENU] without [1.9 COMMUNICATION] and [1.14 PROGRAMMABLE CARD].
[Motor parameters]:	[Rated motor power] (nPr)	In the [1.4 MOTOR CONTROL] (drC-) menu
	[Rated motor volt.] (UnS)	
	[Rated mot. current] (nCr)	
	[Rated motor freq.] (FrS)	
	[Rated motor speed] (nSP)	
	[Auto tuning] (tUn)	
	[Auto tuning status] (tUS)	
	[Angle auto-test] (ASA)	
	[Angle offset value] (ASU)	
	[U0] (U0) to [U5] (U5)	
	[F1] (F1) to [F5] (F5)	
	[V. constant power] (UCP)	
	[Freq. Const Power] (FCP)	
	[Nominal I sync.] (nCrS)	
	[Nom motor spdsync] (nSPS)	
	[Pole pairs] (PPnS)	
	[Syn. EMF constant] (PHS)	
	[Autotune L d-axis] (LdS)	
	[Autotune L q-axis] (LqS)	
	[Cust. stator R syn] (rSAS)	
	[IR compensation] (UFr)	
	[Slip compensation] (SLP)	
	The motor parameters that can be accessed in [Expert] mode, page 79, 82 and 84.	
	[Mot. therm. current] (ItH)	In the [1.3 SETTINGS] (SEt-) menu
[Communication]:		All the parameters in the [1.9 COMMUNICATION] menu
[Prog. control. inside card]:		All the parameters in the [1.14 PROGRAMMABLE CARD] menu

[4. PASSWORD] (COd-)

With graphic display terminal:

With integrated display terminal:

Enables the configuration to be protected with an access code or a password to be entered in order to access a protected configuration.
Example with graphic display terminal:

RUN Term	+50.00	Hz 80A	RUN	Term	$+50.00 \mathrm{~Hz}$	80A
4 PASSWORD					de 1	
Status	:	Unlocked	Min = Unlocked \quad Max $=9999$			
PIN code 1	:	Unlocked				
PIN code 2	:	Unlocked				
Upload rights	:	Permitted				
Download rights	:	Unlock. drv				
Code <<	>>	Quick		<<	>>	Quick

- The drive is unlocked when the PIN codes are set to [unlocked] (OFF) (no password) or when the correct code has been entered. All menus are visible.
- Before protecting the configuration with an access code, you must:
- Define the [Upload rights] (ULr) and [Download rights] (dLr).
- Make a careful note of the code and keep it in a safe place where you will always be able to find it.
- The drive has 2 access codes, enabling 2 access levels to be set up.
- PIN code 1 is a public unlock code: 6969.
- PIN code 2 is an unlock code known only to Schneider Electric Product Support. It can only be accessed in [Expert] mode.
- Only one PIN1 or PIN2 code can be used - the other must remain set to [OFF] (OFF).

NOTE: When the unlock code is entered, the user access code appears.

The following items are access-protected:

- Return to factory settings ([1.12 FACTORY SETTINGS] (FCS-) menu).
- The channels and parameters protected by the [1.13 USER MENU] as well as the menu itself.
- The custom display settings ([7 DISPLAY CONFIG.] menu).

Code	Name/Description	Adjustment range	Factory setting
[5t	[Status]		[Unlocked] (ULC)
$\begin{array}{r} L \Sigma \\ U L \Sigma \end{array}$	Information parameter, cannot be modified. [Locked] (LC): The drive is locked by a password. [Unlocked] (ULC): The drive is not locked by a password.		
cad	[PIN code 1] $1^{\text {st }}$ access code. The value [OFF] (OFF) indicates that no password has been set [Unlocked]. The value [ON] (On) indicates that the drive is locked and an access code must be entered in order to unlock it. Once the correct code has been entered, it remains on the display and the drive is unlocked until the next time the power supply is disconnected - PIN code 1 is a public unlock code: 6969.		
[0d己	[PIN code 2]	OFF to 9999	[OFF] (OFF)
	Parameter can only be accessed in [Expert] mode. 2nd access code. The value [OFF] (OFF) indicates that no password has been set [Unlocked]. The value [ON] (On) indicates that the drive is locked and an access code must be entered in order to unlock it. Once the correct code has been entered, it remains on the display and the drive is unlocked until the next time the power supply is disconnected. - PIN code 2 is an unlock code known only to Schneider Electric Product Support. When [PIN code 2] (COd2) is not set to OFF, the [1.2 MONITORING] (SUP-) menu is the only one visible. Then if [PIN code 2] (COd2) is set to OFF (drive unlocked), all menu are visible. If the display settings are modified in [7 DISPLAY CONFIG.] menu, and if [PIN code 2] (COd2) is not set to OFF, the visibility configured is kept. Then if [PIN code 2] (COd2) is set to OFF (drive unlocked), the visibility configured in [7 DISPLAY CONFIG.] menu is kept.		
$u L r$	[Upload rights]		[Permitted] (ULrO)
ULra ULrI	Read or copy the current configuration to the drive. [Permitted] (ULrO): The current drive configuration can always be uploaded to the graphic display terminal or PowerSuite. [Not allowed] (ULr1): The current drive configuration can only be uploaded to the graphic display terminal or PowerSuite if the drive is not locked by an access code or if the correct code has been entered.		
$d L r$	[Download rights]		[Unlock. drv] (dLr1)
$d L r r$	Writes the current configuration to the drive or downloads a configuration to the drive [Locked drv] (dLrO): A configuration file can only be downloaded to the drive if the drive is locked by an access code, which is the same as the access code for the configuration to be downloaded. [Unlock. drv] (dLr1): A configuration file can be downloaded to the drive or a configuration in the drive can be modified if the drive is unlocked (access code entered) or is not locked by an access code. [Not allowed] (dLr2): Download not authorized. [Lock/unlock] (dLr3): Combination of [Locked drv.] (dLr0) and [Unlock. drv] (dLr1).		

[6 MONITORING CONFIG.]

This menu can only be accessed with the graphic display terminal.

This can be used to configure the information displayed on the graphic display screen during operation.

6.1. PARAM. BAR SELECT]: Selection of 1 to 2 parameters displayed on the top line (the first 2 cannot be modified).
6.2. MONITOR SCREEN TYPE]: Selection of parameters displayed in the centre of the screen and the display mode (digital values or jar graph format).
6.3. COM. MAP CONFIG.]: Selection of the words displayed and their format.

