Servomotor SH3

Manual del usuario

0198441113990.07 07/2021

Información legal

La marca Schneider Electric y cualquier otra marca comercial de Schneider Electric SE y sus filiales mencionadas en esta guía son propiedad de Schneider Electric SE o sus filiales. Todas las otras marcas pueden ser marcas comerciales de sus respectivos propietarios. Esta guía y su contenido están protegidos por las leyes de copyright aplicables, y se proporcionan exclusivamente a título informativo. Ninguna parte de este manual puede ser reproducida o transmitida de cualquier forma o por cualquier medio (electrónico, mecánico, fotocopia, grabación u otro), para ningún propósito, sin el permiso previo por escrito de Schneider Electric.

Schneider Electric no concede ningún derecho o licencia para el uso comercial de la guía o su contenido, excepto por una licencia no exclusiva y personal para consultarla "tal cual".

La instalación, utilización, mantenimiento y reparación de los productos y equipos de Schneider Electric la debe realizar solo personal cualificado.

Debido a la evolución de las normativas, especificaciones y diseños con el tiempo, la información contenida en esta guía puede estar sujeta a cambios sin previo aviso.

En la medida permitida por la ley aplicable, Schneider Electric y sus filiales no asumen ninguna responsabilidad u obligación por cualquier error u omisión en el contenido informativo de este material o por las consecuencias derivadas o resultantes del uso de la información contenida en el presente documento.

© 2021 Schneider Electric. Todos los derechos reservados.

Tabla de contenido

nformación de seguridad	5
Acerca de este libro	6
ntroducción	10
Familia de motores	10
Opciones y accesorios	11
Placa de características	12
Codificación de los modelos	14
Datos técnicos	16
Características generales	16
Condiciones ambientales	18
Servoaccionamientos aprobados	20
Dimensiones para motores con conexión de un cable	21
Dimensiones para motores con conexión de dos cables	27
Carga del eje	34
Datos de rendimiento	38
Encoder para motores con conexión de un cable	
Encoder para motores con conexión de dos cables	
Freno de parada	
Certificaciones	
Condiciones para UL 1004-1, UL 1004-6 y CSA 22.2 No. 100	58
nstalación	59
Compatibilidad electromagnética (CEM)	61
Cables y señales	63
Información general	63
Especificaciones de los cables para motores con conexión de un	
cable (SH3-OMC)	64
Especificaciones de los cables para motores con conexión de dos	
cables	66
Instalación mecánica	
Antes del montaje	
Montaje del motor	71
Conexión para aire comprimido para motores con conexión de dos	
cables	
Instalación eléctrica	75
Conectores y asignaciones de conectores para motores con	
conexión de un cable (SH3 OMC)	75
Conectores y asignaciones de conectores para motores con	
conexión de dos cables	
Conexión de potencia y del encoder	
Conexión del freno de parada	
Puesta en marcha	
Puesta en funcionamiento	84
Diagnóstico y resolución de fallos	
Problemas mecánicos	
Problemas eléctricos	87
Accesorios y piezas de repuesto	88
Cables para motores con conexión de un cable (SH3 OMC)	88

Cables para motores con conexión de dos cables	88
Juego IP67	89
Servicio, mantenimiento y reciclaje	90
Direcciones de servicio	90
Mantenimiento	91
Sustitución del motor	94
Transporte, almacenamiento, eliminación	95
Glosario	97
Índice	90

Información de seguridad

Información importante

Lea atentamente estas instrucciones y observe el equipo para familiarizarse con el dispositivo antes de instalarlo, utilizarlo, revisarlo o realizar su mantenimiento. Los mensajes especiales que se ofrecen a continuación pueden aparecer a lo largo de la documentación o en el equipo para advertir de peligros potenciales, o para ofrecer información que aclara o simplifica los distintos procedimientos.

La inclusión de este icono en una etiqueta "Peligro" o "Advertencia" indica que existe un riesgo de descarga eléctrica, que puede provocar lesiones si no se siguen las instrucciones.

Éste es el icono de alerta de seguridad. Se utiliza para advertir de posibles riesgos de lesiones. Observe todos los mensajes que siguen a este icono para evitar posibles lesiones o incluso la muerte.

PELIGRO

PELIGRO indica una situación de peligro que, si no se evita, **provocará** lesiones graves o incluso la muerte.

A ADVERTENCIA

ADVERTENCIA indica una situación de peligro que, si no se evita, **podría provocar** lesiones graves o incluso la muerte.

A ATENCIÓN

ATENCIÓN indica una situación peligrosa que, si no se evita, **podría provocar** lesiones leves o moderadas.

AVISO

AVISO indica una situación potencialmente peligrosa que, si no se evita, **puede provocar** daños en el equipo.

Tenga en cuenta

La instalación, manejo, puesta en servicio y mantenimiento de equipos eléctricos deberán ser realizados sólo por personal cualificado. Schneider Electric no se hace responsable de ninguna de las consecuencias del uso de este material.

Una persona cualificada es aquella que cuenta con capacidad y conocimientos relativos a la construcción, el funcionamiento y la instalación de equipos eléctricos, y que ha sido formada en materia de seguridad para reconocer y evitar los riesgos que conllevan tales equipos.

Acerca de este libro

Presentación

Este documento describe las características técnicas, la instalación, la puesta en funcionamiento y el mantenimiento de la familia de servomotores SH3.

La familia de servomotores SH3 está formada por:

- Motores con conexión de un cable (SH3-OMC)
- Motores con conexión de dos cables

Campo de aplicación

Este documento es válido para los productos estándar indicados en la sección Codificación de los modelos, página 14.

Para la conformidad de los productos y la información medioambiental (RoHS, REACH, PEP, EOLI, etc.), vaya a www.se.com/ww/en/work/support/green-premium/.

Las características descritas en el presente documento, así como las descritas en los documentos incluidos a continuación en la sección Documentos relacionados, pueden consultarse en línea. Para acceder a la información en línea, visite la página de inicio de Schneider Electric www.se.com/ww/en/download/.

Las características descritas en el presente documento deben coincidir con las características que aparecen en línea. De acuerdo con nuestra política de mejoras continuas, es posible que a lo largo del tiempo revisemos el contenido con el fin de elaborar documentos más claros y precisos. En caso de que detecte alguna diferencia entre el documento y la información online, utilice esta última para su referencia.

Documentos relacionados

Título de la documentación	Número de referencia
Servomotor SH3 - Guía del usuario	0198441113987 (eng)
	0198441113988 (fre)
	0198441113986 (ger)
	0198441113990 (spa)
	0198441113989 (ita)
	0198441113991 (chi)

Información relacionada con el producto

El uso y la aplicación de la información contenida en el presente documento requieren experiencia en diseño y programación de sistemas de control automatizados.

Únicamente usted como usuario, el constructor de la máquina o el integrador de sistemas están familiarizados con todas las condiciones y factores que son de aplicación para la instalación, ajuste, funcionamiento, reparaciones y mantenimiento de la máquina o de los procesos.

Asegúrese de que se cumplan todas las normas o disposiciones en vigor referentes a la conexión a tierra de todos los componentes de la instalación. Asegúrese de que se cumplan todas las normas de seguridad, todos los

requisitos referidos a la electricidad y todas las normas vigentes para su máquina o su proceso en relación con el uso de este producto.

Muchos componentes del producto, incluido el circuito impreso, funcionan con tensión de red y pueden producirse altas corrientes o tensiones transformadas.

El motor genera tensión cuando se gira el eje.

A PELIGRO

DESCARGA ELÉCTRICA, EXPLOSIÓN O EXPLOSIÓN POR ARCO ELÉCTRICO

- Desconecte la alimentación del equipo, incluidos los dispositivos conectados, antes de quitar las cubiertas o las puertas o instalar o quitar accesorios, hardware, cables o conductores.
- Identifique todos los interruptores con un rótulo "NO CONECTAR" o con una señalización de peligro similar y bloquéelos en la posición deenergizada.
- Espere 15 minutos para que se descargue la energía residual de los condensadores del bus DC.
- Mida la tensión en el bus DC con un dispositivo de detección de tensión de capacidad adecuada y asegúrese de que la tensión sea inferior a 42,4 VCC.
- No presuponga que el bus DC está sin tensión porque el LED del mismo esté apagado.
- Asegure el eje del motor contra accionamientos ajenos antes de realizar trabajos en el sistema de accionamiento.
- No cortocircuite el bus DC ni los condensadores del bus DC.
- Vuelva a montar y fijar las cubiertas, los accesorios, los elementos de hardware y los cables y compruebe que haya una conexión a tierra adecuada antes de aplicar alimentación eléctrica a la unidad.
- Utilice este equipo y los productos asociados solo con la tensión indicada.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Este equipo ha sido diseñado para funcionar fuera de cualquier ubicación peligrosa. Instale el equipo únicamente en zonas sin atmósfera peligrosa.

A PELIGRO

POSIBILIDAD DE EXPLOSIÓN

Instale y utilice el equipo únicamente en ubicaciones no peligrosas.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Si la etapa de potencia se desactiva involuntariamente, por ejemplo, debido a una caída de tensión, a errores o a funciones, el motor dejará de frenar de forma controlada. La sobrecarga, los errores o el uso erróneo pueden ocasionar el incorrecto funcionamiento y desgaste prematuro del freno de parada.

AADVERTENCIA

FUNCIONAMIENTO IMPREVISTO DEL EQUIPO

- Verifique que los movimientos sin efecto de frenado no puedan causar lesiones ni daños en el equipo.
- Verifique el funcionamiento del freno de detención a intervalos regulares.
- No utilice el freno de detención como freno de servicio.
- No utilice el freno de detención para fines relacionados con la seguridad.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

AADVERTENCIA

PÉRDIDA DE CONTROL

- El diseñador del esquema de control debe tener en cuenta los posibles modos de fallo de rutas de control y, para ciertas funciones de control críticas, proporcionar los medios para lograr un estado seguro durante y después de un fallo de ruta. Funciones de control críticas son, por ejemplo, una parada de emergencia y una parada de sobrerrecorrido, un corte de alimentación y un reinicio.
- Para las funciones críticas de control deben proporcionarse rutas de control separadas o redundantes.
- Las rutas de control del sistema pueden incluir enlaces de comunicación.
 Deben tenerse en cuenta las implicaciones de los retrasos de transmisión no esperados o los fallos en el enlace.
- Tenga en cuenta todas las reglamentaciones para la prevención de accidentes y las directrices de seguridad locales.¹
- Cada implementación de este equipo debe probarse de forma individual y exhaustiva antes de entrar en servicio.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

¹ Para obtener información adicional, consulte NEMA ICS 1.1 (última edición), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" (Directrices de seguridad para la aplicación, la instalación y el mantenimiento del control de estado estático) y NEMA ICS 7.1 (última edición), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" (Estándares de seguridad para la construcción y guía para la selección, instalación y utilización de sistemas de unidades de velocidad ajustable) o su equivalente aplicable a la ubicación específica.

Normas y términos utilizados

Los términos técnicos, símbolos y las descripciones correspondientes del presente manual o que aparecen en la parte interior o exterior de los propios productos se derivan, por lo general, de los términos y las definiciones de estándares internacionales.

En el área de los sistemas de seguridad funcional, unidades y automatización general se incluyen, pero sin limitarse a ellos, términos como seguridad, función de seguridad, estado de seguridad, fallo, reinicio tras fallo, avería, funcionamiento incorrecto, error, mensaje de error, peligroso, etc.

Estos estándares incluyen, entre otros:

Norma	Descripción			
IEC 61131-2:2007	Controladores programables, parte 2: requisitos y ensayos de los equipos.			
ISO 13849-1:2015	Seguridad de la maquinaria: componentes de los sistemas de control relacionados con la seguridad.			
	Principios generales del diseño.			
EN 61496-1:2013	Seguridad de las máquinas: equipos de protección electrosensibles.			
	Parte 1: pruebas y requisitos generales.			
ISO 12100:2010	Seguridad de las máquinas. Principios generales para el diseño. Evaluación del riesgo y reducción del riesgo			
EN 60204-1:2006	Seguridad de las máquinas. Equipo eléctrico de las máquinas. Parte 1: requisitos generales			
ISO 14119:2013	Seguridad de las máquinas. Dispositivos de bloqueo asociados con protecciones: principios de diseño y selección			
ISO 13850:2015	Seguridad de las máquinas. Parada de emergencia: principios de diseño			
IEC 62061:2015	Seguridad de las máquinas. Seguridad funcional de los sistemas de control eléctricos, electrónicos y electrónicos programables relacionados con la seguridad			
IEC 61508-1:2010	Seguridad funcional de los sistemas eléctricos/electrónicos/electrónicos programables relacionados con la seguridad: requisitos generales.			
IEC 61508-2:2010	Seguridad funcional de los sistemas eléctricos/electrónicos/electrónicos programables relacionados con la seguridad: requisitos para los sistemas eléctricos/electrónicos/electrónicos programables relacionados con la seguridad.			
IEC 61508-3:2010	Seguridad funcional de los sistemas eléctricos/electrónicos/electrónicos programables relacionados con la seguridad: requisitos de software.			
IEC 61784-3:2016	Redes de comunicación industrial - Perfiles - Parte 3: Buses de campo de seguridad funcionales - Reglas generales y definiciones de perfiles.			
2006/42/EC	Directiva de maquinaria			
2014/30/EU	Directiva de compatibilidad electromagnética			
2014/35/EU	Directiva de baja tensión			

Además, los términos utilizados en este documento se pueden usar de manera tangencial porque se obtienen de otros estándares como:

Norma	Descripción		
Serie IEC 60034	Máquinas eléctricas giratorias		
Serie IEC 61800	Accionamientos eléctricos de potencia de velocidad variable		
Serie IEC 61158	Comunicación digital de datos para la medición y control: bus de campo para su uso en sistemas de control.		

Por último, el término zona de funcionamiento se puede utilizar junto con la descripción de peligros específicos, y se define como tal para una zona de peligro o una zona peligrosa en la Directiva de maquinaria (2006/42/EC) e ISO 12100:2010.

NOTA: Los estándares mencionados anteriormente podrían o no aplicarse a los productos específicos citados en la presente documentación. Para obtener más información en relación con los diferentes estándares aplicables a los productos descritos en este documento, consulte las tablas de características de las referencias de dichos productos.

Introducción

Familia de motores

General

Los servomotores de la serie SH3 son servomotores síncronos de CA con un momento de inercia bajo diseñados para tareas de posicionamiento altamente dinámicas.

Un sistema de accionamiento está compuesto por un servomotor y el variador correspondiente, página 20. Sólo cuando el motor y el variador están sincronizados entre sí, se puede alcanzar la potencia óptima.

Características

Los motores presentan las siguientes características:

- Protección contra sobrecarga mediante el sensor de temperatura integrado (evaluado por el servoaccionamiento)
- · Momento de inercia bajo
- Densidad de potencia elevada
- Alta dinámica
- Gran capacidad de sobrecarga
- Rango de par amplio
- Bobinado especial para corrientes de fase bajas
- · Conexiones del motor a través de conectores redondos
- Puesta en funcionamiento sencilla mediante placa de características electrónica en el encoder
- · Poco mantenimiento

Conexión de cable

Los motores están disponibles en dos variantes de conexión.

Motores con conexión de un cable (SH3-OMC):

 Fases del motor, freno de parada y encoder HIPERFACE® DSL conectados mediante el cable híbrido

Motores con conexión de dos cables:

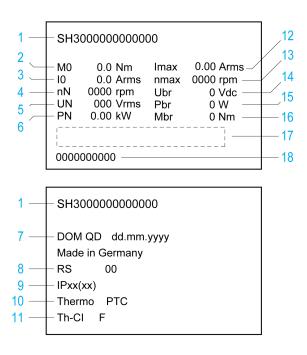
- Fases del motor, freno de parada y sensor de temperatura conectados mediante el cable del motor
- Encoder HIPERFACE® SinCos conectado mediante el cable del encoder

Opciones y accesorios

Opciones

Los motores pueden suministrarse con opciones, por ejemplo:

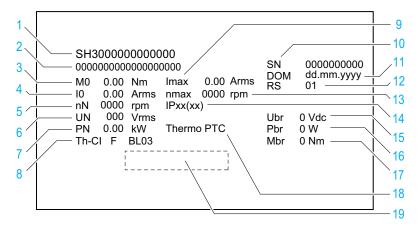
- Diferentes sistemas de encoder
- Freno de parada
- Diferentes versiones de eje
- Diferentes grados de protección
- Diferentes longitudes
- Diferentes tamaños
- Diferentes variantes de bobinado
- · Diferentes versiones de conexión


Accesorios

Consulte la sección Accesorios y piezas de repuesto, página 88.

Placa de características

SH3040


La placa de características muestra los siguientes datos:

1	Referencia comercial, consulte Codificación de los modelos, página 14				
2	Par de parada continua				
3	Corriente de parada continua				
4	Velocidad nominal de rotación				
5	Valor nominal máximo de la tensión de alimentación				
6	Potencia nominal				
7	Fecha de fabricación				
8	Versión de hardware				
9	Categoría de protección (carcasa sin paso de eje)				
10	Sensor de temperatura				
11	Clase térmica				
12	Corriente máxima				
13	Velocidad máxima				
14	Tensión nominal del freno de parada				
15	Potencia nominal (potencia inicial eléctrica) del freno de parada				
16	Par de parada del freno de parada				
17	Código de barras				
18	Número de serie				

SH3055 ... SH3205

La placa de características muestra los siguientes datos:

1	Referencia comercial, consulte Codificación de los modelos, página 14
2	Número de identificación
3	Par de parada continua
4	Corriente de parada continua
5	Velocidad nominal de rotación
6	Valor nominal máximo de la tensión de alimentación
7	Potencia nominal
8	Clase térmica
9	Corriente máxima
10	Número de serie
11	Fecha de fabricación
12	Versión de hardware
13	Velocidad máxima
14	Categoría de protección (carcasa sin paso de eje)
15	Tensión nominal del freno de parada
16	Potencia nominal (potencia inicial eléctrica) del freno de parada
17	Par de parada del freno de parada
18	Sensor de temperatura
19	Código de barras

Codificación de los modelos

Codificación de los modelos

Pos.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Codificación de los modelos (ejemplo)	S	Н	3	0	7	0	1	Р	1	В	F	4	1	0	0

Pos.	Significado					
1 3	Familia de productos					
	SH3 = Servomotor síncrono: momento de inercia bajo					
4 6	Tamaño (carcasa)					
	040 = brida de 40 mm					
	055 = brida de 55 mm					
	070 = brida de 70 mm					
	100 = brida de 100 mm					
	140 = brida de 140 mm					
	205 = brida de 205 mm					
7	Longitud					
	1 = 1 pila					
	2 = 2 pilas					
	3 = 3 pilas					
	4 = 4 pilas					
8	Bobinado					
	M = optimizado a par alto					
	P = optimizado al par y la velocidad					
	S = versión personalizada					
9	Eje					
	0 = eje liso					
	1 = chaveta					
10	Sistema de encoder					
	1 = HIPERFACE SinCos absoluto de una espira 128 periodos por revolución SKS36					
	2 = HIPERFACE SinCos absoluto de varias espiras 128 periodos por revolución SKM36					
	6 = HIPERFACE SinCos absoluto de una espira 16 periodos por revolución SEK37					
	7 = HIPERFACE SinCos absoluto de varias espiras 16 periodos por revolución SEL37					
	A = HIPERFACE DSL absoluto de una espira 18 bits por revolución EKS36					
	B = HIPERFACE DSL absoluto de varias espiras 18 bits por revolución EKM36					
	C = HIPERFACE DSL absoluto de una espira 15 bits por revolución EES37					
	D = HIPERFACE DSL absoluto de varias espiras 15 bits por revolución EEM37					
11	Freno de parada					
	A = sin freno de parada					
	F = con freno de parada					
12	Versión de la conexión					
	1 = Conexión de dos cables, conector recto					
	2 = Conexión de dos cables, conector en ángulo de 90°, se puede girar					
	3 = Conexión de un cable (SH3-OMC), conector recto					

IP50.

Pos.	Significado
	4 = Conexión de un cable (SH3-OMC), conector en ángulo de 90°, se puede girar
13	Categoría de protección del eje y de la carcasa: tipo de refrigeración ⁽¹⁾
	0 = eje, IP54 sin anillo retén, carcasa, IP65, libre convección
	1 = eje, IP65 con anillo retén, carcasa, IP65, libre convección
	2 = eje, IP65 con anillo retén, carcasa, IP67, libre convección
14 15	Versiones
	00 = Estándar
(1) En la nosici	ión de montaje IM V3 (eje de accionamiento vertical, extremo de eje hacia arriba) solo se alcanza la categoría de protección

En caso de dudas sobre la codificación de los modelos, póngase en contacto con su representante de Schneider Electric.

