Lexium 32A
Servoaccionamiento
Manual

09/2017
La información que se ofrece en esta documentación contiene descripciones de carácter general y/o características técnicas sobre el rendimiento de los productos incluidos en ella. La presente documentación no tiene como objeto sustituir dichos productos para aplicaciones de usuario específicas, ni debe emplearse para determinar su idoneidad o fiabilidad. Los usuarios o integradores tienen la responsabilidad de llevar a cabo un análisis de riesgos adecuado y completo, así como la evaluación y las pruebas de los productos en relación con la aplicación o el uso de dichos productos en cuestión. Ni Schneider Electric ni ninguna de sus filiales o asociados asumirán responsabilidad alguna por el uso inapropiado de la información contenida en este documento. Si tiene sugerencias de mejoras o modificaciones o ha hallado errores en esta publicación, le rogamos que nos lo notifique.

No se podrá reproducir este documento de ninguna forma, ni en su totalidad ni en parte, ya sea por medios electrónicos o mecánicos, incluida la fotocopia, sin el permiso expreso y por escrito de Schneider Electric.

Al instalar y utilizar este producto es necesario tener en cuenta todas las regulaciones sobre seguridad correspondientes, ya sean regionales, locales o estatales. Por razones de seguridad y para garantizar que se siguen los consejos de la documentación del sistema, las reparaciones solo podrá realizarlas el fabricante.

Cuando se utilicen dispositivos para aplicaciones con requisitos técnicos de seguridad, siga las instrucciones pertinentes.

Si con nuestros productos de hardware no se utiliza el software de Schneider Electric u otro software aprobado, pueden producirse lesiones, daños o un funcionamiento incorrecto del equipo.

Si no se tiene en cuenta esta información, se pueden causar daños personales o en el equipo.

© 2017 Schneider Electric. Reservados todos los derechos.
<table>
<thead>
<tr>
<th>Tabla de materias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capítulo 1</td>
</tr>
<tr>
<td>Introducción</td>
</tr>
<tr>
<td>Vista general del equipo</td>
</tr>
<tr>
<td>Componentes e interfaces</td>
</tr>
<tr>
<td>Placa de características</td>
</tr>
<tr>
<td>Codificación de los modelos</td>
</tr>
<tr>
<td>Capítulo 2</td>
</tr>
<tr>
<td>Datos técnicos</td>
</tr>
<tr>
<td>Condiciones ambientales</td>
</tr>
<tr>
<td>Dimensiones</td>
</tr>
<tr>
<td>Datos generales de la etapa de potencia</td>
</tr>
<tr>
<td>Datos de la etapa de potencia específicos del variador</td>
</tr>
<tr>
<td>Corrientes de salida de pico</td>
</tr>
<tr>
<td>Datos del bus DC</td>
</tr>
<tr>
<td>Alimentación del control de 24 V.</td>
</tr>
<tr>
<td>Señales</td>
</tr>
<tr>
<td>Resistencia de frenado</td>
</tr>
<tr>
<td>Emisión electromagnética</td>
</tr>
<tr>
<td>Memoria no volátil y tarjeta de memoria</td>
</tr>
<tr>
<td>Condiciones para UL 508C y CSA</td>
</tr>
<tr>
<td>Certificaciones</td>
</tr>
<tr>
<td>Capítulo 3</td>
</tr>
<tr>
<td>Planificación</td>
</tr>
<tr>
<td>3.1</td>
</tr>
<tr>
<td>Compatibilidad electromagnética (CEM)</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Desactivación de los condensadores Y.</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>Cables y señales</td>
</tr>
<tr>
<td>Cables, generalidades</td>
</tr>
<tr>
<td>Resumen de los cables necesarios</td>
</tr>
<tr>
<td>Especificaciones de los cables</td>
</tr>
<tr>
<td>Tipo de lógica</td>
</tr>
<tr>
<td>Entradas y salidas configurables</td>
</tr>
<tr>
<td>3.3</td>
</tr>
<tr>
<td>Alimentación de red</td>
</tr>
<tr>
<td>Dispositivo de corriente residual</td>
</tr>
<tr>
<td>Bus DC conjunto</td>
</tr>
<tr>
<td>Inductancia de red</td>
</tr>
<tr>
<td>3.4</td>
</tr>
<tr>
<td>Dimensionamiento de la resistencia de frenado</td>
</tr>
<tr>
<td>Resistencia de frenado interna</td>
</tr>
<tr>
<td>Resistencia de frenado externa</td>
</tr>
<tr>
<td>Ayuda de dimensionado</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>Seguridad funcional</td>
</tr>
<tr>
<td>Principios</td>
</tr>
<tr>
<td>Definiciones</td>
</tr>
<tr>
<td>Función</td>
</tr>
<tr>
<td>Requisitos para el uso de la función de seguridad</td>
</tr>
<tr>
<td>Ejemplos de aplicación STO</td>
</tr>
<tr>
<td>Capítulo 4</td>
</tr>
<tr>
<td>Instalación</td>
</tr>
<tr>
<td>4.1</td>
</tr>
<tr>
<td>Instalación mecánica</td>
</tr>
<tr>
<td>Antes del montaje</td>
</tr>
<tr>
<td>Montar el variador</td>
</tr>
<tr>
<td>Capítulo 5</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>5.1 Sinopsis</td>
</tr>
<tr>
<td>Preparación</td>
</tr>
<tr>
<td>5.2 HMI interna</td>
</tr>
<tr>
<td>Estructura de menú</td>
</tr>
<tr>
<td>Realizar ajustes</td>
</tr>
<tr>
<td>5.3 Terminal gráfico externo</td>
</tr>
<tr>
<td>Conectar el terminal gráfico externo con LXM32</td>
</tr>
<tr>
<td>Utilizar el terminal gráfico externo</td>
</tr>
<tr>
<td>5.4 Pasos para la puesta en marcha</td>
</tr>
<tr>
<td>Ajustar los valores límite</td>
</tr>
<tr>
<td>Entradas y salidas digitales</td>
</tr>
<tr>
<td>Comprobar las señales de los finales de carrera</td>
</tr>
<tr>
<td>Comprobar la función de seguridad STO</td>
</tr>
<tr>
<td>Freno de parada (opción)</td>
</tr>
<tr>
<td>Comprobar la dirección de movimiento</td>
</tr>
<tr>
<td>Ajustar los parámetros para el encoder</td>
</tr>
<tr>
<td>Ajuste de parámetros para resistencia de frenado</td>
</tr>
<tr>
<td>Autotuning</td>
</tr>
<tr>
<td>Ajustes ampliados para el autotuning</td>
</tr>
<tr>
<td>5.5 Optimización del controlador con respuesta a un escalón</td>
</tr>
<tr>
<td>Estructura del controlador</td>
</tr>
<tr>
<td>Optimización</td>
</tr>
<tr>
<td>Optimizar el controlador de velocidad</td>
</tr>
<tr>
<td>Comprobar y optimizar el factor P</td>
</tr>
<tr>
<td>Optimizar el controlador de posición</td>
</tr>
<tr>
<td>5.6 Gestión de parámetros</td>
</tr>
<tr>
<td>Duplicado de valores del parámetro disponibles</td>
</tr>
<tr>
<td>Restaurar los parámetros de usuario</td>
</tr>
<tr>
<td>Restablecer el ajuste de fábrica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capítulo 6</th>
<th>Funcionamiento</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Canales de acceso</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Canales de acceso</td>
<td>188</td>
<td></td>
</tr>
</tbody>
</table>
6.2 Área de desplazamiento .. 190
 Tamaño del área de desplazamiento 191
 Movimiento excediendo el rango de movimiento 192
 Ajuste de un rango Modulo .. 194
6.3 Rango Modulo ... 195
 Ajuste de un rango Modulo .. 196
 Parametrización .. 197
 Ejemplos con movimiento relativo 200
 Ejemplos con movimiento absoluto y "Shortest Distance" 201
 Ejemplos con movimiento absoluto y "Positive Direction" 202
 Ejemplos con movimiento absoluto y "Negative Direction" 203
6.4 Escala .. 204
 General .. 205
 Configuración del escalado de posición 206
 Configuración del escalado de velocidad 207
 Configuración del escalado de rampa 208
6.5 Entradas y salidas digitales .. 209
 Parametrización de las funciones de entrada de señal 210
 Parametrización de las funciones de salida de señal 215
 Parametrización del antirrebote de software 219
6.6 Conmutar el juego de parámetros de lazo de control 220
 Resumen de la estructura de los controladores 221
 Resumen del controlador de posición 222
 Resumen del controlador de velocidad 223
 Resumen del controlador de corriente 224
 Parámetros de lazo de control parametrizables 225
 Seleccionar el juego de parámetros de controlador 226
 Conmutar automáticamente el juego de parámetros de lazo de control 227
 Copiar juego de parámetros de lazo de control 228
 Desactivar la acción integral ... 231
 Juego de parámetros de lazo de control 1 232
 Juego de parámetros de lazo de control 2 234

Capítulo 7 Estados de funcionamiento y modos de funcionamiento 237
 7.1 Estados de funcionamiento ... 238
 Diagrama de estados y transiciones de estado 239
 Indicación del estado de funcionamiento a través de la HMI 243
 Indicación del estado de funcionamiento a través de las salidas de señal 244
 Indicación del estado de funcionamiento a través del bus de campo 245
 Cambiar el estado de funcionamiento a través de la HMI 246
 Cambiar el estado de funcionamiento a través de las entradas de señal 247
 Cambiar el estado de funcionamiento a través del bus de campo 248
 7.2 Modos de funcionamiento ... 249
 Inicio y cambio de modo funcionamiento 249
 7.3 Modo de funcionamiento Jog .. 250
 Sinopsis .. 251
 Parametrización .. 253
 Opciones de ajuste adicionales 255
 7.4 Modo de funcionamiento Profile Torque 256
 Sinopsis .. 257
 Parametrización .. 258
 Opciones de ajuste adicionales 260
 7.5 Modo de funcionamiento Profile Velocity 261
 Sinopsis .. 262
 Parametrización .. 263
 Opciones de ajuste adicionales 264
Capítulo 8 Funciones para el funcionamiento

8.1 Funciones para el procesamiento del valor de destino
- Perfil de movimientos para la velocidad
- Limitación de trinones
- Interrumpir el movimiento con Parada
- Detener movimiento con Quick Stop
- Limitación de la velocidad mediante entradas de señales
- Limitación de la corriente mediante entradas de señales
- Zero Clamp
- Establecer la salida de señal mediante parámetro
- Iniciar movimiento con entrada de señal
- Registro de posición a través de entrada de señal (perfil específico del fabricante)
- Registro de posición a través de entrada de señal (perfil DS402)
- Movimiento relativo tras Capture (RMAC)
- Compensación de juego

8.2 Funciones para monitorizar el movimiento
- Final de carrera
- Interruptor de referencia
- Finales de carrera de software
- Desviación de posición debida a la carga (error de seguimiento)
- Desviación de la velocidad debida a la carga
- Parada del motor y dirección de movimiento
- Ventana de par
- Velocity Window
- Ventana de parada
- Registro de posición
- Ventana de desviación de posición
- Ventana de desviación de velocidad
- Umbral de velocidad
- Umbral de corriente
- Bits configurables de los parámetros de estado

8.3 Funciones para monitorizar señales internas del equipo
- Monitorización de la temperatura
- Monitorización de la carga y la sobrecarga (monitorización I^2t
- Monitorización de la conmutación
- Monitorización de fases de red
- Monitorización de defecto a tierra

Capítulo 9 Ejemplos

Ejemplos
Información de seguridad

Información importante

AVISO

Lea atentamente estas instrucciones y observe el equipo para familiarizarse con el dispositivo antes de instalarlo, utilizarlo, revisarlo o realizar su mantenimiento. Los mensajes especiales que se ofrecen a continuación pueden aparecer a lo largo de la documentación o en el equipo para advertir de peligros potenciales, o para ofrecer información que aclara o simplifica los distintos procedimientos.

La inclusión de este icono en una etiqueta "Peligro" o "Advertencia" indica que existe un riesgo de descarga eléctrica, que puede provocar lesiones si no se siguen las instrucciones.

Éste es el icono de alerta de seguridad. Se utiliza para advertir de posibles riesgos de lesiones. Observe todos los mensajes que siguen a este icono para evitar posibles lesiones o incluso la muerte.

PELIGRO

PELIGRO indica una situación de peligro que, si no se evita, provocará lesiones graves o incluso la muerte.

ADVERTENCIA

ADVERTENCIA indica una situación de peligro que, si no se evita, podría provocar lesiones graves o incluso la muerte.

ATENCIÓN

ATENCIÓN indica una situación peligrosa que, si no se evita, podría provocar lesiones leves o moderadas.

AVISO

AVISO indica una situación potencialmente peligrosa que, si no se evita, puede provocar daños en el equipo.

TENGA EN CUENTA LO SIGUIENTE:

La instalación, el manejo, las revisiones y el mantenimiento de equipos eléctricos deberán ser realizados sólo por personal cualificado. Schneider Electric no se hace responsable de ninguna de las consecuencias del uso de este material.

Una persona cualificada es aquella que cuenta con capacidad y conocimientos relativos a la construcción, el funcionamiento y la instalación de equipos eléctricos, y que ha sido formada en materia de seguridad para reconocer y evitar los riesgos que conllevan tales equipos.

CUALIFICACIÓN DEL PERSONAL

Los trabajos en este producto deben realizarse exclusivamente por técnicos especialistas que conozcan y entiendan el contenido de este manual y toda la documentación correspondiente al producto. Gracias a su formación técnica, así como a sus conocimientos y experiencia, los técnicos especialistas tienen que ser capaces de prever y reconocer posibles peligros que pueden producirse debido a la utilización del producto, la modificación de los ajustes y, en general, por el equipo mecánico, eléctrico y electrónico del conjunto de la instalación.

Los técnicos especialistas deber ser capaces de prever y reconocer posibles peligros que pueden producirse debido a la parametrización, a modificaciones de los ajustes y al equipamiento mecánico, eléctrico y electrónico.
Los técnicos especialistas deben conocer las normativas, disposiciones y normas de prevención de accidentes en vigor y respetarlas durante la planificación y realización del sistema.

USO CONFORME A LOS FINES PREVISTOS

Los productos descritos en este documento o afectados por este documento son servovariadores para servomotores trifásicos, así como software, accesorios y opciones. Los productos están especificados para el ámbito industrial y únicamente pueden utilizarse de conformidad con las instrucciones, ejemplos e información de seguridad del presente documento y de los documentos aplicables. Deben cumplirse en todo momento las normas de seguridad vigentes, las condiciones especificadas y los datos técnicos.

Antes de utilizar los productos debe realizarse una valoración de riesgos en relación con la aplicación concreta. En función de los resultados obtenidos, deberán tomarse las medidas relevante para la seguridad convenientes.

Puesto que los productos se utilizan como partes de un sistema total o de un proceso, la seguridad personal debe quedar garantizada mediante el concepto de este sistema total o del proceso.

El funcionamiento de los productos debe realizarse únicamente con los cables y accesorios especificados. Utilice únicamente accesorios y piezas de repuesto originales.

Cualquier otro uso se considerará no conforme a los fines previstos y puede resultar peligroso.

ANTES DE EMPEZAR

No utilice este producto en maquinaria sin protección de punto de funcionamiento. La ausencia de protección de punto de funcionamiento en una máquina puede provocar lesiones graves al operador de dicha máquina.

ADVERTENCIA

EQUIPO SIN PROTECCIÓN

- No utilice este software ni los equipos de automatización relacionados en equipos que no dispongan de protección de punto de funcionamiento.
- No introduzca las manos u otras partes del cuerpo dentro de la maquinaria mientras está en funcionamiento.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Este equipo de automatización y el software relacionado se utilizan para controlar diversos procesos industriales. El tipo o modelo del equipo de automatización adecuado para cada uso variaría en función de factores tales como las funciones de control necesarias, el grado de protección requerido, los métodos de producción, la existencia de condiciones poco habituales, las normativas gubernamentales, etc. En algunos usos, puede ser necesario más de un procesador, como en el caso de que se requiera redundancia de respaldo.

Solamente el usuario, el fabricante de la máquina o el integrador del sistema conocen las condiciones y los factores presentes durante la configuración, el funcionamiento y el mantenimiento de la máquina y, por consiguiente, pueden decidir el equipo asociado y las medidas de seguridad y los enclavamientos relacionados que se pueden utilizar de forma adecuada. Al seleccionar los equipos de automatización y control, así como el software relacionado para un uso determinado, el usuario deberá consultar los estándares y las normativas locales y nacionales aplicables. La publicación National Safety Council’s Accident Prevention Manual (que goza de un gran reconocimiento en los Estados Unidos de América) también proporciona gran cantidad de información de utilidad.

En algunas aplicaciones, como en el caso de la maquinaria de embalaje, debe proporcionarse protección adicional al operador, como la protección de punto de funcionamiento. Esta medida es necesaria si existe la posibilidad de que las manos y otras partes del cuerpo del operador puedan introducirse y quedar atrapadas en áreas o puntos peligrosos, lo que puede provocar lesiones graves. Los productos de software por sí solos no pueden proteger al operador frente a posibles lesiones. Por este motivo, el software no se puede sustituir por la protección de punto de funcionamiento ni puede realizar la función de esta.

Asegúrese de que las medidas de seguridad y los enclavamientos mecánicos/eléctricos relacionados con la protección de punto de funcionamiento se hayan instalado y estén operativos antes de que los equipos entren en funcionamiento. Todos los enclavamientos y las medidas de seguridad relacionados con la protección de punto de funcionamiento deben estar coordinados con la programación del software y los equipos de automatización relacionados.
NOTA: La coordinación de las medidas de seguridad y los enclavamientos mecánicos/eléctricos para la protección de punto de funcionamiento está fuera del ámbito de la biblioteca de bloques de funciones, la guía de usuario del sistema o de otras instalaciones mencionadas en esta documentación.

INICIAR Y PROBAR

Antes de utilizar los equipos eléctricos de control y automatización para su funcionamiento normal tras la instalación, es necesario que personal cualificado lleve a cabo una prueba de inicio del sistema para verificar que los equipos funcionan correctamente. Es importante realizar los preparativos para una comprobación de estas características y disponer de suficiente tiempo para llevar a cabo las pruebas de forma completa y correcta.

Realice todas las pruebas de inicio recomendadas en la documentación del equipo. Guarde la documentación del equipo para consultarla en el futuro.

Las pruebas del software deben realizarse tanto en un entorno simulado como en un entorno real.

Verifique que no existen cortocircuitos ni conexiones a tierra temporales en todo el sistema que no estén instalados según la normativa local (de conformidad con National Electrical Code de EE. UU., por ejemplo). Si fuera necesario realizar pruebas de tensión de alto potencial, siga las recomendaciones de la documentación del equipo para evitar dañar el equipo fortuitamente.

Antes de dar tensión al equipo:
- Retire del equipo las herramientas, los medidores y el material de desecho que pueda haber.
- Cierre la puerta de la carcasa del equipo.
- Retire todas las conexiones a tierra temporales de las líneas de alimentación de entrada.
- Realice todas las pruebas iniciales recomendadas por el fabricante.

FUNCIONAMIENTO Y AJUSTES

Las precauciones siguientes proceden de NEMA Standards Publication ICS 7.1-1995 (prevalece la versión en inglés):
- Aunque se ha extremado la precaución en el diseño y la fabricación del equipo o en la selección y las especificaciones de los componentes, existen riesgos que pueden aparecer si el equipo se utiliza de forma inadecuada.
- En algunas ocasiones puede desajustarse el equipo, lo que provocaría un funcionamiento incorrecto o poco seguro. Utilice siempre las instrucciones del fabricante como guía para realizar los ajustes de funcionamiento. El personal que tenga acceso a estos ajustes debe estar familiarizado con las instrucciones del fabricante del equipo y con la maquinaria utilizada para los equipos eléctricos.
- El operador solo debe tener acceso a los ajustes de funcionamiento que realmente necesita. El acceso a los demás controles debe restringirse para evitar cambios no autorizados en las características de funcionamiento.

ADVERTENCIA

PELIGRO DE FUNCIONAMIENTO DEL EQUIPO
- Compruebe que se hayan seguido todos los procedimientos de instalación y configuración.
- Antes de realizar las pruebas de funcionamiento, retire de todos los dispositivos todos los bloqueos u otros medios de sujeción temporales utilizados para el transporte.
- Retire del equipo las herramientas, los medidores y el material de desecho que pueda haber.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Acerca de este libro

Presentación

Objeto

Este manual describe las propiedades técnicas, la instalación, la puesta en marcha, el manejo y el mantenimiento del servoaccionamiento Lexium 32A (LXM32A).

Campo de aplicación

Este manual es válido para los productos estándar indicados en la codificación de los modelos, véase el capítulo Codificación de los modelos (véase página 23).

Para la conformidad de los productos y la información medioambiental (RoHS, REACH, PEP, EOLI, etc.), vaya a www.schneider-electric.com/green-premium

Las características técnicas de los dispositivos que se describen en este documento también se encuentran online. Para acceder a esta información online:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vaya a la página de inicio de Schneider Electric www.schneider-electric.com.</td>
</tr>
</tbody>
</table>
| 2 | En el cuadro Search, escriba la referencia del producto o el nombre del rango de productos.
 • No incluya espacios en blanco en la referencia ni en el rango de productos.
 • Para obtener información sobre cómo agrupar módulos similares, utilice los asteriscos (*). |
| 3 | Si ha introducido una referencia, vaya a los resultados de búsqueda de Product datasheets y haga clic en la referencia deseada.
 Si ha introducido el nombre de un rango de productos, vaya a los resultados de búsqueda de Product Ranges y haga clic en la gama deseada. |
| 4 | Si aparece más de una referencia en los resultados de búsqueda Products, haga clic en la referencia deseada. |
| 5 | En función del tamaño de la pantalla, es posible que deba desplazarse la página hacia abajo para consultar la hoja de datos. |
| 6 | Para guardar o imprimir una hoja de datos como archivo .pdf, haga clic en Download XXX product datasheet. |

Las características que se indican en este manual deben coincidir con las que figuran online. De acuerdo con nuestra política de mejoras continuas, es posible que a lo largo del tiempo revisemos el contenido con el fin de elaborar documentos más claros y precisos. En caso de que detecte alguna diferencia entre el manual y la información online, utilice esta última para su referencia.

Documentos relacionados

<table>
<thead>
<tr>
<th>Título de la documentación</th>
<th>Número de referencia</th>
</tr>
</thead>
</table>
| LXM32A - Servoaccionamiento CA - Manual de instrucciones del producto (este manual) | 0198441113755 (eng)
 0198441113756 (fre)
 0198441113757 (ita)
 0198441113758 (spa) |
| LXM32 - Bus DC común - Nota de aplicación | MNA01M001EN (eng)
 MNA01M001DE (ger) |
| LXM32A - Interfaz CANopen - Manual del bus de campo | 0198441113779 (eng)
 0198441113780 (fre)
 0198441113778 (ita) |

Información relativa al producto

El uso y aprovechamiento de la información aquí contenida presupone la posesión de conocimientos técnicos en el desarrollo y programación de sistemas de control automatizados.

Únicamente usted como usuario, el constructor de la máquina o el integrador de sistemas están familiarizados con todas las condiciones y factores que son de aplicación para la instalación, ajuste, funcionamiento, reparaciones y mantenimiento de la máquina o de los procesos.

Asegúrese de que se cumplan todas las normas o disposiciones en vigor referentes a la conexión a tierra de todos los componentes de la instalación. Asegúrese de que se cumplan todas las normas de seguridad, todos los requisitos referidos a la electricidad y todas las normas vigentes para su máquina o su proceso en relación con el uso de este producto.

Muchos componentes del producto, incluido el circuito impreso, funcionan con tensión de red y pueden producirse altas corrientes o tensiones transformadas.

El motor genera tensión cuando se gira el eje.

PELIGRO DESCARGA ELÉCTRICA, EXPLOSIÓN O EXPLOSIÓN POR ARCO ELÉCTRICO

- Antes de retirar las cubiertas o puertas, así como antes de instalar o retirar accesorios, hardware, cables o conductores, desconecte de la alimentación de tensión todos los equipos, incluidos los componentes conectados.
- Identifique todos los interruptores con un rótulo "NO CONECTAR" o con una señalización de peligro similar y bloquéelos en la posición deenergizada.
- Espere 15 minutos para que se descarguen los condensadores del bus DC.
- Mida la tensión en el bus DC con un dispositivo de detección de tensión de capacidad adecuada y asegúrese de que la tensión sea inferior a 42,4 VCC.
- No presuponga que el bus DC está sin tensión porque el LED del mismo esté apagado.
- Asegure el eje del motor contra accionamientos ajenos antes de realizar trabajos en el sistema de accionamiento.
- No cortocircuite el bus DC ni los condensadores del bus DC.
- Instale y proteja todas las cubiertas, accesorios, hardware, cables y conductores y asegúrese de que el producto está correctamente puesto a tierra antes de suministrar tensión.
- Utilice este equipo y los equipos conectados sólo con la tensión indicada.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Este producto está previsto para su funcionamiento fuera de atmósferas explosivas. Instale el producto únicamente en áreas en las que no puedan originarse atmósferas con riesgo de explosión.

PELIGRO DE EXPLOSIÓN

Instale y haga funcionar el producto únicamente en áreas en las que no puedan originarse atmósferas con riesgo de explosión.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Si la etapa de potencia se desactiva involuntariamente, por ejemplo, debido a una caída de tensión, a errores o a funciones, el motor dejará de frenar de forma controlada. La sobrecarga, los errores o el uso erróneo pueden ocasionar el incorrecto funcionamiento y desgaste prematuro del freno de parada.

ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO

- Asegúrese de que no puedan provocarse lesiones ni daños materiales como consecuencia de un movimiento sin freno.
- Compruebe regularmente el funcionamiento del freno de parada.
- No utilice el freno de parada como freno de servicio.
- No utilice el freno de parada para fines relevantes para la seguridad.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Los sistemas de variador pueden realizar movimientos imprevistos a causa de cableados incorrectos, configuraciones incorrectas, datos incorrectos u otros errores.

ADVERTENCIA

MOVIMIENTO O FUNCIONAMIENTO IMPREVISTO DE LA MÁQUINA

- Instale con cuidado el cableado de acuerdo con los requisitos de CEM.
- No utilice el producto con ajustes y datos indeterminados.
- Realice pruebas exhaustivas de puesta en marcha que incluyan la verificación de la configuración y de los datos que determinen la posición y el movimiento.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

ADVERTENCIA

PÉRDIDA DEL CONTROL DE MANDO

- El diseñador del esquema de control debe tener en cuenta las posibles modalidades de fallo de rutas de control y, para ciertas funciones de control críticas, proporcionar los medios para lograr un estado de seguridad durante y después de un fallo de ruta. Algunas funciones de control críticas son, por ejemplo, la parada de emergencia y la parada de sobrecarrera, un corte de alimentación o un reinicio.
- Para las funciones de control críticas deben proporcionarse rutas de control separadas o redundantes.
- Las rutas de control del sistema pueden incluir enlaces de comunicación. Deben tenerse en cuenta las implicaciones de los retardos de transmisión no esperados o los fallos en el enlace.
- Tenga en cuenta todas las reglamentaciones para la prevención de accidentes y las directrices de seguridad locales.
- Cada implementación de este equipo debe probarse de forma individual y exhaustiva antes de entrar en servicio.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

1 Para obtener más información, consulte NEMA ICS 1.1 (última edición), “Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control” (Directrices de seguridad para la aplicación, la instalación y el mantenimiento del control de estado estático) y NEMA ICS 7.1 (última edición), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" (Normas de seguridad para la construcción y la dirección para la selección, la instalación y el funcionamiento de sistemas de aceleración de ajuste rápido) o su equivalente aplicable a la ubicación específica.

Las máquinas, controles y otros equipos funcionan hoy día por lo general en redes. Un acceso al software y a las redes o buses de campo que no está suficientemente protegido puede permitir la entrada de personas no autorizadas y software perjudicial a la máquina y a los equipos en la red/bus de campo de la máquina, así como a redes conectadas.

Schneider Electric sigue las prácticas recomendadas del sector en el desarrollo y la implementación de sistemas de control. Esto incluye un método de defensa exhaustivo para proteger un sistema de control industrial. Este método sitúa los controladores detrás de uno o varios servidores de seguridad para limitar el acceso únicamente a los protocolos y el personal autorizado.

Normas y términos utilizados

Los términos técnicos, símbolos y las descripciones correspondientes del presente manual o que aparecen en la parte interior o exterior de los propios productos se derivan, por lo general, de los términos y las definiciones de estándares internacionales.

En el área de los sistemas de seguridad funcional, unidades y automatización general se incluyen, pero sin limitarse a ellos, términos como seguridad, función de seguridad, estado de seguridad, fallo, reinicio tras fallo, avería, funcionamiento incorrecto, error, mensaje de error, peligroso, etc.

Estos estándares incluyen, entre otros:

<table>
<thead>
<tr>
<th>Estándar</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61131-2:2007</td>
<td>Controladores programables, parte 2: Requisitos y ensayos de los equipos.</td>
</tr>
<tr>
<td>ISO 13849-1:2008</td>
<td>Seguridad de la maquinaria: partes de seguridad de los sistemas de control.</td>
</tr>
<tr>
<td></td>
<td>Principios generales del diseño.</td>
</tr>
<tr>
<td>EN 61496-1:2013</td>
<td>Seguridad de la maquinaria: equipo de protección electrosensible.</td>
</tr>
<tr>
<td></td>
<td>Parte 1: Requisitos y ensayos generales.</td>
</tr>
<tr>
<td></td>
<td>riesgo y reducción del riesgo</td>
</tr>
<tr>
<td>EN 60204-1:2006</td>
<td>Seguridad de las máquinas. Equipo eléctrico de las máquinas. Parte 1:</td>
</tr>
<tr>
<td></td>
<td>Requisitos generales</td>
</tr>
<tr>
<td>EN 1098:2008</td>
<td>Seguridad de la maquinaria. Dispositivos de bloqueo asociados con</td>
</tr>
<tr>
<td>ISO 14119:2013</td>
<td>protecciones: principios de diseño y selección</td>
</tr>
<tr>
<td>ISO 13850:2006</td>
<td>Seguridad de la maquinaria. Parada de emergencia: principios de diseño</td>
</tr>
<tr>
<td>EN/IEC 62061:2005</td>
<td>Seguridad de la maquinaria. Seguridad funcional de los sistemas de control</td>
</tr>
<tr>
<td></td>
<td>programable de seguridad eléctrica y electrónica</td>
</tr>
<tr>
<td>IEC 61508-1:2010</td>
<td>Seguridad funcional de sistemas de seguridad programable eléctricos y</td>
</tr>
<tr>
<td></td>
<td>electrónicos: requisitos generales.</td>
</tr>
<tr>
<td>IEC 61508-2:2010</td>
<td>Seguridad funcional de los sistemas de seguridad electrónicos programables</td>
</tr>
<tr>
<td></td>
<td>eléctricos y electrónicos: requisitos de los sistemas de seguridad eléctricos</td>
</tr>
<tr>
<td></td>
<td>programables eléctricos y electrónicos.</td>
</tr>
<tr>
<td>IEC 61508-3:2010</td>
<td>Seguridad funcional de los sistemas de seguridad electrónicos programables</td>
</tr>
<tr>
<td></td>
<td>eléctricos y electrónicos: requisitos de software.</td>
</tr>
<tr>
<td>IEC 61784-3:2008</td>
<td>Comunicación digital de datos para la medición y control: buses de campo de</td>
</tr>
<tr>
<td></td>
<td>seguridad funcional.</td>
</tr>
<tr>
<td>2006/42/EC</td>
<td>Directiva de maquinaria</td>
</tr>
</tbody>
</table>

ADVERTENCIA

ACCESO SIN AUTENTICACIÓN Y POSTERIOR USO NO AUTORIZADO DE LA MÁQUINA

- Evalúe si su entorno o sus máquinas están conectados a su infraestructura crítica y, de ser así, siga los pasos necesarios por lo que respecta a la prevención basándose en el método de defensa exhaustivo antes de conectar el sistema de automatización a una red.
- Limite el número de dispositivos conectados a una red al mínimo necesario.
- Aísle su red industrial de otras redes dentro de su empresa.
- Proteja cualquier red contra el acceso imprevisto utilizando servidores de seguridad, VPN u otras medidas de seguridad demostradas.
- Supervise las actividades dentro de sus sistemas.
- Evite el acceso o el enlace directos a los dispositivos en cuestión por parte de personas no autorizadas o acciones sin autenticación.
- Prepare un plan de recuperación que incluya una copia de seguridad de su sistema y de información sobre los procesos.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Además, los términos utilizados en este documento se pueden usar de manera tangencial porque se obtienen de otros estándares como:

<table>
<thead>
<tr>
<th>Estándar</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/30/EU</td>
<td>Directiva de compatibilidad electromagnética</td>
</tr>
<tr>
<td>2014/35/EU</td>
<td>Directiva de baja tensión</td>
</tr>
</tbody>
</table>

Por último, el término *zona de funcionamiento* se puede utilizar junto con la descripción de peligros específicos, y se define como tal para una *zona de peligro o zona peligrosa* en la *Directiva de maquinaria (2006/42/EC)* y *ISO 12100:2010*.

NOTA: Los estándares mencionados anteriormente podrían o no aplicarse a los productos específicos citados en la presente documentación. Para obtener más información en relación con los diferentes estándares aplicables a los productos descritos en este documento, consulte las tablas de características de las referencias de dichos productos.
Capítulo 1
Introducción

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vista general del equipo</td>
<td>20</td>
</tr>
<tr>
<td>Componentes e interfaces</td>
<td>21</td>
</tr>
<tr>
<td>Placa de características</td>
<td>22</td>
</tr>
<tr>
<td>Codificación de los modelos</td>
<td>23</td>
</tr>
</tbody>
</table>
Introducción

Vista general del equipo

La familia de productos Lexium 32 cubre diferentes ámbitos de aplicación con distintos tipos de servoaccionamientos. En combinación con los servomotores Lexium de las series BMH o BSH, así como con una amplia gama de opciones y accesorios, es posible realizar soluciones compactas y de alto rendimiento de servoaccionamientos para diferentes potencias de accionamiento.

Servoaccionamiento Lexium LXM32A

Este manual de instrucciones del producto describe el servoaccionamiento LXM32A.

Relación general de algunas de las propiedades del servoaccionamiento:

- Interfaz de comunicación para CANopen y CANmotion, a través de la cual se indican los valores de referencia para numerosos modos de funcionamiento.
- La puesta en marcha se lleva a cabo a través del HMI integrado, de un PC con software de puesta en marcha o del bus de campo.
- La función de seguridad "Safe Torque Off" (STO) según IEC 61800-5-2 está disponible de serie.
- Una ranura para tarjetas de memoria permite copiar fácilmente parámetros al igual que sustituir equipos con rapidez.
Componentes e interfaces

- **CN1**: Alimentación de la etapa de potencia
- **CN2**: Alimentación del control de 24 V y función de seguridad STO
- **CN3**: Encoder del motor (encoder 1)
- **CN4**: CAN in
- **CN5**: CAN out
- **CN6**: 4 entradas digitales y 2 salidas digitales
- **CN7**: Modbus (interfaz de puesta en marcha)
- **CN8**: Resistencia de frenado externa
- **CN9**: Bus DC
- **CN10**: Fases del motor
- **CN11**: Freno de parada del motor
La placa de características muestra los siguientes datos:

1. Para ver el tipo de producto, consulte la codificación del modelo
2. Alimentación de la etapa de potencia
3. Especificación de cables y par de apriete
4. Certificaciones
5. Número de serie
6. Potencia suministrada
7. Categoría de protección
8. Versión de hardware
9. Fecha de fabricación

LXM32••••••

<table>
<thead>
<tr>
<th>Input a.c. 3-phase</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 / 60 Hz</td>
<td>continuous</td>
</tr>
<tr>
<td>380 V - 5.5 A</td>
<td>6 A - 1.8 kW</td>
</tr>
<tr>
<td>480 V - 4.5 A</td>
<td>6 A - 1.8 kW</td>
</tr>
</tbody>
</table>

Multiple rated equipment, see instructions manual

CN1, CN10: Cu AWG10 75°C 5.9 lb.in 0.67 N.m
CN8: Cu AWG12 75°C 4.3 lb.in 0.49 N.m

US LISTED 91ZA
IND.CONT.EQ
E198280

KCC-RET-SEK-LXM32•••••

RS 03
D.O.M
dd.mm.yy

Made in Indonesia

000000000000

Placa de características
Codificación de los modelos

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Familia de productos</td>
</tr>
<tr>
<td></td>
<td>LXM = Lexium</td>
</tr>
<tr>
<td>4-5</td>
<td>Tipo de producto</td>
</tr>
<tr>
<td></td>
<td>32 = servoaccionamiento CA para un eje</td>
</tr>
<tr>
<td>6</td>
<td>Interfaz de bus de campo</td>
</tr>
<tr>
<td></td>
<td>A = Advanced Drive con bus de campo CANopen</td>
</tr>
<tr>
<td>7-9</td>
<td>Corriente de pico</td>
</tr>
<tr>
<td></td>
<td>U45 = 4,5 A_{rms}</td>
</tr>
<tr>
<td></td>
<td>U60 = 6 A_{rms}</td>
</tr>
<tr>
<td></td>
<td>U90 = 9 A_{rms}</td>
</tr>
<tr>
<td></td>
<td>D12 = 12 A_{rms}</td>
</tr>
<tr>
<td></td>
<td>D18 = 18 A_{rms}</td>
</tr>
<tr>
<td></td>
<td>D30 = 30 A_{rms}</td>
</tr>
<tr>
<td></td>
<td>D72 = 72 A_{rms}</td>
</tr>
<tr>
<td>10-11</td>
<td>Alimentación de la etapa de potencia</td>
</tr>
<tr>
<td></td>
<td>M2 = monofásico, 115/200/240 Vca</td>
</tr>
<tr>
<td></td>
<td>N4 = trifásico, 208/400/480 Vca</td>
</tr>
<tr>
<td>12-15</td>
<td>Versión específica de cliente</td>
</tr>
<tr>
<td></td>
<td>S = versión específica del cliente</td>
</tr>
</tbody>
</table>

En caso de tener preguntas sobre la codificación de los modelos, diríjase a su persona de contacto de Schneider Electric.

Identificación de la versión específica de cliente

En el caso de una versión específica de cliente, en la posición 12 de la codificación de los modelos se indica una "S". El siguiente número define la versión específica de cliente correspondiente. Ejemplo: LXM32••••S123

En caso de tener preguntas sobre las versiones específicas de cliente, diríjase a su persona de contacto de Schneider Electric.
Introducción
Capítulo 2
Datos técnicos

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condiciones ambientales</td>
<td>26</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>28</td>
</tr>
<tr>
<td>Datos generales de la etapa de potencia</td>
<td>30</td>
</tr>
<tr>
<td>Datos de la etapa de potencia específicos del variador</td>
<td>32</td>
</tr>
<tr>
<td>Corrientes de salida de pico</td>
<td>37</td>
</tr>
<tr>
<td>Datos del bus DC</td>
<td>38</td>
</tr>
<tr>
<td>Alimentación del control de 24 V</td>
<td>39</td>
</tr>
<tr>
<td>Señales</td>
<td>40</td>
</tr>
<tr>
<td>Resistencia de frenado</td>
<td>42</td>
</tr>
<tr>
<td>Emisión electromagnética</td>
<td>45</td>
</tr>
<tr>
<td>Memoria no volátil y tarjeta de memoria</td>
<td>47</td>
</tr>
<tr>
<td>Condiciones para UL 508C y CSA</td>
<td>48</td>
</tr>
<tr>
<td>Certificaciones</td>
<td>49</td>
</tr>
</tbody>
</table>
Condiciones ambientales

Condiciones para el funcionamiento

La temperatura ambiente máxima admisible durante el funcionamiento depende de la distancia de montaje de los aparatos y de la potencia exigida. Observe las directrices correspondientes del capítulo Instalación (*véase página 89)*.

| Temperatura ambiente (sin condensación, no forma hielo) °C | 0-50 (32-122) |

Durante el funcionamiento la humedad relativa del aire se admite tal como se indica a continuación:

| Humedad relativa del aire (sin condensación) % | 5-95 |

La altura de montaje se define como la altura por encima del nivel del mar.

| Altura sobre el nivel del mar sin reducción de la potencia. m (ft) | <1000 (<3281) |
| Altura sobre el nivel del mar respetando todas las condiciones siguientes: |
| Temperatura ambiente máxima de 45 °C (113 °F) |
| Reducción de la potencia continua del 1 % por cada 100 m (328 ft) sobre 1000 m (3281 ft) |

| Altura sobre el nivel del mar respetando todas las condiciones siguientes: |
| Temperatura ambiente máxima de 40 °C (104 °F) |
| Reducción de la potencia continua del 1 % por cada 100 m (328 ft) sobre 1000 m (3281 ft) |
| Sobretensiones de la red de alimentación limitadas a la categoría de sobretensión II según IEC 60664-1 |
| Sin sistema TI |

| Altura sobre el nivel del mar respetando todas las condiciones siguientes: |
| Temperatura ambiente máxima de 38 °C (100 °F) |
| Reducción de la potencia continua del 1 % por cada 100 m (328 ft) sobre 1000 m (3281 ft) |
| Sobretensiones de la red de alimentación limitadas a la categoría de sobretensión II según IEC 60664-1 |
| Sin sistema TI |

Condiciones para el transporte y el almacenamiento

El entorno durante el transporte y almacenamiento tiene que estar seco y libre de polvo.

| Temperatura °C (°F) | De –25 a 70 (de –13 a 158) |

La humedad relativa del aire admisibles para el transporte y el almacenamiento es la siguiente:

| Humedad relativa del aire (sin condensación) % | <95 |

Lugar de instalación y conexión

Para el funcionamiento, el aparato tiene que estar instalado en un armario de distribución cerrado. El equipo debe manejarse solo con conexión fija.
Datos técnicos

Grado de suciedad y grado de protección

<table>
<thead>
<tr>
<th>Grado de ensuciamiento</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categoría de protección</td>
<td>IP20</td>
</tr>
</tbody>
</table>

Categoría de protección al utilizar la función de seguridad

Asegúrese de que no se puedan acceder al producto sustancias ni elementos extraños conductivos (grado de suciedad 2). Una suciedad conductiva puede provocar que las funciones de seguridad resulten ineficaces.

Vibraciones y choques

<table>
<thead>
<tr>
<th>Vibraciones, sinusoidales</th>
<th>Probados según IEC 60068-2-6 3,5 mm (desde 2 ... 8,4 Hz) 10 m/s² (desde 8,4 ... 200 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choques, semisinusoidales</td>
<td>Probados según IEC 60068-2-27 150 m/s² (durante 11 ms)</td>
</tr>
</tbody>
</table>
Datos técnicos

Segmento LXM32-U45, LXM32-U60, LXM32-U90, LXM32-D12, LXM32-D18 y LXM32-D30M2

<table>
<thead>
<tr>
<th>Segmento</th>
<th>U45, U60, U90</th>
<th>D12, D18, D30M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (mm)</td>
<td>48 ± 1 (1.99 ± 0.04)</td>
<td>48 ± 1 (1.99 ± 0.04)</td>
</tr>
<tr>
<td>H (mm)</td>
<td>270 (10.63)</td>
<td>270 (10.63)</td>
</tr>
<tr>
<td>e (mm)</td>
<td>24 (0.94)</td>
<td>24 (0.94)</td>
</tr>
<tr>
<td>E (mm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a (mm)</td>
<td>20 (0.79)</td>
<td>20 (0.79)</td>
</tr>
<tr>
<td>Tipo de refrigeración</td>
<td>Convección(1)</td>
<td>Ventilador de 40 mm (1.57 in)</td>
</tr>
</tbody>
</table>

(1) Superior a 1 m/s

Segmento LXM32-D30N4 y LXM32-D72
Datos técnicos

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>D30N4</th>
<th>D72</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (mm/in)</td>
<td>68 ± 1 (2,68 ± 0,04)</td>
<td>108 ± 1 (4,25 ± 0,04)</td>
</tr>
<tr>
<td>H (mm/in)</td>
<td>270 (10,63)</td>
<td>274 (10,79)</td>
</tr>
<tr>
<td>e (mm/in)</td>
<td>13 (0,51)</td>
<td>13 (0,51)</td>
</tr>
<tr>
<td>E (mm/in)</td>
<td>42 (1,65)</td>
<td>82 (3,23)</td>
</tr>
<tr>
<td>a (mm/in)</td>
<td>20 (0,79)</td>
<td>24 (0,94)</td>
</tr>
<tr>
<td>Tipo de refrigeración</td>
<td>Ventilador de 60 mm</td>
<td>Ventilador de 80 mm (3,15 in)</td>
</tr>
</tbody>
</table>

(1) Superior a 1 m/s

Masa

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>U45</th>
<th>U60, U90</th>
<th>D12, D18M2</th>
<th>D18N4, D30M2</th>
<th>D30N4</th>
<th>D72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa (kg/lb)</td>
<td>1,6 (3,53)</td>
<td>1,7 (3,75)</td>
<td>1,8 (3,97)</td>
<td>2,0 (4,41)</td>
<td>2,6 (5,73)</td>
<td>4,7 (10,36)</td>
</tr>
</tbody>
</table>
Datos técnicos

Datos generales de la etapa de potencia

Tensión de red: rango y tolerancia

<table>
<thead>
<tr>
<th>Tensión de red</th>
<th>Vac</th>
<th>De 100 – 15 % a 120 + 10 %</th>
<th>De 200 – 15 % a 240 + 10 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>115/230 Vca monofásico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208/400/480 Vca trifásico</td>
<td>Vac</td>
<td>De 200 – 15 % a 240 + 10 %</td>
<td>De 380 – 15 % a 480 + 10 %</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>Hz</td>
<td>De 50 – 5 % a 60 + 5 %</td>
<td></td>
</tr>
<tr>
<td>(1) 208 Vca: con versión de firmware ≥V01.04 y DOM ≥10.05.2010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corrientes armónicas e impedancia

Las corrientes armónicas dependen de la impedancia de la red de alimentación. Esto se expresa mediante la corriente de cortocircuito de la red. Si la red de alimentación presenta una corriente de cortocircuito mayor que la indicada en los datos técnicos del equipo, desconecte las inductancias de red. Encontrará inductancias de red adecuadas en el capítulo Accesorios y piezas de repuesto (véase página 499).

Sobretensiones transitorias

<table>
<thead>
<tr>
<th>Tensión asignada entre fase y tierra</th>
<th>Vac</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) En función de la altura de montaje, véase el capítulo Condiciones ambientales (véase página 26)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tipo de conexión a tierra

<table>
<thead>
<tr>
<th>Red TT, red TN</th>
<th>Permitida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema TI</td>
<td>En función de la versión de hardware: ≥RS 02: permitido(1)</td>
</tr>
<tr>
<td>Red triangular conectada a tierra</td>
<td>No permitida</td>
</tr>
<tr>
<td>(1) En función de la altura del montaje, véase el capítulo Condiciones ambientales (véase página 26).</td>
<td></td>
</tr>
</tbody>
</table>

Corriente de fuga

<table>
<thead>
<tr>
<th>Corriente de fuga (según IEC 60990, imagen 3)</th>
<th>mA</th>
<th><30(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Medida en redes con punto neutro conectado a tierra y sin filtro de red externo. Tenga en cuenta que un dispositivo de corriente residual de 30 mA puede activarse con tan solo 15 mA. Además fluye una corriente de fuga de alta frecuencia que no se toma en cuenta en la medición. La reacción a esto depende del tipo de dispositivo de corriente residual.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frecuencia PWM de etapa de potencia

La frecuencia PWM de la etapa de potencia está ajustada de forma fija.

<table>
<thead>
<tr>
<th>Frecuencia PWM de etapa de potencia</th>
<th>kHz</th>
<th>8</th>
</tr>
</thead>
</table>

Motores permitidos

En esta familia de equipos pueden conectarse las siguientes series de motores permitidas: BMH, BSH. Al realizar la selección, tenga en cuenta el tipo y la magnitud de la tensión de red y la inductancia del motor. Para consultar otros motores, diríjase a su persona de contacto de Schneider Electric.
Inductancia del motor

La inductancia mínima permitida del motor que va a conectarse depende del tipo de equipo y de la tensión nominal de red. Encontrará los valores en el capítulo Datos de la etapa de potencia específicos del variador (véase página 32).

El valor de inductancia mínimo indicado limita la ondulación de corriente de la corriente de salida pico. Si el valor de inductancia del motor conectado es menor que el valor de inductancia mínimo indicado, el control de corriente puede verse afectado y activar la monitorización de la corriente de fase del motor.
Datos de la etapa de potencia específicos del variador

Datos para equipos monofásicos con 115 Vca

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>U45M2</th>
<th>U90M2</th>
<th>D18M2</th>
<th>D30M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal (monofásica)</td>
<td>Vac 115</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>Limitación de extracorriente de conexión</td>
<td>A 1,7</td>
<td>3,5</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Fusible máximo a conectar previamente</td>
<td>A 25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Corriente de salida permanente</td>
<td>A<sub>rms</sub> 1,5</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Corriente de salida de pico</td>
<td>A<sub>rms</sub> 3</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Inductancia mínima del motor (fase/fase)</td>
<td>mH 5,5</td>
<td>3</td>
<td>1,4</td>
<td>0,8</td>
</tr>
<tr>
<td>Valores sin inductancia de red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia nominal kW</td>
<td>0,15</td>
<td>0,3</td>
<td>0,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Absorción de corriente</td>
<td>A<sub>rms</sub> 2,9</td>
<td>5,4</td>
<td>8,5</td>
<td>12,9</td>
</tr>
<tr>
<td>THD (total harmonic distortion)</td>
<td>% 173</td>
<td>159</td>
<td>147</td>
<td>135</td>
</tr>
<tr>
<td>Potencia perdida W</td>
<td>W 7</td>
<td>15</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima</td>
<td>A 111</td>
<td>161</td>
<td>203</td>
<td>231</td>
</tr>
<tr>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms 0,8</td>
<td>1,0</td>
<td>1,2</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Valores con inductancia de red

<table>
<thead>
<tr>
<th>Inductancia de red mH</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal kW</td>
<td>0,2</td>
<td>0,4</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Absorción de corriente</td>
<td>A<sub>rms</sub> 2,6</td>
<td>5,2</td>
<td>9,9</td>
<td>9,9</td>
</tr>
<tr>
<td>THD (total harmonic distortion)</td>
<td>% 85</td>
<td>90</td>
<td>74</td>
<td>72</td>
</tr>
<tr>
<td>Potencia perdida W</td>
<td>W 8</td>
<td>16</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima</td>
<td>A 22</td>
<td>48</td>
<td>56</td>
<td>61</td>
</tr>
<tr>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms 3,3</td>
<td>3,1</td>
<td>3,5</td>
<td>3,7</td>
</tr>
</tbody>
</table>

(1) Conforme a IEC 60269; interruptores automáticos con característica B o C; para UL y CSA, véase el capítulo Condiciones para UL 508C y CSA (véase página 48); pueden utilizarse valores menores; el fusible debe seleccionarse de tal forma que no se active con el consumo de corriente indicado.

(2) Con una impedancia de red correspondiente a una corriente de cortocircuito de la red de alimentación de 1 kA

(3) Con potencia nominal y tensión nominal

(4) Relativo a la corriente de entrada

(5) Condición: resistencia de frenado interna desactivada; valor con corriente nominal, tensión nominal y potencia nominal; valor prácticamente proporcional a la corriente de salida

(6) En caso extremo, impulso de desconexión/conexión antes de activarse la limitación de extracorriente de conexión, tiempo máximo véase la siguiente fila
Datos para equipos monofásicos con 230 Vca

<table>
<thead>
<tr>
<th>LXM32•...</th>
<th>U45M2</th>
<th>U90M2</th>
<th>D18M2</th>
<th>D30M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal (monofásica)</td>
<td>Vac 230</td>
<td>230</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Limitación de extracorriente de conexión</td>
<td>A 3,5</td>
<td>6,9</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>Fusible máximo a conectar previamente(1)</td>
<td>A 25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Corriente de salida permanente</td>
<td>A<sub>rms</sub> 1,5</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Corriente de salida de pico</td>
<td>A<sub>rms</sub> 4,5</td>
<td>9</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Inductancia mínima del motor (fase/fase)</td>
<td>mH 5,5</td>
<td>3</td>
<td>1,4</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Valores sin inductancia de red(2)

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>0,3</th>
<th>0,5</th>
<th>1,0</th>
<th>1,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal</td>
<td>A<sub>rms</sub></td>
<td>2,9</td>
<td>4,5</td>
<td>8,4</td>
<td>12,7</td>
</tr>
<tr>
<td>Absorción de corriente(3)</td>
<td>%</td>
<td>181</td>
<td>166</td>
<td>148</td>
<td>135</td>
</tr>
<tr>
<td>THD (total harmonic distortion)(4)</td>
<td>W</td>
<td>10</td>
<td>18</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>Potencia perdida (5)</td>
<td>Extracorriente de conexión máxima(6)</td>
<td>A 142</td>
<td>197</td>
<td>240</td>
<td>270</td>
</tr>
<tr>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms</td>
<td>1,1</td>
<td>1,5</td>
<td>1,8</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Valores con inductancia de red

Inductancia de red	mH 5	2	2	2
Potencia nominal	kW 0,5	0,9	1,6	2,2
Absorción de corriente(3)	A_{rms} 3,4	6,3	10,6	14,1
THD (total harmonic distortion)(4)	% 100	107	93	86
Potencia perdida (5)	W 11	20	38	42
Extracorriente de conexión máxima(6)	A 42	90	106	116
Tiempo para extracorriente de conexión máxima	ms 3,5	3,2	3,6	4,0

(1) Conforme a IEC 60269; interruptores automáticos con característica B o C; para UL y CSA, véase el capítulo Condiciones para UL 508C y CSA (véase página 46); pueden utilizarse valores menores; el fusible debe seleccionarse de tal forma que no se active con el consumo de corriente indicado.