Name/Description

[6.1 PARAM. BAR SELECT]
[Alarm groups]
[Frequency ref.]
[Torque reference]
[Output frequency]
[Motor current]
[ENA avg speed]
[Motor speed]
[Motor voltage]
[Motor power]
[Motor torque]
[Mains voltage]
[Motor thermal state]
[Drv. thermal state]
[DBR thermal state]
[Consumption]
[Run time]
[Power on time]
[IGBT alarm counter]
[PID reference]
[PID feedback]
[PID error]
[PID Output]
[-- - 02]
to
[--- 06]
[Config. active]
in Hz : parameter displayed in factory configuration.
as a \%
in Hz
in A: parameter displayed in factory configuration.
in Hz
in rpm
in V
in W
as a \%
in V
as a \%
as a \%
as a \%
in Wh or kWh depending on drive rating
in hours (length of time the motor has been switched on)
in hours (length of time the drive has been switched on)
in seconds (total time of IGBT overheating alarms)
as a \%
as a \%
as a \%
in Hz
Word generated by the Controller Inside card (can be accessed if the card has been inserted)
Word generated by the Controller Inside card (can be accessed if the card has been inserted)
CNFO, 1 or 2 (see page 214)
SET1, 2 or 3 (see page 213)

Select the parameter using ENT (a $\boxed{\checkmark}$ then appears next to the parameter). Parameter(s) can also be deselected using ENT. 1 or 2 parameters can be selected.

Example:

Name/Description	
[6.2. MONITOR SCREEN TYPE]	
[Display value type]	
[Digital]: Display of one or two digital values on the screen (factory configuration). [Bar graph]: Display of one or two bar graphs on the screen. [List]: Display a list of between one and five values on the screen.	
[PARAMETER SELECTION]	
[Alarm groups]	can only be accessed if [Display value type] = [List]
[Frequency ref.]	in Hz : parameter displayed in factory configuration.
[Torque reference]	as a \%
[Output frequency]	in Hz
[Motor current]	in A
[ENA avg speed]	in Hz
[Motor speed]	in rpm
[Motor voltage]	in V
[Motor power]	in W
[Motor torque]	as a \%
[Mains voltage]	in V
[Motor thermal state]	as a \%
[Drv. thermal state]	as a \%
[DBR thermal state]	as a \%
[Consumption]	in Wh or kWh depending on drive rating
[Run time]	in hours (length of time the motor has been switched on)
[Power on time]	in hours (length of time the drive has been switched on)
[IGBT alarm counter]	in seconds (total time of IGBT overheating alarms)
[PID reference]	as a \%
[PID feedback]	as a \%
[PID error]	as a \%
[PID Output]	in Hz
[--- 02]	Word generated by the Controller Inside card (can be accessed if the card has been inserted)
to $[--$ - 06]	
[--- -06]	Word generated by the Controller Inside card (can be accessed if the card has been inserted)
[Config. active]	CNFO, 1 or 2 (see page 214), can only be accessed if [Display value type] = [List]
[Utilized param. set]	SET1, 2 or 3 (see page 213), can only be accessed if [Display value type] = [List]

Select the parameter(s) using ENT ($\mathrm{a} \boxed{\checkmark}$ then appears next to the parameter). Parameter(s) can also be deselected using ENT.

Examples include:
Display of 2 digital values Display of 2 bar graphs

RUN	Term	+35.00 Hz
MONITORING		
Frequency ref.	$:$	50 A
Motor current:		80 AHz
Motor speed:		1250 rpm
Motor thermal state:		80%
Drv thermal state	$:$	80%

Name/Description

[6.3. COM. MAP CONFIG.]

[Word 1 add. select.]

Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

[Format word 1]

Format of word 1.
[Hex]: Hexadecimal
[Signed]: Decimal with sign
[Unsigned]: Decimal without sign
[Word 2 add. select.]
Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.
[Format word 2]
Format of word 2.
[Hex]: Hexadecimal
[Signed]: Decimal with sign
[Unsigned]: Decimal without sign
[Word 3 add. select.]
Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

[Format word 3]

Format of word 3.
[Hex]: Hexadecimal
[Signed]: Decimal with sign
[Unsigned]: Decimal without sign
[Word 4 add. select.]
Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

[Format word 4]

Format of word 4.
[Hex]: Hexadecimal
[Signed]: Decimal with sign
[Unsigned]: Decimal without sign
It will then be possible to view the selected words in the [COMMUNICATION MAP] submenu of the [1.2 MONITORING] menu.
Example:

RUN	Term	35.00Hz	80A
COMMUNICATION MAP			

W3141:	F230 Hex		
	<<	>>	Quick

[7 DISPLAY CONFIG.]

This menu can only be accessed with the graphic display terminal. It can be used to customize parameters or a menu and to access parameters.

7.1: USER PARAMETERS: Customization of 1 to 15 parameters.
7.2 USER MENU: Creation of a customized menu.
7.3 PARAMETER ACCESS: Customization of the visibility and protection mechanisms of menus and parameters.
7.4 KEYPAD PARAMETERS: Adjustment of the contrast and stand-by mode of the graphic display terminal (parameters stored in the terminal rather than in the drive). Choice of the menu displayed on power up.

If [Return std name] = [Yes] the display reverts to standard but the custom settings remain stored.

RDY	Term +0.00 Hz	0 A	
USER MENU NAME			
FLOW REFERENCE			
Nb characters max.	18		
ABC	\ll	\gg	Quick

Names (USER MENU NAME, DRIVE NAME, configuration, serial no., lines of messages, names of units, etc.) are customized as in the example of the parameter name shown opposite.
If no custom settings have been made, the standard value appears (names, units, etc.).
Display on 1 or 2 lines of characters.
Use F1 to change to ABC, abc, 123, *[-.
Use the navigation selector button to increment the character (alphabetical order) and << and >> (F2 and F3) to switch to the next or previous character respectively.

Use the F2 and F3 keys to arrange the parameters in the list (example below using F3).

| RDY \quad Term $\quad+0.00 \mathrm{~Hz} \quad$ 0A | | |
| :--- | :--- | :--- | :--- |
| SELECTED LIST | | |
| Acceleration | | |
| Ramp increment | | |
| | | |
| | | |
| Speed prop. gain | | |
| | | |
| Delete Up | | |

Acceleration

Selection of parameters
included in the user menu

NOTE: The $1^{\text {st }}$ line is [PARAMETER SELECTION] or
[RDY Term $+0.00 \mathrm{~Hz} \mathrm{OA}]$ depending on the path (ENT or List).

Parameter list making up the user menu.

NOTE: The protected parameters are no longer accessible and are not, therefore, displayed for the selected channels.

RDY	Term	+0.00 Hz	0A
7.4 KEYPAD PARAMETERS			
Contrast			
Keypad stand-by Power up menu			
Code	<<	\gg	Quick

Name/Description	Adjustment range	Factory setting
[Keypad contrast]	0 to 100%	50%

Adjustment of contrast on graphic display unit.
[Keypad stand-by]
Configures and adjusts the stand-by mode of the graphic display unit.