Identificación de la versión personalizada

En el caso de una versión específica de cliente, en la posición 8 de la codificación de los modelos se indica una "S". El siguiente número define la versión específica de cliente correspondiente. Ejemplo: SH30551S0000001

En caso de dudas sobre las versiones personalizadas, póngase en contacto con su representante de Schneider Electric.

Datos técnicos

Características generales

Descripción general

Característica	Valor	Estándar
Tipo de motor	Servomotor AC síncrono	-
Clase térmica	F (155 °C)	según IEC 60034-1
Nivel de vibración	A	según IEC 60034-14
Tensión de prueba	> 2400 V CA	Según IEC 60034-1
Oscilación axial	normal class	según IEC 60072-1, DIN 42955
Color de la carcasa	Negro RAL 9005	-
Categoría de sobretensión	III	según IEC 61800-5-1
Clase de protección ⁽¹⁾	I	según IEC 61140, EN 50178
	•	

⁽¹⁾ Los circuitos internos del freno de parada, el sensor de temperatura y el encoder cumplen los requisitos de MBTP.

Vida útil

Vida útil del rodamiento	Uni- dad	Valor			
Vida útil nominal del rodamiento L _{10 h} ⁽¹⁾		20 000			
(1) Horas de trabajo con 10 % de probabilidad de avería					

En caso de uso técnico correcto, la vida útil de los motores está limitada fundamentalmente por la vida útil del rodamiento (rodamiento de bolas).

La vida útil se ve limitada considerablemente por las siguientes condiciones de servicio:

- Movimiento giratorio exclusivamente dentro de un ángulo fijo de <100°
- Funcionamiento sometido a carga vibratoria >20 m/s²
- Marcha en seco de las juntas anulares
- Contacto de las juntas con sustancias agresivas
- Altitud de instalación >1000 m (3281 ft) sobre el nivel medio del mar.

Aire comprimido

El aire comprimido genera una sobrepresión continua en el interior del motor. Gracias a esta sobrepresión en el interior del motor, se logra la categoría de protección IP67.

El aire comprimido debe estar disponible también después de desconectar la instalación, por ejemplo, para poder realizar trabajos de limpieza con la categoría de protección requerida. Desconectar el aire comprimido reduce la categoría de protección a IP65. La categoría de protección hace referencia solo al motor, no a los componentes añadidos como, por ejemplo, un engranaje.

Además, otras circunstancias relevantes, como la posición de montaje y los accesorios aplicados al producto, afectan directamente a la categoría de protección con el motor instalado.

Características del aire comprimido:

Característica	Uni- dad	Valor
Presión nominal	bar	0,1 0,3
	(psi)	(1,45 4,35)
Presión máxima del aire	bar	0,4
	(psi)	(5,8)
Humedad permitida	%	20 30
Otras propiedades del aire comprimido		Exento de polvo y aceite

Para obtener más información, consulte Conexión para aire comprimido, página 74.

Pares de apriete y clase de resistencia de los tornillos

Tornillo	Unidad	Valor
Par de apriete de los tornillos de la carcasa M3	Nm (lb•in)	1 (8,85)
Par de apriete de los tornillos de la carcasa M4	Nm (lb•in)	1,5 (13,28)
Par de apriete de los tornillos de la carcasa M5	Nm (lb•in)	5 (44,3)
Par de apriete del conductor de protección M3 (SH3040)	Nm (lb•in)	0,9 (7,97)
Par de apriete del conductor de protección M4 (SH3055, SH3070, SH3100, SH3140)	Nm (lb•in)	2,9 (25,7)
Par de apriete del conductor de protección M6 (SH3205)	Nm (lb•in)	9,9 (87,3)
Clase de resistencia de los tornillos	-	8.8

Condiciones ambientales

Condiciones para el funcionamiento

Característica	Unidad	Valor			
Clase según la norma IEC 60721-3-3	-	3K3, 3Z12, 3Z2, 3B2, 3C1			
Temperatura ambiente¹) (sin condensación ni hielo)	°C	-20 40			
	(°F)	(-4 104)			
Temperatura ambiente con caída de corriente del 1 % por °C	°C	40 60			
(por 1,8 °F) ⁽¹⁾	(°F)	(104 140)			
Humedad relativa (sin condensación)	%	5 85			
Altitud de instalación ⁽²⁾	m	<1000			
	(ft)	(<3281)			
Altitud de instalación con caída de corriente del 1 % por 100	m	Tensión de alimentación de 1000 3000			
m (328 ft) a partir de 1000 m (3281 ft) de altitud ⁽²⁾	(ft)	(3281 9843)			
(1) Valores límite con motor embridado. Consulte Datos de rendimiento, página 38 para conocer las condiciones.					

Condiciones para el transporte y el almacenamiento

El entorno durante el transporte y almacenamiento tiene que estar seco y libre de polvo.

El periodo de almacenamiento está limitado, fundamentalmente, por el periodo de conservación de los lubricantes en los cojinetes. No almacene el producto durante más de 36 meses, y ponga el motor en funcionamiento cada cierto tiempo.

Si el freno de parada no se utilizara durante un tiempo prolongado, sus piezas podrían oxidarse. La corrosión provocará una reducción del par de parada. Consulte Inspección/esmerilado del freno de parada, página 92.

Característica	Unidad	Valor
Temperatura	°C	-40 70
	(°F)	(-40 158)
Humedad relativa (sin condensación)	%	≤75
Relación de las combinaciones de clases según IEC 60721-3-2		IE 21

Vibraciones y choques

En SH3040 ... SH3140

Característica	Valor
Vibraciones, sinusoidales	Ensayo de tipo con 10 ciclos según IEC 60068-2-6
	0,15 mm (10 60 Hz)
	20 m/s² (60 500 Hz)
Choques, semisinusoidales	Ensayo de tipo con 3 choques en cada dirección según IEC 60068-2-27
	150 m/s² (11 ms)

⁽²⁾ La altitud de instalación se define como la altitud por encima del nivel medio del mar.

En SH3205

Característica	Valor
Vibraciones, sinusoidales	Ensayo de tipo con 10 ciclos según IEC 60068-2-6
	0,35 mm (10 60 Hz)
	50 m/s ² (60 150 Hz)
Choques permanentes	Ensayo de tipo con 3 choques en cada dirección según IEC 60068-2-29
	200 m/s ² (6 ms)

Compatibilidad con sustancias extrañas

La tolerancia del motor a numerosas sustancias conocidas se ha probado de acuerdo con la tecnología actual. No obstante, antes de utilizar una sustancia ajena, debe efectuarse una prueba de compatibilidad.

Categoría de protección

Categoría de protección según IEC 60034-5.

Valor
IP54
IP65
IP65
IP67
_

(1) En la posición de montaje IM V3 (eje de accionamiento vertical, extremo de eje hacia arriba) solo se alcanza la categoría de protección IP50. La categoría de protección hace referencia solo al motor, no a los componentes añadidos como, por ejemplo, un engranaje.

Los motores pueden equiparse, opcionalmente, con un anillo retén. De esta forma, logran la categoría de protección IP65. A través del anillo retén, la velocidad máxima de rotación se limita a 6000 rpm.

Tenga en cuenta los siguientes puntos:

- El anillo retén se lubrica inicialmente en fábrica.
- La marcha en seco de las juntas aumenta la fricción y disminuye considerablemente la vida útil de las juntas anulares.

Servoaccionamientos aprobados

Descripción general

Los sistemas de accionamiento pueden desencadenar movimientos indeseados debido al uso de combinaciones no permitidas de variador y motor. También en el caso de motores similares existe peligro por ajustes diferentes del sistema de encoder. Aunque los conectores para la conexión del motor y para la conexión del encoder sean mecánicamente compatibles, esto no significa que el motor pueda utilizarse.

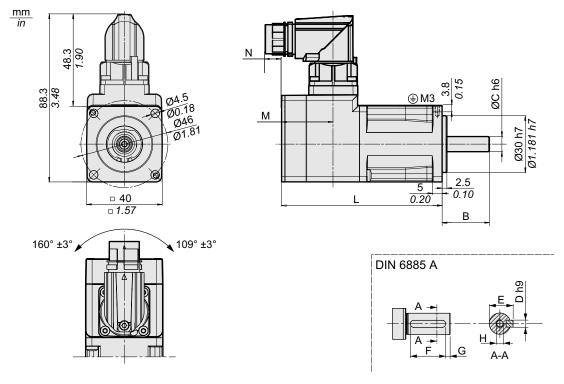
AADVERTENCIA

MOVIMIENTO INVOLUNTARIO

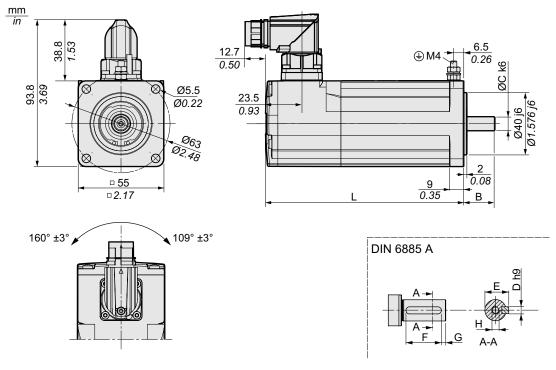
Utilice únicamente combinaciones autorizadas de variador y motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

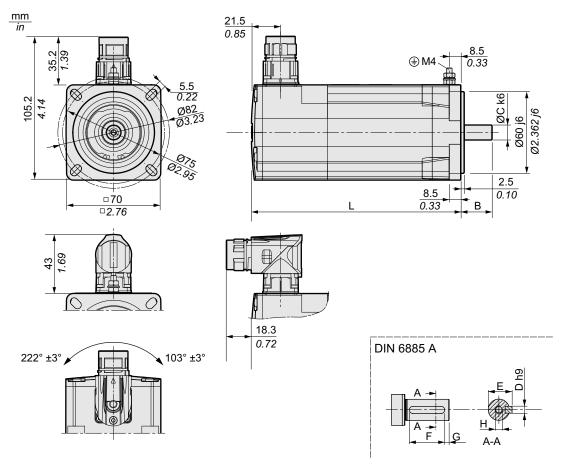
El motor puede funcionar con los siguientes servoaccionamientos:

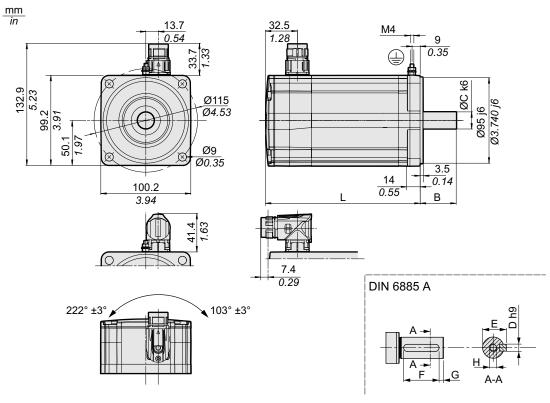

Servoaccionamiento	Servomotor con conexión de un cable	Servomotor con conexión de dos cables
LXM52	-	✓
LXM62D•••C, LXM62D•••D, LXM62D•••G	1	1
LXM62D•••E, LXM62D•••F	-	✓
✓ Aprobado		
- No aprobado		

Al seleccionar un servoaccionamiento adecuado, guíese por el tipo de servoaccionamiento y por el nivel de la tensión de red.

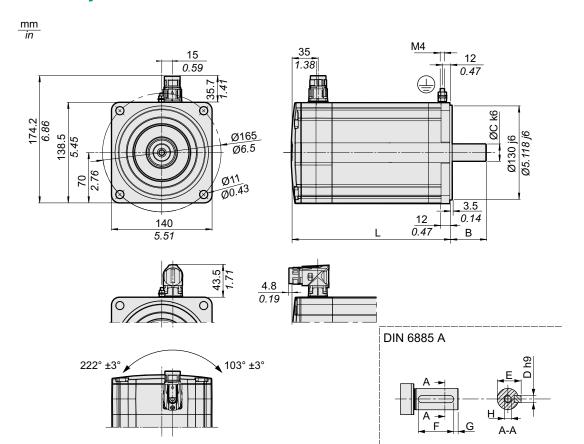

Puesto que presentamos continuamente nuevos productos, póngase en contacto con su representante de Schneider Electric para conocer otros servoaccionamientos compatibles cuando estén disponibles.

Dimensiones para motores con conexión de un cable

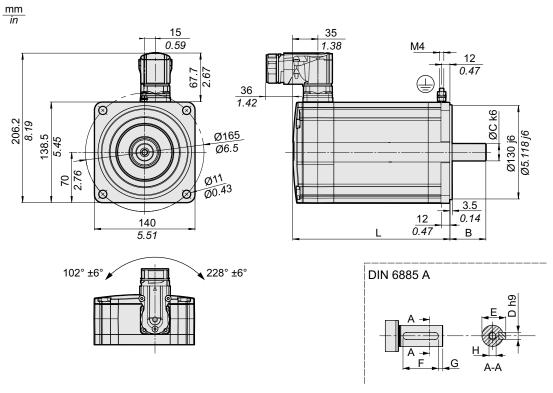

SH3040


Ca	Característica		Valor		
			SH30401	SH30402	
L	Longitud sin freno de parada	mm (in)	84,9 (3,34)	104,9 (4,13)	
L	Longitud con freno de parada	mm (in)	110,9 (4,37)	130,9 (5,15)	
M	Distancia sin freno de parada	mm (in)	27,4 (1,08)	27,4 (1,08)	
M	Distancia con freno de parada	mm (in)	35,9 (1,41)	35,9 (1,41)	
N	Distancia sin freno de parada	mm (in)	8,9 (0,35)	8,9 (0,35)	
N	Distancia con freno de parada	mm (in)	0,4 (0,02)	0,4 (0,02)	
В	Longitud del eje	mm (in)	25 (0,98)	25 (0,98)	
С	Diámetro del eje	mm (in)	8 (0,31)	8 (0,31)	
D	Anchura de la chaveta	mm (in)	3 (0,12)	3 (0,12)	
Е	Anchura del eje con chaveta	mm (in)	9,2 (0,36)	9,2 (0,36)	
F	Longitud de la chaveta	mm (in)	12 (0,47)	12 (0,47)	
G	Distancia entre la chaveta y el extremo de eje	mm (in)	4 (0,16)	4 (0,16)	
Н	Rosca interior del eje		DIN 332 DS M3 x 9	DIN 332 DS M3 x 9	
	Chaveta		DIN 6885-A3x3x12	DIN 6885-A3x3x12	

Ca	Característica		Valor	Valor			
			SH30551	SH30552	SH30553		
L	Longitud sin freno de parada	mm (in)	132,5 (5,22)	154,5 (6,08)	176,5 (6,95)		
L	Longitud con freno de parada	mm (in)	159 (6,26)	181 (7,13)	203 (7,99)		
В	Longitud del eje	mm (in)	20 (0,79)	20 (0,79)	20 (0,79)		
С	Diámetro del eje	mm (in)	9 (0,35)	9 (0,35)	9 (0,35)		
D	Anchura de la chaveta	mm (in)	3 (0,12)	3 (0,12)	3 (0,12)		
Е	Anchura del eje con chaveta	mm (in)	10,2 (0,4)	10,2 (0,4)	10,2 (0,4)		
F	Longitud de la chaveta	mm (in)	12 (0,47)	12 (0,47)	12 (0,47)		
G	Distancia entre la chaveta y el extremo de eje	mm (in)	4 (0,16)	4 (0,16)	4 (0,16)		
Н	Rosca interior del eje		DIN 332-D M3	DIN 332-D M3	DIN 332-D M3		
	Chaveta		DIN 6885-A3x3x12	DIN 6885-A3x3x12	DIN 6885-A3x3x12		

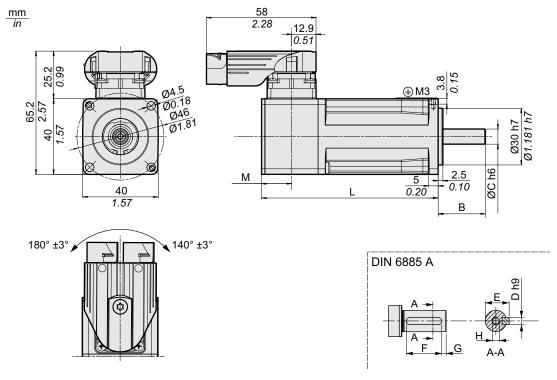


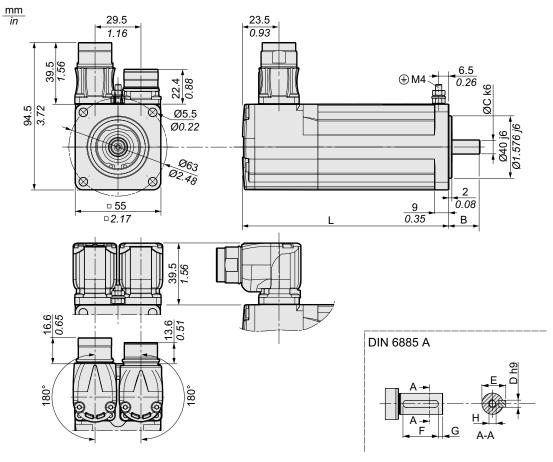
Ca	racterística	Unidad	Valor		
			SH30701	SH30702	SH30703
L	Longitud sin freno de parada	mm (in)	154 (6,06)	187 (7,36)	220 (8,66)
L	Longitud con freno de parada	mm (in)	180 (7,09)	213 (8,39)	246 (9,69)
В	Longitud del eje	mm (in)	23 (0,91)	23 (0,91)	30 (1,18)
С	Diámetro del eje	mm (in)	11 (0,43)	11 (0,43)	14 (0,55)
D	Anchura de la chaveta	mm (in)	4 (0,16)	4 (0,16)	5 (0,2)
E	Anchura del eje con chaveta	mm (in)	12,5 (0,49)	12,5 (0,49)	16 (0,63)
F	Longitud de la chaveta	mm (in)	18 (0,71)	18 (0,71)	20 (0,79)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	2,5 (0,1)	2,5 (0,1)	5 (0,2)
Н	Rosca interior del eje		DIN 332-D M4	DIN 332-D M4	DIN 332-D M5
	Chaveta		DIN 6885-A4x4x18	DIN 6885-A4x4x18	DIN 6885-A4x4x20


Ca	Característica		Valor			
			SH31001	SH31002	SH31003	SH31004
L	Longitud sin freno de parada	mm (in)	168,5 (6,63)	204,5 (8,05)	240,5 (9,47)	276,5 (10,89)
L	Longitud con freno de parada	mm (in)	199,5 (7,85)	235,5 (9,27)	271,5 (10,69)	307,5 (12,11)
В	Longitud del eje	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)	50 (1,97)
С	Diámetro del eje	mm (in)	19 (0,75)	19 (0,75)	19 (0,75)	24 (0,94)
D	Anchura de la chaveta	mm (in)	6 (0,24)	6 (0,24)	6 (0,24)	8 (0,31)
E	Anchura del eje con chaveta	mm (in)	21,5 (0,85)	21,5 (0,85)	21,5 (0,85)	27 (1,06)
F	Longitud de la chaveta	mm (in)	30 (1,18)	30 (1,18)	30 (1,18)	40 (1,57)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Rosca interior del eje		DIN 332-D M6	DIN 332-D M6	DIN 332-D M6	DIN 332-D M8
	Chaveta		DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A8x7x40