(2) Con una impedancia de red correspondiente a una corriente de cortocircuito de la red de alimentación de 1 kA

(3) Con potencia nominal y tensión nominal

(4) Relativo a la corriente de entrada

(5) Condición: resistencia de frenado interna desactivada; valor con corriente nominal, tensión nominal y potencia nominal; valor prácticamente proporcional a la corriente de salida

(6) En caso extremo, impulso de desconexión/conexión antes de activarse la limitación de extracorriente de conexión, tiempo máximo véase la siguiente fila.
Datos para equipos trifásicos con 208 Vca

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>U60N4</th>
<th>D12N4</th>
<th>D18N4</th>
<th>D30N4</th>
<th>D72N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal (trifásica)</td>
<td>Vac 208</td>
<td>208</td>
<td>208</td>
<td>208</td>
<td>208</td>
</tr>
<tr>
<td>Limitación de extracorriente de conexión</td>
<td>A 2,2</td>
<td>4,9</td>
<td>10</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Fusible máximo a conectar previamente(1)</td>
<td>A 32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Corriente de salida permanente</td>
<td>A_{rms} 1,5</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Corriente de salida de pico</td>
<td>A_{rms} 6</td>
<td>12</td>
<td>18</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>Inductancia mínima del motor (fase/fase)</td>
<td>mH 8,5</td>
<td>4,5</td>
<td>3</td>
<td>1,7</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Valores sin inductancia de red(2)

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>0,35</th>
<th>0,7</th>
<th>1,2</th>
<th>2,0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal</td>
<td>A_{rms}</td>
<td>1,8</td>
<td>3,6</td>
<td>6,2</td>
<td>9,8</td>
<td>21,9</td>
</tr>
<tr>
<td>Absorción de corriente(3)</td>
<td>W</td>
<td>13</td>
<td>26</td>
<td>48</td>
<td>81</td>
<td>204</td>
</tr>
<tr>
<td>THD (total harmonic distortion)(4)</td>
<td></td>
<td>% 132</td>
<td>136</td>
<td>140</td>
<td>128</td>
<td>106</td>
</tr>
<tr>
<td>Potencia perdida (5)</td>
<td></td>
<td>60</td>
<td>180</td>
<td>276</td>
<td>341</td>
<td>500</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima(6)</td>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms 0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,1</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Valores con inductancia de red

<table>
<thead>
<tr>
<th></th>
<th>mH</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductancia de red</td>
<td>kW</td>
<td>0,4</td>
<td>0,8</td>
<td>1,5</td>
<td>2,6</td>
<td>6,5</td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>A_{rms}</td>
<td>1,7</td>
<td>3,1</td>
<td>6,0</td>
<td>9,2</td>
<td>21,1</td>
</tr>
<tr>
<td>Absorción de corriente(3)</td>
<td>W</td>
<td>13</td>
<td>27</td>
<td>51</td>
<td>86</td>
<td>218</td>
</tr>
<tr>
<td>THD (total harmonic distortion)(4)</td>
<td></td>
<td>% 97</td>
<td>79</td>
<td>78</td>
<td>59</td>
<td>34</td>
</tr>
<tr>
<td>Potencia perdida (5)</td>
<td></td>
<td>19</td>
<td>55</td>
<td>104</td>
<td>126</td>
<td>155</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima(6)</td>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms 1,9</td>
<td>2,6</td>
<td>2,6</td>
<td>3,0</td>
<td>3,6</td>
</tr>
</tbody>
</table>

(1) Conforme a IEC 60269; interruptores automáticos con característica B o C; para UL y CSA, véase el capítulo Condiciones para UL 508C y CSA (véase página 48); pueden utilizarse valores menores; el fusible debe seleccionarse de tal forma que no se active con el consumo de corriente indicado.

(2) Con una impedancia de red correspondiente a una corriente de cortocircuito de la red de alimentación de 5 kA.

(3) Con potencia nominal y tensión nominal.

(4) Relativo a la corriente de entrada.

(5) Condición: resistencia de frenado interna desactivada; valor por corriente nominal, tensión nominal y potencia nominal; valor prácticamente proporcional a la corriente de salida.

(6) En caso extremo, impulso de desconexión/conexión antes de activarse la limitación de extracorriente de conexión, tiempo máximo véase la siguiente fila.
Datos para equipos trifásicos con 400 Vca

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>U60N4</th>
<th>D12N4</th>
<th>D18N4</th>
<th>D30N4</th>
<th>D72N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datos técnicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión nominal (trifásica)</td>
<td>Vac</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Limitación de extracorriente de conexión</td>
<td>A</td>
<td>4,3</td>
<td>9,4</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Fusible máximo a conectar previamente</td>
<td>A</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Corriente de salida permanente</td>
<td>A<sub>rms</sub></td>
<td>1,5</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Corriente de salida de pico</td>
<td>A<sub>rms</sub></td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Inductancia mínima del motor</td>
<td>mH</td>
<td>8,5</td>
<td>4,5</td>
<td>3</td>
<td>1,7</td>
</tr>
<tr>
<td>Valores sin inductancia de red<sup>(2)</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>kW</td>
<td>0,4</td>
<td>0,9</td>
<td>1,8</td>
<td>3,0</td>
</tr>
<tr>
<td>Absorción de corriente<sup>(3)</sup></td>
<td>A<sub>rms</sub></td>
<td>1,4</td>
<td>2,9</td>
<td>5,2</td>
<td>8,3</td>
</tr>
<tr>
<td>THD (total harmonic distortion)<sup>(4)</sup></td>
<td>%</td>
<td>191</td>
<td>177</td>
<td>161</td>
<td>148</td>
</tr>
<tr>
<td>Potencia perdida<sup>(5)</sup></td>
<td>W</td>
<td>17</td>
<td>37</td>
<td>68</td>
<td>115</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima<sup>(6)</sup></td>
<td>A</td>
<td>90</td>
<td>131</td>
<td>201</td>
<td>248</td>
</tr>
<tr>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>1,1</td>
</tr>
<tr>
<td>Valores con inductancia de red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inductancia de red</td>
<td>mH</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>kW</td>
<td>0,8</td>
<td>1,6</td>
<td>3,3</td>
<td>5,6</td>
</tr>
<tr>
<td>Absorción de corriente<sup>(3)</sup></td>
<td>A<sub>rms</sub></td>
<td>1,8</td>
<td>3,4</td>
<td>6,9</td>
<td>11,1</td>
</tr>
<tr>
<td>THD (total harmonic distortion)<sup>(4)</sup></td>
<td>%</td>
<td>108</td>
<td>90</td>
<td>90</td>
<td>77</td>
</tr>
<tr>
<td>Potencia perdida<sup>(5)</sup></td>
<td>W</td>
<td>19</td>
<td>40</td>
<td>74</td>
<td>125</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima<sup>(6)</sup></td>
<td>A</td>
<td>28</td>
<td>36</td>
<td>75</td>
<td>87</td>
</tr>
<tr>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms</td>
<td>1,9</td>
<td>2,3</td>
<td>2,3</td>
<td>2,6</td>
</tr>
</tbody>
</table>

⁽¹⁾ Conforme a IEC 60269; interruptores automáticos con característica B o C; para UL y CSA, véase el capítulo Condiciones para UL 508C y CSA (véase página 46); pueden utilizarse valores menores; el fusible debe seleccionarse de tal forma que no se active con el consumo de corriente indicado.

⁽²⁾ Con una impedancia de red correspondiente a una corriente de cortocircuito de la red de alimentación de 5 kA

⁽³⁾ Con potencia nominal y tensión nominal

⁽⁴⁾ Relativo a la corriente de entrada

⁽⁵⁾ Condición: resistencia de frenado interna desactivada; valor con corriente nominal, tensión nominal y potencia nominal; valor prácticamente proporcional a la corriente de salida

⁽⁶⁾ En caso extremo, impulso de desconexión/conexión antes de activarse la limitación de extracorriente de conexión, tiempo máximo véase la siguiente fila
Datos para equipos trifásicos con 480 Vca

<table>
<thead>
<tr>
<th>LXM32...</th>
<th>U60N4</th>
<th>D12N4</th>
<th>D18N4</th>
<th>D30N4</th>
<th>D72N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal (trifásica)</td>
<td>Vac</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>Limitación de extracorriente de conexión</td>
<td>A</td>
<td>5,1</td>
<td>11,3</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Fusible máximo a conectar previamente<sup>(1)</sup></td>
<td>A</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Corriente de salida permanente</td>
<td>A_{rms}</td>
<td>1,5</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Corriente de salida de pico</td>
<td>A_{rms}</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Inductancia mínima del motor (fase/fase)</td>
<td>mH</td>
<td>8,5</td>
<td>4,5</td>
<td>3</td>
<td>1,7</td>
</tr>
<tr>
<td>Valores sin inductancia de red<sup>(2)</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>kW</td>
<td>0,4</td>
<td>0,9</td>
<td>1,8</td>
<td>3,0</td>
</tr>
<tr>
<td>Absorción de corriente<sup>(3)</sup></td>
<td>A_{rms}</td>
<td>1,2</td>
<td>2,4</td>
<td>4,5</td>
<td>7,0</td>
</tr>
<tr>
<td>THD (total harmonic distortion)<sup>(4)</sup></td>
<td>%</td>
<td>201</td>
<td>182</td>
<td>165</td>
<td>152</td>
</tr>
<tr>
<td>Potencia perdida<sup>(5)</sup></td>
<td>W</td>
<td>20</td>
<td>42</td>
<td>76</td>
<td>129</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima<sup>(6)</sup></td>
<td>A</td>
<td>129</td>
<td>188</td>
<td>286</td>
<td>350</td>
</tr>
<tr>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms</td>
<td>0,6</td>
<td>0,7</td>
<td>1,0</td>
<td>1,2</td>
</tr>
<tr>
<td>Valores con inductancia de red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inductancia de red</td>
<td>mH</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>kW</td>
<td>0,8</td>
<td>1,6</td>
<td>3,3</td>
<td>5,6</td>
</tr>
<tr>
<td>Absorción de corriente<sup>(3)</sup></td>
<td>A_{rms}</td>
<td>1,6</td>
<td>2,9</td>
<td>6,0</td>
<td>9,6</td>
</tr>
<tr>
<td>THD (total harmonic distortion)<sup>(4)</sup></td>
<td>%</td>
<td>116</td>
<td>98</td>
<td>98</td>
<td>85</td>
</tr>
<tr>
<td>Potencia perdida<sup>(5)</sup></td>
<td>W</td>
<td>21</td>
<td>44</td>
<td>82</td>
<td>137</td>
</tr>
<tr>
<td>Extracorriente de conexión máxima<sup>(6)</sup></td>
<td>A</td>
<td>43</td>
<td>57</td>
<td>116</td>
<td>137</td>
</tr>
<tr>
<td>Tiempo para extracorriente de conexión máxima</td>
<td>ms</td>
<td>1,9</td>
<td>2,4</td>
<td>2,4</td>
<td>2,7</td>
</tr>
</tbody>
</table>

⁽¹⁾ Conforme a IEC 60269; interruptores automáticos con característica B o C; para UL y CSA, véase el capítulo Condiciones para UL 508C y CSA (véase página 49); pueden utilizarse valores menores; el fusible debe seleccionarse de tal forma que no se active con el consumo de corriente indicado.

⁽²⁾ Con una impedancia de red correspondiente a una corriente de cortocircuito de la red de alimentación de 5 kA.

⁽³⁾ Con potencia nominal y tensión nominal.

⁽⁴⁾ Relativo a la corriente de entrada.

⁽⁵⁾ Condición: resistencia de frenado interna desactivada; valor corriente nominal, tensión nominal y potencia nominal; valor prácticamente proporcional a la corriente de salida.

⁽⁶⁾ En caso extremo, impulso de desconexión/conexión antes de activarse la limitación de extracorriente de conexión, tiempo máximo véase la siguiente fila.
Corrientes de salida de pico

El equipo puede suministrar durante un tiempo limitado la corriente de salida de pico. Si la corriente de salida de pico fluye durante la parada del motor, la limitación de la corriente se activa antes que en el caso de un motor en movimiento debido a la carga superior a la que está sometido un interruptor semiconductor individual.

El tiempo durante el cual puede suministrarse la tensión de salida de pico depende de la versión de hardware.

Pico de corriente de salida con versión de hardware ≥RS03: 5 segundos

![Gráfico de corrientes de pico con hardware ≥RS03]

Pico de corriente de salida con versión de hardware <RS03: 1 segundo

![Gráfico de corrientes de pico con hardware <RS03]
Datos del bus DC

Datos del bus DC para equipos monofásicos

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>U45M2</th>
<th>U90M2</th>
<th>D18M2</th>
<th>D30M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal</td>
<td>V</td>
<td>115</td>
<td>230</td>
<td>115</td>
</tr>
<tr>
<td>Tensión nominal del bus DC</td>
<td>V</td>
<td>163</td>
<td>325</td>
<td>163</td>
</tr>
<tr>
<td>Límite de subtensión</td>
<td>V</td>
<td>55</td>
<td>130</td>
<td>55</td>
</tr>
<tr>
<td>Límite de tensión: instrucciones de Quick Stop</td>
<td>V</td>
<td>60</td>
<td>140</td>
<td>60</td>
</tr>
<tr>
<td>Límite de sobretensión</td>
<td>V</td>
<td>260(1) / 450</td>
<td>260(1) / 450</td>
<td>260(1) / 450</td>
</tr>
<tr>
<td>Potencia continua máxima a través del bus DC</td>
<td>kW</td>
<td>0,2</td>
<td>0,5</td>
<td>0,4</td>
</tr>
<tr>
<td>Corriente permanente máxima a través del bus DC</td>
<td>A</td>
<td>1,5</td>
<td>1,5</td>
<td>3,2</td>
</tr>
</tbody>
</table>

(1) Ajustable a través del parámetro MON_DCbusVdcThresh.

Datos del bus DC para equipos trifásicos

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>U60N4</th>
<th>D12N4</th>
<th>D18N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal</td>
<td>V</td>
<td>208</td>
<td>400</td>
</tr>
<tr>
<td>Tensión nominal del bus DC</td>
<td>V</td>
<td>294</td>
<td>566</td>
</tr>
<tr>
<td>Límite de subtensión</td>
<td>V</td>
<td>150</td>
<td>350</td>
</tr>
<tr>
<td>Límite de tensión: instrucciones de Quick Stop</td>
<td>V</td>
<td>160</td>
<td>360</td>
</tr>
<tr>
<td>Límite de sobretensión</td>
<td>V</td>
<td>450(1) / 820</td>
<td>820</td>
</tr>
<tr>
<td>Potencia continua máxima a través del bus DC</td>
<td>kW</td>
<td>0,4</td>
<td>0,8</td>
</tr>
<tr>
<td>Corriente permanente máxima a través del bus DC</td>
<td>A</td>
<td>1,5</td>
<td>1,5</td>
</tr>
</tbody>
</table>

(1) Ajustable a través del parámetro MON_DCbusVdcThresh.

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>D30N4</th>
<th>D72N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal</td>
<td>V</td>
<td>208</td>
</tr>
<tr>
<td>Tensión nominal del bus DC</td>
<td>V</td>
<td>294</td>
</tr>
<tr>
<td>Límite de subtensión</td>
<td>V</td>
<td>150</td>
</tr>
<tr>
<td>Límite de tensión: instrucciones de Quick Stop</td>
<td>V</td>
<td>160</td>
</tr>
<tr>
<td>Límite de sobretensión</td>
<td>V</td>
<td>450(1) / 820</td>
</tr>
<tr>
<td>Potencia continua máxima a través del bus DC</td>
<td>kW</td>
<td>2,8</td>
</tr>
<tr>
<td>Corriente permanente máxima a través del bus DC</td>
<td>A</td>
<td>10,0</td>
</tr>
</tbody>
</table>

(1) Ajustable a través del parámetro MON_DCbusVdcThresh.
Datos técnicos

Alimentación del control de 24 V

Alimentación de 24 V

La tensión de +24 VDC para la alimentación del control debe cumplir las especificaciones de IEC 61131-2 (fuente de alimentación estándar MBTP):

<table>
<thead>
<tr>
<th>Tensión de entrada</th>
<th>Vdc</th>
<th>24 (-15/+20 %)</th>
<th>24 (-15/+20 %)(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo de corriente (sin carga)</td>
<td>A</td>
<td>≤1**(2)**</td>
<td>≤1**(2)**</td>
</tr>
<tr>
<td>Ondulación residual (ripple)</td>
<td>%</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>Corriente de encendido</td>
<td></td>
<td>Corriente de carga para condensador 1,8 mF</td>
<td>Corriente de carga para condensador 1,8 mF</td>
</tr>
</tbody>
</table>

(1) En el caso de conexión de motores sin freno de parada: en motores con freno de parada: véase el siguiente diagrama

(2) Consumo de corriente: el freno de parada no se tiene en cuenta

Alimentación del control en motores con freno de parada

Si se conecta un motor con freno de parada, la tensión de 24 Vcc para la alimentación del control debe adaptarse según el tipo de motor conectado, la longitud del cable del motor y la sección de los conductores para freno de parada. El siguiente diagrama es válido para los cables de motor disponibles como accesorio, véase el capítulo Accesorios y piezas de repuesto (*véase página 499*). Consulte en el diagrama la tensión que debe haber en CN2 como alimentación del control para abrir el freno de parada. La tolerancia de tensión es del ±5 %.

Alimentación del control en motores con freno de parada: la tensión depende del tipo de motor, de la longitud del cable del motor y de la sección del conductor.

![Diagrama de tensión Vdc](image)

1 Tensión máxima de la alimentación del control
Datos técnicos

Señales

Tipo de lógica

Las entradas y salidas digitales de este producto pueden cablearse para lógica positiva o para lógica negativa.

1. Lógica positiva
 - La salida suministra corriente (la salida Source)
 - Fluye corriente hacia la entrada (entrada Sink)

2. Lógica negativa
 - La salida demanda corriente (salida Sink)
 - Fluye corriente de la entrada (entrada Source)

Las entradas de señal están protegidas contra polarización incorrecta y las salidas están protegidas contra cortocircuitos. Las entradas y las salidas están funcionalmente aisladas.

Señales de entrada digitales de 24 V

Con un cableado como lógica positiva, los niveles de las entradas digitales cumplen con IEC 61131-2, tipo 1. Las propiedades eléctricas son válidas también en caso de cableado como lógica negativa siempre que no se indique algo diferente.

<table>
<thead>
<tr>
<th>Tensión de entrada - lógica positiva</th>
<th>Vdc</th>
<th>De -3 a 5</th>
<th>De 15 a 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 0</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de entrada - lógica negativa (a 24 Vcc)</td>
<td>Vdc</td>
<td>>19</td>
<td><9</td>
</tr>
<tr>
<td>Nivel 0</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corriente de entrada (a 24 Vcc)</td>
<td>mA</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tiempo de antirrbole (software)¹(²)</td>
<td>ms</td>
<td>1,5 (valor por defecto)</td>
<td></td>
</tr>
<tr>
<td>Tiempo de conmutación de hardware</td>
<td>µs</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Flanco ascendente (nivel 0 -> 1)</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flanco descendente (nivel 1 -> 0)</td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter (entradas Capture)</td>
<td>µs</td>
<td><2</td>
<td></td>
</tr>
</tbody>
</table>

¹ Ajustable a través de parámetros (periodo de muestreo de 250 µs)
² Si las entradas de captura se utilizan para la captura, no se aplica el tiempo antirrbole.

Señales de salida digitales de 24 V

En caso de cableado como lógica positiva, los niveles de las salidas digitales cumplen con IEC 61131-2. Las propiedades eléctricas también son válidas en caso de cableado como lógica negativa siempre que no se indique algo diferente.

Tensión de alimentación nominal	Vdc	24
Rango de tensión para tensión de alimentación	Vdc	De 19,2 a 30
Tensión de salida nominal - lógica positiva	Vdc	24
Tensión de salida nominal - lógica negativa	Vdc	0
Caída de tensión con carga de 100 mA	Vdc	≤3
Corriente máxima por salida	mA	100
Señales de entrada de la función de seguridad STO

Las entradas de la función de seguridad STO (entradas STO_A y STO_B) están diseñadas de forma fija como tipo de lógica positiva. Observe las indicaciones del capítulo Función de seguridad STO ("Safe Torque Off") (véase página 78).

<table>
<thead>
<tr>
<th>Tensión de entrada - lógica positiva</th>
<th>Vdc</th>
<th>De -3 a 5</th>
<th>De 15 a 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corriente de entrada (a 24 Vcc)</td>
<td>mA</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tiempo de antirrebote STO_A y STO_B</td>
<td>ms</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>Detección de diferencias de señal entre STO_A y STO_B</td>
<td>s</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>Tiempo de reacción de la función de seguridad STO</td>
<td>ms</td>
<td>≤10</td>
<td></td>
</tr>
</tbody>
</table>

Freno de parada de salida CN11

En la salida CN11 puede conectarse el freno de parada de 24 Vdc del motor BMH o del motor BSH. La salida CN11 presenta los siguientes datos:

<table>
<thead>
<tr>
<th>Tensión de salida(1)</th>
<th>V</th>
<th>Tensión en la alimentación del control CN2 menos 0,8 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión de conmutación máxima</td>
<td>A</td>
<td>1,7</td>
</tr>
<tr>
<td>Energía de carga inductiva(2)</td>
<td>Ws</td>
<td>1,5</td>
</tr>
</tbody>
</table>

(1) Véase el capítulo Alimentación del control de 24 V (véase página 39)
(2) Tiempo entre proceso de desconexión: > 1 s

Señales del bus CAN

Las señales del bus CAN cumplen con el estándar CAN y están protegidas contra cortocircuitos.

Señales del encoder

Las señales del encoder son conformes con la especificación Stegmann Hyperface.

<table>
<thead>
<tr>
<th>Tensión de salida para el encoder</th>
<th>V</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente de salida para encoder</td>
<td>mA</td>
<td>100</td>
</tr>
<tr>
<td>Rango de tensión de las señales de entrada SIN/COS</td>
<td>1 V_p-p, con 2,5 V de offset, 0,5 V_p-p con 100 kHz</td>
<td></td>
</tr>
<tr>
<td>Resistencia de entrada</td>
<td>Ω</td>
<td>120</td>
</tr>
</tbody>
</table>

La tensión de salida está protegida contra cortocircuitos y es segura contra sobrecarga. La transferencia se produce a través de RS485 de semidúplex asincrónico.
Resistencia de frenado

Resistencia de frenado interna

El variador dispone de una resistencia de frenado interna. Si la resistencia de frenado interna no fuera suficiente para la dinámica de la aplicación, deberán utilizarse una o varias resistencias de frenado externas.

No debe descenderse de los valores de resistencia mínimos indicados para las resistencias de frenado externas. Si se activara una resistencia de frenado externa a través del parámetro correspondiente, la resistencia de frenado interna se desconectará.

<table>
<thead>
<tr>
<th>LXM32...</th>
<th>U45M2</th>
<th>U90M2</th>
<th>D18M2</th>
<th>D30M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de la resistencia de frenado interna</td>
<td>Ω</td>
<td>94</td>
<td>47</td>
<td>20</td>
</tr>
<tr>
<td>Potencia continua de la resistencia de frenado interna P_{PR}</td>
<td>W</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Energía de pico E_{CR}</td>
<td>Ws</td>
<td>82</td>
<td>166</td>
<td>330</td>
</tr>
<tr>
<td>Resistencia de frenado externa mínima</td>
<td>Ω</td>
<td>68</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>Resistencia de frenado externa máxima (1)</td>
<td>Ω</td>
<td>110</td>
<td>55</td>
<td>27</td>
</tr>
<tr>
<td>Potencia continua máxima de la resistencia de frenado externa</td>
<td>W</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Capacidad de los condensadores internos</td>
<td>μF</td>
<td>390</td>
<td>780</td>
<td>1170</td>
</tr>
</tbody>
</table>

Parámetro $DCbus_compat = 0$ (valor por defecto)

Tensión de conexión de la resistencia de frenado con una tensión nominal de 115 V	V	236	236	236	236
Tensión de conexión de la resistencia de frenado con una tensión nominal de 200 V y 230 V	V	430	430	430	430
Consumo energético de condensadores internos E_{var} con tensión nominal de 115 V +10%	Ws	5	9	14	18
Consumo energético de condensadores internos E_{var} con tensión nominal de 200 V +10%	Ws	17	34	52	69
Consumo energético de condensadores internos E_{var} con tensión nominal de 230 V +10%	Ws	11	22	33	44

Parámetro $DCbus_compat = 1$ (tensión de conexión reducida)

Tensión de conexión de resistencia de frenado	V	395	395	395	395
Consumo energético de condensadores internos E_{var} con tensión nominal de 115 V +10%	Ws	24	48	73	97
Consumo energético de condensadores internos E_{var} con tensión nominal de 200 V +10%	Ws	12	23	35	46
Consumo energético de condensadores internos E_{var} con tensión nominal de 230 V +10%	Ws	5	11	16	22

(1) La resistencia de frenado máxima indicada puede provocar una reducción de la potencia de pico del equipo. En función de la aplicación es posible utilizar también una resistencia mayor.
Datos técnicos

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>U60N4</th>
<th>D12N4</th>
<th>D18N4</th>
<th>D30N4</th>
<th>D72N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de la resistencia de frenado interna</td>
<td>Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia continua de la resistencia de frenado interna P_{PR}</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía de pico E_{CR}</td>
<td>Ws</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistencia de frenado externa mínima</td>
<td>Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistencia de frenado externa máxima(1)</td>
<td>Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia continua máxima de la resistencia de frenado externa</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacidad de los condensadores internos</td>
<td>μF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parámetro $DCbus_compat$ (2)

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>U60N4</th>
<th>D12N4</th>
<th>D18N4</th>
<th>D30N4</th>
<th>D72N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión de conexión de la resistencia de frenado con una tensión nominal de 208 V</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de conexión de la resistencia de frenado con una tensión nominal de 380 V, 400 V y 480 V</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo energético de condensadores internos E_{var} con tensión nominal de 208 V +10%</td>
<td>Ws</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo energético de condensadores internos E_{var} con tensión nominal de 380 V +10%</td>
<td>Ws</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo energético de condensadores internos E_{var} con tensión nominal de 400 V +10%</td>
<td>Ws</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo energético de condensadores internos E_{var} con tensión nominal de 480 V +10%</td>
<td>Ws</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) La resistencia de frenado máxima indicada puede provocar una reducción de la potencia de pico del equipo. En función de la aplicación es posible utilizar también una resistencia mayor.

(2) El parámetro $DCbus_compat$ no tiene efecto alguno en equipos trifásicos

Resistencias de frenado externas (accesorios)

<table>
<thead>
<tr>
<th>VW3A760...</th>
<th>1Rxx</th>
<th>2Rxx</th>
<th>3Rxx</th>
<th>4Rxx</th>
<th>5Rxx</th>
<th>6Rxx</th>
<th>7Rxx</th>
<th>8Rxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de resistencia</td>
<td>Ω</td>
<td>10</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Potencia continua</td>
<td>W</td>
<td>400</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>100</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Ciclo de trabajo máximo con 115 V</td>
<td>s</td>
<td>3</td>
<td>1,8</td>
<td>4,2</td>
<td>10,8</td>
<td>6,36</td>
<td>16,8</td>
<td>42</td>
</tr>
<tr>
<td>Potencia de pico con 115 V</td>
<td>kW</td>
<td>5,6</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Energía máxima de pico con 115 V</td>
<td>kWs</td>
<td>16,7</td>
<td>3,7</td>
<td>8,7</td>
<td>22,3</td>
<td>4,9</td>
<td>13</td>
<td>32,5</td>
</tr>
<tr>
<td>Ciclo de trabajo máximo con 230 V</td>
<td>s</td>
<td>0,72</td>
<td>0,55</td>
<td>1,08</td>
<td>2,64</td>
<td>1,44</td>
<td>3,72</td>
<td>9,6</td>
</tr>
<tr>
<td>Potencia de pico con 230 V</td>
<td>kW</td>
<td>18,5</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>2,6</td>
<td>2,6</td>
<td>2,6</td>
</tr>
<tr>
<td>Energía máxima de pico con 230 V</td>
<td>kWs</td>
<td>13,3</td>
<td>3,8</td>
<td>7,4</td>
<td>18,1</td>
<td>3,7</td>
<td>9,6</td>
<td>24,7</td>
</tr>
<tr>
<td>Ciclo de trabajo máximo con 400 V y 480 V</td>
<td>s</td>
<td>0,12</td>
<td>0,084</td>
<td>0,216</td>
<td>0,504</td>
<td>0,3</td>
<td>0,78</td>
<td>1,92</td>
</tr>
<tr>
<td>Potencia de pico a 400 V y 480 V</td>
<td>kW</td>
<td>60,8</td>
<td>22,5</td>
<td>22,5</td>
<td>22,5</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
</tr>
</tbody>
</table>
VW3A760...

<table>
<thead>
<tr>
<th></th>
<th>1Rxx</th>
<th>2Rxx</th>
<th>3Rxx</th>
<th>4Rxx</th>
<th>5Rxx</th>
<th>6Rxx</th>
<th>7Rxx</th>
<th>8Rxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía máxima de pico a 400 V y 480 V</td>
<td>7,3</td>
<td>1,9</td>
<td>4,9</td>
<td>11,4</td>
<td>2,5</td>
<td>6,6</td>
<td>16,2</td>
<td>2,9</td>
</tr>
<tr>
<td>Categoría de protección</td>
<td>IP65</td>
<td>IP65</td>
<td>IP65</td>
<td>IP65</td>
<td>IP65</td>
<td>IP65</td>
<td>IP65</td>
<td>IP65</td>
</tr>
<tr>
<td>Homologación UL (n.º de archivo)</td>
<td>-</td>
<td>E233422</td>
<td>E233422</td>
<td>-</td>
<td>E233422</td>
<td>E233422</td>
<td>-</td>
<td>E233422</td>
</tr>
</tbody>
</table>

VW3A77...

<table>
<thead>
<tr>
<th></th>
<th>04</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor de resistencia</td>
<td>Ω</td>
<td>15</td>
</tr>
<tr>
<td>Potencia continua</td>
<td>W</td>
<td>1000</td>
</tr>
<tr>
<td>Ciclo de trabajo máximo con 115 V</td>
<td>s</td>
<td>19</td>
</tr>
<tr>
<td>Potencia de pico con 115 V</td>
<td>kW</td>
<td>3,7</td>
</tr>
<tr>
<td>Energía máxima de pico con 115 V</td>
<td>kWs</td>
<td>70</td>
</tr>
<tr>
<td>Ciclo de trabajo máximo con 230 V</td>
<td>s</td>
<td>3,5</td>
</tr>
<tr>
<td>Potencia de pico con 230 V</td>
<td>kW</td>
<td>12,3</td>
</tr>
<tr>
<td>Energía máxima de pico con 230 V</td>
<td>kWs</td>
<td>43,1</td>
</tr>
<tr>
<td>Ciclo de trabajo máximo con 400 V y 480 V</td>
<td>s</td>
<td>0,65</td>
</tr>
<tr>
<td>Potencia de pico a 400 V y 480 V</td>
<td>kW</td>
<td>40,6</td>
</tr>
<tr>
<td>Energía máxima de pico a 400 V y 480 V</td>
<td>kWs</td>
<td>26,5</td>
</tr>
<tr>
<td>Categoría de protección</td>
<td>IP20</td>
<td>IP20</td>
</tr>
<tr>
<td>Homologación UL (n.º de archivo)</td>
<td>E226619</td>
<td>E226619</td>
</tr>
</tbody>
</table>
Emisión electromagnética

Sinopsis

Los productos descritos en este manual cumplen los requisitos CEM según la norma IEC 61800-3 si se respetan las medidas CEM descritas en el presente manual.

⚠ ADVERTENCIA

INTERFERENCIAS ELECTROMAGNÉTICAS DE SEÑALES Y EQUIPOS

Asegure la ejecución correcta de las medidas CEM conforme a la norma IEC 61800-3 con el fin evitar un comportamiento no intencionado del equipo.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Si el conjunto de su sistema (variador, filtro de red y otros accesorios, así como las medidas para mejorar la CEM) no satisface los requisitos para la categoría C1 conforme a IEC 61800-3, en entornos residenciales pueden originarse interferencias en redes de suministro.

⚠ ADVERTENCIA

Interferencias de alta frecuencia

- Asegúrese de que se cumplen los requisitos de todas las normas CEM, en particular IEC 61800-3.
- Utilice este equipo con una configuración según la categoría C3 o C4 en un primer entorno de conformidad con IEC 61800-3.
- Implemente todas las medidas descritas en el presente documento necesarias para suprimir interferencias y compruebe la efectividad de las medidas.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

NOTA: La siguiente información según IEC 61800-3 es aplicable en el caso de que el equipo se maneje con una configuración que no cumpla los valores límite de la categoría C1:

"En un entorno residencial, este producto puede causar interferencias de alta frecuencia que pueden hacer necesarias medidas antiparasitarias."

Como integrador de sistemas o fabricante de máquinas, Usted debe incluir esta información en la medida de lo posible en la documentación para su cliente.

Categorías CEM

Se alcanzan las siguientes categorías de emisión según la norma IEC 61800-3 si se cumplen las medidas CEM descritas en el presente manual.

<table>
<thead>
<tr>
<th>Tipo de emisión</th>
<th>Categoría LXM32-••••-M2</th>
<th>Categoría LXM32-••••-N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisión transmitida por alimentación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud del cable del motor ≤10 m (≤32,81 ft)</td>
<td>Categoría C2</td>
<td>Categoría C3</td>
</tr>
<tr>
<td>Longitud del cable del motor de 10 ... ≤20 m (32,81 ... ≤65,62 ft)</td>
<td>Categoría C3</td>
<td></td>
</tr>
<tr>
<td>Emisión sujeta al campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud del cable del motor ≤20 m (65,62 ft)</td>
<td>Categoría C3</td>
<td></td>
</tr>
</tbody>
</table>
Categorías CEM con filtro de red externo

Se alcanzan las siguientes categorías de emisiones según la norma IEC 61800-3 si se cumplen las medidas CEM descritas en el presente manual y si se utilizan los filtros de red externos disponibles como accesorio.

<table>
<thead>
<tr>
<th>Tipo de emisión</th>
<th>Categoría LXM32••••M2</th>
<th>Categoría LXM32••••N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisión transmitida por alimentación</td>
<td>Categoría C1</td>
<td>Categoría C1</td>
</tr>
<tr>
<td>Longitud del cable del motor ≤ 20 m (65,62 ft)</td>
<td>Categoría C2</td>
<td>Categoría C2</td>
</tr>
<tr>
<td>Longitud del cable del motor $>20 \ldots \leq 50$ m ($>65,62 \ldots \leq 164,00$ ft)</td>
<td>Categoría C3</td>
<td>Categoría C3</td>
</tr>
<tr>
<td>Emisión sujeta al campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud del cable del motor ≤ 100 m (328,01 ft)</td>
<td>Categoría C3</td>
<td>Categoría C3</td>
</tr>
</tbody>
</table>

Asignación de filtros de red externos

<table>
<thead>
<tr>
<th>Variadores monofásicos</th>
<th>Filtro de red de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>LXM32•U45M2 (230 V, 1,5 A)</td>
<td>VW3A4420 (9 A)</td>
</tr>
<tr>
<td>LXM32•U90M2 (230 V, 3 A)</td>
<td>VW3A4420 (9 A)</td>
</tr>
<tr>
<td>LXM32•D18M2 (230 V, 6 A)</td>
<td>VW3A4421 (16 A)</td>
</tr>
<tr>
<td>LXM32•D30M2 (230 V, 10 A)</td>
<td>VW3A4421 (16 A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variadores trifásicos</th>
<th>Filtro de red de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>LXM32•U60N4 (480 V, 1,5 A)</td>
<td>VW3A4422 (15 A)</td>
</tr>
<tr>
<td>LXM32•D12N4 (480 V, 3 A)</td>
<td>VW3A4422 (15 A)</td>
</tr>
<tr>
<td>LXM32•D18N4 (480 V, 6 A)</td>
<td>VW3A4422 (15 A)</td>
</tr>
<tr>
<td>LXM32•D30N4 (480 V, 10 A)</td>
<td>VW3A4422 (15 A)</td>
</tr>
<tr>
<td>LXM32•D72N4 (480 V, 24 A)</td>
<td>VW3A4423 (25 A)</td>
</tr>
</tbody>
</table>

Es posible conectar varios equipos a un filtro de red externo común.

Condiciones:
- Los equipos monofásicos deben conectarse únicamente con filtros de red monofásicos, y los equipos trifásicos solo con filtros de red trifásicos.
- El consumo de corriente total de los equipos conectados debe ser menor o igual que la corriente nominal permitida para el filtro de red.
Memoria no volátil y tarjeta de memoria

Memoria no volátil
La siguiente tabla enumera las características de la memoria no volátil:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número mínimo de ciclos de escritura</td>
<td>100000</td>
</tr>
<tr>
<td>Tipo</td>
<td>EEPROM</td>
</tr>
</tbody>
</table>

Tarjeta de memoria (Memory-Card)
La siguiente tabla enumera las características de la tarjeta de memoria:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número mínimo de ciclos de escritura</td>
<td>100000</td>
</tr>
<tr>
<td>Número mínimo de ciclos de inserción</td>
<td>1000</td>
</tr>
</tbody>
</table>

Ranura para tarjeta de memoria
La siguiente tabla enumera las características de la ranura para la tarjeta de memoria:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número mínimo de ciclos de inserción</td>
<td>5000</td>
</tr>
</tbody>
</table>
Condiciones para UL 508C y CSA

Si el producto se utiliza según UL 508C o CSA, deberán cumplirse adicionalmente las siguientes condiciones:

Temperatura ambiente durante el servicio

<table>
<thead>
<tr>
<th>Temperatura del aire ambiente °C (°F)</th>
<th>0-50 (32-122)</th>
</tr>
</thead>
</table>

Protecciones

Utilice cortocircuitos fusible según UL 248.

<table>
<thead>
<tr>
<th>LXM32•...</th>
<th>***M2</th>
<th>***N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusible máximo a conectar previamente A 25 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clase CC o J CC o J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corriente asignada de cortocircuito (SCCR)

<table>
<thead>
<tr>
<th>LXM32•...</th>
<th>***M2</th>
<th>***N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente asignada de cortocircuito (SCCR) kA 12 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cableado

Utilice conductores de cobre para al menos 60/75 °C (140/167 °F).

Equipos trifásicos de 400/480 V

Los equipos trifásicos de 400/480 V deben utilizarse como máximo en redes de 480Y/277Vca.

Categoría de sobretensión

"Use only in overvoltage category III or where the maximum available Rated Impulse Withstand Voltage Peak is equal or less than 4000 Volts.,” or equivalent.

Motor Overload Protection

This equipment provides Solid State Motor Overload Protection at 200 % of maximum FLA (Full Load Ampacity).
Certificaciones

Este producto ha sido certificado:

<table>
<thead>
<tr>
<th>Certificado por</th>
<th>Número asignado</th>
</tr>
</thead>
<tbody>
<tr>
<td>TÜV Nord</td>
<td>SAS-192/2008TB-1</td>
</tr>
<tr>
<td>UL</td>
<td>E116875</td>
</tr>
<tr>
<td>CSA</td>
<td>2320425</td>
</tr>
<tr>
<td>CIA (Can in Automation)</td>
<td>CIA200906-301V402/20-0104</td>
</tr>
</tbody>
</table>
Capítulo 3
Planificación

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Compatibilidad electromagnética (CEM)</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Cables y señales</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Alimentación de red</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Dimensionamiento de la resistencia de frenado</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Seguridad funcional</td>
<td>78</td>
</tr>
</tbody>
</table>
Sección 3.1
Compatibilidad electromagnética (CEM)

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>53</td>
</tr>
<tr>
<td>Desactivación de los condensadores Y</td>
<td>57</td>
</tr>
</tbody>
</table>
General

Cableado conforme a CEM

Este producto cumple con los requisitos CEM según la norma IEC 61800-3, en el caso de que durante la instalación se respeten las medidas CEM descritas en el presente manual.

Las señales de interferencia puede provocar reacciones imprevisibles del sistema de accionamiento, así como de otros equipos de su entorno.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERFERENCIA DE SEÑALES Y EQUIPOS</td>
</tr>
<tr>
<td>● Realice el cableado conforme a las medidas CEM descritas en el presente documento.</td>
</tr>
<tr>
<td>● Asegure el cumplimiento de las medidas CEM descritas en el presente documento.</td>
</tr>
<tr>
<td>● Asegúrese de que se cumplen todas las directrices CEM del país en el que se utiliza el producto, así como todas las directrices CEM vigentes en el lugar de instalación.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERFERENCIAS ELECTROMAGNÉTICAS DE SEÑALES Y EQUIPOS</td>
</tr>
<tr>
<td>Asegure la ejecución correcta de las medidas CEM conforme a la norma IEC 61800-3 con el fin evitar un comportamiento no intencionado del equipo.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Encontrará las categorías CEM en el capítulo Emisión electromagnética *(véase página 45).*
Resumen del cableado con detalles CEM
Medida CEM para el armario eléctrico

<table>
<thead>
<tr>
<th>Medidas sobre CEM</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilizar placas de montaje con buena conductividad eléctrica, unir las piezas</td>
<td>Buena conductividad a través de contactos extensos</td>
</tr>
<tr>
<td>metálicas ampliamente y retirar la capa de pintura de las superficies de contacto.</td>
<td></td>
</tr>
<tr>
<td>Poner a tierra el armario eléctrico, la puerta del armario eléctrico y la placa</td>
<td>Reducir la emisión.</td>
</tr>
<tr>
<td>de montaje a través de bandas o de cables de puesta a tierra. Sección mínima</td>
<td></td>
</tr>
<tr>
<td>del conductor de 10 mm² (AWG 6).</td>
<td></td>
</tr>
<tr>
<td>Complementar los dispositivos de conmutación, como contactores de potencia, reís</td>
<td>Reducir el acoplamiento de interferencias mutas.</td>
</tr>
<tr>
<td>o válvulas magnéticas, con combinaciones antiparasitarias o elementos antichispas</td>
<td></td>
</tr>
<tr>
<td>(por ejemplo, diodos, varistores, módulos RC).</td>
<td></td>
</tr>
<tr>
<td>Montar por separado los componentes de potencia y los componentes de control.</td>
<td>Reducir el acoplamiento de interferencias mutas.</td>
</tr>
</tbody>
</table>

Cables apantallados

<table>
<thead>
<tr>
<th>Medidas sobre CEM</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conectar las pantallas del cable amplias y utilizar abrazaderas de cables y</td>
<td>Reducir la emisión.</td>
</tr>
<tr>
<td>bandas de puesta a tierra.</td>
<td></td>
</tr>
<tr>
<td>Conectar el blindaje de todos los cables apantallados en la salida del armario</td>
<td>Reducir la emisión.</td>
</tr>
<tr>
<td>de distribución por medio de abrazaderas de cables ampliamente con placas de</td>
<td></td>
</tr>
<tr>
<td>montaje.</td>
<td></td>
</tr>
<tr>
<td>Conectar a tierra ampliamente las pantallas de cables de señal digitales a ambos</td>
<td>Reducir los efectos de las perturbaciones en conductos de señales, reducir</td>
</tr>
<tr>
<td>lados o a través de una carcasa de conector conductora.</td>
<td>las emisiones.</td>
</tr>
<tr>
<td>Poner a tierra la pantalla de las líneas analógicas de señal directamente en el</td>
<td>Reducir los bucles de tierra debidos a perturbaciones de baja frecuencia.</td>
</tr>
<tr>
<td>equipo (entrada de señal) y aislar la pantalla en el otro extremo del cable</td>
<td></td>
</tr>
<tr>
<td>o ponerla a tierra a través de un condensador, por ejemplo, 10 nF.</td>
<td></td>
</tr>
<tr>
<td>Utilizar exclusivamente cables de motor apantallados con pantalla de cobre y un</td>
<td>Hacer derivar las corrientes parásitas, reducir las emisiones.</td>
</tr>
<tr>
<td>solapamiento mínimo del 85%; poner a tierra la pantalla ampliamente en ambos</td>
<td></td>
</tr>
<tr>
<td>lados.</td>
<td></td>
</tr>
</tbody>
</table>

Tendido de cables

<table>
<thead>
<tr>
<th>Medidas sobre CEM</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>No encamine cables de bus de campo y cables de señal en un solo conducto para</td>
<td>Reducir el acoplamiento de interferencias mutas.</td>
</tr>
<tr>
<td>cables junto con líneas con tensiones de CC y CA de más de 60 V. (Pueden pasar</td>
<td></td>
</tr>
<tr>
<td>cables de bus de campo, líneas de señal y líneas analógicas por el mismo</td>
<td></td>
</tr>
<tr>
<td>conducto) Tendido en canales de cableado separados con una distancia mínima de</td>
<td></td>
</tr>
<tr>
<td>20 cm (7,87 in).</td>
<td></td>
</tr>
<tr>
<td>Mantener el cable lo más corto posible. No incorporar bucles de cable innecesarios</td>
<td>Disminuir los acoplamientos de interferencias capacitivas e inductivas.</td>
</tr>
<tr>
<td>cables de trazo corto desde el punto de puesta a tierra central en el armario</td>
<td></td>
</tr>
<tr>
<td>de distribución hacia la conexión de puesta a tierra del exterior.</td>
<td></td>
</tr>
<tr>
<td>Utilizar conductores de conexión equipotencial en caso de alimentación de</td>
<td>Reducir la corriente en el blindaje del cable, reducir las emisiones.</td>
</tr>
<tr>
<td>tensión diferente, en equipos con instalación amplia y en caso de instalaciones</td>
<td></td>
</tr>
<tr>
<td>que abarquen varios edificios.</td>
<td></td>
</tr>
</tbody>
</table>
Medidas sobre CEM

<table>
<thead>
<tr>
<th>Medidas sobre CEM</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilizar conductores de conexión equipotencial de hilos finos.</td>
<td>Derivación de corrientes parasítas de alta frecuencia.</td>
</tr>
<tr>
<td>Si el motor y la máquina no están unidos mediante una conexión conductora, por ejemplo, mediante una brida aislada o mediante una conexión que no sea amplia, el motor debe ponerse a tierra a través de una banda o de un cable de puerta a tierra. Sección mínima del conductor de 10 mm² (AWG 6).</td>
<td>Reducir las emisiones y aumentar la resistencia a interferencias</td>
</tr>
<tr>
<td>Utilizar un par trenzado para la alimentación CC.</td>
<td>Reducir los efectos de las perturbaciones en el cable de señales, reducir las emisiones.</td>
</tr>
</tbody>
</table>

Suministro de corriente

<table>
<thead>
<tr>
<th>Medidas sobre CEM</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilizar el producto en la red con punto neutro puesto a tierra.</td>
<td>Permitir que el filtro de red produzca efecto.</td>
</tr>
<tr>
<td>Descargador de sobretensión en caso de riesgo de sobretensión.</td>
<td>Disminuir el riesgo de daños producidos por sobretensiones.</td>
</tr>
</tbody>
</table>

Cables del motor y del encoder

Desde el punto de vista de la compatibilidad electromagnética, los cables del motor y los cables del encoder precisan de una atención especial. Utilice únicamente cables preconfeccionados (véase el capítulo Accesorios y piezas de repuesto (véase página 499)) o cables con las propiedades prescritas (véase el capítulo Cables y señales (véase página 58)) y observe las siguientes medidas sobre la compatibilidad electromagnética.

<table>
<thead>
<tr>
<th>Medidas sobre CEM</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>No montar elementos de conmutación en el cable del motor ni en el cable del encoder.</td>
<td>Reducir el acoplamiento de interferencias.</td>
</tr>
<tr>
<td>Tender el cable del motor a una distancia mínima de 20 cm (7,87 in) con respecto al cable de señal o montar chapas apantalladas entre el cable del motor y el cable de señal.</td>
<td>Reducir el acoplamiento de interferencias mutas.</td>
</tr>
<tr>
<td>Si los conductos sin largos, colocar conductos equipotenciales.</td>
<td>Reducir la corriente en el blindaje del cable.</td>
</tr>
<tr>
<td>Tender el cable del motor y el cable del encoder sin puntos de separación.</td>
<td>Reducir la radiación de interferencias.</td>
</tr>
<tr>
<td>(1) Cuando se tiene que separar un cable para su instalación, en el punto de separación se tendrán que unir los cables con conexiones apantalladas y carcasa metálica.</td>
<td></td>
</tr>
</tbody>
</table>

Otras medidas para mejorar la compatibilidad electromagnética

En función del caso de uso, es posible mejorar los valores dependientes de CEM aplicando las siguientes medidas:

<table>
<thead>
<tr>
<th>Medidas sobre CEM</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilizar inductancias de red</td>
<td>Reducir las oscilaciones armónicas, alargar la vida útil del producto.</td>
</tr>
<tr>
<td>Utilizar filtros de red externos</td>
<td>Mejorar los valores límite de CEM.</td>
</tr>
<tr>
<td>Montaje en un armario eléctrico cerrado con elevado blindaje</td>
<td>Mejorar los valores límite de CEM.</td>
</tr>
</tbody>
</table>
Desactivación de los condensadores Y

Es posible desconectar la conexión a tierra de los condensadores Y internos (desactivar). Normalmente no es necesario desactivar la puesta a tierra de los condensadores Y.

Los condensadores Y se desactivan retirando el tornillo. Guarde este tornillo para en caso necesario poder activar de nuevo los condensadores Y.

Cuando los condensadores Y están desactivados, se dejan de cumplir los valores límite CEM indicados.
Sección 3.2
Cables y señales

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables, generalidades</td>
<td>59</td>
</tr>
<tr>
<td>Resumen de los cables necesarios</td>
<td>61</td>
</tr>
<tr>
<td>Especificaciones de los cables</td>
<td>62</td>
</tr>
<tr>
<td>Tipo de lógica</td>
<td>66</td>
</tr>
<tr>
<td>Entradas y salidas configurables</td>
<td>67</td>
</tr>
</tbody>
</table>
Cables, generalidades

Idoneidad de los cables

Los cables no deben retorcerse, estirarse, aplastarse ni doblarse. Utilice exclusivamente aquellos cables que cumplan con la especificación de cables. Preste especial atención, por ejemplo, a la idoneidad para:

- Aptitud para portacables
- Rango de temperatura
- Estabilidad química
- Tendido al aire libre
- Tendido bajo tierra

Conectar una pantalla

Para conectar una pantalla, existen las siguientes posibilidades:

- Cable del motor: la pantalla del cable del motor se fija en el borne de apantallado situado debajo del equipo
- Otros cables: las pantallas se colocan en la parte inferior, en la conexión apantallada del equipo
- Alternativa: conectar la pantalla, por ejemplo, a través de bornes de apantallado y de barras.

Conductores de conexión equipotencial

Debido a las diferencias de potencial, en las pantallas del cable pueden fluir corrientes de una magnitud no permitida. Utilice conductores de conexión equipotencial con el fin de reducir las corrientes en las pantallas del cable. El conductor de conexión equipotencial debe estar dimensionado para la corriente de compensación máxima.

ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO

- Conecte a tierra los cables blindados para todas las E/S rápidas, las E/S analógicas y las señales de comunicación en un único punto. 1)
- Enrute los cables de comunicaciones y de E/S por separado de los cables de alimentación.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

1) La conexión a tierra multipunto se admite si las conexiones se efectúan con una placa de conexión a tierra equipotencial dimensionada para ayudar a evitar daños en el blindaje del cable en caso de corrientes de cortocircuito del sistema de alimentación.

