
Solución para automatismos de máquinas sencillas Guía de arranque

07/2007

Tabla de materias

	Información de seguridad	7
Parte I	Presentación de la solución para automatismos de máquinas sencillas	
Capítulo 1	Introducción Presentación Generalidades Pliego de condiciones Descripción Hardware requerido.	. 11 . 12 . 14 . 17
Parte II	Sistema principal	
Capítulo 2	Instalación del hardware del sistema principal. Presentación. Cableado principal. Cableado IHM. Cableado de la red CANopen. Cableado de las E/S. Alimentación	. 23 . 24 . 25 . 26 . 29
Capítulo 3	Instalación del software del sistema principal Presentación	. 35 . 36
Capítulo 4	Presentación de la aplicación Presentación Modo de funcionamiento IHM Grafcet de la aplicación ATV31	. 45 . 46 . 47

Parte III	Adición de un servovariador Lexium 05	
Capítulo 5	Instalación del hardware del servovariador Lexium 05 Presentación	53 54 55
Capítulo 6	Instalación del software del servovariador Lexium 05 Presentación	59 60
Capítulo 7	Presentación de la aplicación Lexium 05 Presentación Modo de funcionamiento Grafcet de la aplicación Lexium 05	73 74
Parte IV	Adición de un módulo de E/S Advantys OTB	
Capítulo 8	Instalación del hardware del módulo Advantys OTB Presentación Cableado de Advantys OTB Cableado de la red CANopen Cableado de las E/S de Advantys OTB Fuente de alimentación	79 80 81
Capítulo 9	Instalación del software del módulo Advantys OTB	83 84
Capítulo 10	Adición de módulos de ampliación a Advantys OTB Principio Instalación de los módulos de ampliación Adición de módulos de ampliación a Advantys OTB en la aplicación del controlador Twido	95 96

Parte V	Adición de una caja de conexiones de E/S Advantys FTB		
	Presentación		
Capítulo 11	Instalación del hardware del distribuidor Advantys FTB Presentación	105 106 107	
Capítulo 12	Instalación del software del distribuidor Advantys FTB Presentación	109 110	
Apéndices	Presentación		
Apéndice A	Lista de símbolos de la aplicación		

Información de seguridad

Información importante

AVISO

Lea atentamente estas instrucciones y observe el equipo para familiarizarse con el dispositivo antes de instalarlo, utilizarlo o realizar su mantenimiento. Los mensajes especiales que se ofrecen a continuación pueden aparecer a lo largo de la documentación o en el equipo para advertir de peligros potenciales o para ofrecer información que aclare o simplifique los distintos procedimientos.

La inclusión de este icono en una etiqueta de peligro o advertencia indica un riesgo de descarga eléctrica, que puede provocar lesiones si no se siguen las instrucciones.

Éste es el icono de alerta de seguridad. Se utiliza para advertir de posibles riesgos de lesiones. Observe todos los mensajes que siguen a este icono para evitar posibles lesiones o incluso la muerte.

A PELIGRO

PELIGRO indica una situación inminente de peligro que, si no se evita, **provocará** lesiones graves o incluso la muerte.

A ADVERTENCIA

ADVERTENCIA indica una posible situación de peligro que, si no se evita, **puede provocar** daños en el equipo, lesiones graves o incluso la muerte.

AVISO indica una posible situación de peligro que, si no se evita, **puede provocar** lesiones o daños en el equipo.

TENGA EN CUENTA

Sólo el personal de servicio cualificado podrá instalar, utilizar, reparar y mantener el equipo eléctrico. Schneider Electric no asume las responsabilidades que pudieran surgir como consecuencia de la utilización de este material.

© 2007 Schneider Electric. Todos los derechos reservados.

Comentarios del usuario

Envíe sus comentarios a la dirección electrónica techpub@schneider-electric.com

Presentación de la solución para automatismos de máquinas sencillas

Presentación

Vista general

Este documento presenta la instalación de una solución para automatismos de máquinas sencillas.

Contenido

Esta parte contiene los siguientes capítulos:

Сар	ítulo	Nombre del capítulo	
1	1	Introducción	11

Introducción

1

Presentación

Vista general

Este capítulo presenta el sistema de automatismo sobre el que trata este documento.

Contenido:

Este capítulo contiene los siguiente apartados:

Apartado	Página
Generalidades	12
Pliego de condiciones	14
Descripción	17
Hardware requerido	18

Generalidades

Introducción

Destinados a instalaciones sencillas y a pequeñas máquinas compactas, el controlador programable Twido, el variador de velocidad Altivar 31, el servovariador Lexium 05, el módulo de visualización Magelis XBTN y las nuevas E/S distribuidas Advantys OTB y FTB ya gozan de buena reputación debido a su capacidad de ahorro de espacio, su simplicidad y su competitividad.

Hoy en día, su asociación constituye una auténtica solución que permite la facilidad y la rapidez de la instalación, así como el funcionamiento perfecto del conjunto gracias a una oferta completa de cableado y a una integración de software lograda (bloques de función integrados en TwidoSuite).

A AVISO

Este documento no sustituye en ningún caso a la documentación de cada producto.

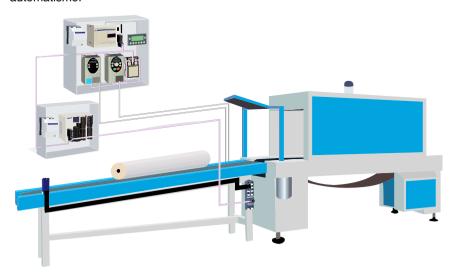
El presente documento describe de forma simplificada la instalación, configuración y puesta en marcha de la solución que se presenta.

Las descripciones y especificaciones funcionales de una determinada aplicación no se incluyen en el presente documento.

Sin embargo, este documento describe una solución para automatismo típica que se puede utilizar.

Para facilitar la puesta en marcha del sistema, los archivos de configuración y de aplicación necesarios para la solución que se presenta se entregan con los productos.

Si no se siguen estas instrucciones pueden producirse lesiones personales o daños en el equipo.


Abreviaturas/ Terminología

A continuación, se muestran las abreviaturas y términos utilizados en el presente documento:

Abreviatura/	Descripción
PC	Ordenador
XBTN	Módulo de visualización con pantalla alfanumérica
ATV31	Variador de velocidad de la gama Altivar 31
Lexium 05	Servovariador de la gama Lexium 05
TAP	Caja de derivación
ОТВ	Módulo de E/S IP20 Advantys OTB
FTB	Caja de conexiones de E/S Advantys FTB IP67
IHM	Interfase hombre-máquina
CA	Corriente alterna
CC	Corriente continua
E/S	Entrada/Salida
Altivar	Nombre de la gama que agrupa a todos los variadores de velocidad Schneider
Lexium	Nombre de la gama que agrupa a una parte de los servovariadores Schneider
Magelis	Nombre de la gama que agrupa a una parte de los IHM Schneider
Twido	Nombre de la gama que agrupa a una parte de los controladores Schneider

Pliego de condiciones

Ejemplo de solución para procesos de automatismo El esquema siguiente muestra un ejemplo de solución para procesos de automatismo:

El procedimiento para automatizar una máquina sencilla de este tipo está representado en la tabla siguiente:

Para	Utilice
Supervisar la aplicación, coordinar, configurar y controlar los distintos sensores impulsores	Un controlador Twido
Visualizar o configurar los distintos parámetros de la aplicación	Una interfase hombre-máquina Magelis
Arrastrar la cinta transportadora	Un variador de velocidad Altivar
Colocar el rodillo	Un servovariador Lexium
Detectar y controlar los productos	Entradas y salidas remotas Advantys asociadas a sensores/impulsores

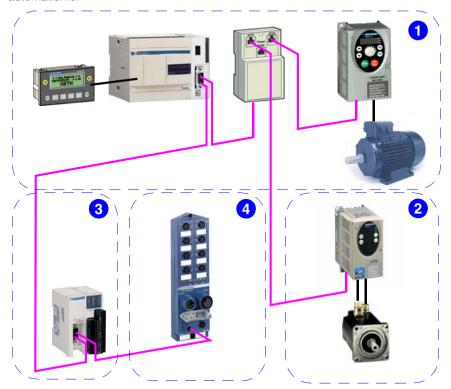
Para dar respuesta a este pliego de condiciones simplificado, se propone una solución completa desarrollada en la presente guía.

Obietivo

La solución para procesos de automatismo que se presenta en este documento muestra cómo controlar uno o varios motores. Para ello, se propone asociar, en el bus CANopen, un variador de velocidad ATV31 y un servovariador Lexium 05 a un controlador Twido. El controlador Twido incluye las Macro Drive desarrolladas para los ATV31 y los Lexium 05 (Macro: bloque funcional listo para utilizar integrado en la biblioteca TwidoSuite). Estas Macro Drive están constituidas por microaplicaciones que permiten simplificar la aplicación de control de un ATV31 o de un Lexium 05 conectado al bus de campo CANopen.

A cada una de las variables utilizadas en la aplicación Twido se le puede atribuir un nombre llamado SÍMBOLO.

Para visualizar y modificar finalmente los parámetros del sistema (ejemplo: velocidad del motor), se añade un módulo de visualización XBTN. El XBTN y la aplicación TwidoSuite pueden utilizar la misma lista de símbolos (exportar de TwidoSuite a XBT-L1000). Este vínculo facilita el desarrollo de la aplicación del módulo de visualización.


Para controlar el sistema y proporcionar información, se recomienda agregar al sistema un módulo de E/S IP20 Advantys OTB así como una caja de conexiones de E/S Advantys FTB IP67.

La solución para procesos de automatismo está constituida por los elementos siguientes:

Elemento	Descripción
Controlador Twido	 El controlador Twido asociado al master CANopen se encarga de lo siguiente: Gestionar la comunicación de los slaves CANopen: el variador de velocidad ATV31, el servovariador Lexium 05 y los módulos de E/S. Diagnosticar el variador de velocidad ATV31, el servovariador Lexium 05 y los módulos de E/S. Gestionar datos para el módulo de visualización XBTN400.
IHM	 XBTN400 se utiliza para lo siguiente: Visualizar los parámetros del sistema: velocidad del motor, información sobre las E/S, diagnósticos del sistema Modificar los parámetros del sistema: velocidad del motor.
Variador	El variador de velocidad ATV31 se utiliza para controlar el motor asíncrono asociado en función de los comandos recibidos.
Servovaria dor	El servovariador Lexium 05 se utiliza para controlar la velocidad, la posición o la corriente del servomotor BSH:
Módulo y caja de conexiones de E/S	El módulo y la caja de conexiones de E/S proporcionan: Información al controlador procedente de los sensores. Transmisión de comando a los impulsores.

Esquema básico

A continuación, se muestra el esquema general de la solución para procesos de automatismo:

La presente guía se divide en varias etapas en función de la posible evolución de la solución para procesos de automatismo:

Paso	Descripción
1	Sistema principal
2	Adición de un servovariador: Lexium 05 y de un servomotor BSH05.
3	Adición de un módulo de E/S remoto IP20: Advantys OTB
4	Adición de una caja de conexiones de E/S remoto IP67: Advantys FTB

Nota: Si una aplicación requiere más productos, es necesario comprobar en las respectivas guías que sean compatibles (por ejemplo: cantidad máxima de elementos gestionada por el controlador Twido).

Descripción

Esquema de la instalación

El esquema siguiente muestra la solución para automatismos:

Hardware requerido

Productos

Lista de productos:

TIPO	Referencia	Descripción	Cantidad	No.
Controlador	TWDLCAA24DRF	Twido compacto	1	1
Controlador	TWDNCO1M	Master Twido CANopen	1	2
Controlador	TWDNAC485D	Mini DIN RS485 opcional	1	3
IHM	XBTN400	Visualizador compacto, cuatro líneas, 20 caracteres	1	4
Variador	ATV31H018Mxx	ATV31 0,18 kW/0,5 HP monofásico 200240 V	1	5
Servo- variador	LXM05AD10M2	Lexium 05 0,75 kW monofásico 200240 V	1	6
Servomotor	BSH0551T11A2A	BSH 05 6.000 rev./min 1,4 Nm	1	7
Accesorios	VW3CANTAP2	Caja de derivación (TAP)	1	8
E/S	OTB1C0DM9LP	Módulo de E/S remotas IP 20 Advantys OTB CANopen 12E 8S	1	9
E/S	TWDDDO8TT	Módulos de ampliación de ocho salidas estáticas para OTB	1	9
E/S	TWDDRA8RT	Módulos de ampliación de ocho salidas de relé para OTB	1	9
E/S	FTB1CN08E08SP0	Caja de conexiones de E/S remotas IP67 Advantys FTB CANopen 08E 08S	1	10
E/S	FTXCNTL12	Terminación de línea M12 CANopen	1	11

Alimentaciones y protecciones

Lista de alimentaciones y protecciones aconsejadas:

Referencia	Descripción	Cantidad	Indic.
ABL8MEM24012	Alimentación de 24 V CC	1	Α
MULTI 9 -C10	Disyuntor 20725	1	В

Nota: Calibre la alimentación en función de la aplicación.