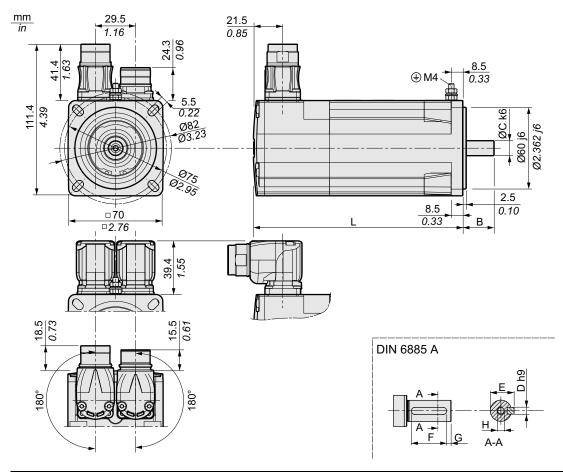
SH31401 y SH31402

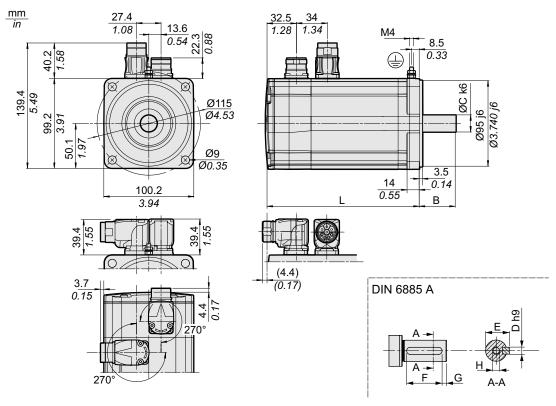
Ca	racterística	Unidad	Valor	
			SH31401	SH31402
L	Longitud sin freno de parada	mm (in)	217,5 (8,56)	272,5 (10,73)
L	Longitud con freno de parada	mm (in)	255,5 (10,06)	310,5 (12,22)
В	Longitud del eje	mm (in)	50 (1,97)	50 (1,97)
С	Diámetro del eje	mm (in)	24 (0,94)	24 (0,94)
D	Anchura de la chaveta	mm (in)	8 (0,31)	8 (0,31)
Е	Anchura del eje con chaveta	mm (in)	27 (1,06)	27 (1,06)
F	Longitud de la chaveta	mm (in)	40 (1,57)	40 (1,57)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	5 (0,2)	5 (0,2)
Н	Rosca interior del eje		DIN 332-D M8	DIN 332-D M8
	Chaveta		DIN 6885-A8x7x40	DIN 6885-A8x7x40


SH31403 y SH31404

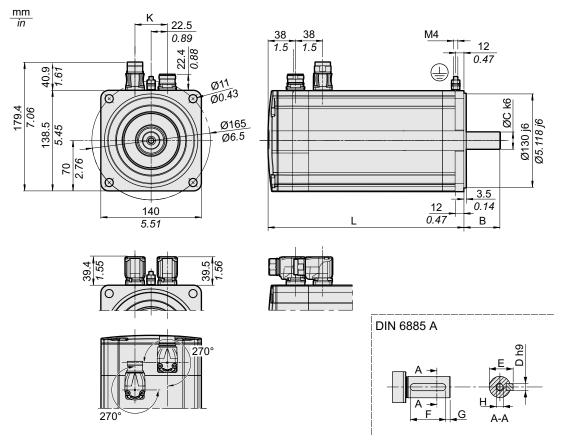

Ca	racterística	Unidad	Valor		
			SH31403	SH31404	
L	Longitud sin freno de parada	mm (in)	327,5 (12,89)	382,5 (15,06)	
L	Longitud con freno de parada	mm (in)	365,5 (14,39)	420,5 (16,56)	
В	Longitud del eje	mm (in)	50 (1,97)	50 (1,97)	
С	Diámetro del eje	mm (in)	24 (0,94)	24 (0,94)	
D	Anchura de la chaveta	mm (in)	8 (0,31)	8 (0,31)	
Е	Anchura del eje con chaveta	mm (in)	27 (1,06)	27 (1,06)	
F	Longitud de la chaveta	mm (in)	40 (1,57)	40 (1,57)	
G	Distancia entre la chaveta y el extremo de eje	mm (in)	5 (0,2)	5 (0,2)	
Н	Rosca interior del eje		DIN 332-D M8	DIN 332-D M8	
	Chaveta		DIN 6885-A8x7x40	DIN 6885-A8x7x40	

Dimensiones para motores con conexión de dos cables

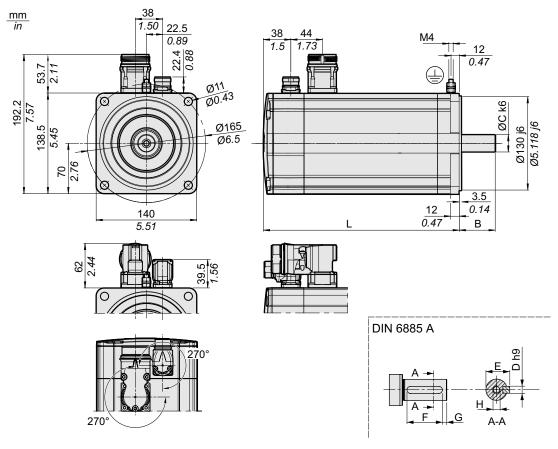

SH3040


Cai	Característica		Valor	
			SH30401	SH30402
L	Longitud sin freno de parada	mm (in)	73,4 (2,89)	93,4 (3,68)
L	Longitud con freno de parada	mm (in)	99,4 (3,91)	119,4 (4,7)
М	Distancia sin freno de parada	mm (in)	15,9 (0,63)	15,9 (0,63)
М	Distancia con freno de parada	mm (in)	24,4 (24,4)	24,4 (24,4)
В	Longitud del eje	mm (in)	25 (0,98)	25 (0,98)
С	Diámetro del eje	mm (in)	8 (0,31)	8 (0,31)
D	Anchura de la chaveta	mm (in)	3 (0,12)	3 (0,12)
Е	Anchura del eje con chaveta	mm (in)	9,2 (0,36)	9,2 (0,36)
F	Longitud de la chaveta	mm (in)	12 (0,47)	12 (0,47)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	4 (0,16)	4 (0,16)
Н	Rosca interior del eje		DIN 332 DS M3 x 9	DIN 332 DS M3 x 9
	Chaveta		DIN 6885-A3x3x12	DIN 6885-A3x3x12

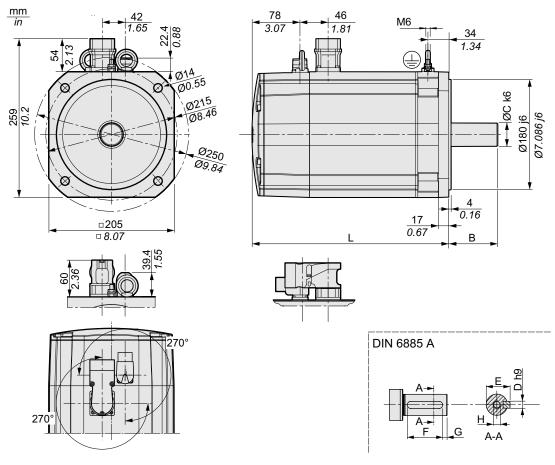
Ca	Característica		Valor		
			SH30551	SH30552	SH30553
L	Longitud sin freno de parada	mm (in)	132,5 (5,22)	154,4 (6,08)	176,5 (6,95)
L	Longitud con freno de parada	mm (in)	159 (6,26)	181 (7,13)	203 (7,99)
В	Longitud del eje	mm (in)	20 (0,79)	20 (0,79)	20 (0,79)
С	Diámetro del eje	mm (in)	9 (0,35)	9 (0,35)	9 (0,35)
D	Anchura de la chaveta	mm (in)	3 (0,12)	3 (0,12)	3 (0,12)
Е	Anchura del eje con chaveta	mm (in)	10,2 (0,4)	10,2 (0,4)	10,2 (0,4)
F	Longitud de la chaveta	mm (in)	12 (0,47)	12 (0,47)	12 (0,47)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	4 (0,16)	4 (0,16)	4 (0,16)
Н	Rosca interior del eje		DIN 332-D M3	DIN 332-D M3	DIN 332-D M3
	Chaveta		DIN 6885-A3x3x12	DIN 6885-A3x3x12	DIN 6885-A3x3x12



Ca	racterística	Unidad	Valor		
			SH30701	SH30702	SH30703
L	Longitud sin freno de parada	mm (in)	154 (6,06)	187 (7,36)	220 (8,66)
L	Longitud con freno de parada	mm (in)	180 (7,09)	213 (8,39)	254 (10)
В	Longitud del eje	mm (in)	23 (0,91)	23 (0,91)	30 (1,18)
С	Diámetro del eje	mm (in)	11 (0,43)	11 (0,43)	14 (0,55)
D	Anchura de la chaveta	mm (in)	4 (0,16)	4 (0,16)	5 (0,2)
E	Anchura del eje con chaveta	mm (in)	12,5 (0,49)	12,5 (0,49)	16 (0,63)
F	Longitud de la chaveta	mm (in)	18 (0,71)	18 (0,71)	20 (0,79)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	2,5 (0,1)	2,5 (0,1)	5 (0,2)
Н	Rosca interior del eje		DIN 332-D M4	DIN 332-D M4	DIN 332-D M5
	Chaveta		DIN 6885-A4x4x18	DIN 6885-A4x4x18	DIN 6885-A4x4x20


Ca	racterística	Unidad	Valor			
			SH31001	SH31002	SH31003	SH31004
L	Longitud sin freno de parada	mm (in)	168,5 (6,63)	204,5 (8,05)	240,5 (9,47)	276,5 (10,89)
L	Longitud con freno de parada	mm (in)	199,5 (7,85)	235,5 (9,27)	271,5 (10,69)	307,5 (12,11)
В	Longitud del eje	mm (in)	40 (1,57)	40 (1,57)	40 (1,57)	50 (1,97)
С	Diámetro del eje	mm (in)	19 (0,75)	19 (0,75)	19 (0,75)	24 (0,94)
D	Anchura de la chaveta	mm (in)	6 (0,24)	6 (0,24)	6 (0,24)	8 (0,31)
Е	Anchura del eje con chaveta	mm (in)	21,5 (0,85)	21,5 (0,85)	21,5 (0,85)	27 (1,06)
F	Longitud de la chaveta	mm (in)	30 (1,18)	30 (1,18)	30 (1,18)	40 (1,57)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)	5 (0,2)
Н	Rosca interior del eje		DIN 332-D M6	DIN 332-D M6	DIN 332-D M6	DIN 332-D M8
	Chaveta		DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A8x7x40

SH31401 y SH31402



Са	racterística	Unidad	Valor	
			SH31401	SH31402
L	Longitud sin freno de parada	mm (in)	217,5 (8,56)	272,5 (10,73)
L	Longitud con freno de parada	mm (in)	255,5 (10,06)	310,5 (12,22)
В	Longitud del eje	mm (in)	50 (1,97)	50 (1,97)
С	Diámetro del eje	mm (in)	24 (0,94)	24 (0,94)
D	Anchura de la chaveta	mm (in)	8 (0,31)	8 (0,31)
Е	Anchura del eje con chaveta	mm (in)	27 (1,06)	27 (1,06)
F	Longitud de la chaveta	mm (in)	40 (1,57)	40 (1,57)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	5 (0,2)	5 (0,2)
Н	Rosca interior del eje		DIN 332-D M8	DIN 332-D M8
K	Distancia de conector sin freno de parada	mm (in)	45 (1,77)	45 (1,77)
K	Distancia de conector con freno de parada	mm (in)	38 (1,5)	38 (1,5)
	Chaveta		DIN 6885-A8x7x40	DIN 6885-A8x7x40

SH31403 y SH31404

Cai	Característica		Valor	
			SH31403	SH31404
L	Longitud sin freno de parada	mm (in)	327,5 (12,89)	382,5 (15,06)
L	Longitud con freno de parada	mm (in)	365,5 (14,39)	420,5 (16,56)
В	Longitud del eje	mm (in)	50 (1,97)	50 (1,97)
С	Diámetro del eje	mm (in)	24 (0,94)	24 (0,94)
D	Anchura de la chaveta	mm (in)	8 (0,31)	8 (0,31)
Е	Anchura del eje con chaveta	mm (in)	27 (1,06)	27 (1,06)
F	Longitud de la chaveta	mm (in)	40 (1,57)	40 (1,57)
G	Distancia entre la chaveta y el extremo de eje	mm (in)	5 (0,2)	5 (0,2)
Н	Rosca interior del eje		DIN 332-D M8	DIN 332-D M8
	Chaveta		DIN 6885-A8x7x40	DIN 6885-A8x7x40

Ca	racterística	Unidad	Valor			
			SH32051	SH32052	SH32053	
L	Longitud sin freno de parada	mm (in)	321 (12,64)	405 (15,94)	489 (19,25)	
L	Longitud con freno de parada	mm (in)	370,5 (14,59)	454,5 (17,89)	538,5 (21,2)	
В	Longitud del eje	mm (in)	80 (3,15)	80 (3,15)	80 (3,15)	
С	Diámetro del eje	mm (in)	38 (1,5)	38 (1,5)	38 (1,5)	
D	Anchura de la chaveta	mm (in)	10 (0,39)	10 (0,39)	10 (0,39)	
E	Anchura del eje con chaveta	mm (in)	41 (1,61)	41 (1,61)	41 (1,61)	
F	Longitud de la chaveta	mm (in)	70 (2,76)	70 (2,76)	70 (2,76)	
G	Distancia entre la chaveta y el extremo de eje	mm (in)	5 (0,2)	5 (0,2)	5 (0,2)	
Н	Rosca interior del eje		DIN 332-D M12	DIN 332-D M12	DIN 332-D M12	
	Chaveta		DIN 6885-A10x8x70	DIN 6885-A10x8x70	DIN 6885-A10x8x70	

Carga del eje

Aspectos generales

Al exceder las fuerzas máximas permitidas en el eje del motor, se produce un desgaste rápido de los cojinetes o la rotura del eje.

AADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO DEBIDO A DAÑOS MECÁNICOS DEL MOTOR

- No supere las fuerzas radiales y axiales máximas permitidas en el eje del motor.
- Proteja el eje del motor contra impactos.
- No supere la fuerza axial máxima admisible al presionar elementos sobre el eje del motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

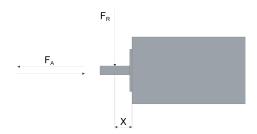
Fuerza para presionar

La fuerza al presionar no debe superar la fuerza axial máxima permitida. Utilizando una pasta de montaje sobre el eje y el elemento, se disminuye la fricción y se protege la superficie.

Si el eje dispusiera de una rosca, utilícela para presionar el elemento. De esta forma, no se ejercerá sobre el rodamiento ninguna fuerza axial.

De forma alternativa también es posible comprimir, sujetar o adherir el elemento.

La siguiente tabla muestra la fuerza axial máxima permitida F_A en parada.


Característica	Uni-	Valor					
	dad	SH3040	SH3055	SH3070	SH3100	SH3140	SH3205
Fuerza axial	N	20	40	80	160	300	740
máxima F _A en parada	(lbf)	(4,5)	(9)	(18)	(36)	(65)	(165)

Carga del eje

Son aplicables las siguientes condiciones:

- No debe excederse la fuerza máxima de presión sobre el extremo del eje
- No deben ejercerse simultáneamente cargas límite radiales y axiales
- Vida útil nominal del rodamiento en horas de trabajo con una probabilidad de fallo del 10 % (L_{10h} = 20 000 horas)
- Velocidad media n = 4000 rpm
- Temperatura ambiente = 40 °C (104 °F)
- Par de pico = tipo de servicio S3 S8, 10% de ciclo de trabajo
- Par nominal = tipo de servicio S1, 100% de ciclo de trabajo

Carga del eje

El punto de aplicación de las fuerzas depende del tamaño del motor:

Característica	Unidad	Valor	Valor					
		SH3040	SH3055	SH30701, SH30702	SH30703	SH31001, SH31002, SH31003	SH31004, SH3140	SH3205
Valor para X	mm	12,5	10	11,5	15	20	25	40
	(in)	(0,49)	(0,39)	(0,45)	(0,59)	(0,76)	(0,98)	(1,57)

En las siguientes tablas, se muestran la carga del eje radial máxima F_R y la carga del eje axial máxima F_A para SH3040:

Velocidad	Unidad	Valor			
de rotación		SH30401		SH30402	
		F _R	FA	F _R	FA
1000 rpm	N	130	26	145	29
	(lbf)	(29)	(6)	(32)	(7)
2000 rpm	N	105	21	115	23
	(lbf)	(24)	(5)	(26)	(5)
3000 rpm	N	90	18	100	20
	(lbf)	(20)	(4)	(22)	(4)
4000 rpm	N	85	17	90	18
	(lbf)	(19)	(4)	(20)	(4)
5000 rpm	N	76	16	85	17
	(lbf)	(17)	(4)	(19)	(4)
6000 rpm	N	72	15	80	16
	(lbf)	(16)	(3)	(80)	(4)
7000 rpm	N	68	14	76	15
	(lbf)	(15)	(3)	(17)	(3)
8000 rpm	N	65	13	72	14
	(lbf)	(15)	(3)	(16)	(3)
9000 rpm	N	63	12	70	13
	(lbf)	(14)	(3)	(16)	(3)
10 000 rpm	N	60	11	67	12
	(lbf)	(13)	(2)	(15)	(3)

En las siguientes tablas, se muestran la carga del eje radial máxima F_R y la carga del eje axial máxima F_A para SH3055:

Velocidad de rotación	Unidad	Valor							
		SH30551		SH30552		SH30553			
		F _R	FA	F _R	FA	F _R	FA		
1000 rpm	N	340	68	370	74	390	78		
	(lbf)	(76)	(15)	(83)	(17)	(88)	(18)		
2000 rpm	N	270	54	290	58	310	62		
	(lbf)	(61)	(12)	(65)	(13)	(70)	(14)		
3000 rpm	N	240	48	260	52	270	54		
	(lbf)	(54)	(11)	(58)	(12)	(61)	(12)		
4000 rpm	N	220	44	230	46	240	48		
	(lbf)	(49)	(10)	(52)	(10)	(54)	(11)		
5000 rpm	N	200	40	220	44	230	46		
	(lbf)	(45)	(9)	(49)	(10)	(52)	(10)		
6000 rpm	N	190	38	200	40	210	42		
	(lbf)	(43)	(9)	(45)	(9)	(47)	(9)		
7000 rpm	N	180	36	190	38	200	40		
	(lbf)	(40)	(8)	(43)	(9)	(45)	(9)		
8000 rpm	N	170	34	190	38	190	38		
	(lbf)	(38)	(8)	(43)	(9)	(43)	(9)		

En las siguientes tablas, se muestran la carga del eje radial máxima F_R y la carga del eje axial máxima F_A para SH3070:

Velocidad de rotación	Unidad	Valor							
		SH30701		SH30702		SH30703			
		F _R	FA	F _R	FA	F _R	FA		
1000 rpm	N	660	132	710	142	730	146		
	(lbf)	(148)	(30)	(160)	(32)	(164)	(33)		
2000 rpm	N	520	104	560	112	580	116		
	(lbf)	(117)	(23)	(126)	(25)	(130)	(26)		
3000 rpm	N	460	92	490	98	510	102		
	(lbf)	(103)	(21)	(110)	(22)	(115)	(23)		
4000 rpm	N	410	82	450	90	460	92		
	(lbf)	(92)	(18)	(101)	(20)	(103)	(21)		
5000 rpm	N	380	76	410	82	430	86		
	(lbf)	(85)	(17)	(92)	(18)	(97)	(19)		
6000 rpm	N	360	72	390	78	400	80		
	(lbf)	(81)	(16)	(88)	(18)	(90)	(18)		

En las siguientes tablas, se muestran la carga del eje radial máxima F_R y la carga del eje axial máxima F_A para SH3100:

Velocidad	Unidad	Valor							
de rotación		SH3100	1	SH3100)2	SH3100	3	SH31004	
		F _R	FA						
1000 rpm	N	900	180	990	198	1050	210	1070	214
	(lbf)	(202)	(40)	(223)	(45)	(236)	(47)	(241)	(48)
2000 rpm	N	720	144	790	158	830	166	850	170
	(lbf)	(162)	(32)	(178)	(36)	(187)	(37)	(191)	(38)
3000 rpm	N	630	126	690	138	730	146	740	148
	(lbf)	(142)	(28)	(155)	(31)	(164)	(33)	(166)	(33)
4000 rpm	N	570	114	620	124	660	132	-	-
	(lbf)	(128)	(26)	(139)	(28)	(148)	(30)		
5000 rpm	N	530	106	-	-	-	-	-	-
	(lbf)	(119)	(24)						

En las siguientes tablas, se muestran la carga del eje radial máxima F_R y la carga del eje axial máxima F_A para SH3140:

Velocidad	Unidad	Valor								
de rotación		SH3140	SH31401		SH31402 SH31		SH31403		4	
		F _R	FA	F _R	FA	F _R	FA	F _R	FA	
1000 rpm	N	1930	386	2240	448	2420	484	2660	532	
	(lbf)	(434)	(87)	(504)	(101)	(544)	(109)	(598)	(120)	
2000 rpm	N	1530	306	1780	356	1920	384	2110	422	
	(lbf)	(344)	(69)	(400)	(80)	(432)	(86)	(474)	(95)	
3000 rpm	N	1340	268	1550	310	1670	334	1840	368	
	(lbf)	(301)	(60)	(348)	(70)	(375)	(75)	(414)	(83)	

En las siguientes tablas, se muestran la carga del eje radial máxima F_R y la carga del eje axial máxima F_A para SH3205:

Velocidad	Unidad	Valor								
de rotación		SH32051		SH32052		SH32053				
		F _R	F _A	F _R	F _A	F _R	F _A			
1000 rpm	N	3730	746	4200	840	4500	900			
	(lbf)	(839)	(168)	(944)	(189)	(1012)	(202)			
2000 rpm	N	2960	592	3330	666	3570	714			
	(lbf)	(665)	(133)	(749)	(150)	(803)	(161)			
3000 rpm	N	2580	516	2910	582	3120	624			
	(lbf)	(580)	(116)	(654)	(131)	(701)	(140)			

Datos de rendimiento

SH3040

Los motores SH3 tienen una placa de tipo electrónico que permite que un sistema de software lea directamente los parámetros del motor. Para mejorar constantemente la calidad, algunos valores de las tablas de datos de rendimiento que aparecen a continuación se han actualizado, y algunos de los valores de las tablas que aparecen a continuación pueden ser diferentes de los leídos en los datos de la placa de tipo electrónico. Esto tiene el objetivo de mantener la compatibilidad de sus aplicaciones existentes.