Secciones del conductores conformes al tipo de tendido

A continuación se describen las secciones de los conductores para dos tipos de tendido habituales:

- Tipo de tendido B2:
 - Cables en tubos de instalación eléctrica o en canales de instalación de apertura
- Tipo de tendido E:
 - Cables en bandejas de escalera abiertas

<table>
<thead>
<tr>
<th>Sección en mm² (AWG)</th>
<th>Corriente admisible con tipo de tendido B2 en A(1)</th>
<th>Corriente admisible con tipo de tendido E en A(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,75 (18)</td>
<td>8,5</td>
<td>10,4</td>
</tr>
<tr>
<td>1 (16)</td>
<td>10,1</td>
<td>12,4</td>
</tr>
<tr>
<td>1,5 (14)</td>
<td>13,1</td>
<td>16,1</td>
</tr>
<tr>
<td>2,5 (12)</td>
<td>17,4</td>
<td>22</td>
</tr>
<tr>
<td>4 (10)</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>6 (8)</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>10 (6)</td>
<td>40</td>
<td>52</td>
</tr>
</tbody>
</table>

(1) Valores conformes a IEC 60204-1 para servicio continuo, conductor de cobre y temperatura del aire ambiente de 40 °C (104 °F). Para obtener más información véase IEC 60204-1. La tabla es un extracto de esta norma y muestra también secciones de conductores no aplicables para el producto.
Observe los factores de reducción en caso de acumulación de cables, así como los factores de corrección para otras condiciones ambientales (IEC 60204-1).

Los conductores deben disponer de una sección suficiente para poder activar el fusible preconectado.

En el caso de cables más largos, puede ser necesario utilizar una sección de conductor mayor para reducir la pérdida de energía.

<table>
<thead>
<tr>
<th>Sección en mm² (AWG)</th>
<th>Corriente admisible con tipo de tendido B2 en A(1)</th>
<th>Corriente admisible con tipo de tendido E en A(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (4)</td>
<td>54</td>
<td>70</td>
</tr>
<tr>
<td>25 (2)</td>
<td>70</td>
<td>88</td>
</tr>
</tbody>
</table>

(1) Valores conformes a IEC 60204-1 para servicio continuo, conductor de cobre y temperatura del aire ambiente de 40 °C (104 °F). Para obtener más información véase IEC 60204-1. La tabla es un extracto de esta norma y muestra también secciones de conductores no aplicables para el producto.
Resumen de los cables necesarios

Puede consultar en el siguiente resumen las propiedades de los cables necesarios. Utilice cables preconfeccionados para minimizar los errores de conexión. Encontrará cables preconfeccionados en el capítulo Accesorios y piezas de repuesto (véase página 499). Si el producto fuera a utilizarse según las especificaciones para UL 508C, deberán cumplirse las condiciones indicadas en el capítulo Condiciones para UL 508C y CSA (véase página 48).

<table>
<thead>
<tr>
<th></th>
<th>Longitud máxima</th>
<th>Sección mínima</th>
<th>apantallado, conectado a tierra en ambos lados</th>
<th>Par trenzado</th>
<th>MBTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentación del control</td>
<td>–</td>
<td>0,75 mm² (AWG 18)</td>
<td>necesario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Función de seguridad STO(1)</td>
<td>–</td>
<td>0,75 mm² (AWG 18)</td>
<td>(1)</td>
<td>necesario</td>
<td></td>
</tr>
<tr>
<td>Alimentación de la etapa de potencia</td>
<td>–</td>
<td>_(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fases del motor</td>
<td>_,(3)</td>
<td>_,(4)</td>
<td>necesario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistencia de frenado externa</td>
<td>3 m (9,84 ft)</td>
<td>como la alimentación de la etapa de potencia</td>
<td>necesario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder del motor</td>
<td>100 m (328,01 ft)</td>
<td>6 * 0,14 mm² y 2 * 0,34 mm² (6 * AWG 24 y 2 * AWG 20)</td>
<td>necesario</td>
<td>necesario</td>
<td>necesario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus de campo CAN</td>
<td>–</td>
<td>0,14 mm² (AWG 24)</td>
<td>necesario</td>
<td>necesario</td>
<td>necesario</td>
</tr>
<tr>
<td>Entradas/salidas digitales</td>
<td>30 m (98,43 ft)</td>
<td>0,14 mm² (AWG 24)</td>
<td>necesario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC, interfaz de puesta en marcha</td>
<td>20 m (65,62 ft)</td>
<td>0,14 mm² (AWG 24)</td>
<td>necesario</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Tenga en cuenta los requisitos de instalación (instalación de cables protegida), consulte el capítulo Función de seguridad STO ("Safe Torque Off") (véase página 78).

(2) Véase Conexión de la alimentación de la etapa de potencia (CN1) (véase página 106)

(3) Longitud en función de los valores límite requeridos para perturbaciones transmitidas por alimentación.

(4) Véase Conexión de las fases del motor y del freno de parada (CN10 y CN11) (véase página 89)
Especificaciones de los cables

El uso de cables preconfeccionados ayuda a minimizar los errores de cableado. Véase el capítulo Accesorios y piezas de repuesto (véase página 499).

Los accesorios originales tienen las propiedades siguientes:

Cable de motor con conector

<table>
<thead>
<tr>
<th>VW3...</th>
<th>M5100R***</th>
<th>M5101R***</th>
<th>M5102R***</th>
<th>M5103R***</th>
<th>M5105R***</th>
<th>M5104R***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revestimiento del cable, aislamiento</td>
<td>PUR naranja (RAL 2003), TPM</td>
<td>PUR naranja (RAL 2003), polipropileno (PP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitancia de los cables de alimentación Hilo/hilo</td>
<td>80 pF/m</td>
<td>80 pF/m</td>
<td>80 pF/m</td>
<td>90 pF/m</td>
<td>85 pF/m</td>
<td>100 pF/m</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>135</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>160</td>
</tr>
<tr>
<td>Número de contactos (blindado)</td>
<td>([4 \times 1 \text{ mm}^2 + 2 \times (2 \times 0,75 \text{ mm}^2)])</td>
<td>([4 \times 1,5 \text{ mm}^2 + (2 \times 1 \text{ mm}^2)])</td>
<td>([4 \times 2,5 \text{ mm}^2 + (2 \times 1 \text{ mm}^2)])</td>
<td>([4 \times 4 \text{ mm}^2 + (2 \times 1 \text{ mm}^2)])</td>
<td>([4 \times 6 \text{ mm}^2 + (2 \times 1 \text{ mm}^2)])</td>
<td>([4 \times 10 \text{ mm}^2 + (2 \times 1 \text{ mm}^2)])</td>
</tr>
<tr>
<td>Conector lado motor</td>
<td>Y-TEC circular 8 pins</td>
<td>M23 circular 8 pins</td>
<td>M40 circular 8 pins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conector lado variador</td>
<td>Abierto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro del cable (mm)</td>
<td>11 ± 0,3 (0,43 ± 0,01)</td>
<td>12 ± 0,2 (0,47 ± 0,01)</td>
<td>14,3 ± 0,3 (0,55 ± 0,01)</td>
<td>16,3 ± 0,3 (0,64 ± 0,01)</td>
<td>18,8 ± 0,4 (0,74 ± 0,02)</td>
<td>23,5 ± 0,6 (0,93 ± 0,02)</td>
</tr>
<tr>
<td>Radio de curvatura mínimo con instalación fija</td>
<td>10 veces el diámetro del cable</td>
<td>10 veces el diámetro del cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio de curvatura mínimo con instalación móvil</td>
<td>10 veces el diámetro del cable</td>
<td>7,5 veces el diámetro del cable</td>
<td>10 veces el diámetro del cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión nominal</td>
<td>V</td>
<td>1000</td>
<td>600</td>
<td>1000</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Fases del motor</td>
<td>V</td>
<td>600</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frente de parada</td>
<td>m (ft)</td>
<td>25 (82)</td>
<td>75 (246)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud máxima que se puede pedir</td>
<td>°C (°F)</td>
<td>De –40 a 80 (de –40 a 176)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planificación

<table>
<thead>
<tr>
<th>Cable de motor sin conector</th>
</tr>
</thead>
<tbody>
<tr>
<td>VW3...</td>
</tr>
<tr>
<td>Rango de temperatura permisible durante el funcionamiento con instalación móvil</td>
</tr>
<tr>
<td>Certificaciones/declaración de conformidad</td>
</tr>
</tbody>
</table>

VW3... | M5100R*** | M5101R*** | M5102R*** | M5103R*** | M5104R*** |
Revestimiento del cable, aislamiento	PUR naranja (RAL 2003), TPM	PUR naranja (RAL 2003), polipropileno (PP)											
Capacitancia de los cables de alimentación Hilo/hilo Hilo/pantalla	pF/m	80	145	80	135	80	150	90	150	85	150	100	160
Número de contactos (blindado)		[4 × 1 mm² + 2 × (2 × 0,75 mm²)]	[4 × 1,5 mm² + (2 × 1 mm²)]	[4 × 2,5 mm² + (2 × 1 mm²)]	[4 × 4 mm² + (2 × 1 mm²)]	[4 × 6 mm² + (2 × 1 mm²)]	[4 × 10 mm² + (2 × 1 mm²)]						
Conector lado motor	Abierto												
Conector lado variador	Abierto												
Diámetro del cable	mm (in)	11 ± 0,3 (0,43 ± 0,01)	12 ± 0,2 (0,47 ± 0,01)	14,3 ± 0,3 (0,55 ± 0,01)	16,3 ± 0,3 (0,64 ± 0,01)	18,8 ± 0,4 (0,74 ± 0,02)	23,5 ± 0,6 (0,93 ± 0,02)						
Radio de curvatura mínimo con instalación fija	10 veces el diámetro del cable	5 veces el diámetro del cable											
Radio de curvatura mínimo con instalación móvil	10 veces el diámetro del cable	7,5 veces el diámetro del cable	10 veces el diámetro del cable										
Tensión nominal Fases del motor Freno de parada	V	1000	1000	600	300								
Longitud máxima que se puede pedir	m (ft)	100 (328)											
Rango de temperatura permisible durante el funcionamiento con instalación fija	°C (°F)	De –40 a 80 (de –40 a 176)											
Planificación

<table>
<thead>
<tr>
<th>VW3...</th>
<th>M5300R***</th>
<th>M5301R***</th>
<th>M5302R***</th>
<th>M5303R***</th>
<th>M5305R***</th>
<th>M5304R***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de</td>
<td>°C (°F)</td>
<td>°C (°F)</td>
<td>°C (°F)</td>
<td>°C (°F)</td>
<td>°C (°F)</td>
<td>°C (°F)</td>
</tr>
<tr>
<td>temperatura</td>
<td>De –20 a 60</td>
<td>De –20 a 60</td>
<td>(de –4 a 140)</td>
<td>(de –4 a 176)</td>
<td>(de –4 a 176)</td>
<td>(de –4 a 176)</td>
</tr>
<tr>
<td>permisible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>durante el</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con instalación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>móvil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificado-</td>
<td>CE, c-UR-us, DESINA</td>
</tr>
<tr>
<td>nies/declaración de conformidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cable de encoder con y sin conectores

<table>
<thead>
<tr>
<th>VW3...</th>
<th>M8100R***</th>
<th>M8102R***</th>
<th>M8222R***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revestimiento</td>
<td>PUR verde (RAL 6018), polipropileno (PP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del cable,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aislamiento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacidad</td>
<td>pF/m</td>
<td>Aprox. 135 (hilo/hilo)</td>
<td></td>
</tr>
<tr>
<td>Número de contactos</td>
<td>(3 × 2 × 0,14 mm² + 2 × 0,34 mm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(blindado)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conector lado motor</td>
<td>Y-TEC circular 12 pins</td>
<td>M23 circular 12 pins</td>
<td>Abierto</td>
</tr>
<tr>
<td>Conector lado variador</td>
<td>RJ45 10 pins</td>
<td>RJ45 10 pins</td>
<td>Abierto</td>
</tr>
<tr>
<td>Diámetro del cable</td>
<td>mm (in)</td>
<td>6,8 ± 0,2 (0,27 ± 0,1)</td>
<td></td>
</tr>
<tr>
<td>Radio de curvatura mínimo</td>
<td>mm (in)</td>
<td>68 (2,68)</td>
<td></td>
</tr>
<tr>
<td>Tensión nominal</td>
<td>V</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Longitud máxima que se puede pedir</td>
<td>m (ft)</td>
<td>25 (82)</td>
<td>75 (246)</td>
</tr>
<tr>
<td>Rango de temperatura permitible durante el funcionamiento con instalación fija</td>
<td>°C (°F)</td>
<td>De –40 a 80 (de –49 a 176)</td>
<td></td>
</tr>
<tr>
<td>Rango de temperatura permitible durante el funcionamiento con instalación móvil</td>
<td>°C (°F)</td>
<td>De –20 a 80 (de –4 a 176)</td>
<td></td>
</tr>
<tr>
<td>Certificaciones/declaración de conformidad</td>
<td>DESINA</td>
<td>c-UR-us, DESINA</td>
<td></td>
</tr>
</tbody>
</table>
Distancia de separación para conectores

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Conectores del motor recto</th>
<th>Conector del encoder recto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M23</td>
<td>M40</td>
</tr>
<tr>
<td>D (mm (in))</td>
<td>28 (1,1)</td>
<td>46 (1,81)</td>
</tr>
<tr>
<td>LS (mm (in))</td>
<td>76 (2,99)</td>
<td>100 (3,94)</td>
</tr>
<tr>
<td>LR (mm (in))</td>
<td>117 (4,61)</td>
<td>155 (6,1)</td>
</tr>
<tr>
<td>LC (mm (in))</td>
<td>100 (3,94)</td>
<td>145 (5,71)</td>
</tr>
<tr>
<td>LM (mm (in))</td>
<td>40 (1,57)</td>
<td>54 (2,13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Conectores del motor angular</th>
<th>Conector del encoder angular</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y-TEC</td>
<td>M23</td>
</tr>
<tr>
<td>D (mm (in))</td>
<td>18,7 (0,74)</td>
<td>28 (1,1)</td>
</tr>
<tr>
<td>LS (mm (in))</td>
<td>42 (1,65)</td>
<td>76 (2,99)</td>
</tr>
<tr>
<td>LR (mm (in))</td>
<td>100 (3,94)</td>
<td>132 (5,2)</td>
</tr>
<tr>
<td>LC (mm (in))</td>
<td>89 (3,50)</td>
<td>114 (4,49)</td>
</tr>
<tr>
<td>LM (mm (in))</td>
<td>58 (2,28)</td>
<td>55 (2,17)</td>
</tr>
</tbody>
</table>
Planificación

Tipo de lógica

Sinopsis

Las entradas y salidas digitales de este producto pueden cablearse para lógica positiva o para lógica negativa.

<table>
<thead>
<tr>
<th>Tipo de lógica</th>
<th>Estado activo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Lógica positiva</td>
<td>La salida suministra corriente (la salida Source) Fluye corriente hacia la entrada (entrada Sink)</td>
</tr>
<tr>
<td>(2) Lógica negativa</td>
<td>La salida demanda corriente (salida Sink) Fluye corriente de la entrada (entrada Source)</td>
</tr>
</tbody>
</table>

Las entradas de señal están protegidas contra polarización incorrecta y las salidas están protegidas contra cortocircuitos. Las entradas y las salidas están funcionalmente aisladas.

En caso de utilizar el tipo de lógica negativa, el defecto a tierra de una señal se reconoce como un estado ON.

ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO

Asegúrese de que el cortocircuito de una señal no pueda originar un comportamiento no intencionado. El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Selección del tipo de lógica

El tipo de lógica se determina a través del cableado de DI_COM y DQ_COM. El tipo de lógica tiene repercusiones en el cableado y la activación de sensores, por lo que debe aclararse ya en la fase de planificación con vista al ámbito de aplicación.

Caso especial: función de seguridad STO

Las entradas de la función de seguridad STO (entradas STO_A y STO_B) están diseñadas de forma fija como tipo de lógica positiva.
Entradas y salidas configurables

Este producto cuenta con entradas y salidas digitales a las que pueden asignarse funciones de entrada de señal y funciones de salida de señal. Dependiendo del modo de funcionamiento, estas entradas y salidas tienen una asignación estándar definida. Es posible adaptar esta asignación a los requisitos de la instalación del cliente. Encontrará más información en el capítulo Entradas y salidas digitales (véase página 209).
Sección 3.3
Alimentación de red

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispositivo de corriente residual</td>
<td>69</td>
</tr>
<tr>
<td>Bus DC conjunto</td>
<td>70</td>
</tr>
<tr>
<td>Inductancia de red</td>
<td>71</td>
</tr>
</tbody>
</table>
Dispositivo de corriente residual

El variador puede generar una corriente continua en el conductor de protección. Si está previsto un dispositivo de corriente residual (RCD / GFCI) o un dispositivo de vigilancia de corriente residual (RCM) a modo de protección contra el contacto directo o indirecto, deberá utilizarse un tipo determinado.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRIENTE CONTINUA EN EL CONDUCTOR DE PROTECCIÓN</td>
</tr>
<tr>
<td>● Utilice un dispositivo de corriente residual (RCD / GFCI) o un dispositivo de vigilancia de corriente residual (RCM) del tipo A para variadores monofásicos que estén conectados a fase y a conductor neutro.</td>
</tr>
<tr>
<td>● Utilice un dispositivo de corriente residual (RCD / GFCI) o un dispositivo de vigilancia de corriente residual (RCM) del tipo B (apto para corriente universal) con homologación para convertidores de frecuencia para variadores trifásicos y para variadores monofásicos que no estén conectados a fase ni a conductor neutro.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Más condiciones en caso de uso de un dispositivo de corriente residual:

● Al conectarse, el variador tiene una corriente de fuga mayor. Seleccione un dispositivo de corriente residual (RCD / GFCI) o un dispositivo de vigilancia de corriente residual (RCM) con retardo de activación.
● Las corrientes de alta frecuencia deben filtrarse.
Planificación

Bus DC conjunto

Funcionamiento

Las conexiones del bus DC de varios equipos pueden unirse para aprovechar la energía de un modo eficiente. Cuando un equipo frena, la energía generada durante el frenado puede utilizarse por otro equipo del bus DC conjunto. Sin un bus DC conjunto, la energía de frenado se transformaría en calor en la resistencia de frenado, mientras que el otro equipo tendría que tomar la energía de la red de alimentación.

Otra ventaja de un bus DC propio consiste en el hecho de que varios equipos pueden utilizar conjuntamente una resistencia de frenado externa. El número de las diferentes resistencias de frenado externas puede reducirse a una resistencia de frenado externa conjunta realizando el dimensionamiento correspondiente.

Encontrará esta y otra información en la nota de aplicación del bus DC común para el variador. Si desea utilizar un bus DC común, primero debe leer el documento Nota de aplicación del bus DC común.

Requisitos para el uso

Podrá encontrar los requisitos y valores límite para la conexión en paralelo de varios equipos en el bus DC como nota de aplicación del bus DC común en http://www.schneider-electric.com. En caso de preguntas o problemas en relación con la nota de aplicación, diríjase a su persona de contacto de Schneider Electric.
Inductancia de red

En las siguientes condiciones de servicio deberá utilizarse una inductancia de red:

- En caso de servicio en una red de alimentación con impedancia baja (corriente de cortocircuito de la red de alimentación superior a la indicada en el capítulo Datos técnicos (véase página 25)).
- Cuando la potencia nominal del variador es insuficiente sin inductancia de red
- En caso de servicio en redes con dispositivos para compensación de corriente reactiva.
- Para la mejora del factor de potencia en la entrada de red y para la reducción de las oscilaciones armónicas de red.

En una inductancia de red se pueden utilizar varios equipos. Tenga en cuenta la corriente de dimensionado de la reactancia.

En el caso de redes de alimentación con una impedancia baja, se generan corrientes armónicas altas en la entrada de red. Unas oscilaciones armónicas altas sobrecargan los condensadores internos del bus DC. La carga de los condensadores del bus DC influye decisivamente en la vida útil de los equipos.
Sección 3.4
Dimensionamiento de la resistencia de frenado

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia de frenado interna</td>
<td>73</td>
</tr>
<tr>
<td>Resistencia de frenado externa</td>
<td>74</td>
</tr>
<tr>
<td>Ayuda de dimensionado</td>
<td>75</td>
</tr>
</tbody>
</table>
Resistencia de frenado interna

El variador está equipado con una resistencia de frenado interna para la absorción de la energía de frenado.

Las resistencias de frenado son necesarias para aplicaciones dinámicas. Durante la deceleración, la energía cinética se transforma en energía eléctrica en el motor. La energía eléctrica aumenta la tensión del bus DC. Al exceder un determinado valor de umbral, la resistencia de frenado se activa. La energía eléctrica se transforma en calor en la resistencia de frenado. Si fuera necesaria una mayor dinámica durante el frenado, la resistencia de frenado debe estar adaptada correctamente a la instalación.

Una resistencia de frenado insuficientemente dimensionada puede provocar una sobretensión en el bus DC. En caso de sobretensión del bus DC, la etapa de potencia se desactiva. El motor ya no decelera de forma activa.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPORTAMIENTO NO INTENCIONADO</td>
</tr>
<tr>
<td>● Mediante un funcionamiento de prueba con carga máxima, asegúrese de que la resistencia de frenado está dimensionada de forma suficiente.</td>
</tr>
<tr>
<td>● Asegúrese de que los parámetros para la resistencia de frenado están ajustados correctamente.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Resistencia de frenado externa

Se necesita una resistencia de frenado externa para aplicaciones en las que el motor deba frenarse fuertemente y la resistencia de frenado interna ya no pueda absorber el excedente de energía de frenado. Durante el funcionamiento, la resistencia de frenado puede calentarse a temperaturas superiores a 250 °C (482 °F).

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIES CALIENTES</td>
</tr>
<tr>
<td>• Asegúrese de que no es posible contacto alguno con la resistencia de frenado caliente.</td>
</tr>
<tr>
<td>• No coloque ninguna pieza inflamable o sensible al calor en las cercanías de la resistencia de frenado.</td>
</tr>
<tr>
<td>• Realice un funcionamiento de prueba con carga máxima para asegurarse de que la disipación de calor es suficiente.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Monitorización

El equipo supervisa la potencia de la resistencia de frenado. Es posible leer la carga de la resistencia de frenado.

La salida para la resistencia de frenado externa está protegida contra cortocircuitos. El equipo no monitoriza los defectos a tierra de la resistencia de frenado externa.

Selección de la resistencia de frenado externa

El dimensionamiento de una resistencia de frenado externa depende de la potencia de pico y la potencia continua necesarias.

El valor de resistencia R resulta de la potencia de pico necesaria y de la tensión del bus DC.

\[R = \frac{U^2}{P_{\text{max}}} \]

R = valor de resistencia en Ω
U = Umbral de conmutación para la resistencia de frenado en V
P_{\text{max}} = potencia de pico necesaria en W

Si se conectan 2 o más resistencias de frenado a un variador, tenga en cuenta los siguientes criterios:

• El valor de resistencia total de todas las resistencias de frenado conectadas debe corresponderse con el valor de resistencia permitido.
• Las resistencias de frenado pueden conectarse en paralelo o en serie. Para la conexión en paralelo deben ser resistencias con el mismo valor, a fin de que las resistencias de frenado se carguen de manera uniforme.
• La potencia continua de todas las resistencias de frenado conectadas debe ser mayor o igual que la potencia continua que realmente se necesita.

Utilice únicamente resistencias que estén homologadas como resistencias de frenado. Consulte las resistencias de frenado adecuadas en el capítulo Accesorios y piezas de repuesto (véase página 499).

Montaje y puesta en marcha de una resistencia de frenado externa

La conmutación entre una resistencia de frenado interna y una resistencia de frenado externa se lleva a cabo a través de un parámetro.

Las resistencias de frenado externas especificadas en los accesorios adjuntan una hoja informativa que contiene más datos sobre el montaje.
Ayuda de dimensionado

Para el dimensionado se calculan los porcentajes que contribuyen a la absorción de la energía de frenado. Es necesaria una resistencia de frenado externa cuando la energía cinética que se va a absorber sobrepasa la suma de la absorción de energía interna posible.

Absorción de energía interna

Internamente la energía de frenado es absorbida por los siguientes mecanismos:

- Condensador del bus DC E_{var}
- Resistencia de frenado interna E_I
- Pérdidas eléctricas del accionamiento E_{el}
- Pérdidas mecánicas del accionamiento E_{mech}

Encontrará los valores para el consumo de energía E_{var} en el capítulo Resistencia de frenado (véase página 42).

Resistencia de frenado interna

Dos magnitudes son determinantes para la absorción de energía de la resistencia de frenado estándar.

- La potencia continua P_{PR} indica cuánta energía puede disiparse de modo permanente sin sobrecargar la resistencia de frenado.
- La energía máxima E_{CR} limita la potencia más alta disipable a corto plazo.

Si se ha sobrepasado la potencia continua durante un determinado tiempo, la resistencia de frenado deberá permanecer sin carga durante un tiempo de la misma duración.

Encontrará las magnitudes P_{PR} y E_{CR} de la resistencia de frenado interna en el capítulo Resistencia de frenado (véase página 42).

Pérdidas eléctricas E_{el}

Las pérdidas eléctricas E_{el} del sistema de accionamiento pueden estimarse a partir de la potencia de pico del variador. Con un grado de eficacia típico del 90%, la máxima pérdida de potencia es aprox. del 10% de la potencia de pico. Si en la deceleración fluye una corriente más baja, se reduce la pérdida de potencia de forma correspondiente.

Pérdidas mecánicas E_{mech}

Las pérdidas mecánicas resultan de la fricción, que se produce con el funcionamiento de la instalación. Las pérdidas mecánicas son insignificantes cuando la instalación sin fuerza de propulsión necesita mucho más tiempo hasta la parada que el tiempo necesario para frenar la instalación. Las pérdidas mecánicas se pueden calcular de acuerdo con el par de carga y la velocidad a partir de la que el motor debe pararse.

Valor de ejemplo

Frenado de un motor rotatorio con los siguientes datos:

- Revoluciones de partida: $n = 4000 \text{ min}^{-1}$
- Momento de inercia del rotor: $J_R = 4 \text{ kgcm}^2$
- Momento de inercia de carga: $J_L = 6 \text{ kgcm}^2$
- Variador: $E_{\text{var}} = 23 \text{ Ws}, E_{\text{CR}} = 80 \text{ Ws}, P_{\text{PR}} = 10 \text{ W}$

La energía que se va a absorber se obtiene a través de:

$$E_B = \frac{1}{2} J \cdot \left(\frac{2\pi n}{60}\right)^2$$

para $E_B = 88 \text{ Ws}$. No se consideran pérdidas eléctricas ni mecánicas.

En este ejemplo, en los condensadores del bus DC se absorben $E_{\text{var}} = 23 \text{ Ws}$ (el valor depende del tipo de equipo).
La resistencia de frenado interna debe absorber los 65 Ws restantes. Puede absorber como impulso $E_{CR} = 80$ Ws. Si la carga se frena una vez, la resistencia de frenado interna será suficiente.

Si la deceleración se repite de forma cíclica, deberá tenerse en cuenta la potencia continua. En el caso de que la duración del ciclo fuera superior a la relación de la energía a absorber E_B y la potencia continua P_{PR}, la resistencia de frenado será suficiente. Si se frena de forma más frecuente, la resistencia de frenado interna no será suficiente.

En este ejemplo, la relación de E_B/P_{PR} es de 8,8 s. Si el tiempo de ciclo es inferior, se requiere una resistencia de frenado externa.

Dimensionamiento de resistencia de frenado externa

Curvas características para el dimensionamiento de una resistencia de frenado

![Curvas características para el dimensionamiento de una resistencia de frenado](image)

Estas dos curvas características se utilizan también en el dimensionamiento del motor. Los segmentos de las curvas características que deben considerarse están identificados con $D_i (D_1 \ldots D_3)$.

Para el cálculo de la energía con deceleración constante debe conocerse el momento de inercia total J_t.

\[
J_t = J_m + J_c
\]

J_m: momento de inercia del motor (con freno de parada)

J_c: momento de inercia de carga

La energía para cada segmento de deceleración se calcula del siguiente modo:

\[
E_i = \frac{1}{2} J_t \cdot \left[\omega_0^2 - \frac{2 \pi n_t}{60} \right]^2
\]

De ello resulta para los segmentos $(D_1) \ldots (D_3)$:

\[
E_1 = \frac{1}{2} J_t \cdot \left[\frac{2 \pi}{60} \right]^2 \cdot \left[n_3^2 - n_1^2 \right]
\]

\[
E_2 = \frac{1}{2} J_t \cdot \left[\frac{2 \pi n_1}{60} \right]^2
\]

\[
E_3 = \frac{1}{2} J_t \cdot \left[\frac{2 \pi n_2}{60} \right]^2
\]
Unidades: E_i en Ws (vatio-segundo), J_i en kgm2, ω en rad y n_i en min$^{-1}$.

La absorción de energía E_{var} de los equipos (sin tener en cuenta una resistencia de frenado) puede consultarse en los datos técnicos.

Al continuar realizando el cálculo, tenga en cuenta únicamente los segmentos D_i, cuya energía E_i sobrepasa la absorción de energía de los equipos. Estas energías adicionales E_{Di} deben desviarse a través de la resistencia de frenado.

El cálculo de E_{Di} se realiza con la fórmula:

$$E_{Di} = E_i - E_{var} \text{ (en Ws)}$$

La potencia continua P_c se calcula para cada ciclo de la máquina:

$$P_c = \frac{\sum E_{Di}}{\text{Duración de ciclo}}$$

Unidades: P_c en W, E_{Di} en Ws y duración de ciclo T en s

La selección se realiza en dos pasos:

- Si se cumplen las siguientes condiciones, la resistencia de frenado interna es suficiente:
 - La energía máxima en una deceleración debe ser inferior a la energía de pico que puede absorber la resistencia de frenado: $(E_{Di}) \leq (E_{Cr})$.
 - No puede superarse la potencia continua de la resistencia de frenado interna: $(P_c) \leq (P_{Pr})$.

- Si no se cumplen las condiciones, debe utilizarse una resistencia de frenado externa que cumpla las condiciones.

Encontrará los datos de pedido para las resistencias de frenado externas en el capítulo Accesorios y piezas de repuesto (véase página 499).
Sección 3.5
Seguridad funcional

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principios</td>
<td>79</td>
</tr>
<tr>
<td>Definiciones</td>
<td>83</td>
</tr>
<tr>
<td>Función</td>
<td>84</td>
</tr>
<tr>
<td>Requisitos para el uso de la función de seguridad</td>
<td>85</td>
</tr>
<tr>
<td>Ejemplos de aplicación STO</td>
<td>87</td>
</tr>
</tbody>
</table>
Planificación

Principios

Seguridad funcional

La automatización y la tecnología de seguridad son dos ámbitos estrechamente relacionados. La planificación, la instalación y el funcionamiento de soluciones de automatización complejas se simplifican notablemente a través de funciones y módulos de seguridad integrados relevantes para la seguridad.

Por lo general, los requisitos técnicos de seguridad dependen de la aplicación. La exigencia de los requisitos depende, entre otras cosas, del riesgo y del potencial de peligro que emana la aplicación, así como de los requisitos legalmente aplicables.

El diseño de las máquinas en razón de la seguridad tiene como finalidad la protección de las personas. En las máquinas con accionamientos de regulación eléctrica, los riesgos provienen ante todo de las partes móviles de la máquina y de la electricidad.

Únicamente Usted como usuario, el constructor de la máquina o el integrado de sistemas están familiarizados con todas las condiciones y factores que son de aplicación para la instalación, ajuste, funcionamiento, reparaciones y mantenimiento de la máquina o de los procesos. Por ese motivo, únicamente usted puede determinar la solución de automatización y los dispositivos de seguridad y bloqueos vinculados para un uso debido y validar este uso.

ADVERTENCIA

NO CONFORMIDAD CON LOS REQUISITOS DE LA FUNCIÓN DE SEGURIDAD

- Especifique los requisitos o las medidas que se deben implementar en el análisis de riesgos que realice.
- Verifique que su aplicación relacionada con la seguridad se ajuste a las normativas y estándares de seguridad aplicables.
- Asegúrese de que se hayan establecido procedimientos y medidas apropiados (de acuerdo con las normas aplicables del sector) para evitar situaciones de peligro durante el funcionamiento de la máquina.
- En caso de que exista riesgo para el personal o los equipos, utilice los dispositivos de bloqueo de seguridad adecuados.
- Valide la función relacionada con la seguridad general y pruebe minuciosamente la aplicación.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Análisis de peligros y de riesgos

La norma IEC 61508 "Seguridad funcional de sistemas eléctricos/electrónicos/electrónicos programables relevantes para la seguridad" define los aspectos relevantes para la seguridad de sistemas. La norma no considera solo una unidad funcional individual de un sistema relevante para la seguridad, sino todos los elementos de una cadena de función (por ejemplo, desde el sensor, pasando por las unidades de procesamiento lógicos, hasta el actuador) como una unidad completa. Estos elementos deben cumplir en su totalidad los requisitos del nivel SIL correspondiente.

La norma IEC 61800-5-2 "Accionamientos eléctricos de potencia de velocidad variable. Requisitos de seguridad. Seguridad funcional" es una norma de producto que determina los requisitos relevantes para la seguridad de los variadores. En esta norma se definen, entre otros, funciones relevantes para la seguridad para variadores.

Tomando como base la configuración y el uso de la instalación debe efectuarse un análisis de riesgos y peligros de la instalación (por ejemplo según EN ISO 12100 o EN ISO 13849-1). Los resultados del análisis deben tenerse en cuenta al construir la máquina y durante el equipamiento posterior con dispositivos y funciones relevantes para la seguridad. Los resultados de su análisis pueden diferir de los ejemplos de aplicación incluidos en la presente documentación o en la documentación aplicable. Pueden ser necesarios, por ejemplo, componentes relevantes para la seguridad adicionales. De modo general, tienen prioridad los resultados procedentes del análisis de riesgos y peligros.
La norma EN ISO 13849-1 (Seguridad de las máquinas. Partes de los sistemas de mando relativas a la seguridad. Parte 1:) describe un proceso iterativo para seleccionar y diseñar partes de sistemas de mando relativas a la seguridad con el fin de reducir el riesgo en la máquina a una medida razonable:

Lleve a cabo la evaluación de riesgos y la reducción de riesgos según EN ISO 12100 de la siguiente manera:
1. Determinar los límites de la máquina.
2. Identificar los peligros de la máquina.
3. Estimar el riesgo.
4. Evaluar el riesgo.
5. Reducir el riesgo a través de:
 - Construcción intrínsecamente segura
 - Dispositivos de protección
 - Información del usuario (véase EN ISO 12100)
6. Diseñar partes del control relevantes para la seguridad (SRP/CS, Safety-Related Parts of the Control System) en un proceso iterativo.

Diseñe las partes del control relativas a la seguridad en un proceso iterativo de la siguiente manera:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identifique las funciones de seguridad necesarias que se ejecutan por medio de SRP/CS (Safety-Related Parts of the Control System).</td>
</tr>
<tr>
<td>2</td>
<td>Determine las propiedades necesarias para cada función de seguridad.</td>
</tr>
<tr>
<td>3</td>
<td>Determine el nivel de rendimiento PLr necesario.</td>
</tr>
<tr>
<td>4</td>
<td>Identifique los componentes relacionados con la seguridad que ejecutan la función de seguridad.</td>
</tr>
<tr>
<td>5</td>
<td>Determine el nivel de rendimiento PL de los componentes relacionados con la seguridad anteriormente mencionados.</td>
</tr>
<tr>
<td>6</td>
<td>Verifique el nivel de rendimiento PL para la función de seguridad (PL ≥ PLr).</td>
</tr>
<tr>
<td>7</td>
<td>Verifique si se han cumplido todos los requisitos (validación).</td>
</tr>
</tbody>
</table>

Encontrará más información en www.schneider-electric.com.

Safety Integrity Level (SIL)

La norma IEC 61508 especifica 4 niveles de integridad de seguridad (Safety Integrity Level (SIL)). El nivel SIL1 es el nivel más bajo, y el nivel SIL SIL4 el más alto. La base para determinar el nivel SIL necesario para la aplicación es una valoración del potencial de peligro según el análisis de peligros y riesgos. De aquí se deriva si la cadena de función correspondiente debe considerarse relevante para la seguridad y qué potencial de peligro debe cubrirse con ella.

Average Frequency of a Dangerous Failure per Hour (PFH)

Para el mantenimiento de la función del sistema relevante para la seguridad, la norma IEC 61508 exige, según el nivel SIL necesario(Safety Integrity Level (SIL)), medidas clasificadas de corrección y de prevención de fallos. Todos los componentes deben ser sometidos a una consideración de probabilidad para valorar la efectividad de las medidas correctoras tomadas. En esta consideración se determina la frecuencia media de un fallo peligroso por hora (Average Frequency of a Dangerous Failure per Hour (PFH)). Se trata de la frecuencia por hora con la que falla un sistema relevante para la seguridad generando un peligro y con la que la función no puede ejecutarse correctamente. En función del nivel SIL, la frecuencia media de un fallo peligroso por hora no debe superar determinados valores para el sistema relevante para la seguridad completo. Se suman los valores PFH individuales de una cadena de función. El resultado no debe exceder el valor máximo indicado en la norma.
Planificación

Hardware Fault Tolerance (HFT) y Safe Failure Fraction (SFF)

En función del nivel SIL (Safety Integrity Level (SIL)) para el sistema relevante para la seguridad, la norma IEC 61508 exige una determinada tolerancia a las averías de hardware (Hardware Fault Tolerance (HFT)) en combinación con una determinada proporción de fallos no peligrosos (Safe Failure Fraction (SFF)). La tolerancia a las averías de hardware es la propiedad de un sistema relevante para la seguridad de poder ejecutar por sí mismo la función requerida si existen una o varias averías de hardware. La proporción de fallos no peligrosos de un sistema relevante para la seguridad está definido como la relación de la cuota de los fallos no peligrosos respecto a la cuota de fallos total del sistema relevante para la seguridad. Según la norma IEC 61508, el nivel SIL máximo alcanzable de un sistema relevante para la seguridad está determinado también por la tolerancia a las averías de hardware y por la proporción de fallos no peligrosos del sistema relevante para la seguridad.

La IEC 61800-5-2 diferencia dos tipos de sistemas parciales (sistema parcial del tipo A y sistema parcial del tipo B). Estos tipos se determinan en base a criterios definidos en la norma para los componentes relevantes para la seguridad.

<table>
<thead>
<tr>
<th>SFF</th>
<th>HFT Tipo A-Sistema parcial</th>
<th>HFT de sistema parcial tipo B</th>
</tr>
</thead>
<tbody>
<tr>
<td><60 %</td>
<td>SIL1 SIL2 SIL3 ---</td>
<td>SIL1 SIL2</td>
</tr>
<tr>
<td>60 ... <90 %</td>
<td>SIL2 SIL3 SIL4 SIL1 SIL2 SIL3</td>
<td></td>
</tr>
<tr>
<td>90 ... <99 %</td>
<td>SIL3 SIL4 SIL4 SIL2 SIL3 SIL4</td>
<td></td>
</tr>
<tr>
<td>≥99 %</td>
<td>SIL3 SIL4 SIL4 SIL3 SIL4 SIL4</td>
<td></td>
</tr>
</tbody>
</table>

Medidas de prevención de fallos

Deben evitarse en la medida de lo posible los errores sistemáticos en la especificación, en el hardware y en el software, los errores de utilización y los errores de mantenimiento del sistema relevante para la seguridad. La IEC 61508 prescribe para ello una serie de medidas de prevención de fallos que deben llevarse a cabo en función del nivel SIL (Safety Integrity Level (SIL)) que se desee lograr. Estas medidas de prevención de fallos deben acompañar al ciclo de vida completo del sistema relevante para la seguridad, es decir, desde la concepción hasta la puesta fuera de servicio del sistema relevante para la seguridad.
Planificación

Datos para el plan de mantenimiento y para los cálculos de la seguridad funcional

La función de seguridad debe comprobarse a intervalos regulares. El intervalo depende del análisis de riesgos y peligros del sistema completo. El intervalo mínimo es de 1 año (alta tasa de demanda según IEC 61508).

Utilice los siguientes datos de la función de seguridad STO para su plan de mantenimiento y para los cálculos de la seguridad funcional:

<table>
<thead>
<tr>
<th>Vida útil de la función de seguridad STO (IEC 61508)(1)</th>
<th>años</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFF (IEC 61508) Safe Failure Fraction</td>
<td>%</td>
<td>90</td>
</tr>
<tr>
<td>HFT (IEC 61508) Hardware Fault Tolerance Tipo A-Sistema parcial</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SIL IEC 61508 IEC 62061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIL3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILCL3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFH (IEC 61508) Probability of Dangerous Hardware Failure per Hour</td>
<td>1/h (FIT)</td>
<td>1*10^-9 (1)</td>
</tr>
<tr>
<td>PL (ISO 13849-1) Performance Level</td>
<td></td>
<td>e (categoría 3)</td>
</tr>
<tr>
<td>MTTF_d (ISO 13849-1) Mean Time to Dangerous Failure</td>
<td>años</td>
<td>>100</td>
</tr>
<tr>
<td>DC (ISO 13849-1) Diagnostic Coverage</td>
<td>%</td>
<td>90</td>
</tr>
</tbody>
</table>

(1) Véase el capítulo Vida útil de la función de seguridad STO (véase página 519).

Puede solicitar más datos a su persona de contacto de Schneider Electric.
Definiciones

Función de seguridad integrada "Safe Torque Off" STO
La función de seguridad integrada STO (IEC 61800-5-2) posibilita una parada de la categoría 0 conforme a IEC 60204-1 sin contactores de potencia externos. Para una parada de la categoría 0 no es necesario interrumpir la tensión de alimentación. Así se reducen los costes de sistema y los tiempos de reacción.

Categoría de parada 0 (IEC 60204-1)
En el caso de la categoría de parada 0 (Safe Torque Off, STO), el motor funciona hasta detenerse (siempre y cuando no haya fuerzas externas que lo impidan). La función relacionada con la seguridad STO tiene como objetivo ayudar a evitar un arranque imprevisto, no a parar un motor, y por lo tanto corresponde a una parada no asistida de acuerdo con IEC 60204-1.

En circunstancias en las que existan influencias externas, el tiempo hasta que el motor se para lentamente depende de las propiedades físicas de los componentes utilizados (por ejemplo, el peso, el par o la fricción). Además, pueden ser necesarias medidas adicionales como, por ejemplo, frenos mecánicos, para evitar la aparición de un peligro. Esto es, si esto supone un peligro para sus empleados o su instalación, deberá tomar las medidas adecuadas.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPORTAMIENTO NO INTENCIONADO</td>
</tr>
<tr>
<td>● Asegúrese de que no puedan producirse riesgos para personas o materiales durante el periodo de deceleración hasta la parada del eje o de la máquina.</td>
</tr>
<tr>
<td>● No entre en la zona de funcionamiento durante el periodo de deceleración hasta la parada.</td>
</tr>
<tr>
<td>● Asegúrese de que ninguna otra persona pueda acceder a la zona de funcionamiento durante el periodo de deceleración hasta la parada.</td>
</tr>
<tr>
<td>● En caso de que exista riesgo para el personal o los equipos, utilice los dispositivos de bloqueo de seguridad adecuados.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Categoría de parada 1 (IEC 60204-1)
Para las paradas de la categoría 1 (Safe Stop 1, SS1), se puede realizar una parada controlada por medio del sistema de control, o utilizando dispositivos relacionados con la seguridad funcionales específicos. Una parada de Categoría 1 es una parada controlada con energía disponible para los actuadores de la máquina para llevar a cabo la parada.

La parada controlada por medio del sistema de control/relacionado con la seguridad no es relevante para la seguridad, no está supervisada y no se lleva a cabo de la manera definida en caso de un corte de alimentación o si se detecta un error. Deberá ponerla en práctica a través de un dispositivo de conmutación externo relevante para la seguridad con retardo relevante para la seguridad.
Función

Con la función de seguridad STO integrada en el producto puede llevarse a cabo una "parada de emergencia" (IEC 60204-1) para la categoría de parada 0. Con un módulo de relés de seguridad adicional de parada de emergencia admisible también puede realizarse la categoría de parada 1.

Funcionamiento

La función de seguridad STO se activa a través de dos entradas de señal redundantes. Ambas entradas de señal deben cablearse separadas entre sí.

La función de seguridad STO se dispara si el nivel en una de las dos entradas de señal es 0. La etapa de potencia se desactiva. El motor no puede generar ningún par y funciona sin freno. Se detecta un error de la clase de error 3.

Si, en un segundo, el nivel de la otra salida también es 0, se conserva la clase de error 3. Si, en un segundo, el nivel de la otra salida no pasa a 0, la clase de error cambia a 4.
Requisitos para el uso de la función de seguridad

La función de seguridad STO (Safe Torque Off) conmuta el bus DC sin ausencia de tensión. La función de seguridad STO solo desconecta la alimentación del motor. La tensión en el bus DC y la tensión de red para el variador siguen presentes.

Tras activarse la función de seguridad STO, el motor ya no puede generar ningún par y va parándose sin freno.

Tipo de lógica

Las entradas de la función de seguridad STO (entradas STO_A y STO_B) están diseñadas de forma fija como tipo de lógica positiva.

Freno de parada y función de seguridad STO

Cuando se dispara la función de seguridad STO, la etapa de potencia se desactiva de inmediato. Cerrar el freno de parada requiere un tiempo determinado. En los ejes verticales o con fuerzas que actúan desde el exterior, es posible que deba tomar medidas adicionales para poner la carga en estado de reposo, por ejemplo utilizando un freno de servicio.

NOTA: El variador no ofrece una salida propia relevante para la seguridad para conectar un freno externo que puede utilizarse como medida relevante para la seguridad.
Rearranque involuntario

Para evitar el rearranque involuntario del motor después de restablecerse la tensión, por ejemplo, después de un fallo de alimentación de red, el parámetro `IO_AutoEnable` debe estar en "off".

Asegúrese además de que un control superior no pueda provocar un rearranque involuntario.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPORTAMIENTO NO INTENCIÓNADO</td>
</tr>
<tr>
<td>Ajuste el parámetro <code>IO_AutoEnable</code> a "off" si la activación automática de la etapa de potencia supusiera un peligro en su aplicación.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Categoría de protección al utilizarse la función de seguridad

Asegúrese de que no se puedan acceder al producto sustancias ni elementos extraños conductivos (grado de suciedad 2). Una suciedad conductiva puede provocar que las funciones de seguridad resulten ineficaces.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCIÓN DE SEGURIDAD INEFICAZ</td>
</tr>
<tr>
<td>Asegúrese de que no pueda acceder al variador suciedad conductora (agua, aceites sucios o impregnados, virutas de metal, etc.).</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Tendido protegido

Cuando quepa esperar cortocircuitos o cortocircuitos transversales en caso de señales relevantes para la seguridad y estos no puedan detectarse por equipos conectados en serie, será necesario un tendido protegido según la norma ISO 13849-2.

En el caso de un tendido no protegido, las dos señales (ambos canales) de una función de seguridad pueden conectarse con una tensión externa si se producen daños en el cable. Mediante la conexión de los dos canales con una tensión externa, la función de seguridad dejará de ser efectiva.

El tendido protegido de cables para señales relevantes para la seguridad se describe en la norma ISO 13849-2. Los cables para las señales de la función de seguridad STO deben protegerse contra tensión externa. Una pantalla con conexión a tierra ayuda a mantener alejada una tensión externa de las señales de la función de seguridad STO.

Los bucles a tierra pueden originar problemas en las máquinas. Una pantalla conectada solo en un lado basta como conexión a tierra y no forma bucles a tierra.

- Utilice cables apantallados para las señales de la función de seguridad STO.
- No utilice para otras señales los cables para las señales de la función de seguridad STO.
- Conecte la pantalla en un lado.
Ejemplos de aplicación STO

Ejemplo de categoría de parada 0

Uso sin módulo de relés de seguridad de PARADA DE EMERGENCIA, categoría de parada 0.

La función de seguridad STO se activa cuando en las dos entradas de seguridad el nivel es simultáneamente (desplazamiento temporal inferior a 1 s) 0. La etapa de potencia se desactiva, y se genera un mensaje de error de la clase de error 3. El motor ya no puede generar ningún par.

Si el motor no estaba ya parado al activarse la función de seguridad STO, decelerará bajo la influencia de las fuerzas físicas que actuaban sobre él hasta este punto (gravedad, fricción, etc.) hasta que previsiblemente pueda detenerse.

Si la inercia del motor y su carga potencial resultan insatisfactorias de acuerdo con lo que se haya determinado en el análisis de riesgos y peligros, es posible que también se requiera un freno externo. Véase Freno de parada y función de seguridad STO (véase página 85).

¡ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO

Instale un freno de servicio separado cuando su aplicación requiera una deceleración activa de la carga.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Ejemplo de categoría de parada 1

Uso con módulo de relés de seguridad de PARADA DE EMERGENCIA, categoría de parada 1.
Ejemplo de categoría de parada 1 con módulo de relés de seguridad externo de PARADA DE EMERGENCIA Preventa XPS-AV

En este ejemplo, la activación de la PARADA DE EMERGENCIA provoca una parada de la categoría 1. El módulo de relés de seguridad de PARADA DE EMERGENCIA requiere de inmediato (sin retardo temporal) una parada del variador, por ejemplo, con la función "Parada". Después del transcurrir el retardo ajustado en el módulo de relés de seguridad de PARADA DE EMERGENCIA, el módulo de relés de seguridad de PARADA DE EMERGENCIA activa la función de seguridad STO.

La función de seguridad STO se activa cuando en las dos entradas de seguridad el nivel es simultáneamente (desplazamiento temporal inferior a 1 s) 0. La etapa de potencia se desactiva, y se genera un mensaje de error de la clase de error 3. El motor ya no puede generar ningún par.

Si la inercia del motor y su carga potencial resultan insatisfactorias de acuerdo con lo que se haya determinado en el análisis de riesgos y peligros, es posible que también se requiera un freno externo. Véase Freno de parada y función de seguridad STO (véase página 85).

⚠️ ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO

Instale un freno de servicio separado cuando su aplicación requiera una deceleración activa de la carga. El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Capítulo 4
Instalación

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Instalación mecánica</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Instalación eléctrica</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Comprobar la instalación</td>
<td>118</td>
</tr>
</tbody>
</table>
Sección 4.1
Instalación mecánica

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antes del montaje</td>
<td>91</td>
</tr>
<tr>
<td>Montar el variador</td>
<td>93</td>
</tr>
</tbody>
</table>
Antes del montaje

Antes de llevar a cabo la instalación mecánica y eléctrica es preciso realizar una planificación. Encontrará información básica en el capítulo Planificación (véase página 51).

PELIGRO

DESCARGA ELÉCTRICA POR TOMA DE TIERRA INSUFICIENTE

- Asegure el cumplimiento de todas las normas vigentes y disposiciones referentes a la conexión a tierra del sistema de accionamiento completo.
- Conecte a tierra el sistema de accionamiento antes de establecer la tensión.
- No utilice tubos de entrada de cables como conductores de protección sino un conductor de protección en el interior del tubo.
- La sección del conductor de protección tiene que cumplir las normas vigentes.
- No considere las pantallas de cable como conductores de protección.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

PELIGRO

DESCARGA ELÉCTRICA O COMPORTAMIENTO NO INTENCIIONADO

- Evite que accedan al producto elementos extraños.
- Compruebe el ajuste correcto de las juntas y guiados de cable con el fin de evitar suciedad, por ejemplo por sedimentaciones o humedad.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

ADVERTENCIA

PÉRDIDA DEL CONTROL DE MANDO

- El diseñador del esquema de control debe tener en cuenta las posibles modalidades de fallo de rutas de control y, para ciertas funciones de control críticas, proporcionar los medios para lograr un estado de seguridad durante y después de un fallo de ruta. Algunas funciones de control críticas son, por ejemplo, la parada de emergencia y la parada de sobrecarga, un corte de alimentación o un reinicio.
- Para las funciones de control críticas deben proporcionarse rutas de control separadas o redundantes.
- Las rutas de control del sistema pueden incluir enlaces de comunicación. Deben tenerse en cuenta las implicaciones de los retardos de transmisión no esperados o los fallos en el enlace.
- Tenga en cuenta todas las reglamentaciones para la prevención de accidentes y las directrices de seguridad locales.¹
- Cada implementación de este equipo debe probarse de forma individual y exhaustiva antes de entrar en servicio.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

¹ Para obtener más información, consulte NEMA ICS 1.1 (última edición), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" (Directrices de seguridad para la aplicación, la instalación y el mantenimiento del control de estado estático) y NEMA ICS 7.1 (última edición), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" (Normas de seguridad para la construcción y la dirección para la selección, la instalación y el funcionamiento de sistemas de accionamiento de ajuste rápido) o su equivalente aplicable a la ubicación específica.
Las funciones de seguridad pueden quedar inoperativas debido a elementos extraños conductores, polvo o líquido.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pérdida de la función de seguridad debida a elementos extraños</td>
</tr>
<tr>
<td>Proteja el sistema de suciedad conductora.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Las superficies metálicas del producto pueden alcanzar durante el funcionamiento temperaturas superiores a 70 °C (158 °F).