Cables

Lista de cables:

TIPO	Referencia	Descripción	Cantidad	No.
CANopen	TSXCANCA50	Cable CANopen-hilos desnudos-50 m	1	12
CANopen	TSXCANKCDF90T	Conector CANopen SUB-D 9 hembra con terminación de fin de línea	2	13
IHM	XBTZ945	Cable de configuración (PC-IHM)	1	14
IHM	TSXCUSB485	Cable de configuración USB (PC-IHM)	1	14
IHM	XBTZ9780	Cable de conexión (IHM-Controlador Twido)	1	15
Variador	VW3CANCARR03	Cable CAN RJ45 para ATV31 y Lexium 05, 0,3 m	1	16
Variador	VW3CANCARR1	Cable CAN RJ45 para ATV31 y Lexium 05, 1 m	1	16
Servo- variador	VW3M5101R50	Cable de alimentación Lexium 05/ servovariador BSH 05, 5 m	1	17
Servo- variador	VW3M8101R50	Cable de retorno del codificador Lexium 05/servovariador BSH 05, 5 m	1	17
E/S	FTXDP2115	Cable de alimentación Advantys FTB, 1 m	1	18
E/S	FTXCN3230	Cable para Advantys FTB, M12-hilos libres, 3 m	1	19
E/S	FTXCN3250	Cable para Advantys FTB, M12-hilos libres, 5 m	1	19

Software

Lista de software de programación y de configuración:

TIPO	Referencia	Descripción	No.
Controlador	TWDSPU1004V10M	TwidoSuite ≥ V1.0 que incluye una conexión	
		BlueTooth *	
IHM	XBTL1001M	XBTL1000 light ≥ V4.4	
E/S	FTXES00).≥ V3.1)	Advantys Configuration Tool≥ V1.4	

^{*:} Si el PC no está equipado con Bluetooth, es necesario el adaptador clave USB con referencia VW3A8115.

Configuración

La presente guía describe la instalación y la puesta en marcha del sistema y describe los elementos principales:

- un controlador Twido TWDLCAA24DRF.
- un módulo de visualización XBTN400.
- un variador de velocidad ATV31H18Mxx.
- un servovariador LXM05AD10M2.
- un servomotor BSH0551T11A2A.
- un módulo de E/S Advantvs OTB1E0DM9LP v
- una caja de conexiones de E/S Advantys FTB1CN08E08SP0.

Proyectos de aplicaciones

Esta guía de puesta en marcha está dividida en varias secciones. Dichas secciones describen la instalación del sistema principal tras la integración de otros productos.

Junto a esta guía se proporcionan proyectos de aplicaciones para el controlador. Cada proyecto de aplicación corresponde a una configuración descrita en una sección de esta guía.

La tabla siguiente indica, en cada sección, el proyecto de aplicación de salida y el proyecto resultado de las acciones descritas en la sección correspondiente:

Secciones de esta guía	Proyecto de salida	Descripción	Proyecto resultante
II	-	Sistema principal	Sección II
III	Sección II	Adición de un Lexium 05 y de un BSH05	Sección III
IV	Sección III	Adición de un OTB	Sección IV
٧	Sección IV	Adición de un FTB	Sección V

Sistema principal

Presentación

Vista general

Esta sección del documento presenta la instalación del sistema principal. En este capítulo, las referencias al servovariador Lexium 05 y al servo-motor BSH sólo son aplicables si desea la adición de un servo-variador Lexium 05 (véase *Adición de un servovariador Lexium 05*, p. 51).

Objetivo

El objetivo es controlar un variador de velocidad ATV31 a través del bus CANopen por medio de un master Twido CANopen. El XBTN permite visualizar y modificar la consigna de velocidad del variador y la información sobre el estado de las E/S.

Archivos de aplicación

En el CD-ROM BUNDLE (DIA3CD3050101F), se pueden encontrar los archivos correspondientes a esta configuración en el directorio "Applicative files\Sección_II" para la aplicación del controlador Twido y en el directorio "Applicative files\XBTN_XBTR" para la aplicación del módulo de visualización XBTN.

Contenido

Esta parte contiene los siguientes capítulos:

Capítulo	Nombre del capítulo	Página
2	Instalación del hardware del sistema principal	23
3	Instalación del software del sistema principal	35
4	Presentación de la aplicación	45

Instalación del hardware del sistema principal

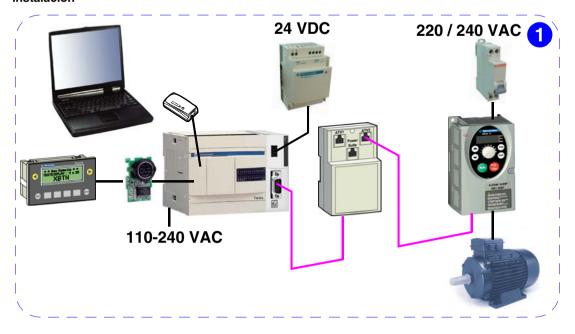
2

Presentación

Vista general

Este capítulo describe la instalación del hardware del sistema principal que constituye la solución de los automatismos.

Contenido:


Este capítulo contiene los siguiente apartados:

Apartado	Página
Cableado principal	
Cableado IHM	
Cableado de la red CANopen	
Cableado de las E/S	29
Alimentación	31

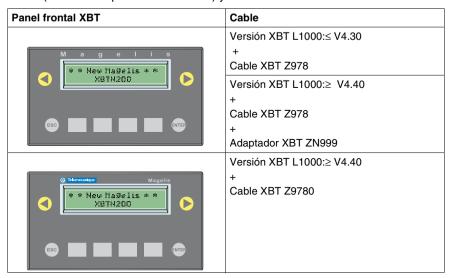
Cableado principal

Esquema de la instalación

Esta parte del documento trata del montaje siguiente:

Cableado IHM

Cableado XBTN-Twido


La conexión entre el XBTN y el controlador Twido se lleva a cabo a través de un cable XBTZ9780:

Nota: Utilice la interfase adicional TWDNAC485D montada en el controlador Twido. El puerto 1 del Twido está reservado a la comunicación entre Twido y el PC.

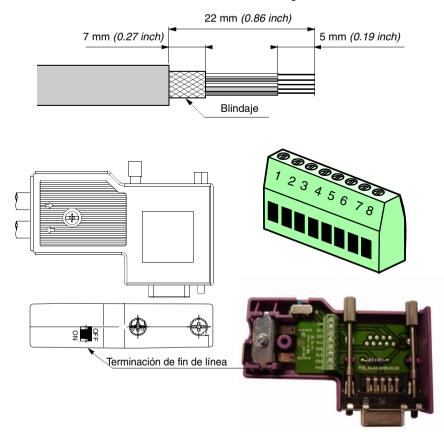
En función del protocolo utilizado, la visualización de "?????" en lugar de los valores o la persistencia de la ventana emergente de conexión indican un problema de comunicación. La causa puede ser el cable empleado.

La tabla siguiente indica el cable que se debe utilizar en función de la versión del XBTN (reconocible por la cara anterior) y de la versión del software XBT L1000:



Si se desea más información, véase el Manual de funcionamiento de los módulos de visualización compactos Magelis XBTN/XBTR referencia 1681028.

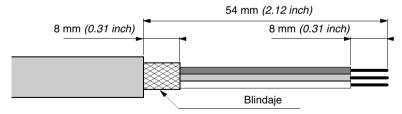
Cableado de la red CANopen

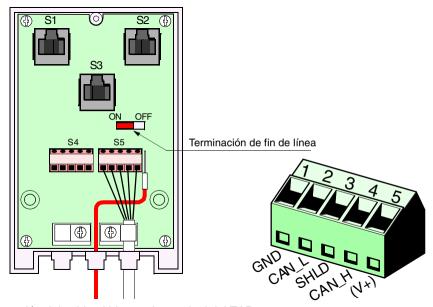

Cableado ATV31-

Para conectar el ATV31 al TAP, utilice un cable de tipo RJ45 - RJ45 tal y como se muestra a continuación:

Preparación del cable TAP-Twido

Para conectar el TAP al controlador Twido, empalme un conector SUB-D 9 TSXCANKCDF90T a un cable TSXCANCA50 de la siguiente manera:

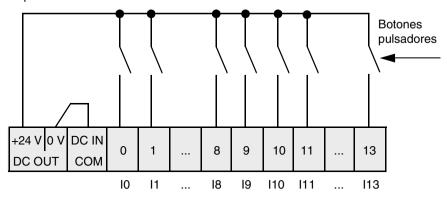

Conexión del cable al bloque de terminal del conector SUB-D 9:


No.	Señal	Cable	Conector	Color del hilo
1	CAN_H	TAP/Twido	CH1	Blanco
2	CAN_L	TAP/Twido	CL1	Azul
3	GND	TAP/Twido	CG1	Negro
4	V+	TAP/Twido	V+1	Rojo

Nota: Cambiar la terminación de fin de línea del conector a "ON".

Cableado TAP-

El extremo SUB-D 9 del cable preparado anteriormente se conecta al controlador Twido. El extremo "hilos desnudos" del cable se conecta al TAP de la manera siquiente:

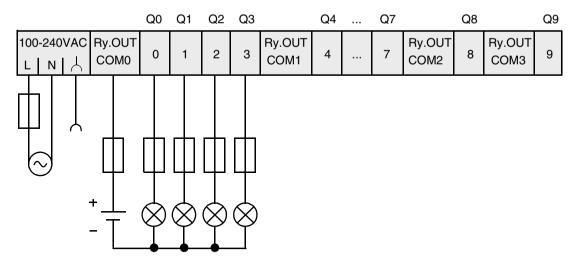

Conexión del cable al bloque de terminal del TAP:

No.	Señal	Color del hilo	Descripción
1	GND	Negro	Masa
2	CAN_L	Azul	Polaridad CAN_L
3	SHLD (CAN-GND)	(Blindaje del cable desnudo)	Blindaje opcional
4	CAN_H	Blanco	Polaridad CAN_H
5	V+	Rojo	Alimentación opcional

Nota: Cambie la terminación de fin de línea del TAP a "ON".

Cableado de las E/S

Cableado de las entradas de Twido Esquema del cableado de las entradas:

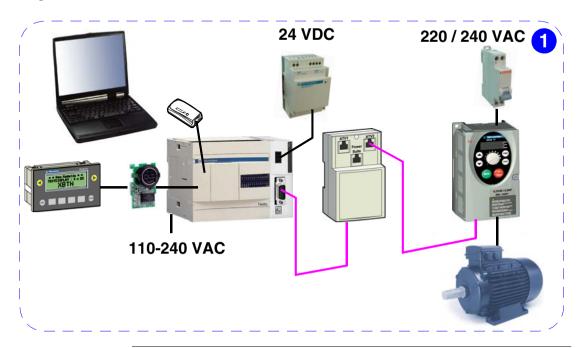


Información adicional sobre las entradas utilizadas en la aplicación:

Entrada	Símbolo utilizado en la aplicación Twido	Acción
%10.0	LXM_POWER	Lexium 05: Pasar el Lexium al estado operativo y conecte el servomotor BSH a la alimentación.
%10.1	START_POSITION_LXM	Lexium 05: Ejecutar el servomotor BSH en rotación.
%10.8	PB_START_FORWARD	ATV31: Ejecutar el motor en rotación hacia adelante.
%10.9	PB_START_REVERSE	ATV31: Ejecutar el motor en rotación hacia atrás.
%I0.10	PB_STOP	ATV31 y Lexium 05: Detener el motor y el servomotor BSH.
%10.11	PB_SLOW_FAST	ATV31 : Imponer una velocidad rápida o lenta: ■ Entrada = 0 para velocidad rápida ■ Entrada = 1 para velocidad lenta
%10.13	RESET_ERROR	ATV31 y Lexium 05: Confirmación de un error (la causa del error debe eliminarse):

Cableado de las salidas de Twido

Esquema del cableado de las salidas:

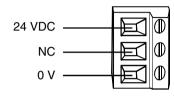


Información adicional sobre las salidas:

Salida	Símbolo utilizado en la aplicación Twido	Indicación visualizada
%Q0.0	SD_RUN_FORW	ATV31: Motor en rotación hacia adelante
%Q0.1	SD_RUN_REV	ATV31: Motor en rotación hacia atrás
%Q0.2	SD_STOPPED	ATV31: Motor detenido
%Q0.3	MOTOR_IS_GOING_TO_POINT	Lexium 05: Servomotor BSH en rotación.

Alimentación

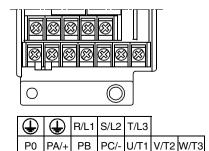
Diagrama

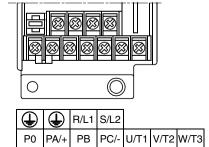


Alimentación de Twido Para alimentar el controlador Twido es necesario seguir las recomendaciones disponibles en la "Guía de instalación del hardware".

Alimentación del master CAN

Para alimentar el master CANopen es necesario seguir las recomendaciones disponibles en la instrucción de servicio que acompaña al producto.

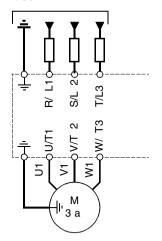

Esquema del cableado:


Alimentación del ATV31

Conexión:

ATV 31H018M3X , H037M3X, H055M3X, H075M3X

ATV 31H018M2 , H037M2, H055M2



Nota: Retirar las etiquetas autoadhesivas para acceder a los conectores presentados anteriormente.


Nota: R/L1 = Fase, R/L2 = Neutro.

Esquemas de conexión:

Red trifásica ATV 31xxxxM3X/ N4/S6X

Red monofásica ATV 31xxxxM2

▲ PELIGRO

RIESGOS DE DESCARGA ELECTRICA.

Para alimentar el variador de velocidad ATV31, es necesario seguir las recomendaciones disponibles en la guía de instalación, ref. VVDED303043.

Si no se siguen estas instrucciones provocará lesiones graves o incluso la muerte.

Instalación del software del sistema principal

3

Presentación

Vista general

Este capítulo describe la instalación del software del sistema principal que constituye la solución de los automatismos.

Contenido:

Este capítulo contiene los siguiente apartados:

Apartado	Página
Instalación del software y carga de aplicaciones	36
Configuración de la comunicación del ATV31	40

Instalación del software y carga de aplicaciones

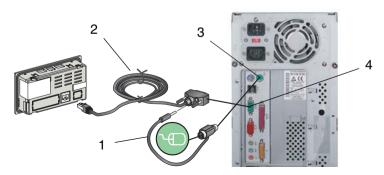
Aplicaciones

El CD-ROM BUNDLE (DIA3CD3050101F) contiene las aplicaciones de la solución para procesos de automatismo propuesta. La carga de estas aplicaciones permite un funcionamiento sencillo de la solución para procesos de automatismo.