NOTA: Los siguientes datos relacionados con el rendimiento se midieron en condiciones de laboratorio. Los resultados pueden variar según las condiciones de montaje, entorno y trabajo de la máquina o del proceso.

Datos generales(1):

Característica	Unidad	Valor		
		SH30401P	SH30402P	
Par de parada continua M ₀ ⁽²⁾	Nm	0,21	0,39	
Par de pico M _{max}	Nm	0,75	1,50	
Número de pares de polos		5	5	

⁽¹⁾ Condiciones para los datos de rendimiento: montaje en placa de aluminio de 185 mm (7,28 in) x 185 mm (7,28 in) x 8 mm (0,31 in).

Datos generales con tensión de alimentación U_n = 115 V CA:

Característica	Unidad	Valor		
		SH30401P	SH30402P	
Revoluciones nominales n _N	rpm	2000	2000	
Par nominal M _N	Nm	0,20	0,38	
Corriente nominal I _N	A _{rms}	1,03	1,45	
Potencia nominal P _N	kW	0,042	0,078	

Datos generales con tensión de alimentación U_n = 230 V CA:

Característica	Unidad	Valor		
		SH30401P	SH30402P	
Revoluciones nominales n _N	rpm	4000	4000	
Par nominal M _N	Nm	0,19	0,37	
Corriente nominal I _N	A _{rms}	1,01	1,42	
Potencia nominal P _N	kW	0,080	0,152	

Datos generales con tensión de alimentación U_n = 400 V CA y 480 V CA:

Característica	Unidad	Valor		
		SH30401P	SH30402P	
Velocidad nominal de rotación sin anillo retén n _N	rpm	9000	9000	
Velocidad nominal de rotación con anillo retén n _N	rpm	6000	6000	
Par nominal M _N	Nm	0,18	0,31	
Corriente nominal I _N	A _{rms}	1,02	1,27	
Potencia nominal P _N	kW	0,170	0,292	

⁽²⁾ M₀ = par de parada continua a 20 rpm y al 100 % de ciclo de trabajo; a velocidades inferiores a 20 rpm, el par de parada continua se reduce al 87 %.

Datos eléctricos:

Característica	Unidad	Valor			
		SH30401P	SH30402P		
Tensión de devanado máxima U _{max}	Vac	480	480		
Tensión de devanado máxima U _{max}	Vdc	680	680		
Tensión máxima a tierra	Vac	280	280		
Corriente máxima I _{max}	A _{rms}	4,5	7,2		
Corriente de parada continua I ₀	A _{rms}	1,12	1,50		
Constante de tensión k _E u-v ⁽¹⁾	V _{rms}	13,6	18,0		
Constante de par k _t	Nm/A	0,190	0,260		
Resistencia de la bobina R ₂₀ u-v	Ω	17,2	11,6		
Inductancia de la bobina L _q u-v	mH	14,6	12,8		
Inductancia de la bobina L _d u-v	mH	13,2	11,6		
(1) Valor eficaz a 1000 rpm y 20 °C (68 °F).					

Datos mecánicos:

Característica	Unidad	Valor		
		SH30401P	SH30402P	
Velocidad máxima permitida de rotación sin anillo retén n _{max}	rpm	10 000	10 000	
Velocidad máxima permitida de rotación con anillo retén n _{max}	rpm	6000	6000	
Momento de inercia del rotor sin freno de parada J _M	kgcm ²	0,0232	0,0419	
Momento de inercia del rotor con freno de parada J_{M}	kgcm ²	0,0400	0,0588	
Masa sin freno de parada m	kg	0,46	0,60	
Masa con freno de parada m	kg	0,61	0,75	

Datos térmicos:

Característica	Unidad	Valor		
		SH30401P	SH30402P	
Constante de tiempo térmica t _{th}	min	8	10	

0198441113990.07

SH3055

Los motores SH3 tienen una placa de tipo electrónico que permite que un sistema de software lea directamente los parámetros del motor. Para mejorar constantemente la calidad, algunos valores de las tablas de datos de rendimiento que aparecen a continuación se han actualizado, y algunos de los valores de las tablas que aparecen a continuación pueden ser diferentes de los leídos en los datos de la placa de tipo electrónico. Esto tiene el objetivo de mantener la compatibilidad de sus aplicaciones existentes.

NOTA: Los siguientes datos relacionados con el rendimiento se midieron en condiciones de laboratorio. Los resultados pueden variar según las condiciones de montaje, entorno y trabajo de la máquina o del proceso.

Datos generales(1):

Característica	Unidad	Valor				
		SH30551P	SH30552P	SH30553P		
Par de parada continua M ₀ ⁽²⁾	Nm	0,42	0,71	1,05		
Par de pico M _{max}	Nm	1,5	2,5	3,5		
Número de pares de polos		3	3	3		

⁽¹⁾ Condiciones para los datos de rendimiento: montaje en placa de aluminio de 250 mm (9,84 in) x 250 mm (9,84 in) x 12 mm (0,47 in).

Datos generales con tensión de alimentación U_n = 115 V CA:

Característica	Unidad	Valor				
		SH30551P	SH30552P	SH30553P		
Revoluciones nominales n _N	rpm	2000	2000	2000		
Par nominal M _N	Nm	0,40	0,69	0,98		
Corriente nominal I _N	Arms	0,70	1,18	1,60		
Potencia nominal P _N	kW	0,08	0,15	0,21		

Datos generales con tensión de alimentación U_n = 230 V CA:

Característica	Unidad	Valor					
		SH30551P	SH30552P	SH30553P			
Velocidad nominal de rotación sin anillo retén n _N	rpm	4000	4000	4000			
Velocidad nominal de rotación con anillo retén n _N	rpm	4000	4000	4000			
Par nominal M _N	Nm	0,39	0,67	0,93			
Corriente nominal I _N	A _{rms}	0,68	1,15	1,52			
Potencia nominal P _N	kW	0,16	0,28	0,39			

Datos generales con tensión de alimentación U_n = 400 V CA y 480 V CA:

Característica	Unidad	Valor						
		SH30551P	SH30552P	SH30553P				
Velocidad nominal de rotación sin anillo retén n _N	rpm	8000	8000	8000				
Velocidad nominal de rotación con anillo retén n _N	rpm	6000	6000	6000				
Par nominal M _N	Nm	0,35	0,63	0,81				
Corriente nominal I _N	A _{rms}	0,62	1,10	1,35				
Potencia nominal P _N	kW	0,29	0,53	0,68				

⁽²⁾ M₀ = par de parada continua a 20 rpm y al 100 % de ciclo de trabajo; a velocidades inferiores a 20 rpm, el par de parada continua se reduce al 87 %.

Datos eléctricos:

Característica	Uni-	Valor					
	dad	SH30551P	SH30552P	SH30553P			
Tensión de devanado máxima U _{max}	Vac	480	480	480			
Tensión de devanado máxima U _{max}	Vdc	680	680	680			
Tensión máxima a tierra	Vac	280	280	280			
Corriente máxima I _{max}	A _{rms}	2,90	4,80	6,50			
Corriente de parada continua I ₀	A _{rms}	0,73	1,20	1,70			
Constante de tensión k _E u-v ⁽¹⁾	V _{rms}	40,00	40,00	41,00			
Constante de par k _t	Nm/A	0,58	0,59	0,62			
Resistencia de la bobina R ₂₀ u-v	Ω	41,80	17,40	10,40			
Inductancia de la bobina Lqu-v	mH	74,3	36,40	26,00			
Inductancia de la bobina L _d u-v	mH	68,84	34,28	23,96			
(1) Valor eficaz a 1000 rpm y 20 °C (68 °F).							

Datos mecánicos:

Característica	Uni-	Valor				
	dad	SH30551P	SH30552P	SH30553P		
Velocidad máxima permitida de rotación sin anillo retén n _{max}	rpm	9000	9000	9000		
Velocidad máxima permitida de rotación con anillo retén n _{max}	rpm	6000	6000	6000		
Momento de inercia del rotor sin freno de parada J _M	kgcm ²	0,059	0,096	0,134		
Momento de inercia del rotor con freno de parada J _M	kgcm ²	0,080	0,117	0,155		
Masa sin freno de parada m	kg	1,20	1,50	1,80		
Masa con freno de parada m	kg	1,35	1,65	1,95		

Datos térmicos:

Característica	Uni-	Valor		
	dad	SH30551P	SH30552P	SH30553P
Constante de tiempo térmica t _{th}	min	21	26	33
Umbral de respuesta sensor de	°C	130	130	130
temperatura (PTC) T _{TK}	(°F)	(266)	(266)	(266)

SH3070

Los motores SH3 tienen una placa de tipo electrónico que permite que un sistema de software lea directamente los parámetros del motor. Para mejorar constantemente la calidad, algunos valores de las tablas de datos de rendimiento que aparecen a continuación se han actualizado, y algunos de los valores de las tablas que aparecen a continuación pueden ser diferentes de los leídos en los datos de la placa de tipo electrónico. Esto tiene el objetivo de mantener la compatibilidad de sus aplicaciones existentes.

NOTA: Los siguientes datos relacionados con el rendimiento se midieron en condiciones de laboratorio. Los resultados pueden variar según las condiciones de montaje, entorno y trabajo de la máquina o del proceso.

Datos generales(1):

Característica	Uni- dad	Valor					
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P	
Par de parada continua M ₀ ⁽²⁾	Nm	1,25	2,04	2,04	2,94	2,94	
Par de pico M _{max}	Nm	3,5	7,6	7,6	11,3	11,3	
Número de pares de polos		3	3	3	3	3	

⁽¹⁾ Condiciones para los datos de rendimiento: montaje en placa de aluminio de 250 mm (9,84 in) x 250 mm (9,84 in) x 12 mm (0,47 in).

Datos generales con tensión de alimentación U_n = 115 V CA:

Característica	Uni-	Valor					
	dad	SH30701P	SH30702M	SH30702P	SH30703M	SH30703P	
Revoluciones nominales n _N	rpm	1500	750	1500	750	1500	
Par nominal M _N	Nm	1,22	2,04	2,03	2,92	2,79	
Corriente nominal I _N	A _{rms}	1,76	1,47	2,90	2,10	3,90	
Potencia nominal P _N	kW	0,19	0,16	0,32	0,23	0,44	

Datos generales con tensión de alimentación U_n = 230 V CA:

	Uni-	Valor					
	dad	SH30701P	SH30702M	SH30702P	SH30703M	SH30703P	
Revoluciones nominales n _N	rpm	3000	1500	3000	1500	3000	
Par nominal M _N	Nm	1,19	2,03	1,95	2,78	2,63	
Corriente nominal I _N	A _{rms}	1,72	1,47	2,80	2,00	3,70	
Potencia nominal P _N	kW	0,37	0,32	0,61	0,44	0,83	

Datos generales con tensión de alimentación U_n = 400 V CA y 480 V CA:

	Uni-	Valor					
	dad	SH30701P	SH30702M	SH30702P	SH30703M	SH30703P	
Revoluciones nominales n _N	rpm	6000	3000	6000	3000	6000	
Par nominal M _N	Nm	1,10	2,03	1,80	2,63	2,12	
Corriente nominal I _N	A _{rms}	1,60	1,47	2,60	1,90	3,00	
Potencia nominal P _N	kW	0,69	0,64	1,13	0,83	1,33	

⁽²⁾ M₀ = par de parada continua a 20 rpm y al 100 % de ciclo de trabajo; a velocidades inferiores a 20 rpm, el par de parada continua se reduce al 87 %.

Datos eléctricos:

Característica	Uni-	Valor						
	dad	SH30701P	SH30702M	SH30702P	SH30703M	SH30703P		
Tensión de devanado máxima U _{max}	Vac	480	480	480	480	480		
Tensión de devanado máxima U _{max}	Vdc	680	680	680	680	680		
Tensión máxima a tierra	Vac	280	280	280	280	280		
Corriente máxima I _{max}	A _{rms}	5,70	6,00	11,80	8,70	17,00		
Corriente de parada continua I ₀	A _{rms}	1,80	1,50	2,90	2,10	4,10		
Constante de tensión k _E u-v ⁽¹⁾	V _{rms}	46,00	95,90	48,00	95,00	49,00		
Constante de par k _t	Nm/A	0,69	1,36	0,70	1,40	0,72		
Resistencia de la bobina R ₂₀ u-v	Ω	10,40	16,40	4,20	10,70	2,70		
Inductancia de la bobina L _q u-v	mH	42,60	83,10	21,30	55,30	14,60		
Inductancia de la bobina L _d u-v	mH	35,30	65,20	16,70	43,10	11,40		
(1) Valor eficaz a 1000 rpm y 20 °C (68 °F).								

Datos mecánicos con versión de hardware ≥RS02:

Característica	Uni-	Valor				
	dad	SH30701P	SH30702M	SH30702P	SH30703M	SH30703P
Velocidad máxima permitida de rotación sin anillo retén n _{max}	rpm	8000	8000	8000	8000	8000
Velocidad máxima permitida de rotación con anillo retén n _{max}	rpm	6000	6000	6000	6000	6000
Momento de inercia del rotor sin freno de parada J_{M}	kgcm ²	0,250	0,410	0,410	0,580	0,580
Momento de inercia del rotor con freno de parada J_{M}	kgcm ²	0,322	0,482	0,482	0,807	0,807
Masa sin freno de parada m	kg	2,10	2,80	2,80	3,60	3,60
Masa con freno de parada m	kg	2,50	3,20	3,20	4,00	4,00

Datos mecánicos con versión de hardware <RS02:

Característica	Uni-					
	dad	SH30701P	SH30702M	SH30702P	SH30703M	SH30703P
Velocidad máxima permitida de rotación sin anillo retén n _{max}	rpm	8000	8000	8000	8000	8000
Velocidad máxima permitida de rotación con anillo retén n _{max}	rpm	6000	6000	6000	6000	6000
Momento de inercia del rotor sin freno de parada J _M	kgcm ²	0,205	0,351	0,351	0,503	0,503
Momento de inercia del rotor con freno de parada J _M	kgcm ²	0,322	0,482	0,482	0,807	0,807
Masa sin freno de parada m	kg	2,20	2,80	2,80	3,60	3,60
Masa con freno de parada m	kg	2,40	3,00	3,00	3,80	3,80

Datos térmicos:

Característica	Uni-	Valor						
Q.	dad	SH30701P	SH30702M	SH30702P	SH30703M	SH30703P		
Constante de tiempo térmica t _{th}	min	35	38	38	51	51		
Umbral de respuesta sensor de	°C	130	130	130	130	130		
temperatura (PTC) T _{TK}	(°F)	(266)	(266)	(266)	(266)	(266)		

0198441113990.07

SH31001 y SH31002

Los motores SH3 tienen una placa de tipo electrónico que permite que un sistema de software lea directamente los parámetros del motor. Para mejorar constantemente la calidad, algunos valores de las tablas de datos de rendimiento que aparecen a continuación se han actualizado, y algunos de los valores de las tablas que aparecen a continuación pueden ser diferentes de los leídos en los datos de la placa de tipo electrónico. Esto tiene el objetivo de mantener la compatibilidad de sus aplicaciones existentes.

NOTA: Los siguientes datos relacionados con el rendimiento se midieron en condiciones de laboratorio. Los resultados pueden variar según las condiciones de montaje, entorno y trabajo de la máquina o del proceso.

Datos generales(1):

Característica	dad	Valor					
		SH31001M	SH31001P	SH31002M	SH31002P		
Par de parada continua M ₀ ⁽²⁾	Nm	2,94	2,94	5,80	5,80		
Par de pico M _{max}	Nm	9,6	9,6	18,3	18,3		
Número de pares de polos		4	4	4	4		

⁽¹⁾ Condiciones para los datos de rendimiento: montaje en placa de acero de 300 mm (11,81 in) x 300 mm (11,81 in) x 20 mm (0,79 in).

Datos generales con tensión de alimentación U_n = 115 V CA:

Característica	Uni-	Valor					
	dad	SH31001M	SH31001P	SH31002M	SH31002P		
Revoluciones nominales n _N	rpm	625	1250	500	1000		
Par nominal M _N	Nm	2,80	2,91	5,62	5,50		
Corriente nominal I _N	A _{rms}	1,75	3,50	2,45	4,55		
Potencia nominal P _N	kW	0,18	0,38	0,29	0,58		

Datos generales con tensión de alimentación U_n = 230 V CA:

	Uni-	Valor					
	dad	SH31001M	SH31001P	SH31002M	SH31002P		
Revoluciones nominales n _N	rpm	1250	2500	1000	2000		
Par nominal M _N	Nm	2,71	2,64	5,50	5,20		
Corriente nominal I _N	A _{rms}	1,70	3,20	2,40	4,30		
Potencia nominal P _N	kW	0,35	0,69	0,58	1,09		

Datos generales con tensión de alimentación U_n = 400 V CA y 480 V CA:

	Uni-	Valor					
	dad	SH31001M	SH31001P	SH31002M	SH31002P		
Revoluciones nominales n _N	rpm	2500	5000	2000	4000		
Par nominal M _N	Nm	2,52	2,27	5,28	4,60		
Corriente nominal I _N	A _{rms}	1,60	2,80	2,30	3,80		
Potencia nominal P _N	kW	0,66	1,19	1,10	1,93		

⁽²⁾ M₀ = par de parada continua a 20 rpm y al 100 % de ciclo de trabajo; a velocidades inferiores a 20 rpm, el par de parada continua se reduce al 87 %.

Datos eléctricos:

Característica	Uni-	Valor				
	dad	SH31001M	SH31001P	SH31002M	SH31002P	
Tensión de devanado máxima U _{max}	Vac	480	480	480	480	
Tensión de devanado máxima U _{max}	Vdc	680	680	680	680	
Tensión máxima a tierra	Vac	280	280	280	280	
Corriente máxima I _{max}	Arms	6,30	12,00	9,00	17,10	
Corriente de parada continua I ₀	A _{rms}	1,80	3,50	2,50	4,80	
Constante de tensión k _E u-v ⁽¹⁾	V _{rms}	115,00	60,00	146,00	77,00	
Constante de par k _t	Nm/A	1,63	0,84	2,32	1,21	
Resistencia de la bobina R ₂₀ u-v	Ω	13,90	3,80	8,60	2,40	
Inductancia de la bobina L _q u-v	mH	69,40	19,00	48,60	13,50	
Inductancia de la bobina L _d u-v	mH	59,50	16,30	43,20	12,00	
(1) Valor eficaz a 1000 rpm y 20 °C (68 °F).	•	•		•		

Datos mecánicos:

Característica	Uni- dad	Valor					
		SH31001M	SH31001P	SH31002M	SH31002P		
Velocidad máxima admitida n _{max}	rpm	6000	6000	6000	6000		
Momento de inercia del rotor sin freno de parada J _M	kgcm ²	1,400	1,400	2,310	2,310		
Momento de inercia del rotor con freno de parada J _M	kgcm ²	2,018	2,018	2,928	2,928		
Masa sin freno de parada m	kg	4,30	4,30	5,90	5,90		
Masa con freno de parada m	kg	5,00	5,00	6,60	6,60		

Datos térmicos:

Característica	Uni- dad	Valor					
		SH31001M	SH31001P	SH31002M	SH31002P		
Constante de tiempo térmica t _{th}	min	44	44	48	48		
Umbral de respuesta sensor de temperatura (PTC) T _{TK}	°C	130	130	130	130		
	(°F)	(266)	(266)	(266)	(266)		

SH31003 y SH31004

Los motores SH3 tienen una placa de tipo electrónico que permite que un sistema de software lea directamente los parámetros del motor. Para mejorar constantemente la calidad, algunos valores de las tablas de datos de rendimiento que aparecen a continuación se han actualizado, y algunos de los valores de las tablas que aparecen a continuación pueden ser diferentes de los leídos en los datos de la placa de tipo electrónico. Esto tiene el objetivo de mantener la compatibilidad de sus aplicaciones existentes.