<table>
<thead>
<tr>
<th>ATENCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIES CALIENTES</td>
</tr>
<tr>
<td>● Evite el contacto sin protección con las superficies calientes.</td>
</tr>
<tr>
<td>● No coloque ninguna pieza inflamable o sensible al calor en la cercanía de las superficies calientes.</td>
</tr>
<tr>
<td>● Realice un funcionamiento de prueba con carga máxima para asegurarse de que la disipación de calor es suficiente.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar lesiones o daño al equipo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATENCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAÑOS IRREPARABLES EN EL VARIADOR DEBIDOS A LA CONEXIÓN INCORRECTA DE LA TENSIÓN DE RED</td>
</tr>
<tr>
<td>● Asegúrese de que se está utilizando la tensión de red correcta, instale un transformador en caso necesario.</td>
</tr>
<tr>
<td>● No conecte la tensión de red a los bornes de salida (U, V, W).</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar lesiones o daño al equipo.</td>
</tr>
</tbody>
</table>

Comprobación del producto
- Compruebe la variante del producto según la codificación de los modelos *(véase página 23)* de la placa de características *(véase página 22)*.
- Antes de montarlo, compruebe si el producto presenta daños visibles.

Los productos dañados pueden provocar una descarga eléctrica y originar un comportamiento no intencionado.

<table>
<thead>
<tr>
<th>PELIGRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCARGA ELÉCTRICA O COMPORTAMIENTO NO INTENCIONADO</td>
</tr>
<tr>
<td>● No utilice ningún producto deteriorado.</td>
</tr>
<tr>
<td>● Evite que caigan al producto elementos extraños (virutas, tornillos o trozos de alambre).</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.</td>
</tr>
</tbody>
</table>

Si los productos estuvieran dañados, diríjase a su persona de contacto de Schneider Electric. Encontrará información sobre el montaje del motor en el manual del motor correspondiente.
Montar el variador

Coloque adhesivos con indicaciones de seguridad

En el volumen de suministro del variador se incluyen etiquetas con indicaciones de peligro en alemán, francés, italiano, español y chino. La versión inglesa viene ya de fábrica colocada en el frontal. Si el idioma del país de uso de la máquina o el proceso no es inglés, proceda de la forma siguiente:

- Seleccione el adhesivo adecuado para el país de destino.
- Al hacerlo, tenga en cuenta las directrices de seguridad del país correspondiente.
- Coloque el adhesivo en el frontal de forma que quede visible.

Armario eléctrico

El armario eléctrico tiene que estar dimensionado de tal forma que dentro de él se pueden montar fijos todos los equipos y componentes, y que se pueden cablear conforme a CEM.

La ventilación del armario eléctrico debe ser suficiente para cumplir las condiciones ambientales indicadas para los equipos y componentes instalados en el armario eléctrico.

Instale y utilice este equipo en un armario eléctrico clasificado para su entorno previsto y protegido por un mecanismo de cierre con llave o herramientas.

Distancias de montaje, ventilación

Al seleccionar la posición del equipo en el armario de distribución tenga en cuenta las siguientes indicaciones:

- Monte el equipo en posición vertical (±10°). Esto es necesario para la refrigeración del equipo.
- Respete las distancias mínimas de montaje para la refrigeración necesaria. Evite las acumulaciones térmicas.
- No monte el equipo en las inmediaciones de fuentes de calor.
- No monte el equipo sobre materiales inflamables ni en la cercanía de estos.
- El aire de refrigeración del equipo no debe calentarse adicionalmente debido a la corriente de aire caliente de otros equipos o componentes.
- El variador se desconecta en caso de servicio por encima de los límites térmicos (sobretensura).

Los cables de conexión del aparato se guían hacia arriba y hacia abajo. Para la circulación del aire y el tendido de los cables es preciso respetar las distancias mínimas.

Distancias de montaje y circulación de aire
Montar el equipo

Podrá encontrar las medidas para los orificios de fijación en el capítulo Medidas (véase página 28). Las superficies pintadas pueden aumentar la resistencia eléctrica o actuar como aislante. Antes de fijar el equipo a una placa de montaje pintada, elimine ampliamente la pintura en los puntos de montaje.
Sección 4.2
Instalación eléctrica

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen de procedimientos</td>
<td>96</td>
</tr>
<tr>
<td>Resumen de conexiones</td>
<td>97</td>
</tr>
<tr>
<td>Conexión del tornillo de puesta a tierra</td>
<td>98</td>
</tr>
<tr>
<td>Conexión de las fases del motor y del freno de parada (CN10 y CN11)</td>
<td>99</td>
</tr>
<tr>
<td>Conexión del bus DC (CN9, bus DC)</td>
<td>103</td>
</tr>
<tr>
<td>Conexión de la resistencia de frenado (CN8, Braking Resistor)</td>
<td>104</td>
</tr>
<tr>
<td>Conexión de la alimentación de la etapa de potencia (CN1)</td>
<td>106</td>
</tr>
<tr>
<td>Conexión del encoder del motor (CN3)</td>
<td>109</td>
</tr>
<tr>
<td>Conexión de la alimentación del control y STO (CN2, DC Supply y STO)</td>
<td>111</td>
</tr>
<tr>
<td>Conexión de entradas y salidas digitales (CN6)</td>
<td>113</td>
</tr>
<tr>
<td>Conexión de PC con software de puesta en marcha (CN7)</td>
<td>114</td>
</tr>
<tr>
<td>Conexión de CAN (CN4 y CN5)</td>
<td>115</td>
</tr>
</tbody>
</table>
Resumen de procedimientos

![PELIGRO](PELIGRO.png)

PELIGRO

DESCARGA ELÉCTRICA O COMPORTAMIENTO NO INTENCIONADO

- Evite que accedan al producto elementos extraños.
- Compruebe el ajuste correcto de las juntas y guiados de cable con el fin de evitar suciedad, por ejemplo por sedimentaciones o humedad.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

![PELIGRO](PELIGRO.png)

PELIGRO

DESCARGA ELÉCTRICA POR TOMA DE TIERRA INSUFICIENTE

- Asegure el cumplimiento de todas las normas vigentes y disposiciones referentes a la conexión a tierra del sistema de accionamiento completo.
- Conecte a tierra el sistema de accionamiento antes de establecer la tensión.
- No utilice tubos de entrada de cables como conductores de protección sino un conductor de protección en el interior del tubo.
- La sección del conductor de protección tiene que cumplir las normas vigentes.
- No considere las pantallas de cable como conductores de protección.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

El variador puede generar una corriente continua en el conductor de protección. Si está previsto un dispositivo de corriente residual (RCD / GFCI) o un dispositivo de vigilancia de corriente residual (RCM) a modo de protección contra el contacto directo o indirecto, deberá utilizarse un tipo determinado.

![ADVERTENCIA](ADVERTENCIA.png)

ADVERTENCIA

CORRIENTE CONTINUA EN EL CONDUCTOR DE PROTECCIÓN

- Utilice un dispositivo de corriente residual (RCD / GFCI) o un dispositivo de vigilancia de corriente residual (RCM) del tipo A para variadores monofásicos que estén conectados a fase y a conductor neutro.
- Utilice un dispositivo de corriente residual (RCD / GFCI) o un dispositivo de vigilancia de corriente residual (RCM) del tipo B (apto para corriente universal) con homologación para convertidores de frecuencia para variadores trifásicos y para variadores monofásicos que no estén conectados a fase ni a conductor neutro.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Asegúrese de que la instalación completa se lleve a cabo exclusivamente sin tensión.
Resumen de conexiones

<table>
<thead>
<tr>
<th>Conexión</th>
<th>Asignación</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Alimentación de la etapa de potencia</td>
</tr>
<tr>
<td>CN2</td>
<td>Alimentación del control de 24 V y función de seguridad STO</td>
</tr>
<tr>
<td>CN3</td>
<td>Encoder del motor (encoder 1)</td>
</tr>
<tr>
<td>CN4</td>
<td>Bus de campo CANopen</td>
</tr>
<tr>
<td>CN5</td>
<td>Bus de campo CANopen</td>
</tr>
<tr>
<td>CN6</td>
<td>Entradas/salidas digitales</td>
</tr>
<tr>
<td>CN7</td>
<td>Modbus (interfaz de puesta en marcha)</td>
</tr>
<tr>
<td>CN8</td>
<td>resistencia de frenado externa</td>
</tr>
<tr>
<td>CN9</td>
<td>Conexión de bus DC para servicio paralelo</td>
</tr>
<tr>
<td>CN10</td>
<td>Fases del motor</td>
</tr>
<tr>
<td>CN11</td>
<td>Freno de parada</td>
</tr>
</tbody>
</table>
Conexión del tornillo de puesta a tierra

Este producto tiene una corriente de fuga superior a 3,5 mA. Debido a la interrupción de la conexión a tierra puede fluir una corriente de contacto peligrosa en caso de tocar la carcasa.

<table>
<thead>
<tr>
<th>PUESTA A TIERRA INSUFICIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Utilice un conductor de protección de al menos 10 mm² (AWG 6) o dos conductores de protección con la sección de los conductores para la alimentación de los bornes de potencia.</td>
</tr>
<tr>
<td>• Asegure el cumplimiento de todas las normas vigentes referentes a la conexión a tierra del sistema de accionamiento.</td>
</tr>
<tr>
<td>• Conecte a tierra el sistema de accionamiento antes de establecer la tensión.</td>
</tr>
<tr>
<td>• No utilice tubos de entrada de cables como conductores de protección sino un conductor de protección en el interior del tubo.</td>
</tr>
<tr>
<td>• No utilice pantallas de cable como conductores de protección.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

El tornillo de puesta a tierra central del producto se encuentra en la parte inferior del frontal.

- Una la conexión de puesta a tierra del equipo con el punto central de puesta a tierra de la instalación.

<table>
<thead>
<tr>
<th>LXM32...</th>
<th>U45, U60, U90, D12, D18, D30, D72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par de apriete del tornillo de puesta a tierra</td>
<td>Nm (lb.in)</td>
</tr>
<tr>
<td></td>
<td>3,5 (31)</td>
</tr>
</tbody>
</table>
Conexión de las fases del motor y del freno de parada (CN10 y CN11)

El motor está previsto para el funcionamiento en un variador. Una conexión directa del motor a la tensión alterna produce daños en el motor y puede ocasionar un incendio y una explosión.

PELIGRO DE EXPLOSIÓN
Conecte el motor a un variador adecuado y autorizado únicamente del modo descrito en este documento.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

En la conexión del motor se pueden producir altas tensiones inesperadas. El motor genera tensión cuando se gira el eje. En el cable del motor pueden acoplarse tensiones alternas en conductores no utilizados.

PELIGRO

DESCARGA ELÉCTRICA
- Asegúrese de que el sistema de accionamiento esté libre de tensión antes de realizar trabajos en el sistema de accionamiento.
- Asegure el eje del motor contra accionamientos ajenos antes de realizar trabajos en el sistema de accionamiento.
- Aísle los conductores no utilizados en ambos extremos del cable del motor.
- Complemente la toma de tierra a través del cable del motor por medio de una toma de tierra adicional en la carcasa del motor siempre que el conductor de protección del cable del motor no fuera suficiente.
- Toque el eje del motor o los componentes de salida solo cuando todas las conexiones estén sin tensión.
- Asegure el cumplimiento de todas las normas vigentes referentes a la conexión a tierra del sistema de accionamiento.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Los sistemas de accionamiento pueden desencadenar movimientos indeseados debido al uso de combinaciones no permitidas de variador y motor. Aunque los conectores para la conexión del motor y para la conexión del encoder sean mecánicamente compatibles, esto no significa que el motor pueda utilizarse.

ADVERTENCIA

MOVIMIENTO INVOLUNTARIO
Utilice únicamente combinaciones autorizadas de variador y motor.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Encontrará más información en el capítulo Motores permitidos *(véase página 30)*.

Tienda el cable de motor y el cable de encoder comenzando desde el motor en dirección al equipo. A menudo, esto es más rápido y sencillo debido a los conectores confeccionados.
Especificación de cables

<table>
<thead>
<tr>
<th>Pantalla:</th>
<th>Necesaria, conectada a tierra en ambos lados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado:</td>
<td>-</td>
</tr>
<tr>
<td>MBTP:</td>
<td>Los conductores para el freno de parada deben cumplir con MBTP</td>
</tr>
</tbody>
</table>
| Estructura del cable: | 3 conductores para fases del motor
 | 2 conductores para freno de parada
 | Los conductores deben disponer de una sección suficiente para, en caso de error, poder activar el fusible de la conexión de red. |
| Longitud máxima del cable: | En función de los valores límite requeridos para perturbaciones transmitidas por alimentación, véase el capítulo Emisión electromagnética *(véase página 45).* |

Observe las siguientes indicaciones:

- Debe conectarse únicamente el cable de motor original (con dos conductores para el freno de parada).
- En los motores sin freno de parada, los conductores para el freno de parada deben conectarse al equipo a través de la conexión CN11. Conecte en el lado del motor los conductores en las clavijas correspondientes para el freno de parada; entonces el cable podrá utilizarse tanto para motores con freno de parada como para motores sin él. Si no conecta los conductores en el lado del motor, deberá aislarse los conductores de forma individual (tensiones de inducción).
- Tenga en cuenta la polaridad de la tensión del freno de parada.
- La tensión para el freno de parada depende de la alimentación del control (MBTP). Observe la tolerancia para la tensión de la alimentación del control y la tensión prescrita para el freno de parada, véase el capítulo Alimentación del control de 24 V *(véase página 39).*
- Utilice cables preconfeccionados para minimizar el riesgo de un error de cableado, véase el capítulo *Accesorios y piezas de repuesto (véase página 499).*

El freno de parada opcional de un motor se conecta en la conexión CN11. El módulo de control de freno de parada integrado libera el freno de parada al activar la etapa de potencia. Al desactivar la etapa de potencia, el freno de parada se bloquea de nuevo.

Propiedades de los bornes CN10

Los bornes están homologados para hilos de Litz y conductores hilos rígidos. En la medida de lo posible, utilice virolas de cable.

<table>
<thead>
<tr>
<th>LXM32•...</th>
<th>U45, U60, U90, D12, D18, D30</th>
<th>D72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección de conexión</td>
<td>mm² (AWG)</td>
<td>0,75-5,3 (18-10)</td>
</tr>
<tr>
<td>Par de apriete de los tornillos de bornes</td>
<td>Nm (lb.in)</td>
<td>0,68 (6,0)</td>
</tr>
<tr>
<td>Longitud sin aislar</td>
<td>mm (in)</td>
<td>6-7 (0,24-0,28)</td>
</tr>
</tbody>
</table>

Propiedades de los bornes CN11

Los bornes están homologados para hilos de Litz y conductores hilos rígidos. En la medida de lo posible, utilice virolas de cable.

<table>
<thead>
<tr>
<th>LXM32•...</th>
<th>U45, U60, U90, D12, D18, D30, D72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrientes de bornes máxima</td>
<td>A</td>
</tr>
<tr>
<td>Sección de conexión</td>
<td>mm² (AWG)</td>
</tr>
<tr>
<td>Longitud sin aislar</td>
<td>mm (in)</td>
</tr>
</tbody>
</table>
Confeccionar cables

Preste atención a las medidas representadas en el caso de cables confeccionados.

Pasos para confeccionar el cable de motor

1. Retire el aislamiento del cable lo correspondiente a la longitud A.
2. Desplace hacia atrás la malla de apantallado sobre el aislante del cable.
3. Asegure la malla de apantallado con tubo termorretráctil. La pantalla debe tener, como mínimo, la longitud D.

Compruebe que una gran superficie de malla de apantallado esté conectada al borne de pantalla de CEM. Acorte los cables para el freno de parada a la longitud B y los tres cables para las fases del motor a la longitud C. El conductor de tierra de protección tiene la longitud A. Conecte los cables para el freno de parada al dispositivo incluso en el caso de los motores sin freno (tensión inductiva).

Supervisión

El equipo supervisa las fases del motor en lo referente a:
- Cortocircuito entre las fases del motor
- Cortocircuito entre las fases del motor y la puesta a tierra

El equipo no detecta un cortocircuito entre las fases del motor y el bus DC, la resistencia de frenado o los conductores del freno de parada.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm (in)</td>
</tr>
<tr>
<td>B</td>
<td>mm (in)</td>
</tr>
<tr>
<td>c</td>
<td>mm (in)</td>
</tr>
<tr>
<td>D</td>
<td>mm (in)</td>
</tr>
</tbody>
</table>
Instalación

Esquema de conexiones del motor y del freno de parada

Esquema de conexiones del motor con freno de parada

Conexión del cable del motor

- Conecte las fases del motor y el conductor de protección a CN10. Compruebe que las conexiones U, V, W y PE (tierra) coincidan en el motor y en el dispositivo.
- Tenga en cuenta el par de apriete prescrito para los tornillos de bornes.
- Una con la conexión BR+ de CN11 el conductor blanco o el conductor negro con la inscripción 5.
 Una con la conexión BR- de CN11 el conductor gris o el conductor negro con la inscripción 6.
- Asegúrese de que el cierre de los conectores está correctamente encastrado en la carcasa.
- Fije ampliamente la pantalla del cable en el borne de apantallado.

Borne de apantallado del cable de motor

<table>
<thead>
<tr>
<th>Conexión</th>
<th>Significado</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Fase del motor</td>
<td>negro L1 (BK)</td>
</tr>
<tr>
<td>V</td>
<td>Fase del motor</td>
<td>negro L2 (BK)</td>
</tr>
<tr>
<td>W</td>
<td>Fase del motor</td>
<td>negro L3 (BK)</td>
</tr>
<tr>
<td>PE</td>
<td>Conductor de protección</td>
<td>verde/amarillo (GN/YE)</td>
</tr>
<tr>
<td>BR+</td>
<td>Freno de parada +</td>
<td>blanco (WH) o negro 5 (BK)</td>
</tr>
<tr>
<td>BR-</td>
<td>Freno de parada -</td>
<td>gris (GY) o negro 6 (BK)</td>
</tr>
</tbody>
</table>
Conexión del bus DC (CN9, bus DC)

En caso de un uso incorrecto del bus DC, los variadores pueden resultar destruidos de inmediato o con retardo.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destrucción de componentes de la instalación y pérdida del control de mando</td>
</tr>
<tr>
<td>Asegúrese de que se cumplen los requisitos para el uso del bus DC.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Encontrará esta y otra información en el documento "LXM32 - Bus DC común - Nota de aplicación". Si desea utilizar un bus DC común, primero debe leer el documento "LXM32 - Bus DC común - Nota de aplicación".

Requisitos para el uso

Podrá encontrar en http://www.schneider-electric.com los requisitos y valores límite para la conexión en paralelo en el bus DC. En caso de preguntas o problemas en relación con la nota de aplicación, diríjase a su persona de contacto de Schneider Electric.
Conexión de la resistencia de frenado (CN8, Braking Resistor)

Una resistencia de frenado insuficientemente dimensionada puede provocar una sobretensión en el bus DC. En caso de sobretensión del bus DC, la etapa de potencia se desactiva. El motor ya no decelera de forma activa.

⚠️ ADVERTENCIA

COMPORTAMIENTO NO INTENCIIONADO

- Mediante un funcionamiento de prueba con carga máxima, asegúrese de que la resistencia de frenado está dimensionada de forma suficiente.
- Asegúrese de que los parámetros para la resistencia de frenado están ajustados correctamente.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Resistencia de frenado interna

En el equipo está integrada una resistencia de frenado para la absorción de la energía de frenado. En el estado de suministro está seleccionada la resistencia de frenado interna.

Resistencia de frenado externa

Se necesita una resistencia de frenado externa para aplicaciones en las que el motor deba frenarse fuertemente y la resistencia de frenado interna ya no pueda absorber el excedente de energía de frenado.

La selección y el dimensionamiento de la resistencia de frenado externa se describe en el capítulo Dimensionamiento de la resistencia de frenado (véase página 72). Consulte las resistencias de frenado adecuadas en el capítulo Accesorios y piezas de repuesto (véase página 499).

Especificación de cables

<table>
<thead>
<tr>
<th>Pantalla:</th>
<th>Necesaria, conectada a tierra en ambos lados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado:</td>
<td>-</td>
</tr>
<tr>
<td>MBTP:</td>
<td>-</td>
</tr>
<tr>
<td>Estructura del cable:</td>
<td>Sección mínima de los conductores: misma sección que la alimentación de la etapa de potencia, véase el capítulo Conexión de la alimentación de la etapa de potencia (CN1) (véase página 106). Los conductores deben disponer de una sección suficiente para, en caso de error, poder activar el fusible de la conexión de red.</td>
</tr>
<tr>
<td>Longitud máxima del cable:</td>
<td>3 m (9,84 ft)</td>
</tr>
</tbody>
</table>

Propiedades de los bornes CN8

<table>
<thead>
<tr>
<th>LXM32•••...</th>
<th>U45, U60, U90, D12, D18, D30, D72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección de conexión</td>
<td>mm² (AWG) 0,75-3,3 (18-12)</td>
</tr>
<tr>
<td>Par de apriete de los tornillos de bornes</td>
<td>Nm (lb.in) 0,51 (4,5)</td>
</tr>
<tr>
<td>Longitud sin aislar</td>
<td>mm (in) 10-11 (0,39-0,43)</td>
</tr>
</tbody>
</table>

Los bornes están homologados para conductores de hilos finos y rígidos. Observe la sección de conexión máxima permitida. Tenga en cuenta que las virolas de cable aumentan la sección del conductor.

Si utiliza virolas de cable, emplée para estos bornes únicamente virolas de cable con collarín.
Esquema de conexiones

CN8 Braking resistor

- Asegúrese de que no existe ninguna tensión más.
- Retire la cubierta de la conexión.
- Conecte a tierra la conexión PE (tierra) de la resistencia de frenado.
- Conecte la resistencia de frenado externa al equipo. Tenga en cuenta el par de apriete prescrito para los tornillos de bornes.
- Fije ampliamente la pantalla del cable a la fijación de la pantalla situada en la parte inferior del equipo.

La conmutación entre una resistencia interna y una externa se lleva a cabo a través del parámetro **RESint_ext**. Encontrará el ajuste de los parámetros para la resistencia de frenado en el capítulo **Ajustar los parámetros para la resistencia de frenado** (véase página 160). En la puesta en marcha debe probarse el funcionamiento correcto de la resistencia de frenado.
Conexión de la alimentación de la etapa de potencia (CN1)

Este producto tiene una corriente de fuga superior a 3,5 mA. Debido a la interrupción de la conexión a tierra puede fluir una corriente de contacto peligrosa en caso de tocar la carcasa.

PELIGRO

PUESTA A TIERRA INSUFICIENTE
- Utilice un conductor de protección de al menos 10 mm² (AWG 6) o dos conductores de protección con la sección de los conductores para la alimentación de los bornes de potencia.
- Asegure el cumplimiento de todas las normas vigentes referentes a la conexión a tierra del sistema de accionamiento.
- Conecte a tierra el sistema de accionamiento antes de establecer la tensión.
- No utilice tubos de entrada de cables como conductores de protección sino un conductor de protección en el interior del tubo.
- No utilice pantallas de cable como conductores de protección.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

ADVERTENCIA

PROTECCIÓN INSUFICIENTE CONTRA SOBRECORRIENTE
- Utilice los fusibles externos prescritos en el capítulo “Datos técnicos”.
- No conecte el producto a un red cuya corriente asignada de cortocircuito (SCCR) exceda el valor permitido indicado en el capítulo “Datos técnicos”.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

ADVERTENCIA

TENSIÓN DE RED INCORRECTA
Antes de conectar y configurar el producto, asegúrese de que este está permitido para la tensión de red.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Los productos están diseñados para el ámbito industrial y deben manejarse únicamente con conexión fija. Antes de conectar el equipo, compruebe los tipos de red permitidos, véase el capítulo Datos generales de la etapa de potencia (véase página 30).

Especificación de cables

<table>
<thead>
<tr>
<th>Pantalla:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado:</td>
<td>-</td>
</tr>
<tr>
<td>MBTP:</td>
<td>-</td>
</tr>
<tr>
<td>Estructura del cable:</td>
<td>Los conductores deben disponer de una sección suficiente para, en caso de error, poder activar el fusible de la conexión de red.</td>
</tr>
<tr>
<td>Longitud máxima del cable:</td>
<td>-</td>
</tr>
</tbody>
</table>
Propiedades de los bornes CN1

<table>
<thead>
<tr>
<th>LXM32-...</th>
<th>U45, U60, U90, D12, D18, D30</th>
<th>D72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección de conexión</td>
<td>mm² (AWG)</td>
<td>0,75-5,3 (18-10)</td>
</tr>
<tr>
<td>Par de apriete de los tornillos de bornes</td>
<td>Nm (lb.in)</td>
<td>0,68 (6,0)</td>
</tr>
<tr>
<td>Longitud sin aislar</td>
<td>mm (in)</td>
<td>6-7 (0,24-0,28)</td>
</tr>
</tbody>
</table>

Los bornes están homologados para hilos de Litz y conductores hilos rígidos. En la medida de lo posible, utilice virolas de cable.

Condiciones para la conexión de la alimentación de la etapa de potencia

Observe las siguientes indicaciones:

- Los equipos trifásicos deben conectarse y utilizarse únicamente de forma trifásica.
- Conecte previamente fusibles de red.
- Al utilizar un filtro de red externo, el cable de red debe apantallarse entre el filtro de red externo y el equipo y ponerse a tierra en ambos lados si su longitud es superior a 200 mm (7,87 in).
- En el capítulo Condiciones para UL 508C y CSA (véase página 48) encontrará información sobre una estructura según UL.

Alimentación de la etapa de potencia para un equipo monofásico

La imagen muestra un resumen para el cableado de la alimentación de la etapa de potencia para un equipo monofásico. En la figura pueden verse también los componentes disponibles como accesorios de filtro de red e inductancia de red.

Resumen de la alimentación de la etapa de potencia para un equipo monofásico

1 Inductancia de red (accesorio)
2 Filtro de red externo (accesorio)
3 Drive

Esquema de conexiones de la alimentación de la etapa de potencia para un equipo monofásico

- Compruebe el tipo de red. Encontrará los tipos de red permitidos en el capítulo Datos generales de la etapa de potencia (véase página 30).
- Conecte el cable de red. Tenga en cuenta el par de apriete prescrito para los tornillos de bornes.
- Asegúrese de que el cierre de los conectores está correctamente encastrado en la carcasa.
Alimentación de la etapa de potencia para un equipo trifásico

La imagen muestra un resumen para el cableado de la alimentación de la etapa de potencia para un equipo trifásico. En la figura pueden verse también los componentes disponibles como accesorios de filtro de red e inductancia de red.

Esquema de conexiones, alimentación de la etapa de potencia para un equipo trifásico

1 Inductancia de red (accesorio)
2 Filtro de red externo (accesorio)
3 Drive

Esquema de conexiones de la alimentación de la etapa de potencia para un equipo trifásico

- CN1 Mains 208/400/480 Vac

- Compruebe el tipo de red. Encontrará los tipos de red permitidos en el capítulo Datos generales de la etapa de potencia (véase página 30).
- Conecte el cable de red. Tenga en cuenta el par de apriete prescrito para los tornillos de bornes.
- Asegúrese de que el cierre de los conectores está correctamente encastrado en la carcasa.
Conexión del encoder del motor (CN3)

Función y tipo de encoder

El encoder del motor es un encoder Hiperface integrado en el motor. Transmite la posición del motor al equipo, tanto de forma analógica como digital.

Especificación de cables

Pantalla:	Necesaria, conectada a tierra en ambos lados
Par trenzado:	necesario
MBTP:	necesario
Estructura del cable:	$6 \times 0,14 \text{ mm}^2 + 2 \times 0,34 \text{ mm}^2$ ($6 \times \text{AWG 24} + 2 \times \text{AWG 20}$)
Longitud máxima del cable:	100 m (328,08 ft)

Utilice cables preconfeccionados para minimizar el riesgo de un error de cableado, véase el capítulo Accesorios y piezas de repuesto (véase página 499).

Esquema de conexiones

<table>
<thead>
<tr>
<th>Pin</th>
<th>Señal</th>
<th>Motor, pin</th>
<th>Pareja</th>
<th>Significado</th>
<th>E/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COS+</td>
<td>9</td>
<td>2</td>
<td>Señal coseno</td>
<td>i</td>
</tr>
<tr>
<td>2</td>
<td>REF+</td>
<td>5</td>
<td>2</td>
<td>Referencia para señal coseno</td>
<td>i</td>
</tr>
<tr>
<td>3</td>
<td>SIN+</td>
<td>6</td>
<td>3</td>
<td>Señal seno</td>
<td>i</td>
</tr>
<tr>
<td>4</td>
<td>REFS+</td>
<td>4</td>
<td>3</td>
<td>Referencia para señal seno</td>
<td>i</td>
</tr>
<tr>
<td>5</td>
<td>Data</td>
<td>6</td>
<td>1</td>
<td>Datos de recepción, datos de transmisión</td>
<td>E/S</td>
</tr>
<tr>
<td>6</td>
<td>Data</td>
<td>7</td>
<td>1</td>
<td>Datos de recepción, datos de transmisión, invertidos</td>
<td>E/S</td>
</tr>
<tr>
<td>7-8</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>Reservado</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>ENC+10V_OUT</td>
<td>10</td>
<td>5</td>
<td>Alimentación del encoder</td>
<td>o</td>
</tr>
<tr>
<td>B</td>
<td>ENC_0V</td>
<td>11</td>
<td>5</td>
<td>Potencia de referencia para la alimentación del encoder</td>
<td></td>
</tr>
</tbody>
</table>

| SHLD | Pantalla |

⚠️ ADVERTENCIA

COMPORTAMIENTO NO INTENCIONDADO

No conecte ningún cable a conexiones reservadas, no utilizadas ni designadas como Sin conexión (N.C.).

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Conectar el encoder del motor

- Asegúrese de que el cableado, el cable y las interfaces conectadas cumplen con los requisitos en cuanto a MBTP.
- Conecte el conector con CN3 Encoder-1.
- Asegúrese de que el cierre de los conectores está correctamente encastrado en la carcasa.

Tienda el cable de motor y el cable de encoder comenzando desde el motor en dirección al equipo. A menudo, esto es más rápido y sencillo debido a los conectores confeccionados.
Conexión de la alimentación del control y STO (CN2, DC Supply y STO)

La tensión de alimentación de +24VDC está conectada con numerosas señales accesibles en el sistema de accionamiento.

PELIGRO

DESCARGA ELÉCTRICA POR FUENTE DE ALIMENTACIÓN ERRÓNEA

- Utilice una fuente de alimentación que cumpla con las exigencias sobre MBTP (muy baja tensión de protección).
- Conecte la salida negativa de la fuente de alimentación con PE (tierra).

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

La conexión para la alimentación del control en el producto no dispone de una limitación de corriente de conexión. Si se conecta la tensión a través de la conexión de contactos, éstos pueden destruirse o fundirse.

AVISO

Destrucción de los contactos

- Conecte la entrada de red de la fuente de alimentación.
- No conecte la tensión de salida.

El incumplimiento de estas instrucciones puede causar daño al equipo.

Función de seguridad STO

Encontrará notas sobre las señales de la función de seguridad STO en el capítulo Función de seguridad STO ("Safe Torque Off") (véase página 78). Si no se precisara la función de seguridad, las entradas STO_A y STO_B deben conectarse con +24VDC.

Especificación de cables CN2

<table>
<thead>
<tr>
<th>Pantalla:</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado:</td>
<td>-</td>
</tr>
<tr>
<td>MBTP:</td>
<td>necesario</td>
</tr>
<tr>
<td>Sección mínima de los conductores:</td>
<td>0,75 mm² (AWG 18)</td>
</tr>
<tr>
<td>Longitud máxima del cable:</td>
<td>100 m (328 ft)</td>
</tr>
<tr>
<td>(1) Véase el capítulo Función de seguridad STO ("Safe Torque Off") (véase página 78)</td>
<td></td>
</tr>
</tbody>
</table>

Propiedades de los bornes CN2

<table>
<thead>
<tr>
<th>LXM32...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrientes de bornes máxima:</td>
</tr>
<tr>
<td>16(1)</td>
</tr>
<tr>
<td>Sección de conexión:</td>
</tr>
<tr>
<td>(AWG)</td>
</tr>
<tr>
<td>20-14</td>
</tr>
<tr>
<td>Longitud sin aislar:</td>
</tr>
<tr>
<td>(in)</td>
</tr>
<tr>
<td>0,47-0,51</td>
</tr>
<tr>
<td>(1) Al conectar varios equipos, tenga en cuenta la tensión máxima permitida de los bornes</td>
</tr>
</tbody>
</table>

Los bornes están homologados para hilos de Litz y conductores hilos rígidos. En la medida de lo posible, utilice virolas de cable.
Corriente permitida de los bornes de la alimentación del control

- La conexión CN2, clavija 3 y 7, así como clavija 4 y 8 pueden utilizarse como conexión de 24 V/0 V para otros consumidores.
- En el conectar están conectadas las siguientes clavijas: clavija 1 con clavija 5, clavija 2 con clavija 6, clavija 3 con clavija 7 y clavija 4 con clavija 8.
- La tensión en la salida del freno de parada depende de la alimentación del control. Tenga en cuenta que la corriente del freno de parada también fluye a través de este borne.

Esquema de conexiones

<table>
<thead>
<tr>
<th>Pin</th>
<th>Señal</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 5</td>
<td>STO_A</td>
<td>Función de seguridad STO: conexión de dos canales, conexión A</td>
</tr>
<tr>
<td>2, 6</td>
<td>STO_B</td>
<td>Función de seguridad STO: conexión de dos canales, conexión B</td>
</tr>
<tr>
<td>3, 7</td>
<td>+24VDC</td>
<td>Alimentación del control de 24 V</td>
</tr>
<tr>
<td>4, 8</td>
<td>0VDC</td>
<td>Potencial de referencia para alimentación del control de 24 V; Potencial de referencia para STO</td>
</tr>
</tbody>
</table>

Conectar la función de seguridad STO

- Asegúrese de que el cableado, el cable y las interfaces conectadas cumplen con los requisitos en cuanto a MBTP.
- Conecte la función de seguridad según las indicaciones del capítulo Función de seguridad STO ("Safe Torque Off") (véase página 78).

Conexión de la alimentación del control

- Asegúrese de que el cableado, el cable y las interfaces conectadas cumplen con los requisitos en cuanto a MBTP.
- Lleve la alimentación del control de una fuente de alimentación (MBTP) al equipo.
- Conecte a tierra la salida negativa de la fuente de alimentación.
- Al conectar varios equipos, tenga en cuenta la tensión máxima permitida de los bornes
- Compruebe que los conectores queden encajados en la carcasa.
Conexión de entradas y salidas digitales (CN6)

El equipo dispone de entradas y salidas configurables. La asignación estándar y la asignación configurable dependen del modo de funcionamiento seleccionado. Encontrará más información en el capítulo Entradas y salidas digitales (véase página 209).

Especificación de cables

<table>
<thead>
<tr>
<th>Pantalla:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado:</td>
<td>-</td>
</tr>
<tr>
<td>MBTP:</td>
<td>necesario</td>
</tr>
<tr>
<td>Estructura del cable:</td>
<td>0,25 mm², (AWG 22)</td>
</tr>
<tr>
<td>Longitud máxima del cable:</td>
<td>30 m (98,4 ft)</td>
</tr>
</tbody>
</table>

Propiedades de los bornes CN6

<table>
<thead>
<tr>
<th>LXM32•...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección de conexión</td>
<td>mm² (AWG)</td>
</tr>
<tr>
<td></td>
<td>0,2-1,0</td>
</tr>
<tr>
<td></td>
<td>(24-16)</td>
</tr>
<tr>
<td>Longitud sin aislarse</td>
<td>mm (in)</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(0,39)</td>
</tr>
</tbody>
</table>

Esquema de conexiones

<table>
<thead>
<tr>
<th>Señal</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ_COM</td>
<td>Potencial de referencia para DQ0 ... DQ4</td>
</tr>
<tr>
<td>DQ0</td>
<td>Salida digital 0</td>
</tr>
<tr>
<td>DQ1</td>
<td>Salida digital 1</td>
</tr>
<tr>
<td>DI_COM</td>
<td>Potencial de referencia para DI0 ... DI5</td>
</tr>
<tr>
<td>DI0/CAP1</td>
<td>Entrada digital 0 / entrada Capture 1</td>
</tr>
<tr>
<td>DI1/CAP2(†)</td>
<td>Entrada digital 1 / entrada Capture 2(†)</td>
</tr>
<tr>
<td>DI2</td>
<td>Entrada digital 2</td>
</tr>
<tr>
<td>DI3</td>
<td>Entrada digital 3</td>
</tr>
<tr>
<td>(1) Disponible con la versión de hardware ≥RS03</td>
<td></td>
</tr>
</tbody>
</table>

Los conectores están codificados. Al realizar la conexión, observe la asignación correcta.
Tanto la configuración como la asignación estándar de entradas y salidas se describen en el capítulo Entradas y salidas digitales (véase página 209).

Conectar entradas/salidas digitales

- Cablee las conexiones digitales a CN6.
- Asegúrese de que el cierre de los conectores está correctamente encastrado en la carcasa.
Conexión de PC con software de puesta en marcha (CN7)

Para realizar la puesta en marcha puede conectarse un PC con software de puesta en marcha Lexium DTM Library. El PC se conecta a través de un convertidor bidireccional USB/RS485, véase el capítulo Accesorios y piezas de repuesto (véase página 499).

Si la interfaz de puesta en marcha del producto se conecta directamente a una interfaz Ethernet del PC, la interfaz del PC puede destruirse.

AVISOS

Deterioro del PC
No conecte nunca una interfaz Ethernet directamente a la interfaz de puesta en marcha de este producto.

El incumplimiento de estas instrucciones puede causar daño al equipo.

Especificación de cables

<table>
<thead>
<tr>
<th>Pantalla:</th>
<th>Necesaria, conectada a tierra en ambos lados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado:</td>
<td>necesario</td>
</tr>
<tr>
<td>MBTP:</td>
<td>necesario</td>
</tr>
<tr>
<td>Estructura del cable:</td>
<td>8 * 0,25 mm² (8 * AWG 22)</td>
</tr>
<tr>
<td>Longitud máxima del cable:</td>
<td>100 m (328 ft)</td>
</tr>
</tbody>
</table>

Esquema de conexiones

<table>
<thead>
<tr>
<th>Pin</th>
<th>Señal</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>~</td>
<td>Reservado</td>
</tr>
<tr>
<td>4</td>
<td>MOD_D1</td>
<td>RS485, señal bidireccional envío / recepción</td>
</tr>
<tr>
<td>5</td>
<td>MOD_D0</td>
<td>RS485, señal bidireccional de envío/recepción, invertida</td>
</tr>
<tr>
<td>6</td>
<td>~</td>
<td>Reservado</td>
</tr>
<tr>
<td>7</td>
<td>MOD+10V_OUT</td>
<td>Alimentación de 10 V, máximo 100 mA</td>
</tr>
<tr>
<td>8</td>
<td>MOD_0V</td>
<td>Potencial de referencia para MOD+10V_OUT</td>
</tr>
</tbody>
</table>

ADVERTENCIA

COMPORTAMIENTO NO INTENCIIONADO

No conecte ningún cable a conexiones reservadas, no utilizadas ni designadas como Sin conexión (N.C.).

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

- Asegúrese de que el cierre de los conectores está correctamente encastrado en la carcasa.
Conexión de CAN (CN4 y CN5)

Función

El equipo es apto para la conexión a CANopen y CANmotion.

En el bus CAN, varios equipos en red están conectados entre sí a través de un cable de bus. Cada equipo en red puede enviar y recibir mensajes. Los datos entre los equipos en red se transfieren de forma serial.

Antes de utilizarse en la red, es preciso configurar cada equipo en red. Para ello, el equipo recibe una dirección del nodo unívoca de 7 bits (node Id) entre 1 (01h) y 127 (7Fh). La dirección se ajusta durante la puesta en marcha.

La velocidad de transmisión debe ser igual para todos los equipos en el bus de campo. Encontrará más información sobre el bus de campo en el manual del bus de campo.

Especificación de cables

<table>
<thead>
<tr>
<th>Pantalla:</th>
<th>Necessaria, conectada a tierra en ambos lados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado:</td>
<td>necesario</td>
</tr>
<tr>
<td>MBTP:</td>
<td>necesario</td>
</tr>
<tr>
<td>Estructura de cable para cables con conector RJ45(1):</td>
<td>8 * 0,14 mm² (AWG 24)</td>
</tr>
<tr>
<td>Estructura de cable para cables con conector D-SUB:</td>
<td>2 * 0,25 mm², 2 * 0,20 mm² (2 * AWG 22, 2 * AWG 24)</td>
</tr>
<tr>
<td></td>
<td>Sección de 0,20 mm² (AWG 24) para nivel CAN, sección de 0,25 mm² (AWG 22) para potencial de referencia.</td>
</tr>
</tbody>
</table>

(1) Los cables con conector RJ45 sólo están permitidos dentro de un armario eléctrico.

Utilice cables preconfeccionados para minimizar el riesgo de un error de cableado, véase el capítulo .Accesorios y piezas de repuesto (véase página 499).

Conector D-Sub y RJ45

Para el bus de campo CAN, en campo se utiliza generalmente un cable con conectores D-Sub. Dentro de un armario eléctrico, las conexiones con cable RJ45 tienen la ventaja de un cableado rápido y sencillo. Para los cables CAN con conector RJ45, la longitud máxima permitida del bus se reduce a la mitad.

Para conectar un cableado RJ45 dentro de un armario eléctrico con un cableado D-Sub en campo pueden utilizarse distribuidores múltiples, véase la siguiente figura. El cable principal se conecta al distribuidor múltiple por medio de bornes de tornillo y la conexión a los equipos se realiza a través de cables preconfeccionados.
Conexión de CAN RJ45 en el armario eléctrico con el campo

1. Equipos con conexión de CAN RJ45 en el armario eléctrico
2. Cables CANopen con conectores RJ45
3. Cable de conexión del equipo al distribuidor, por ejemplo, TCSCCN4F3M3T para distribuidor TSXCANTDM4
4. Distribuidor en el armario eléctrico, por ejemplo, TSXCANTDM4 como distribuidor cuádruple de D-Sub o VW3CANTAP2 como distribuidor de RJ45
5. Cable del bus de campo (cable principal) a participantes del bus fuera del armario eléctrico, conectado al distribuidor con bornes de tornillo. Sección de 0,20 mm² (AWG 24) para nivel CAN, sección de 0,25 mm² (AWG 22) para potencial de referencia.
6. Resistencia de terminación 120 Ω RJ45 (TCSCAR013M120)

Longitud máxima del bus CAN

La longitud máxima del bus depende de la velocidad de transmisión seleccionada. La siguiente tabla muestra los valores orientativos para la longitud total máxima del bus CAN en el caso de cables con conectores D-Sub.

<table>
<thead>
<tr>
<th>Velocidad de transmisión</th>
<th>Longitud máxima de bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kbit/s</td>
<td>1000 m (3281 ft)</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m (1640 ft)</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>250 m (820 ft)</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>100 m (328 ft)</td>
</tr>
<tr>
<td>1000 kbit/s</td>
<td>20 m (65,6 ft)⁴¹</td>
</tr>
</tbody>
</table>

⁴¹ Según la especificación CANopen, la longitud máxima del bus es de 4 m (13,2 ft). No obstante, en la práctica se ha comprobado que en la mayor parte de los casos es posible una longitud de 20 m (65,6 ft). Esta longitud puede reducirse mediante interferencias externas.

En caso de utilizar cables con conectores RJ45, la longitud máxima del bus se reduce a la mitad.

En caso de una velocidad de transmisión de 1 Mbit/s, los cables de empalme están limitados a 0,3 m (0,98 ft).

Resistencias de terminación

Es necesario terminar los dos extremos de un bus. Esto se logra con una resistencia de terminación de 120 Ω entre CAN_L y CAN_H.

Están disponibles como accesorios conectores con resistencia de terminación integrada, véase el capítulo Accesorios y piezas de repuesto (véase página 499).
Esquema de conexiones

Conectar el CAN

- Conecte el cable de CAN con un conector RJ45 a CN4 (clavija 1, 2 y 3).
- Asegúrese de que el cierre de los conectores está correctamente encastrado en la carcasa.
Sección 4.3
Comprobar la instalación

Comprobar la instalación

Compruebe la instalación realizada:

- Compruebe la fijación mecánica del sistema de accionamiento completo:
 - ¿Se han respetado las distancias prescritas?
 - ¿Se han apretado todos los tornillos de fijación con el par de apriete prescrito?
- Compruebe las conexiones eléctricas y el cableado:
 - ¿Están conectados todos los conductores de protección?
 - ¿Cuentan todos los fusibles con el valor correcto y es el tipo de fusible el adecuado?
 - ¿Están conectados o aislados todos los conductores en los extremos del cable?
 - ¿Están conectados y tendidos correctamente todos los cables y conectores?
 - ¿Son correctos y efectivos los bloqueos mecánicos de los conectores?
 - ¿Se han conectado correctamente los cables de control?
 - ¿Se han realizado las conexiones apantalladas necesarias de conformidad con CEM?
 - ¿Se han realizado todas las medidas CEM?
 - ¿Cumple la instalación del variador todas las normativas de seguridad eléctrica locales, regionales y nacionales para el emplazamiento definitivo?
 - Compruebe que todas las cubiertas y juntas estén instaladas correctamente con el fin de lograr el grado de protección necesario.
Capítulo 5
Puesta en marcha

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Sinopsis</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>HMI interna</td>
<td>125</td>
</tr>
<tr>
<td>5.3</td>
<td>Terminal gráfico externo</td>
<td>135</td>
</tr>
<tr>
<td>5.4</td>
<td>Pasos para la puesta en marcha</td>
<td>140</td>
</tr>
<tr>
<td>5.5</td>
<td>Optimización del controlador con respuesta a un escalón</td>
<td>168</td>
</tr>
<tr>
<td>5.6</td>
<td>Gestión de parámetros</td>
<td>179</td>
</tr>
</tbody>
</table>
Sección 5.1
Sinopsis

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>121</td>
</tr>
<tr>
<td>Preparación</td>
<td>124</td>
</tr>
</tbody>
</table>
La función de seguridad STO (Safe Torque Off) conmuta el bus DC sin ausencia de tensión. La función de seguridad STO solo desconecta la alimentación del motor. La tensión en el bus DC y la tensión de red para el variador siguen presentes.

PELIGRO

DESCARGA ELÉCTRICA
- Utilice la función de seguridad STO únicamente para el fin previsto.
- Para desconectar el variador de la alimentación de red utilice un interruptor apropiado que no forme parte de la conmutación de la función de seguridad STO.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Debido al accionamiento externo del motor, pueden retroalimentarse al variador corrientes excesivamente elevadas.

PELIGRO

INCENDIO DEBIDO A FUERZAS DE ACCIONAMIENTO EXTERNAS QUE ACTÚAN SOBRE EL MOTOR

Asegúrese de que, en caso de error de clase 3 o 4, ninguna fuerza de accionamiento externa pueda actuar sobre el motor.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Los valores de parámetro inadecuados o los datos inadecuados pueden provocar movimientos involuntarios, activar señales, dañar piezas y desactivar funciones de monitorización. Algunos valores de parámetro o datos no se activan hasta no haber reiniciado el equipo.

ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO
- Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.
- No utilice el sistema de accionamiento con valores de parámetro o datos desconocidos.
- Modifique solo los valores de aquellos parámetros que conozca.
- Después de efectuar modificaciones, reinicie el equipo y compruebe los datos de servicio y/o los valores de parámetro guardados tras el cambio.
- En la puesta en marcha y al efectuar actualizaciones u otros cambios en el variador, realice un test meticuloso de todos los estados de funcionamiento y casos de error.
- Compruebe las funciones después de sustituir el producto y también después de realizar modificaciones en los valores de parámetro y/o en los datos de servicio.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Si la etapa de potencia se desactiva involuntariamente, por ejemplo, debido a una caída de tensión, a errores o a funciones, el motor dejará de frenar de forma controlada.

ADVERTENCIA

COMPORTAMIENTO NO INTENCI...

Asegúrese de que no puedan provocarse lesiones ni daños materiales como consecuencia de un movimiento sin freno.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
El cierre del freno de parada cuando el motor se encuentra en marcha provoca el desgaste rápido y la pérdida de la fuerza de frenado.

ADVERTENCIA

PÉRDIDA DE LA FUERZA DE FRENADO DEBIDO AL DESGASTE O A TEMPERATURA ALTA
- No utilice el freno de parada como freno de servicio.
- No supere el número máximo de deceleraciones ni la energía cinética máxima al frenar cargas móviles.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Al utilizar por vez primera el producto existe un riesgo elevado de movimientos inesperados, por ejemplo, debido a un cableado incorrecto o a ajustes de parámetros inadecuados. La apertura del freno de parada puede desencadenar un movimiento involuntario, por ejemplo, una caída de la carga en el caso de ejes verticales.

ADVERTENCIA

MOVIMIENTO INVOLUNTARIO
- Asegúrese de que no haya personas ni obstáculos en la zona de funcionamiento mientras utiliza la instalación.
- Asegúrese de que una caída de la carga u otros movimientos involuntarios no puedan causar ningún daño ni peligro.
- Realice las primera pruebas sin cargas acopladas.
- Asegúrese de que haya un pulsador de PARADA DE EMERGENCIA en funcionamiento accesible para todas las personas implicadas en la prueba.
- Cuente con movimientos en direcciones inesperadas o con vibraciones del motor.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Las superficies metálicas del producto pueden alcanzar durante el funcionamiento temperaturas superiores a 70 °C (158 °F).

ATENCIÓN

SUPERFICIES CALIENTES
- Evite el contacto sin protección con las superficies calientes.
- No coloque ninguna pieza inflamable o sensible al calor en la cercanía de las superficies calientes.
- Realice un funcionamiento de prueba con carga máxima para asegurarse de que la disipación de calor es suficiente.

El incumplimiento de estas instrucciones puede causar lesiones o daño al equipo.

Puede accederse al producto a través de distintos canales de acceso. Si se accede simultáneamente a través de varios canales de acceso, o si se utiliza el acceso exclusivo, puede desencadenarse un comportamiento no intencionado.

ADVERTENCIA

COMPORTAMIENTO NO INTENCIIONADO
- Asegúrese de que, en caso de un acceso simultáneo a través de varios canales, no se active ni bloquee ningún comando involuntariamente.
- Asegúrese de que, en caso de un acceso exclusivo, no se active ni bloquee ningún comando involuntariamente.
- Asegúrese de que están disponibles los canales de acceso necesarios.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Si el variador no hubiera estado conectado a la tensión de red durante un tiempo prolongado, será preciso acondicionar los condensadores para lograr su pleno rendimiento antes de arrancar el motor.

<table>
<thead>
<tr>
<th>AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENDIMIENTO REDUCIDO DE LOS CONDENSADORES</td>
</tr>
<tr>
<td>• Si el variador no hubiera estado conectado a la tensión de red durante 24 meses o más, aplique durante al menos una hora tensión de red antes de activar por vez primera la etapa de potencia.</td>
</tr>
<tr>
<td>• Al poner el variador en funcionamiento por primera vez, compruebe la fecha de fabricación y lleve a cabo el procedimiento recién indicado si la fecha de fabricación fuera anterior a 24 meses.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar daño al equipo.
Preparación

Componentes necesarios

Para la puesta en marcha son necesarios los siguientes componentes:

- Software de puesta en marcha “Lexium DTM Library”
- Convertidor de bus de campo para el software de puesta en marcha en caso de conexión a través de la interfaz de puesta en marcha

Interfaces

La puesta en marcha y parametrización, así como las tareas de diagnóstico, las puede realizar a través de las siguientes interfaces:

1. HMI interna
2. Terminal gráfico externo
3. PC con software de puesta en marcha “Lexium DTM Library”
4. Bus de campo

Los ajustes del equipo existentes pueden duplicarse. Un ajuste memorizado de un equipo puede transferirse a un equipo del mismo tipo. El duplicado puede utilizarse cuando varios equipos reciban los mismos ajustes, por ejemplo al sustituir equipos.

Software de puesta en marcha

El software de puesta en marcha “Lexium DTM Library” ofrece una interfaz gráfica de usuario y se emplea para la puesta en marcha, el diagnóstico y para comprobar los ajustes.

- Ajuste de los parámetros del lazo de control en una interfaz gráfica
- Numerosas herramientas de diagnóstico para la optimización y el mantenimiento
- Grabación a largo plazo para la valoración del comportamiento de servicio
- Comprobación de señales de entrada y de salida
- Seguimiento del desarrollo de las señales en la pantalla
- Archivo de ajustes del equipo y grabaciones con funciones de exportación para el procesamiento de datos

Conectar PC

Para realizar la puesta en marcha puede conectarse un PC con software de puesta en marcha. El PC se conecta a través de un convertidor bidireccional USB/RS485, véase el capítulo Accesorios y piezas de repuesto (véase página 499).
Sección 5.2
HMI interna

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen de HMI integrada</td>
<td>126</td>
</tr>
<tr>
<td>Estructura de menú</td>
<td>129</td>
</tr>
<tr>
<td>Realizar ajustes</td>
<td>134</td>
</tr>
</tbody>
</table>
Resumen de HMI integrada

El equipo ofrece la posibilidad de editar parámetros, de iniciar el modo de funcionamiento Jog o de realizar un Autotuning a través de la HMI integrada (interfaz hombre-máquina). También pueden mostrarse informaciones de diagnóstico, como por ejemplo valores de parámetros o códigos de error. En los apartados individuales de la puesta en marcha y del funcionamiento, encontrará indicaciones acerca de si una función puede ejecutarse a través de la HMI integrada o de si debe emplearse el software de puesta en marcha.