- [No]: No stand-by mode.
- [1] to [10]: Adjusts the time during which the terminal is to remain idle before stand-by mode is triggered, in minutes. After this idle time, the display backlight turns off and the contrast is reduced. The screen returns to normal operation when a key or the navigation button is pressed. It also returns to normal operation if the terminal exits the normal display mode, for example, if a fault occurs.
[Power up menu]
Choose the menu which appears on the product menu when it is powered up
- [Drive menu.]: Display the drive menu.
- [Sim. start]: Display the simply start menu.
- [Monitoring]: Display the monitoring menu.
- [Settings]: Display the setting menu.
- [Mot. Ctrl]: Display the motor control menu.
- [//O Conf.]: Display the inputs outputs configuration menu.
- [Command]: Display the command menu.
- [Appli. fun.]: Display the application function menu.
- [Fault mgt]: Display the fault management menu.
- [Com.]: Display the communication menu.
- [Diagnostics]: Display the diagnostic menu.
- [Ident.]: Display the identification menu.
- [Factory Set.]: Display the factory setting.
- [User menu]: Display the user manu.
- [CI menu]: Display the drive menu.
- [Main menu]: Display the main menu.

[MULTIPOINT SCREEN]

Communication is possible between a graphic display terminal and a number of drives connected on the same bus. The addresses of the drives must be configured in advance in the [1.9 COMMUNICATION] menu using the [Modbus Address] (Add) parameter, page 254.

When a number of drives are connected to the same display terminal, the terminal automatically displays the following screens:

All menus can be accessed in multipoint mode. Only drive control via the graphic display terminal is not authorized, apart from the Stop key, which locks all the drives.
If a drive has detected a fault, this drive is displayed.

Maintenance

Servicing

The Altivar ${ }^{\circledR} 71$ does not require any preventive maintenance. It is nevertheless advisable to perform the following regularly:

- Check the condition and tightness of the connections.
- Ensure that the temperature around the unit remains at an acceptable level and that ventilation is effective (average service life of fans: 3 to 5 years, depending on the operating conditions).
- Remove any dust from the drive.

Assistance with maintenance, fault display

If a problem arises during setup or operation, first check that the recommendations relating to the environment, mounting and connections have been observed.

The first fault detected is saved and displayed, and the drive locks.
The drive switching to fault mode can be indicated remotely via a logic output or a relay, which can be configured in the [1.5 INPUTS / OUTPUTS CFG] (l-O-) menu. See [R1 CONFIGURATION] (r1-) on page 121.

Menu [1.10 DIAGNOSTICS]

This menu can only be accessed with the graphic display terminal. It displays faults and their cause in plain text and can be used to carry out tests, see page 256.

Clearing the fault

Disconnect the drive power supply in the event of a non-resettable fault.
Wait for the display to disappear completely.
Find the cause of the fault and correct it.
The drive is unlocked after a fault:

- By switching off the drive until the display disappears completely, then switching on again
- Automatically in the scenarios described for the [AUTOMATIC RESTART] (Atr-) function, page 231
- By means of a logic input or control bit assigned to the [FAULT RESET] (rSt-) function, page 230
- By pressing the STOP/RESET button on the graphic display terminal

Menu [1.2 MONITORING] (SUP-):

This is used to prevent and find the causes of faults by displaying the drive state and its current values.
It can be accessed with the integrated display terminal.

Spares and repairs:

Consult Schneider Electric product support.

Detected faults and troubleshooting

Drive does not start, no detected fault code displayed

- If the display does not light up, check the power supply to the drive.
- The assignment of the "Fast stop" or "Freewheel" functions will prevent the drive starting if the corresponding logic inputs are not powered up. The ATV71 then displays [Freewheel] (nSt) in freewheel stop and [Fast stop] (FSt) in fast stop. This is normal since these functions are active at zero so that the drive will be stopped if there is a wire break.
- Make sure that the run command input or inputs are activated in accordance with the selected control mode ([2/3 wire control] (tCC) and [2 wire type] (tCt) parameters, page 105).
- If an input is assigned to the limit switch function and this input is at zero, the drive can only be started up by sending a command for the opposite direction (see pages 168 and 206).
- If the reference channel or command channel is assigned to a communication bus, when the power supply is connected, the drive will display [Freewheel] (nSt) and remain in stop mode until the communication bus sends a command.
- When an encoder is used with a VW3 A3 409 card, if the encoder is not fully configured, the drive remains locked in stop mode (displays [NST] (nSt) or [NLP] (nLP)).

Conditions requiring a power reset

The cause of the fault must be removed before resetting the drive by performing a power reset. AnF, ASF, brF, ECF, EnF, SOF, SPF and tnF faults can also be reset remotely by means of a logic input or control bit ([Fault reset] (rSF) parameter, page 230).
AnF, EnF, InFA, InFb, SOF, SPF, and tnF faults can be inhibited and cleared remotely by means of a logic input or control bit ([Fault inhibit assign.] (InH) parameter, page 242).

A DANGER

LOSS OF PERSONNEL AND EQUIPMENT PROTECTION

- Enabling the fault inhibition parameter (InH) will disable the drive controller protection features.
- InH should not be enabled for typical applications of this equipment.
- InH should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection poses a greater risk than personnel injury or equipment damage.

Failure to follow these instructions will result in death or serious injury.

Code	Name	Probable cause	Remedy
AI2F	[Al2 input]	- Non-conforming signal on analog input AI2	- Check the wiring of analog input AI2 and the value of the signal.
AnF	[Load slipping]	- The encoder speed feedback does not match the reference	- Check the motor, gain and stability parameters. - Add a braking resistor. - Check the size of the motor/drive/load. - Check the encoder's mechanical coupling and its wiring. - If the "torque control" function is used, see "Note" on page 198.
ASF	[Angle Error]	- A modification has changed the phaseshift angle between the motor and the encoder or resolver - The "Procedure for measuring the phase-shift angle between the motor and the encoder" page 85 was unsuccessful or has not been performed - for the motor control [Sync. mot.] (SYn), an incorrect setting of the speed loop, when the reference goes through 0.	- See comments on page 85. - Repeat the "Procedure for measuring the phase-shift angle between the motor and the encoder" page 85.
bOF	[DBR overload]	- The braking resistor is under excessive stress	- Check the size of the resistor and wait for it to cool down - Check the [DB Resistor Power] (brP) and [DB Resistor value] (brU) parameters, page 249.
brF	[Brake feedback]	- The brake feedback contact does not match the brake logic control - The brake does not stop the motor quickly enough (detected by measuring the speed on the "Pulse input" input).	- Check the feedback circuit and the brake logic control circuit - Check the mechanical state of the brake - Check the brake linings
bUF	[DB unit sh. Circuit]	- Short-circuit output from braking unit - Braking unit not connected	- Check the wiring of the braking unit and the resistor. - Check the braking resistor - The monitoring of this fault must be disabled by the [Brake res. fault Mgt.] (bUb) parameter, page 249 if there is no resistor or braking unit connected to the drive, at and above 55 kW (75 hp) for ATV71•e०M3X and at and above 90 kW (120 hp) for ATV71•e॰N4.
CrF1	[Precharge]	- Charging relay control fault or charging resistor damaged	- Turn the drive off and then back on again - Check the internal connections
CrF2	[Thyr. soft charge]	- DC bus charging fault (thyristors)	
ECF	[Encoder coupling]	- Break in encoder's mechanical coupling	- Check the encoder's mechanical coupling