NOTA: Los siguientes datos relacionados con el rendimiento se midieron en condiciones de laboratorio. Los resultados pueden variar según las condiciones de montaje, entorno y trabajo de la máquina o del proceso.

Datos generales(1):

Característica	Uni- dad	Valor			
		SH31003M	SH31003P	SH31004P	
Par de parada continua M ₀ ⁽²⁾	Nm	8	8	10	
Par de pico M _{max}	Nm	28,3	28,3	40,5	
Número de pares de polos		4	4	4	

⁽¹⁾ Condiciones para los datos de rendimiento: montaje en placa de acero de 300 mm (11,81 in) x 300 mm (11,81 in) x 20 mm (0,79 in).

Datos generales con tensión de alimentación U_n = 115 V CA:

Característica	Uni- dad	Valor			
		SH31003M	SH31003P	SH31004P	
Revoluciones nominales n _N	rpm	500	1000	750	
Par nominal M _N	Nm	7,80	7,50	9,90	
Corriente nominal I _N	A _{rms}	3,34	6,30	6,25	
Potencia nominal P _N	kW	0,41	0,79	0,78	

Datos generales con tensión de alimentación U_n = 230 V CA:

Característica	Uni- dad	Valor			
		SH31003M	SH31003P	SH31004P	
Revoluciones nominales n _N	rpm	1000	2000	1500	
Par nominal M _N	Nm	7,50	7,00	9,50	
Corriente nominal I _N	A _{rms}	3,27	5,90	6,10	
Potencia nominal P _N	kW	0,79	1,47	1,49	

Datos generales con tensión de alimentación U_n = 400 V CA y 480 V CA:

	Uni- dad	Valor			
		SH31003M	SH31003P	SH31004P	
Revoluciones nominales n _N	rpm	2000	4000	3000	
Par nominal M _N	Nm	7,00	5,70	7,90	
Corriente nominal I _N	A _{rms}	3,10	4,90	5,30	
Potencia nominal P _N	kW	1,47	2,39	2,48	

⁽²⁾ M₀ = par de parada continua a 20 rpm y al 100 % de ciclo de trabajo; a velocidades inferiores a 20 rpm, el par de parada continua se reduce al 87 %.

Datos eléctricos:

Característica	Uni-	Valor	Valor			
	dad	SH31003M	SH31003P	SH31004P		
Tensión de devanado máxima U _{max}	Vac	480	480	480		
Tensión de devanado máxima U _{max}	Vdc	680	680	680		
Tensión máxima a tierra	Vac	280	280	280		
Corriente máxima I _{max}	A _{rms}	14,70	28,30	32,30		
Corriente de parada continua I ₀	A _{rms}	3,40	6,60	6,20		
Constante de tensión k _E u-v ⁽¹⁾	V _{rms}	148,00	77,00	103,00		
Constante de par k _t	Nm/A	2,35	1,22	1,62		
Resistencia de la bobina R ₂₀ u-v	Ω	5,30	1,43	1,81		
Inductancia de la bobina L _q u-v	mH	34,80	9,40	13,00		
Inductancia de la bobina L _d u-v	mH	30,00	8,10	10,70		
(1) Valor eficaz a 1000 rpm y 20 °C (68 °F).		•	•	•		

Datos mecánicos:

Característica		Valor			
	dad	SH31003M	SH31003P	SH31004P	
Velocidad máxima admitida n _{max}	rpm	6000	6000	6000	
Momento de inercia del rotor sin freno de parada J _M	kgcm ²	3,220	3,220	4,220	
Momento de inercia del rotor con freno de parada J _M	kgcm ²	3,838	3,838	5,245	
Masa sin freno de parada m	kg	7,50	7,50	9,10	
Masa con freno de parada m	kg	8,20	8,20	9,80	

Datos térmicos:

	Uni-	Valor			
	dad	SH31003M	SH31003P	SH31004P	
Constante de tiempo térmica t _{th}	min	56	56	58	
Umbral de respuesta sensor de temperatura (PTC) T _{TK}	°C	130	130	130	
	(°F)	(266)	(266)	(266)	

SH3140

Los motores SH3 tienen una placa de tipo electrónico que permite que un sistema de software lea directamente los parámetros del motor. Para mejorar constantemente la calidad, algunos valores de las tablas de datos de rendimiento que aparecen a continuación se han actualizado, y algunos de los valores de las tablas que aparecen a continuación pueden ser diferentes de los leídos en los datos de la placa de tipo electrónico. Esto tiene el objetivo de mantener la compatibilidad de sus aplicaciones existentes.

NOTA: Los siguientes datos relacionados con el rendimiento se midieron en condiciones de laboratorio. Los resultados pueden variar según las condiciones de montaje, entorno y trabajo de la máquina o del proceso.

NOTA: Para la referencia del servomotor SH31404, los datos de la placa de tipo electrónico ya no son compatibles con las versiones anteriores. Pruebe la compatibilidad de los datos de la aplicación de software antes de cambiar una versión anterior del servomotor por un nuevo servomotor.

AADVERTENCIA

FUNCIONAMIENTO IMPREVISTO DE LA MÁQUINA

Pruebe a fondo su aplicación antes de sustituir el servomotor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Datos generales(1):

Característica	Unidad	Valor					
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P	
Par de parada continua M ₀ ⁽²⁾	Nm	11,1	11,1	19,5	27,8	33,4	
Par de pico M _{max}	Nm	27	27	60,1	90,2	131,9	
Número de pares de polos		5	5	5	5	5	

⁽¹⁾ Condiciones para los datos de rendimiento: montaje en placa de acero de 400 mm (15,75 in) x 400 mm (15,75 in) x 20 mm (0,79 in).

Datos generales con tensión de alimentación $U_n = 115 \text{ V CA}$:

Característica	Unidad	Valor						
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P		
Revoluciones nominales n _N	rpm	375	750	750	750	750		
Par nominal M _N	Nm	11,00	10,95	18,60	24,70	30,20		
Corriente nominal I _N	A _{rms}	4,00	7,80	12,80	15,90	19,60		
Potencia nominal P _N	kW	0,43	0,86	1,46	1,94	2,37		

Datos generales con tensión de alimentación U_n = 230 V CA:

Característica	Unidad	Valor				
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P
Revoluciones nominales n _N	rpm	750	1500	1500	1500	1500
Par nominal M _N	Nm	10,95	10,60	17,10	21,20	26,30
Corriente nominal I _N	A _{rms}	4,00	7,60	12,00	13,90	17,40
Potencia nominal P _N	kW	0,86	1,67	2,69	3,33	4,13

⁽²⁾ M₀ = par de parada continua a 20 rpm y al 100 % de ciclo de trabajo; a velocidades inferiores a 20 rpm, el par de parada continua se reduce al 87 %.

Datos generales con tensión de alimentación U_n = 400 V CA y 480 V CA:

Característica	Unidad	Valor					
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P	
Revoluciones nominales n _N	rpm	1500	3000	3000	3000	3000	
Par nominal M _N	Nm	10,60	9,20	12,30	12,90	12,86	
Corriente nominal I _N	A _{rms}	4,00	6,80	8,90	8,70	9,20	
Potencia nominal P _N	kW	1,67	2,89	3,86	4,05	4,04	

Datos eléctricos:

Característica	Unidad	Valor	Valor					
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P		
Tensión de devanado máxima U _{max}	Vac	480	480	480	480	480		
Tensión de devanado máxima U _{max}	Vdc	680	680	680	680	680		
Tensión máxima a tierra	Vac	280	280	280	280	280		
Corriente máxima I _{max}	A _{rms}	10,80	20,80	44,10	61,00	95,60		
Corriente de parada continua I ₀	A _{rms}	4,00	7,80	13,20	17,60	21,30		
Constante de tensión k _E u-v ⁽¹⁾	V _{rms}	193,00	100,00	101,00	105,00	104,00		
Constante de par k _t	Nm/A	2,78	1,43	1,47	1,58	1,57		
Resistencia de la bobina R ₂₀ u-v	Ω	5,30	1,41	0,60	0,40	0,28		
Inductancia de la bobina L _q u-v	mH	60,90	16,30	7,70	5,30	4,10		
Inductancia de la bobina L _d u-v	mH	55,30	14,84	7,05	4,84	3,69		
(1) Valor eficaz a 1000 rpm y 20 °C (68 °F).								

Datos mecánicos:

Característica	Unidad	Valor					
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P	
Velocidad máxima admitida n _{max}	rpm	4000	4000	4000	4000	4000	
Momento de inercia del rotor sin freno de parada J_{M}	kgcm ²	7,410	7,410	12,680	17,940	23,700	
Momento de inercia del rotor con freno de parada J _M	kgcm ²	9,210	9,210	14,480	23,440	29,200	
Masa sin freno de parada m	kg	11,20	11,20	16,10	21,30	26,30	
Masa con freno de parada m	kg	12,60	12,60	17,40	23,20	28,40	

Datos térmicos:

Característica	Unidad	Valor				
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P
Constante de tiempo térmica t _{th}	min	64	64	74	79	83
Umbral de respuesta sensor de temperatura (PTC)	°C	130	130	130	130	130
T_TK	(°F)	(266)	(266)	(266)	(266)	(266)

SH3205

Los motores SH3 tienen una placa de tipo electrónico que permite que un sistema de software lea directamente los parámetros del motor. Para mejorar constantemente la calidad, algunos valores de las tablas de datos de rendimiento que aparecen a continuación se han actualizado, y algunos de los valores de las tablas que aparecen a continuación pueden ser diferentes de los leídos en los datos de la placa de tipo electrónico. Esto tiene el objetivo de mantener la compatibilidad de sus aplicaciones existentes.

NOTA: Los siguientes datos relacionados con el rendimiento se midieron en condiciones de laboratorio. Los resultados pueden variar según las condiciones de montaje, entorno y trabajo de la máquina o del proceso.

Datos generales(1):

Característica	Uni-	Valor			
	dad	SH32051P	SH32052P	SH32053P	
Par de parada continua M ₀ ⁽²⁾	Nm	36,90	64,90	94,40	
Par de pico M _{max}	Nm	110	220	330	
Número de pares de polos		5	5	5	

⁽¹⁾ Condiciones para los datos de rendimiento: montaje en placa de acero de 500 mm (19,69 in) x 500 mm (19,69 in) x 30 mm (1,18 in).

Datos generales con tensión de alimentación U_n = 115 V CA:

Característica	Uni-	Valor		
	dad	SH32051P	SH32052P	SH32053P
Revoluciones nominales n _N	rpm	750	500	500
Par nominal M _N	Nm	31,90	61,60	84,90
Corriente nominal I _N	A _{rms}	18,80	25,40	30,80
Potencia nominal P _N	kW	2,51	3,23	4,45

Datos generales con tensión de alimentación U_n = 230 V CA:

Característica	Uni- dad	Valor		
		SH32051P	SH32052P	SH32053P
Revoluciones nominales n _N	rpm	1500	1000	1000
Par nominal M _N	Nm	27,00	56,00	74,40
Corriente nominal I _N	A _{rms}	16,50	24,00	27,90
Potencia nominal P _N	kW	4,24	5,86	7,79

Datos generales con tensión de alimentación U_n = 400 V CA y 480 V CA:

Característica	Uni- dad	Valor		
		SH32051P	SH32052P	SH32053P
Revoluciones nominales n _N	rpm	3000	2000	2000
Par nominal M _N	Nm	17,50	38,10	50,70
Corriente nominal I _N	A _{rms}	11,50	17,80	20,40
Potencia nominal P _N	kW	5,50	7,98	10,62

⁽²⁾ M₀ = par de parada continua a 20 rpm y al 100 % de ciclo de trabajo; a velocidades inferiores a 20 rpm, el par de parada continua se reduce al 87 %.

Datos eléctricos:

Característica	Uni-	Valor		
	dad	SH32051P	SH32052P	SH32053P
Tensión de devanado máxima U _{max}	Vac	480	480	480
Tensión de devanado máxima U _{max}	Vdc	680	680	680
Tensión máxima a tierra	Vac	280	280	280
Corriente máxima I _{max}	A _{rms}	87,20	96,80	136,10
Corriente de parada continua I ₀	A _{rms}	21,00	25,70	33,20
Constante de tensión k _E u-v ⁽¹⁾	V _{rms}	110,00	161,00	172,00
Constante de par k _t	Nm/A	1,60	2,58	2,76
Resistencia de la bobina R ₂₀ u-v	Ω	0,30	0,30	0,20
Inductancia de la bobina L _q u-v	mH	5,90	5,60	4,30
Inductancia de la bobina L _d u-v	mH	5,60	5,20	4,00
(1) Valor eficaz a 1000 rpm y 20 °C (68 °F).				

Datos mecánicos:

Característica	Uni- dad	Valor		
		SH32051P	SH32052P	SH32053P
Velocidad máxima admitida n _{max}	rpm	3800	3800	3800
Momento de inercia del rotor sin freno de parada J _M	kgcm ²	71,400	129,000	190,000
Momento de inercia del rotor con freno de parada J _M	kgcm ²	87,400	145,000	206,000
Masa sin freno de parada m	kg	35,00	50,00	67,00
Masa con freno de parada m	kg	38,60	53,60	70,60

Datos térmicos:

Característica	Uni- dad	Valor		
		SH32051P	SH32052P	SH32053P
Constante de tiempo térmica n _{max}	min	73	88	101
Umbral de respuesta sensor de temperatura (PTC)	°C (°F)	130 (266)	130 (266)	130 (266)

Encoder para motores con conexión de un cable

Descripción

Los motores están equipados con un encoder HIPERFACE DSL. El variador puede acceder a la placa de características electrónica mediante la interfaz HIPERFACE para la puesta en funcionamiento.

Los circuitos cumplen los requisitos de MBTP.

EKS36 Singleturn

Este encoder del motor mide un valor absoluto en el transcurso de una revolución durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución por revolución	18 bits
Rango de medición absoluto	1 revolución
Forma de señal	Digital
Sensor de temperatura	Integrado
Tensión de alimentación	7 12 V CC
Aceleración angular máxima	200 000 rad/s ²

EKM36 Multiturn

Este encoder del motor mide un valor absoluto en el transcurso de 4096 revoluciones durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución por revolución	18 bits
Rango de medición absoluto	4096 revoluciones
Forma de señal	Digital
Sensor de temperatura	Integrado
Tensión de alimentación	7 12 V CC
Aceleración angular máxima	200 000 rad/s²

EES37 Singleturn

Este encoder del motor mide un valor absoluto en el transcurso de una revolución durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución por revolución	15 bits
Rango de medición absoluto	1 revolución
Forma de señal	Digital
Sensor de temperatura	Integrado
Tensión de alimentación	7 12 V CC
Aceleración angular máxima	200 000 rad/s ²

EEM37 Multiturn

Este encoder del motor mide un valor absoluto en el transcurso de 4096 revoluciones durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución por revolución	15 bits
Rango de medición absoluto	4096 revoluciones
Forma de señal	Digital
Sensor de temperatura	Integrado
Tensión de alimentación	7 12 V CC
Aceleración angular máxima	200 000 rad/s²

Encoder para motores con conexión de dos cables

Descripción

Los motores están equipados con un encoder HIPERFACE SinCos. El variador puede acceder a la placa de características electrónica mediante la interfaz HIPERFACE para la puesta en funcionamiento.

Los circuitos cumplen los requisitos de MBTP.

SKS36 Singleturn

Este encoder del motor mide un valor absoluto en el transcurso de una revolución durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución en incrementos	en función de la evaluación
Resolución por revolución	128 períodos Sin/Cos
Rango de medición absoluto	1 revolución
Precisión del valor absoluto digital ⁽¹⁾	±0,0889°
Precisión de la posición incremental	±0,0222°
Forma de señal	Sinusoidal
Tensión de alimentación	7 12 VCC
Corriente de alimentación máxima	60 mA (sin carga)
Aceleración angular máxima	200000 rad/s ²

⁽¹⁾ En función de la evaluación del variador puede aumentarse la precisión incluyendo también la posición incremental de forma adicional para calcular el valor absoluto. En este caso, la precisión corresponde a la posición incremental.

SKM36 Multiturn

Este encoder del motor mide un valor absoluto en el transcurso de 4096 revoluciones durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución en incrementos	en función de la evaluación
Resolución por revolución	128 períodos Sin/Cos
Rango de medición absoluto	4096 revoluciones
Precisión del valor absoluto digital ⁽¹⁾	±0,0889°
Precisión de la posición incremental	±0,0222°
Forma de señal	Sinusoidal
Tensión de alimentación	7 12 VCC
Corriente de alimentación máxima	60 mA (sin carga)
Aceleración angular máxima	200000 rad/s ²

⁽¹⁾ En función de la evaluación del variador puede aumentarse la precisión incluyendo también la posición incremental de forma adicional para calcular el valor absoluto. En este caso, la precisión corresponde a la posición incremental.

SEK37 Singleturn

Este encoder del motor mide un valor absoluto en el transcurso de una revolución durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución en incrementos	en función de la evaluación
Resolución por revolución	16 períodos Sin/Cos
Rango de medición absoluto	1 revolución
Precisión de la posición	± 0,08°
Forma de señal	Sinusoidal
Tensión de alimentación	7 12 VCC
Corriente de alimentación máxima	50 mA (sin carga)

SEL37 Multiturn

Este encoder del motor mide un valor absoluto en el transcurso de 4096 revoluciones durante la puesta en marcha y continúa contando a partir de este punto de forma incremental.

Característica	Valor
Resolución en incrementos	en función de la evaluación
Resolución por revolución	16 períodos Sin/Cos
Rango de medición absoluto	4096 revoluciones
Precisión de la posición	± 0,08°
Forma de señal	Sinusoidal
Tensión de alimentación	7 12 VCC
Corriente de alimentación máxima	50 mA (sin carga)

Freno de parada

Características

Característica	Uni-	Valor para SH3									
dad	040	055	070(1)	0701, 0702 ⁽²⁾	0703(2)	1001, 1002, 1003	1004	1401, 1402	1403, 1404	205	
Par de parada ⁽³⁾	Nm	0,4	0,8	3	2	3	9	12	23	36	80
	(lb•in)	(3,54)	(7,08)	(26,6)	(17,7)	(26,6)	(79,7)	(106)	(204)	(319)	(708)
Tiempo de apertura	ms	24	12	80	25	35	40	45	50	100	200
Tiempo de acoplamiento	ms	13	6	17	8	15	20	20	40	45	50
Tensión nominal	Vdc	24	24	24	24	24	24	24	24	24	24
		+15%	+6%	+5%	+6%	+6%	+6%	+6%	+6%	+6%	+6%
		-15%	-10%	-15%	-10%	-10%	-10%	-10%	-10%	-10%	-10%
Potencia nominal (potencia inicial eléctrica)	W	5,8	10	7	10	12	18	17	24	26	40
Energía cinética máxima que puede transformarse en calor por deceleración al frenar cargas móviles	J	10	120	130	130	130	150	150	550	850	21 000

⁽¹⁾ Con una versión del hardware ≥RS02.
(2) Con una versión del hardware <RS02.
(3) El freno de parada está esmerilado de fábrica. Si el freno de parada no se utilizara durante un tiempo prolongado, piezas del mismo podrían oxidarse. La corrosión provocará una reducción del par de parada.

Característica	Unidad	Valor
Velocidad máxima al frenar cargas móviles	rpm	3000
Número máximo de deceleraciones al frenar cargas móviles y 3000 rpm	-	500
Número máximo de deceleraciones al frenar cargas móviles por hora (con distribución homogénea)	-	20

0198441113990.07 57

Certificaciones

Certificaciones del producto

Certificado por	Número asignado
UL	File E208613

Condiciones para UL 1004-1, UL 1004-6 y CSA 22.2 No. 100

Alimentación de tensión MBTP

Utilice únicamente fuentes de alimentación homologadas para la categoría de sobretensión III.

Cableado

Utilice conductores de cobre para al menos 60/75 °C (140/167 °F).