Sinopsis

1 LED de estado
2 Indicación de 7 segmentos
3 Tecla ESC
4 Botón de navegación
5 LED rojo se ilumina: DC-Bus bajo tensión

Los LED de estado y el display de 7 segmentos para 4 dígitos muestran estados del equipo, designaciones de menús, códigos de parámetros y códigos de error. Girando el botón de navegación pueden seleccionarse niveles de menús y parámetros, así como incrementarse o reducirse valores. Pulsando el botón de navegación se confirma la selección.

Con la tecla ESC (escape) es posible salir de parámetros y menús. Si se muestran valores, con la tecla ESC se regresa al último valor memorizado.

Juego de caracteres en la HMI

La siguiente tabla muestra la asignación de caracteres en la indicación de 7 segmentos para 4 dígitos

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Indicación del estado del equipo

1 Cuatro LED de estado
2 Tres LED de estado para identificar los niveles de menú
3 Los puntos parpadeantes avisan de un error de la clase de error 0

1: Sobre el display de 7 segmentos hay cuatro LED de estado:

<table>
<thead>
<tr>
<th>LED</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault</td>
<td>Estado de funcionamiento Fault</td>
</tr>
<tr>
<td>Edit</td>
<td>Iluminado en rojo</td>
</tr>
<tr>
<td>Value</td>
<td>Iluminado en amarillo</td>
</tr>
<tr>
<td>Unit</td>
<td>Iluminado en amarillo</td>
</tr>
</tbody>
</table>

2: Tres LED de estado para identificar los niveles de menú

<table>
<thead>
<tr>
<th>LED</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op</td>
<td>Funcionamiento</td>
</tr>
<tr>
<td>Mon</td>
<td>Informaciones de estado</td>
</tr>
<tr>
<td>Conf</td>
<td>Configuración</td>
</tr>
</tbody>
</table>

3: Puntos parpadeantes avisan de un error de la clase de error 0, por ejemplo, cuando se ha excedido un valor límite.

Visualización de valores

En el HMI puede visualizarse directamente valores hasta 999.
Los valores superiores a 999 se visualizan en las zonas de 1000. Es posible cambiar entre las zonas girando el botón de navegación.

Ejemplo: valor 1234567890
Botón de navegación

El botón de navegación puede girarse y pulsarse. En caso de pulsación, se diferencia entre una pulsación breve (≤1 s) y una pulsación prolongada (≥3 s).

Gire el botón de navegación para:
- cambiar al siguiente menú o al menú anterior
- cambiar al siguiente parámetro o al parámetro anterior
- aumentar o disminuir valores
- en caso de valores >999, cambiar entre las zonas

Pulse brevemente el botón de navegación para:
- activar el menú seleccionado
- activar el parámetro seleccionado
- memorizar el valor seleccionado en la EEPROM

Pulse el botón de navegación de forma prolongada para:
- visualizar una descripción del parámetro seleccionado
- visualizar la unidad del valor del parámetro seleccionado
Estructura de menú

Sinopsis

La HMI integrada trabaja guiada por menú. La siguiente figura muestra un resumen del nivel superior de la estructura de menú:
Debajo del nivel superior del menú se encuentran los parámetros correspondientes al punto de menú del siguiente nivel. Para proporcionar una mejor orientación, en las tablas de parámetros también se indica la ruta del menú, por ejemplo \(P \rightarrow J o G \rightarrow \).

Menú HMI F5u -

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5u -</td>
<td>Ajustes iniciales (First Setup)</td>
</tr>
<tr>
<td>CoAd</td>
<td>Dirección CANopen (número de nodo)</td>
</tr>
<tr>
<td>Cobd</td>
<td>Velocidad de transmisión CANopen</td>
</tr>
</tbody>
</table>

Menú HMI aP -

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>aP</td>
<td>Modo de funcionamiento (Operation)</td>
</tr>
<tr>
<td>JoG -</td>
<td>Modo de funcionamiento Jog (movimiento manual)</td>
</tr>
<tr>
<td>tun -</td>
<td>Autotuning</td>
</tr>
</tbody>
</table>
Menú HMI (Puesta en marcha)

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>hom</td>
<td>Modo de funcionamiento Homing (referenciado)</td>
</tr>
</tbody>
</table>

Menú HMI (Modo de funcionamiento Jog (movimiento manual))

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>J o G</td>
<td>Modo de funcionamiento Jog (movimiento manual)</td>
</tr>
<tr>
<td>J G S t</td>
<td>Iniciar modo de funcionamiento Jog</td>
</tr>
<tr>
<td>J G h</td>
<td>Velocidad para movimiento lento</td>
</tr>
<tr>
<td>J G L o</td>
<td>Velocidad para movimiento lento</td>
</tr>
</tbody>
</table>

Menú HMI (Autotuning)

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>t u n</td>
<td>Autotuning</td>
</tr>
<tr>
<td>t u S t</td>
<td>Iniciar autotuning</td>
</tr>
<tr>
<td>G A i n</td>
<td>Factor de ganancia global (actúa sobre juego de parámetros 1)</td>
</tr>
<tr>
<td>S t i n</td>
<td>Dirección de movimiento para el autotuning</td>
</tr>
</tbody>
</table>

Menú HMI (Modo de funcionamiento Homing (referenciado))

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>h o P</td>
<td>Modo de funcionamiento Homing (referenciado)</td>
</tr>
<tr>
<td>h N S t</td>
<td>Iniciar modo de funcionamiento Homing</td>
</tr>
<tr>
<td>N E t h</td>
<td>Método preferente para Homing</td>
</tr>
<tr>
<td>h n n</td>
<td>Velocidad de destino para la búsqueda del interruptor</td>
</tr>
</tbody>
</table>

Menú HMI (Monitorización)

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>n a n</td>
<td>Monitorización (Monitoring)</td>
</tr>
<tr>
<td>S u P u</td>
<td>Indicación de HMI en el movimiento del motor</td>
</tr>
<tr>
<td>n R C t</td>
<td>Velocidad real</td>
</tr>
<tr>
<td>V R C t</td>
<td>Velocidad real</td>
</tr>
<tr>
<td>n r E F</td>
<td>Valor de referencia de velocidad</td>
</tr>
<tr>
<td>V r E F</td>
<td>Velocidad de referencia</td>
</tr>
<tr>
<td>q r E F</td>
<td>Corriente de consigna del motor (componente q, generador de par)</td>
</tr>
<tr>
<td>q R C t</td>
<td>Corriente real del motor (componente q, generador de par)</td>
</tr>
<tr>
<td>i R C t</td>
<td>Corriente total del motor</td>
</tr>
<tr>
<td>d r i a</td>
<td>Estado de las entradas digitales</td>
</tr>
<tr>
<td>d o i a</td>
<td>Estado de las salidas digitales</td>
</tr>
<tr>
<td>S t o</td>
<td>Estado de las entradas para la función de seguridad STO</td>
</tr>
<tr>
<td>u d c A</td>
<td>Tensión en el bus DC</td>
</tr>
<tr>
<td>u d c r</td>
<td>Grado de utilización de la tensión del bus DC</td>
</tr>
<tr>
<td>L d F P</td>
<td>Carga de la etapa de potencia</td>
</tr>
<tr>
<td>L d F N</td>
<td>Carga del motor</td>
</tr>
<tr>
<td>L d F b</td>
<td>Carga de la resistencia de frenado</td>
</tr>
<tr>
<td>t d E V</td>
<td>Temperatura del equipo</td>
</tr>
<tr>
<td>t P S</td>
<td>Temperatura de la etapa de potencia</td>
</tr>
<tr>
<td>a P h</td>
<td>Numerador de horas de servicio</td>
</tr>
<tr>
<td>P o L o</td>
<td>Cantidad de ciclos de conexión</td>
</tr>
<tr>
<td>L W r n</td>
<td>Error que no desencadena una parada (clase de error 0)</td>
</tr>
<tr>
<td>W r n S</td>
<td>Error de la clase de error 0, codificado con bits (parámetro WarnLatched)</td>
</tr>
<tr>
<td>L F L t</td>
<td>Error que desencadena una parada (clase de error 1 a 4)</td>
</tr>
<tr>
<td>S i G S</td>
<td>Estado almacenado de las señales de supervisión</td>
</tr>
<tr>
<td>Menú HMI</td>
<td>Designación</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Conf</td>
<td>Configuración (Configuration)</td>
</tr>
<tr>
<td>Inf -</td>
<td>Información/Identificación (INFormation / Identification)</td>
</tr>
<tr>
<td>A e G -</td>
<td>Configuración de eje (Axis Configuration)</td>
</tr>
<tr>
<td>d r C -</td>
<td>Configuración del equipo (DRive Configuration)</td>
</tr>
<tr>
<td>i n O -</td>
<td>Entradas/salidas configurables (In Out)</td>
</tr>
<tr>
<td>F l e -</td>
<td>Indicación de fallos</td>
</tr>
<tr>
<td>C o N -</td>
<td>Comunicación (COMmunication)</td>
</tr>
<tr>
<td>F c S -</td>
<td>Restaurar ajuste de fábrica (valores por defecto) (Factory Settings)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menú HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf -</td>
<td>Información/Identificación (INFormation / Identification)</td>
</tr>
<tr>
<td>Pr n</td>
<td>Número de firmware</td>
</tr>
<tr>
<td>Pr v</td>
<td>Versión de firmware</td>
</tr>
<tr>
<td>Pr r</td>
<td>Revisión del firmware</td>
</tr>
<tr>
<td>r E F d</td>
<td>Nombre de producto</td>
</tr>
<tr>
<td>N n A n</td>
<td>Tipo</td>
</tr>
<tr>
<td>u n A n</td>
<td>Nombre de la aplicación definido por el usuario</td>
</tr>
<tr>
<td>P i n a</td>
<td>Corriente nominal de la etapa de potencia</td>
</tr>
<tr>
<td>P i n A</td>
<td>Corriente máxima de la etapa de potencia</td>
</tr>
<tr>
<td>n t Y P</td>
<td>Tipo de motor</td>
</tr>
<tr>
<td>S E n S</td>
<td>Tipo de encoder del motor</td>
</tr>
<tr>
<td>n i n a</td>
<td>Corriente nominal del motor</td>
</tr>
<tr>
<td>n i n A</td>
<td>Corriente máxima del motor</td>
</tr>
<tr>
<td>n n n A</td>
<td>Velocidad máxima permitida/velocidad del motor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menú HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>A e G -</td>
<td>Configuración de eje (Axis Configuration)</td>
</tr>
<tr>
<td>a t y p</td>
<td>Activación de Modulo</td>
</tr>
<tr>
<td>i o A E</td>
<td>Activación de la etapa de potencia al conectar</td>
</tr>
<tr>
<td>i n N a</td>
<td>Inversión de la dirección de movimiento</td>
</tr>
<tr>
<td>q R b S</td>
<td>Simulación de la posición absoluta al desconectar/conectar</td>
</tr>
<tr>
<td>n n n P</td>
<td>Máxima velocidad del perfil de movimientos para la velocidad</td>
</tr>
<tr>
<td>h c u r</td>
<td>Valor de corriente para parada</td>
</tr>
<tr>
<td>h t Y P</td>
<td>Código de opción Parada</td>
</tr>
<tr>
<td>S d t Y</td>
<td>Comportamiento al desactivar la etapa de potencia durante un movimiento</td>
</tr>
<tr>
<td>E l b r</td>
<td>Selección de la resistencia de frenado interna o externa</td>
</tr>
<tr>
<td>E b r</td>
<td>Duración de conexión máxima permitida de la resistencia de frenado externa</td>
</tr>
<tr>
<td>P o b r</td>
<td>Valor de la resistencia de frenado externa</td>
</tr>
<tr>
<td>C R a d</td>
<td>Potencia nominal de la resistencia de frenado externa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menú HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>d r C -</td>
<td>Configuración del equipo (DRive Configuration)</td>
</tr>
<tr>
<td>n N A X</td>
<td>Limitación de la velocidad</td>
</tr>
<tr>
<td>i N A X</td>
<td>Limitación de la corriente</td>
</tr>
<tr>
<td>J E r</td>
<td>Limitación de tirones del perfil de movimientos para la velocidad</td>
</tr>
<tr>
<td>P P I</td>
<td>Factor P controlador de posición</td>
</tr>
<tr>
<td>P P 2</td>
<td>Factor P controlador de posición</td>
</tr>
</tbody>
</table>
Menú HMI d r C -

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>pn1</td>
<td>Factor P del controlador de velocidad</td>
</tr>
<tr>
<td>pn2</td>
<td>Factor P del controlador de velocidad</td>
</tr>
<tr>
<td>tin1</td>
<td>Tiempo de acción integral del controlador de velocidad</td>
</tr>
<tr>
<td>tin2</td>
<td>Tiempo de acción integral del controlador de velocidad</td>
</tr>
<tr>
<td>mu1</td>
<td>Constante de tiempo del filtro del valor de referencia de velocidad</td>
</tr>
<tr>
<td>mu2</td>
<td>Constante de tiempo del filtro del valor de referencia de velocidad</td>
</tr>
<tr>
<td>fpp1</td>
<td>Control feed-forward velocidad</td>
</tr>
<tr>
<td>fpp2</td>
<td>Control feed-forward velocidad</td>
</tr>
</tbody>
</table>

Menú HMI i - o -

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-o-</td>
<td>Entradas/salidas configurables (In Out)</td>
</tr>
<tr>
<td>di0</td>
<td>Función entrada DI0</td>
</tr>
<tr>
<td>di1</td>
<td>Función entrada DI1</td>
</tr>
<tr>
<td>di2</td>
<td>Función entrada DI2</td>
</tr>
<tr>
<td>di3</td>
<td>Función entrada DI3</td>
</tr>
<tr>
<td>do0</td>
<td>Función salida DQ0</td>
</tr>
<tr>
<td>do1</td>
<td>Función salida DQ1</td>
</tr>
<tr>
<td>ithr</td>
<td>Monitorización del valor de umbral de corriente</td>
</tr>
<tr>
<td>tthr</td>
<td>Supervisión de la ventana de tiempo</td>
</tr>
<tr>
<td>ilin</td>
<td>Limitación de la corriente vía entrada</td>
</tr>
</tbody>
</table>

Menú HMI F L k -

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLk</td>
<td>Indicación de fallos</td>
</tr>
<tr>
<td>qtyp</td>
<td>Código de opción Quick Stop</td>
</tr>
<tr>
<td>qcur</td>
<td>Valor de corriente para Quick Stop</td>
</tr>
</tbody>
</table>

Menú HMI C a N -

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaN</td>
<td>Comunicación (COMmunication)</td>
</tr>
<tr>
<td>nbaRd</td>
<td>Dirección Modbus</td>
</tr>
<tr>
<td>nbbd</td>
<td>Velocidad de transmisión Modbus</td>
</tr>
<tr>
<td>caRd</td>
<td>Dirección CANopen (número de nodo)</td>
</tr>
<tr>
<td>cabd</td>
<td>Velocidad de transmisión CANopen</td>
</tr>
</tbody>
</table>

Menú HMI F c S -

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcS</td>
<td>Restaurar ajuste de fábrica (valores por defecto) (Factory Settings)</td>
</tr>
<tr>
<td>rE5c</td>
<td>Restaurar los parámetros del lazo de control</td>
</tr>
<tr>
<td>rE5u</td>
<td>Restaurar los parámetros de usuario</td>
</tr>
<tr>
<td>r5F</td>
<td>Restaurar ajustes de fábrica (valores por defecto)</td>
</tr>
</tbody>
</table>
Realizar ajustes

Activar y ajustar parámetros

La siguiente figura muestra un ejemplo para activar un parámetro (segundo nivel) y para introducir (selección) el valor de parámetro correspondiente (tercer nivel).

- Navegue hasta el parámetro I_{Max} (I_{Max}).
- Pulse el botón de navegación de forma prolongada para visualizar una descripción del parámetro. En la indicación se muestra la descripción del parámetro como texto continuo.
- Pulse el botón de navegación brevemente para visualizar el valor del parámetro. El LED de estado Value se ilumina, y se muestra el valor del parámetro.
- Pulse el botón de navegación de forma prolongada para visualizar la unidad del parámetro. Mientras se mantenga pulsado el botón de navegación, los LED de estado Value y Unit continuarán iluminados. Se muestra la unidad del parámetro. Tras soltar el botón de navegación se muestra de nuevo el valor del parámetro.
- Pulse el botón de navegación brevemente para poder modificar el valor del parámetro. Los LED de estado Edit y Value se iluminan, y se muestra el valor del parámetro.
- Gire el botón de navegación para modificar el valor del parámetro. La amplitud de paso y el valor límite están preestablecidos para todos los parámetros.
- Pulse brevemente el botón de navegación para memorizar el valor modificado del parámetro. Si no desea memorizar el valor modificado del parámetro, puede cancelar la acción con la tecla ESC. La indicación vuelve al valor original del parámetro. El valor modificado del parámetro parpadea una vez y se memoriza en la EEPROM.
- Pulse la tecla ESC para regresar al menú.

Determinar la indicación de 7 segmentos

El display de 7 segmentos de 4 dígitos muestra el estado de funcionamiento (ajuste de fábrica).

A través del punto de menú $d \ r \ c - / s \ p \ v$ puede determinar:

- $s \ b \ r \ b$ muestra de forma estándar el estado de funcionamiento
- $v \ r \ c \ b$ muestra de forma estándar la velocidad actual del motor
- $i \ r \ c \ b$ muestra de forma estándar la corriente actual del motor

Una modificación solo se acepta con la etapa de potencia desactivada.
Sección 5.3
Terminal gráfico externo

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantalla y elementos de manejo</td>
<td>136</td>
</tr>
<tr>
<td>Conectar el terminal gráfico externo con LXM32</td>
<td>138</td>
</tr>
<tr>
<td>Utilizar el terminal gráfico externo</td>
<td>139</td>
</tr>
</tbody>
</table>
Puesta en marcha

Pantalla y elementos de manejo

El terminal gráfico externo es una herramienta destinada exclusivamente a la puesta en marcha de variadores.

1 Pantalla
2 Botón de navegación
3 Tecla STOP/RESET
4 Tecla RUN
5 Tecla FWD/REV
6 Tecla ESC
7 Teclas de función F1 ... F4

En función de la versión de firmware del terminal gráfico externo, la representación de la información mostrada puede variar. Utilice la versión de firmware actual.

Pantalla (1)

La pantalla está dividida en 5 zonas.

Pantalla del terminal gráfico externo (ejemplo en inglés)

1.1 Información de estado del variador
1.2 Línea de menú
1.3 Campo de datos
1.4 Línea de función
1.5 Zona de navegación
Información de estado del variador (1.1)
En esta línea se muestra el estado de funcionamiento, la velocidad actual y la corriente actual del motor. En caso de error se muestra el código de error.

Línea de menú (1.2)
En la línea de menú se indica el nombre del menú.

Campo de datos (1.3)
En el campo de datos se muestra la siguiente información y se modifican los valores:
- Submenús
- Modo de funcionamiento
- Parámetros y valores de parámetros
- Estado del movimiento
- Mensajes de error

Línea de función (1.4)
En la línea de función se indica la función que se activa al pulsar la tecla de función correspondiente. Ejemplo: a través de la tecla de función F1 se muestra “Code”. Si pulsa la tecla F1, se mostrará el nombre de HMI del parámetro indicado.

Zona de navegación (1.5)
Las flechas de la zona de navegación indican que hay más información disponible en la dirección de la flecha.

Botón de navegación (2)
Girando el botón de navegación pueden seleccionarse niveles de menús y parámetros, así como incrementarse o reducirse valores. Pulsando el botón de navegación se confirma la selección.

Tecla STOP/RESET (3)
Con la tecla STOP/RESET se finaliza un movimiento con Quick Stop.

Tecla RUN (4)
Con la tecla RUN puede iniciarse un movimiento.

Tecla FWD/REV (5)
Con la tecla FWD/REV se cambia la dirección de movimiento.

Tecla ESC (6)
Con la tecla ESC (escape) se sale de los parámetros y menús o se cancela un movimiento. Si se muestran valores, con la tecla ESC se regresa al último valor memorizado.

Teclas de función F1 ... F4 (7)
En la línea de función del campo de visualización se muestra qué función se activa al pulsar la tecla de función.
Conectar el terminal gráfico externo con LXM32

El terminal gráfico externo es un accesorio del variador, véase el capítulo Accesorios y piezas de repuesto (véase página 499). El terminal gráfico externo se conecta a CN7 (interfaz de puesta en marcha). Para realizar la conexión, utilice exclusivamente el cable suministrado junto con el terminal gráfico externo. Cuando el terminal gráfico externo está conectado con la interfaz de puesta en marcha del LXM32, la HMI integrada está desactivada. En la indicación de la HMI integrada se muestra \(d^f \) S P (Display).
El siguiente ejemplo muestra el manejo del terminal gráfico externo.

Ejemplo del cambio de idioma

En este ejemplo, usted ajustará el idioma deseado del terminal gráfico externo. La instalación del variador debe haberse completado y la alimentación del control debe estar conectada.

- Abra el menú principal.
- Gire el botón de navegación hasta el punto 5 (IDIOMA).
- Confirme la selección pulsando el botón de navegación.
 - En la fila de menú se muestra la función 5 (IDIOMA). En el campo de datos se indica el valor ajustado, en este caso el idioma ajustado.
- Pulse el botón de navegación para modificar el valor ajustado.
 - En la fila de menú se muestra como función seleccionada "Idioma". En el campo de datos se indican los idiomas compatibles.
- Gire el botón de navegación para seleccionar el idioma deseado.
 - El idioma ajustado hasta ahora está identificado con una marca de selección.
- Pulse el botón de navegación para aceptar el valor seleccionado.
 - En la fila de menú se muestra como función seleccionada "Idioma". En el campo de datos se indica el idioma seleccionado.
- Pulse la tecla ESC para regresar al menú principal.
 - El menú principal se mostrará en el idioma seleccionado.
Sección 5.4
Pasos para la puesta en marcha

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primera conexión del equipo</td>
<td>141</td>
</tr>
<tr>
<td>Ajustar los valores límite</td>
<td>143</td>
</tr>
<tr>
<td>Entradas y salidas digitales</td>
<td>146</td>
</tr>
<tr>
<td>Comprobar las señales de los finales de carrera</td>
<td>148</td>
</tr>
<tr>
<td>Comprobar la función de seguridad STO</td>
<td>149</td>
</tr>
<tr>
<td>Freno de parada (opción)</td>
<td>150</td>
</tr>
<tr>
<td>Comprobar la dirección de movimiento</td>
<td>155</td>
</tr>
<tr>
<td>Ajustar los parámetros para el encoder</td>
<td>157</td>
</tr>
<tr>
<td>Ajuste de parámetros para resistencia de frenado</td>
<td>160</td>
</tr>
<tr>
<td>Autotuning</td>
<td>162</td>
</tr>
<tr>
<td>Ajustes ampliados para el autotuning</td>
<td>165</td>
</tr>
</tbody>
</table>
Primera conexión del equipo

Realizar los "ajustes iniciales"

Deben realizarse "ajustes iniciales" cuando la alimentación del control del equipo se conecta por vez primera o cuando se hayan restablecido los ajustes de fábrica.

Importación automática del registro de datos del motor

Al conectar el equipo con el encoder conectado a CN3, el equipo lee la placa de características electrónica del motor desde el encoder Hiperface. El registro de datos se comprueba y se memoriza en la EEPROM.

El registro de datos contiene información técnica sobre el motor, como p. ej. el par nominal, el par de pico, la corriente nominal, la velocidad máxima y el número de pares de polos. El usuario no puede modificar el registro de datos.

Preparación

Debe haber conectado al equipo un PC con el software de puesta en marcha si la puesta en marcha no se realiza exclusivamente a través de la HMI.

Conexión del equipo

- Asegúrese de que la alimentación de la etapa de potencia y la alimentación del control están desconectadas.
- Durante la puesta en marcha, interrumpa la conexión al bus de campo con el fin de evitar conflictos debido a un acceso simultáneo.
- Conecte la alimentación del control.

El equipo realiza una inicialización. Los segmentos del display de 7 segmentos y los LED de estado se iluminan.

Si se hubiera acoplado una tarjeta de memoria al equipo, se mostrará brevemente el mensaje CARD en la indicación de 7 segmentos. De esta forma se indica que la tarjeta ha sido detectada. Si en la indicación de 7 segmentos apareciera de forma permanente el mensaje CARD, habrá diferencias entre el contenido de la tarjeta de memoria y los valores de parámetro memorizados en el equipo. Véase el capítulo Tarjeta de memoria (véase página 180) para obtener más información.

Interfaz CANopen

Una vez haya concluido la inicialización, deberá configurarse la interfaz CAN. Es preciso determinar una dirección de red inequívoca (número de nodo) para cada equipo. La velocidad de transmisión debe ajustarse igual para cada equipo en red.

- Introduzca la dirección red. La dirección de red se memoriza en el parámetro CANaddress (COAD).
- Ajuste la velocidad de transmisión en el parámetro CANbaud (Cobd) conforme a su red.

Los ajustes son válidos tanto para el CANopen como para el CANmotion.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANaddress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>CANopen 3041:2h Modbus 16644</td>
</tr>
<tr>
<td>C a F</td>
<td>F S u - C a R d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dirección CANopen (número de nodo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>durante la siguiente conexión del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>producto.</td>
</tr>
<tr>
<td>CANbaud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>CANopen 3041:3h Modbus 16646</td>
</tr>
<tr>
<td>C a F</td>
<td>F S u - C a b d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Velocidad de transmisión CANopen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 kBaud / 125 kBaud / 250 kBaud /</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 kBaud / 1000 M Baud</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>durante la siguiente conexión del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>producto.</td>
</tr>
</tbody>
</table>
Reinicio del equipo

Es necesario reiniciar el equipo para aceptar las modificaciones. Después de reiniciar el equipo, éste estará operativo.

Pasos siguientes

- Pegue un adhesivo sobre el equipo con la información para el mantenimiento, por ejemplo el tipo y la dirección del equipo.
- Realice los ajustes descritos a continuación para la puesta en marcha.

NOTA: Encontrará más información sobre la representación de los parámetros y una lista de los parámetros en el capítulo Parámetros *(véase página 409).*
Ajustar los valores límite

Deben calcularse los valores límite apropiados de acuerdo con la configuración de la instalación y los valores característicos del motor. Mientras el motor se utilice sin cargas, no es necesario modificar los ajustes previos.

Current Limitation

Es posible adaptar la corriente máxima del motor con el parámetro \(\text{CTRL}_I_{\text{max}} \).

La corriente máxima del motor para la función "Quick Stop" se limita a través del parámetro \(\text{LIM}_I_{\text{maxQSTP}} \) y para la función "Parada" a través del parámetro \(\text{LIM}_I_{\text{maxHalt}} \).

- Determine la corriente máxima del motor a través del parámetro \(\text{CTRL}_I_{\text{max}} \).
- Determine mediante el parámetro \(\text{LIM}_I_{\text{maxQSTP}} \) la corriente máxima del motor para la función "Quick Stop".
- Determine a través del parámetro \(\text{LIM}_I_{\text{maxHalt}} \) la corriente máxima del motor para la función "Parada".

Para las funciones "Quick Stop" y "Parada", el motor puede detenerse a través de una rampa de deceleración o de la corriente máxima.

El equipo limita la corriente máxima permitida en base a los datos del motor y del equipo. Incluso aunque se introduzca en el parámetro \(\text{CTRL}_I_{\text{max}} \) una corriente máxima no permitida, el valor se limita.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CTRL}I{\text{max}})</td>
<td>Limitación de la corriente</td>
<td>Arms</td>
<td>0,00</td>
<td>-</td>
<td>463,00</td>
<td>UINT16</td>
<td>CANopen 3011:Cn, Modbus 4376</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>R/W</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>LIM_I_maxQSTP</td>
<td>Corriente para Quick Stop</td>
<td>A rms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td>Este valor se limita únicamente mediante el valor mínimo y máximo del rango de parámetro (no se produce una limitación del valor por parte del motor/etapa de potencia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En Quick Stop, la limitación de la corriente (_Imax_act) se corresponde con el menor de los siguientes valores:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LIM_I_maxQSTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _M_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _PS_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En caso de Quick Stop también se tienen en cuenta otras limitaciones de la corriente resultantes de la monitorización I2t.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predeterminado: _PS_I_max con frecuencia PWM de 8 kHz y tensión de red de 230/480 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A rms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIM_I_maxHalt</td>
<td>Corriente para parada</td>
<td>A rms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td>Este valor se limita únicamente mediante el valor mínimo y máximo del rango de parámetro (no se produce una limitación del valor por parte del motor/etapa de potencia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En parada, la limitación de la corriente (_Imax_act) se corresponde con el menor de los siguientes valores:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LIM_I_maxHalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _M_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _PS_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En caso de parada también se tienen en cuenta otras limitaciones de la corriente resultantes de la monitorización I2t.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predeterminado: _PS_I_max con frecuencia PWM de 8 kHz y tensión de red de 230/480 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A rms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Velocity Limitation

Es posible limitar la velocidad máxima con el parámetro `CTRL_v_max`.

- Determine por medio del parámetro `CTRL_v_max` la velocidad máxima del motor.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>CTRL_v_max</code></td>
<td>Limitación de la velocidad Durante el servicio, la limitación de la velocidad corresponde al menor de los siguientes valores: - <code>CTRL_v_max</code> - <code>M_n_max</code> - Limitación de la velocidad vía entrada digital Los ajustes modificados se aceptan de inmediato.</td>
<td>usr_v 1</td>
<td>13200</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W per.</td>
<td>CANopen 3011:10h, Modbus 4384</td>
</tr>
</tbody>
</table>
Entradas y salidas digitales

El equipo dispone de entradas y salidas configurables. Encontrará más información en el capítulo Entradas y salidas digitales (véase página 209).

Los estados de la señal de las entradas y salidas digitales pueden visualizarse a través de la HMI y a través del bus de campo.

HMI interna

A través de la HMI integrada es posible visualizar los estados de las señales, aunque éstos no pueden modificarse.

Entradas (parámetro _IO_DI_act):

- Abra el elemento de menú - _MON → _DI -
 Verá las entradas digitales con codificación por bits.

<table>
<thead>
<tr>
<th>BIT</th>
<th>Señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DI0</td>
</tr>
<tr>
<td>1</td>
<td>DI1</td>
</tr>
<tr>
<td>2</td>
<td>DI2</td>
</tr>
<tr>
<td>3</td>
<td>DI3</td>
</tr>
<tr>
<td>4-7</td>
<td>-</td>
</tr>
</tbody>
</table>

El estado de las entradas de la función de seguridad STO no se muestra con el parámetro _IO_DI_act. Este estado se visualiza activando el parámetro _IO_STO_act.

Salidas (parámetro _IO_DQ_act):

- Abra el elemento de menú - _MON → _DQ -
 Verá las salidas digitales con codificación por bits.

<table>
<thead>
<tr>
<th>BIT</th>
<th>Señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DQ0</td>
</tr>
<tr>
<td>1</td>
<td>DQ1</td>
</tr>
<tr>
<td>2-7</td>
<td>-</td>
</tr>
</tbody>
</table>
Los estados de las señales se muestran codificados en bits en el parámetro `_IO_act`. Los valores "1" y "0" corresponden al estado de la señal de la entrada o de la salida.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_IO_act</td>
<td>Estado físico de las entradas y salidas digitales. Byte inferior: Bit 0: DI0 Bit 1: DI1 Bit 2: DI2 Bit 3: DI3 Byte superior: Bit 8: DQ0 Bit 9: DQ1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3008:1h, Modbus 2050</td>
</tr>
<tr>
<td>_IO_DI_act</td>
<td>Estado de las entradas digitales. Asignación de bits: Bit 0: DI0 Bit 1: DI1 Bit 2: DI2 Bit 3: DI3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3008:Fh, Modbus 2078</td>
</tr>
<tr>
<td>_IO_DQ_act</td>
<td>Estado de las salidas digitales. Asignación de bits: Bit 0: DQ0 Bit 1: DQ1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3008:10h, Modbus 2080</td>
</tr>
<tr>
<td>_IO_STO_act</td>
<td>Estado de las entradas para la función de seguridad STO. Codificación de cada una de las señales: Bit 0: STO_A Bit 1: STO_B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3008:26h, Modbus 2124</td>
</tr>
</tbody>
</table>
Comprobar las señales de los finales de carrera

El uso de finales de carrera puede ofrecer una cierta protección contra peligros (por ejemplo golpe en el tope mecánico debido a valores de referencia incorrectos).

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÉRDIDA DEL CONTROL DE MANDO</td>
</tr>
<tr>
<td>● Instale finales de carrera si su análisis de riesgos indica que estos son necesarios en su aplicación.</td>
</tr>
<tr>
<td>● Asegúrese de que los finales de carrera están conectados correctamente.</td>
</tr>
<tr>
<td>● Asegúrese de que los finales de carrera están montados a una distancia del tope mecánico de forma que quede un recorrido de frenado suficiente.</td>
</tr>
<tr>
<td>● Asegure la parametrización y la función correctas de los finales de carrera.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

● Ajuste los finales de carrera de tal forma que el motor no pueda desplazarse más allá de ellos.
● Active manualmente los finales de carrera.

Si se muestra un mensaje de error, los finales de carrera se habrán activado.

La habilitación de los finales de carrera y el ajuste para el contacto de reposo o el contacto de cierre pueden modificarse a través de parámetros, véase el capítulo Finales de carrera (véase página 319).
Comprobar la función de seguridad STO

Funcionamiento con función de seguridad STO

Si desea utilizar la función de seguridad STO, lleve a cabo los siguientes pasos:

- Para evitar el rearranque involuntario del motor después de restablecerse la tensión, el parámetro IO_AutoEnable debe estar ajustado a "off". Asegúrese de que el parámetro IO_AutoEnable está en "off".
 HMI: \texttt{conf \rightarrow acg \rightarrow ioae}.

Desconecte la alimentación de la etapa de potencia y la alimentación del control:

- Compruebe si las líneas de señal están separadas entre sí en las entradas STO_A y STO_B. Las dos líneas de señal no deben tener conexión eléctrica alguna.

Conecte la alimentación de la etapa de potencia y la alimentación del control:

- Active la etapa de potencia sin iniciar un movimiento del motor.
- Active la función de seguridad STO.
 Si la etapa de potencia está ahora desactivada y se muestra el mensaje de error 1300, se habrá activado la función de seguridad STO.
 Si se muestra otro mensaje de error, la función de seguridad STO no se ha activado.
- Registre todos los tests de las funciones de seguridad en su protocolo de aceptación.

Funcionamiento sin función de seguridad STO

Si no desea utilizar la función de seguridad STO:

- Asegúrese de que las entradas STO_A y STO_B están conectadas con +24VDC.
Freno de parada (opción)

Freno de parada
El freno de parada en el motor tiene la función de mantener la posición del motor con la etapa de potencia desactivada. El freno de parada no es una función de seguridad ni un freno de servicio.

![ADVERTENCIA](image)

MOVIMIENTO IMPREVISTO DEL EJE
- No utilice el freno de parada interno como medida relacionada con la seguridad.
- Utilice sólo frenos externos certificados como medidas relacionadas con la seguridad.
El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Apertura del freno de parada
Al activar la etapa de potencia el motor recibe corriente. Cuando el motor recibe corriente, el freno de parada se abre automáticamente.

La apertura del freno de parada requiere un tiempo determinado. Este tiempo está grabado en la placa de características electrónica del motor. Hasta que no transcurra este retardo no se efectúa el cambio al estado de funcionamiento **6 Operation Enabled**.

Es posible ajustar un retardo adicional mediante parámetros, véase el capítulo Retardo al abrir el freno de parada (**véase página 150**).

Cierre del freno de parada
Al desactivar la etapa de potencia, el freno de parada se bloquea automáticamente.

Sin embargo, cerrar el freno de parada requiere un tiempo determinado. Este tiempo está grabado en la placa de características electrónica del motor. El motor recibe corriente durante este retardo.

Encontrará más información sobre el comportamiento del freno de parada al activarse la función de seguridad STO en el capítulo Función de seguridad STO ("Safe Torque Off") (**véase página 78**).

Es posible ajustar un retardo adicional mediante parámetros, véase el capítulo Retardo al bloquear el freno de parada (**véase página 151**).

Retardo adicional al abrir el freno de parada
Es posible ajustar un retardo adicional a través del parámetro **BRK_AddT_release**.

Hasta que no haya transcurrido el retardo no se efectúa el cambio de estado de funcionamiento **6 Operation Enabled**.

![Diagrama de estados](image)
Retardo adicional al bloquear el freno de parada

Es posible ajustar un retardo adicional a través del parámetro BRK_AddT_apply.

El motor continúa recibiendo corriente hasta que haya transcurrido el tiempo de retardo total.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRK_AddT_release</td>
<td>Retardo adicional al abrir el freno de parada</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>INT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3005:7h, Modbus 1294</td>
</tr>
<tr>
<td></td>
<td>El retardo total al abrir el freno de parada corresponde al retardo indicado en la placa de características electrónica del motor y al retardo adicional indicado en este parámetro. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRK_AddT_apply</td>
<td>Retardo adicional al bloquear el freno de parada</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>INT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3005:8h, Modbus 1296</td>
</tr>
<tr>
<td></td>
<td>El retardo total al bloquear el freno de parada corresponde al retardo indicado en la placa de características electrónica del motor y al retardo adicional indicado en este parámetro. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comprobar el funcionamiento del freno de parada
El equipo se encuentra en el estado de funcionamiento "Ready to switch on".

- Inicie el modo de funcionamiento Jog (HMI: \[P \rightarrow J \rightarrow G \rightarrow JGST \])
 La etapa de potencia se activa, y el freno de parada se abre. En la HMI se muestra \[JG - \].
- Cuando el freno de parada se haya abierto, pulse y mantenga pulsado el botón de navegación. Pulse a continuación la tecla ESC. Mientras se mantiene pulsado el botón de navegación, el motor ejecuta un movimiento. Al pulsar la tecla ESC, el freno de parada se cierra de nuevo, y la etapa de potencia se desactiva.
- Si el freno de parada no se hubiera abierto, pulse la tecla ESC.
 Al pulsar la tecla ESC, la etapa de potencia se desactiva.
- Si el freno de parada no se comporta correctamente, compruebe el cableado.

Apertura manual del freno de parada
Para realizar el ajuste mecánico puede ser necesario girar o desplazar manualmente la posición del motor.
La liberación manual del freno de parada solo es posible en los estados de funcionamiento 3 Switch On Disabled, 4 Ready To Switch On o 9 Fault.
Al utilizar por vez primera el producto existe un riesgo elevado de movimientos inesperados, por ejemplo, debido a un cableado incorrecto o a ajustes de parámetros inadecuados. La apertura del freno de parada puede desencadenar un movimiento involuntario, por ejemplo, una caída de la carga en el caso de ejes verticales.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVIMIENTO INVOLUNTARIO</td>
</tr>
<tr>
<td>- Asegúrese de que no haya personas ni obstáculos en la zona de funcionamiento mientras utiliza la instalación.</td>
</tr>
<tr>
<td>- Asegúrese de que una caída de la carga y otros movimientos involuntarios no puedan causar ningún daño ni peligro.</td>
</tr>
<tr>
<td>- Realice las primeras pruebas sin cargas acopladas.</td>
</tr>
<tr>
<td>- Asegúrese de que haya un pulsador de PARADA DE EMERGENCIA en funcionamiento accesible para todas las personas implicadas en la prueba.</td>
</tr>
<tr>
<td>- Cuente con movimientos en direcciones inesperadas o con vibraciones del motor.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Con la versión de firmware ≥V01.12, el freno de parada puede abrirse manualmente.

Cierre manual del freno de parada
Para probar el freno de parada puede ser necesario cerrarlo manualmente.
El cierre manual del freno de parada solo es posible con el motor parado.
Si estando el freno de parada cerrado manualmente se activa la etapa de potencia, el freno de parada permanece bloqueado.
El cierre manual del freno de parada tiene preferencia frente a la apertura automática y manual del contacto de reposo.
Si se inicia un movimiento con un freno de parada cerrado manualmente, puede producirse desgaste.

<table>
<thead>
<tr>
<th>AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESGASTE DEL FRENO Y PÉRDIDA DE LA FUERZA DE FRENADO</td>
</tr>
<tr>
<td>- Asegúrese de que, con el freno de parada cerrado, el motor no genere ningún par a excepción del par de parada del freno de parada.</td>
</tr>
<tr>
<td>- Utilice el cierre manual del freno de parada únicamente para probar este freno.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar daño al equipo.

Con la versión de firmware ≥V01.20, el freno de parada puede cerrarse manualmente.
Abrir manualmente el freno de parada a través de una entrada de señal

Para poder abrir manualmente el freno de parada a través de una entrada de señal, la función de entrada de señal "Release Holding Brake" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).
Cerrar o abrir manualmente el freno de parada a través del bus de campo

Con el parámetro **BRK_release**, el freno de parada puede liberarse manualmente a través del bus de campo.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRK_release</td>
<td>Funcionamiento manual del freno de parada</td>
<td>UINT16</td>
<td>R/W</td>
<td>Persistente</td>
<td>Experto</td>
<td>CANopen 3008:An Modbus 2068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / Automatic: Procesamiento automático</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Manual Release: Apertura manual del freno de parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Manual Application: Cierre manual del freno de parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El freno de parada solo puede abrir o cerrarse manualmente en los estados de funcionamiento 'Switch On Disabled', 'Ready To Switch On' o 'Fault'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si hubiera cerrado manualmente el freno de parada y desea abrirlo manualmente, primero debe ajustar este parámetro a 'Automatic' y, seguidamente, a 'Manual Release'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El freno de parada puede abrir o cerrarse manualmente.

El freno de parada solo puede abrir o cerrarse manualmente en los estados de funcionamiento 'Switch On Disabled', 'Ready To Switch On' o 'Fault'.

Si hubiera cerrado manualmente el freno de parada y desea abrirlo manualmente, primero debe ajustar este parámetro a 'Automatic' y, seguidamente, a 'Manual Release'.

Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.12.
Comprobar la dirección de movimiento

Definición de la dirección de movimiento
En el caso de motores rotatorios, la dirección de giro está definida según la norma IEC 61800-7-204: la dirección positiva se entiende cuando el eje del motor gira en el sentido de las agujas del reloj, mirando hacia la superficie frontal del eje del motor sin montar.

Es importante mantener la norma IEC 61800-7-204 en su aplicación porque muchos bloques de funciones relacionados con el movimiento, convenios de programación y dispositivos relacionados con la seguridad y convencionales esperan que se cumpla esta premisa subyacente en sus metodologías lógicas y operativas.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVIMIENTO INVOLUNTARIO POR INTERCAMBIO DE LAS FASES DEL MOTOR</td>
</tr>
<tr>
<td>No intercambie las fases del motor.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Si en su aplicación es necesario una inversión de la dirección de movimiento, esta puede parametrizarse. La dirección de movimiento puede comprobarse iniciando un movimiento.

Comprobar la dirección de movimiento
La alimentación de tensión está conectada.
- Cambie al modo de funcionamiento Jog. (HMI: \(\text{op} \rightarrow \text{Jog} \rightarrow \text{JGST} \))
 - En la HMI se muestra \(\text{JG-} \).

Movimiento en dirección positiva:
- Pulse el botón de navegación y manténgalo pulsado.
 - El movimiento se produce en dirección positiva.

Movimiento en dirección negativa:
- Gire el botón de navegación hasta que se muestre \(\text{-JG} \) en la HMI.
- Pulse el botón de navegación y manténgalo pulsado.
 - El movimiento se produce en dirección negativa.

ADVERTENCIA
MOVIMIENTO INVOLUNTARIO POR INTERCAMBIO DE LAS FASES DEL MOTOR
No intercambie las fases del motor.
El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.
Cambiar la dirección de movimiento

La dirección de movimiento se puede invertir.

- Inversión de la dirección de movimiento está desactivada:
 En el caso de valores de destino positivos se produce un movimiento en dirección positiva.
- Inversión de la dirección de movimiento está activada:
 En el caso de valore de destino positivos se produce un movimiento en dirección negativa.

Mediante el parámetro `InvertDirOfMove` se invierte la dirección de movimiento.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>InvertDirOfMove</code></td>
<td>Inversión de la dirección de movimiento</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UNT16</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3006:Cn, Modbus 1560</td>
</tr>
</tbody>
</table>

El final de carrera hacia el que la aproximación se realiza con un movimiento en dirección positiva, debe conectarse con la entrada para el final de carrera positivo, y viceversa.

Solo es posible modificar el ajuste con la etapa de potencia desactivada.

Los ajustes modificados se aceptan durante la siguiente conexión del producto.
Ajustar los parámetros para el encoder

Al arrancar, el equipo lee del encoder la posición absoluta del motor. Es posible visualizar la posición absoluta a través del parámetro _p_absENC.

Zona de funcionamiento del encoder

La zona de funcionamiento del encoder Singleturn abarca 131072 incrementos por revolución.
La zona de funcionamiento del encoder Multiturn abarca 4096 revoluciones con 131072 incrementos por revolución.

Recorrido inferior de la posición absoluta

Si un motor rotatorio se mueve desde la posición absoluta 0 en dirección negativa, el encoder experimenta un recorrido inferior de su posición absoluta. Por contra, la posición real sigue contando en sentido matemático positivo y suministra un valor de posición negativo. Después de una desconexión y conexión, la posición real interna ya no correspondería al valor de posición negativo, sino que a la posición absoluta del encoder.

Existen las siguientes opciones para adaptar la posición absoluta del encoder:
- Ajuste de la posición absoluta
- Desplazamiento de la zona de funcionamiento

Tabla de parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_p_absENC</td>
<td>Posición absoluta referente a la zona de funcionamiento del encoder</td>
<td>Posición del módulo del rango del encoder absoluto. Este valor se invalida si se cambia la relación de multiplicación entre el encoder de la máquina y el encoder del motor. En este caso es necesario reiniciar.</td>
<td>usr_p</td>
<td>UINT32</td>
<td>R/-</td>
<td>CANopen 301E:Fh, Modbus 7710</td>
</tr>
</tbody>
</table>

Nombre de parámetro | Menú HMI | Nombre HMI | Designación | Titulo Menú HMI | Tipo de dato | Dirección de parámetro vía bus de campo |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_p_absENC</td>
<td>P a n</td>
<td>P a n u</td>
<td>Posición absoluta referente a la zona de funcionamiento del encoder</td>
<td>Posición del módulo del rango del encoder absoluto. Este valor se invalida si se cambia la relación de multiplicación entre el encoder de la máquina y el encoder del motor. En este caso es necesario reiniciar.</td>
<td>UINT32</td>
<td>CANopen 301E:Fh, Modbus 7710</td>
</tr>
</tbody>
</table>
Ajuste de la posición absoluta

En caso de parada del motor, puede definirse la nueva posición absoluta del motor en la posición mecánica actual del motor mediante el parámetro ENCl_adjustment.

El ajuste de la posición absoluta provoca también un desplazamiento de la posición del pulso índice.

- Establezca la posición absoluta en el límite mecánico negativo a un valor de posición superior a 0. De este modo, los movimientos permanecen dentro del rango continuo del encoder.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCl_adjustment</td>
<td>Ajuste de la posición absoluta del encoder 1</td>
<td>usu_p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3005:16h, Modbus 1324</td>
</tr>
</tbody>
</table>

El rango de valores depende del tipo de encoder.

Encoder Singleturn:
0 ... x-1

Encoder Multiturn:
0 ... (4096*x)-1

Encoder Singleturn (desplazado con parámetro ShiftEncWorkRang):
-(x/2) ... (x/2)-1

Encoder Multiturn (desplazado con parámetro ShiftEncWorkRang):
-(2048*x) ... (2048*x)-1

Definición de “x”: Posición máxima para una revolución de encoder en las unidades de usuario. Con la escala predefinida, este valor es de 16384.

En caso de que el procesamiento deba realizarse con inversión de dirección, ésta deberá ajustarse antes de establecer la posición del encoder. Después del acceso de escritura debe esperarse como mínimo 1 segundo hasta que el variador pueda desconectarse.

Los ajustes modificados se aceptan durante la siguiente conexión del producto.
Desplazamiento de la zona de funcionamiento

Mediante el parámetro ShiftEncWorkRang se puede mover la zona de funcionamiento.

La zona de funcionamiento sin desplazamiento abarca:

<table>
<thead>
<tr>
<th>Encoder Singleturn</th>
<th>0 ... 131071 incrementos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder Multiturn</td>
<td>0 ... 4095 revoluciones</td>
</tr>
</tbody>
</table>

La zona de funcionamiento con desplazamiento abarca:

<table>
<thead>
<tr>
<th>Encoder Singleturn</th>
<th>De –65536 a 65535 incrementos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder Multiturn</td>
<td>De –2048 a 2047 revoluciones</td>
</tr>
</tbody>
</table>

Nombre de parámetro	Designación	Unidad	Valor mínimo	Ajuste de fábrica	Valor máximo	Tipo de dato	R/W	Persistente	Experto	Dirección de parámetro vía bus de campo
ShiftEncWorkRang	Desplazar el área de trabajo del encoder									
0 / Off: desplazamiento desconectado										
1 / On: desplazamiento conectado										
Después de activar la función de desplazamiento, el rango de posición del encoder se desplaza el equivalente a la mitad del rango.										
Ejemplo para el rango de posición de un encoder Multiturn con 4096 revoluciones:										
Valor 0:										
Los valores de posición se encuentran entre 0 ... 4096 revoluciones.										
Valor 1:										
Los valores de posición se encuentran entre –2048 y 2048 revoluciones.										
Los ajustes modificados se aceptan durante la siguiente conexión del producto.	UINT16	R/W	per.	CANopen	3005-21p	Modbus 1346				
---------------------	-------------	--------	--------------	-------------------	--------------	--------------	-----	-------------	---------	-------------------------------------
Ajuste de parámetros para resistencia de frenado

Una resistencia de frenado insuficientemente dimensionada puede provocar una sobretensión en el bus DC. En caso de sobretensión del bus DC, la etapa de potencia se desactiva. El motor ya no decelera de forma activa.

⚠️ ADVERTENCIA

COMPORTAMIENTO NO INTENCIIONADO
- Mediante un funcionamiento de prueba con carga máxima, asegúrese de que la resistencia de frenado está dimensionada de forma suficiente.
- Asegúrese de que los parámetros para la resistencia de frenado están ajustados correctamente.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Durante el funcionamiento, la resistencia de frenado puede calentarse a temperaturas superiores a 250 °C (482 °F).

⚠️ ADVERTENCIA

SUPERFICIES CALIENTES
- Asegúrese de que no es posible contacto alguno con la resistencia de frenado caliente.
- No coloque ninguna pieza inflamable o sensible al calor en las cercanías de la resistencia de frenado.
- Realice un funcionamiento de prueba con carga máxima para asegurarse de que la disipación de calor es suficiente.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Si utiliza una resistencia de frenado externa, lleve a cabo los siguientes pasos:
- Ajuste el parámetro RESint_ext a "External Braking Resistor".
- Ajuste los parámetros RESext_P, RESext_R y RESext_ton.

Encontrará más información en el capítulo Dimensionamiento de la resistencia de frenado (véase página 72).

Si la potencia realimentada fuera superior a la potencia que puede absorber la resistencia de frenado, se emite un mensaje de error y la etapa de potencia se desactiva.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESint_ext</td>
<td>Selección del tipo de resistencia de frenado 0 / Internal Braking Resistor / int: Resistencia de frenado interna 1 / External Braking Resistor / ext: Resistencia de frenado externa 2 / Reserved / r</td>
<td>W</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3005:9h Modbus 1298</td>
</tr>
<tr>
<td>RESext_P</td>
<td>Potencia nominal de la resistencia de frenado externa Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>W</td>
<td>1</td>
<td>10</td>
<td>32767</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3005:12h Modbus 1316</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>RESext_R</td>
<td>ConF → ACG - tbr</td>
<td>Valor de la resistencia de frenado externa</td>
<td>Ω</td>
<td>0,00</td>
<td>100,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3005:13h Modbus 1318</td>
<td></td>
</tr>
<tr>
<td>RESext_ton</td>
<td>ConF → ACG - tbr</td>
<td>Tiempo de conexión máximo permitido de la resistencia de frenado externa</td>
<td>ms</td>
<td>1</td>
<td>1</td>
<td>30000</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3005:11h Modbus 1314</td>
<td></td>
</tr>
</tbody>
</table>
Autotuning

Durante el autotuning, el motor se mueve para ajustar el bucle de control. En caso de parámetros erróneos se pueden producir movimientos indeseados o pueden quedar sin efecto las funciones de monitorización.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVIMIENTO INVOLUNTARIO</td>
</tr>
<tr>
<td>• Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.</td>
</tr>
<tr>
<td>• Asegúrese de que los valores para los parámetros ATdir y $\text{AT}\text{dis}\text{usr}$ (ATdis) no superen el área de desplazamiento disponible.</td>
</tr>
<tr>
<td>• Asegúrese de que en la lógica de aplicación haya disponibles áreas de desplazamiento parametrizadas para el movimiento mecánico.</td>
</tr>
<tr>
<td>• Al efectuar los cálculos, tenga en cuenta que para el área de desplazamiento disponible debe haber también espacio para el recorrido de la rampa de deceleración en caso de una parada de emergencia.</td>
</tr>
<tr>
<td>• Asegúrese de que los parámetros para la Quick Stop están correctamente definidos.</td>
</tr>
<tr>
<td>• Asegúrese de que los finales de carrera funcionan correctamente.</td>
</tr>
<tr>
<td>• Asegúrese de que haya un pulsador de parada de emergencia operativo accesible para todas las personas que realizan trabajos de cualquier tipo en este equipo.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Autotuning

El autotuning determina el par de fricción como un par de carga de efecto constante y lo tiene en cuenta en el cálculo del momento de inercia del sistema completo.