Conditions requiring a power reset (continued)

Code	Name	Probable cause	Remedy
EEF1	[Control Eeprom]	- Internal memory or control card	- Check the environment (electromagnetic compatibility) - Turn off, reset, return to factory settings - Inspect/repair the drive
EEF2	[Power Eeprom]	- Internal memory or power card	
EnF	[Encoder]	- Encoder feedback error	- Check all the configuration parameters for the encoder used. - Refer to the [1.10 DIAGNOSTICS] menu for the value of parameter RESE. - Check that the encoder's mechanical and electrical operation, its power supply and connections are all correct. - If necessary, reverse the direction of rotation of the motor encoder signals.
FCF1	[Out. contact. stuck]	- The output contactor remains closed although the opening conditions have been met	- Check the contactor and its wiring - Check the feedback circuit
HdF	[IGBT desaturation]	- Short-circuit or grounding at the drive output	- Check the cables connecting the drive to the motor, and the motor insulation. - Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu.
/LF	[Internal com. link]	- Communication error between option card and drive	- Check the environment (electromagnetic compatibility) - Check the connections - Check that no more than 2 option cards (max. permitted) have been installed on the drive - Replace the option card - Inspect/repair the drive
InF1	[Rating error]	- The power card is different from the card stored	- Check the reference of the power card
InF2	[Incompatible PB]	- The power card is incompatible with the control card	- Check the reference of the power card and its compatibility.
InF3	[Internal serial link]	- Communication error between the internal cards	- Check the internal connections - Inspect/repair the drive
InF4	[Internal-mftg zone]	- Internal data inconsistent	- Recalibrate the drive (performed by Schneider Electric Product Support).
InF6	[Internal - fault option]	- The option installed in the drive is not recognized	- Check the reference and compatibility of the option.
InF7	[Internal-hard init.]	- Initialization of the drive is incomplete	- Turn off and reset.
InF8	[Internal-ctrl supply]	- The control power supply is incorrect	- Check the control section power supply
InF9	[Internal- I measure]	- The current measurements are incorrect	- Replace the current sensors or the power card. - Inspect/repair the drive
InFA	[Internal-mains circuit]	- The input stage is not operating correctly	- Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu. - Inspect/repair the drive
InFb	[Internal- th. sensor]	- The drive temperature sensor is not operating correctly - The braking unit's temperature sensor is not operating correctly.	- Replace the drive temperature sensor - Inspect/repair the drive - Replace the braking unit's temperature sensor - Inspect/repair the braking unit - The monitoring of this fault must be disabled by the [Brake res. fault Mgt.] (bUb) parameter, page 249 if there is no braking unit connected to the drive.
InFC	[Internal-time meas.]	- Electronic time measurement component	- Inspect/repair the drive
InFE	[Internal- CPU]	- Internal microprocessor	- Turn off and reset. Inspect/repair the drive.

Conditions requiring a power reset (continued)

| Code | Name | Probable cause | Remedy |
| :---: | :--- | :--- | :--- | :--- |
| OCF | [Overcurrent] | - Parameters in the [SETTINGS] (SEt-)
 and [1.4 MOTOR CONTROL] (drC-)
 menus are not correct.
 - Inertia or load too high
 Mechanical locking | - Check the parameters.
 - Check the size of the motor/drive/load.
 - Check the state of the mechanism. |
| PrF | [Power removal] | - Associated with the Power Removal
 Function | - Inspect/repair the drive |

Auto-Reset conditions (customer configured)

These faults can also be reset by turning on and off or by means of a logic input or control bit ([Fault reset] (rSF) parameter, page 230). APF, CnF, COF, EPF1, EPF2, FCF2, LFF2, LFF3, LFF4, ObF, OHF, OLF, OPF1, OPF2, OSF, OtF1, OtF2, OtFL, PHF, PtF1, PtF2, PtFL, SLF1, SLF2, SLF3, SrF, SSF and tJF faults can be inhibited and cleared remotely by means of a logic input or control bit ([Fault inhibit assign.] (InH)parameter, page 242).

A DANGER

LOSS OF PERSONNEL AND EQUIPMENT PROTECTION

- Enabling the fault inhibition parameter (InH) will disable the drive controller protection features.
- InH should not be enabled for typical applications of this equipment.
- InH should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection poses a greater risk than personnel injury or equipment damage.

Failure to follow these instructions will result in death or serious injury.

Code	Name	Probable cause	Remedy
APF	[Application fault]	- Controller Inside card error	- Please refer to the card documentation
bLF	[Brake control]	- Brake release current not reached - Brake engage frequency threshold [Brake engage freq] (bEn) only regulated when brake logic control is assigned	- Check the drive/motor connection - Check the motor windings - Check the [Brake release I FW] (Ibr) and [Brake release I Rev] (Ird) settings, page 173 - Apply the recommended settings for [Brake engage freq] (bEn).
LnF	[Com. network]	- Communication error on communication card	- Check the environment (electromagnetic compatibility) - Check the wiring. - Check the time-out - Replace the option card - Inspect/repair the drive
COF	[CANopen com.]	- Interruption in communication on the CANopen bus	- Check the communication bus. - Check the time-out - Refer to the CANopen User's Manual
EPF1	[External flt-LI/Bit]	- Fault triggered by an external device, depending on user	- Check the device which caused the fault, and reset
EPF2	[External fault com.]	- Fault triggered by a communication network	- Check for the cause of the fault and reset
FCF2	[Out. contact. open.]	- The output contactor remains open although the closing conditions have been met	- Check the contactor and its wiring - Check the feedback circuit
LCF	[input contactor]	- The drive is not turned on even though [Mains V. time out] (LCt) has elapsed.	- Check the contactor and its wiring - Check the time-out - Check the line/contactor/drive connection
LFF2 LFF3 LFF4	[AI2 4-20mA loss] [AI3 4-20mA loss] [AI4 4-20mA loss]	- Loss of the $4-20 \mathrm{~mA}$ reference on analog input $\mathrm{Al} 2, \mathrm{Al} 3$ or Al 4	- Check the connection on the analog inputs.
ObF	[Overbraking]	- Braking too sudden or driving load	- Increase the deceleration time - Install a braking resistor if necessary - Activate the [Dec ramp adapt.] (brA) function, page 154, if it is compatible with the application
OHF	[Drive overheat]	- Drive temperature too high	- Check the motor load, the drive ventilation and the ambient temperature. Wait for the drive to cool down before restarting.
OLF	[Motor overload]	- Triggered by excessive motor current	- Check the setting of the motor thermal protection, check the motor load. Wait for the drive to cool down before restarting.
OPF1	[1 output phase loss]	- Loss of one phase at drive output	- Check the connections from the drive to the motor