Instalación del software

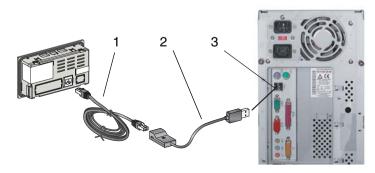
Es necesario instalar previamente el siguiente software:

- XBT-L1000 para el visualizador XBTN
- TwidoSuite para el controlador Twido


Aplicación Twido

El siguiente método permite cargar la aplicación proporcionada por el controlador Twido:

Paso	Acción	
1	Conectar el controlador Twido al equipo de la siguiente manera: Bluetooth	
	VW3A8115 TwidoSuite Twido	
	El controlador debe recibir alimentación. Configurar la llave Bluetooth de acuerdo con la guía proporcionada por el fabricante. Utilizar el puerto 1 del controlador Twido. El XBTN está conectado a la interfase RS485 adicional del controlador Twido. Recomendación: Utilice el puerto COM 4, que es el puerto instalado por defecto para la llave BlueTooth.	
2	COPIAR del CD-ROM BUNDLE (DIA3CD3050101F) el directorio "Applicative files\Sección II".	
3	PEGAR este directorio en el directorio "C:\Archivos de programa\Schneider Electric\TwidoSuite\Mis proyectos"	
4	Abrir el proyecto "BUNDLE_CAN_Part_II.xpr" mediante el software TwidoSuite.	
5	En la ventana principal de TwidoSuite, seleccionar la tareaProgramar → Depurar → Conectar y hacer clic en Aceptar. TwidoSuite intenta establecer una conexión con el autómata y realiza controles de sincronización entre las aplicaciones del ordenador y del autómata. Una vez establecida la conexión, seleccionar Transferir PC ⇒ Controlador. Hacer clic en Aceptar.	
6	Esperar a que finalice la carga del programa. En la ventana principal de TwidoSuite, seleccionar la tarea Programar → Depurar → Desconectar y hacer clic en Aceptar .	


Nota: En caso de que se pierda la comunicación BlueTooth, desconectar y volver a conectar la pasarela BlueTooth VW3A8114 (del lado del Twido) para iniciar la comunicación.

XBTN Conexión XBTN/PC a través de un cable XBTZ945:

Número	Descripción	
1	Cable XBTZ945 2/2 RJ45/MiniDIN	
2	Cable XBTZ945 1/2 RJ45/SUB-D 9	
3	Puerto MiniDIN ratón	
4	Puerto COM	

Conexión XBTN/PC a través de un cable TSXCUSB485:

Número	Descripción	
1	Cable XBTZ925(A) RJ45/RJ45	
2	Adaptador TSXCUSB485 RJ45/USB	
3	Puerto USB	

Si se desea más información, véase el Manual de funcionamiento de los módulos de visualización compactos Magelis XBTN/XBTR referencia 1681028.

El siguiente método permite cargar el programa proporcionado para el XBTN:

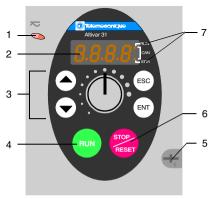
Paso	Acción
1	COPIAR del CD-ROM BUNDLE (DIA3CD3050101F) el archivo "XBTN_XBTR\QS_XBT_N400.DOP"
2	PEGAR este archivo en el directorio "C:\Archivos de programa\Schneider Electric\XBT-L1000\appli"
3	Abrir este archivo con el software XBT-L1000
4	Conectar el módulo de visualización XBTN al PC (véase el esquema anterior). El módulo de visualización XBTN debe estar conectado a la fuente de alimentación (si se desea más información, véase la guía de funcionamiento del módulo de visualización). El XBTN mostrará el siguiente mensaje "WAITING FOR TRANSFER".
5	En la barra de menú del software XBT-L1000, seleccionar "Transferir/Exportar".
6	Esperar a que finalice la carga del programa para desconectar el XBTN del PC.

1606369_04 07/2007

Configuración de la comunicación del ATV31

Principio

Los productos del sistema se deben configurar en función de la aplicación del controlador Twido del modo siguiente:


Dirección 1: ATV31

Velocidad de transmisión: 125 kbits/s

Descripción

Parte frontal del variador de velocidad ATV31:

ATV31xxxxx

ATV31xxxxxxA

No.	Descripción
1	El indicador rojo encendido indica que el bus continuo está conectado.
2	Módulo de visualización de "7 segmentos" con cuatro dígitos.
3	Terminal de programación central.
4	Tecla "RUN", utilizada para arrancar el motor en el modo hacia adelante.
5	Para bloquear/desbloquear la parte frontal del variador de velocidad, es necesario utilizar un destornillador plano o de estrella.
6	Tecla "STOP/RESET", utilizada para detener el motor y solucionar los fallos actuales.
7	Estos dos indicadores señalan el estado de las comunicaciones ("RUN") y la presencia de un posible fallo ("ERR") en el bus CANopen.

Método

Configuración de los parámetros de comunicación del ATV31:

Paso	Acción
1	Pulsar la tecla "INT" para acceder al menú de configuración del ATV31.
2	Utilizar las teclas de flechas para seleccionar el menú de comunicación "COM" y validar con la tecla "INT".
3	Utilizar las teclas de flechas para seleccionar el menú "AdCO" y validar con la tecla "INT". Introducir el valor "1" (dirección del bus CANopen). Validar con la tecla "INT" y salir del menú con la tecla "ESC".
4	Utilizar las teclas de flechas para seleccionar el menú "bdCO" y validar con la tecla "INT". Introducir el valor "125" (velocidad de transmisión del bus CANopen). Validar con la tecla "INT" y salir del menú con la tecla "ESC".
5	Salir del menú de configuración pulsando varias veces la tecla "ESC".

Nota: La configuración sólo se puede modificar si el motor está detenido y si el variador de velocidad está bloqueado (tapa cerrada). Cualquier cambio que se haga sólo surtirá efecto después de la aplicación de un ciclo "desconectado - conectado" del variador de velocidad.

Si se desea más información, véase el documento con la referencia VVDED303042.

Señalización

Los dos indicadores de señalización, situados a la derecha del visualizador de siete segmentos con cuatro dígitos en la parte delantera de Altivar 31 sirven para indicar el estado de las comunicaciones CANopen:

Visualización normal y fuera de la puesta en marcha:

- 43.0: Visualización del parámetro seleccionado en el menú SUP (por defecto: frecuencia del motor). En caso de limitación de corriente, la visualización será intermitente.
- Inic: Secuencia de inicio.
- rdY: Variador preparado.
- dcb: Frenado por inyección de corriente continua en curso.
- nSt: Parada en rueda libre.
- FSt: Parada rápida.
- tUn: Autoconfiguración en curso.

Nota: En caso de error, la visualización será intermitente.

Descripción de los diversos estados del Altivar 31/CANopen:

	Indicad or	Estado del indicador	Estado del Altivar 31
	RUN	•	El controlador CANopen se encuentra en estado "OFF".
		*	Altivar 31 se encuentra en estado "STOPPED".
RUN		*	Altivar 31 se encuentra en estado "PRE-OPERATIONAL".
CAN		•	Altivar 31 se encuentra en estado "OPERATIONAL".
	ERR	•	No se indica ningún error.
⊢ ERR	=RK	>	Alarma emitida por el controlador CANopen del Altivar 31 (por ejemplo: demasiados errores de transmisión)
		→ →	Error debido a la aparición de un evento "Node-guarding" o "Heartbeat"
		•	El controlador CANopen se encuentra en estado "OFF".

Descripción de los estados del indicador:

Estado del indicador	Descripción visual del estado del indicador
•	El indicador está apagado .
	El indicador muestra un PARPADEO SIMPLE.
>	(Encendido durante 200 ms y apagado durante 1 segundo)
	El indicador muestra un PARPADEO DOBLE.
→ →	(Encendido durante 200 ms, apagado durante 200 ms, encendido durante 200 ms y apagado durante 1 segundo.)
A .	El indicador PARPADEA a 2,5 Hz.
	(Encendido durante 200 ms y apagado durante 200 ms.)
•	El indicador está encendido .

Nota

En caso de que se utilice SIN MOTOR (modo de simulación), el variador de velocidad ATV31 mostrará un mensaje de error: "OPF". Modifique la configuración en el submenú "FLt/OPL" y pasar del valor "YES" al valor "OAC".

Ajustes de comunicación

El acceso a la configuración de las funciones de comunicación CANopen del ATV31 conectado a un controlador Twido se realiza desde un menú de comunicación "COM":

Parámetro	Valores posibles	Visualización en el terminal	Valor que hay que introducir en la aplicación
Dirección CANopen AdC0	De 0 a 15	De 1 a 16	1
Dirección CANopen bdC0	125 kBits/s	125,0	125 kBits/s
	250 kBits/s	250,0	
	500 kBits/s	500,0	

Presentación de la aplicación

4

Presentación

Vista general

Esta capítulo describe la ejecución de la solución para automatismos.

Contenido:

Este capítulo contiene los siguiente apartados:

Apartado	
Modo de funcionamiento	46
IHM	47
Grafcet de la aplicación ATV31	49

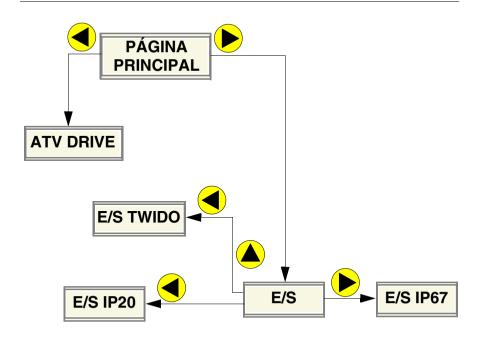
Modo de funcionamiento

Comandos

Una vez finalizada la instalación del sistema principal, éste puede controlarse mediante cuatro botones y otro botón con dos posiciones:

Entrada Símbolo correspondiente	Función	Descripción	Salida Símbolo correspondiente
%I0.8 PB_START_FORWARD	Arranque hacia adelante del motor	El correspondiente indicador se enciende cuando se alcanza la velocidad seleccionada.	%Q0.0 SD_RUN_FORW
%I0.9 PB_START_REVERSE	Arranque marcha atrás motor	El correspondiente indicador se enciende cuando se alcanza la velocidad seleccionada.	%Q0.1 SD_RUN_REV
%I0.10 PB_STOP	Detención del motor	El correspondiente indicador se enciende cuando se detiene el motor.	%Q0.2 SD_STOPPED
%I0.11 PB_SLOW_FAST	Velocidades del motor predeterminadas	Aplica una velocidad predeterminada cuando se produce un cambio de posición: • %I0.11 está en 0: 3.300 rev./min • %I0.11 está en 1: 88 rev./min	No hay salida correspondiente a la entrada
%I0.13 RESET_ERROR	Confirmación de un error ATV31	Reinicialización de un error (la causa del error debe eliminarse):	No hay salida correspondiente a la entrada

Nota: En el ejemplo de la aplicación, es obligatorio pulsar el botón pulsador vinculado a %10.10 (detención del motor) para poder cambiar a continuación el sentido de la rotación del motor.


Nota: En el ejemplo del programa, la velocidad configurada manualmente con el XBTN no queda memorizada tras la parada del motor. La velocidad de 3.300 rev./ min depende de la configuración del variador de velocidad.

ІНМ

Página principal

Organigrama de las páginas

Nota: Pulse la tecla (ESC) para volver a la página anterior.

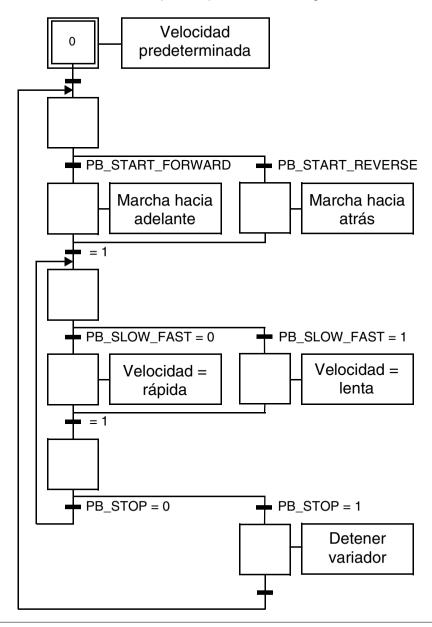
Página "ATV DRIVF"

La página "ATV DRIVE" muestra la consigna de velocidad enviada a ATV31 por el controlador Twido.

Para modificar la velocidad, lleve a cabo el método siguiente:

Paso	Acción
1	Pulsar la tecla MOD .
2	Utilizar la flechas y para modificar la velocidad (escritura
	inmediata).
3	Pulsar la tecla para validar.

Página "I/O"



La pantalla "I/O" proporciona acceso a tres pantallas que muestran el estado de los siguientes elementos:

- E/S del controlador Twido
- E/S del módulo de E/S Advantys OTB (véase Adición de un módulo de E/S Advantys OTB, p. 77)
- E/S de la caja de conexiones de E/S Advantys FTB (véase Adición de una caja de conexiones de E/S Advantys FTB, p. 103)

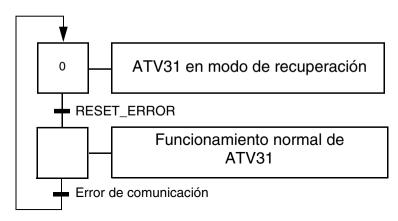

Grafcet de la aplicación ATV31

Gráfico simplificado de funcionamiento de ATV31 El funcionamiento de ATV31 puede representarse de la siguiente manera:

Gráfico Error de comunicación

Gráfico de error de comunicación para ATV31:

Nota: En caso de error de comunicación, el estado del motor depende de la configuración de ATV31 (modos de retorno).