Se consideran factores externos como, por ejemplo, una carga en el motor. A través del autotuning se optimizan los parámetros para los ajustes del controlador, véase el capítulo Optimización del controlador con respuesta a un escalón (véase página 168).

El autotuning admite también ejes verticales.

Métodos

El ajuste de el control del accionamiento puede realizarse de tres formas diferentes:

- Easy Tuning: automático. Se realiza un autotuning sin intervención del usuario. Para la mayor parte de las aplicaciones, la compensación automática del controlador proporciona un buen resultado sumamente dinámico.

- Comfort Tuning: semiautomático. Compensación automática del controlador con ayuda del usuario. El usuario puede preindicar los parámetros para el sentido o los parámetros para la amortiguación.

- Manual: el usuario puede ajustar y adaptar los valores del controlador a través de los parámetros correspondientes. Modo avanzado.

Función

Durante el autotuning, el motor se activa y ejecuta pequeños movimientos. Al hacerlo, es normal que se produzcan ruidos y oscilaciones mecánicas en la instalación.

Si desea ejecutar un Easy-Tuning, no es preciso ajustar más parámetros. Si desea realizar un Comfort-Tuning, ajuste los parámetros AT_dir, $\text{AT}_\text{dis}_\text{usr}$ (AT_dis) y $\text{AT}_\text{mechanics}$ conforme a su instalación.

A través del parámetro AT_Start se inicia el Easy-Tuning o el Comfort-Tuning.

- Inicie el autotuning con el software de puesta en marcha. De forma alternativa también se puede iniciar el Autotuning a través de la HMI.

 HMI: $p\rightarrow t\rightarrow u\rightarrow s\rightarrow t\rightarrow u\rightarrow s\rightarrow t$

- Memorice los nuevos valores en la EEPROM a través del software de puesta en marcha. Si hubiera iniciado el autotuning a través de la HMI, pulse el botón de navegación para memorizar los nuevos valores en la EEPROM.

El producto dispone de 2 juegos de parámetros de de lazo de control parametrizables por separado. Los valores determinados en un autotuning para los parámetros del lazo de control se memorizan en el juego de parámetros de lazo de control 1.
Si el Autotuning se interrumpe con un mensaje de error, se aceptarán los valores por defecto. Modifique la posición mecánica y reinicie el autotuning. Si desea comprobar la plausibilidad de los valores calculados, puede visualizarlos, véase el capítulo Ajustes ampliados para el autotuning (véase página 165).

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT_dir</td>
<td>oP → tun - 5k π</td>
<td></td>
<td>-</td>
<td>1 1 6</td>
<td></td>
<td>UINT16</td>
<td>CANopen 302F:4h, Modbus 12040</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>AT_dis_usr</td>
<td>oP → tun - dir 5u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT32</td>
<td>CANopen 302F:12, Modbus 12068</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
</tbody>
</table>

Dirección de movimiento para el autotuning
1 / Positive Negative Home / P n h → tun: Primer dirección positiva, después dirección negativa con retorno a la posición inicial
2 / Negative Positive Home / n P h → tun: Primer dirección negativa, después dirección positiva con retorno a la posición inicial
3 / Positive Home / P - h → tun: Sólo dirección positiva con retorno a la posición inicial
4 / Positive / P - - → tun: Sólo dirección positiva sin retorno a la posición inicial
5 / Negative Home / n - h → tun: Sólo dirección negativa con retorno a la posición inicial
6 / Negative / n - - → tun: Sólo dirección negativa sin retorno a la posición inicial
Los ajustes modificados se aceptan durante el siguiente movimiento del motor.

Rango de movimiento del autotuning
Área de desplazamiento en la que se realiza el proceso automático de optimización de los parámetros del lazo de control. Se introduce el rango relativo a la posición actual.
En caso de "Movimiento solo en una dirección" (parámetro AT_dir), se empleará el área de desplazamiento indicada para cada paso de optimización. El movimiento corresponde normalmente a un valor 20 veces mayor, aunque no está limitado.
El valor mínimo, el ajuste de fábrica y el valor máximo dependen del factor de escalada.
Los ajustes modificados se aceptan durante el siguiente movimiento del motor.
Disponible con la versión de firmware ≥ V01.05.
AT_dis

Rango de movimiento del autotuning

Área de desplazamiento en la que se realiza el proceso automático de optimización de los parámetros del lazo de control. Se introduce el rango relativo a la posición actual.

En caso de “Movimiento solo en una dirección” (parámetro AT_dir), se empleará el área de desplazamiento indicada para cada paso de optimización.

El movimiento corresponde normalmente a un valor 20 veces mayor, aunque no está limitado.

A través del parámetro AT_dis_usr es posible introducir el valor en unidades de usuario. En pasos de 0,1 revoluciones. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT_dis</td>
<td>Rango de movimiento del autotuning</td>
<td>Revolución 1,0 2,0 999,9</td>
<td>UINT32</td>
<td>CANopen 302F:3h Modbus 12038</td>
</tr>
</tbody>
</table>

AT_mechanical

Tipo de acoplamiento del sistema

1 / **Direct Coupling**: Acoplamiento directo
2 / **Belt Axis**: Eje de la correa
3 / **Spindle Axis**: Eje del husillo

Los ajustes modificados se aceptan durante el siguiente movimiento del motor.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT_mechanical</td>
<td>Tipo de acoplamiento del sistema</td>
<td>- 1 2 3</td>
<td>UINT16</td>
<td>CANopen 302F:Eh Modbus 12060</td>
</tr>
</tbody>
</table>

AT_start

Inicio del autotuning

Valor 0: Finalizar
Valor 1: Activar EasyTuning
Valor 2: Activar ComfortTuning

Los ajustes modificados se aceptan de inmediato.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT_start</td>
<td>Inicio del autotuning</td>
<td>- 0 2</td>
<td>UINT16</td>
<td>CANopen 302F:1h Modbus 12034</td>
</tr>
</tbody>
</table>
Ajustes ampliados para el autotuning

Por medio de los siguientes parámetros, se puede supervisar o influir en el autotuning.

Con los parámetros `AT_state` y `AT_progress` puede supervisar el avance porcentual y el estado del autotuning.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_AT_state</td>
<td>Estado del autotuning</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 302F:2h</td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus 12036</td>
</tr>
<tr>
<td></td>
<td>Bits 0 ... 10: Último paso de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>procesamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 13: auto_tune_process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 14: auto_tune_end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 15: auto_tune_err</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_AT_progress</td>
<td>Avance del autotuning</td>
<td>%</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 302F:Bh</td>
</tr>
<tr>
<td></td>
<td>Modbus 12054</td>
</tr>
</tbody>
</table>
Si desea comprobar en el funcionamiento de prueba cómo afecta un ajuste más duro o más blando de los parámetros del lazo de control a su sistema, puede modificar los ajustes encontrados durante el autotuning escribiendo el parámetro \texttt{CTRL_GlobGain}. A través del parámetro \texttt{_AT_J} puede leer el momento de inercia del sistema completo calculado durante el autotuning.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL_GlobGain</td>
<td>Factor de ganancia global (actúa sobre juego de parámetros de lazo de control 1)</td>
<td>%</td>
<td>5,0</td>
<td>100,0</td>
<td>1000,0</td>
<td>CANopen 3011:15h</td>
</tr>
<tr>
<td></td>
<td>El factor de ganancia global actúa sobre los siguientes parámetros del juego de parámetros del lazo de control 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus 4394</td>
</tr>
<tr>
<td></td>
<td>- CTRL_KPn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_TNn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_KPp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_TAUnref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El factor de ganancia global se pone al 100 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- cuando los parámetros del lazo de control se ajustan a sus valores estándar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- al final del Autotuning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- cuando el juego de parámetros de lazo de control 2 se copia con el parámetro CTRL_ParSetCopy en el juego de parámetros de lazo de control 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si se transfiere una configuración completa a través del bus de campo, el valor para CTRL_GlobGain deberá transferirse antes que los valores para los parámetros del lazo de control CTRL_KPn, CTRL_TNn, CTRL_KPp y CTRL_TAUnref. Si se modificara el valor de CTRL_GlobGain durante la transferencia de una configuración, los parámetros CTRL_KPn, CTRL_TNn, CTRL_KPp y CTRL_TAUnref también deben formar parte de la configuración. En pasos de 0,1 %. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_AT_M_friction</td>
<td>Par de fricción del sistema</td>
<td>Arms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CANopen 302F:7h</td>
</tr>
<tr>
<td></td>
<td>Se calcula durante el autotuning. En pasos de 0,01</td>
<td></td>
<td>0,01</td>
<td></td>
<td></td>
<td>Modbus 12046</td>
</tr>
<tr>
<td></td>
<td>A\textsubscript{rms}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_AT_M_load</td>
<td>Par de carga constante</td>
<td>Arms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CANopen 302F:8h</td>
</tr>
<tr>
<td></td>
<td>Se calcula durante el autotuning. En pasos de 0,01</td>
<td></td>
<td>0,01</td>
<td></td>
<td></td>
<td>Modbus 12048</td>
</tr>
<tr>
<td></td>
<td>A\textsubscript{rms}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_AT_J</td>
<td>Momento de inercia del sistema completo</td>
<td>kg cm2</td>
<td>0,1</td>
<td>0,1</td>
<td>6553,5</td>
<td>CANopen 302F:C\textsubscript{p}</td>
</tr>
<tr>
<td></td>
<td>Se calcula automáticamente durante el autotuning. En pasos de 0,1 kg cm2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus 12056</td>
</tr>
<tr>
<td></td>
<td>A\textsubscript{rms}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modificando el parámetro AT_wait puede ajuste un tiempo de espera entre los pasos individuales durante el proceso de autotuning. El ajuste de un tiempo de espera tiene sentido únicamente en el caso de un acoplamiento semirígido, en especial si el siguiente paso del autotuning automático (modificación de la dureza) se realiza ya durante la estabilización del sistema.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT_wait</td>
<td></td>
<td></td>
<td>Tiempo de espera entre pasos de autotuning</td>
<td>ms</td>
<td>300</td>
<td>500</td>
<td>10000</td>
<td>UINT16</td>
<td>CANopen 302F:9h Modbus 12050</td>
</tr>
</tbody>
</table>
Sección 5.5
Optimización del controlador con respuesta a un escalón

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estructura del controlador</td>
<td>169</td>
</tr>
<tr>
<td>Optimización</td>
<td>171</td>
</tr>
<tr>
<td>Optimizar el controlador de velocidad</td>
<td>172</td>
</tr>
<tr>
<td>Comprobar y optimizar el factor P</td>
<td>176</td>
</tr>
<tr>
<td>Optimizar el controlador de posición</td>
<td>177</td>
</tr>
</tbody>
</table>
Estructura del controlador

La estructura del controlador del control corresponde a el control de cascada clásica de un bucle de control con controlador de corriente, control de velocidad (controlador de velocidad) y controlador de posición. Adicionalmente, el valor de referencia del controlador de velocidad se puede alisar por medio de un filtro conectado en serie.

Los controladores se ajustan consecutivamente del interior hacia el exterior en el siguiente orden: control de corriente, control de velocidad, control de posición. El bucle de control subordinado correspondiente permanece desconectado.

1 Controlador de posición
2 Controlador de velocidad
3 Controlador de corriente
4 Evaluación del encoder

Encontrará una representación detallada de la estructura del controlador en el capítulo Resumen de la estructura del controlador (véase página 221).

Controlador de corriente
El controlador de corriente determina el par de accionamiento que se entrega al motor. Con los datos del motor memorizados, el controlador de corriente se ajusta automáticamente de forma óptima.

Controlador de velocidad
El controlador de velocidad regula la velocidad del motor variando la corriente del motor según la situación de carga. El controlador de velocidad determina de forma decisiva la rapidez de reacción del variador. La dinámica del controlador de velocidad depende:
- del momento de inercia del accionamiento y de la distancia del controlador
- Potencia del motor
- Rígidez y elasticidad de los elementos en el flujo de fuerza
- del juego de los elementos mecánicos del accionamiento
- de la fricción

Position Controller
El controlador de posición reduce al mínimo la diferencia entre el valor de referencia de posición y la posición real (desviación de posición). En parada del motor, la desviación de posición es prácticamente cero si el controlador de posición está correctamente ajustado.

La condición para un buen ajuste del controlador de posición es un bucle de control de velocidad optimizado.
Parámetros del lazo de control

Este equipo ofrece la posibilidad de trabajar con dos juegos de parámetros de lazo de control. Es posible cambiar de un juego de parámetros de lazo de control a otro durante el servicio. El juego de parámetros de lazo de control activo se selecciona con el parámetro CTRL_SelParSet.

Los parámetros correspondientes son CTRL1_xx para el primer juego de parámetros de lazo de control y CTRL2_xx para el segundo juego de parámetros de lazo de control. En lo sucesivo se utilizará CTRL1_xx (CTRL2_xx) cuando el ajuste de los dos juegos de parámetros de lazo de control sea idéntico desde un aspecto funcional.

<table>
<thead>
<tr>
<th>Nombre del parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Ajuste de fábrica</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL_SelParSet</td>
<td>Selección del juego de parámetros de lazo de control (no persistente)</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 3011:19h, Modbus 4402</td>
</tr>
<tr>
<td>_CTRL_ActParSet</td>
<td>Juego de parámetros de lazo de control activo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 3011:17h, Modbus 4398</td>
</tr>
<tr>
<td>CTRL_ParChgTime</td>
<td>Margen de tiempo para la conmutación del juego de parámetros de lazo de control</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 3011:14h, Modbus 4392</td>
</tr>
</tbody>
</table>
Optimización

La función de optimización de accionamiento sirve para la adaptación del equipo a las condiciones de uso. Están disponibles las siguientes posibilidades:
- Seleccionar bucles de control. Los bucles de control superiores se desconectan automáticamente.
- Definir señales de valor de referencia: forma de la señal, altura, frecuencia y punto de arranque
- Comprobar el comportamiento del control con el generador de señales.
- Con el software de puesta en marcha, grabar el comportamiento del control en la pantalla y valorarlo.

Ajustar señal piloto

Inicie la optimización del controlador con el software de puesta en marcha.

Ajuste los siguientes valores para la señal piloto:
- Forma de señal: escalón "positivo"
- Amplitud: 100 min⁻¹
- Duración de periodo: 100 ms
- Número de repeticiones: 1
- Inicie la grabación.

Solo con las formas de señal "Escalón" y "Rectángulo" puede reconocerse el comportamiento dinámico completo de un bucle de control. Los desarrollos de señal representados en el manual tienen la forma de señal "Escalón".

Registrar valores para la optimización

Para los pasos de optimización individuales que se describen en las páginas siguientes, tienen que introducirse parámetros de controlador y deben comprobarse activando una función de escalón.

Se activa una función de escalón en cuanto usted inicie una grabación en el software de puesta en marcha.

Parámetros del lazo de control

Este equipo ofrece la posibilidad de trabajar con dos juegos de parámetros de lazo de control. Es posible cambiar de un juego de parámetros de lazo de control a otro durante el servicio. El juego de parámetros de lazo de control activo se selecciona con el parámetro CTRL_SelParSet.

Los parámetros correspondientes son CTRL1.xx para el primer juego de parámetros de lazo de control y CTRL2.xx para el segundo juego de parámetros de lazo de control. En lo sucesivo se utilizará CTRL1.xx (CTRL2.xx) cuando el ajuste de los dos juegos de parámetros de lazo de control sea idéntico desde un aspecto funcional.

Encontrará detalles en el capítulo Conmutar el juego de parámetros de lazo de control (véase página 220).
El ajuste de sistemas de control mecánicos complejos exige experiencia en el trabajo con procesos de ajuste técnicos de control. Forma parte de ello la determinación aritmética de parámetros del lazo de control y la aplicación de procedimientos de identificación.

Los sistemas mecánicos menos complejos se pueden optimizar con éxito en su mayoría con el procedimiento de ajuste experimental según el método de caso límite aperiódico. Aquí se ajustan los siguientes parámetros:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL1_KPn</td>
<td>Factor P del controlador de velocidad</td>
<td>A(min⁻¹)</td>
<td>0,0001</td>
<td>2,5400</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3012:1h, Modbus 4610</td>
</tr>
<tr>
<td>CTRL2_KPn</td>
<td>Factor P del controlador de velocidad</td>
<td>A(min⁻¹)</td>
<td>0,0001</td>
<td>2,5400</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3013:1h, Modbus 4866</td>
</tr>
<tr>
<td>CTRL1_TNn</td>
<td>Tiempo de acción integral del controlador de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>327,67</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3012:2h, Modbus 4612</td>
</tr>
<tr>
<td>CTRL2_TNn</td>
<td>Tiempo de acción integral del controlador de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>327,67</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3013:2h, Modbus 4868</td>
</tr>
</tbody>
</table>

Compruebe y optimice en un segundo paso los valores determinados, véase el capítulo Comprobar y optimizar el factor P (véase página 176).
Filtro de consigna de referencia del controlador de velocidad

Con el filtro de consigna de referencia del controlador de velocidad puede mejorarse la respuesta en régimen transitorio con control de velocidad optimizada. Para los ajustes iniciales del controlador de velocidad, el filtro de consigna de referencia debe estar desactivado.

- Desactive el filtro de valor de referencia del controlador de velocidad. Ajuste el parámetro \(CTRL1_{TAUnref} \) (\(CTRL2_{TAUnref} \)) al valor límite inferior "0".

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL1_{TAUnref}</td>
<td>Constante de tiempo del filtro del valor de referencia de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>9,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>CANopen 3012:4h Modbus 4616</td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL_ParChgTime. En pasos de 0,01 ms. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>-</td>
</tr>
<tr>
<td>CTRL2_{TAUnref}</td>
<td>Constante de tiempo del filtro del valor de referencia de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>9,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>CANopen 3013:4h Modbus 4872</td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL_ParChgTime. En pasos de 0,01 ms. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>-</td>
</tr>
</tbody>
</table>

Determinar el tipo de mecánica de la instalación

Agrupe la mecánica de su instalación para la valoración y optimización de la respuesta en régimen transitorio en uno de los dos sistemas siguientes.

- Sistema con mecánica rígida
- Sistema con mecánica semirígida.

Sistemas mecánicos con mecánica rígida y semirigida

Mecánica rígida

- baja elasticidad
- poco juego
- p. ej. Accionamiento directo
- Acoplamiento rígido

Mecánica semirígida

- mayor elasticidad
- mucho juego
- p. ej. Accionamiento por correa
- Eje de accionamiento débil
- Acoplamiento elástico
Determinar los valores del controlador con mecánica rígida

En caso de mecánica rígida, es posible ajustar el comportamiento del controlador según la tabla si:

- se conoce el momento de inercia de la carga y del motor y
- el momento de inercia de la carga y del motor es constante.

El factor P_{CTRL} KP_n y el tiempo de acción integral $CTRL_{TN_n}$ dependen de:

- J_L: momento de inercia de la carga
- J_M: momento de inercia del motor

Determine los valores según la siguiente tabla:

<table>
<thead>
<tr>
<th>J_L (kgcm²)</th>
<th>K_P</th>
<th>T_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kgcm²</td>
<td>0,0125</td>
<td>8</td>
</tr>
<tr>
<td>2 kgcm²</td>
<td>0,0250</td>
<td>8</td>
</tr>
<tr>
<td>5 kgcm²</td>
<td>0,0625</td>
<td>8</td>
</tr>
<tr>
<td>10 kgcm²</td>
<td>0,125</td>
<td>8</td>
</tr>
<tr>
<td>20 kgcm²</td>
<td>0,250</td>
<td>8</td>
</tr>
</tbody>
</table>

Determinar los valores con mecánica semirígida

Para la optimización se determina el factor P del controlador de velocidad en el que el control regula la velocidad v_{act} lo más rápidamente posible sin sobrepasamiento.

- Ajuste el tiempo de acción integral $CTRL_{1, TN_n}$ ($CTRL_{2, TN_n}$) a infinito (= 327,67 ms).

Si un par de carga actúa sobre el motor parado, el tiempo de acción integral deberá ajustarse solo a una magnitud tal que no se produzca ninguna modificación indeseada de la posición del motor.

Si el motor se carga en parada, el tiempo de acción integral puede conducir "de forma infinita" a desviaciones de posición (por ejemplo, en ejes verticales). Reduzca el tiempo de acción integral si no pudieran aceptarse las desviaciones de posición para la aplicación en cuestión. La reducción del tiempo de acción integral puede repercutir negativamente en el resultado de la optimización.

ADVERTENCIA

- Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.
- Asegúrese de que los valores de velocidad y tiempo no superen el área de desplazamiento permitida.
- Asegúrese de que haya un pulsador de PARADA DE EMERGENCIA en funcionamiento accesible para todas las personas que realizan los trabajos.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

- Active una función de escalón.
- Una vez realizada la primera prueba, compruebe la amplitud máxima para el valor de referencia de corriente I_q_{ref}.

Ajuste la amplitud de la consigna de referencia sólo a una magnitud que permita al valor de referencia de corriente I_q_{ref} permanecer por debajo del valor máximo $CTRL_{I_{max}}$. Por otra parte, el valor no debe ser excesivamente bajo ya que, de lo contrario, efectos de fricción de la mecánica determinarían el comportamiento del bucle de control.

- Active de nuevo una función de escalón si debiera modificar v_{ref}, y compruebe la amplitud de I_q_{ref}.
- Aumente o reduzca el factor P en pasos pequeños hasta que v_{act} se regule lo más rápidamente posible. La siguiente figura muestra a la izquierda la respuesta en régimen transitorio deseada. Los sobrepasamientos, tal y como se muestran en la parte derecha, se reducen disminuyendo $CTRL_{1, KP_n}$ ($CTRL_{2, KP_n}$).

Las diferencias entre I_q_{ref} y v_{act} resultan del ajuste de $CTRL_{1, TN_n}$ ($CTRL_{2, TN_n}$) a "infinito".
Determinar “TNn” en el caso límite aperiódico

Para sistemas de accionamiento en los que antes de alcanzar el caso límite aperiódico se producen oscilaciones, deberá reducirse el factor P “KPn” hasta que ya no se reconozcan oscilaciones. Con frecuencia, este caso se produce en ejes lineales con accionamiento por correa dentada.

Determinación gráfica del valor 63%

Determine gráficamente el punto en el que la velocidad real \(_v_act \) alcance el 63% del valor final. El tiempo de acción integral \(CTRL1_TNn \) (\(CTRL2_TNn \)) resulta en este caso como valor en el eje temporal. El software de puesta en marcha le apoyará en la evaluación.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL1_TNn</td>
<td>tiempar</td>
<td>ms</td>
<td>0,00</td>
<td>-</td>
<td>327,67</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3012:2h Modbus 4612</td>
</tr>
<tr>
<td>Ctrl2_TNn</td>
<td>tiempar</td>
<td>ms</td>
<td>0,00</td>
<td>-</td>
<td>327,67</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3013:2h Modbus 4868</td>
</tr>
</tbody>
</table>
Comprobar y optimizar el factor P

El controlador está bien ajustado cuando la respuesta de escalón corresponde aproximadamente al desarrollo de señal representado. Es característico de un buen comportamiento de control:

- respuesta rápida
- Sobrepasamiento hasta un máximo del 40%, 20%.

Si el comportamiento del control no correspondiera al desarrollo representado, modifique \(CTRL_{K_Pn} \) en magnitudes de paso de aproximadamente el 10% y active de nuevo una función de escalón:

- Si el control trabajara demasiado lenta: seleccione un valor mayor para \(CTRL1_{K_Pn} \) \((CTRL2_{K_Pn}) \).
- Si el control tendiera a oscilar: seleccione un valor menor para \(CTRL1_{K_Pn} \) \((CTRL2_{K_Pn}) \).

Reconocerá una oscilación porque el motor acelera y decelera continuamente.

Optimizar ajustes insuficientes del controlador de velocidad
Optimizar el controlador de posición

El requisito previo para la optimización del controlador de posición es una optimización del controlador de velocidad.

Al ajustar el control de posición, debe optimizarse el factor P del controlador de posición CTRL1_Kp (CTRL2_Kp):

- CTRL1_Kp (CTRL2_Kp) excesivo: sobrepasamiento, inestabilidad del control
- CTRL1_Kp (CTRL2_Kp) insuficiente: desviación de posición elevada

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL1_Kp</td>
<td>$\text{ConF} \rightarrow \text{d} \rightarrow \text{C} \rightarrow \text{PP1}$</td>
<td>Factor P controlador de posición</td>
<td>1/s</td>
<td>2,0</td>
<td>900,0</td>
<td>UINT16</td>
<td>CANopen 3012:3h Modbus 4614</td>
</tr>
<tr>
<td>CTRL1_Kp</td>
<td>$\text{ConF} \rightarrow \text{d} \rightarrow \text{C} \rightarrow \text{PP2}$</td>
<td>Factor P controlador de posición</td>
<td>1/s</td>
<td>2,0</td>
<td>900,0</td>
<td>UINT16</td>
<td>CANopen 3013:3h Modbus 4870</td>
</tr>
</tbody>
</table>

La función de escalón mueve el motor con velocidad constante hasta que haya transcurrido el tiempo establecido.

ADVERTENCIA

MOVIMIENTO INVOLUNTARIO

- Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.
- Asegúrese de que los valores de velocidad y tiempo no superen el área de desplazamiento permitida.
- Asegúrese de que haya un pulsador de PARADA DE EMERGENCIA en funcionamiento accesible para todas las personas que realizan los trabajos.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Ajustar la señal piloto

- Seleccione en el software de puesta en marcha la consigna de referencia del controlador de posición.
- Ajuste la señal piloto:
 - Forma de señal: "Escalón"
 - para motores giratorios: ajuste la amplitud para aproximadamente 1/10 vueltas del motor.

La amplitud se introduce en unidades de usuario. En caso de escala por defecto, la resolución es de 16384 unidades de usuario por cada vuelta del motor.
Seleciónar señales de grabación

- Seleccione en Parámetros de grabación generales los valores:
 - Valor de referencia de posición del controlador de posición \(_p_ref_{us}r(_p_ref) \)
 - Posición real del controlador de posición \(_p_act_{us}r(_p_act) \)
 - Velocidad real \(_v_act \)
 - Valor nominal de corriente \(_I_q_ref \)

Optimizar el valor del controlador de posición

- Active una función de escalón con los valores del controlador preestablecidos.
- Una vez realizada la primera prueba, compruebe los valores alcanzados \(_v_act \) y \(_I_q_ref \) para el control de corriente y el control de velocidad. Los valores no deben alcanzar el rango de la limitación de corriente y velocidad.

Respuestas de escalón del controlador de posición con buen comportamiento del control

El factor \(P_{CTRL1_KPp} (CTRL2_KPp) \) estará ajustado correctamente si se alcanza el valor de referencia de forma rápida y con sobrepasamiento bajo o inexistente.

Si el comportamiento del control no correspondiera con el desarrollo representado, modifique el factor \(P_{CTRL1_KPp} (CTRL2_KPp) \) en magnitudes de paso de aproximadamente el 10% y active de nuevo una función de escalón.

- Si el control tendiera a oscilar: seleccione un valor menor para KPp.
- Si el valor real siguiera al valor de referencia demasiado despacio: seleccione un valor mayor para KPp.

Optimizar ajustes insuficientes del controlador de posición
Sección 5.6
Gestión de parámetros

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarjeta de memoria (Memory-Card)</td>
<td>180</td>
</tr>
<tr>
<td>Duplicado de valores del parámetro disponibles</td>
<td>183</td>
</tr>
<tr>
<td>Restaurar los parámetros de usuario</td>
<td>184</td>
</tr>
<tr>
<td>Restablecer el ajuste de fábrica</td>
<td>185</td>
</tr>
</tbody>
</table>
Tarjeta de memoria (Memory-Card)

El equipo cuenta con una ranura para una tarjeta de memoria (Memory-Card). Los parámetros guardados en la tarjeta de memoria pueden transferirse a otros equipos. En caso de sustituir un equipo, es posible utilizar otro equipo del mismo tipo con los mismos parámetros transfiriendo los parámetros.

El contenido de la tarjeta de memoria se compara con los valores de parámetro memorizados en el equipo al conectarlo.

Al guardar los parámetros en el EEPROM, también se guardarán en la tarjeta de memoria.

Tenga en cuenta los siguientes puntos:
- Utilice únicamente tarjetas de memoria ofertadas como accesorio.
- No toque los contactos de oro.
- Los ciclos de inserción de la tarjeta de memoria están limitados.
- La tarjeta de memoria puede permanecer en el equipo.
- La tarjeta de memoria solo puede retirarse del equipo tirando de ella (sin presionar).

Colocar la tarjeta de memoria
- La alimentación del control está desconectada
- Inserte la tarjeta de memoria en el equipo con los contactos hacia abajo, comprobando que la esquina achaflanada quede orientada hacia la placa de montaje.
- Conecte la alimentación del control.
- Observe el display de 7 segmentos durante la inicialización del equipo.

Card se muestra brevemente.

El equipo ha detectado una tarjeta de memoria. No es preciso que el usuario realice ninguna acción.

Los valores de parámetro memorizados en el equipo y el contenido de la tarjeta de memoria coinciden.

Los datos de la tarjeta de memoria vienen del equipo en el que está insertada la misma.

Card se muestra permanentemente.

El equipo ha detectado una tarjeta de memoria. No es preciso que el usuario realice ninguna acción.

<table>
<thead>
<tr>
<th>Causa</th>
<th>Opciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>La tarjeta de memoria es nueva.</td>
<td>Los datos del equipo pueden transferirse a la tarjeta de memoria.</td>
</tr>
<tr>
<td>Los datos de la tarjeta de memoria no son compatibles con el equipo</td>
<td>Los datos del equipo pueden transferirse a la tarjeta de memoria.</td>
</tr>
<tr>
<td>(tipo de equipo, motor o versión del firmware diferentes).</td>
<td></td>
</tr>
<tr>
<td>Los datos de la tarjeta de memoria son compatibles con el equipo,</td>
<td>Los datos del equipo pueden transferirse a la tarjeta de memoria.</td>
</tr>
<tr>
<td>pero los valores de parámetro son diferentes.</td>
<td>Los datos de la tarjeta de memoria pueden transferirse al equipo. Si la</td>
</tr>
<tr>
<td></td>
<td>tarjeta de memoria debe permanecer en el equipo, deberán entonces</td>
</tr>
<tr>
<td></td>
<td>transferirse los datos del equipo a la tarjeta de memoria.</td>
</tr>
</tbody>
</table>
Puesta en marcha

El equipo ha detectado una tarjeta de memoria. Desconecte la alimentación del control. Compruebe que la tarjeta de memoria esté colocada correctamente (contactos, esquina biselada).

Sustitución de datos con la tarjeta de memoria
Si se detectan diferencias entre los parámetros de la tarjeta de memoria y los parámetros del variador o se hubiera retirado la tarjeta de memoria, tras la inicialización el equipo permanecerá parado con la indicación CARD.

Copiar datos o ignorar la tarjeta de memoria (CARD, Gnr, tbd, dtc)
Cuando el display de 7 segmentos muestra CARD.

- Pulse el botón de navegación.
 En la indicación de 7 segmentos muestra el último ajuste, por ejemplo, Gnr.
- Pulse brevemente el botón de navegación para acceder al modo de edición.
 En la indicación de 7 segmentos continúa mostrándose el último ajuste y el LED Edit se ilumina.
- Seleccione con el botón de navegación:
 Gnr ignora la tarjeta de memoria.
 tbd acepta los datos de la tarjeta de memoria en el equipo.
 dtc transfiere los datos del equipo a la tarjeta de memoria.
El equipo cambia al estado de funcionamiento 4 Ready To Switch On.

1 Los datos de la tarjeta de memoria y del equipo difieren: indicación CARD y esperar a que actúe el usuario.
2 Cambio al estado de funcionamiento 4 Ready To Switch On (se ignora la tarjeta de memoria).
3 Transferencia de datos (tbd = card to device, dtc = device to card) y cambio al estado de funcionamiento 4 Ready To Switch On.

Se ha retirado la tarjeta de memoria (CARD, N, S)
Si hubiera retirado la tarjeta de memoria, tras la inicialización se mostrará CARD. Después de confirmarlo se muestra N, S. Tras confirmar otra vez, el producto cambia al estado de funcionamiento 4 Ready To Switch On.
Protección contra escritura para la tarjeta de memoria (CARD, ENPR, dipr, prot)

Es posible activar una protección contra escritura de la tarjeta de memoria para LXM32 (prot). Puede utilizar esta protección contra escritura, por ejemplo, para tarjetas de memoria empleadas para el duplicado regular de equipos.

Para activar la protección contra escritura para la tarjeta de memoria, seleccione en la HMI el menú Conf - ACG - CARD.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnPr</td>
<td>Protección contra escritura activada (prot)</td>
</tr>
<tr>
<td>diprPr</td>
<td>Protección contra escritura desactivada</td>
</tr>
</tbody>
</table>

También puede ajustar la protección contra escritura de la tarjeta de memoria con el software de puesta en marcha.
Duplicado de valores del parámetro disponibles

Aplicación

Varios equipos deben recibir los mismos ajustes, por ejemplo al sustituir equipos.

Condiciones

- El tipo de equipo, tipo de motor y la versión del firmware deben ser idénticos.
- Las herramientas para el duplicado son opcionalmente:
 o Tarjeta de memoria
 o Software de puesta en marcha
- La alimentación del control debe estar conectada.

Duplicado con tarjeta de memoria

Los ajustes del equipo pueden guardarse en una tarjeta de memoria disponible como accesorio. Los ajustes del equipo memorizados pueden transferirse a un equipo del mismo tipo. Tenga en cuenta que aquí también se copian al mismo tiempo la dirección del bus de campo y los ajustes de las funciones de supervisión.

Duplicado con software de puesta en marcha

El software de puesta en marcha puede guardar los ajustes de un equipo como archivo de configuración. Los ajustes del equipo memorizados pueden transferirse a un equipo del mismo tipo. Tenga en cuenta que aquí también se copian al mismo tiempo la dirección del bus de campo y los ajustes de las funciones de supervisión.

Encontrará más información al respecto en el manual del software de puesta en marcha.
Restaurar los parámetros de usuario

Por eso deben restablecerse los parámetros del usuario mediante el parámetro `PARuserReset`.

- Interrumpa la conexión con el bus de campo.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>PARuserReset</code></td>
<td><code>Conf</code></td>
<td><code>FCS</code></td>
<td>Restablecer los parámetros de usuario</td>
<td>0 / No</td>
<td>0 / No</td>
<td>65535 / Yes / yE 5: Sí</td>
<td>0 / No</td>
<td><code>UINT16</code></td>
<td>CANopen 3004:8h, Modbus 1040</td>
</tr>
</tbody>
</table>

Restablecer mediante HMI

En HMI se restablecen los parámetros de usuario a través de los elementos de menú `Conf` -> `FCS` -> `R E 5 u`. Confirme la selección con `yE 5`.

Los nuevos ajustes no se guardan en la EEPROM.

Al restablecer los ajustes de parámetro del equipo al estado de funcionamiento "2 Not Ready To Switch On", los nuevos ajustes tendrán efecto después de apagar y volver a encender el equipo.

Restablecer a través del software de puesta en marcha

En el software de puesta en marcha se restablecen los parámetros de usuario mediante los elementos de menú "Equipo -> Funciones de usuario -> Restablecer parámetros de usuario".

Al restablecer los ajustes de parámetro del equipo al estado de funcionamiento "2 Not Ready To Switch On", los nuevos ajustes tendrán efecto después de apagar y volver a encender el equipo.
Restablecer el ajuste de fábrica

Los valores de parámetros activos y los guardados en la memoria no volátil se pierden con este proceso.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARfactorySet</td>
<td>Restaurar ajustes de fábrica (valores por defecto)</td>
<td>UINT16</td>
<td>-</td>
<td>0</td>
<td>R/W</td>
<td></td>
<td>-</td>
<td>CANopen 3004-2h, Modbus 1028</td>
</tr>
<tr>
<td></td>
<td>No / no: No</td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Yes / yEs: Sí</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

AVISOS

PÉRDIDA DE DATOS

Guarde los parámetros del variador antes de restablecer los ajustes de fábrica.

El incumplimiento de estas instrucciones puede causar daño al equipo.

El software de puesta en marcha ofrece la posibilidad de memorizar los valores de los parámetros establecidos como archivo de configuración de un equipo. Consulte en el capítulo Gestión de parámetros (véase página 179) más información sobre cómo memorizar parámetros.

Los ajustes de fábrica se restablecen mediante el parámetro `PARfactorySet`.

- Interrumpa la conexión con el bus de campo.

Ajustes de fábrica a través de HMI

En HMI se restablece el ajuste de fábrica mediante los elementos de menú `CONF -> FCS- -> rStF`.

Confirme la selección con `Yes`.

Los nuevos ajustes serán efectivos sólo después de desconectar y conectar de nuevo el equipo.

Ajustes de fábrica mediante el software de puesta en marcha

En el software de puesta en marcha se restablecen los ajustes de fábrica mediante los elementos de menú “Equipo -> Funciones de usuario -> Restablecer a ajustes de fábrica”.

Los nuevos ajustes serán efectivos sólo después de desconectar y conectar de nuevo el equipo.
Capítulo 6
Funcionamiento

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Canales de acceso</td>
<td>188</td>
</tr>
<tr>
<td>6.2</td>
<td>Área de desplazamiento</td>
<td>190</td>
</tr>
<tr>
<td>6.3</td>
<td>Rango Modulo</td>
<td>195</td>
</tr>
<tr>
<td>6.4</td>
<td>Escala</td>
<td>204</td>
</tr>
<tr>
<td>6.5</td>
<td>Entradas y salidas digitales</td>
<td>209</td>
</tr>
<tr>
<td>6.6</td>
<td>Conmutar el juego de parámetros de lazo de control</td>
<td>220</td>
</tr>
</tbody>
</table>
Sección 6.1
Canales de acceso

Canales de acceso

Puede accederse al producto a través de distintos canales de acceso. Si se accede simultáneamente a través de varios canales de acceso, o si se utiliza el acceso exclusivo, puede desencadenarse un comportamiento no intencionado.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPORTAMIENTO NO INTENCIONADO</td>
</tr>
<tr>
<td>• Asegúrese de que, en caso de un acceso simultáneo a través de varios canales, no se active ni bloquee ningún comando involuntariamente.</td>
</tr>
<tr>
<td>• Asegúrese de que, en caso de un acceso exclusivo, no se active ni bloquee ningún comando involuntariamente.</td>
</tr>
<tr>
<td>• Asegúrese de que están disponibles los canales de acceso necesarios.</td>
</tr>
</tbody>
</table>

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

El producto puede activarse a través de diferentes canales de acceso. Son canales de acceso:

- HMI interna
- Terminal gráfico externo
- Bus de campo
- Software de puesta en marcha
- Entradas de señal digitales

Sólo un canal de acceso puede tener un acceso exclusivo al producto. Un acceso exclusivo puede efectuarse a través de diferentes canales de acceso:

- A través de la HMI integrada:
 - A través de la HMI se ejecuta el modo de funcionamiento Jog o un Autotuning.
- A través de un bus de campo:
 - A un bus de campo se le otorga un acceso exclusivo bloqueando los demás canales de acceso a través del parámetro AccessLock.
- A través del software de puesta en marcha:
 - En el software de puesta en marcha, el interruptor "Acceso exclusivo" se ajusta a "On".

Al conectar el producto no existe un acceso exclusivo a través de un canal de acceso.
Las funciones de entrada de señal “Halt”, “Fault Reset”, “Enable”, “Positive Limit Switch (LIMP)”, “Negative Limit Switch (LIMN)” y “Reference Switch (REF)”, así como las señales de la función de seguridad STO (STO_A y STO_B) actúan también incluso en caso de acceso exclusivo.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccessLock</td>
<td>Bloquear otros canales de acceso</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R/W</td>
<td>CANopen 3001:Eh, Modbus 284</td>
</tr>
<tr>
<td></td>
<td>Valor 0: Permitir el control a través de otros canales de acceso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 1: Bloquear el control a través de otros canales de acceso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ejemplo:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El bus de campo está usando el canal de acceso.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En este caso no es posible realizar el control a través del software de puesta en marcha o de la HMI.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo se puede bloquear el canal de acceso después de haber finalizado el modo de funcionamiento activo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMIlocked</td>
<td>Bloquear HMI</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R/W</td>
<td>CANopen 303A:1h, Modbus 14850</td>
</tr>
<tr>
<td></td>
<td>0 / Not Locked / nLoc : HMI no bloqueada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Locked / Lloc : HMI bloqueada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuando la HMI se encuentra bloqueada, no es posible realizar las siguientes acciones:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modificar parámetros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jog (movimiento manual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Autotuning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fault Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sección 6.2
Área de desplazamiento

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño del área de desplazamiento</td>
<td>191</td>
</tr>
<tr>
<td>Movimiento excediendo el rango de movimiento</td>
<td>192</td>
</tr>
<tr>
<td>Ajuste de un rango Modulo</td>
<td>194</td>
</tr>
</tbody>
</table>
Tamaño del área de desplazamiento

El rango de movimiento corresponde al rango máximo posible en el que puede ejecutarse un movimiento a cada posición.

La posición real del motor corresponde a la posición en el rango de movimiento.

La siguiente imagen muestra el rango de movimiento en unidades de usuario con el ajuste de fábrica de la escala:

![Rango de movimiento](image1)

A -268435456 unidades de usuario (usr_p)
B 268435455 unidades de usuario (usr_p)

Disponibilidad

El rango de movimiento es relevante en los siguientes modos de funcionamiento:
- Jog
- Profile Position
- Homing

Punto cero del rango de movimiento

El punto cero es el punto de referencia para todos los movimientos absolutos en el modo de funcionamiento Profile Position.

Punto cero válido

El punto cero del rango de movimiento pasa a ser válido con un movimiento de referencia o con un establecimiento de medida.

Es posible realizar un movimiento de referencia y un establecimiento de medida en el modo de funcionamiento Homing.

Con un movimiento que exceda el área de desplazamiento (por ejemplo con un movimiento relativo) se invalida el punto cero.
Movimiento excediendo el rango de movimiento

El comportamiento en el caso de un movimiento que exceda el rango de movimiento depende del modo de funcionamiento y del tipo de movimiento.

Es posible el siguiente comportamiento:

- En el caso de un movimiento que exceda el rango de movimiento, el rango de movimiento comienza desde el principio.
- En el caso de un movimiento con una posición destino y que exceda el rango de movimiento, se produce un establecimiento de medida a 0 antes de iniciarse el movimiento.

Con la versión de firmware ≥V01.06 puede ajustarse el comportamiento a través el parámetro PP_ModeRangeLim.

Nombre de parámetro | Designación | Unidad | Valor mínimo | Ajuste de fábrica | Valor máximo | Tipo de dato | R/W | Persistente | Experto | Dirección de parámetro vía bus de campo
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
PP_ModeRangeLim | Movimiento absoluto excediendo los límites de movimiento | - | 0 | 0 | 1 | UINT16 | R/W | - | - | CANopen 3023-7h, Modbus 8974

Comportamiento en el modo de funcionamiento Jog (movimiento continuo)

- Comportamiento con un movimiento continuo excediendo el rango de movimiento:
 - El rango de movimiento comienza desde el principio.

Comportamiento en el modo de funcionamiento Jog (movimiento paso a paso)

- Comportamiento con un movimiento paso a paso excediendo el rango de movimiento:
 - Con la versión de firmware ≥V01.06 y el ajuste en el parámetro PP_ModeRangeLim = 1:
 - El rango de movimiento comienza desde el principio.
 - Con una versión de firmware <V01.06:
 - De forma interna se produce un establecimiento de medida a 0.

Comportamiento con el modo de funcionamiento Profile Position (movimiento relativo)

- Comportamiento con un movimiento relativo excediendo el rango de movimiento:
 - Con la versión de firmware ≥V01.06 y el ajuste en el parámetro PP_ModeRangeLim = 1:
 - El rango de movimiento comienza desde el principio.
 - Es posible ejecutar un movimiento relativo con el motor parado o, directamente, en movimiento.
 - Con una versión de firmware <V01.06:
 - De forma interna se produce un establecimiento de medida a 0.
 - Un movimiento relativo únicamente puede realizarse con el motor parado.
Comportamiento con el modo de funcionamiento Profile Position (movimiento absoluto)

Comportamiento con un movimiento relativo:
- Con la versión de firmware ≥V01.06 y el ajuste en el parámetro PP_ModeRangeLim = 1:
 Es posible ejecutar un movimiento absoluto que exceda el rango de movimiento.
- Con una versión de firmware <V01.06:
 Un movimiento absoluto se lleva a cabo dentro del rango de movimiento. No es posible ejecutar un movimiento absoluto que exceda el rango de movimiento.

Ejemplo:
Posición real: 268435000 unidades de usuario (usr_p)
Posición destino absoluta: -268435000 unidades de usuario (usr_p)

1 Posición real: 268435000 unidades de usuario
2 Movimiento absoluto a -268435000 unidades de usuario con parámetro PP_ModeRangeLim = 1
3 Movimiento absoluto a -268435000 unidades de usuario con parámetro PP_ModeRangeLim = 0
Ajuste de un rango Modulo

Designación

Las aplicaciones con disposición recurrente de posiciones destino (por ejemplo, mesas divisoras) se apoyan mediante el rango Modulo. Las posiciones destino se representan en un rango de movimiento parametrizable.

Véanse los detalles en el capítulo Ajuste de un rango Modulo (véase página 196).
Sección 6.3
Rango Modulo

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajuste de un rango Modulo</td>
<td>196</td>
</tr>
<tr>
<td>Parametrización</td>
<td>197</td>
</tr>
<tr>
<td>Ejemplos con movimiento relativo</td>
<td>200</td>
</tr>
<tr>
<td>Ejemplos con movimiento absoluto y "Shortest Distance"</td>
<td>201</td>
</tr>
<tr>
<td>Ejemplos con movimiento absoluto y "Positive Direction"</td>
<td>202</td>
</tr>
<tr>
<td>Ejemplos con movimiento absoluto y "Negative Direction"</td>
<td>203</td>
</tr>
</tbody>
</table>
Ajuste de un rango Modulo

Disponibilidad
Disponible con la versión de firmware ≥V01.03.

Designación
Las aplicaciones con disposición recurrente de posiciones destino (por ejemplo, mesas divisoras) se apoyan mediante el rango Modulo. Las posiciones destino se representan en un rango de movimiento parametrizable.

Dirección de movimiento
En función de los requisitos de la aplicación, es posible ajustar la dirección de movimiento para posiciones destino absolutas:
- Recorrido más corto
- Sólo dirección de movimiento positiva
- Sólo dirección de movimiento negativa

Rango Modulo múltiple
De forma adicional es posible activar un rango Modulo múltiple para posiciones destino absolutas. Un movimiento con una posición destino absoluta fuera del rango Modulo se ejecuta como si hubiera varios rangos Modulo consecutivos.

Ejemplo:
- Rango Modulo
 - Posición mínima: 0 usr_p
 - Posición máxima: 3600 usr_p
- Posición real: 700 usr_p
- Posiciones destino absolutas: 5000 usr_p
- Izquierda: Sin rango Modulo múltiple
 - Derecha: Con rango Modulo múltiple

Rango Modulo múltiple

![Diagrama de rango Modulo múltiple](image-url)
Funcionamiento

Parametrización

Sinopsis

Resumen de los parámetros

Escala

El uso de un rango Modulo exige una adaptación de la escala. La escala del motor debe estar adaptada a los requisitos de la aplicación, véase el capítulo Escala (véase página 204).

Activación

A través del parámetro MOD_Enable se activa el rango Modulo.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD_Enable</td>
<td>Activación de Modulo</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>CANopen 3006:38h, Modbus 1648</td>
</tr>
<tr>
<td>C anF -</td>
<td>Modulo Off / off</td>
<td>R/W</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R E G -</td>
<td>Modulo On / on</td>
<td>Persistente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R E Y P</td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.03.</td>
<td>Expert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El rango Modulo se ajusta a través de los parámetros MOD_Min y MOD_Max.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD_Min</td>
<td>Posición mínima del rango Modulo</td>
<td>usr_p</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>INT32</td>
<td>CANopen 3006:39h, Modbus 1650</td>
</tr>
<tr>
<td>MOD_Max</td>
<td>Posición máxima del rango Modulo</td>
<td>usr_p</td>
<td>-</td>
<td>3600</td>
<td>-</td>
<td>INT32</td>
<td>CANopen 3006:3Ah, Modbus 1652</td>
</tr>
</tbody>
</table>

Dirección en movimientos absolutos

A través del parámetro MOD_AbsDirection se ajusta la dirección de movimiento para movimientos absolutos.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD_AbsDirection</td>
<td>Dirección del movimiento absoluto con Modulo 0 / Shortest Distance: Movimiento con distancia más corta 1 / Positive Direction: Movimiento solo en dirección positiva 2 / Negative Direction: Movimiento solo en dirección negativa Si el parámetro está ajustado a 0, el accionamiento calcula el recorrido más corto hasta la posición destino e inicia el movimiento en la dirección correspondiente. Si la distancia hasta la posición destino en dirección negativa y positiva es idéntica, se ejecuta un movimiento en dirección positiva. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥V01.03.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>UINT16</td>
<td>CANopen 3006:3Bh, Modbus 1654</td>
</tr>
</tbody>
</table>
Funcionamiento

Rango Modulo múltiple con movimientos absolutos

A través del parámetro MOD_AbsMultiRng se ajusta un rango Modulo múltiple para movimientos absolutos.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD_AbsMultiRng</td>
<td>Rangos múltiples para movimiento absoluto con Modulo 0 / Multiple Ranges Off: Movimiento absoluto en un rango Modulo 1 / Multiple Ranges On: Movimiento absoluto en varios rangos Modulo Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.03.</td>
<td>UINT16</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R/W per.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3006:3C8 Modbus 1656</td>
</tr>
</tbody>
</table>
Funcionamiento

Ejemplos con movimiento relativo

Datos dados
Para los ejemplos rigen los siguientes ajustes.
- Motor rotatorio
- Escalado de posición
 - Numerador: 1
 - Denominador: 3600
- Rango Modulo
 - Posición mínima: 0 \text{usr}_p
 - Posición máxima: 3600 \text{usr}_p
- Posición real: 700 \text{usr}_p

Ejemplo 1
Posiciones destino relativas: 500 \text{usr}_p y 3300 \text{usr}_p

Ejemplo 2
Posiciones destino relativas: -500 \text{usr}_p y -3300 \text{usr}_p
Ejemplos con movimiento absoluto y "Shortest Distance"

Datos dados
Para los ejemplos rigen los siguientes ajustes.

- Motor rotatorio
- Escalado de posición
 - Numerador: 1
 - Denominador: 3600
- Rango Modulo
 - Posición mínima: 0 usr_p
 - Posición máxima: 3600 usr_p
- Posición real: 700 usr_p

Ejemplo 1
Posiciones destino absolutas: 1500 usr_p y 5000 usr_p

Ejemplo 2
Posiciones destino absolutas: 2500 usr_p y 2900 usr_p
Ejemplos con movimiento absoluto y "Positive Direction"

Datos dados
Para los ejemplos rigen los siguientes ajustes.
● Motor rotatorio
● Escalado de posición
 ○ Numerador: 1
 ○ Denominador: 3600
● Rango Modulo
 ○ Posición mínima: 0 usr_p
 ○ Posición máxima: 3600 usr_p
● Posición real: 700 usr_p
Parámetro MOD_AbsDirection: Positive Direction

Ejemplo 1
Parámetro MOD_AbsMultiRng: Off
Posiciones destino absolutas: 1500 usr_p y 5000 usr_p

Ejemplo 2
Parámetro MOD_AbsMultiRng: On
Posiciones destino absolutas: 1500 usr_p y 5000 usr_p
Ejemplos con movimiento absoluto y "Negative Direction"

Datos dados

Para los ejemplos rigen los siguientes ajustes.
- Motor rotatorio
- Escalado de posición
 - Numerador: 1
 - Denominador: 3600
- Rango Modulo
 - Posición mínima: 0 usr_p
 - Posición máxima: 3600 usr_p
- Posición real: 700 usr_p

Parámetro MOD_AbsDirection: Negative Direction

Ejemplo 1

Parámetro MOD_AbsMultiRng: Off
Posiciones destino absolutas: 1500 usr_p y -5000 usr_p

Ejemplo 2

Parámetro MOD_AbsMultiRng: On
Posiciones destino absolutas: 1500 usr_p y -5000 usr_p
Sección 6.4
Escala

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>205</td>
</tr>
<tr>
<td>Configuración del escalado de posición</td>
<td>206</td>
</tr>
<tr>
<td>Configuración del escalado de velocidad</td>
<td>207</td>
</tr>
<tr>
<td>Configuración del escalado de rampa</td>
<td>208</td>
</tr>
</tbody>
</table>
General

La escala traduce las unidades de usuario en unidades internas del equipo y viceversa.