Auto-Reset conditions (customer configured) (continued)

Code	Name	Probable cause	Remedy
OPF2	[3 motor phase loss]	- Motor not connected or motor power too low - Output contactor open - Instantaneous instability in the motor current	- Check the connections from the drive to the motor - If an output contactor is being used, parameterize [Output Phase Loss] (OPL) = [Output cut] (OAC), page 235. - Test on a low power motor or without a motor:In factory settings mode, motor phase loss detection is active [Output Phase Loss] (OPL) $=$ [Yes] (YES). To check the drive in a test or maintenance environment, without having to use a motor with the same rating as the drive (in particular for high power drives), deactivate motor phase loss detection [Output Phase Loss] (OPL) = [No] (nO) - Check and optimize the following parameters: [IR compensation] (UFr), page 97, [Rated motor volt.] (UnS) and [Rated mot. current] (nCr), page 79 and perform [Auto-tuning] (tUn), page 89.
OSF	[Mains overvoltage]	- Line voltage too high - Disturbed mains supply	- Check the line voltage
OtF1	[PTC1 overheat]	- Overheating of the PTC1 probes detected	- Check the motor load and motor size. - Check the motor ventilation.
OtF2	[PTC2 overheat]	- Overheating of the PTC2 probes detected	- Check the type and state of the PTC probes
OtFL	[LI6=PTC overheat]	- Overheating of PTC probes detected on input LI6	
PtF1	[PTC1 probe]	- PTC1 probes open or shortcircuited	- Check the PTC probes and the wiring between them and the motor/drive
PtF2	[PTC2 probe]	- PTC2 probes open or shortcircuited	
PtFL	[LI6=PTC probe]	- PTC probes on input LI6 open or short-circuited	
SCF4	[IGBT short circuit]	- Power component fault	- Perform a test via the [1.10 DIAGNOSTICS] menu. - Inspect/repair the drive
SCF5	[Motor short circuit]	- Short-circuit at drive output	- Check the cables connecting the drive to the motor, and the motor's insulation - Perform tests via the [1.10 DIAGNOSTICS] menu. - Inspect/repair the drive
SLF1	[Modbus com.]	- Interruption in communication on the Modbus bus	- Check the communication bus. - Check the time-out - Refer to the Modbus User's Manual
SLF2	[PowerSuite com.]	- Communication with PowerSuite	- Check the PowerSuite connecting cable. - Check the time-out
SLF3	[HMI com.]	- Communication with the graphic display terminal	- Check the terminal connection - Check the time-out
SrF	[TORQUE TIME OUT FLT]	- The time-out of the torque control function is attained	- Check the function's settings - Check the state of the mechanism
SSF	[Torque/current lim]	- Switch to torque limitation	- Check if there are any mechanical problems - Check the parameters of [TORQUE LIMITATION] (tLA-), page 200 and the parameters of thE [TORQUE OR I LIM. DETECT.] (tld-) fault, page 244).
tJF	[IGBT overheat]	- Drive overheated	- Check the size of the load/motor/drive. - Reduce the switching frequency. - Wait for the motor to cool before restarting

Auto-Reset conditions

The USF fault can be inhibited and cleared remotely by means of a logic input or control bit ([Fault inhibit assign.] (InH) parameter, page 242).

A DANGER

LOSS OF PERSONNEL AND EQUIPMENT PROTECTION

- Enabling the fault inhibition parameter (InH) will disable the drive controller protection features.
- InH should not be enabled for typical applications of this equipment.
- InH should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection poses a greater risk than personnel injury or equipment damage.

Failure to follow these instructions will result in death or serious injury.

Code	Name	Probable cause	Remedy
CFF	[Incorrect config.]	- Option card changed or removed - Control card replaced by a control card configured on a drive with a different rating - The current configuration is inconsistent	- Check that there are no card errors. - In the event of the option card being changed/removed deliberately, see the remarks below - Check that there are no card errors. - In the event of the control card being changed deliberately, see the remarks below - Return to factory settings or retrieve the backup configuration, if it is valid (see page 262)
CFI	[Invalid config.]	- Invalid configuration The configuration loaded in the drive via the bus or communication network is inconsistent.	- Check the configuration loaded previously. - Load a compatible configuration
dLF	[Dynamic load fault]	- Abnormal load variation	- Check that the load is not blocked by an obstacle - Removal of a run command causes a reset
HCF	[Cards pairing]	- The [CARDS PAIRING] (PPI-) function, page 250, has been configured and a drive card has been changed	- In the event of a card error, reinsert the original card - Confirm the configuration by entering the [Pairing password] (PPI) if the card was changed deliberately
PHF	[Input phase loss]	- Drive incorrectly supplied or a fuse blown - Failure of one phase - 3-phase ATV71 used on a singlephase line supply - Unbalanced load This protection only operates with the drive on load	- Check the power connection and the fuses. - Use a 3-phase line supply. - Disable the fault by [Input phase loss] (IPL) $=[\mathrm{No}](\mathrm{nO})$. (page 235)
USF	[Undervoltage]	- Line supply too low - Transient voltage dip	- Check the voltage and the parameters of [UNDERVOLTAGE MGT] (USb-), page 239

Option card changed or removed

When an option card is removed or replaced by another, the drive locks in [Incorrect config.] (CFF) fault mode on power-up. If the card has been deliberately changed or removed, the fault can be cleared by pressing the ENT key twice, which causes the factory settings to be restored (see page 262) for the parameter groups affected by the card. These are as follows:

Card replaced by a card of the same type

- I/O cards: [Drive menu] (drM)
- Encoder cards: [Drive menu] (drM)
- Communication cards: only the parameters that are specific to communication cards
- Controller Inside cards: [Prog. card menu] (PLC)

Card removed (or replaced by a different type of card)

- I/O card: [Drive menu] (drM)
- Encoder card: [Drive menu] (drM)
- Communication card: [Drive menu] (drM) and parameters specific to communication cards
- Controller Inside card: [Drive menu] (drM) and [Prog. card menu] (PLC)

Control card changed

When a control card is replaced by a control card configured on a drive with a different rating, the drive locks in [Incorrect config.] (CFF) fault mode on power-up. If the card has been deliberately changed, the fault can be cleared by pressing the ENT key twice, which causes all the factory settings to be restored.