Adición de un servovariador Lexium 05

Presentación

Vista general

Esta sección del documento presenta la evolución posible del sistema principal, es decir, la adición de un servovariador Lexium 05.

Archivos de aplicación

En el CD-ROM BUNDLE (DIA3CD3050101F), se pueden encontrar los archivos correspondientes a esta configuración en el directorio "Applicative files\Sección_III" para la aplicación del controlador Twido.

Contenido

Esta parte contiene los siguientes capítulos:

Capítulo	Nombre del capítulo	Página
5	Instalación del hardware del servovariador Lexium 05	53
6	Instalación del software del servovariador Lexium 05	59
7	Presentación de la aplicación Lexium 05	73

Instalación del hardware del servoyariador Lexium 05

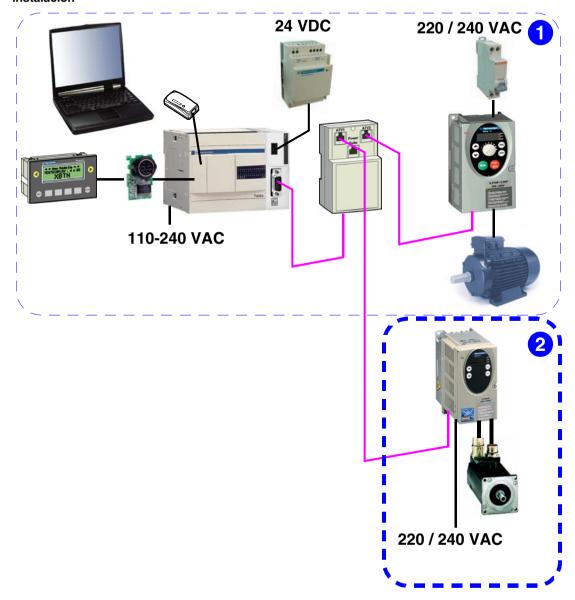
5

Presentación

Vista general

Este capítulo describe la instalación del hardware de un servovariador Lexium 05 agregado al sistema principal.

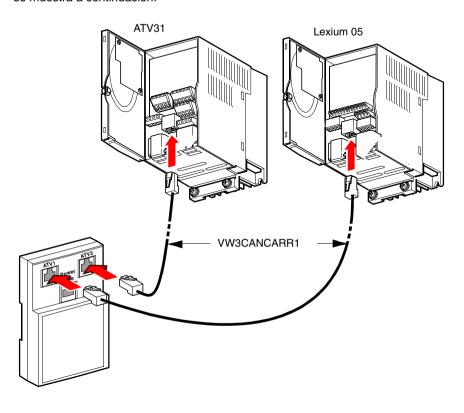
Contenido:


Este capítulo contiene los siguiente apartados:

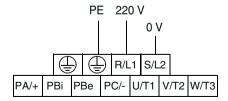
Apartado	Página
Cableado del servovariador Lexium 05	54
Cableado de la red CANopen	55
Alimentación	56

Cableado del servovariador Lexium 05

Esquema de la instalación


Esta parte del documento trata del montaje siguiente:

Cableado de la red CANopen

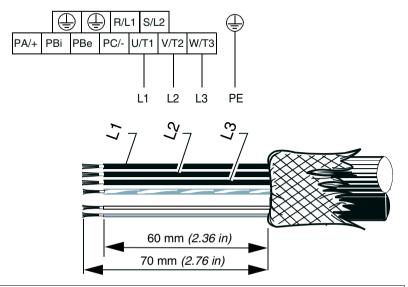

Cableado Lexium 05-TAP

Para conectar el Lexium 05 al TAP, utilice un cable de tipo RJ45–RJ45 tal y como se muestra a continuación:

Alimentación

Potencia de alimentación del Lexium 05 Alimentación del LXM 05AD10M2:

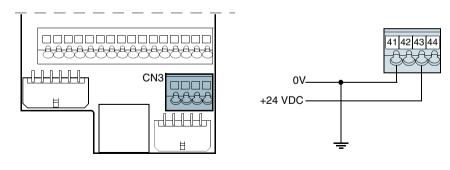
PELIGRO

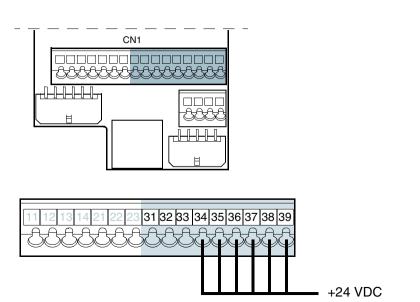

RIESGOS DE DESCARGA ELECTRICA.

Para alimentar el servovariador Lexium 05 es necesario seguir las recomendaciones disponibles en la guía de instalación cuya referencia es 0198441113233.

Si no se siguen estas instrucciones provocará lesiones graves o incluso la muerte.

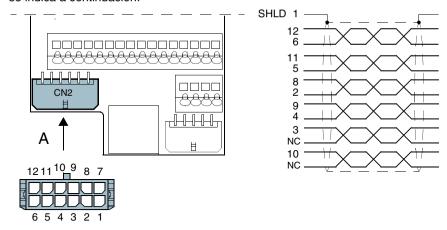
Alimentación del servomotor BSH


Conectar el servomotor BSH 0551T11A2A al Lexium 05 mediante el cable VW3M5101R50:


Nota: Se escribe L1, L2 y L3 en cada uno de los tres hilos negros.

Alimentación del comando de Lexium 05

Esquema del cableado de alimentación del comando de Lexium 05:



Cableado de las E/S digitales de Lexium 05

Comando del servomotor

Conectar el servomotor BSH al Lexium 05 mediante el cable VW3M8101R50 como se indica a continuación:

Pin	Señal	Color	Par	Pin	Significado	E/S
CN2				motor		
1	SHLD				Hilo de señalización del blindaje	
12	SIN	Blanco	1	8	Señal seno	
6	REFSIN	Marrón	1	4	Referencia para la señal seno, 2,5 V	
11	cos	Verde	2	9	Señal coseno	Е
5	REFCOS	Amarillo	2	5	Referencia para la señal coseno, 2,5 V	
8	Data	Gris	3	6	Datos de recepción, datos transmitidos	
2	/Data	Rosa	3	7	Datos de recepción, datos transmitidos, invertidos	
10	ENC_0V	Azul	4	11	Potencial de referencia del codificador (0,5 mm)	S
		Rojo	4		Libre (0,5 mm)	
3	T_MOT_0V	Negro	5	1	Potencial de referencia hacia T_MOT	
		Violeta	5		Libre	
9	T_MOT	Gris/Rosa	6	2	Sensor de temperatura CTP	
4	ENC+10V_OUT	Rojo/Azul	6	10	Alimentación de 10 V CC para codificador, máx. S 150 mA	
7	N.C.				Libre	

Instalación del software del servovariador Lexium 05

6

Presentación

Vista general

Este capítulo describe la instalación del software de un servovariador Lexium 05 agregado al sistema principal.

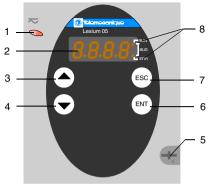
Contenido:

Este capítulo contiene los siguiente apartados:

Apartado	Página
Configuración de la comunicación del Lexium 05	60
Adición de un Lexium 05 a la aplicación del controlador Twido	62

Configuración de la comunicación del Lexium 05

Principio


Los productos del sistema se deben configurar en función de la aplicación del controlador Twido del modo siguiente:

Dirección 1: ATV31Dirección 10: Lexium 05

Velocidad de transmisión: 125 kbits/s

Descripción

Panel frontal del servovariador Lexium 05:

No.	Descripción		
1	El indicador rojo encendido indica que el bus continuo está conectado.		
2	Módulo de visualización de "siete segmentos" con cuatro dígitos.		
3	Flecha hacia arriba: • Volver al menú o al parámetro anterior. • Aumentar el valor que se muestra.		
4	Flecha hacia abajo: • Acceder al menú o al parámetro siguiente. • Reducir el valor que se muestra.		
5	Para bloquear/desbloquear la parte frontal del variador de velocidad, es necesario utilizar un destornillador plano o de estrella.		
6	INT: Activar un menú o un parámetro. Memorizar los valores mostrados en EEPROM.		
7	ESC: Salir de un menú o un parámetro. Volver al último valor memorizado.		
8	Estos dos indicadores señalan el estado de las comunicaciones ("RUN") y la presencia de un posible fallo ("ERR") en el bus CANopen.		

Método

Configuración de los parámetros de comunicación del Lexium 05:

Paso	Acción
1	Pulsar la tecla "INT" para acceder al menú de configuración.
2	Utilizar las teclas de flechas para seleccionar el menú de comunicación "COM" y validar con la tecla "INT".
3	Utilizar las teclas de flechas para seleccionar el menú "CoAd" y validar con la tecla "INT". Introducir el valor "10" (dirección del bus CANopen). Validar con la tecla "INT" y salir del menú con la tecla "ESC".
4	Utilizar las teclas de flechas para seleccionar el menú "Cobd" y validar con la tecla "INT". Introducir el valor "125" (velocidad de transmisión del bus CANopen). Validar con la tecla "INT" y salir del menú con la tecla "ESC".
5	Salir del menú de configuración pulsando varias veces la tecla "ESC".

Nota: La configuración sólo se puede modificar si el motor está detenido y si el servovariador está bloqueado (tapa cerrada). Cualquier cambio que se haga sólo surtirá efecto después de la aplicación de un ciclo "desconectado - conectado" del servovariador.

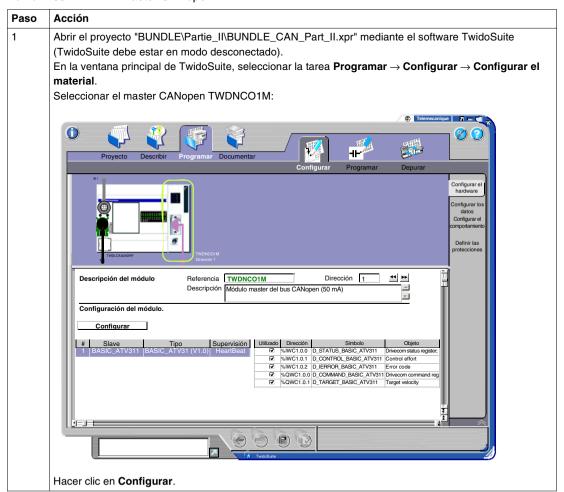
Si se desea más información, véase el documento con referencia 0198441113233.

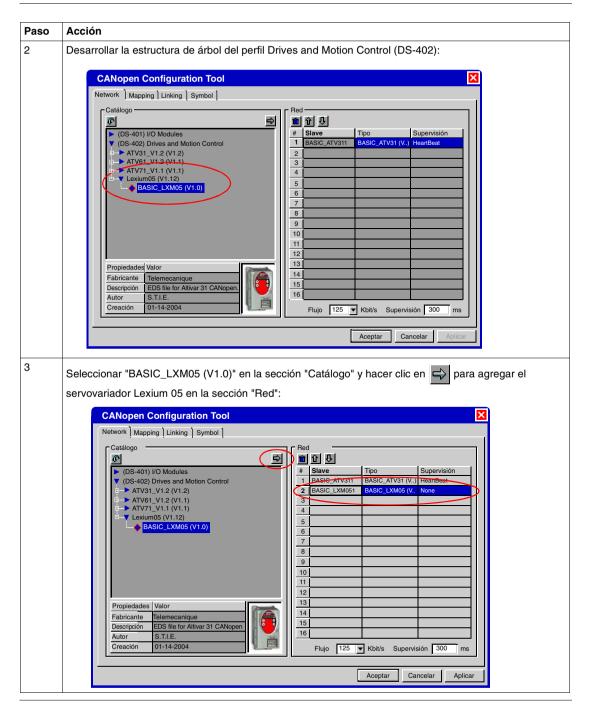
Ajustes de comunicación

El acceso a la configuración de las funciones de comunicación CANopen del Lexium 05 conectado a un controlador Twido se realiza desde un menú de comunicación "COM":

Parámetro	Posibles valores del Lexium	Visualización en el terminal del Lexium	Valor que hay que introducir en la aplicación
Dirección CANopen CoAd	De 1 a 127	De 1 a 127	10
Dirección CANopen Cobd	125 kBits/s	125,0	125 kBits/s
	250 kBits/s	250,0	
	500 kBits/s	500,0	

Nota: La dirección de red predeterminada del Lexium es 127. Twido sólo autoriza las direcciones de la 1 a la 16.

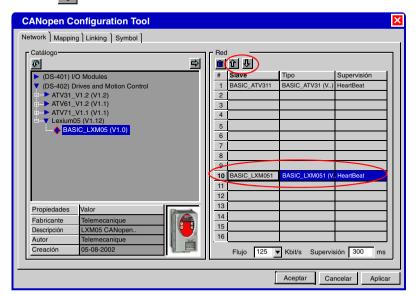

1606369_04 07/2007


Adición de un Lexium 05 a la aplicación del controlador Twido

Principio El objetivo es modificar la aplicación existente para poder controlar el servovariador

Lexium 05

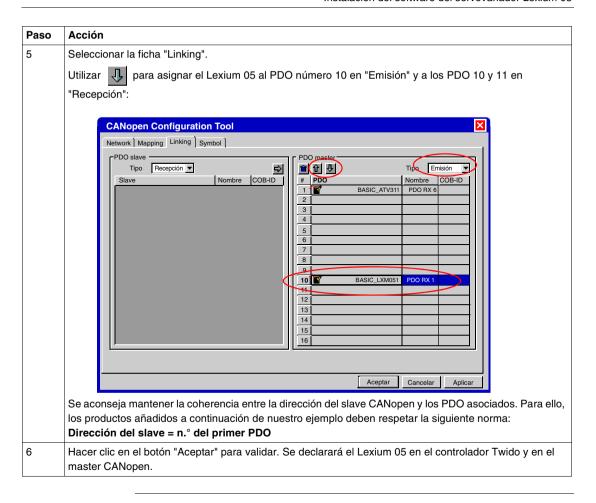
Declaración del Lexium 05 El método siguiente permite declarar el Lexium 05 en el controlador Twido y en el master CANopen.



