The Schneider Electric H822-20-S6 is a current transducer that senses current (amperage) in the 0-20 amperes range. This range represents the maximum current that can be applied to the monitored conductor. The H822-20-S6 transforms the monitored current value into a 0-5 VDC output suitable for connection to building controllers or other appropriate data acquisition equipment. The H822-20-S6 requires no external power to generate its output.

SPECIFICATIONS

- **Sensor Power**: Induced from monitored conductor
- **Amperage Range**: 0 to 20 A
- **Sensor Output**: 0-5 VDC
- **Response Time**: 2 sec.
- **Insulation Class**: 300 VAC RMS, insulated conductors only
- **Frequency**: 50/60 Hz
- **Temperature Range**: -15° to 60°C (-5° to 140°F)
- **Humidity Range**: 10-90% RH non-condensing
- **Accuracy**: ±2% FS from 10% to 100%
- **Terminal Block Wire Size**: 0.2 to 2.1 mm² (24 to 14 AWG)
- **Terminal Block Torque**: 0.4 to 0.5 N-m (3.5 to 4.4 in-lb)
- **Agency Approvals**: CE: EN 61010-1:2001
- **Installation Category**: Cat. III, pollution degree 2

For CE compliance, conductor shall be insulated according to IEC 61010-1:2010. The product design provides for basic insulation only.
INSTALLATION

Disconnect and lock out power to the enclosure containing the conductor to be monitored.

1. Locate a mounting surface for the removable mounting bracket that will allow the monitored conductor to pass through the center window when it is installed and that will keep the product at least 13 mm (½ in.) from any uninsulated conductors. Determine cable routing for the controller connection, allowing wiring to reach the mounting location.
2. Drill holes to mount the bracket to the chosen surface using the included screws.
3. Wire the output connections between the sensor and the controller (0-5 VDC).
4. Route the conductor through the sensor’s center window and clip the assembly to the mounting bracket.
5. Secure the enclosure and reconnect power.
6. Scale the controller software to match the transducer output.

SCALING

Scale the controller software to match the current transducer’s output (0-5 VDC).
LOW CURRENT APPLICATIONS
For load currents less than sensor minimum rating, wrap the monitored conductor through the center window and around the sensor body to produce multiple turns. This increases the current measured by the transducer. Program the controller to account for the extra turns, e.g., if four turns pass through the sensor, then divide the reading by 4.

HIGH CURRENT APPLICATIONS
For load currents greater than sensor maximum rating, use a 5 Amp current transformer (CT) as shown. This technique can be combined with wrapping (see above). Select an amperage range on the current sensor that matches the CT maximum output (accounting for any wrapping) to enable the entire current sensor output range. Do not exceed the current sensor rating.

DANGER: 5A CTs can present hazardous voltages. Install CTs in accordance with manufacturer’s instructions. Terminate the CT secondary before applying current.

TROUBLESHOOTING
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
</tr>
</thead>
</table>
| No Reading at Controller | • Check polarity of the sensor output connections.
| | • Check the amperage in the monitored conductor (>1 A) |

PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Ordering Code</th>
<th>Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>324-0213-000</td>
<td>H822-20-S6</td>
<td>I-Xdcr,20AAC:0-5VDC</td>
</tr>
</tbody>
</table>