Unidades de usuario

Los valores de posiciones, velocidades, aceleración y deceleración se indica en las siguientes unidades de usuario:

- usr_p para posiciones
- usr_v para velocidades
- usr_a para aceleración y deceleración

Si la escala cambia, varía el factor entre la unidad de usuario y las unidades internas. Tras cambiar la escala, un mismo valor de un parámetro indicado en una unidad de usuario provocará un movimiento diferente a antes del cambio. Un cambio de la escala afecta a todos los parámetros cuyos valores se hayan indicado en unidades de usuario.

ADVERTENCIA

MOVIMIENTO INVOLUNTARIO

- Antes de cambiar el factor de escala, compruebe todos los parámetros con unidades de usuario.
- Asegúrese de que un cambio en el factor de escala no provoca movimientos involuntarios.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Factor de escala

El factor de escalada establece la relación entre el movimiento del motor y las unidades de usuario necesarias para ello.

Software de puesta en marcha

Con la versión de firmware ≥V01.06 puede adaptarse la escala a través del software de puesta en marcha. Al hacerlo, los parámetros con unidades de usuario se comprueban y adaptan automáticamente.
Configuración del escalado de posición

El escalado de posición establece la relación entre el número de revoluciones del motor y las unidades de usuario necesarias para ello (usr_p).

Factor de escala

El escalado de posición se indica como factor de escalada.

En los motores rotatorios, el factor de escalada se calcula del siguiente modo:

<table>
<thead>
<tr>
<th>Revoluciones del motor</th>
<th>Número de unidades de usuario [usr_p]</th>
</tr>
</thead>
</table>

Con la transmisión del valor de numerador se activa un nuevo factor de escalada.

Con un factor de escala < 1 / 131072 ya no es posible efectuar un movimiento fuera del área de desplazamiento.

Ajuste de fábrica

El ajuste de fábrica es:

- 1 revolución del motor equivale a 16384 unidades de usuario

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScalePOSnum</td>
<td>Escalado de posición: numerador Indicación del factor de escalada: Revoluciones del motor Unidades de usuario [usr_p]</td>
<td>Revolución 1 1 2147483647</td>
<td>INT32 R/W</td>
<td>-</td>
<td>CANopen 3006:8h, Modbus 1552</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScalePOSdenom</td>
<td>Escalado de posición: denominador Descripción, véase numerador (ScalePOSnum). La aceptación de una nueva escala se produce con la transmisión del valor de numerador Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td>usr_p 1 16384 2147483647</td>
<td>INT32 R/W</td>
<td>-</td>
<td>CANopen 3006:7h, Modbus 1550</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuración del escalado de velocidad

El escalado de velocidad estable la relación entre el número de revoluciones por minuto del motor y las unidades de usuario necesarias para ello (usr_v).

Factor de escala

El escalado de velocidad se indica como factor de escalada.
En los motores rotatorios, el factor de escalada se calcula del siguiente modo:

<table>
<thead>
<tr>
<th>Número de revoluciones del motor por minuto</th>
<th>Número de unidades de usuario [usr_v]</th>
</tr>
</thead>
</table>

Ajuste de fábrica

El ajuste de fábrica es:

- 1 revolución del motor por minuto equivale a 1 unidad de usuario

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaleVELnum</td>
<td>Escalado de velocidad: numerador</td>
<td>1/min</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>CANopen 3006:22h, Modbus 1604</td>
</tr>
<tr>
<td></td>
<td>Indicación del factor de escalada: Revoluciones del motor [min-1]</td>
<td>1</td>
<td>2147483647</td>
<td>1</td>
<td>1</td>
<td>INT32</td>
</tr>
<tr>
<td></td>
<td>Unidad de usuario [usr_v]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La aceptación de una nueva escala se produce con la transmisión del valor de numerador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleVELdenom</td>
<td>Escalado de velocidad: denominador</td>
<td>usr_v</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>CANopen 3006:22h, Modbus 1604</td>
</tr>
<tr>
<td></td>
<td>Descripción, véase numerador (ScaleVELnum).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La aceptación de una nueva escala se produce con la transmisión del valor de numerador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuración del escalado de rampa

El escalado de rampa establece la relación entre la modificación de la velocidad y las unidades de usuario necesarias para ello (usr_a).

Factor de escala

El escalado de rampa se indica como factor de escalada:

<table>
<thead>
<tr>
<th>Variación de la velocidad por segundo</th>
<th>Número de unidades de usuario [usr_a]</th>
</tr>
</thead>
</table>

Ajuste de fábrica

El ajuste de fábrica es:

- La variación de 1 vuelta del motor por minuto por segundo equivale a 1 unidad de usuario

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaleRAMPnum</td>
<td>Escalado de rampa: numerador</td>
<td>(1/min)/s</td>
<td>1 1 2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3006:31h Modbus 1634</td>
</tr>
<tr>
<td>ScaleRAMPdenom</td>
<td>Escalado de rampa: denominador</td>
<td>usr_a</td>
<td>1 1 2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3006:30h Modbus 1632</td>
</tr>
</tbody>
</table>
Sección 6.5
Entradas y salidas digitales

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametrización de las funciones de entrada de señal</td>
<td>210</td>
</tr>
<tr>
<td>Parametrización de las funciones de salida de señal</td>
<td>215</td>
</tr>
<tr>
<td>Parametrización del antirrebote de software</td>
<td>219</td>
</tr>
</tbody>
</table>
Parametrización de las funciones de entrada de señal

Función de entrada de señal

A las entradas de señal digitales se les pueden asignar diferentes funciones de entrada de señal.

<table>
<thead>
<tr>
<th>Señal</th>
<th>Función de entrada de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI0</td>
<td>Freely Available</td>
</tr>
<tr>
<td>DI1</td>
<td>Reference Switch (REF)</td>
</tr>
<tr>
<td>DI2</td>
<td>Positive Limit Switch (LIMP)</td>
</tr>
<tr>
<td>DI3</td>
<td>Negative Limit Switch (LIMN)</td>
</tr>
</tbody>
</table>

ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO

- Asegúrese de que el cableado se corresponda con los ajustes.
- Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.
- En la puesta en marcha y al efectuar actualizaciones u otros cambios en el variador, realice un test meticuloso de todos los estados de funcionamiento y casos de error.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Ajuste de fábrica

En la siguiente tabla se muestra el ajuste de fábrica de las entradas de señales digitales:

<table>
<thead>
<tr>
<th>Señal</th>
<th>Función de entrada de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI0</td>
<td>Freely Available</td>
</tr>
<tr>
<td>DI1</td>
<td>Reference Switch (REF)</td>
</tr>
<tr>
<td>DI2</td>
<td>Positive Limit Switch (LIMP)</td>
</tr>
<tr>
<td>DI3</td>
<td>Negative Limit Switch (LIMN)</td>
</tr>
</tbody>
</table>

Parametrización

En la siguiente tabla se muestra un resumen de las posibles funciones de entrada de señal:

<table>
<thead>
<tr>
<th>Función de entrada de señal</th>
<th>Descripción en capítulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freely Available</td>
<td>Establecer la salida de señal mediante parámetro (véase página 303)</td>
</tr>
<tr>
<td>Fault Reset</td>
<td>Cambiar el estado de funcionamiento a través de las entradas de señal (véase página 247)</td>
</tr>
<tr>
<td>Enable</td>
<td>Cambiar el estado de funcionamiento a través de las entradas de señal (véase página 247)</td>
</tr>
<tr>
<td>Halt</td>
<td>Interrumpir el movimiento con Parada (véase página 296)</td>
</tr>
<tr>
<td>Start Profile Positioning</td>
<td>Inicio y cambio de modo funcionamiento (véase página 249)</td>
</tr>
<tr>
<td>Current Limitation</td>
<td>Limitación de la corriente mediante entradas de señales (véase página 301)</td>
</tr>
<tr>
<td>Zero Clamp</td>
<td>Zero Clamp (véase página 302)</td>
</tr>
<tr>
<td>Velocity Limitation</td>
<td>Limitación de la velocidad mediante entradas de señales (véase página 300)</td>
</tr>
<tr>
<td>Reference Switch (REF)</td>
<td>Interruptor de referencia (véase página 320)</td>
</tr>
<tr>
<td>Positive Limit Switch (LIMP)</td>
<td>Final de carrera (véase página 319)</td>
</tr>
<tr>
<td>Negative Limit Switch (LIMN)</td>
<td>Final de carrera (véase página 319)</td>
</tr>
<tr>
<td>Switch Controller Parameter Set</td>
<td>Conmutar el juego de parámetros de lazo de control (véase página 220)</td>
</tr>
</tbody>
</table>
Usando los siguientes parámetros se pueden parametrizar las entradas de señales digitales:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>Menú HMI</td>
<td>Nombre HMI</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>Menú HMI</td>
<td>Nombre HMI</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
</tbody>
</table>

Función de entrada de señal

<table>
<thead>
<tr>
<th>Función de entrada de señal</th>
<th>Descripción en capítulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity Controller Integral Off</td>
<td>Comutar el juego de parámetros de lazo de control (véase página 220)</td>
</tr>
<tr>
<td>Start Signal Of RMAC</td>
<td>Movimiento relativo tras Capture (RMAC) (véase página 312)</td>
</tr>
<tr>
<td>Activate RMAC</td>
<td>Movimiento relativo tras Capture (RMAC) (véase página 312)</td>
</tr>
<tr>
<td>Release Holding Brake</td>
<td>Apertura manual del freno de parada (véase página 152)</td>
</tr>
</tbody>
</table>

Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOfunc_D1</td>
<td>Función entrada D1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>Persistente</td>
<td>CANopen 3007:2, Modbus 1796</td>
</tr>
<tr>
<td>1</td>
<td>Freely Available / Disponible de forma libre</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Fault Reset / Restablecer tras error</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Enable / Activa la etapa de potencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Halt / Parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Start Profile Positioning / Solicitud de inicio para movimiento</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Current Limitation / Limita la corriente al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Zero Clamp / Zero Clamp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Velocity Limitation / Limita la velocidad al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>Reference Switch (REF) / Interruptor de referencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Positive Limit Switch (LIMP) / Final de carrera positivo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>Negative Limit Switch (LIMN) / Final de carrera negativo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Switch Controller Parameter Set / Conmuta el juego de parámetros de lazo de control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>Velocity Controller Integral Off / Desconecta la acción integral del controlador de velocidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>Start Signal Of RMAC / Señal de inicio del movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>Activate RMAC / Activa el movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>Release Holding Brake / Abre el freno de parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOfunct_DI2</td>
<td>Función entrada DI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3007.3h</td>
</tr>
<tr>
<td></td>
<td>1 / Freely Available / n a n E: Disponible de forma libre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus 1798</td>
</tr>
<tr>
<td></td>
<td>2 / Fault Reset / F r E S: Restablecer tras error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Enable / E n R b: Activa la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Halt / h R L b: Parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 / Start Profile Positioning / S P L P: Solicitud de inicio para movimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 / Current Limitation / i L ; n: Limita la corriente al valor del parámetro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 / Zero Clamp / i L ; n P: Zero Clamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 / Velocity Limitation / V L ; n: Limita la velocidad al valor del parámetro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 / Reference Switch (REF) / r E F: Interruptor de referencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 / Positive Limit Switch (LIMP) / L ; n P: Final de carrera positivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 / Negative Limit Switch (LIMN) / L ; n n: Final de carrera negativo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 / Switch Controller Parameter Set / L P A r: Conmuta el juego de parámetros de lazo de control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 / Velocity Controller Integral Off / 6 n F: Desconecta la acción integral del controlador de velocidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 / Start Signal Of RMAC / 5 r P c: Señal de inicio del movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 / Activate RMAC / A r P c: Activa el movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 / Release Holding Brake / E h b: Abre el freno de parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>IOfunct_DI3</td>
<td>ConF → do / 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td></td>
<td>CANopen 3007:4h, Modbus 1800</td>
</tr>
</tbody>
</table>

- Función entrada DI3
1 / Freely Available / n a n E: Disponible de forma libre
2 / Fault Reset / F r E S: Restablecer tras error
3 / Enable / E n A b: Activa la etapa de potencia
4 / Halt / h A L L: Parada
5 / Start Profile Positioning / S P L P: Solicitud de inicio para movimiento
6 / Current Limitation / i L / n: Limita la corriente al valor del parámetro
7 / Zero Clamp / i L / n P: Zero Clamp
8 / Velocity Limitation / V L / n: Limita la velocidad al valor del parámetro
21 / Reference Switch (REF) / r E F: Interruptor de referencia
22 / Positive Limit Switch (LIMP) / L / n P: Final de carrera positivo
23 / Negative Limit Switch (LIMN) / L / n n: Final de carrera negativo
24 / Switch Controller Parameter Set / C P A r: Conmuta el juego de parámetros de lazo de control
28 / Velocity Controller Integral Off / b n a F: Desconecta la acción integral del controlador de velocidad
30 / Start Signal Of RMAC / S r P c: Señal de inicio del movimiento relativo tras Capture (RMAC)
31 / Activate RMAC / A r P c: Activa el movimiento relativo tras Capture (RMAC)
40 / Release Holding Brake / r E h b: Abre el freno de parada
Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
Parametrización de las funciones de salida de señal

Función de señal

A las salidas de señal digitales se les pueden asignar diferentes funciones de salida de señal. Si se detecta un error, el estado de las salidas de señal permanece activo conforme a la función de salida de señal asignada.

ADVERTENCIA

COMPORTAMIENTO NO INTENCIÓNADO

- Asegúrese de que el cableado se corresponda con los ajustes.
- Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.
- En la puesta en marcha y al efectuar actualizaciones u otros cambios en el variador, realice un test meticuloso de todos los estados de funcionamiento y casos de error.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Ajuste de fábrica

En la siguiente tabla se muestra el ajuste de fábrica de las salidas de señales digitales:

<table>
<thead>
<tr>
<th>Señal</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ0</td>
<td>No Fault</td>
</tr>
<tr>
<td>DQ1</td>
<td>Active</td>
</tr>
</tbody>
</table>

Parametrización

En la siguiente tabla se muestra un resumen de las posibles funciones de las salidas de señal.

<table>
<thead>
<tr>
<th>Función de salida de señal</th>
<th>Descripción en capítulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freely Available</td>
<td>Establecer la salida de señal mediante parámetro (véase página 303)</td>
</tr>
<tr>
<td>No Fault</td>
<td>Indicación del estado de funcionamiento a través de entradas de señal (véase página 244)</td>
</tr>
<tr>
<td>Active</td>
<td>Indicación del estado de funcionamiento a través de entradas de señal (véase página 244)</td>
</tr>
<tr>
<td>RMAC Active Or Finished</td>
<td>Movimiento relativo tras Capture (RMAC) (véase página 312)</td>
</tr>
<tr>
<td>In Position Deviation Window</td>
<td>Ventana de desviación de posición (véase página 339)</td>
</tr>
<tr>
<td>In Velocity Deviation Window</td>
<td>Ventana de desviación de velocidad (véase página 341)</td>
</tr>
<tr>
<td>Velocity Below Threshold</td>
<td>Umbral de velocidad (véase página 343)</td>
</tr>
<tr>
<td>Current Below Threshold</td>
<td>Umbral de corriente (véase página 345)</td>
</tr>
<tr>
<td>Halt Acknowledge</td>
<td>Interrumpir el movimiento con Parada (véase página 296)</td>
</tr>
<tr>
<td>Motor Standstill</td>
<td>Parada del motor y dirección de movimiento (véase página 328)</td>
</tr>
<tr>
<td>Selected Error</td>
<td>Mostrar mensajes de error (véase página 369)</td>
</tr>
<tr>
<td>Drive Referenced (ref_ok)</td>
<td>Modo de funcionamiento Homing (véase página 277)</td>
</tr>
<tr>
<td>Selected Warning</td>
<td>Mostrar mensajes de error (véase página 369)</td>
</tr>
<tr>
<td>Función de salida de señal</td>
<td>Descripción en capítulo</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Position Register Channel 1</td>
<td>Registro de posición</td>
</tr>
<tr>
<td></td>
<td>(véase página 333)</td>
</tr>
<tr>
<td>Position Register Channel 2</td>
<td>Registro de posición</td>
</tr>
<tr>
<td></td>
<td>(véase página 333)</td>
</tr>
<tr>
<td>Position Register Channel 3</td>
<td>Registro de posición</td>
</tr>
<tr>
<td></td>
<td>(véase página 333)</td>
</tr>
<tr>
<td>Position Register Channel 4</td>
<td>Registro de posición</td>
</tr>
<tr>
<td></td>
<td>(véase página 333)</td>
</tr>
<tr>
<td>Motor Moves Positive</td>
<td>Parada del motor y dirección de movimiento</td>
</tr>
<tr>
<td></td>
<td>(véase página 328)</td>
</tr>
<tr>
<td>Motor Moves Negative</td>
<td>Parada del motor y dirección de movimiento</td>
</tr>
<tr>
<td></td>
<td>(véase página 328)</td>
</tr>
</tbody>
</table>
Usando los siguientes parámetros se pueden parametrizar las salidas de señales digitales:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOffunct_DQ0</td>
<td>ConF → a -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3007-9h, Modbus 1810</td>
</tr>
</tbody>
</table>

- Función salida DQ0
 1. /Freely Available / n o n E: Disponible de forma libre
 2. /No Fault / n F L t: Señaliza los estados de funcionamiento Ready To Switch On, Switched On y Operation Enabled
 3. /Active / p c t: Señaliza el estado de funcionamiento Operation Enabled
 4. /RMAC Active Or Finished / r n c R: El movimiento relativo tras Capture (RMAC) está activo o ha finalizado
 5. /In Position Deviation Window / i n - P: Distancia de seguimiento dentro de la ventana
 6. /In Velocity Deviation Window / i n - V: Desviación de velocidad dentro de ventana
 7. /Velocity Below Threshold / V b h r: Velocidad del motor por debajo del umbral
 8. /Current Below Threshold / c b h r: Corriente del motor por debajo del valor de umbral
 9. /Halt Acknowledge / h A L t: Confirmación de parada
 13. /Motor Standstill / M S t d: Motor parado
 14. /Selected Error / E r r: Está presente uno de los errores indicados de la clase de error 1 … 4
 15. /Valid Reference (ref_ok) / r E F a: El punto cero es válido (ref_ok)
 16. /Selected Warning / W r n: Está presente uno de los errores indicados de la clase de error 0
 18. /Position Register Channel 1 / P r C 1: Canal 1 del registro de posición
 19. /Position Register Channel 2 / P r C 2: Canal 2 del registro de posición
 20. /Position Register Channel 3 / P r C 3: Canal 3 del registro de posición
 21. /Position Register Channel 4 / P r C 4: Canal 4 del registro de posición
 22. /Motor Moves Positive / M P o 5: Movimiento del motor en dirección positiva
 23. /Motor Moves Negative / M N E G: Movimiento del motor en dirección negativa

Solo es posible modificar el ajuste con la etapa de potencia desactivada.
Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Ajuste de fábrica</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOfunct_DQ1</td>
<td>ConF → i → o → d a l</td>
<td>Función salida DQ1</td>
<td>1 / Freely Available / n o n E: Disponible de forma libre</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 3007:A_a Modbus 1812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / No Fault / n F L b: Señaliza los estados de funcionamiento Ready To Switch On, Switched On y Operation Enabled</td>
<td>3 / Active / n c b: Señaliza el estado de funcionamiento Operation Enabled</td>
<td>-</td>
<td>-</td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 / RMAC Active Or Finished / r n c R: El movimiento relativo tras Capture (RMAC) está activo o ha finalizado</td>
<td>5 / In Position Deviation Window / i n - P: Distancia de seguimiento dentro de la ventana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 / In Velocity Deviation Window / i n - V: Desviación de velocidad dentro de ventana</td>
<td>7 / Velocity Below Threshold / V b h r: Velocidad del motor por debajo del umbral</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 / Current Below Threshold / i b h r: Corriente del motor por debajo del valor de umbral</td>
<td>9 / Halt Acknowledge / h A L b: Confirmación de parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 / Motor Standsill / n s d: Motor parado</td>
<td>11 / Selected Error / S E r r: Está presente uno de los errores indicados de la clase de error 1 … 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 / Valid Reference (ref_ok) / r E F a: El punto cero es válido (ref_ok)</td>
<td>13 / Selected Warning / S W r n: Está presente uno de los errores indicados de la clase de error 0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 / Position Register Channel 1 / P r C 1: Canal 1 del registro de posición</td>
<td>15 / Position Register Channel 2 / P r C 2: Canal 2 del registro de posición</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 / Position Register Channel 3 / P r C 3: Canal 3 del registro de posición</td>
<td>17 / Position Register Channel 4 / P r C 4: Canal 4 del registro de posición</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 / Motor Moves Positive / P P a 5: Movimiento del motor en dirección positiva</td>
<td>19 / Motor Moves Negative / n n E G: Movimiento del motor en dirección negativa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
Parametrización del antirrebotón de software

Tiempo de antirrebotón

El tiempo de antirrebotón de las entradas de señal está compuesto por el antirrebotón de hardware y el antirrebotón de software.

El antirrebotón de hardware está ajustado de forma fija, véase el capítulo Señales (véase página 40).

Después de un cambio de la función de señal ajustada y después de una desconexión y de una nueva conexión, el antirrebotón de software se restablece a los ajustes de fábrica.

A través de los siguientes parámetros puede ajustarse el tiempo de antirrebotón del software:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI_0_Debounce</td>
<td>Conf →, -a→d;0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>CANopen 3008:20h Modbus 2112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>No: Sin antirrebotón de software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.25 ms: 0,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.50 ms: 0,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.75 ms: 0,75 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.00 ms: 1,00 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.25 ms: 1,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1.50 ms: 1,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI_1_Debounce</td>
<td>Conf →, -a→d;1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>CANopen 3008:21h Modbus 2114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>No: Sin antirrebotón de software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.25 ms: 0,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.50 ms: 0,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.75 ms: 0,75 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.00 ms: 1,00 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.25 ms: 1,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1.50 ms: 1,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI_2_Debounce</td>
<td>Conf →, -a→d;2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>CANopen 3008:22h Modbus 2116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>No: Sin antirrebotón de software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.25 ms: 0,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.50 ms: 0,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.75 ms: 0,75 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.00 ms: 1,00 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.25 ms: 1,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1.50 ms: 1,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI_3_Debounce</td>
<td>Conf →, -a→d;3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td>CANopen 3008:23h Modbus 2118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>No: Sin antirrebotón de software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.25 ms: 0,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.50 ms: 0,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.75 ms: 0,75 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.00 ms: 1,00 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.25 ms: 1,25 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1.50 ms: 1,50 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sección 6.6
Conmutar el juego de parámetros de lazo de control

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen de la estructura de los controladores</td>
<td>221</td>
</tr>
<tr>
<td>Resumen del controlador de posición</td>
<td>222</td>
</tr>
<tr>
<td>Resumen del controlador de velocidad</td>
<td>223</td>
</tr>
<tr>
<td>Resumen del controlador de corriente</td>
<td>224</td>
</tr>
<tr>
<td>Parámetros de lazo de control parametrizables</td>
<td>225</td>
</tr>
<tr>
<td>Seleccionar el juego de parámetros de controlador</td>
<td>226</td>
</tr>
<tr>
<td>Conmutar automáticamente el juego de parámetros de lazo de control</td>
<td>227</td>
</tr>
<tr>
<td>Copiar juego de parámetros de lazo de control</td>
<td>230</td>
</tr>
<tr>
<td>Desactivar la acción integral</td>
<td>231</td>
</tr>
<tr>
<td>Juego de parámetros de lazo de control 1</td>
<td>232</td>
</tr>
<tr>
<td>Juego de parámetros de lazo de control 2</td>
<td>234</td>
</tr>
</tbody>
</table>
Resumen de la estructura de los controladores

El siguiente gráfico muestra un resumen de la estructura de los controladores.

1 Controlador de posición
2 Controlador de velocidad
3 Controlador de corriente
4 Evaluación del encoder

Position Controller
El controlador de posición reduce al mínimo la diferencia entre el valor de referencia de posición y la posición real (desviación de posición). En parada del motor, la desviación de posición es prácticamente cero si el controlador de posición está correctamente ajustado.

La condición para un buen ajuste del controlador de posición es un bucle de control de velocidad optimizado.

Controlador de velocidad
El controlador de velocidad regula la velocidad del motor variando la corriente del motor según la situación de carga. El controlador de velocidad determina de forma decisiva la rapidez de reacción del variador. La dinámica del controlador de velocidad depende:
- del momento de inercia del accionamiento y de la distancia del controlador
- Potencia del motor
- Rígidez y elasticidad de los elementos en el flujo de fuerza
- del juego de los elementos mecánicos del accionamiento
- de la fricción

Controlador de corriente
El controlador de corriente determina el par de accionamiento que se entrega al motor. Con los datos del motor memorizados, el controlador de corriente se ajusta automáticamente de forma óptima.
Resumen del controlador de posición

El siguiente gráfico muestra un resumen del controlador de posición.

1. Valores de destino para los modos de funcionamiento Jog, Profile Position y Homing
2. Perfil de movimientos para la velocidad
3. Control de velocidad
4. Controlador de posición

Período de muestreo

El periodo de muestreo del controlador de posición es de 250 µs.
Resumen del controlador de velocidad

El siguiente gráfico muestra un resumen del controlador de velocidad.

1. Valores de destino para el modo de funcionamiento Profile Velocity
2. Perfil de movimientos para la velocidad
3. Limitación de la velocidad
4. Filtro Overshoot Suppression (parámetros accesibles en el modo de experto)
5. Constante de tiempo del filtro del valor de referencia de velocidad
6. Control de aceleración (parámetros accesibles en el modo de experto)
7. Compensación de fricción (parámetros accesibles en el modo de experto)
8. Controlador de velocidad

Período de muestreo

El periodo de muestreo del controlador de velocidad es de 62,5 µs.
Resumen del controlador de corriente

El siguiente gráfico muestra un resumen del controlador de corriente.

1 Valores de destino para el modo de funcionamiento Profile Torque
2 Perfil de movimiento para el par
3 Limitación de la corriente
4 Filtro Notch (parámetros accesibles en el modo de experto)
5 Constante de tiempo del filtro del valor de referencia de corriente
6 Controlador de corriente
7 Etapa de potencia

Período de muestreo

El periodo de muestreo del controlador de corriente es de 62,5 µs.
Parámetros de lazo de control parametrizables

Juego de parámetros de lazo de control

El producto dispone de 2 juegos de parámetros de de lazo de control parametrizables por separado. Los valores determinados en un autotuning para los parámetros del lazo de control se memorizan en el juego de parámetros de lazo de control 1.

Un juego de parámetros de lazo de control está compuesto por parámetros de acceso libre y por parámetros a los que únicamente puede accederse en el modo de experto.

<table>
<thead>
<tr>
<th>Juego de parámetros de lazo de control 1</th>
<th>Juego de parámetros de lazo de control 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros de acceso libre:</td>
<td>Parámetros de acceso libre:</td>
</tr>
<tr>
<td>CTRL1_KPn</td>
<td>CTRL2_KPn</td>
</tr>
<tr>
<td>CTRL1_TNn</td>
<td>CTRL2_TNn</td>
</tr>
<tr>
<td>CTRL1_KPp</td>
<td>CTRL2_KPp</td>
</tr>
<tr>
<td>CTRL1_TAUiref</td>
<td>CTRL2_TAUiref</td>
</tr>
<tr>
<td>CTRL1_TAUnref</td>
<td>CTRL2_TAUnref</td>
</tr>
<tr>
<td>CTRL1_KFPP</td>
<td>CTRL2_KFPP</td>
</tr>
<tr>
<td>Parámetros del modo de experto:</td>
<td>Parámetros del modo de experto:</td>
</tr>
<tr>
<td>CTRL1_Nf1freq</td>
<td>CTRL2_Nf1freq</td>
</tr>
<tr>
<td>CTRL1_Nf1damp</td>
<td>CTRL2_Nf1damp</td>
</tr>
<tr>
<td>CTRL1_Nf1bandw</td>
<td>CTRL2_Nf1bandw</td>
</tr>
<tr>
<td>CTRL1_Nf2freq</td>
<td>CTRL2_Nf2freq</td>
</tr>
<tr>
<td>CTRL1_Nf2damp</td>
<td>CTRL2_Nf2damp</td>
</tr>
<tr>
<td>CTRL1_Nf1delay</td>
<td>CTRL2_Nf1freq</td>
</tr>
<tr>
<td>CTRL1_Osupdamp</td>
<td>CTRL2_Nf2damp</td>
</tr>
<tr>
<td>CTRL1_Osupdelay</td>
<td>CTRL2_Osupdamp</td>
</tr>
<tr>
<td>CTRL1_Kfric</td>
<td>CTRL2_Osupdelay</td>
</tr>
</tbody>
</table>

Véase el capítulo Juego de parámetros de lazo de control 1 (véase página 232) y Juego de parámetros de lazo de control 2 (véase página 234).

Parametrización

- Seleccionar el juego de parámetros de controlador
 Selección del juego de parámetros de lazo de control tras la conexión
 Véase el capítulo Seleccionar el juego de parámetros de lazo de control (véase página 226).
- Conmutar automáticamente el juego de parámetros de lazo de control
 Es posible conmutar entre dos juegos de parámetros de lazo de control.
 Véase el capítulo Conmutar automáticamente el juego de parámetros de lazo de control (véase página 227).
- Copiar juego de parámetros de lazo de control
 Los valores del juego de parámetros de lazo de control 1 puede copiarse al juego de parámetros de lazo de control 2.
 Véase el capítulo Copiar el juego de parámetros de lazo de control (véase página 230).
- Desactivar la acción integral
 Es posible desactivar la acción integral y, con ello, el tiempo de acción integral a través de una entrada de señal digital.
 Véase el capítulo Desactivar la acción integral (véase página 231).
Seleccionar el juego de parámetros de controlador

El juego de parámetros de lazo de control activo se muestran con el parámetro `_CTRL_ActParSet_`. A través del parámetro `CTRL_PwrUpParSet` puede ajustarse qué juego de parámetros de lazo de control debe activarse tras la conexión. De forma alternativa, es posible ajustar si debe conmutarse automáticamente entre los dos juegos de parámetros de lazo de control.

A través del parámetro `CTRL_SelParSet` puede conmutarse durante el funcionamiento entre los dos juegos de parámetros de lazo de control.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Ajuste de fábrica</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Persistente</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_CTRL_ActParSet</td>
<td>Juego de parámetros de lazo de control activo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>CANopen 3011:17h, Modbus 4398</td>
</tr>
<tr>
<td>CTRL_PwrUpParSet</td>
<td>Selección del juego de parámetros de lazo de control al conectar 0 / Switching Condition: La condición de conmutación se utiliza para conmutar el juego de parámetros de lazo de control 1 / Parameter Set 1: Se utiliza el juego de parámetros de lazo de control 1 2 / Parameter Set 2: Se utiliza el juego de parámetros de lazo de control 2 El valor elegido también se escribe en CTRL_SelParSet (no persistente). Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 3011:18h, Modbus 4400</td>
</tr>
<tr>
<td>CTRL_SelParSet</td>
<td>Selección del juego de parámetros de lazo de control (no persistente) Véase CTRL_PwrUpParSet para la codificación. Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 3011:19h, Modbus 4402</td>
</tr>
</tbody>
</table>
Conmutar automáticamente el juego de parámetros de lazo de control

Es posible conmutar automáticamente entre los dos juegos de parámetros de lazo de control. Para conmutar entre los juegos de parámetros de lazo de control pueden ajustarse las siguientes dependencias:

- Entrada de señal digital
- Ventana de desviación de posición
- Velocidad de destino inferior al valor parametrizable
- Velocidad real inferior al valor parametrizable

Ajustes

El siguiente gráfico muestra un resumen de la conmutación entre los juegos de parámetros.

Diagrama de tiempo

Los parámetros de acceso libre se adaptan de forma lineal. La adaptación lineal de los valores del juego de parámetros de lazo de control 1 a los valores del juego de parámetros de lazo de control 2 se lleva a cabo durante el tiempo parametrizable \(CTRL_{ParChgTime}\).

Los parámetros accesibles en el modo de experto se conmutan directamente, una vez transcurrido el tiempo parametrizable \(CTRL_{ParChgTime}\), al valor del otro juego de parámetros de lazo de control.

El siguiente gráfico muestra el diagrama de tiempo para la conmutación de los parámetros del lazo de control.

Diagrama de tiempo para la conmutación de los juegos de parámetros de lazo de control

1. Los parámetros de acceso libre se adaptan de forma lineal
2. Los parámetros accesibles en el modo de experto se adaptan directamente
Nombre de parámetro
Menú HMI
Nombre HMI

<table>
<thead>
<tr>
<th>Nombre del parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección del parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLSET_parSwiCond</td>
<td>Condición para cambiar de juego de parámetros 0 / None Or Digital Input: Ninguna o seleccionada función para entrada digital 1 / Inside Position Deviation: Dentro de la distancia de seguimiento (el valor está indicado en el parámetro CLSET__p_DiffWin) 2 / Below Reference Velocity: Por debajo de la velocidad de referencia (el valor está indicado en el parámetro CLSET__v_Threshol) 3 / Below Actual Velocity: Por debajo de la velocidad real (el valor está indicado en el parámetro CLSET__v_Threshol) 4 / Reserved: Reservado Al producirse la conmutación del juego de parámetros, los valores de los siguientes parámetros se modifican gradualmente: - CTRL_KPn - CTRL_TUN - CTRL_KPp - CTRL_TAUnref - CTRL_TAUnref - CTRL_KFPp Los valores de los siguientes parámetros se modifican cuando termina el tiempo de espera para cambiar de juego de parámetros (CTRL_ParChgTime): - CTRL_Nf1damp - CTRL_Nf1freq - CTRL_Nf1bandw - CTRL_Nf2damp - CTRL_Nf2freq - CTRL_Nf2bandw - CTRL_Osupdamp - CTRL_Osupdelay - CTRL_Kfric Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
</tbody>
</table>

<p>| CLSET__p_DiffWin_usr | Desviación de posición para conmutación del juego de parámetros de lazo de control Cuando la desviación de posición del controlador de posición es menor que el valor de este parámetro, se utiliza el juego de parámetros de lazo de control 2. En caso contrario se utiliza el juego de parámetros de lazo de control 1. El valor mínimo, el ajuste de fábrica y el valor máximo dependen del factor de escalada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.05. | usr_p | 0 | 164 | 2147483647 | INT32 | R/W | per. | CANopen 3011:25 h Modbus 4426 |</p>
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLSET_p_DiffWin</td>
<td>Desviación de posición para conmutación del juego de parámetros de lazo de control</td>
<td>Revolución</td>
<td>0.0000</td>
<td>0.0100</td>
<td>2.0000</td>
<td>UINT16</td>
<td>CANopen 3011:1C_Rh, Modbus 4408</td>
</tr>
<tr>
<td></td>
<td>Cuando la desviación de posición del controlador de posición es menor que el valor de este parámetro, se utiliza el juego de parámetros de lazo de control 2. En caso contrario se utiliza el juego de parámetros de lazo de control 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A través del parámetro CLSET_p_DiffWin_usr es posible introducir el valor en unidades de usuario. En pasos de 0.0001 revoluciones. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td>CLSET_v_Threshol</td>
<td>Umbral de velocidad para conmutación del juego de parámetros de lazo de control</td>
<td>usr_v</td>
<td>0</td>
<td>50</td>
<td>2147483647</td>
<td>UINT32</td>
<td>CANopen 3011:1Dh, Modbus 4410</td>
</tr>
<tr>
<td></td>
<td>Cuando la velocidad de referencia o la velocidad actual son menores que los valores de este parámetro, se utiliza el juego de parámetros de lazo de control 2. En caso contrario se utiliza el juego de parámetros de lazo de control 1. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>CLSET_winTime</td>
<td>Ventana de tiempo para cambiar de juego de parámetros</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>UINT16</td>
<td>CANopen 3011:1Bh, Modbus 4406</td>
</tr>
<tr>
<td></td>
<td>Valor 0: Supervisión de ventana, desactivada. Valor >0: Tiempo de ventana para los parámetros CLSET_v_Threshol y CLSET_p_DiffWin. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>CTRL_ParChgTime</td>
<td>Margen de tiempo para la conmutación del juego de parámetros de lazo de control</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>UINT16</td>
<td>CANopen 3011:1A_Rh, Modbus 4392</td>
</tr>
<tr>
<td></td>
<td>Al producirse la conmutación del juego de parámetros de lazo de control, los valores de los siguientes parámetros se modifican gradualmente:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_KPn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_TNn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_KPp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_TAUref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_TAUiref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_KFPp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Puede activarse una conmutación de las siguientes formas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modificación del juego de parámetros de lazo de control activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modificación del ajuste global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modificación de uno de los parámetros enumerados anteriormente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Desactivación de la acción integral del controlador de velocidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Copiar juego de parámetros de lazo de control

A través del parámetro CTRL_ParSetCopy pueden copiarse los valores del juego de parámetros de lazo de control 1 en el juego de parámetros de lazo de control 2 o los valores del juego de parámetros de lazo de control 2 en el juego de parámetros de lazo de control 1.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
</table>
| CTRL_ParSetCopy | Copiado del juego de parámetros de lazo de control | Ajuste de fábrica | Valor 1: Copiar juego de parámetros de lazo de control 1 a juego de parámetros de lazo de control 2
Valor 2: Copiar juego de parámetros de lazo de control 2 a juego de parámetros de lazo de control 1
Cuando el juego de parámetros de lazo de control 2 se copia al juego de parámetros de lazo de control 1, el parámetro CTRL_GlobGain se ajusta al 100 %. Los ajustes modificados se aceptan de inmediato. | R/W | UINT16 | CANopen 3011:16h
Modbus 4396 |
| | | Valor máximo | 0,0 | -0,2 | R/W | - | - | CANopen 3011:16h
Modbus 4396 |
Desactivar la acción integral

A través de la función de entrada de señal "Velocity Controller Integral Off" puede desactivarse la acción integral del controlador de velocidad. Si se desactiva la acción integral, el tiempo de acción integral del controlador de velocidad (CTRL1_TNn y CTRL2_TNn) se ajusta gradualmente a cero de forma implícita. El lapso de tiempo hasta alcanzar el valor cero depende del parámetro CTRL_ParChgTime. Con ejes verticales se requiere la acción integral para evitar desviaciones de posición en parada.
Juego de parámetros de lazo de control 1

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL1_KPn</td>
<td>Factor P del controlador de velocidad</td>
<td>A(min-1)</td>
<td>0,0001</td>
<td>2,5400</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3012:1h</td>
</tr>
<tr>
<td></td>
<td>El valor por defecto se calcula en base a parámetros de motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td>Modbus 4610</td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL_ParChgTime. En pasos de 0,0001 A/(min-1). Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td>CTRL1_TNn</td>
<td>Tiempo de acción integral del controlador de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3012:2h</td>
</tr>
<tr>
<td></td>
<td>Se calcula el valor por defecto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td>Modbus 4612</td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL_ParChgTime. En pasos de 0,01 ms. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td>CTRL1_KPp</td>
<td>Factor P controlador de posición</td>
<td>1/s</td>
<td>2,0</td>
<td>900,0</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3012:3h</td>
</tr>
<tr>
<td></td>
<td>Se calcula el valor por defecto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td>Modbus 4614</td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL_ParChgTime. En pasos de 0,1 1/s. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td>CTRL1_TAUiref</td>
<td>Constante de tiempo del filtro del valor de referencia de corriente</td>
<td>ms</td>
<td>0,00</td>
<td>0,50</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3012:4h</td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL_ParChgTime. En pasos de 0,01 ms. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td>Modbus 4618</td>
</tr>
<tr>
<td>CTRL1_TAUunref</td>
<td>Constante de tiempo del filtro del valor de referencia de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>0,00</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3012:5h</td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL_ParChgTime. En pasos de 0,01 ms. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td>Modbus 4616</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>CTRL1_KFPP</td>
<td>Control de velocidad</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>200,0</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3012:6h, Modbus 4620</td>
</tr>
<tr>
<td>CTRL1_Nf1damp</td>
<td>Filtro Notch 1: amortiguación</td>
<td>%</td>
<td>55,0</td>
<td>90,0</td>
<td>99,0</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3012-8h, Modbus 4624</td>
</tr>
<tr>
<td>CTRL1_Nf1freq</td>
<td>Filtro Notch 1: frecuencia</td>
<td>Hz</td>
<td>50,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16 R/W per. expert</td>
<td>CANopen 3012-9h, Modbus 4626</td>
</tr>
<tr>
<td>CTRL1_Nf1bandw</td>
<td>Filtro Notch 1: ancho de banda</td>
<td>%</td>
<td>1,0</td>
<td>70,0</td>
<td>90,0</td>
<td>UINT16 R/W per. expert</td>
<td>CANopen 3012-Ah, Modbus 4628</td>
</tr>
<tr>
<td>CTRL1_Nf2damp</td>
<td>Filtro Notch 2: amortiguación</td>
<td>%</td>
<td>55,0</td>
<td>90,0</td>
<td>99,0</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3012-Bh, Modbus 4630</td>
</tr>
<tr>
<td>CTRL1_Nf2freq</td>
<td>Filtro Notch 2: frecuencia</td>
<td>Hz</td>
<td>50,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16 R/W per. expert</td>
<td>CANopen 3012-Ch, Modbus 4632</td>
</tr>
<tr>
<td>CTRL1_Nf2bandw</td>
<td>Filtro Notch 2: ancho de banda</td>
<td>%</td>
<td>1,0</td>
<td>70,0</td>
<td>90,0</td>
<td>UINT16 R/W per. expert</td>
<td>CANopen 3012-Dh, Modbus 4634</td>
</tr>
<tr>
<td>CTRL1_Osupdamp</td>
<td>Filtro de sobreoscilación: amortiguación</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>50,0</td>
<td>UINT16 R/W per. expert</td>
<td>CANopen 3012-Eh, Modbus 4636</td>
</tr>
<tr>
<td>CTRL1_Osupdelay</td>
<td>Filtro de sobreoscilación: retardo</td>
<td>ms</td>
<td>0,0</td>
<td>75,0</td>
<td>75,0</td>
<td>UINT16 R/W per.</td>
<td>CANopen 3012-Fh, Modbus 4638</td>
</tr>
<tr>
<td>CTRL1_Kfric</td>
<td>Compensación de rozamiento: ganancia</td>
<td>A<sub>ms</sub></td>
<td>0,0</td>
<td>0,0</td>
<td>10,0</td>
<td>UINT16 R/W per. expert</td>
<td>CANopen 3012:10h, Modbus 4640</td>
</tr>
</tbody>
</table>
Juego de parámetros de lazo de control 2

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL2_KPn</td>
<td>Factor P del controlador de velocidad</td>
<td>A(min-1)</td>
<td>0,0001</td>
<td>2,5400</td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3013:1_n Modbus 4866</td>
</tr>
<tr>
<td>CTRL2_TNn</td>
<td>Tiempo de acción integral del controlador de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>327,67</td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3013:2_n Modbus 4868</td>
</tr>
<tr>
<td>CTRL2_KPp</td>
<td>Factor P controlador de posición</td>
<td>1/s</td>
<td>2,00</td>
<td>900,0</td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3013:3_n Modbus 4870</td>
</tr>
<tr>
<td>CTRL2_TAUnref</td>
<td>Constante de tiempo del filtro del valor de referencia de corriente</td>
<td>ms</td>
<td>0,00</td>
<td>4,00</td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3013:5_n Modbus 4874</td>
</tr>
<tr>
<td>CTRL2_TAUnref</td>
<td>Constante de tiempo del filtro del valor de referencia de corriente</td>
<td>ms</td>
<td>0,00</td>
<td>9,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3013:4_n Modbus 4872</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección parámetro vía bus de campo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_KFPp</td>
<td>Control de velocidad</td>
<td></td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>UINT16</td>
<td>CANopen 3013:6h Modbus 4876</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Al conmutar entre los dos juegos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de parámetros de lazo de control se</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>produce la adaptación de los valores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de forma lineal a través del tiempo ajustado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>en el parámetro CTRL_ParChgTime.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 %.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Nf1damp</td>
<td>Filtro Notch 1: amortiguación</td>
<td></td>
<td>%</td>
<td>55,0</td>
<td>90,0</td>
<td>UINT16</td>
<td>CANopen 3013:8h Modbus 4880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 %.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Nf1freq</td>
<td>Filtro Notch 1: frecuencia</td>
<td>Hz</td>
<td>50,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16</td>
<td>CANopen 3013:9h Modbus 4882</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con el valor 15000 el filtro se desactiva.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 Hz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Nf1bandw</td>
<td>Filtro Notch 1: ancho de banda</td>
<td>%</td>
<td>1,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16</td>
<td>CANopen 3013:A_h Modbus 4884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El ancho de banda se define del siguiente modo: 1 - Fb/F0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 %.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Nf2damp</td>
<td>Filtro Notch 2: amortiguación</td>
<td></td>
<td>%</td>
<td>55,0</td>
<td>90,0</td>
<td>UINT16</td>
<td>CANopen 3013:B_h Modbus 4886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 %.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Nf2freq</td>
<td>Filtro Notch 2: frecuencia</td>
<td>Hz</td>
<td>50,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16</td>
<td>CANopen 3013:C_h Modbus 4888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con el valor 15000 el filtro se desactiva.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 Hz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Nf2bandw</td>
<td>Filtro Notch 2: ancho de banda</td>
<td>%</td>
<td>1,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16</td>
<td>CANopen 3013:D_h Modbus 4890</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El ancho de banda se define del siguiente modo: 1 - Fb/F0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 %.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Osupdamp</td>
<td>Filtro de sobreoscilación:</td>
<td></td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>UINT16</td>
<td>CANopen 3013:E_h Modbus 4892</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>amortiguación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con el valor 0 el filtro se desactiva.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 %.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Osupdelay</td>
<td>Filtro de sobreoscilación:</td>
<td>ms</td>
<td>0,00</td>
<td>0,00</td>
<td>75,00</td>
<td>UINT16</td>
<td>CANopen 3013:F_h Modbus 4894</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>retardo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con el valor 0 el filtro se desactiva.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 ms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Kfric</td>
<td>Compensación de rozamiento:</td>
<td></td>
<td>A rms</td>
<td>0,00</td>
<td>0,00</td>
<td>UINT16</td>
<td>CANopen 3013:10h Modbus 4896</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ganancia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per. exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A rms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Capítulo 7
Estados de funcionamiento y modos de funcionamiento

Contenido de este capítulo

Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Estados de funcionamiento</td>
<td>238</td>
</tr>
<tr>
<td>7.2</td>
<td>Modos de funcionamiento</td>
<td>249</td>
</tr>
<tr>
<td>7.3</td>
<td>Modo de funcionamiento Jog</td>
<td>250</td>
</tr>
<tr>
<td>7.4</td>
<td>Modo de funcionamiento Profile Torque</td>
<td>256</td>
</tr>
<tr>
<td>7.5</td>
<td>Modo de funcionamiento Profile Velocity</td>
<td>261</td>
</tr>
<tr>
<td>7.6</td>
<td>Modo de funcionamiento Profile Position</td>
<td>265</td>
</tr>
<tr>
<td>7.7</td>
<td>Modo de funcionamiento Interpolated Position</td>
<td>271</td>
</tr>
<tr>
<td>7.8</td>
<td>Modo de funcionamiento Homing</td>
<td>277</td>
</tr>
</tbody>
</table>
Sección 7.1
Estados de funcionamiento

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagrama de estados y transiciones de estado</td>
<td>239</td>
</tr>
<tr>
<td>Indicación del estado de funcionamiento a través de la HMI</td>
<td>243</td>
</tr>
<tr>
<td>Indicación del estado de funcionamiento a través de las salidas de señal</td>
<td>244</td>
</tr>
<tr>
<td>Indicación del estado de funcionamiento a través del bus de campo</td>
<td>245</td>
</tr>
<tr>
<td>Cambiar el estado de funcionamiento a través de la HMI</td>
<td>246</td>
</tr>
<tr>
<td>Cambiar el estado de funcionamiento a través de las entradas de señal</td>
<td>247</td>
</tr>
<tr>
<td>Cambiar el estado de funcionamiento a través del bus de campo</td>
<td>248</td>
</tr>
</tbody>
</table>
Diagrama de estados y transiciones de estado

Diagrama de estado finito

Después de la conexión y para iniciar un modo de funcionamiento, se van mostrando una serie de estados operativos.

Las relaciones entre los estados de funcionamiento y las transiciones de estado, están ilustradas en el diagrama de estado (máquina de estado finito).

De forma interna, funciones de supervisión y funciones del sistema comprueban e influyen en los estados de funcionamiento.

<table>
<thead>
<tr>
<th>Estados de funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado operacional</td>
</tr>
<tr>
<td>1 Start</td>
</tr>
<tr>
<td>2 Not Ready To Switch On</td>
</tr>
<tr>
<td>3 Switch On Disabled</td>
</tr>
<tr>
<td>4 Ready To Switch On</td>
</tr>
<tr>
<td>5 Switched On</td>
</tr>
<tr>
<td>6 Operation Enabled</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Clase de error

Los mensajes de error están subdivididos en las siguientes clases de error:

<table>
<thead>
<tr>
<th>Clase de error</th>
<th>Transición de estado</th>
<th>Error response</th>
<th>Reinicio de un mensaje de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>No se interrumpe el movimiento</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>1</td>
<td>T11</td>
<td>Detener el movimiento con "Quick Stop"</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>2</td>
<td>T13, T14</td>
<td>Detener el movimiento con "Quick Stop" y desactivar la etapa de potencia durante la parada del motor</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>3</td>
<td>T13, T14</td>
<td>Desactivar de inmediato la etapa de potencia sin detener antes el movimiento</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>4</td>
<td>T13, T14</td>
<td>Desactivar de inmediato la etapa de potencia sin detener antes el movimiento</td>
<td>Desconexión y reconexión</td>
</tr>
</tbody>
</table>

Reacción de error

La transición de estado T13 (clase de error 2,3 ó 4) inicia una reacción de error tan pronto como un evento interno señalaiza un error al que el equipo debe reaccionar.

<table>
<thead>
<tr>
<th>Clase de error</th>
<th>Reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>El movimiento se detiene con "Quick Stop" Se aprieta el freno de parada. Se desactiva la etapa de potencia</td>
</tr>
<tr>
<td>3, 4 ó función de seguridad STO</td>
<td>La etapa de potencia se desactiva de inmediato</td>
</tr>
</tbody>
</table>

Un error puede ser señalizado por un sensor de temperatura, por ejemplo. El producto cancela el movimiento en curso y ejecuta una reacción de error. A continuación, el estado de funcionamiento cambia a 9 Fault.

Reinicio de un mensaje de error

Con un "Fault Reset" se reinicia un mensaje de error.

Cuando se produce una "Quick Stop" debido a un error de la clase 1 (estado de funcionamiento 7 Quick Stop Active), un "Fault Reset" hace que se regrese directamente al estado de funcionamiento 6 Operation Enabled.
Transiciones de estado

Las transiciones de estado se activan a través de una señal de entrada, un comando de bus de campo o como reacción de una función de monitorización.