Paso Acción

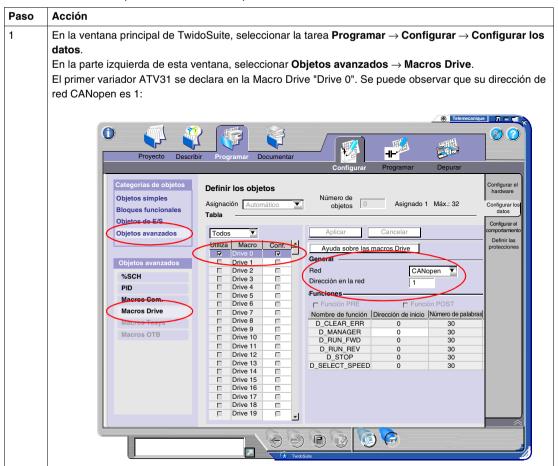
4 Para conseguir una mejor visibilidad, la dirección de red del servovariador será la dirección 10.

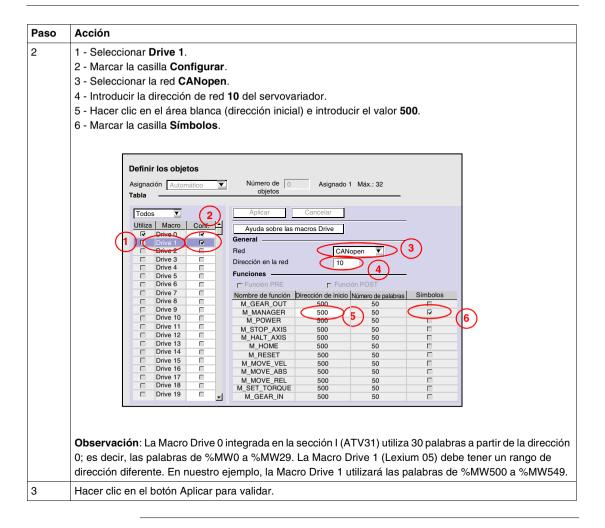
Hacer clic en para especificar el nuevo variador en la dirección de red 10:



Observación importante: Cuando el tipo de supervisión permanece en "None", el motor sigue girando incluso si se interrumpe la comunicación entre el bus CANopen y el Lexium 05. Cambiar el valor en Heartbeat.

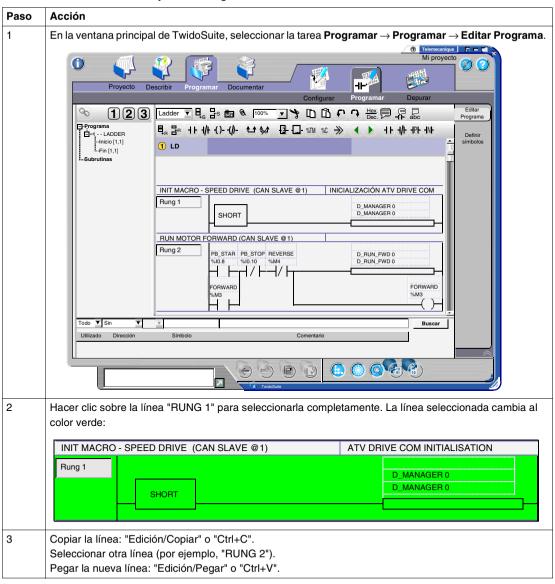
La gestión del modo de error es la siguiente:

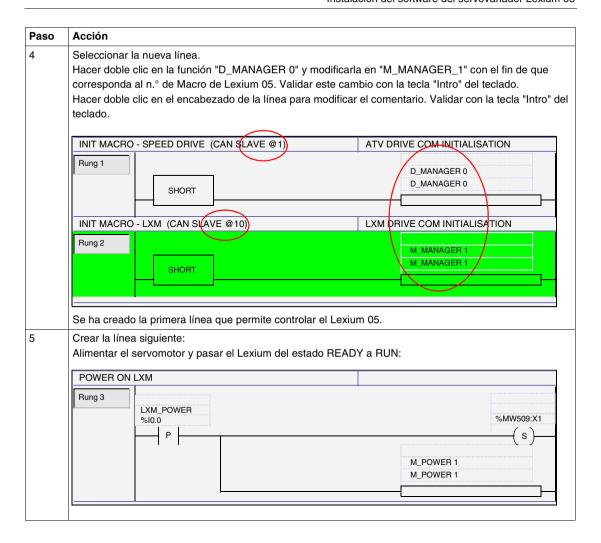

- Nodequarding: El master controla al slave.
- Heartbeat: El slave controla al master. Si se desconecta el cable RJ45 o el SUB-D 9 de TWIDO, el servovariador se para.
- None: No hay vigilancia, aunque se desconecte uno de los cables, el servomotor sigue en funcionamiento.

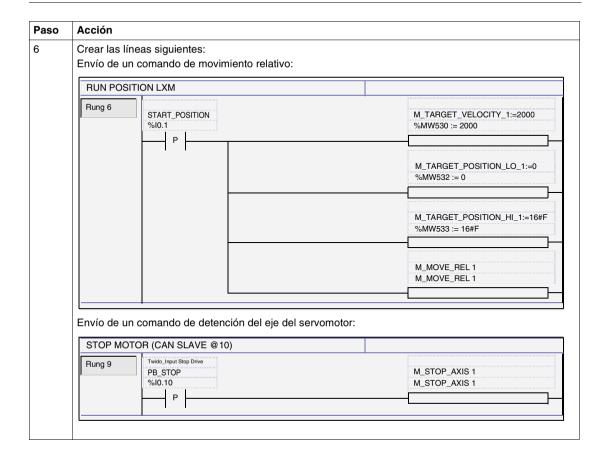

1606369_04 07/2007

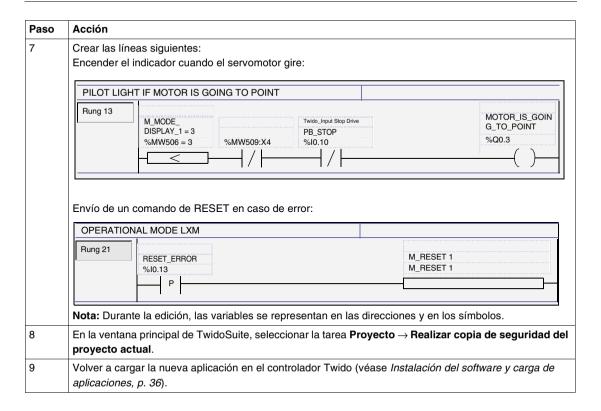
Macro Drive del

El método siguiente permite configurar el Lexium 05 en la Macro Drive de la aplicación con el fin de poder controlarlo.




1606369 04 07/2007


Programación


El método siguiente permite modificar la aplicación para controlar el Lexium 05.

La Macro Drive permite al usuario controlar el servovariador de forma transparente con la ayuda de un gráfico de estado Drive com.

Nota: El comando de paso del estado READY a RUN se programa de forma irreversible: una vez en el modo Power ON, ya no es posible volver a Power OFF (no existe el comando de RAZ del bit asociado).

Nota: Para obtener más detalles sobre las Macro DRIVE utilizadas, véase la ayuda en línea del software TwidoSuite.

Presentación de la aplicación Lexium 05

7

Presentación

Vista general

Este capítulo describe el funcionamiento del Lexium 05.

Contenido:

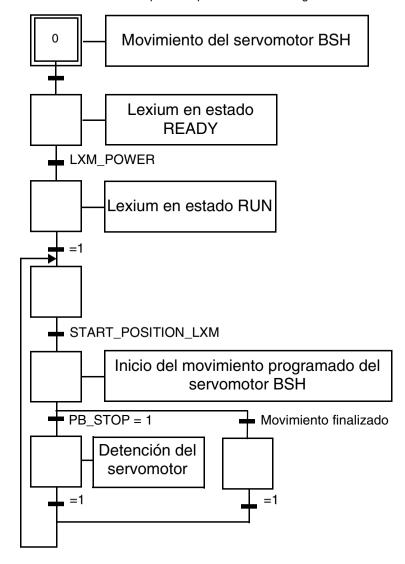
Este capítulo contiene los siguiente apartados:

Apartado	Página
Modo de funcionamiento	74
Grafcet de la aplicación Lexium 05	75

Modo de funcionamiento

Comandos

Una vez finalizada la instalación del sistema, éste puede controlarse mediante seis botones y otro botón con dos posiciones:


Entrada Símbolo correspondiente	Función	Descripción	Salida Símbolo correspondiente
%I0.0 LXM_POWER	Paso de Lexium 05 del estado READY al estado RUN	Lexium 05 pasa del estado READY al estado RUN.	No hay salida correspondiente a la entrada.
%I0.1 START_POSITION_LXM	Arranque del servomotor	El correspondiente indicador se enciende cuando el servomotor está en movimiento.	%Q0.3 MOTOR_IS_GOING_TO _POINT
%I0.8 PB_START_FORWARD	Arranque hacia adelante del motor	El correspondiente indicador se enciende cuando se alcanza la velocidad seleccionada.	%Q0.0 SD_RUN_FORW
%I0.9 PB_START_REVERSE	Arranque marcha atrás motor	El correspondiente indicador se enciende cuando se alcanza la velocidad seleccionada.	%Q0.1 SD_RUN_REV
%I0.10 PB_STOP	Detención del motor y del servomotor	El correspondiente indicador se enciende cuando se detiene el motor.	%Q0.2 SD_STOPPED
%l0.11 PB_SLOW_FAST	Velocidades del motor predeterminadas	Aplica una velocidad predeterminada cuando se produce un cambio de posición: • %I0.11 está en 0: 3.300 rev./min • %I0.11 está en 1: 88 rev./min	No hay salida correspondiente a la entrada
%I0.13 RESET_ERROR	Confirmación de un error ATV31 y/ o Lexium 05	Reinicialización de un error (la causa del error debe eliminarse):	No hay salida correspondiente a la entrada

Nota: En el ejemplo de la aplicación, es obligatorio pulsar el botón pulsador vinculado a %I0.10 (detención del motor) para poder cambiar a continuación el sentido de la rotación del motor.

Nota: En el ejemplo del programa, la velocidad configurada manualmente con el XBTN no queda memorizada tras la parada del motor. La velocidad de 3.300 rev./ min depende de la configuración del variador de velocidad.

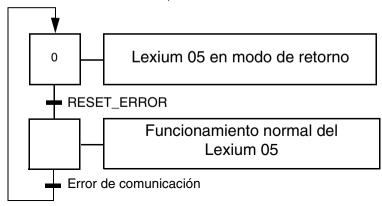

Grafcet de la aplicación Lexium 05

Gráfico simplificado de funcionamiento del Lexium 05 El funcionamiento del Lexium 05 puede representarse de la siguiente manera:

Gráfico Error de comunicación

Gráfico de error de comunicación para el Lexium 05:

Nota: En caso de error de comunicación, el estado del servomotor BSH depende de la configuración del Lexium 05 (modos de retorno)

Adición de un módulo de E/S Advantys OTB

Presentación

Vista general

Esta parte del documento presenta la evolución posible del sistema principal, es decir, la adición de un módulo de E/S Advantys OTB.

Nota: Si no se utilizan variadores en la aplicación, se deben eliminar los elementos asociados en la configuración CANopen, así como en el programa de la aplicación del controlador Twido

Principio de aplicación

El ejemplo siguiente permite controlar las salidas del módulo de E/S Advantys OTB de forma idéntica a las del controlador Twido.

Archivos

En el CD-ROM BUNDLE (DIA3CD3050101F), se pueden encontrar los archivos correspondientes a esta configuración en el directorio "Applicative files\Partie_IV" para la aplicación del controlador Twido.

Contenido

Esta parte contiene los siguientes capítulos:

Capítulo	Nombre del capítulo	Página
8	Instalación del hardware del módulo Advantys OTB	79
9	Instalación del software del módulo Advantys OTB	83
10	Adición de módulos de ampliación a Advantys OTB	95

Instalación del hardware del módulo Advantys OTB

8

Presentación

Vista general

Este capítulo describe la instalación del hardware del módulo de E/S Advantys OTB agregado al sistema principal.

Contenido:

Este capítulo contiene los siguiente apartados:

Apartado	Página
Cableado de Advantys OTB	80
Cableado de la red CANopen	81
Cableado de las E/S de Advantys OTB	82
Fuente de alimentación	82

Cableado de Advantys OTB

Esquema de la instalación

Esta parte del documento trata del montaje siguiente:

Cableado de la red CANopen

Principio

El objetivo es conectar Advantys OTB al controlador Twido mediante un cable preparado previamente.

Preparación del cable OTB-Twido

Empalmar un conector SUB-D 9 TSXCANKCDF90T al cable TSXCANCA50 (véase *Preparación del cable TAP-Twido, p. 27*).