User settings tables

Menu [1.1 SIMPLY START] (SIM-)

Code	Name	Factory setting	Customer setting
$t[5$	[2/3 wire control]	[2 wire] (2C)	
[F L	[Macro configuration]	[Start/Stop] (StS)	
$b F r$	[Standard mot. freq]	[50 Hz] (50)	
nPr	[Rated motor power]	According to drive rating	
$U \cap 5$	[Rated motor volt.]	According to drive rating	
$n \mathrm{Lr}$	[Rated mot. current]	According to drive rating	
Fr 5	[Rated motor freq.]	50 Hz	
п 5 P	[Rated motor speed]	According to drive rating	
$t F_{r}$	[Max frequency]	60 Hz	
PHr	[Output Ph rotation]	ABC	
It H	[Mot. therm. current]	According to drive rating	
H [5	[Acceleration]	3.0 s	
dE [[Deceleration]	3.0 s	
L 5 P	[Low speed]	0	
H 5 P	[High speed]	50 Hz	

Functions assigned to I/O

Inputs Outputs	Functions assigned
LI1	
LI2	
LI3	
LI4	
LI5	
LI6	
LI7	
LI8	
LI9	
LI10	
LI11	
LI12	
LI13	
LI14	

Inputs Outputs	Functions assigned
LO1	
LO2	
LO3	
LO4	
Al1	
Al2	
Al3	
AI4	
R1	
R2	
R3	
R4	
RP	
Encoder	

Other parameters (table to be created by the user)

Code	Name	Customer setting	Code	Name	Customer setting
	Name			Name	

Index of functions

Function	Page
[2 wire] (2C)	45
[2nd CURRENT LIMIT.]	201
[3 wire] (3C)	45
+/-speed	163
+/-speed around a reference	165
[AUTO DC INJECTION]	157
[AUTOMATIC RESTART]	231
[Auto tuning]	47
Brake logic control	169
[CATCH ON THE FLY]	232
Closed-loop synchronous motor	85
Command and reference channels	134
Deferred stop on thermal alarm	237
Direct power supply via DC bus	227
[DRIVE OVERHEAT]	236
[ENA SYSTEM]	96
[ENCODER CONFIGURATION]	117
[EVACUATION]	225
[1.12 FACTORY SETTINGS] (FCS-)	260
[FAULT RESET]	230
[FLUXING BY LI]	88
Half floor	226
[TOP Z MANAGEMENT]	228
High-speed hoisting	182
Inspection	224
[JOG]	159
Limit switch management	168
Line contactor command	202
Load measurement	180
[Load sharing]	101
Load variation detection	247
Motor or configuration switching [MULTIMOTORS/CONFIG.]	214
Motor thermal protection	233

[Noise reduction]	97
Output contactor command	204
Parameter set switching [PARAM. SET SWITCHING]	211
[4. PASSWORD] (COd-)	268
PID regulator	187
Positioning by sensors or limit switches	206
Preset speeds	160
PTC probes	230
[RAMP]	152
[REFERENCE SWITCH.]	150
[ROLLBACK MGT]	179
Rope slack	185
[RP CONFIGURATION]	115
Save reference	167
[STOP CONFIGURATION]	155
Stop at distance calculated after deceleration limit switch	208
Summing input/Subtracting input/Multiplier	150
Synchronous motor parameters:	83
Torque limitation	199
Torque regulation	196
Traverse control	217
Use of the "Pulse input" input to measure the speed of rotation of the motor	245

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 0 0 2 0	\square 2 \sum_{0}^{1} 0 0 0 0 \vdots					
A IL－					132						
月ご－					132						
A \mathcal{L}－					132						
月［2			59				$\begin{gathered} 153166 \\ 193 \end{gathered}$				
A［［	48		59				152				
月d［							157				
Ad［ ${ }^{\text {d }}$									254		
Add									254		
A I IA		56			110						
A I IE					110						
A I IF					110						
A 115					110						
A I It					110						
－İA		56			111						
－12E					111						
－İF					111						
（12L					111						
－125					111						
月 1 2					111						
－1ヨ		56			112						
月 1 ヨ					112						
A I ヨF					112						
－1 ヨ					112						
A 1 3					112						
A 1 ヨ					112						
月 14月		56			113						
A 14E					113						
A 14F					113						
A 14 L					113						
A 145					113						
（ 14t					113						
A IL I					114		191				
HLLr		55， 57									
月 ロ									254		
A \quad［									254		
月 1					129						
AD IF					129						
RロIE					129						
月ロ己					130						
月ロこF					130						
トロこも					130						
－ロヨ					131						
RロヨF					131						

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 0 0 0 0 5 0 0 2 10 \vdots	0 2 i $i=1$ 0 0 0 0 \vdots					
Aロヨヒ					131						
AロH I					129						
AロH己					130						
AロHヨ					131						
AロL					129						
AロL					130						
AロL ${ }^{\text {A }}$					131						
APH		55， 57									
A 5 A				86							
A 5 H					129						
月5 H2					130						
A5Hヨ					131						
A S L				87							
A5H I					129						
ASL 2					130						
ASLヨ					131						
H5t				86， 89							
月 5t5				87							
－ 5 U				87							
А 1 A				87							
Atr								231			
					114						
A ${ }^{\text {¢ }}$		55， 57									
AUt				90							
ロロ				101							
$b[1$							173				
bd［口									254		
$b E C d$							174				
bed							175				
ben			70				174				
$b E t$			71				174				
bFr	46		74								
$b 1 P$							173				
b Ir			70				174				
bLL							173				
bロロ				97							
$b r$ b							154				
brHD							176				
brHI							176				
brHz							177				
brHヨ							177				
brH4							177				
br ${ }_{\text {b }}$								249			
$b r P$								249			

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 0 0 20 0 1	5 2 i 0 0 0 0 0 \vdots					
brr							177				
brt			70				174				
br ${ }_{\text {b }}$								249			
b 5 P					108						
$b 5 t$							173				
bリb								249			
L L F L	45										
L L 5						143					
［d I						143					
¢dz						143					
［F］	45										
CFP5		55， 57									
［ H ${ }^{\text {L }}$							212				
С H月己							212				
LHLF						142					
L H							216				
LL 己			66				201				
CL I			66	76			201				
CLL								243			
LL							186				
LLS							210				
LnFl							216				
LnF							216				
LnFS		55， 57									
LQd											269
Lロd己											269
LQF							186				
LQL								243			
LロP						144					
LQr							186				
［P I							181				
LP							181				
LrHz					111						
［rHヨ					112						
LrH4					113						
［rL己					111						
LrL					112						
LrL 4					113						
L5t											269
Ltd			71								
LEt				74							
dA己							151				
d月							151				
d AF							209				

Index of parameter codes

Code	Page										
					$\begin{aligned} & 0 \\ & 0 \\ & U \\ & 0 \\ & 5 \\ & \vdots \\ & 0 \\ & 5 \\ & 0 \\ & \omega \\ & 5 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	2 2 i 0 0 0 0 0 \vdots					$\begin{aligned} & \overline{0} \\ & \mathbf{x} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
d ${ }^{\text {L }}$							209				
dAr							209				
dA 5							205				
dbn							198				
dbP							198				
db 5							205				
dL F			64				155	251			
d［ I							156				
d［0							227				
dE			59				153， 166				
dEL	48		59				152				
dLb								248			
$d L d$								248			
$d L^{\text {r }}$											269
dロ I					126						
dロ Id					126						
dロ IH					126						
dロ15					126						
d 5 F							210				
d 51							166				
d $5 P$							164				
d t F							223				
Ebロ							222				
EL［								244			
ELE								244			
EF I					118						
EFr					118						
E IL					118						
$E \cap A$				96							
$E \cap L$				78	117						
En r					119						
Enr 1					117						
$E \cap 5$					117						
$E \cap 5 P$					120						
Entr					119						
$E \cap U$				78	117						
$E P L$								238			
Ercu									254		
Et F								238			
F I				80							
$F 2$				80							
F2d			72								
F \exists				80							
F 4				80							