Instalación

AAPELIGRO

DESCARGA ELÉCTRICA POR TOMA DE TIERRA INSUFICIENTE

- Asegure el cumplimiento de todas las normas vigentes y disposiciones referentes a la conexión a tierra del sistema de accionamiento completo.
- Conecte a tierra el sistema de accionamiento antes de establecer la tensión.
- No utilice tubos de entrada de cables como conductores de protección sino un conductor de protección en el interior del tubo.
- La sección del conductor de protección tiene que cumplir las normas vigentes.
- No considere las pantallas de cable como conductores de protección.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

AAPELIGRO

DESCARGA ELÉCTRICA O FUNCIONAMIENTO IMPREVISTO DEL EQUIPO

- Evite que caigan al producto elementos extraños (virutas, tornillos o trozos de alambre).
- Compruebe el ajuste correcto de las juntas y guiados de cable con el fin de evitar suciedad, por ejemplo por sedimentaciones o humedad.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Este equipo ha sido diseñado para funcionar fuera de cualquier ubicación peligrosa. Instale el equipo únicamente en zonas sin atmósfera peligrosa.

A PELIGRO

POSIBILIDAD DE EXPLOSIÓN

Instale y utilice el equipo únicamente en ubicaciones no peligrosas.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Los motores son muy pesados en relación con su tamaño. La gran masa del motor puede producir lesiones y daños. El motor puede moverse, volcar y caer debido a un montaje incorrecto o insuficiente.

AADVERTENCIA

PIEZAS PESADAS Y/O CAÍDA DE PIEZAS

- Para el montaje del motor utilice una grúa adecuada u otros aparejos apropiados si el peso del motor lo hace necesario.
- Utilice el equipo de protección personal necesario (por ejemplo, calzado de seguridad, gafas y guantes de protección).
- Realice el montaje (uso de tornillos con el par de apriete adecuado) de forma que el motor no se suelte incluso en el caso de fuertes aceleraciones o sacudidas constantes.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Los motores pueden generar campos locales eléctricos y magnéticos de gran intensidad. Esto puede causar interferencias en equipos sensibles a los campos electromagnéticos.

AADVERTENCIA

CAMPOS ELECTROMAGNÉTICOS

- Mantenga alejadas del motor a las personas con implantes electrónicos, tales como marcapasos.
- No coloque ningún equipo sensible a las emisiones electromagnéticas en las proximidades del motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Las superficies metálicas del producto pueden alcanzar durante el funcionamiento temperaturas superiores a 70 °C (158 °F).

AADVERTENCIA

SUPERFICIES CALIENTES

- Evite el contacto sin protección con las superficies calientes.
- No coloque ninguna pieza inflamable o sensible al calor en la cercanía de las superficies calientes.
- Realice un funcionamiento de prueba con carga máxima para asegurarse de que la disipación de calor es suficiente.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

AADVERTENCIA

APLICACIÓN INDEBIDA DE FUERZA

- No utilice el motor como escalón para subirse a la máquina.
- No utilice el motor como pieza portante.
- Utilice letreros informativos y dispositivos de protección en su máquina con el fin de evitar la influencia de fuerzas indebidas en el motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Compatibilidad electromagnética (CEM)

Aspectos generales

Las medidas para la compatibilidad electromagnética (CEM) sirven para minimizar las interferencias electromagnéticas en el equipo y las interferencias generadas por el equipo en su entorno. Aquí se incluyen medidas para reducir las interferencias por acoplamiento y para aumentar la resistencia a interferencias.

La compatibilidad electromagnética de una instalación depende en gran medida de los componentes utilizados. Las medidas CEM descritas en el presente documento pueden ayudar a satisfacer los requisitos de la IEC 61800-3. Es imprescindible cumplir las directrices CEM del país en el que se utiliza el producto. Tenga en cuenta que, en función del lugar de instalación (por ejemplo, entorno residencial o aeropuerto), pueden regir directrices CEM especiales.

Las señales de interferencia puede provocar reacciones imprevisibles del sistema de accionamiento, así como de otros equipos de su entorno.

AADVERTENCIA

INTERFERENCIA DE SEÑALES Y EQUIPOS

- Realice el cableado conforme a las medidas CEM descritas en el presente documento.
- Asegure el cumplimiento de las medidas CEM descritas en el presente documento.
- Asegúrese de que se cumplen todas las directrices CEM del país en el que se utiliza el producto, así como todas las directrices CEM vigentes en el lugar de instalación.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Estos tipos de equipos no se han diseñado para utilizarlos en una red pública de baja tensión que ofrezca suministro a instalaciones domésticas. Si se utiliza en una red de este tipo, lo más probable es que se produzcan interferencias de radiofrecuencia.

AADVERTENCIA

INTERFERENCIAS DE ALTA FRECUENCIA

No utilice estos productos en redes eléctricas domésticas.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Cables del motor y del encoder

Desde el aspecto CEM, los cables de motor son particularmente críticos puesto que pueden provocar interferencias en mayor medida.

Tenga en cuenta ya durante la planificación del cableado que el cable del motor se conduce por separado. El cable del motor debe tenderse separado del cable de red y del cable de señal (por ejemplo, final de carrera). Utilice únicamente cables preconfeccionados o cables con las propiedades prescritas y tenga en cuenta las siguientes medidas sobre CEM.

Medidas sobre CEM	Efecto				
Mantener el cable lo más corto posible. No montar bucles de cables innecesarios. Conducir el cable lo más corto posible desde el punto central de puesta a tierra en el armario eléctrico hasta la conexión de puesta a tierra exterior.	Disminuye las interferencias capacitivas e inductivas.				
Asegurarse de que el motor está puesto a tierra a través de la brida del motor a la superficie de montaje en la máquina (no debe haber pintura, aceite, grasa ni otras sustancias aislantes entre la brida del motor y la superficie de montaje en la máquina).	Reduce las emisiones y aumenta la inmunidad.				
Conectar las pantallas del cable amplias y utilizar abrazaderas de cables y bandas de puesta a tierra.	Reducir la emisión.				
No instalar elementos de conmutación en los cables.	Reduce la interferencia.				
Tender el cable del motor separado del cable de red y del cable de señal (por ejemplo, final de carrera), por ejemplo, a través de una chapa de pantalla o respetando una distancia mínima de 20 cm (5,08 in).	Reduce la interferencia mutua.				
Enrute los cables sin cortarlos.(1)	Se reducen las emisiones.				
(A) Si ac cortare un cable para la instalación en la unate de congresión debe proverse una postella					

⁽¹⁾ Si se cortara un cable para la instalación, en el punto de separación debe preverse una pantalla continua aplicando otras medidas (por ejemplo, mediante una carcasa metálica). La pantalla del cable debe estar unida, en gran parte de su extensión, a la carcasa metálica en ambos lados del punto de separación.

Cables de conexión confeccionados del volumen de accesorios

El uso de cables preconfeccionados ayuda a minimizar los errores de cableado. Consulte Accesorios y piezas de repuesto, página 88.

Cables y señales

Información general

Secciones del conductores conformes al tipo de tendido

A continuación se describen las secciones de los conductores para dos tipos de tendido habituales:

- Tipo de tendido B2:
 - Cables en tubos de instalación eléctrica o en canales de instalación de apertura
- Tipo de tendido E:
 Cables en bandejas de escalera abiertas

Sección en mm² (AWG)	Corriente admisible con tipo de tendido B2 en A ⁽¹⁾	Corriente admisible con tipo de tendido E en A ⁽¹⁾
0,75 (18)	8,5	10,4
1 (16)	10,1	12,4
1,5 (14)	13,1	16,1
2,5 (12)	17,4	22
4 (10)	23	30
6 (8)	30	37
10 (6)	40	52
16 (4)	54	70
25 (2)	70	88
-		

⁽¹⁾ Valores conformes a IEC 60204-1 para servicio continuo, conductor de cobre y temperatura ambiente del aire de 40 $^{\circ}$ C (104 $^{\circ}$ F). Para más información, consulte IEC 60204-1.

Observe los factores de reducción en caso de acumulación de cables, así como los factores de corrección para otras condiciones ambientales (IEC 60204-1).

Los conductores deben disponer de una sección suficiente para poder activar el fusible preconectado.

En el caso de cables más largos, puede ser necesario utilizar una sección de conductor mayor para reducir la pérdida de energía.

Especificaciones de los cables para motores con conexión de un cable (SH3-OMC)

Descripción

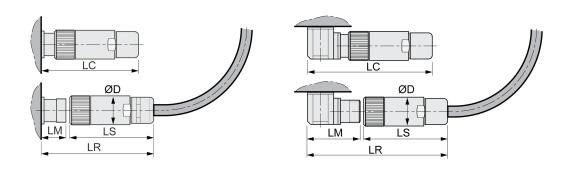
El uso de cables preconfeccionados ayuda a minimizar los errores de cableado. Consulte Accesorios y piezas de repuesto, página 88.

Los accesorios originales tienen las propiedades siguientes:

Cables híbridos

Característica	Valor para					
	VW3ED132	VW3ED143	VW3ED144	VW3ED145		
Revestimiento del cable, aislamiento	Verde (similar a RAL 6018)					
Número de contactos (apantallado)	(4 x 1,5 mm ² +					
	[2 × 0,75 mm ²] +		[2 × 1,0 mm ²] +			
	[2 × AWG24])		[2 × AWG24])			
Lado del motor del conector	Redondo de 8 polos M17	Redondo de 8 polos	M23	Redondo de 8 polos M40		
Lado de la unidad del conector	Preconfeccionado pa	ara LXM62DU60, LXM6	62DD15, LXM62DD27	y LXM62DD45		
Motor asignado	SH3040, SH3055 SH3070, SH3100, SH31401, SH31402 SH31403, SH31404					
Diámetro del cable	11,7 mm ± 0,3 mm		14,0 mm ± 0,4 mm			
	(0,46 in ± 0,1 in)		(0,55 in ± 0,2 in)			
Radio de curvatura mínimo con instalación fija	5 veces el diámetro del cable					
Radio de curvatura mínimo con instalación móvil	7,5 veces el diámetro del cable					
Tensión nominal fases del motor	1000 V					
Tensión nominal freno de parada	1000 V					
Tensión nominal encoder	30 V					
Longitud máxima ⁽¹⁾	75 m (246 ft)					
Intervalo de temperatura permitido durante el almacenamiento y el transporte	-25 80 °C (-13 176 °F)					
Intervalo de temperatura permitido durante el funcionamiento	-20 80 °C (-4 176 °F)					
Certificaciones/declaración de conformidad	CE					
(1) Incluido el alargador eléctrico. Máximo dos ala	argadores eléctricos hít	oridos.				

Alargadores eléctricos híbridos


Característica	Valor para	Valor para				
	VW3EF132	VW3EF143	VW3EF144	VW3EF145		
Revestimiento del cable, aislamiento	Verde (similar a RAL 6	Verde (similar a RAL 6018)				
Número de contactos (apantallado)	(4 x 1,5 mm ² +		(4 x 2,5 mm ² +			
	[2 × 0,75 mm ²] +	[2 × 0,75 mm ²] +				
	[2 × AWG24])		[2 × AWG24])			
Conectores (ambos extremos)	Redondo de 8 polos M17			Redondo de 8 polos M40		
Diámetro del cable	11,7 mm ± 0,3 mm		14,0 mm ± 0,4 mm			
	(0,46 in ± 0,1 in)		(0,55 in ± 0,2 in)			

Característica	Valor para					
	VW3EF132	VW3EF143	VW3EF144	VW3EF145		
Radio de curvatura mínimo con instalación fija	5 veces el diámetro del cable					
Radio de curvatura mínimo con instalación móvil	7,5 veces el diámetro del cable					
Tensión nominal fases del motor	1000 V					
Tensión nominal freno de parada	1000 V					
Tensión nominal encoder	30 V					
Intervalo de temperatura permitido durante el almacenamiento y el transporte	-25 80 °C (-13 1	76 °F)				
Intervalo de temperatura permitido durante el funcionamiento	-20 80 °C (-4 176 °F)					
Certificaciones/declaración de conformidad	CE					

Distancia de separación para conectores

Conectores rectos

Conectores angulares

Dimensiones	Unidad	Valor	Valor				
		Recto	En ángulo				
		M23	M17	M23	M40		
D	mm (in)	28,0 (1,10)	22,0 (0,87)	28,0 (1,10)	46,0 (1,81)		
LS	mm (in)	78,0 (3,07)	56,0 (2,20)	78,0 (3,07)	99,0 (3,90)		
LR	mm (in)	111,8 (4,40)	105,0 (4,13)	133,3 (5,25)	190,0 (7,48)		
LC	mm (in)	80,5 (3,17)	89,2 (3,51)	102,0 (4,02)	170 (6,69)		
LM	mm (in)	33,8 (1,33)	49,0 (1,93)	55,3 (2,18)	91,0 (3,58)		

Especificaciones de los cables para motores con conexión de dos cables

Descripción

El uso de cables preconfeccionados ayuda a minimizar los errores de cableado. Consulte Accesorios y piezas de repuesto, página 88.

Los accesorios originales tienen las propiedades siguientes:

Cables del motor

Característica	Valor					
	VW3E1166	VW3E1143	VW3E1144	VW3E1145	VW3E1153	VW3E1154
Revestimiento del cable, aislamiento	PUR verde (sin	PUR verde (similar a RAL 6018)				
Número de contactos (blindado)	(4 x 1 mm ² + 2 x [2 x 0,75 mm ²])	(4 x 1,5 mm ² + 2 x [2 x 0,75 mm ²])	(4 x 2,5 mm ² + 2 x [2 x 1 mm ²])	(4 x 2,5 mm ² + 2 x [2 x 1 mm ²])	(4 x 4 mm ² + [2 x 1 mm ²] + [2 x 1,5 mm ²])	(4 x 10 mm ² + [2 x 1 mm ²] + [2 x 1,5 mm ²])
Lado del motor del conector	Y-TEC circular 8 pins	Redondo de 8 p	polos M23	Redondo de 8	polos M40	
Lado de la unidad del conector	Preconfecciona	ado para LXM52 y	/ LXM62			
Motor asignado	SH3040	SH3055, SH30 SH31401, SH3		SH31403, SH3	1404, SH3205	
Diámetro del cable	11 mm ± 0,3 mm	12,4 mm ± 0,4 mm	14,4 mm ± 0,3 mm	14,7 mm ± 0,3 mm	18,4 mm ± 0,3 mm	22,7 mm ± 0,3 mm
	(0,43 in ± 0,01 in)	(0,49 in ± 0,1 in)	(0,57 in ± 0,1 in)	(0,58 in ± 0,1 in)	(0,72 in ± 0,1 in)	(0,89 in ± 0,1 in)
Radio de curvatura mínimo con instalación fija	10 veces el diámetro del cable	5 veces el diámetro del cable				
Radio de curvatura mínimo con instalación móvil	10 veces el diámetro del cable	12 veces el diá	metro del cable			
Conductores de alimentación tensión nominal	1000 V	1000 V				
Conductores de señal tensión nominal	1000 V	300 V				
Longitud máxima (incluido alargador eléctrico)	75 m (246 ft)					
Intervalo de temperatura permitido	-40 80 °C		-50 80 °C		-40 80 °C	-50 80 °C
durante el funcionamiento con instalación fija	(-40 176 °F)	(-58 176 °F)				(-58 176 ° F)
Intervalo de temperatura permitido	-20 60 °C	-30 80 °C	-40 80 °C		-30 80 °C	-40 80 °C
durante el funcionamiento con instalación móvil	(-4 140 °F)	(-22 176 ° F)	(-40 176 °F)		(-22 176 ° F)	(-40 176 ° F)
Certificaciones/declaración de conformidad	CE				1	1

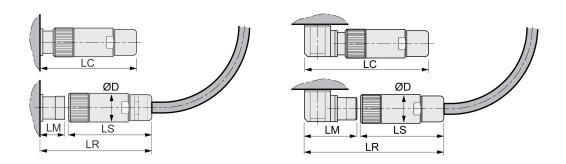
Alargadores eléctricos del motor

Característica	Valor
	VW3E1167
Revestimiento del cable, aislamiento	PUR verde (similar a RAL 6018)
Número de contactos (blindado)	(4 x 1 mm ² + 2 x [2 x 0,75 mm ²])
Conectores	Redondo de 8 polos Y-TEC macho/hembra
Diámetro del cable	11 mm ± 0,3 mm (0,43 in ± 0,01 in)

Característica	Valor		
	VW3E1167		
Radio de curvatura mínimo con instalación fija	10 veces el diámetro del cable		
Radio de curvatura mínimo con instalación móvil	10 veces el diámetro del cable		
Conductores de alimentación tensión nominal	1000 V		
Conductores de señal tensión nominal	1000 V		
Intervalo de temperatura permitido durante el funcionamiento con instalación fija	-40 80 °C (-40 176 °F)		
Intervalo de temperatura permitido durante el funcionamiento con instalación móvil	-20 60 °C (-4 140 °F)		
Certificaciones/declaración de conformidad	CE		

Cables del encoder

Característica	Valor			
	VW3E2098	VW3E2094		
Revestimiento del cable, aislamiento	PUR verde mate (similar a RAL 601	8)		
Número de contactos (blindado)	(3 × 2 × 0,14 mm ² + 2 × 0,34 mm ²)			
Lado del motor del conector	Redondo de 12 polos Y-TEC	M23 circular 12 pins		
Lado de la unidad del conector	De 10 polos RJ45			
Motor asignado	SH3040	SH3055, SH3070, SH3100, SH3140, SH3205		
Diámetro del cable	6,8 mm ± 0,2 mm (0,27 in ± 0,1 in)			
Radio de curvatura mínimo con instalación fija	10 veces el diámetro del cable			
Radio de curvatura mínimo con instalación móvil	10 veces el diámetro del cable			
Tensión nominal	300 V			
Longitud máxima (incluido alargador eléctrico)	75 m (246 ft)			
Intervalo de temperatura permitido durante el funcionamiento con instalación fija	-40 80 °C (-40 176 °F)			
Intervalo de temperatura permitido durante el funcionamiento con instalación móvil	-20 80 °C (-4 176 °F)			


Alargadores eléctricos del encoder

Característica	Valor				
	VW3E2099				
Revestimiento del cable, aislamiento	PUR verde (similar a RAL 6018)				
Número de contactos (blindado)	(3 × 2 × 0,14 mm ² + 2 × 0,34 mm ²)				
Conectores	Redondo de 12 polos Y-TEC				
Diámetro del cable	6,8 mm ± 0,2 mm (0,27 in ± 0,1 in)				
Radio de curvatura mínimo con instalación fija	10 veces el diámetro del cable				
Radio de curvatura mínimo con instalación móvil	10 veces el diámetro del cable				
Tensión nominal	300 V				
Intervalo de temperatura permitido durante el funcionamiento con instalación fija	-40 80 °C (-40 176 °F)				
Intervalo de temperatura permitido durante el funcionamiento con instalación móvil	-20 80 °C (-4 176 °F)				

Distancia de separación para conectores

Conectores rectos

Conectores angulares

Dimensiones	Unidad	Valor							
		Conector del motor					Conector del codificador		
		Recto		En ángulo			Recto	En ángulo	
		M23	M40	Y-TEC	M23	M40	M23	Y-TEC	M23
D	mm (in)	28 (1,1)	46 (1,81)	18,7 (0,74)	28 (1,1)	46 (1,81)	26 (1,02)	18,7 (0,74)	26 (1,02)
LS	mm (in)	76 (2,99)	100 (3,94)	42 (1,65)	76 (2,99)	100 (3,94)	51 (2,01)	42 (1,65)	51 (2,01)
LR	mm (in)	117 (4,61)	155 (6,1)	100 (3,94)	132 (5,2)	191 (7,52)	76 (2,99)	100 (3,94)	105 (4,13)
LC	mm (in)	100 (3,94)	145 (5,71)	89 (3,50)	114 (4,49)	170 (6,69)	60 (2,36)	89 (3,50)	89 (3,5)
LM	mm (in)	40 (1,57)	54 (2,13)	58 (2,28)	55 (2,17)	91 (3,58)	23 (0,91)	58 (2,28)	52 (2,05)

Instalación mecánica

Antes del montaje

Comprobación del producto

- Compruebe la versión del producto mediante la codificación de los modelos de la placa de características. Consulte Placa de características, página 12 y Codificación de los modelos, página 14.
- Antes de montarlo, compruebe si el producto presenta daños visibles.

Los productos dañados pueden provocar una descarga eléctrica y originar un comportamiento no intencionado.

AAPELIGRO

DESCARGA ELÉCTRICA O COMPORTAMIENTO NO INTENCIONADO

- · No utilice ningún producto deteriorado.
- Evite que caigan al producto elementos extraños (virutas, tornillos o trozos de alambre).