Conexión del cable al bloque de terminal del conector SUB-D 9:

No.	Señal	Cable	Conector	Color del hilo
1	CAN_H	OTB/Twido	CH1	Blanco
2	CAN_L	OTB/Twido	CL1	Azul
3	GND	OTB/Twido	CG1	Negro
4	V+	OTB/Twido	V+1	Rojo

Nota: Alternar la terminación de fin de línea del conector por el lado Advantys OTB en "ON".

Cableado del lado OTB

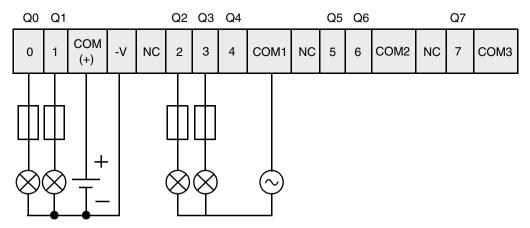
El extremo SUB-D 9 del cable preparado anteriormente se conecta a Advantys OTB.

Cableado del lado Twido

El extremo "hilos desnudos" del cable preparado anteriormente se empalma al conector SUB-D 9 conectado al controlador Twido. Este montaje se realiza de la misma manera que antes mediante la conexión siguiente:

No.	Señal	Cable	Conector	Color del hilo
5	CAN_H	OTB/Twido	CH2	Blanco
6	CAN_L	OTB/Twido	CL2	Azul
7	GND	OTB/Twido	CG2	Negro
8	V+	OTB/Twido	V+2	Rojo

Nota: Alternar la terminación de fin de línea del conector SUB-D 9 por el lado del controlador Twido en "OFF".


Cableado de las E/S de Advantys OTB

Cableado de las entradas del OTB

Las entradas del módulo de E/S Advantys OTB no se utilizan en este ejemplo. Si se desea más información, véase la guía con la referencia 1606384.

Cableado de las salidas del OTB

Esquema del cableado de las salidas:

Información adicional sobre las salidas:

Salida	Indicación visualizada	Información
%QWC1.1.0:X0	Motor en rotación hacia adelante	Salida de lógica positiva.
%QWC1.1.0:X1	Motor en rotación hacia atrás	Salida de lógica positiva.
%QWC1.1.0:X2	Motor detenido	Salidas de relé
%QWC1.1.0:X3	Servomotor en rotación	Salidas de relé

Fuente de alimentación

Alimentación de Advantys OTB

Para alimentar el módulo de E/S Advantys OTB es necesario seguir las recomendaciones disponibles en la quía con la referencia 1606384.

Instalación del software del módulo Advantys OTB

9

Presentación

Vista general

Este capítulo describe la instalación del software del módulo de E/S Advantys OTB agregado al sistema principal.

Contenido:

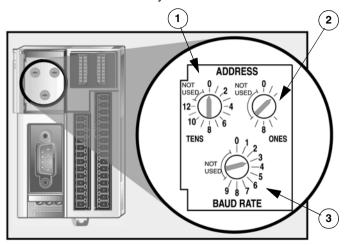
Este capítulo contiene los siguiente apartados:

Apartado	Página
Configuración de la comunicación de Advantys OTB	84
Adición de un módulo Advantys OTB a la aplicación del controlador Twido	86

Configuración de la comunicación de Advantys OTB

Principio

Los productos del sistema se deben configurar en función de la aplicación del controlador Twido del modo siguiente:


Dirección 1: ATV31

Dirección 2: Advantys OTBDirección 10: Lexium 05

Velocidad de transmisión: 125 kbits/s.

Descripción

Panel central del módulo de E/S Advantys OTB:

No.	Función
1	Rueda codificadora de dirección de red (Node-ID x 10)
2	Rueda codificadora de dirección de red (Node-ID x 1)
3	Rueda codificadora de velocidad de transmisión

Método

Configuración de los parámetros de comunicación de Advantys OTB:

Paso	Acción
1	Desconectar todas las fuentes de alimentación de Advantys OTB.
2	Ajustar la rueda codificadora inferior 3 en la posición correspondiente a la velocidad de transmisión deseada. En el ejemplo: la rueda codificadora 3 está en la posición 3 (125 Kbits/s).
3	Ajustar las ruedas codificadoras 1 y 2 en la posición correspondiente a la dirección de red deseada. En el ejemplo, la dirección es 2 (10x0 + 1x2): Rueda codificadora 1: posición 0 (decenas) Rueda codificadora 2: posición 2 (unidades)
4	Volver a conectar el OTB para aplicar la nueva configuración.

Nota: Una vez realizados todos los cambios de las características de uno de los constituyentes de la red CANopen, se debe reiniciar el bus mediante la aplicación de un ciclo "desconectado - conectado" del controlador Twido.

Tabla de selección de la velocidad de transmisión

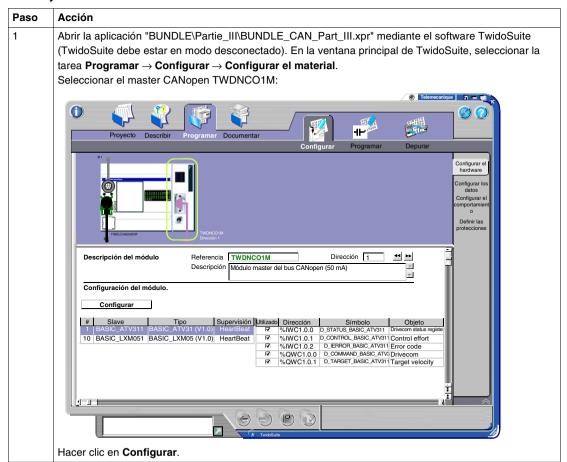
Los flujos posibles son los siguientes:

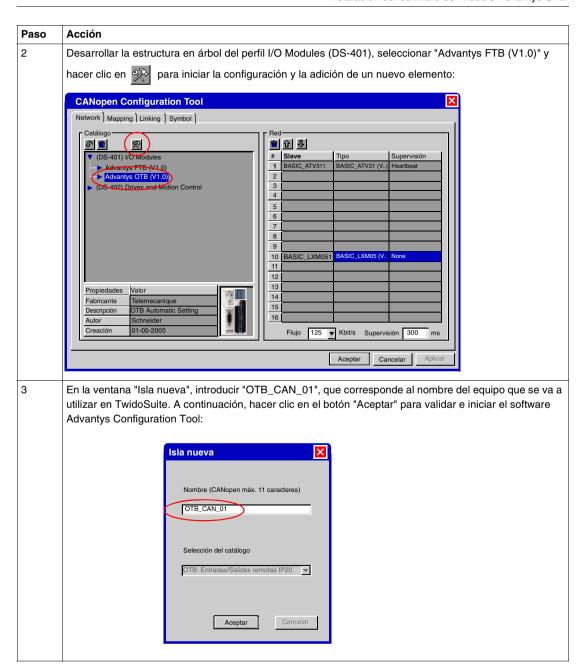
Posición (rueda codificadora inferior)	Velocidad de transmisión en baudios
0	10 kBits/s
1	20 kBits/s
2	50 kBits/s
3	125 kb/s
4	250 kb/s
5	500 kb/s
6	800 kBits/s
7	1 Mbits/s
8	Automático
9	Velocidad predeterminada (250 kbits/s)

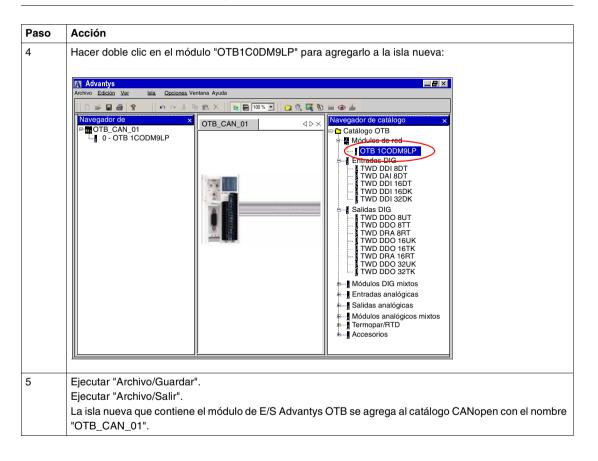
Nota: El valor 8 permite una búsqueda automática de la velocidad de transmisión.en el bus. La búsqueda comienza por el valor de 1Mbits/s y disminuye por intentos sucesivos hasta que se establece la comunicación en el bus. La búsqueda automática sólo funciona en una red CANopen funcional.

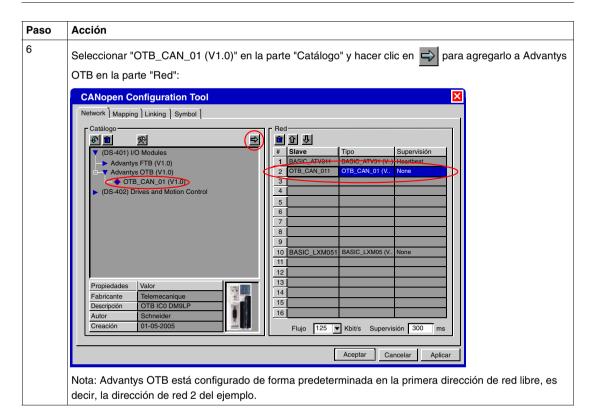
Adición de un módulo Advantys OTB a la aplicación del controlador Twido

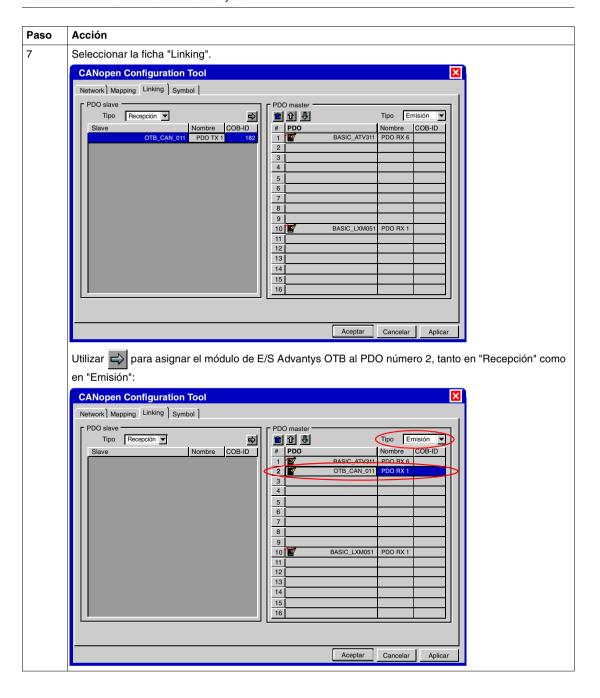
Principio

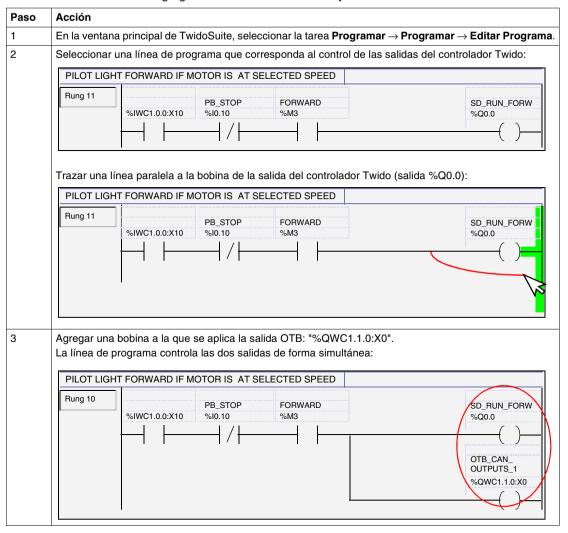

El objetivo es modificar la aplicación existente para poder gestionar las E/S del módulo Advantys OTB.

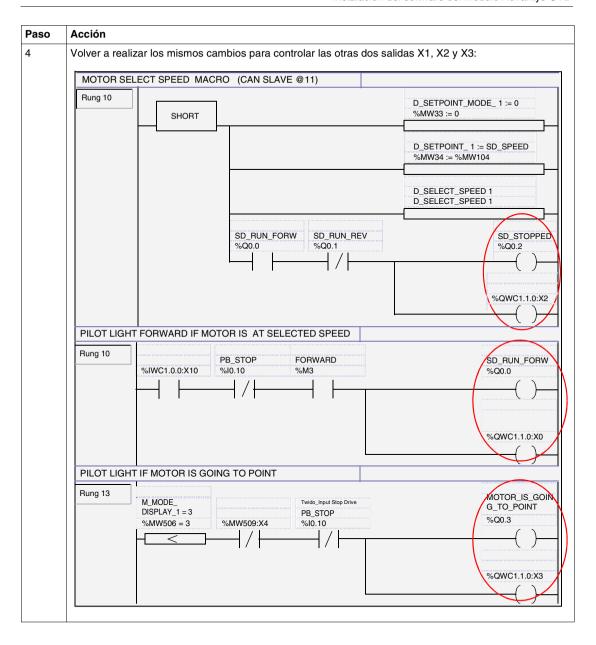

Instalación del software

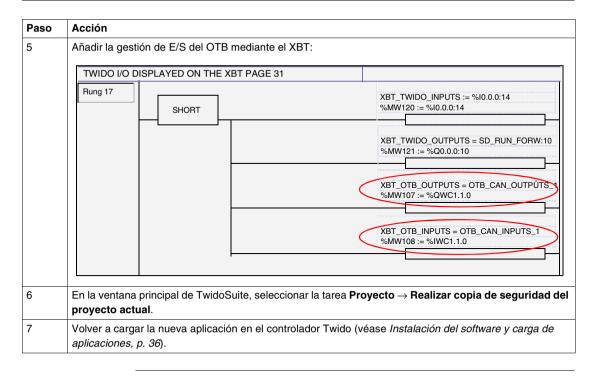

Previamente, es necesario instalar el software ADVANTYS CONFIGURATION TOOL que permite configurar los módulos y las cajas de conexiones de E/S Advantys OTB v FTB.