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 0 20 20 1 \vdots	\square 2 2 $\sum 1$ 0 0 0 0 \vdots					\square 0 0 0 0 0 0 0 0 \vdots \vdots
F 5				80							
F $\boldsymbol{\text { Fb }}$				97							
F [P				81							
FLS I										262	
$F d t$								246			
FFR					120						
FFP				93							
FFr					120						
FFE			72				155				
FFU				93							
FL L			60	93							
FL I				88			88				
FL									255		
FL 0 L									255		
FL									255		
FLr								232			
FLU			67	88			88				
FP I							193				
F9 ${ }^{\text {F }}$								246			
F9 [246			
F 9F								246			
F 91			72								
F95		55, 57									
F 9								246			
Fr I						142					
Fr lb							150				
Fre						143					
Fres					118						
FrH		55, 57									
Fr 5	46		79								
Fr 55				84							
Frt							153				
Fry-										262	
F5t							155				
Ftd			72								
LF 5										262	
L IE			64	96							
LPE			64	96							
HFF-							226				
HLS							226				
H50							186				
HSP	48		60								
lbr			70				173				
lbr月							181				

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 0 0 20 101 \vdots	$\overline{0}$ \sum_{1}^{2} 0 0 0 0 0 \vdots					
IdA				82							
IdL			64				156	251			
IdL 2			64				156	251			
$1 d$				82							
1 nH								242			
Inr			59				152				
$\ln 5 P$				79							
$1 n t P$							200				
IPH 5				83							
$I P L$	46							235			
lrd			70				173				
15 P							224				
$15 r \mathrm{~F}$							224				
It H	48		60								
」月［				92							
」APL				93							
Jd［			71				175				
JESt				92							
」LF			67				159				
」【t			67				159				
$\lrcorner U L$				92							
$\checkmark \square \square$							159				
LIA to L 14月		56			106						
LId to L 14d					106						
L AF							168				
LAr							168				
LAS							168				
LbA				101							
LbL			72	101							
LbLI				103							
LbL己				103							
Lb「ヨ				103							
LbF				103							
							201				
L L r		55， 57									
LLt							203				
LdS				83							
LES							203				
LEE								238			
LFA				82							
LFF								251			
$\begin{array}{llll} L & F & L & Z \\ L & F & L & \exists \\ L & F & H \end{array}$								241			

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 2 0 0 0	5 2 i 0 0 0 0 0 \vdots					
L F				82							
L 151		56									
L 152		56									
LL L							203				
LQ I					124						
LQId					124						
LQ IH					124						
LQ IS					124						
LQ					124						
Lロこd					124						
LロこH					124						
Lロこ5					124						
Lロヨ					125						
Lロヨd					125						
L \square \＃					125						
					125						
L प 4					125						
Lロ4d					125						
Lロ4H					125						
LQ45					125						
$L P$ I							181				
$L P$ L							181				
L 95				83							
L 5 P	48		60								
A 己							151				
R 3							151				
Fr		55， 57	69								
F		55， 57									
n［ ${ }^{\text {c }}$									253		
пLA己									253		
п「月									253		
									253		
－LA5									253		
									253		
п［ 7 ¢									253		
п［ A 日									253		
$n L r$	46		79								
nLr 5				83							
$n<5$							210				
									253		
ก A 己									253		
									253		
ก A 4									253		
ก 15									253		

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 \vdots 0 0 0 5 0 0 10 0 \vdots \vdots						
п $\boldsymbol{A B}$									253		
п $\boldsymbol{\sim} 7$									253		
ก $\boldsymbol{n} \boldsymbol{n}$									253		
$n \mathrm{Pr}$	46		79								
nrd				97							
n5L				82							
n5 P	46		79								
п5P5				83							
n5t							155				
－ 0		55， 57									
－ロ		55， 57									
$\square \square 4$		55， 57									
－05		55， 57									
－ロ		55， 57									
－［［							205				
Ddt								235			
DF I				76							
$\square H L$								236			
－L L								234			
$\square P L$								235			
ロPr		55， 57									
प5P							186				
PRH			69				192				
PRL			69				192				
P月5							210				
P月U							193				
PEr			70				192				
PES							181				
PFI					115						
PFr					115						
PLA					118						
PLI				118	118						
PH5				83							
PHr	47			75							
P IA					115						
P IL							192				
P IF							191				
P IF I							191				
PIF							191				
P I I							191				
P IL					115						
P I							193				
$P\|P\|$							191				
PIPE							191				

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 0 0 0 0 0 \vdots	\square 2 \sum_{0}^{1} 0 0 0 0 0				$\bar{\infty}$ $\xrightarrow{2}$ 点 $\underset{0}{7}$ $\stackrel{y}{0}$ $\stackrel{0}{\circ}$ O ル $\stackrel{N}{N}$ ご	\square 0 0 0 0 0 0 0 0 y
P 15							192				
$P \square H$			69				192				
$P \square L$			69				192				
PP I								250			
PPn				82							
PPn5				83							
Pre							195				
Pr 4							195				
PrP			69				192				
P5 1－							213				
P52－							213				
P5ヨ－							213				
P52							161				
P54							161				
P5日							161				
P5 IG							161				
PSr			70				193				
P5t						142					
Pt［ I								230			
Pt［己								230			
PELL								230			
Pt H		55， 57									
95 H			71				222				
951			71				222				
$\bigcirc 1$					121						
$r 1 d$					122						
r IH					122						
r 15					122						
$r 2$					122						
red					122						
$r 2 H$					122						
re5					122						
r ${ }^{\text {P }}$					123						
$r \exists d$					123						
$r \exists H$					123						
$r \exists 5$					123						
$r 4$					123						
r4d					123						
r 4 H					123						
r45					123						
r月P				96							
rb							179				
rbL							179				
rbd							179				