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

En caso de daños en el producto, póngase en contacto con su representante local de Schneider Electric.

Inspección del freno de parada (opcional)

Consulte Inspección/esmerilado del freno de parada, página 69.

Limpieza del eje

Los extremos del eje de los motores se dotan en fábrica con una protección contra corrosión. Si los componentes de salida se adhirieran, será preciso eliminar la protección contra corrosión y limpiar el eje. Si fuera necesario, utilice un producto de limpieza según las prescripciones del fabricante del adhesivo. En el caso de que el fabricante del adhesivo no facilitara ninguna indicación, puede utilizarse acetona como producto de limpieza.

 Elimine la protección contra corrosión. Evite el contacto directo de la piel y los materiales de obturación con la protección contra corrosión o con el producto de limpieza utilizado.

Superficie de montaje para brida

La superficie de montaje debe ser estable, estar limpia y desbarbada y no estar sometida a una vibración excesiva. Asegúrese de que la superficie de montaje está puesta a tierra y de que existe una conexión conductora eléctrica entre la superficie de montaje y la brida.

AAPELIGRO

DESCARGA ELÉCTRICA POR TOMA DE TIERRA INSUFICIENTE

- Asegure el cumplimiento de todas las normas vigentes y disposiciones referentes a la conexión a tierra del sistema de accionamiento completo.
- Conecte a tierra el sistema de accionamiento antes de establecer la tensión.
- No utilice tubos de entrada de cables como conductores de protección sino un conductor de protección en el interior del tubo.
- La sección del conductor de protección tiene que cumplir las normas vigentes.
- No considere las pantallas de cable como conductores de protección.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Asegúrese de que la superficie de montaje cumple todas las dimensiones y tolerancias indicadas en este documento.

Montaje del motor

Aspectos generales

Las descargas electrostáticas (ESD) sobre el eje pueden provocar interferencias en el sistema de encoder y, con ello, movimientos inesperados del motor, así como daños en los rodamientos.

AADVERTENCIA

MOVIMIENTO INVOLUNTARIO DEBIDO A DESCARGAS ELECTROSTÁTICAS

Utilice elementos conductores como, por ejemplo, correas antiestáticas u otras medidas adecuadas para evitar la carga estática por efecto del movimiento.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Si no pueden mantenerse las condiciones ambientales permitidas, pueden penetrar sustancias ajenas del entorno en el producto y causar movimientos inesperados o daños materiales.

AADVERTENCIA

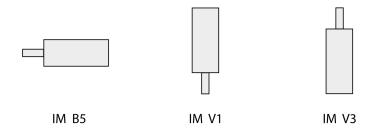
MOVIMIENTO INVOLUNTARIO

- Asegúrese de que pueden mantenerse las condiciones ambientales.
- Evite que las juntas se sequen.
- Evite la presencia de líquidos en el paso del eje.
- No exponga los anillos retén y los guiados de cable del motor al chorro del limpiador a alta presión.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Las superficies metálicas del producto pueden alcanzar durante el funcionamiento temperaturas superiores a 70 °C (158 °F).

AADVERTENCIA

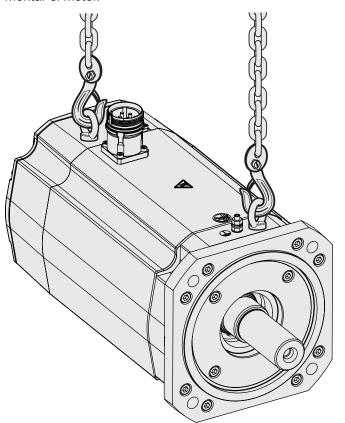

SUPERFICIES CALIENTES

- · Evite el contacto sin protección con las superficies calientes.
- No coloque ninguna pieza inflamable o sensible al calor en la cercanía de las superficies calientes.
- Realice un funcionamiento de prueba con carga máxima para asegurarse de que la disipación de calor es suficiente.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o da \tilde{n} os en el equipo.

Posición de montaje

Según IEC 60034-7, se definen y están permitidas las siguientes posiciones de montaje:



Montaje

Al montar el motor en la superficie de montaje, este debe estar nivelado axial y radialmente con precisión y estar apoyado de forma homogénea. Todos los tornillos de fijación deben apretarse con el par de apriete prescrito. Al apretar los tornillos de fijación no deben generarse cargas mecánicas irregulares. Consulte la sección Datos técnicos, página 16 para conocer los datos, las dimensiones y las categorías de protección (IP).

Armellas (solo SH3205)

Los motores están equipados con armellas. Use las armellas para levantar y montar el motor.

Una vez montado el motor, las armellas pueden conservarse o quitarse. Quite las armellas si es necesario, por ejemplo, para girar el conector.

Montaje de los componentes de salida

Los componentes de salida como la polea o el acoplamiento deben montarse con un elemento auxiliar y herramientas adecuados. El motor y el componente de salida deben estar alineados con precisión tanto axial como radialmente. Una alineación imprecisa del motor y del componente de salida provoca un funcionamiento inestable y un mayor desgaste.

Las fuerzas axiales y radiales máximas aplicadas en el eje no deben ser superiores a los valores indicados para la carga máxima del eje. Consulte Datos específicos del eje, página 34.

Al exceder las fuerzas máximas permitidas en el eje del motor, se produce un desgaste rápido de los cojinetes o la rotura del eje.

AADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO DEBIDO A DAÑOS MECÁNICOS DEL MOTOR

- No supere las fuerzas radiales y axiales máximas permitidas en el eje del motor.
- · Proteja el eje del motor contra impactos.
- No supere la fuerza axial máxima admisible al presionar elementos sobre el eje del motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

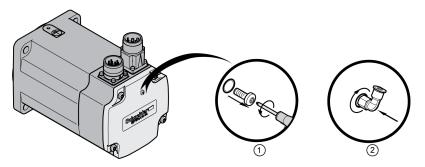
Conexión para aire comprimido para motores con conexión de dos cables

Aspectos generales

El aire comprimido genera una sobrepresión continua en el interior del motor. Gracias a esta sobrepresión en el interior del motor, se logra la categoría de protección IP67.

La conexión del aire comprimido con el anillo retén (IP65) solo está prevista para alcanzar la categoría de protección IP67.

El empalme en L está diseñado para mangueras de aire comprimido de plástico estándar con un diámetro nominal de 4 mm.

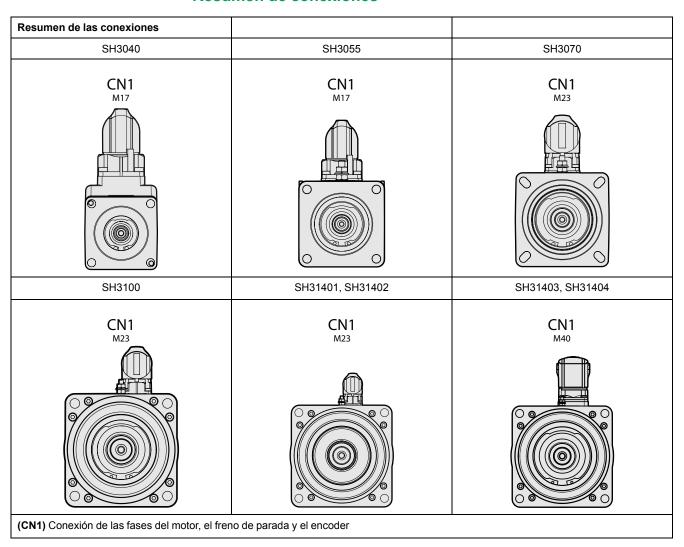

Consulte la sección Aire comprimido, página 16 si desea conocer las características del aire comprimido.

Supervisión del aire comprimido

Utilice un sistema para la supervisión del aire comprimido (presostato).

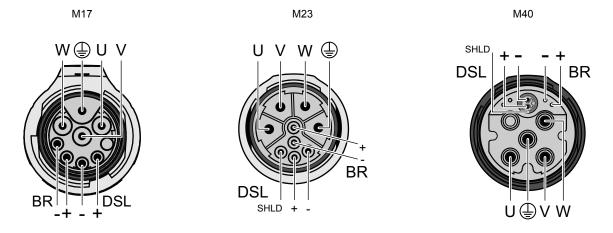
Conexión para aire comprimido

Para la instalación, el tapón ciego (tornillo) existente se sustituye por un empalme en L. Consulte las fuentes de suministro del empalme en L en la sección Juego IP67, página 89.



Paso	Acción
1	Retire el tapón ciego (tornillo).
2	Atornille el empalme en L en la rosca.
	Compruebe que el empalme en L esté correctamente colocado.
	Compruebe el par de apriete del empalme en L: 0,6 Nm (5,31 lb•in)

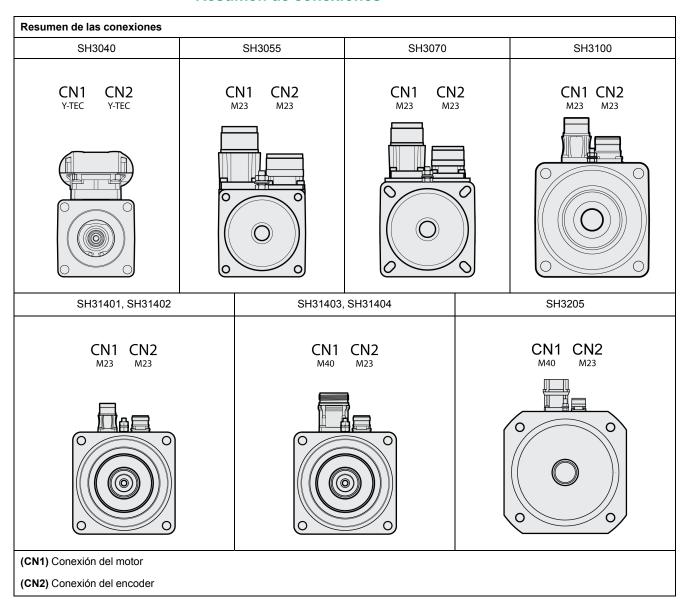
Instalación eléctrica


Conectores y asignaciones de conectores para motores con conexión de un cable (SH3 OMC)

Resumen de conexiones

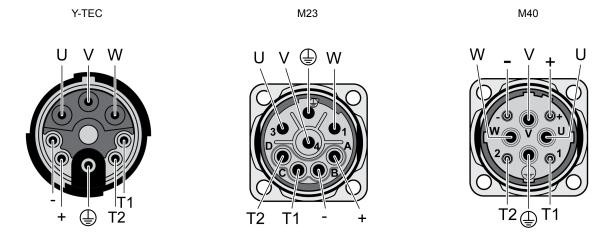
Conexión CN1

Conector para conexión de las fases del motor y del freno de parada:



Los circuitos del freno de parada y del encoder cumplen los requisitos de MBTP.

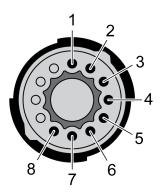
Pin	Significado	Cables accesorios
		Color y número de conductores
U	Fase del motor U	BK 1
V	Fase del motor V	BK 2
W	Fase del motor W	BK 3
PE	Conductor de protección	GN/YE
BR+	Tensión de alimentación freno de parada 24 V CC	BK 8
BR-	Potencial de referencia freno de parada 0 V CC	BK 7
DSL+	Tensión de alimentación encoder 10 V CC	BU
DSL-	Potencial de referencia encoder 0 V CC	WH
SHLD	Encoder apantallado	-


Conectores y asignaciones de conectores para motores con conexión de dos cables

Resumen de conexiones

Conexión del motor CN1

Conector del motor para la conexión de las fases del motor y del freno de parada.



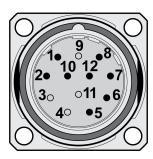
Los circuitos del freno de parada y del sensor de temperatura cumplen los requisitos de MBTP.

Pin	Significado	Cables accesorios
		Color y número de conductores
U	Fase del motor U	BK L1 o BK 1
V	Fase del motor V	BK L2 o BK 2
W	Fase del motor W	BK L3 o BK 3
PE	Conductor de puesta a tierra de protección	GN/YE
+	Tensión de alimentación freno de parada 24 V CC	WH o BK 8
-	Potencial de referencia freno de parada 0 V CC	GY o BK 7
T1	Sensor de temperatura +	BK 6
T2	Sensor de temperatura -	BK 5
SHLD	Pantalla (en caja conector)	-

Conexión del encoder CN2 Y-TEC

Conector del encoder para la conexión del encoder SinCos (Single-Turn y Multi-Turn)

Los circuitos cumplen los requisitos de MBTP.


Pin	Señal	Significado	Par ⁽¹⁾	Cables accesorios
				Color del conductor
1	COS_OUT	Señal coseno	2	GN
2	REFCOS_OUT	Referencia para señal coseno, 2,5 V	2	YE
3	SIN_OUT	Señal seno	1	WH
4	REFSIN_OUT	Referencia para señal seno, 2,5 V	1	BN
5	DATA+	Datos de recepción, datos de transmisión	3	GY
6	DATA-	Datos de recepción y datos de transmisión, invertidos	3	PK
7	ENC+10V	Tensión de alimentación de 7 12 V	4	RD
8	ENC_0V	Potencial de referencia ⁽²⁾	4	BL
	SHLD	Pantalla (en caja conector)	-	-

(1) Los pares de señal deben ser trenzados

(2) La conexión ENC_0V de la tensión de alimentación no está unida a la carcasa del encoder.

Conexión del encoder CN2 M23

Conector del encoder para la conexión del encoder SinCos (Single-Turn y Multi-Turn)

Los circuitos cumplen los requisitos de MBTP.

Pin	Señal	Significado	Cables accesorios
			Color del conductor
1	REFCOS_OUT	Referencia para señal coseno, 2,5 V	YE
2	DATA+	Datos de recepción, datos de transmisión	GY
5	SIN_OUT	Señal seno	BN
6	REFSIN_OUT	Referencia para señal seno, 2,5 V	WH
7	DATA-	Datos de recepción y datos de transmisión, invertidos	PK
8	COS_OUT	Señal coseno	GN
10	ENC_0V	Potencial de referencia ⁽¹⁾	BL
12	ENC+10V	Tensión de alimentación de 7 12 V	RD
	SHLD	Pantalla (en caja conector)	-
(1) La conexión ENC_0V de la tensión de alimentación no está unida a la carcasa del encoder.			

Conexión de potencia y del encoder

Aspectos generales

En la conexión del motor pueden producirse tensiones peligrosas. El motor genera tensión cuando se gira el eje. En el cable del motor pueden acoplarse tensiones alternas en conductores no utilizados.

APELIGRO

DESCARGA ELÉCTRICA

- Asegúrese de que el sistema de accionamiento esté libre de tensión antes de realizar trabajos en el sistema de accionamiento.
- Asegure el eje del motor contra accionamientos ajenos antes de realizar trabajos en el sistema de accionamiento.
- Aísle los conductores no utilizados en ambos extremos del cable del motor.
- Toque el eje del motor o los componentes de salida solo cuando todas las conexiones estén sin tensión.
- Asegure el cumplimiento de todas las normas vigentes referentes a la conexión a tierra del sistema de accionamiento.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

AAPELIGRO

DESCARGA ELÉCTRICA POR TOMA DE TIERRA INSUFICIENTE

- Asegure el cumplimiento de todas las normas vigentes y disposiciones referentes a la conexión a tierra del sistema de accionamiento completo.
- Conecte a tierra el sistema de accionamiento antes de establecer la tensión.
- No utilice tubos de entrada de cables como conductores de protección sino un conductor de protección en el interior del tubo.
- La sección del conductor de protección tiene que cumplir las normas vigentes.
- No considere las pantallas de cable como conductores de protección.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

El motor está diseñado para funcionar mediante un variador. Una conexión directa del motor a la tensión alterna produce daños en el motor y puede ocasionar un incendio y una explosión.

▲ PELIGRO

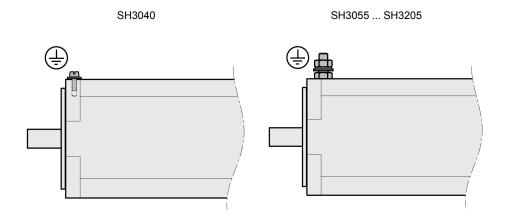
POSIBILIDAD DE EXPLOSIÓN

Conecte el motor a un variador adecuado y autorizado únicamente del modo descrito en este documento.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Los sistemas de accionamiento pueden desencadenar movimientos indeseados debido al uso de combinaciones no permitidas de variador y motor. También en el caso de motores similares existe peligro por ajustes diferentes del sistema de encoder. Aunque los conectores para la conexión del motor y para la conexión del encoder sean mecánicamente compatibles, esto no significa que el motor pueda utilizarse.

AADVERTENCIA


MOVIMIENTO INVOLUNTARIO

Utilice únicamente combinaciones autorizadas de variador y motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Consulte Servoaccionamientos aprobados, página 20.

Conexión del conductor de protección

Ponga a tierra el motor a través de un tornillo de puesta a tierra cuando la puesta a tierra a través de la brida o del conductor de protección del cable del motor no sea suficiente. Utilice piezas con la protección anticorrosión apropiada. Observe el par de apriete necesario y la clase de resistencia del tornillo de conexión a tierra. Consulte Pares de apriete y clase de resistencia de los tornillos utilizados, página 17.

Montaje de los cables

Aísle los conductores no utilizados individualmente y, si es necesario, aísle ambos extremos del conductor.

- Observe las medidas CEM para los cables del motor y del encoder. Consulte Compatibilidad electromagnética (CEM), página 61.
- Utilice conductores de conexión equipotencial para la conexión equipotencial.

Conexión de los cables

Debido a una instalación incorrecta del cable, el aislamiento puede resultar dañado. Unos conductores rotos en el cable o unos conectores no conectados correctamente pueden provocar la formación de arcos eléctricos en el cable.

AAPELIGRO

DESCARGA ELÉCTRICA, EXPLOSIÓN DE ARCO ELÉCTRICO Y INCENDIO

- Antes de insertar o extraer el conector, desconecte la tensión de todas las conexiones.
- Antes de la conexión del cable, compruebe la asignación de contactos de los conectores de acuerdo con lo indicado en esta sección.
- Antes de conectar la tensión, compruebe que los conectores están correctamente insertados y enclavados.
- Evite la acción de fuerzas o movimientos del cable en los pasos de cables.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

- Conexión:
 - Para motores con conexión de dos cables:
 - Conecte el conector del cable del motor al conector del motor y apriete la tuerca de racor. Proceda de igual forma con el cable de conexión para el sistema de encoder.
 - Para motores con conexión de un cable (SH3-OMC):
 Coloque el conector hembra del cable híbrido en el conector del motor y apriete la tuerca de unión.
- Al apretar la tuerca de unión, evite que los cables se retuerzan.
- Conecte los cables al servoaccionamiento de acuerdo con el diagrama de cableado del servoaccionamiento.
- Ponga a tierra la pantalla en una gran área superficial. Encontrará la información sobre la conexión de la pantalla en la guía del usuario del servoaccionamiento.

Conexión del freno de parada

Si acciona el freno de parada con el eje del motor en rotación mientras recibe alimentación, provocará un desgaste excesivo y la pérdida de la fuerza de frenado.

AADVERTENCIA

PÉRDIDA DE LA FUERZA DE FRENADO DEBIDO AL DESGASTE O A TEMPERATURA ALTA

- No utilice el freno de parada como freno de servicio.
- No supere el número máximo de deceleraciones ni la energía cinética máxima al frenar cargas móviles.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Consulte la sección Freno de parada, página 57 para obtener información técnica sobre el frenado con la carga en movimiento.

La apertura del freno de parada puede desencadenar un movimiento involuntario, por ejemplo, una caída de la carga en el caso de ejes verticales.

▲ ADVERTENCIA

MOVIMIENTO INVOLUNTARIO

- Compruebe que no haya personas ni obstáculos en la zona de funcionamiento durante la realización de una prueba del freno de parada.
- Asegúrese de que una caída de la carga u otros movimientos involuntarios no puedan causar ningún daño.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Cuando la tensión es incorrecta, no es posible soltar el freno de parada, por lo que éste puede desgastarse. El freno de parada puede cerrarse de nuevo por encima de la tensión especificada. En caso de polaridad incorrecta de la tensión, el freno de parada no se suelta.

AADVERTENCIA

FUNCIONAMIENTO INCORRECTO DEL FRENO DE PARADA DEBIDO A TENSIÓN ERRÓNEA

- Asegúrese de que haya la tensión especificada en la conexión del freno de parada.
- Para realizar la medición, utilice un voltímetro dimensionado correspondientemente.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Para un motor con freno de parada se precisa un módulo de control de freno de parada correspondiente que suelte el freno de parada al activar la etapa de potencia y que fije a tiempo el eje del motor al desactivar la etapa de potencia.