Declaración del módulo Advantvs OTB


El método siguiente permite declarar el módulo de E/S Advantys OTB en la aplicación del controlador Twido.






Programación

El método siguiente permite modificar la aplicación para gestionar las salidas del módulo de E/S Advantys OTB de forma idéntica a las del controlador Twido.

El método consiste en modificar las líneas que gestionan las salidas del controlador Twido agregándole las salidas de Advantys OTB.

Adición de módulos de ampliación a Advantys OTB

Principio

Vista general

Este capítulo describe la adición de módulos de ampliación de E/S a Advantys OTB. Estos módulos de ampliación permiten gestionar las E/S digitales y analógicas.

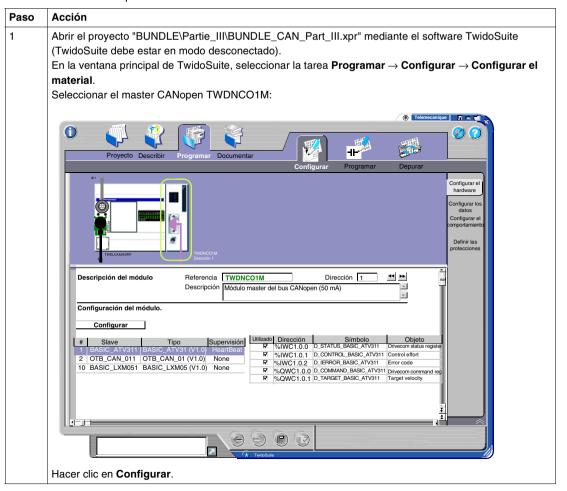
Contenido:

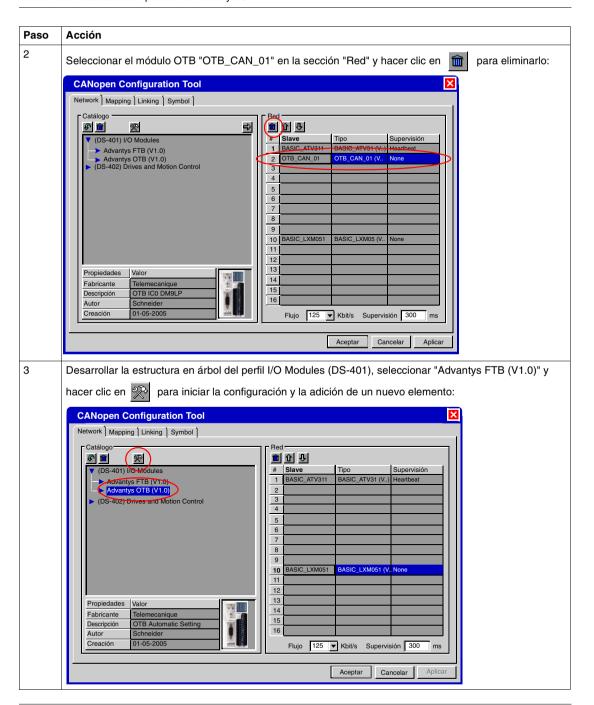
Este capítulo contiene los siguiente apartados:

Apartado	Página
Instalación de los módulos de ampliación	96
Adición de módulos de ampliación a Advantys OTB en la aplicación del controlador Twido	96

Instalación de los módulos de ampliación

Principio Consultar la guía con la referencia 1606384.


Adición de módulos de ampliación a Advantys OTB en la aplicación del controlador Twido

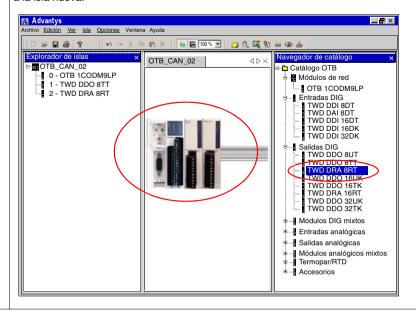

Principio El obietivo es modificar la aplicación existente para poder gestionar las E/S del

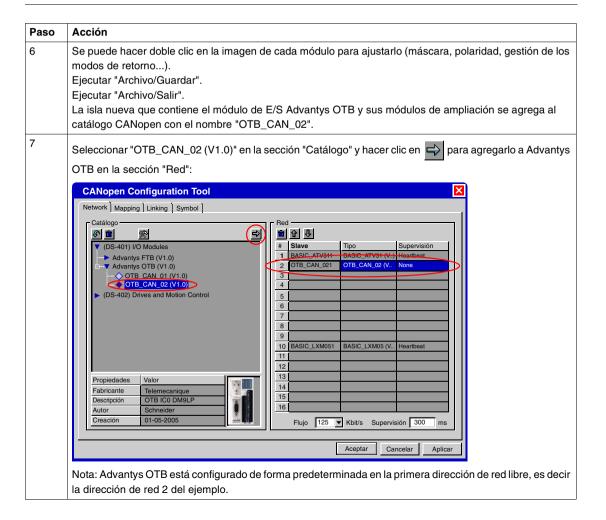
módulo de E/S Advantys OTB asociado a dos módulos de ampliación.

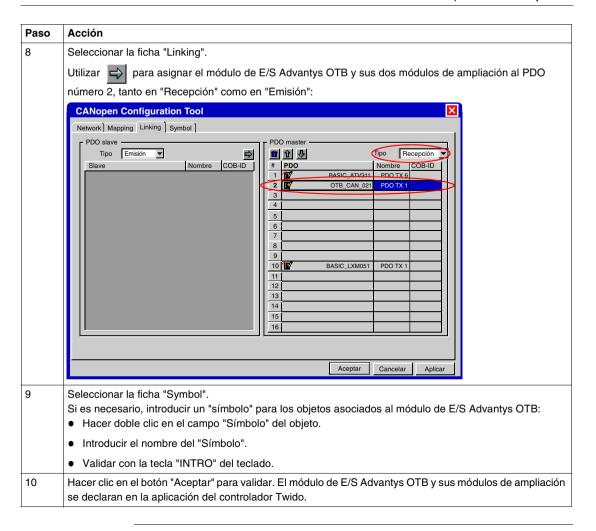
Declaración del módulo OTB

El método siguiente permite declarar el módulo de E/S Advantys OTB en la aplicación del controlador Twido.

Paso Acción

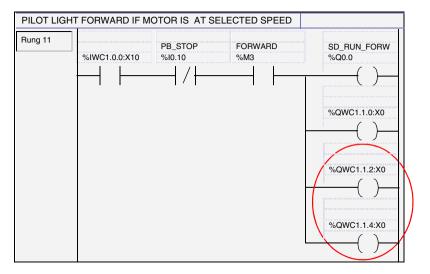

4


En la ventana "Isla nueva", introducir "OTB_CAN_02", que corresponde al nombre del equipo que se va a utilizar en TwidoSuite. A continuación, hacer clic en el botón "Aceptar" para validar e iniciar el software Advantvs Configuration Tool:



Hacer doble clic en el módulo de E/S "OTB1C0DM9LP" para agregarlo a la isla nueva:

Volver a hacer lo mismo con los módulos de ampliación "TWDDDO8TT" y "TWDDRA8RT" para agregarlos
a la isla nueva:


Programación

El principio se basa en modificar la aplicación para gestionar las salidas del módulo de E/S Advantys OTB y de sus módulos de ampliación de forma idéntica a las del controlador Twido.

El método que hay que aplicar es idéntico al método descrito para la adición de un Advantys OTB mediante la integración en la aplicación de las nuevas salidas de la isla nueva:

- De %QWC1.1.0:X0 a X7 para el módulo Advantys OTB "OTB1C0DEM9LP".
- De %QWC1.1.2:X0 a X7 para el módulo de ampliación "TWDDO8TT".
- De %QWC1.1.4:X0 a X7 para el módulo de ampliación "TWDRA8RT".

A continuación, se muestra para el ejemplo la línea de aplicación modificada que gestiona los indicadores "HACIA ADELANTE":

En la ventana principal de TwidoSuite, seleccione la tarea $Proyecto \rightarrow Realizar$ copia de seguridad del proyecto actual.

Vuelva a cargar la nueva aplicación en el controlador Twido (véase *Instalación del software y carga de aplicaciones, p. 36*).

Adición de una caja de conexiones de E/S Advantys FTB

Presentación

Vista general

Esta parte del documento presenta la evolución posible del sistema principal, es decir, la adición de una caja de conexiones de E/S Advantys FTB.

Nota: Si no se utilizan variadores ni módulo de E/S Advantys OTB en la aplicación, elimine los elementos asociados en la configuración CANopen así como en el programa de la aplicación del controlador Twido.

Archivos de aplicación

En el CD-ROM BUNDLE (DIA3CD3050101F), se pueden encontrar los archivos correspondientes a esta configuración en el directorio "Applicative files\Sección_V" para la aplicación del controlador Twido.

Contenido

Esta parte contiene los siguientes capítulos:

Capítulo Nombre del capítulo		Página
11	Instalación del hardware del distribuidor Advantys FTB	105
12	Instalación del software del distribuidor Advantys FTB	109

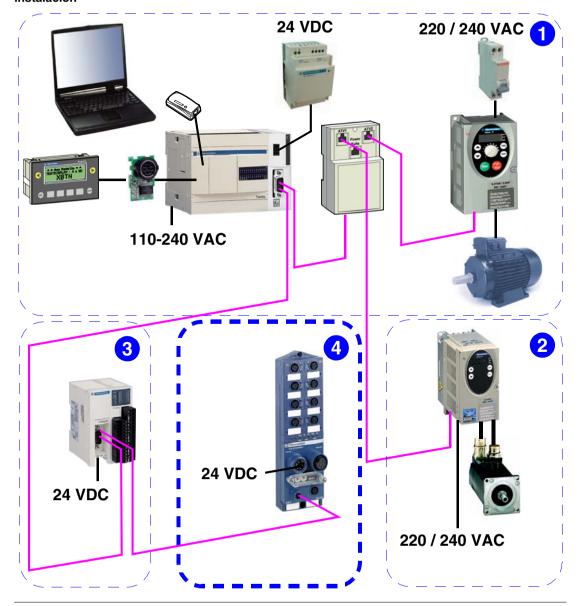
Instalación del hardware del distribuidor Advantys FTB

Presentación

Vista general

Este capítulo describe la instalación del hardware del distribuidor de E/S Advantys FTB agregado al sistema principal.

Contenido:


Este capítulo contiene los siguiente apartados:

Apartado	Página
Cableado de la caja de conexiones de E/S Advantys FTB	106
Cableado de la red CANopen	107
Fuente de alimentación	108

Cableado de la caja de conexiones de E/S Advantys FTB

Esquema de la instalación

Esta sección del documento trata del montaje siguiente:

Cableado de la red CANopen

Principio

El objetivo es conectar Advantys FTB a Advantys OTB mediante un cable.

Selección del cable

Para conectar Advantys FTB a Advantys OTB, seleccione uno de los cables siguientes:

Referencia	Longitud del cable (m)
FTXCN3230	3
FTXCN3250	5

Cableado del lado Advantys FTB

El extremo M12 del cable se conecta a Advantys FTB en la base "BUS IN".

Cableado del lado Advantys OTB

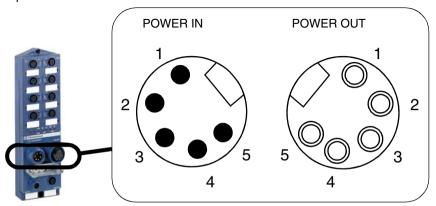
El extremo "hilos desnudos" del cable se empalma al conector SUB-D 9 conectado a Advantys OTB (véase *Preparación del cable TAP-Twido, p. 27*).

Conexión del cable al bloque de terminal del conector SUB-D 9:

No.	Señal	Cable	Conector	Color del hilo
5	CAN_H	FTB/OTB	CH2	Blanco
6	CAN_L	FTB/OTB	CL2	Azul
7	GND	FTB/OTB	CG2	Negro
8	V+	FTB/OTB	V+2	Rojo

Nota: Cambiar la terminación de fin de línea del conector SUB-D 9 del Advantys OTB a "OFF".

Conectar la terminación de fin de línea FTXCNTL12 a la base "BUS OUT" de Advantvs FTB.


Fuente de alimentación

Alimentación de Advantys FTB

Alimentar el distribuidor de E/S Advantys FTB mediante uno de los siguientes cables:

Número de serie	Longitud del cable (m)	
FTXDP2115	1,5	
FTXDP2130	3	
FTXDP2150	5	

Esquema del cableado:

Conexión:

Número PIN	Descripción	Color del hilo	Inscripción del cable
1	0 V	Negro	1
2	0 V	Negro	2
3	PE	Verde y amarillo	-
4	+24 V	Negro	3
5	+24 V	Negro	4

Instalación del software del distribuidor Advantys FTB

Presentación

Vista general

Este capítulo describe la instalación del software del distribuidor de E/S Advantys FTB agregado al sistema principal.