Index of parameter codes

Code	Page										
					ত 1 $\stackrel{\curvearrowleft}{\circ}$ $\stackrel{\rightharpoonup}{2}$ $\stackrel{5}{0}$ あ 5 0 0 2 0 10 \vdots \vdots	5 2 i 0 0 0 0 0 \vdots					
r［ ${ }^{\text {a }}$							205				
r Lb							150				
$r d \square$			69				192				
reqP				84							
ret P				84							
						143					
r Fr		55， 57									
rFE－							225				
r IL			69				192				
r r 10						142					
$r P$								231			
$r P z$			70				195				
$r P \exists$			70				195				
$r P 4$			70				195				
$r P$ P								231			
$r P L$		55， 57									
$r P E$		55， 57									
$r P F$		55， 57									
$r P G$			69				191				
$r P$ l							191				
$r P \square$		55， 57									
$r P P n$					118						
$r P 5$							153				
$r P t$							152				
r r 5					105						
r 5 A				82							
r 5月5				83							
r 5d							186				
r 5 F								230			
r S L							194				
$r 5$				82							
r 5 S				84							
r 5 P							225				
r StL							186				
r 5 U							225				
r r ${ }^{\text {r }}$		55， 57									
r r ${ }^{\text {r }}$							198				
rtr							223				
5月2							151				
5月							151				
5月F							209				
5月L							209				
5月r							209				
5月t								237			

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 0 0 2 0	\square 2 i $i=1$ 0 0 0 \vdots					\square 0 0 0 0 0 0 0 0 \vdots
5［ L							186				
5［5 1										262	
5d［ 1			65				157， 174				
5d［2			65				157				
5dd								244			
5FL			60	92							
5FL			60								
5 Fd							210				
5 Fr			66	76							
5 It			60	92							
5 It			60								
$5 L L$								243			
5LP			64	81							
							223				
5ロP				98							
5P己			68				162				
5 －${ }^{\text {P }}$			68				162				
$5 P 4$			68				162				
5P5			68				162				
5P6			68				162				
5 P7			68				162				
5P日			68				162				
5P9			68				162				
5P10			68				162				
5P I I			68				162				
5P12			68				162				
5P1ヨ			68				162				
5P14			68				162				
$5 P 15$			69				162				
5P16			69				162				
$5 P d$		55， 57									
5PL			60	92							
$5 P$							167				
5Pt							197				
5 r P			69				166				
55b								244			
55cd					120						
5519					119						
55F5					119						
55 L				92							
5th			60	93							
5td							210				
5 E								239			
5ヒロ								244			

Index of parameter codes

Code	Page										
					$\begin{aligned} & 0 \\ & 0 \\ & U \\ & 0 \\ & 5 \\ & \vdots \\ & 0 \\ & 5 \\ & 0 \\ & \omega \\ & 5 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	2 2 i 0 0 0 0 0 \vdots	F 0 3 3 2 0 $\frac{1}{4}$ 0 3 0 0 4 1 5 5	［1．8 FAULT MANAGEMENT］ （FLE－）			$\begin{aligned} & \square \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \pm \end{aligned}$
5 EP								239			
5tr							164				
5trt								240			
5tt							155				
$5 U L$				98							
			59				153				
ヒ日			59				153				
ヒ日ヨ			59				153				
ER4			60				153				
t $\boldsymbol{A R}$							200				
t $\boldsymbol{*}$［		55， 57									
t Ar								231			
ヒbE			70				174				
ヒロロ							222				
tbr									254		
ヒbr己									254		
tb5								239			
t［ L	45				105						
tLt					105						
			64				156	251			
$t d[$			64				156	251			
$t d[1$			65				157				
$t d[己$			65				158				
$t d n$							222				
$t d 5$								246			
EFD									254		
ヒFロ己									254		
EFr	46		75								
$t H$ H								236， 237			
thd		55， 57									
EHr		55， 57									
tHt								234			
$t L$ A							200				
$t L[$							201				
$t L d$								248			
ELIL			71				200				
EL I			71				200				
$t L 5$			67				194				
$t \cap L$								249			
ヒロレ							198				
tロ5							186				
tロ5t							228				
ヒ9b								246			
tr 1							197				

Index of parameter codes

Code	Page										
					$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 2 \\ & \vdots \\ & \hline 1 \\ & \vdots \\ & \hline \end{aligned}$	\square 2 2 $\sum 1$ 0 0 0 0 \vdots					$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 00 \\ & \pm 0 \end{aligned}$
$t r A$				82							
tr L							222				
$t r H$			71				222				
tr L			71				222				
tr				82							
$t r P$							197				
trr		55， 57									
trt							197				
$t 5 d$							197				
$t 5$								239			
$t 55$							197				
$t 5 t$							197				
$t 54$							223				
t td			72					234， 237			
ヒヒd己								234， 237			
ヒヒdヨ								234， 237			
$t \in H$			71								
ヒヒL			71								
$t \in \square$								254			
ttr			71				175				
EUL				91			91				
ヒUn	47			89							
$t U P$							222				
$t U 5$	47			91							
Uロ				80							
UI				80							
Uこ				80							
リヨ				80							
44				80							
U5				80							
Ubr				101							
U［				81							
UL								232			
ULP				81							
UE［P					119						
UELU					119						
UEL［					119						
UFr			64	97							
UIHI					110						
UIH己					111						
UIH4					113						
UIL I					110						
UIL己					111						
UIL 4					113						

Index of parameter codes

Code	Page										
						\square \sum_{0}^{1} $\sum 1$ 0 0 0 0 \vdots			z 0 1 10 0 3 $\sum 0$ 0 0 0 0 \vdots		
$U L \square$		55， 57									
$U L r$											269
$U \cap 5$	46		79								
UロH I					129						
UロH己					130						
UロHヨ					131						
UロL I					129						
UロL					130						
UロL					131						
UロP		55， 57									
$U P L$								239			
UrES								239			
U 5								239			
U 51							166				
USL								239			
USP							164				
U5t								239			

Altivar ${ }^{\circledR} 71$ Variable Speed Drives for Synchronous and Asynchronous Motors
Programming Manual

[^22]
[^0]: a. The word "drive" as used in this bulletin refers to the controller portion of the adjustable speed drive as defined in the National Electrical Code (NEC).

[^1]: 1. Can be accessed if the Controller Inside card is present.
[^2]: 1. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
[^3]: 1. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
[^4]: 1. In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.
[^5]: 1. In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.
[^6]: 1. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
[^7]: 1. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
[^8]: 1. Parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu. Advice on setting the parameters in this menu can be found on pages 61 to 63 .
[^9]: 1. If $[2 / 3$ wire control $](\mathrm{tCC})$, page $105=[3$ wire $](3 C), \mathrm{LI} 2, \mathrm{C} 101, \mathrm{C} 201, \mathrm{C} 301$, and C 401 cannot be accessed.
[^10]: 1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
[^11]: 1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
[^12]: 1. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
[^13]: 1. [Rated motor freq.] (FrS), page 79 for an asynchronous motor or [Nominal freq sync.] (FrSS), page 84 for a synchronous motor.
 2. In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
[^14]: 1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
[^15]: NOTE: No other menus or parameters can be switched.

[^16]: 1. The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
[^17]: 1. Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.
[^18]: 1. Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.
[^19]: 1. Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.
[^20]: 1. Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.
[^21]: 1. Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.
[^22]: Square D^{\circledR} is a trademark or registered trademark of Schneider Electric. Other trademarks used herein are the property of their respective owners.