Puesta en marcha

Puesta en funcionamiento

AAPELIGRO

DESCARGA ELÉCTRICA O FUNCIONAMIENTO IMPREVISTO DEL EQUIPO

- Evite que caigan al producto elementos extraños (virutas, tornillos o trozos de alambre).
- Compruebe el ajuste correcto de las juntas y guiados de cable con el fin de evitar suciedad, por ejemplo por sedimentaciones o humedad.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Los sistemas de accionamiento pueden ejecutar movimientos involuntarios a causa de conexiones erróneas u otros errores.

AADVERTENCIA

MOVIMIENTO INVOLUNTARIO

- Asegúrese de que el cableado es correcto.
- Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.
- Realice los primeros desplazamientos de prueba sin cargas acopladas.
- Toque el eje del motor o los componentes de salida solo cuando todas las conexiones estén sin tensión.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Los sistemas de accionamiento pueden desencadenar movimientos indeseados debido al uso de combinaciones no permitidas de variador y motor. También en el caso de motores similares existe peligro por ajustes diferentes del sistema de encoder. Aunque los conectores para la conexión del motor y para la conexión del encoder sean mecánicamente compatibles, esto no significa que el motor pueda utilizarse.

AADVERTENCIA

MOVIMIENTO INVOLUNTARIO

Utilice únicamente combinaciones autorizadas de variador y motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Consulte la sección Unidades aprobadas, página 20 para obtener una lista de las unidades aprobadas.

Las piezas en rotación pueden causar lesiones y atrapar la ropa y el pelo. Las piezas sueltas o las piezas desequilibradas pueden salir proyectadas.

AADVERTENCIA

PIEZAS MÓVILES SIN PROTECCIÓN

Asegúrese de que no puedan provocarse lesiones ni daños materiales como consecuencia de las piezas en rotación.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Las superficies metálicas del producto pueden alcanzar durante el funcionamiento temperaturas superiores a 70 °C (158 °F).

AADVERTENCIA

SUPERFICIES CALIENTES

- Evite el contacto sin protección con las superficies calientes.
- No coloque ninguna pieza inflamable o sensible al calor en la cercanía de las superficies calientes.
- Realice un funcionamiento de prueba con carga máxima para asegurarse de que la disipación de calor es suficiente.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Los motores pueden generar campos locales eléctricos y magnéticos de gran intensidad. Esto puede causar interferencias en equipos sensibles a los campos electromagnéticos.

▲ ADVERTENCIA

CAMPOS ELECTROMAGNÉTICOS

- Mantenga alejadas del motor a las personas con implantes electrónicos, tales como marcapasos.
- No coloque ningún equipo sensible a las emisiones electromagnéticas en las proximidades del motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

AADVERTENCIA

APLICACIÓN INDEBIDA DE FUERZA

- No utilice el motor como escalón para subirse a la máguina.
- No utilice el motor como pieza portante.
- Utilice letreros informativos y dispositivos de protección en su máquina con el fin de evitar la influencia de fuerzas indebidas en el motor.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Antes de la puesta en marcha debe comprobarse que la instalación se ha realizado correctamente.

Paso	Acción
1	Compruebe la instalación mecánica.
2	Compruebe la instalación eléctrica. • ¿Están conectados todos los conductores de puesta a tierra de protección? • ¿Están conectados e instalados correctamente todos los cables y conectores? • ¿Se han apretado debidamente los prensaestopas?
3	Compruebe las condiciones ambientales. • ¿Se han respetado las condiciones ambientales prescritas?
4	Compruebe los componentes de salida. • ¿Están equilibrados y nivelados con precisión los componentes de salida montados?

Paso	Acción
5	Compruebe la chaveta en el extremo del eje del motor. • Si dispone de un motor con chavetero y chaveta, la chaveta no debe estar
	Si dispone de un motor con chavetero y chaveta, la chaveta no debe estar montada sin componente de salida durante la puesta en marcha o debe estar asegurada convenientemente.
6	Compruebe el funcionamiento del freno de parada. • ¿Puede parar el freno de parada la carga máxima? • ¿Se abre el freno de parada antes de iniciar un movimiento?

NOTA: Tenga en cuenta la información sobre la puesta en funcionamiento incluida en la guía del usuario del servoaccionamiento.

Diagnóstico y resolución de fallos

Problemas mecánicos

Problema	Causa	Solución de problemas
Calentamiento elevado	Sobrecarga	Reduzca la carga.
	Freno de parada no abierto	Compruebe el módulo de control de freno de parada.
	Suciedad intensa	Limpie el motor.
Ruido silbante o de golpeteo	Rodamiento	Póngase en contacto con su representante de servicio local de Schneider Electric.
Ruido de arrastre	El componente de salida giratorio roza	Nivele el componente de salida.
Vibración radial	Nivelación deficiente del componente de salida	Nivele el componente de salida.
	Desequilibrio del componente de salida	Equilibre el componente de salida.
	Eje combado	Póngase en contacto con su representante de servicio local de Schneider Electric.
	Resonancia con apoyo de máquina	Elimine las resonancias.
Vibración axial	Nivelación deficiente del componente de salida	Nivele el componente de salida.
	Daños en el componente de salida	Repare/sustituya el componente de salida.
	Resonancia con apoyo de máquina	Elimine las resonancias.

Problemas eléctricos

Problema	Causa	Solución
El motor no arranca o lo hace con dificultad	Sobrecarga	Reduzca la carga.
unicultau	Ajustes del variador inadecuados	Corrija los ajustes del variador.
	Cable dañado	Sustituya los cables dañados.
Calentamiento elevado	Sobrecarga	Reduzca la potencia.
Calentamiento en los bornes o conectores	Contacto deficiente	Apriete los bornes/conectores con el par de apriete especificado. Consulte la guía del usuario correspondiente a la unidad asociada con el motor. Verifique también la conexión del cable en el motor.

Accesorios y piezas de repuesto

Cables para motores con conexión de un cable (SH3 OMC)

Cables híbridos

Descripción	Referencia
Cable híbrido (4 × 1,5 mm² + [2 × 0,75 mm²] + [2 × AWG24]) apantallado, conector redondo de 8 polos M17 en el lado del motor, lado de la unidad preconfeccionado para LXM62DU60, LXM62DD15, LXM62DD27 y LXM62DD45	VW3ED132R•••
Cable híbrido (4 × 1,5 mm² + [2 × 0,75 mm²] + [2 × AWG24]) apantallado, conector redondo de 8 polos M23 en el lado del motor, lado de la unidad preconfeccionado para LXM62DU60, LXM62DD15, LXM62DD27 y LXM62DD45	VW3ED143R•••
Cable híbrido (4 × 2,5 mm² + [2 × 1,0 mm²] + [2 × AWG24]) apantallado, conector redondo de 8 polos M23 en el lado del motor, lado de la unidad preconfeccionado para LXM62DU60, LXM62DD15, LXM62DD27 y LXM62DD45	VW3ED144R•••
Cable híbrido (4 × 2,5 mm² + [2 × 1,0 mm²] + [2 × AWG24]) apantallado, conector redondo de 8 polos M40 en el lado del motor, lado de la unidad preconfeccionado para LXM62DU60, LXM62DD15, LXM62DD27 y LXM62DD45	VW3ED145R•••
	•

^{••• =} Longitud del cable

Longitudes disponibles: 020 = 2 m (6,56 ft), 030 = 3 m (9,84 ft), 040 = 4 m (13,1 ft), 050 = 5 m (16,4 ft), 080 = 8 m (26,2 ft), 100 = 10 m (32,8 ft), 150 = 15 m (49,2 ft), 200 = 20 m (65,6 ft), 250 = 25 m (82 ft), 300 = 30 m (98,4 ft), 350 = 35 m (115 ft), 400 = 40 m (131 ft), 450 = 45 m (148 ft), 500 = 50 m (164 ft)

Alargadores eléctricos híbridos

Descripción	Referencia
Alargador eléctrico híbrido (4 × 1,5 mm² + [2 × 0,75 mm²] + [2 × AWG24]) apantallado, conectores redondos de 8 polos M17 macho/hembra	VW3EF132R•••
Alargador eléctrico híbrido (4 × 1,5 mm² + [2 × 0,75 mm²] + [2 × AWG24]) apantallado, conectores redondos de 8 polos M23 macho/hembra	VW3EF143R•••
Alargador eléctrico híbrido (4 × 2,5 mm² + [2 × 1,0 mm²] + [2 × AWG24]) apantallado, conectores redondos de 8 polos M23 macho/hembra	VW3EF144R•••
Alargador eléctrico híbrido (4 × 2,5 mm² + [2 × 1,0 mm²] + [2 × AWG24]) apantallado, conectores redondos de 8 polos M40 macho/hembra	VW3EF145R•••

^{••• =} Longitud del cable

Longitudes disponibles: 050 = 5 m (16,4 ft), 100 = 10 m (32,8 ft), 200 = 20 m (65,6 ft), 300 = 30 m (98,4 ft), 400 = 40 m (131 ft), 500 = 50 m (164 ft)

Cables para motores con conexión de dos cables

Cables del motor

Descripción	Referencia
Cable de motor (4 × 1 mm² + 2 × [2 ×0,75 mm²]) apantallado, conector redondo de 8 polos Y-TEC en el lado del motor, lado de la unidad preconfeccionado para LXM52 y LXM62	VW3E1166R•••
Cable de motor (4 × 1,5 mm² + 2 × [2 ×0,75 mm²]) apantallado, conector redondo de 8 polos M23 en el lado del motor, lado de la unidad preconfeccionado para LXM52 y LXM62	VW3E1143R•••
Cable de motor (4 × 2,5 mm² + 2 × [2 ×1,0 mm²]) apantallado, conector redondo de 8 polos M23 en el lado del motor, lado de la unidad preconfeccionado para LXM52 y LXM62	VW3E1144R•••
Cable de motor (4 × 2,5 mm² + 2 × [2 ×1,0 mm²]) apantallado, conector redondo de 8 polos M40 en el lado del motor, lado de la unidad preconfeccionado para LXM52 y LXM62	VW3E1145R•••
Cable de motor (4 × 4 mm² + [2 × 1 mm²] + [2 × 1,5 mm²]) apantallado, conector redondo de 8 polos M40 en el lado del motor, lado de la unidad preconfeccionado para LXM52 y LXM62	VW3E1153R•••

Descripción	Referencia
Cable de motor (4 × 10 mm² + [2 × 1 mm²] + [2 × 1,5 mm²]) apantallado, conector redondo de 8 polos M40 en el lado del motor, lado de la unidad preconfeccionado para LXM52 y LXM62	VW3E1154R•••
••• = Longitud del cable	
Longitudes disponibles: de 010 = 1 m (3,28 ft) a 750 = 75 m (246 ft) en pasos de 0,1 m	

Alargadores eléctricos del motor

Descripción	Referencia
Alargador eléctrico de motor (4 × 1 mm² + 2 × [2 × 0,75 mm²]) apantallado, conectores redondos de 8 polos Y-TEC macho/hembra	VW3E1167R•••
••• = Longitud del cable	
Longitudes disponibles: de 010 = 1 m (3,28 ft) a 100 = 10 m (32,8 ft) en pasos de 1,0 m	

Cables del encoder

Descripción	Referencia
Cable de encoder (3 × 2 × 0,14 mm² + 2 × 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del dispositivo	VW3E2094R•••
Cable de encoder (3 × 2 × 0,14 mm² + 2 × 0,34 mm²) apantallado; conector redondo de 12 polos Y-TEC en el lado del motor, conector de 10 polos RJ45 en el lado del dispositivo	VW3E2098R•••
••• = Longitud del cable	
Longitudes disponibles: de 010 = 1 m (3,28 ft) a 750 = 75 m (246 ft) en pasos de 0,1 m	

Alargadores eléctricos del encoder

Descripción	Referencia
Alargador eléctrico de encoder (3 × 2 × 0,14 mm² + 2 × 0,34 mm²) apantallado, conectores redondos de 12 polos Y-TEC macho/hembra	VW3E2099R•••
••• = Longitud del cable	
Longitudes disponibles: de 010 = 1 m (3,28 ft) a 100 = 10 m (32,8 ft) en pasos de 1,0 m	

Juego IP67

Para poder utilizar el juego IP67, debe garantizarse el grado de protección IP65 (anillo retén).

Descripción	Referencia
Empalme en L que debe adquirirse en FESTO	QSML-B-M3-4-20

Servicio, mantenimiento y reciclaje

Direcciones de servicio

Schneider Electric Automation GmbH

Schneiderplatz 1

97828 Marktheidenfeld, Alemania

Teléfono: +49 (0) 9391 / 606 - 0

Fax: +49 (0) 9391 / 606 - 4000

Correo electrónico: info-marktheidenfeld@se.com

Direcciones de contacto adicionales

Consulte las direcciones de contacto adicionales en la página principal:

https://www.se.com

Mantenimiento

Plan de mantenimiento

El motor no contiene ningún componente que precise de un mantenimiento por parte del usuario.

Sustituya el motor o póngase en contacto con Schneider Electric.

Las reparaciones del producto solo puede llevarlas a cabo un centro de servicio técnico de Schneider Electric.

Póngase en contacto con su representante de Schneider Electric para todas las cuestiones relativas al servicio técnico.

AADVERTENCIA

FUNCIONAMIENTO IMPREVISTO DEL EQUIPO

- Utilice exclusivamente el software z hardware autorizado de Schneider Electric con este producto.
- Encargue el mantenimiento exclusivamente a un centro de servicio autorizado de Schneider Electric.
- Actualice su programa de aplicación con cada modificación de la configuración física del hardware.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Utilice exclusivamente los accesorios y complementos indicados en la documentación y no equipos o componentes de otros fabricantes no autorizados expresamente por Schneider Electric. Está prohibido modificar los equipos.

Registre los siguientes puntos en el plan de mantenimiento de su máquina.

Conexiones y fijaciones

- Inspecciones regularmente todos los cables de conexión y conexiones para descartar daños. Sustituya de inmediato cualquier cable dañado.
- Compruebe regularmente que todos los elementos de salida estén firmemente asentados.
- Verifique regularmente que todas las atornilladuras mecánicas y eléctricas están apretadas con el par prescrito.

Lubricación posterior del anillo retén

En los motores dotados de anillo retén, debe aplicarse lubricante entre la falda de obturación del anillo retén y el eje, utilizando una herramienta no metálica adecuada. El funcionamiento en seco de los anillos retén acorta considerablemente la vida útil de las juntas.

Limpieza

Si no pueden mantenerse las condiciones ambientales permitidas, pueden penetrar sustancias ajenas del entorno en el producto y causar movimientos inesperados o daños materiales.

AADVERTENCIA

MOVIMIENTO INVOLUNTARIO

- Asegúrese de que pueden mantenerse las condiciones ambientales.
- Evite que las juntas se seguen.
- Evite la presencia de líquidos en el paso del eje (p. ej. en la posición de montaje IM V3).
- No exponga los anillos retén y los guiados de cable del motor al chorro del limpiador a alta presión.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Limpie el producto regularmente eliminando el polvo y la suciedad. Una disipación insuficiente del calor al aire ambiente puede aumentar la temperatura por encima de los valores permitidos.

Los motores no son aptos para una limpieza con un aparato de limpieza a alta presión. Debido a la alta presión podría penetrar agua en el motor.

En caso de utilizar productos de limpieza, tenga en cuenta que los diferentes principios activos pueden dañar los plásticos o las soldaduras. Al utilizar disolventes o productos de limpieza, cerciórese de que los cables, las juntas de los pasos de cable, las juntas tóricas y la pintura del motor no resulten dañados.

AVISO

CORROSIÓN DEBIDA A PRODUCTOS DE LIMPIEZA

- Antes de utilizar un producto de limpieza, asegúrese de que el componente que desee limpiar es compatible con dicho producto.
- No utilice productos de limpieza alcalinos.
- · No utilice productos de limpieza que contengan cloro.
- No utilice productos de limpieza que contengan ácido sulfúrico.

Si no se siguen estas instrucciones, pueden producirse daños en el equipo.

Inspección/esmerilado del freno de parada

El freno de parada está esmerilado de fábrica. Si el freno de parada no se utilizara durante un tiempo prolongado, piezas del mismo podrían oxidarse. El óxido reduce el par de parada.

Si el freno de parada no presentara el par de parada especificado en los datos técnicos, será necesario un nuevo esmerilado:

- Si el motor estuviera montado, desmóntelo.
- Mida el par de parada del freno de parada con ayuda de una llave dinamométrica.
- Si el par de parada del freno de parada difiriera sustancialmente de los valores indicados, gire el eje del motor con la mano 25 revoluciones en cada dirección. Consulte la sección Freno de parada, página 57 para conocer los valores.
- Repita el proceso hasta 3 veces hasta restablecer el par de parada original.
 Si no fuera posible restablecer el par de parada, diríjase a su distribuidor de Schneider Electric.

Sustitución del motor

Descripción

Al sustituir el motor, la posición absoluta del encoder deja de ser válida.

AADVERTENCIA

MOVIMIENTO INVOLUNTARIO DEBIDO A UNA POSICIÓN ABSOLUTA INCORRECTA

Después de sustituir el motor, ajuste de nuevo la posición absoluta del encoder.

Si no se siguen estas instrucciones, pueden producirse lesiones graves, muerte o daños en el equipo.

Paso	Acción
1	Desconecte todas las tensiones de alimentación. Asegúrese de que no existe ninguna tensión más.
2	Identifique todas las conexiones y desmonte el producto.
3	Anote el número de identificación y el número de serie de la placa de características del producto para poder identificarlos más tarde.
4	Instale el nuevo producto siguiendo los pasos de la sección Instalación, página 59.
5	Ponga en marcha el producto siguiendo los pasos de la sección Puesta en funcionamiento, página 84.

Transporte, almacenamiento, eliminación

Transporte

El producto se debe estar protegido contra golpes durante el transporte. Si es posible, se debe utilizar el embalaje original para el transporte.

Almacenamiento

El producto sólo puede almacenarse en espacios donde se cumplen las condiciones ambientales permisibles especificadas.

Proteger el producto del polvo y la suciedad.

Eliminación

El producto consta de diversos materiales que se pueden reciclar. Deseche el producto de acuerdo con las normativas locales.

Visite https://www.se.com/green-premium para obtener información y documentos sobre la protección del medio ambiente conforme a ISO 14025 como, por ejemplo:

- EoLi (Product End-of-Life Instructions)
- PEP (Product Environmental Profile)

Glosario

C

CEM:

Compatibilidad electromagnética

Collar de centrado:

Rebaje centrado en la brida del motor que posibilita un montaje preciso.

D

DOM:

Date of manufacturing: En la placa de características del producto se indica la fecha de fabricación en el formato DD.MM.AA o en el formato DD.MM.AAAA. Por ejemplo:

31.12.11 correspondiente al 31 de diciembre de 2011

31.12.2011 correspondiente al 31 de diciembre de 2011

F

Fuerzas axiales:

Tracción o presión ejercida sobre el eje en sentido longitudinal

Fuerzas radiales:

Fuerzas ejercidas radialmente sobre el eje

G

Grado de protección:

El grado de protección es una definición normalizada para medios de servicio eléctricos con el fin de describir la protección contra la penetración de elementos extraños y de agua (ejemplo: IP20).

L

Longitud:

La longitud está definida en la codificación de los modelos por medio del número de pilas.

M

MBTP:

Protective Extra Low Voltage (inglés), pequeña tensión funcional con separación de protección. Más información: IEC 60364-4-41.

S

Sistema de accionamiento:

Sistema compuesto por control, variador y motor.

Т

Tamaño:

El tamaño está definido en la codificación de los modelos por medio del tamaño de la brida.

,	•				
	-		н	_	
		T O	П	r	
				u	u

T

transporte	95
------------	----

^
almacenamiento95
C
cable del encoder medidas CEM
D
direcciones de servicio90
E EEM37 Multiturn 54 EES37 Singleturn 53 EKM36 Multiturn 53 EKS36 Singleturn 53 eliminación 95 encoder conexión de un cable 53 especificaciones de los cables 64, 66
F
freno de parada
I
instalación59
М
mantenimiento91
P
placa de características
S
SEK37 Singleturn

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison

+ 33 (0) 1 41 29 70 00

www.se.com

Debido a que las normas, especificaciones y diseños cambian periódicamente, solicite la confirmación de la información dada en esta publicación.

© 2021 – Schneider Electric. Reservados todos los derechos