Contenido:

Este capítulo contiene los siguiente apartados:

Apartado	Página
Configuración de la comunicación de Advantys FTB	110
Adición de una caja de conexiones de E/S Advantys FTB en la aplicación del controlador Twido	112

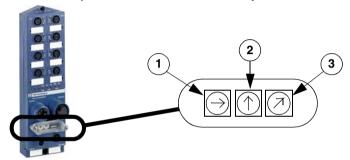
Configuración de la comunicación de Advantys FTB

Principio

Los productos del sistema se deben configurar en función de la aplicación del controlador Twido del modo siguiente:

Dirección 1: ATV31

• Dirección 2: Advantys OTB


• Dirección 3: Advantys FTB

• Dirección 10: Lexium 05

Velocidad de transmisión: 125 kbits/s

Descripción

Parte frontal de la caja de conexiones de E/S Advantys FTB:

Número	Función	
1	Rueda codificadora de velocidad de transmisión	
2	Rueda codificadora de dirección de red (Node-ID x 10)	
3	Rueda codificadora de dirección de red (Node-ID x 1)	

Método

Configuración de los parámetros de comunicación de Advantys FTB:

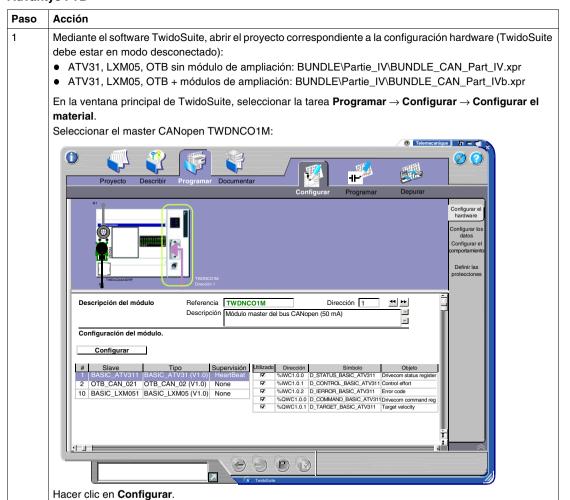
Paso	Acción	
1	Desconectar todas las fuentes de alimentación del elemento.	
2	Ajustar la rueda codificadora 1 en la posición correspondiente a la velocidad de transmisión deseada. En el ejemplo: la rueda codificadora 1 está en la posición 5 (125 Kbits/s).	
3	Ajustar las ruedas codificadoras 2 y 3 en la posición correspondiente a la dirección de red deseada. En el ejemplo, la dirección es 3 (10x0 + 1x3): Rueda codificadora 2: posición 0 (decenas) Rueda codificadora 3: posición 3 (unidades)	
4	Volver a conectar Advantys FTB para aplicar la nueva configuración.	

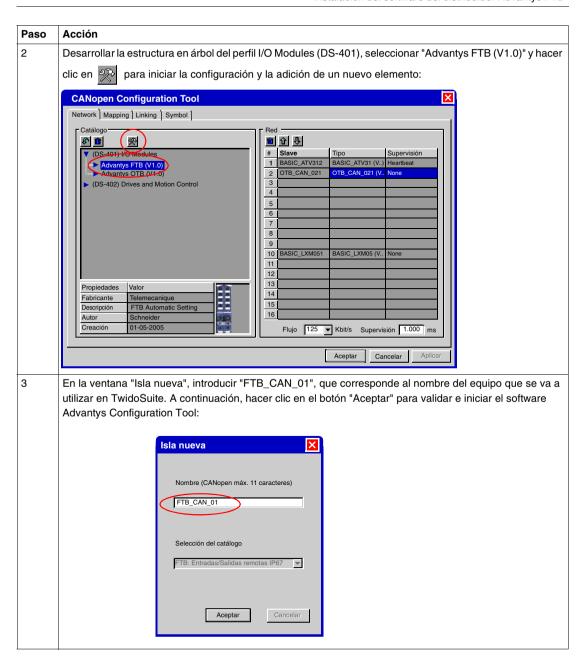
Configuración de la velocidad de transmisión:

El ajuste de la velocidad de transmisión se lleva a cabo con un conmutador rotativo. Los flujos posibles son los siguientes:

Posición del conmutador	Velocidad de transmisión
0	Automático
1	10 kbits/s
2	20 kbits/s
3	50 kbits/s
4	100 kbits/s
5	125 kb/s
6	250 kb/s
7	500 kb/s
8	800 kbits/s
9	1.000 kbits/s

1606369_04 07/2007 111

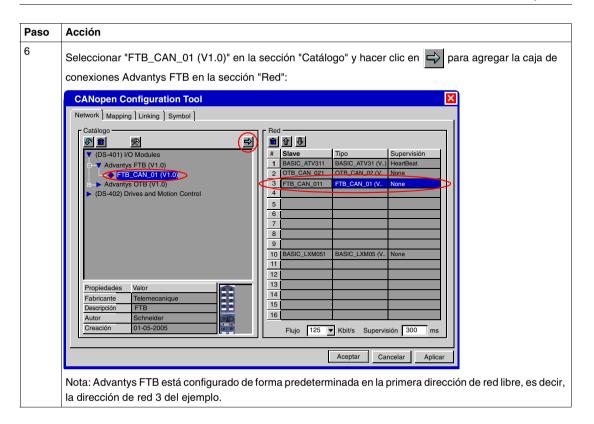

Adición de una caja de conexiones de E/S Advantys FTB en la aplicación del controlador Twido


Principio

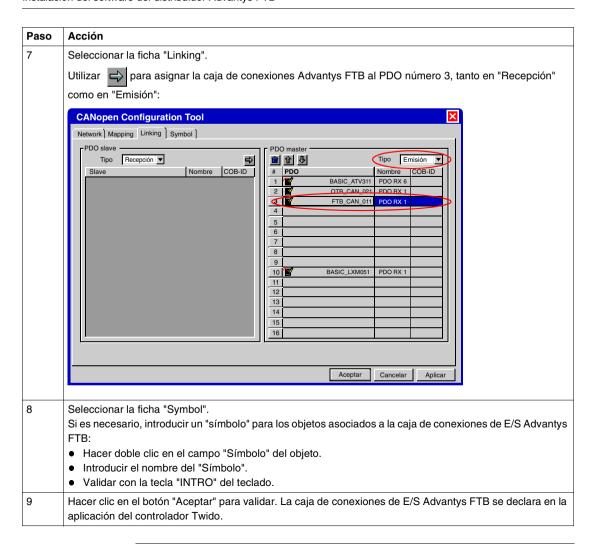
El objetivo es modificar la aplicación existente para poder gestionar las E/S de la caja de conexiones Advantys FTB.

Declaración de la caja de conexiones Advantys FTB

El método siguiente permite declarar la caja de conexiones de E/S Advantys FTB en la aplicación del controlador Twido.


Paso Acción 4 Hacer doble clic en la caia de conexiones de E/S Advantys FTB "FTB1CN08E08SP0" para agregarlo a la isla nueva: Advantys Archivo Edición Ver Isla Opciones Ventana Ayuda S B A 2 Explorador de islas Navegador de catálogo FTB CAN 01 $\triangleleft \triangleright \times$ FTB_CAN 01 ⊫-<u>a</u> Catálogo FTB 0 - FTB 1CN08E08SP0 Módulos de red FTB 1CN16EP0 FTB 1CN16FM0 FTB 1CN16CP0 FTB 1CN16CM0 FTB 1CN08E08SP0 B 1CN08E08CM

Se puede hacer doble clic en la imagen de la caja de conexiones para editar la configuración (función, máscara, polaridad, gestión de los modos de retorno...).


Ejecutar "Archivo/Guardar".

Ejecutar "Archivo/Salir".

La isla nueva que contiene la caja de conexiones de E/S Advantys FTB se agrega al catálogo CANopen con el nombre "FTB CAN 01".

1606369_04 07/2007 115

Programación

El principio se basa en la modificación de la aplicación para gestionar las E/S de la caja de conexiones de E/S Advantys FTB de forma idéntica a las del controlador Twido.

El método que hay que aplicar es idéntico al método descrito para la adición de un Advantys OTB mediante la integración en la aplicación de las nuevas E/S de la caja de conexiones Advantys FTB:

- De %IWC1.2.0:X0 a X7 para las entradas.
- De %QWC1.2.0:X0 a X7 para las salidas.

En la ventana principal de TwidoSuite, seleccione la tarea $Proyecto \rightarrow Realizar$ copia de seguridad del proyecto actual.

Vuelva a cargar la nueva aplicación en el controlador Twido (véase *Instalación del software v carga de aplicaciones, p. 36*).

Apéndices

Presentación

Lista de símbolos

Las páginas siguientes contienen la lista de símbolos de la aplicación descrita en este documento.

Contenido

Este anexo contiene los siguientes capítulos:

Capítulo	Nombre del capítulo	Página
Α	Lista de símbolos de la aplicación	121

Lista de símbolos de la aplicación

Lista de los símbolos de la aplicación

Lista de símbolos

En la ventana principal de TwidoSuite, seleccionar la tarea **Programar** \rightarrow **Programar** \rightarrow **Definir Símbolos**.

A continuación, se presenta la lista de símbolos de la aplicación descrita en la sección V del presente documento:

Símbolo	Dirección	Comentario
LXM_POWER	%10.0	
START_POSITION	%I0.1	
PB_START_FORWARD	%10.8	Twido_input: start drive Forward
PB_START_REVERSE	%10.9	Twido_Input: Start drive Reverse
PB_STOP	%I0.10	Twido_Input: Stop drive
PB_SLOW_FAST	%I0.11	Twido_Input: select speed drive SLOW or FAST
RESET_ERROR	%I0.13	
D_STATUS_BASIC_ATV311	%IWC1.0.0	
D_CONTROL_BASIC_ATV311	%IWC1.0.1	
D_IERROR_BASIC_ATV311	%IWC1.0.2	
OTB_CAN_INPUTS_1	%IWC1.1.0	
OTB_CAN_INPUTS_2	%IWC1.1.1	
FTB_CAN_INPUTS_1	%IWC1.2.0	
STATUS_PDO1_BASIC_LXM051	%IWCD1.9.0	
STATUS_PDO2_BASIC_LXM051	%IWCD1.9.2	
M_POSITION_BASIC_LXM051	%IWCD1.10.0	
M_VELOCITY_BASIC_LXM051	%IWCD1.10.2	
FORWARD	%M3	
REVERSE	%M4	
PB_12_RF	%M12	

Símbolo	Dirección	Comentario
D_STATE_0	%MW0	Altivar state
D_CANSTATE_0	%MW1	Altivar CANOpen state
D_ERROR_0	%MW2	Altivar error code
D_SETPOINT_MODE_0	%MW3	Altivar set-point mode
D_SETPOINT_0	%MW4	Altivar set-point
D_SELECT_SPEED_VAL_0	%MW17	Control effort on the Altivar
D_MODBUS_INIT_PHASE_0	%MW28	Modbus initialisation phase running Bit0
SD_SPEED	%MW104	Speed entered with the XBT or selected by OTB input %IWC1.1.1:X3
XBT_FTB_OUTPUTS	%MW105	Used to display information on the XBT
XBT_FTB_INPUTS	%MW106	Used to display information on the XBT
XBT_OTB_OUTPUTS	%MW107	Used to display information on the XBT
XBT_OTB_INPUTS	%MW108	Used to display information on the XBT
XBT_DIALOG_TABLE_ALARM	%MW110	Used to manage Alarm display on the XBTN400
XBT_TWIDO_INPUTS	%MW120	
XBT_TWIDO_OUTPUTS	%MW121	
CAN_SLAVE_STATUS_2_1	%MW200	Status for slave 2 (MSB) and 1 (LSB) / system words %SW20
CAN_SLAVE_STATUS_4_3	%MW201	Status for slave 4 (MSB) and 3 (LSB) / system words %SW21
CAN_OPEN_SLAVE_STATUS_XBT_1	%MW202	CAN Status for slave 1
CAN_OPEN_SLAVE_STATUS_XBT_2	%MW203	CAN Status for slave 2
CAN_OPEN_SLAVE_STATUS_XBT_3	%MW204	CAN Status for slave 3
M_AXIS_NB_1	%MW502	Lexium Address
M_AXIS_STATUS_1	%MW503	Actif state of axis control graph
M_ERROR_LD_1	%MW504	Lexium error code
M_MVT_TYPE_1	%MW505	Actual mvt of servo drive
M_MODE_DISPLAY_1	%MW506	Actual mode of operation active
M_GEAR_REF_1	%MW507	Operating mode of electronic gear processing
M_STATE_1	%MW509	Actual mode of operation active
M_POSITION_REF_LO_1	%MW512	Reference position for homing method 35 low bits
M_POSITION_REF_HI_1	%MW513	Reference position for homing method 35 high bits
M_GEAR_NUM_LO_1	%MW514	Gear Numerator low bits
M_GEAR_NUM_HI_1	%MW515	Gear Numerator high bits
M_HOMING_METHOD_1	%MW529	Reference movement method

Símbolo	Dirección	Comentario
M_TARGET_VELOCITY_1	%MW530	Speed reached
M_GEAR_DENOM_1	%MW531	Gear Denumerator low bits
M_TARGET_POSITION_LO_1	%MW532	position reached low bits
M_TARGET_POSITION_HI_1	%MW533	position reached high bits
M_TARGET_CURRENT_1	%MW534	Current reached
SD_RUN_FORW	%Q0.0	Twido_Output: speed drive is running forward
SD_RUN_REV	%Q0.1	Twido_Output: speed drive is running reverse
SD_STOPPED	%Q0.2	Twido_Output: speed drive is stopped
MOTOR_IS_GOING_TO_POINT	%Q0.3	
D_COMMAND_BASIC_ATV311	%QWC1.0.0	
D_TARGET_BASIC_ATV311	%QWC1.0.1	
OTB_CAN_OUTPUTS_1	%QWC1.1.0	
OTB_CAN_OUTPUTS_2	%QWC1.1.1	
OTB_CAN_OUTPUTS_3	%QWC1.1.2	
OTB_CAN_OUTPUTS_4	%QWC1.1.3	
OTB_CAN_OUTPUTS_5	%QWC1.1.4	
OTB_CAN_OUTPUTS_6	%QWC1.1.5	
FTB_CAN_OUTPUTS_1	%QWC1.2.0	
CONTROL_PDO1_BASIC_LXM051	%QWCD1.9.0	
CONTROL_PDO2_BASIC_LXM051	%QWCD1.9.2	

1606369_04 07/2007 123