<table>
<thead>
<tr>
<th>Transición de estado</th>
<th>Estado operacional</th>
<th>Condición / evento(1)</th>
<th>Reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>1 -> 2</td>
<td>● Sistema electrónico del equipo inicializado con éxito</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2 -> 3</td>
<td>● Parámetro inicializado satisfactoriamente</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>3 -> 4</td>
<td>● No hay subtensión
Encoder comprobado satisfactoriamente
Velocidad actual: <1000 min-1
Señales STO = +24V
Comando de bus de campo: Shutdown(2)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>4 -> 5</td>
<td>● Solicitud para activar la etapa de potencia
● Comando de bus de campo: Switch On o Enable Operation</td>
<td>Se activa la etapa de potencia. Se comprueban los parámetros del usuario. Se libera el freno de parada (si está instalado).</td>
</tr>
<tr>
<td>T4</td>
<td>5 -> 6</td>
<td>● Transición automática
● Comando de bus de campo: Enable Operation</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>6 -> 5</td>
<td>● Comando de bus de campo: Disable Operation</td>
<td>El movimiento se cancela con “Parada”. Se cierra el freno de parada (si está instalado). Se desactiva la etapa de potencia.</td>
</tr>
<tr>
<td>T6</td>
<td>5 -> 4</td>
<td>● Comando de bus de campo: Shutdown</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>4 -> 3</td>
<td>● Subtensión
● Señales STO = 0 V
● Velocidad actual: >1000 min-1 (por ejemplo, mediante accionamiento externo)
● Comando de bus de campo: Disable Voltage</td>
<td>El movimiento se cancela con “Parada”, o la etapa de potencia se desactiva de inmediato. Ajustable a través del parámetro DSM_ShutDownOption.</td>
</tr>
<tr>
<td>T8</td>
<td>6 -> 4</td>
<td>● Comando de bus de campo: Shutdown</td>
<td>El movimiento se cancela con “Parada”, o la etapa de potencia se desactiva de inmediato. Ajustable a través del parámetro DSM_ShutDownOption. Para “Comando de bus de campo Disable Voltage”: La etapa de potencia se desactiva de inmediato</td>
</tr>
<tr>
<td>T9</td>
<td>6 -> 3</td>
<td>● Demanda para desactivar la etapa de potencia
● Comando de bus de campo: Disable Voltage</td>
<td>El movimiento se cancela con “Parada”, o la etapa de potencia se desactiva de inmediato. Ajustable a través del parámetro DSM_ShutDownOption. Para “Comando de bus de campo Disable Voltage”: La etapa de potencia se desactiva de inmediato</td>
</tr>
<tr>
<td>T10</td>
<td>5 -> 3</td>
<td>● Demanda para desactivar la etapa de potencia
● Comando de bus de campo: Disable Voltage</td>
<td></td>
</tr>
<tr>
<td>T11</td>
<td>6 -> 7</td>
<td>● Error de clase 1
● Comando de bus de campo: Quick Stop</td>
<td>El movimiento se cancela con “Quick Stop”.</td>
</tr>
<tr>
<td>T12</td>
<td>7 -> 3</td>
<td>● Demanda para desactivar la etapa de potencia
● Comando de bus de campo: Disable Voltage</td>
<td>La etapa de potencia se desactiva inmediatamente, aunque aún esté activa “Quick Stop”.</td>
</tr>
<tr>
<td>T13</td>
<td>x -> 8</td>
<td>● Error de clase 2, 3 ó 4</td>
<td>Se ejecuta la reacción de error, véase “Reacción de error”.</td>
</tr>
<tr>
<td>T14</td>
<td>8 -> 9</td>
<td>● Reacción de error finalizada (clase de error 2)
● Error de clase 3 o 4</td>
<td></td>
</tr>
</tbody>
</table>

(1) Para activar la transición de estado basta con que se cumpla un punto
(2) Solo necesario con el parámetro DS402compatib = 1
(3) Solo posible cuando el estado de funcionamiento se haya activado a través del bus de campo
Estados de funcionamiento y modos de funcionamiento

Transición de estado	**Estado operacional**	**Condición / evento**(1)	**Reacción**
T15 | 9 -> 3 | ● Función: “Fault Reset” | Se reinicia el error (es necesario subsanar la causa del error).
T16 | 7 -> 6 | ● Función: “Fault Reset”
● Comando de bus de campo: Enable Operation(3) | Cuando se produce una “Quick Stop” debido a un error de la clase 1, un “Fault Reset” hace que se regrese directamente al estado de funcionamiento 6 Operation Enabled.

(1) Para activar la transición de estado basta con que se cumpla un punto
(2) Solo necesario con el parámetro DSM02compatib = 1
(3) Solo posible cuando el estado de funcionamiento se haya activado a través del bus de campo

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM_ShutdownOption</td>
<td>ConF -> RCG - Sdty</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>INT16</td>
<td>R/W per.</td>
<td>CANopen 605B:0h, Modbus 1684</td>
</tr>
</tbody>
</table>

Nombre de parámetro | Menú HMI | Nombre HMI | Designación | Unidad | Valor mínimo | Valor máximo | Tipo de dato | Persistente | Dirección de parámetro vía bus de campo |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM_ShutdownOption</td>
<td>Menú HMI</td>
<td>Nombre HMI</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>ConF</td>
<td>RCG</td>
<td>Sdty</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>INT16</td>
<td>R/W per.</td>
<td>CANopen 605B:0h, Modbus 1684</td>
<td></td>
</tr>
</tbody>
</table>

Comportamiento al desactivar la etapa de potencia durante un movimiento
0 / Disable Immediately / d , 5 : Desactivar de inmediato la etapa de potencia
1 / Disable After Halt / d , 5 h : Desactivar la etapa de potencia tras deceleración hasta parada
Este parámetro determina cómo reacciona el variador ante una solicitud de desactivación de la etapa de potencia. Para la deceleración hasta parada se utiliza Parada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥V01.26.
Indicación del estado de funcionamiento a través de la HMI

El estado de funcionamiento se muestra mediante HMI. En la siguiente tabla se muestra un resumen:

<table>
<thead>
<tr>
<th>Estado operacional</th>
<th>HMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Start</td>
<td>\textit{Init}</td>
</tr>
<tr>
<td>2 Not Ready To Switch On</td>
<td>\textit{nrdy}</td>
</tr>
<tr>
<td>3 Switch On Disabled</td>
<td>\textit{dis}</td>
</tr>
<tr>
<td>4 Ready To Switch On</td>
<td>\textit{rdy}</td>
</tr>
<tr>
<td>5 Switched On</td>
<td>\textit{Son}</td>
</tr>
<tr>
<td>6 Operation Enabled</td>
<td>\textit{run}</td>
</tr>
<tr>
<td>7 Quick Stop Active</td>
<td>\textit{Stop}</td>
</tr>
<tr>
<td>8 Fault Reaction Active</td>
<td>\textit{FLT}</td>
</tr>
<tr>
<td>9 Fault</td>
<td>\textit{FLT}</td>
</tr>
</tbody>
</table>
Indicación del estado de funcionamiento a través de las salidas de señal

A través de las salidas de señal se dispone de información sobre el estado de funcionamiento. En la siguiente tabla se muestra un resumen:

<table>
<thead>
<tr>
<th>Estado operacional</th>
<th>Función de salida de señal "No fault"(^{(1)})</th>
<th>Función de salida de señal "Active"(^{(2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Start</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 Not Ready To Switch On</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 Switch On Disabled</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 Ready To Switch On</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5 Switched On</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6 Operation Enabled</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7 Quick Stop Active</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8 Fault Reaction Active</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9 Fault</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{(1)}\) La función de salida de señal es ajuste de fábrica con DQ0

\(^{(2)}\) La función de salida de señal es ajuste de fábrica para DQ1
Indicación del estado de funcionamiento a través del bus de campo

La descripción de la indicación de estados de funcionamiento a través del bus de campo está incluída en el manual del bus de campo.
Cambiar el estado de funcionamiento a través de la HMI

A través de la HMI se puede reiniciar un mensaje de error.

Cuando se produce un error de la clase 1, al reiniciar el mensaje de error se retorna del estado de funcionamiento 7 Quick Stop Active al estado de funcionamiento 6 Operation Enabled.

Cuando se produce un error de las clases 2 ó 3, al reiniciar el mensaje de error se retorna del estado de funcionamiento 9 Fault al estado de funcionamiento 3 Switch On Disable.
Estados de funcionamiento y modos de funcionamiento

Cambiar el estado de funcionamiento a través de las entradas de señal

Mediante las entradas de señal se puede cambiar de un estado de funcionamiento a otro.

- Función de entrada de señal "Enable"
- Función de entrada de señal "Fault Reset"

Función de entrada de señal "Enable"

A través de la función de entrada de señal "Enable" se activa la etapa de potencia.

<table>
<thead>
<tr>
<th>"Enable"</th>
<th>Transición de estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>flanco ascendente</td>
<td>Activar etapa de potencia (T3)</td>
</tr>
<tr>
<td>Flanco descendente</td>
<td>Desactivar etapa de potencia (T9 y T12)</td>
</tr>
</tbody>
</table>

Para poder activar la etapa de potencia a través de la entrada de señal, debe estar parametrizada la función de entrada de señal "Enable", véase el capítulo Entradas y salidas digitales (véase página 209).

Con la versión de firmware ≥V01.12, existe la posibilidad de restablecer adicionalmente un mensaje de error en el caso de un flanco descendente o ascendente en la entrada de señal.

Función de entrada de señal "Fault Reset"

A través de la función de entrada de señal "Fault Reset" se reinicia un mensaje de error.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO_FaultResOnEnaI</td>
<td>"Fault Reset" adicional para la función de entrada de señal "Enable"</td>
<td>UINT16</td>
<td>0</td>
<td>2</td>
<td>R/W</td>
<td>CANopen 3005:34h Modbus 1384</td>
</tr>
</tbody>
</table>

Para poder restablecer un mensaje de error a través de la entrada de señal, debe estar parametrizada la función de entrada de señal "Fault Reset", véase el capítulo Entradas y salidas digitales (véase página 209).
Cambiar el estado de funcionamiento a través del bus de campo

La descripción del cambio de estados de funcionamiento a través del bus de campo está incluida en el manual del bus de campo.
Sección 7.2
Modos de funcionamiento

Inicio y cambio de modo funcionamiento

Iniciar modo de funcionamiento
La descripción de cómo se inicia y cambia un modo de funcionamiento a través del bus de campo está incluida en el manual del bus de campo.

Cambiars modo de funcionamiento
No se puede cambiar a otro modo de funcionamiento hasta que no se haya finalizado el modo de funcionamiento en curso.
Adicionalmente y dependiendo del modo de funcionamiento, también es posible cambiar el modo de funcionamiento con un movimiento en curso.

Cambiar el modo de funcionamiento en movimiento
Con un movimiento en curso es posible cambiar entre los dos modos de funcionamiento siguientes:
- Jog
- Profile Torque
- Profile Velocity
- Profile Position

Dependiendo del modo de funcionamiento al que se cambie, el cambio se lleva a cabo con o sin parada del motor.

<table>
<thead>
<tr>
<th>Modo de funcionamiento al que se cambia</th>
<th>Parada del motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jog</td>
<td>Con parada del motor</td>
</tr>
<tr>
<td>Profile Torque</td>
<td>Sin parada del motor</td>
</tr>
<tr>
<td>Profile Velocity</td>
<td>Sin parada del motor</td>
</tr>
<tr>
<td>Profile Position</td>
<td>Con el perfil de accionamiento Drive Profile Lexium: Ajustable a través del parámetro PP_OpmChgType y con el perfil de accionamiento DS402: Con parada del motor</td>
</tr>
<tr>
<td>Profile Position Con la versión de firmware ≥V01.06</td>
<td>Con parada del motor</td>
</tr>
<tr>
<td>Profile Position Con la versión de firmware <V01.06</td>
<td>Con parada del motor</td>
</tr>
</tbody>
</table>

(1) El parámetro PP_OpmChgType debe estar ajustado al valor 0.

El motor se decelera hasta pararse a través de la rampa ajustada en el parámetro LIM_HaltReaction, véase el capítulo Interrumpir el movimiento con parada (véase página 296).
Sección 7.3
Modo de funcionamiento Jog

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopsis</td>
<td>251</td>
</tr>
<tr>
<td>Parametrización</td>
<td>253</td>
</tr>
<tr>
<td>Opciones de ajuste adicionales</td>
<td>255</td>
</tr>
</tbody>
</table>
Sinopsis

Designación

En el modo de funcionamiento Jog (movimiento manual) se efectúa un movimiento en la dirección deseada, a partir de la posición en la que se encuentre el motor en ese instante.

Un movimiento se puede llevar a cabo aplicando 2 métodos diferentes:

- Movimiento continuo
- Movimiento paso a paso

Además se dispone de 2 velocidades parametrizables.

Movimiento continuo

Mientras esté presente la señal para la dirección, se efectúa un movimiento en la dirección deseada.

El siguiente gráfico muestra un resumen de un movimiento continuo:

![Gráfico de movimiento continuo](image)

1. Movimiento lento en dirección positiva
2. Movimiento lento en dirección negativa
3. Movimiento rápido en dirección positiva

Movimiento paso a paso

Si está presente brevemente la señal para la dirección, se efectúa un movimiento con un número parametrizable de unidades de usuario en la dirección deseada.

Si está presente la señal para la dirección de forma permanente, primero se efectúa un movimiento con un número parametrizable de unidades de usuario en la dirección deseada. Después de este movimiento se detiene el motor durante un tiempo definido. A continuación se efectúa un movimiento continuo en la dirección deseada.

El siguiente gráfico muestra un resumen de un movimiento paso a paso:

![Gráfico de movimiento paso a paso](image)

1. Movimiento lento con una cantidad parametrizable de unidades de usuario en dirección positiva
2. Tiempo de espera
3. Movimiento lento continuo en dirección positiva
4. Movimiento rápido continuo en dirección positiva
Iniciar modo de funcionamiento

El modo de funcionamiento se inicia a través del bus de campo. La descripción está incluida en el manual del bus de campo.

HMI interna

De forma alternativa también se puede iniciar el modo de funcionamiento a través de la HMI. Llamando → † P → J o G → J G S † se activará la etapa de potencia y se iniciará el modo de funcionamiento.

El método Movimiento continuo se ejecuta a través de la HMI.

Girando el botón de navegación se puede cambiar entre 4 tipos de movimiento distintos.

- J G = : Movimiento lento en dirección positiva
- J G = : Movimiento rápido en dirección positiva
- - J G : Movimiento lento en dirección negativa
- = J G : Movimiento rápido en dirección negativa

El movimiento se inicia pulsando el botón de navegación.

Mensajes de estado

Mediante el bus de campo y las salidas de señal se dispone de información sobre el estado de funcionamiento y sobre el movimiento en curso.

La descripción acerca de la información sobre el estado de funcionamiento y sobre el movimiento en curso a través del bus de campo está incluida en el manual del bus de campo.

En la siguiente tabla se muestra un resumen de las salidas de señal:

<table>
<thead>
<tr>
<th>Salida de señal</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ0</td>
<td>"No Fault" muestra los estados de funcionamiento 4 Ready To Switch On, 5 Switched On y 6 Operation Enabled</td>
</tr>
<tr>
<td>DQ1</td>
<td>"Active" muestra el estado de funcionamiento 6 Operation Enabled</td>
</tr>
</tbody>
</table>

Se puede adaptar el ajuste de fábrica de las salidas de señal, véase el capítulo Entradas y salidas digitales (véase página 209).

Finalizar modo de funcionamiento

El modo de funcionamiento finaliza en caso de parada del motor y una de las siguientes condiciones:

- Interrupción mediante "Halt" o "Quick Stop"
- Interrupción debido a un error
Estados de funcionamiento y modos de funcionamiento

Parametrización

Sinopsis

La siguiente imagen muestra un resumen de los parámetros configurables:

![Diagrama de parametrización]

Velocidades

Están disponibles dos velocidades parametrizables.

- Ajuste los valores deseados usando los parámetros JOGv_slow y JOGv_fast.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOGv_slow</td>
<td>velocidades para movimiento lento</td>
<td></td>
<td>1</td>
<td>60</td>
<td>2147483647</td>
<td>JOGv_sLOW</td>
</tr>
<tr>
<td></td>
<td>Velocidad para movimiento lento El valor se limita internamente al ajuste del parámetro en RAMP_v_max. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td>1</td>
<td>60</td>
<td>2147483647</td>
<td>JOGv_sLOW</td>
</tr>
<tr>
<td>JOGv_fast</td>
<td>velocidades para movimiento lento</td>
<td></td>
<td>1</td>
<td>180</td>
<td>2147483647</td>
<td>JOGv_sLOW</td>
</tr>
<tr>
<td></td>
<td>Velocidad para movimiento lento El valor se limita internamente al ajuste del parámetro en RAMP_v_max. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td>1</td>
<td>180</td>
<td>2147483647</td>
<td>JOGv_sLOW</td>
</tr>
</tbody>
</table>
Elección del método

El método se ajusta usando el parámetro JOGmethod.

- Ajuste el método deseado usando el parámetro JOGmethod.

Ajuste del movimiento paso a paso

La cantidad parametrizable de unidades de usuario y el tiempo que se detiene el motor se ajustan usando los parámetros JOGstep y JOGtime.

- Ajuste los valores deseados usando los parámetros JOGstep y JOGtime.

Adaptación del perfil de movimientos para la velocidad

La parametrización del perfil de movimiento para la velocidad (*véase página 293*) puede adaptarse.
Opciones de ajuste adicionales

Se pueden usar las siguientes funciones para el procesamiento del valor de destino:

- Capítulo Limitación de tirones (*véase página 295*)
- Capítulo Interrumpir el movimiento con Parada (*véase página 296*)
- Capítulo Detener movimiento con Quick Stop (*véase página 296*)
- Capítulo Limitación de la velocidad mediante entradas de señales (*véase página 300*)
- Capítulo Limitación de la corriente mediante entradas de señales (*véase página 301*)
- Capítulo Establecer la salida de señal mediante parámetro (*véase página 303*)
- Capítulo Registro de posición por entrada de señal
- Capítulo Movimiento relativo tras Capture (RMAC) (*véase página 312*)

Se pueden usar las siguientes funciones para la monitorización del movimiento:

- Capítulo Final de Carrera (*véase página 319*)
- Capítulo Final de carrera de software (*véase página 321*)
- Capítulo Desviación de posición debida a la carga (error de seguimiento) (*véase página 323*)
- Capítulo Parada del motor y dirección de movimiento (*véase página 328*)
- Capítulo Ventana de parada (*véase página 331*)
 Esta función está disponible únicamente con un movimiento paso a paso.
- Capítulo Registro de posición (*véase página 333*)
- Capítulo Ventana de desviación de posición (*véase página 339*)
- Capítulo Ventana de desviación de velocidad (*véase página 341*)
- Capítulo Umbral de velocidad (*véase página 343*)
- Capítulo Umbral de corriente (*véase página 345*)
Sección 7.4
Modo de funcionamiento Profile Torque

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopsis</td>
<td>257</td>
</tr>
<tr>
<td>Parametrización</td>
<td>258</td>
</tr>
<tr>
<td>Opciones de ajuste adicionales</td>
<td>260</td>
</tr>
</tbody>
</table>
Sinopsis

Designación

En el modo de funcionamiento Profile Torque se ejecuta un movimiento con un par de destino determinado.

Sin un valor límite adecuado, el motor puede alcanzar una velocidad elevada involuntaria en este modo de funcionamiento.

<table>
<thead>
<tr>
<th>Advertencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>VELOCIDAD ELEVADA INVOLUNTARIA</td>
</tr>
<tr>
<td>Asegúrese de que está parametrizada una limitación de velocidad adecuada para el motor.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Iniciar modo de funcionamiento

El modo de funcionamiento se inicia a través del bus de campo. La descripción está incluida en el manual del bus de campo.

Mensajes de estado

Mediante el bus de campo y las salidas de señal se dispone de información sobre el estado de funcionamiento y sobre el movimiento en curso.

La descripción acerca de la información sobre el estado de funcionamiento y sobre el movimiento en curso a través del bus de campo está incluida en el manual del bus de campo.

En la siguiente tabla se muestra un resumen de las salidas de señal:

<table>
<thead>
<tr>
<th>Salida de señal</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ0</td>
<td>"No Fault"</td>
</tr>
<tr>
<td></td>
<td>muestra los estados de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>4 Ready To Switch On, 5 Switched On y 6 Operation Enabled</td>
</tr>
<tr>
<td>DQ1</td>
<td>"Active"</td>
</tr>
<tr>
<td></td>
<td>muestra el estado de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
</tbody>
</table>

Se puede adaptar el ajuste de fábrica de las salidas de señal, véase el capítulo Entradas y salidas digitales (véase página 209).

Finalizar modo de funcionamiento

El modo de funcionamiento finaliza en caso de parada del motor y una de las siguientes condiciones:

- Interrupción mediante "Halt" o "Quick Stop"
- Interrupción debido a un error
Parametrización

Sinopsis

La siguiente imagen muestra un resumen de los parámetros configurables:

Ajustar el par de destino

El par de destino se ajusta a través del parámetro `PTtq_target`.

- Ajuste el par de destino deseado a través del parámetro `PTtq_target`.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>PTtq_target</code></td>
<td>Par de destino para el modo de funcionamiento Profile Torque</td>
<td>%</td>
<td>–3000,0</td>
<td>0,0</td>
<td>3000,0</td>
<td>INT16</td>
<td>CANopen 6071:0h, Modbus 6944</td>
</tr>
</tbody>
</table>

100,0 % corresponde al par de parada continua _M_M_0. En pasos de 0,1 %. Los ajustes modificados se aceptan de inmediato.
Adaptación del perfil de movimientos para el par

La parametrización del perfil de movimientos para el par se puede adaptar.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMP_tq_enable</td>
<td>Activación del perfil de movimientos para el par</td>
<td>-</td>
<td>0 / Profile Off: Perfil desactivado</td>
<td>1 / Profile On: Perfil activado</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td></td>
<td>El perfil de movimientos para el par se puede activar o desactivar para el modo de funcionamiento Profile Torque. El perfil de movimientos para el par está desactivado en todos los demás modos de funcionamiento. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_tq_slope</td>
<td>Pendiente del perfil de movimientos para el par</td>
<td>%/s</td>
<td>0,1</td>
<td>10000,0</td>
<td>UINT32</td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td></td>
<td>Un par de parada continua del 100,00 % corresponde al par de parada continua _M_M_0.</td>
<td></td>
<td></td>
<td>3000000,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ejemplo: Un ajuste de rampa de 10000,00 %/s provoca un cambio de par del 100,0% de _M_M_0 antes de 0,01 s. En pasos de 0,1 %/s. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Opciones de ajuste adicionales

Se pueden usar las siguientes funciones para el procesamiento del valor de destino:

- Capítulo Interrumpir el movimiento con Parada (véase página 296)
- Capítulo Detener movimiento con Quick Stop (véase página 298)
- Capítulo Limitación de la velocidad mediante entradas de señales (véase página 300)
- Capítulo Limitación de la corriente mediante entradas de señales (véase página 301)
- Capítulo Establecer la salida de señal mediante parámetro (véase página 303)
- Capítulo Registro de posición por entrada de señal
- Capítulo Movimiento relativo tras Capture (RMAC) (véase página 312)

Se pueden usar las siguientes funciones para la monitorización del movimiento:

- Capítulo Final de Carrera (véase página 319)
- Capítulo Final de carrera de software (véase página 321)
- Capítulo Parada del motor y dirección de movimiento (véase página 328)
- Capítulo Ventana de par (véase página 329)
- Capítulo Registro de posición (véase página 333)
- Capítulo Umbral de velocidad (véase página 343)
- Capítulo Umbral de corriente (véase página 345)
Sección 7.5
Modo de funcionamiento Profile Velocity

Contenido de esta sección

Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopsis</td>
<td>262</td>
</tr>
<tr>
<td>Parametrización</td>
<td>263</td>
</tr>
<tr>
<td>Opciones de ajuste adicionales</td>
<td>264</td>
</tr>
</tbody>
</table>
Sinopsis

Designación
En el modo de funcionamiento Profile Velocity (perfil de velocidad), un movimiento se ejecuta a la velocidad de destino deseada.

Iniciar modo de funcionamiento
El modo de funcionamiento se inicia a través del bus de campo. La descripción está incluida en el manual del bus de campo.

Mensajes de estado
Mediante el bus de campo y las salidas de señal se dispone de información sobre el estado de funcionamiento y sobre el movimiento en curso.
La descripción acerca de la información sobre el estado de funcionamiento y sobre el movimiento en curso a través del bus de campo está incluida en el manual del bus de campo.
En la siguiente tabla se muestra un resumen de las salidas de señal:

<table>
<thead>
<tr>
<th>Salida de señal</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ0</td>
<td>"No Fault" muestra los estados de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>4 Ready To Switch On, 5 Switched On y</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
<tr>
<td>DQ1</td>
<td>"Active" muestra el estado de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
</tbody>
</table>

Se puede adaptar el ajuste de fábrica de las salidas de señal, véase el capítulo Entradas y salidas digitales (véase página 209).

Finalizar modo de funcionamiento
El modo de funcionamiento finaliza en caso de parada del motor y una de las siguientes condiciones:
- Interrupción mediante "Halt" o "Quick Stop"
- Interrupción debido a un error
Parametrización

Sinopsis
La siguiente imagen muestra un resumen de los parámetros configurables:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVv_target</td>
<td></td>
<td>Velocidad de destino para el modo de funcionamiento Profile Velocity</td>
<td>usr_v</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>INT32</td>
<td>CANopen 60FF:0h, Modbus 6938</td>
</tr>
</tbody>
</table>

Ajustar velocidad de destino
La velocidad de destino se ajusta usando el parámetro PVv_target.
- Ajuste la velocidad de destino deseada usando el parámetro PVv_target.

Adaptación del perfil de movimientos para la velocidad
La parametrización del perfil de movimiento para la velocidad (*véase página 293*) puede adaptarse.
Opciones de ajuste adicionales

Se pueden usar las siguientes funciones para el procesamiento del valor de destino:

- Capítulo Interrumpir el movimiento con Parada (véase página 296)
- Capítulo Detener movimiento con Quick Stop (véase página 298)
- Capítulo Limitación de la velocidad mediante entradas de señales (véase página 300)
- Capítulo Limitación de la corriente mediante entradas de señales (véase página 301)
- Capítulo Zero Clamp (véase página 302)
- Capítulo Establecer la salida de señal mediante parámetro (véase página 303)
- Capítulo Registro de posición por entrada de señal
- Capítulo Movimiento relativo tras Capture (RMAC) (véase página 312)

Se pueden usar las siguientes funciones para la monitorización del movimiento:

- Capítulo Final de Carrera (véase página 319)
- Capítulo Final de carrera de software (véase página 321)
- Capítulo Parada del motor y dirección de movimiento (véase página 328)
- Capítulo Ventana de velocidad (véase página 330)
- Capítulo Registro de posición (véase página 333)
- Capítulo Ventana de desviación de velocidad (véase página 341)
- Capítulo Umbral de velocidad (véase página 343)
- Capítulo Umbral de corriente (véase página 345)
Sección 7.6
Modo de funcionamiento Profile Position

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopsis</td>
<td>266</td>
</tr>
<tr>
<td>Parametrización</td>
<td>268</td>
</tr>
<tr>
<td>Opciones de ajuste adicionales</td>
<td>270</td>
</tr>
</tbody>
</table>
Sinopsis

Designación

En el modo de funcionamiento Profile Position (punto a punto) se ejecuta un movimiento a una posición de destino deseada.

Un movimiento se puede llevar a cabo aplicando 2 métodos diferentes:

- Movimiento relativo
- Posicionamiento absoluto

Movimiento relativo

En un movimiento relativo, el movimiento se ejecuta de forma relativa tomando como referencia la posición de destino precedente o la posición actual.

Movimiento absoluto

En un movimiento absoluto se realiza un movimiento de forma absoluta tomando como referencia el punto cero.

Antes del primer movimiento absoluto se tiene que determinar un punto cero a través del modo de funcionamiento Homing.

Inicial modo de funcionamiento

El modo de funcionamiento se inicia a través del bus de campo. La descripción está incluida en el manual del bus de campo.

Mensajes de estado

Mediante el bus de campo y las salidas de señal se dispone de información sobre el estado de funcionamiento y sobre el movimiento en curso.

La descripción acerca de la información sobre el estado de funcionamiento y sobre el movimiento en curso a través del bus de campo está incluida en el manual del bus de campo.

En la siguiente tabla se muestra un resumen de las salidas de señal:

<table>
<thead>
<tr>
<th>Salida de señal</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ0</td>
<td>"No Fault" muestra los estados de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>4 Ready To Switch On, 5 Switched On y</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
<tr>
<td>DQ1</td>
<td>"Active" muestra el estado de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
</tbody>
</table>

Se puede adaptar el ajuste de fábrica de las salidas de señal, véase el capítulo Entradas y salidas digitales (véase página 209).
Finalizar modo de funcionamiento

El modo de funcionamiento finaliza en caso de parada del motor y una de las siguientes condiciones:

- Posición de destino alcanzada
- Interrupción mediante "Halt" o "Quick Stop"
- Interrupción debido a un error
Parametrización

Sinopsis
La siguiente imagen muestra un resumen de los parámetros configurables:
Resumen de parámetros ajustables

![Diagrama de parámetros](image)

Posición destino
La posición destino se introduce usando el parámetro PPp_target.
- Ajuste la posición destino deseada mediante el parámetro PPp_target.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP_target</td>
<td>Posición destino para el modo de funcionamiento Profile Position (punto a punto)</td>
<td></td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 607A:0h Modbus 6940</td>
</tr>
<tr>
<td></td>
<td>Los valores máximos/minimos dependen de:</td>
<td></td>
<td>- Factor de escalada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Finales de carrera de software (en caso de estar activados)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de destino
La velocidad de destino se ajusta usando el parámetro PPv_target.
- Ajuste la velocidad de destino deseada usando el parámetro PPv_target.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPv_target</td>
<td>Velocidad de destino para el modo de funcionamiento Profile Position (punto a punto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 6081:0h Modbus 6942</td>
</tr>
<tr>
<td></td>
<td>La velocidad de destino está limitada a los ajustes que hay en CTRL_v_max y RAMP_v_max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elección del método

Mediante el parámetro PPoption se introduce el método para un movimiento relativo.

- Ajuste el método deseado para un movimiento relativo usando el parámetro PPoption.

<table>
<thead>
<tr>
<th>Nombre de parámetro Menú HMI Nombre HMI</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato R/W</th>
<th>Persistente Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPoption</td>
<td>Opciones para el modo de funcionamiento Profile Position Determina la posición deseada para un posicionamiento relativo: 0: Relativo a la posición de destino anterior del generador del perfil de movimiento 1: No soportado 2: Relativo a la posición real del motor Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>- 0 0 2</td>
<td>UINT16 R/W - -</td>
<td>CANopen 60F2:0h Modbus 6960</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adaptación del perfil de movimientos para la velocidad

La parametrización del perfil de movimiento para la velocidad (véase página 293) puede adaptarse.
Opciones de ajuste adicionales

Se pueden usar las siguientes funciones para el procesamiento del valor de destino:

- Capítulo Limitación de tirones (véase página 295)
- Capítulo Interrumpir el movimiento con Parada (véase página 296)
- Capítulo Detener movimiento con Quick Stop (véase página 298)
- Capítulo Limitación de la velocidad mediante entradas de señales (véase página 300)
- Capítulo Limitación de la corriente mediante entradas de señales (véase página 301)
- Capítulo Establecer salida de señal mediante parámetro (véase página 303)
- Capítulo Iniciar movimiento con entrada de señal (véase página 304)
- Capítulo Registro de posición por entrada de señal
- Capítulo Movimiento relativo tras Capture (RMAC) (véase página 312)

Se pueden usar las siguientes funciones para la monitorización del movimiento:

- Capítulo Final de Carrera (véase página 319)
- Capítulo Final de carrera de software (véase página 321)
- Capítulo Desviación de posición debida a carga (error de seguimiento) (véase página 323)
- Capítulo Parada del motor y dirección de movimiento (véase página 328)
- Capítulo Ventana de parada (véase página 331)
- Capítulo Registro de posición (véase página 333)
- Capítulo Ventana de desviación de posición (véase página 339)
- Capítulo Ventana de desviación de velocidad (véase página 341)
- Capítulo Umbral de velocidad (véase página 343)
- Capítulo Umbral de corriente (véase página 345)
Sección 7.7
Modo de funcionamiento Interpolated Position

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopsis</td>
<td>272</td>
</tr>
<tr>
<td>Parametrización</td>
<td>274</td>
</tr>
</tbody>
</table>
Sinopsis

Disponibilidad

Disponible con la versión de firmware ≥V01.08.

Designación

En el modo de funcionamiento Interpolated Position se ejecuta un movimiento a posiciones de referencia preestablecidas cíclicamente.

Las funciones de monitorización Heartbeat y Node Guarding no se pueden utilizar en este modo de funcionamiento.

- Compruebe la recepción cíclica de PDOs en el PLC para detectar una interrupción de la conexión.

Las posiciones de referencia se aceptan de manera sincrónica. La duración de ciclo de un tiempo puede ajustarse de 1 a 20 ms.

Con la señal SYNC se inicia el movimiento hasta las posiciones de referencia.

El accionamiento realiza internamente una interpolación fina con una cuadrícula de 250 µs.

El siguiente gráfico muestra un resumen del principio:

![Gráfico de funcionamiento](image)

1 Transferencia de la primera posición de referencia (ejemplo)
2 Movimiento hasta la primera posición de referencia
3 Transferencia de la segunda posición de referencia (ejemplo)
4 Movimiento hasta la segunda posición de referencia
5 Transferencia de la siguiente posición de referencia (ejemplo)

Iniciar modo de funcionamiento

El modo de funcionamiento se inicia a través del bus de campo. La descripción está incluida en el manual del bus de campo.

Finalizar modo de funcionamiento

El modo de funcionamiento se finaliza a través del bus de campo. La descripción está incluida en el manual del bus de campo.
Mensajes de estado

Mediante el bus de campo y las salidas de señal se dispone de información sobre el estado de funcionamiento y sobre el movimiento en curso.

La descripción acerca de la información sobre el estado de funcionamiento y sobre el movimiento en curso a través del bus de campo está incluida en el manual del bus de campo.

En la siguiente tabla se muestra un resumen de las salidas de señal:

<table>
<thead>
<tr>
<th>Salida de señal</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ0</td>
<td>"No Fault" muestra los estados de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>4 Ready To Switch On, 5 Switched On y</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
<tr>
<td>DQ1</td>
<td>"Active" muestra el estado de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
</tbody>
</table>

Se puede adaptar el ajuste de fábrica de las salidas de señal, véase el capítulo Entradas y salidas digitales (véase página 209).
Parametrización

Mecanismo de sincronización

Para el modo de funcionamiento Interpolated Position debe activarse el mecanismo de sincronización. El mecanismo de sincronización se activa a través del parámetro `SyncMechStart = 2`.

A través del parámetro `SyncMechTol` se preestablece una tolerancia de sincronización. El valor del parámetro `SyncMechTol` se multiplica internamente por 250 μs. Por ejemplo, un valor de 4 corresponde a una tolerancia de 1 ms.

El estado del mecanismo de sincronización puede leerse a través del parámetro `SyncMechStatus`.

- Active el mecanismo de sincronización a través del parámetro `SyncMechStart`.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SyncMechStart</td>
<td>Activación del mecanismo de sincronización</td>
<td>UINT16</td>
<td>R/W</td>
<td>Persitente</td>
<td>Experto</td>
<td>CANopen 3022:5h</td>
<td>Modbus 8714</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 0: desactivar mecanismo de sincronización. Valor 1: activar mecanismo de sincronización (CANmotion) Valor 2: activar mecanismo de sincronización, mecanismo CANopen estándard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La duración de ciclo de la señal de sincronización se obtiene a partir de los parámetros <code>intTimPerVal</code> e <code>intTimInd</code>. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyncMechTol</td>
<td>Tolerancia de sincronización</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 3022:4h</td>
<td>Modbus 8712</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El valor se aplica cuando el mecanismo de sincronización se activa a través del parámetro <code>SyncMechStart</code>. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.08.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyncMechStatus</td>
<td>Estado del mecanismo de sincronización</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 3022:6h</td>
<td>Modbus 8716</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estado del mecanismo de sincronización: Valor 1: mecanismo de sincronización del variador inactivo. Valor 32: variador sincronizado con señal de sincronización externa. Valor 64: el variador está sincronizado con una señal de sincronización externa. Disponible con la versión de firmware ≥ V01.08.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duración de ciclo

La duración de ciclo se ajusta a través de los parámetros `IP_IntTimPerVal` y `IP_IntTimInd`.

La duración de ciclo depende de las siguientes circunstancias:

- Cantidad de variadores
- Velocidad de transmisión
- Tiempo del paquete de datos mínimo por ciclo:
 - SYNC
 - R_PDO2, T_PDO2
 - EMCY (Este tiempo debe reservarse,)
Opcionalmente, el tiempo de los paquetes de datos adicionales por ciclo:
- R_SDO y T_SDO
 El PLC debe garantizar que la cantidad de consultas (R_SDO) sea adecuada para la duración de ciclo. La respuesta (T_SDO) se envía en el siguiente ciclo.
- nPDO - R_PDO y T_PDO adicionales:
 R_PDO1, T_PDO1, R_PDO3, T_PDO3, R_PDO4 y T_PDO4

La siguiente tabla muestra valores típicos para los diferentes paquetes de datos en función de la velocidad de transmisión:

<table>
<thead>
<tr>
<th>Paquetes de datos</th>
<th>Tamaño en byte</th>
<th>1 Mbit</th>
<th>500 kbit</th>
<th>250 kbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_PDO2</td>
<td>6</td>
<td>0,114 ms</td>
<td>0,228 ms</td>
<td>0,456 ms</td>
</tr>
<tr>
<td>T_PDO2</td>
<td>6</td>
<td>0,114 ms</td>
<td>0,228 ms</td>
<td>0,456 ms</td>
</tr>
<tr>
<td>SYNC</td>
<td>0</td>
<td>0,067 ms</td>
<td>0,134 ms</td>
<td>0,268 ms</td>
</tr>
<tr>
<td>EMCY</td>
<td>8</td>
<td>0,130 ms</td>
<td>0,260 ms</td>
<td>0,520 ms</td>
</tr>
<tr>
<td>R_PDOx</td>
<td>8</td>
<td>0,130 ms</td>
<td>0,260 ms</td>
<td>0,520 ms</td>
</tr>
<tr>
<td>T_PDOx</td>
<td>8</td>
<td>0,130 ms</td>
<td>0,260 ms</td>
<td>0,520 ms</td>
</tr>
<tr>
<td>R_SDO y T_SDO</td>
<td>16</td>
<td>0,260 ms</td>
<td>0,520 ms</td>
<td>1,040 ms</td>
</tr>
</tbody>
</table>

En un variador, la duración de ciclo mínima se calcula de la siguiente manera: $t_{cycle} = SYNC + R_{PDO2} + T_{PDO2} + EMCY + SDO + nPDO$

La siguiente tabla muestra el t_{cycle} en función de la velocidad de transmisión y de la cantidad de PDOs nPDO adicionales partiendo de un variador:

<table>
<thead>
<tr>
<th>Cantidad de PDOs (nPDO) adicionales</th>
<th>Duración de ciclo mínima con 1 Mbit</th>
<th>Duración de ciclo mínima con 500 kbit</th>
<th>Duración de ciclo mínima con 250 kbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 ms</td>
<td>2 ms</td>
<td>3 ms</td>
</tr>
<tr>
<td>1</td>
<td>1 ms</td>
<td>2 ms</td>
<td>3 ms</td>
</tr>
<tr>
<td>2</td>
<td>1 ms</td>
<td>2 ms</td>
<td>4 ms</td>
</tr>
<tr>
<td>3</td>
<td>2 ms</td>
<td>2 ms</td>
<td>4 ms</td>
</tr>
<tr>
<td>4</td>
<td>2 ms</td>
<td>3 ms</td>
<td>5 ms</td>
</tr>
<tr>
<td>5</td>
<td>2 ms</td>
<td>3 ms</td>
<td>5 ms</td>
</tr>
<tr>
<td>6</td>
<td>2 ms</td>
<td>3 ms</td>
<td>6 ms</td>
</tr>
</tbody>
</table>

Duración de ciclo en segundos: $IP_{IntTimPerVal} \times 10 \ IP_{IntTimInd}$

- Ajuste la duración de ciclo deseada a través de los parámetros $IP_{IntTimPerVal}$ y $IP_{IntTimInd}$.
 Las duraciones de ciclo válidas son de 1 a 20 ms en pasos de 1 ms.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP_IntTimPerVal</td>
<td>Menú HMI</td>
<td>Interpolation time period value</td>
<td>s</td>
<td>0</td>
<td>1</td>
<td>255</td>
<td>UINT16*</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 60C2:1h, Modbus 7000</td>
</tr>
<tr>
<td>IP_IntTimInd</td>
<td>Menú HMI</td>
<td>Interpolation time index</td>
<td>s</td>
<td>0</td>
<td>1</td>
<td>255</td>
<td>INT16*</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 60C2:2h, Modbus 7002</td>
</tr>
</tbody>
</table>
Compensación de posición

El variador procesa cíclicamente la posición de referencia en cuanto el bit 4 de la palabra de control se establece en 1. Si la diferencia entre la posición de referencia y la posición real es demasiado grande, esto provoca un error a continuación. Para evitarlo, antes de cada activación o prosecución (PARADA, Quick Stop) del modo de funcionamiento debe leerse la posición real a través del parámetro _p_act. Las posiciones de referencia nuevas deben corresponder en el primer ciclo a la posición real.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_p_act n ano</td>
<td>Posición actual</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 6064:0h, Modbus 7706</td>
</tr>
</tbody>
</table>

Valor de referencia de posición

A través del parámetro IPp_target se transfiere cíclicamente un valor de referencia.

- Ajuste el valor de referencia deseado a través del parámetro IPp_target.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPp_target</td>
<td>Valor de referencia de posición para el modo de funcionamiento Interpolated Position Disponible con la versión de firmware ≥ V01.08.</td>
<td>-</td>
<td>2147483648</td>
<td>-2147483647</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 60C1:1h, Modbus 7004</td>
</tr>
</tbody>
</table>
Sección 7.8
Modo de funcionamiento Homing

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopsis</td>
<td>278</td>
</tr>
<tr>
<td>Parametrización</td>
<td>280</td>
</tr>
<tr>
<td>Movimiento de referencia a un final de carrera</td>
<td>285</td>
</tr>
<tr>
<td>Movimiento de referencia al interruptor de referencia en dirección positiva</td>
<td>286</td>
</tr>
<tr>
<td>Movimiento de referencia al interruptor de referencia en dirección negativa</td>
<td>287</td>
</tr>
<tr>
<td>Movimiento de referencia en el pulso índice</td>
<td>288</td>
</tr>
<tr>
<td>Establecimiento de medida</td>
<td>289</td>
</tr>
<tr>
<td>Opciones de ajuste adicionales</td>
<td>290</td>
</tr>
</tbody>
</table>
Sinopsis

Designación

En el modo de funcionamiento Homing (referenciado) se crea una referencia entre una posición mecánica del motor y la posición real.

Un referencia entre la posición mecánica y la posición real del motor se consigue mediante un movimiento de referencia o un establecimiento de medida.

Mediante un movimiento de referencia o un establecimiento de medida se referencia el motor y se valida el punto cero.

El punto cero es el punto de referencia para todos los movimientos absolutos en el modo de funcionamiento Profile Position.

Métodos

Un movimiento se puede llevar a cabo aplicando diferentes métodos:

- **Movimiento de referencia a un final de carrera**
 En el movimiento de referencia a un final de carrera se realiza un movimiento hasta el final de carrera positivo o el final de carrera negativo.
 Al alcanzar el final de carrera, el motor se detiene y se produce un movimiento de retorno hasta el punto de conmutación del final de carrera.
 Desde el punto de conmutación del final de carrera se efectúa un movimiento al siguiente pulso índice del motor o a una distancia parametrizable con respecto al punto de conmutación.
 La posición del pulso índice o la posición de la distancia parametrizable con respecto al punto de conmutación es el punto de referencia.

- **Movimiento de referencia al interruptor de referencia**
 En el movimiento de referencia al interruptor de referencia se realiza un movimiento hasta el interruptor de referencia.
 Al alcanzar el interruptor de referencia, el motor se detiene y se produce un movimiento hasta un punto de conmutación del interruptor de referencia.
 Desde el punto de conmutación del interruptor de referencia se efectúa un movimiento al siguiente pulso índice del motor o a una distancia parametrizable con respecto al punto de conmutación.
 La posición del pulso índice o la posición de la distancia parametrizable con respecto al punto de conmutación es el punto de referencia.

- **Movimiento de referencia en el pulso índice**
 En el movimiento de referencia en el pulso índice se realiza un movimiento desde la posición real hasta el siguiente pulso índice. La posición del pulso índice es el punto de referencia.

- **Establecimiento de medida**
 Con el establecimiento de medida, la posición actual del motor se ajusta a un valor de posición deseado.

Un movimiento de referencia debe finalizarse sin interrupción para que el nuevo punto cero sea válido. Si el movimiento de referencia se hubiera interrumpido, deberá iniciarse de nuevo.

Los motores con encoder Multiturn suministran un punto cero válido en el momento de conectarlos.

Iniciar modo de funcionamiento

El modo de funcionamiento se inicia a través del bus de campo. La descripción está incluida en el manual del bus de campo.
Mensajes de estado

Mediante el bus de campo y las salidas de señal se dispone de información sobre el estado de funcionamiento y sobre el movimiento en curso.

La descripción acerca de la información sobre el estado de funcionamiento y sobre el movimiento en curso a través del bus de campo está incluida en el manual del bus de campo.

En la siguiente tabla se muestra un resumen de las salidas de señal:

<table>
<thead>
<tr>
<th>Salida de señal</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ0</td>
<td>"No Fault"</td>
</tr>
<tr>
<td></td>
<td>muestra los estados de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>4 Ready To Switch On, 5 Switched On y</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
<tr>
<td>DQ1</td>
<td>"Active"</td>
</tr>
<tr>
<td></td>
<td>muestra el estado de funcionamiento</td>
</tr>
<tr>
<td></td>
<td>6 Operation Enabled</td>
</tr>
</tbody>
</table>

Se puede adaptar el ajuste de fábrica de las salidas de señal, véase el capítulo Entradas y salidas digitales (véase página 209).

Finalizar modo de funcionamiento

El modo de funcionamiento finaliza en caso de parada del motor y una de las siguientes condiciones:

- Homing correcto
- Interrupción mediante "Halt" o "Quick Stop"
- Interrupción debido a un error
Parametrización

Sinopsis

La siguiente imagen muestra un resumen de los parámetros configurables:
Resumen de parámetros ajustables

Ajustar final de carrera e interruptor de referencia
Los finales de carrera y el interruptor de referencia deben estar ajustados de acuerdo con los requerimientos, véase el capítulo Finales de carrera (véase página 319) y el capítulo Interruptor de referencia (véase página 320).
Elección del método

Con el modo de funcionamiento Homing se elabora una referencia de medida absoluta de la posición del motor respecto a una posición de eje definida. Para el modo de funcionamiento Homing existen diferentes métodos que se seleccionan a través del parámetro HMmethod.

Con el parámetro HMprefmethod se memoriza permanentemente en la EEprom el método preferente. Si se hubiera determinado en este parámetro el método preferente, este método también se ejecutará en el modo de funcionamiento Homing tras desconectar y conectar de nuevo el equipo. El valor a introducir corresponde al valor del parámetro HMmethod.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMmethod</td>
<td></td>
<td>Método de homing</td>
<td></td>
<td></td>
<td>INT16*</td>
<td>CANopen 6098:0h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: LIMN con pulso índice</td>
<td></td>
<td>1</td>
<td>R/W</td>
<td>Modbus 6936</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: LIMP con pulso índice</td>
<td></td>
<td>18</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7: REF+ con pulso índice, inv., exterior</td>
<td></td>
<td>35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8: REF+ con pulso índice, inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9: REF+ con pulso índice, no inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10: REF+ con pulso índice, no inv., exterior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11: REF- con pulso índice, inv., exterior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12: REF- con pulso índice, inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13: REF- con pulso índice, no inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14: REF- con pulso índice, no inv., exterior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17: LIMN</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18: LIMP</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23: REF+, inv., exterior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24: REF+, inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25: REF+, no inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26: REF+, no inv., exterior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27: REF-, inv., exterior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28: REF-, inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>29: REF-, no inv., interior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30: REF-, no inv., exterior</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33: Pulso índice, dirección neg.</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34: Pulso índice dirección pos.</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35: Establecimiento de medida</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Abreviaturas:
- REF+: Movimiento de búsqueda en dirección pos.
- REF-: Movimiento de búsqueda en dirección neg.
- inv.: Invertir la dirección en el interruptor
- no inv.: No invertir la dirección en el interruptor
- exterior: Distancia pulso índice fuera del interruptor
- interior: Distancia pulso índice dentro del interruptor

Los ajustes modificados se aceptan de inmediato.

<table>
<thead>
<tr>
<th>HMprefmethod</th>
<th>Nombre HMI</th>
<th>Método preferente para Homing</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>a P - h a P - h</td>
<td></td>
<td>Método preferente para Homing</td>
<td></td>
<td></td>
<td>INT16</td>
<td>CANopen 3028:An</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td>R/W</td>
<td>Modbus 10260</td>
</tr>
</tbody>
</table>

- * Tipo de datos para CANopen: INT8
Ajustar la distancia al punto de conmutación

En un movimiento de referencia sin pulso índice se tiene que parametrizar una distancia al punto de conmutación del final de carrera o del interruptor de referencia. Mediante el parámetro **HMdis** se ajusta la distancia al punto de conmutación del final de carrera o del interruptor de referencia.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMdis</td>
<td>Distancia desde el punto de conmutación. La distancia desde el punto de conmutación se define como punto de referencia. El parámetro sólo se aplica en un movimiento de referencia sin pulso índice. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_p</td>
<td>1</td>
<td>200</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
</tr>
</tbody>
</table>

Definir punto cero

Con el parámetro **HMp_home** se puede indicar un valor de posición deseado, el cual será fijado en el punto de referencia después de llevar a cabo el movimiento de referencia. Mediante el valor de posición deseado se define el punto cero en el punto de referencia.

Si se transfiere el valor 0, el punto cero será el punto de referencia.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMp_home</td>
<td>Posición en el punto de referencia. Una vez llevado a cabo el movimiento de referencia, este valor de posición se establecerá automáticamente en el punto de referencia. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_p</td>
<td>-2147483648</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
</tr>
</tbody>
</table>
Ajustar monitorización

Usando los parámetros HMoutdis y HMsrchdis se puede activar una monitorización de los finales de carrera y los interruptores de referencia.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menú HMI</td>
<td>Nombre HMI</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
</tr>
<tr>
<td>HMoutdis</td>
<td>Máximo recorrido para buscar el punto de conmutación</td>
<td>usr_p</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td></td>
<td>0 : Supervisión del recorrido de búsqueda inactiva</td>
<td></td>
<td>>0: Máximo recorrido</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tras detectar el interruptor, el variador comienza a buscar el punto de conmutación definido. Si no se encuentra el punto de conmutación definido tras recorrer el trayecto aquí especificado, se detectará un error y el movimiento de referencia se cancelará. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMsrchdis</td>
<td>Máximo recorrido de búsqueda tras sobrepasar el interruptor</td>
<td>usr_p</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td></td>
<td>0 : Supervisión del recorrido de búsqueda inactiva</td>
<td></td>
<td>>0: Recorrido de búsqueda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dentro de este recorrido de búsqueda el interruptor debe activarse de nuevo, de lo contrario se produce una interrupción del movimiento de referencia. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consultar la distancia de posición

A través del parámetro puede consultarse la distancia de posición entre el punto de conmutación y el pulso índice.

Para un movimiento de referencia reproducible con pulso índice, la distancia del punto de conmutación al pulso índice debe ser >0,05 revoluciones.

Si el pulso índice se encuentra demasiado próximo al punto de conmutación, se pueden desplazar mecánicamente el final de carrera o el interruptor de referencia.

Alternativamente también se puede desplazar la posición del pulso índice por medio del parámetro ENC_pabsusr, véase el capítulo Ajustar los parámetros para el encoder (véase página 157).

Nombre de parámetro | Menú HMI | Nombre HMI | Designación |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_HMdisREFtoIDX Usr</td>
<td></td>
<td></td>
<td>Distancia del punto de conmutación al pulso índice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Permite comprobar la distancia que hay entre el pulso índice y el punto de conmutación, sirviendo de criterio para saber si se puede reproducir o no el movimiento de referencia con pulso índice. Disponible con la versión de firmware ≥ V01.05.</td>
</tr>
</tbody>
</table>

A través del parámetro _HMdisREFtoIDX Usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMv</td>
<td></td>
<td></td>
<td>Velocidad de destino para la búsqueda del interruptor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>El valor se limita internamente al ajuste del parámetro en RAMP_v_max. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMv_out</td>
<td></td>
<td></td>
<td>Velocidad de destino para movimiento de abandono</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>El valor se limita internamente al ajuste del parámetro en RAMP_v_max. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
</tr>
</tbody>
</table>

Adaptación del perfil de movimientos para la velocidad

La parametrización del perfil de movimiento para la velocidad (véase página 293) puede adaptarse.
Movimiento de referencia a un final de carrera

En el siguiente gráfico se muestra un movimiento de referencia a un final de carrera.

Movimiento de referencia a un final de carrera

1. Movimiento a un final de carrera con velocidad HM_v
2. Movimiento al punto de conmutación del final de carrera con velocidad HM_{v_out}
3. Movimiento al pulso índice o movimiento a la distancia al punto de conmutación con velocidad HM_{v_out}

Tipo A

Método 1: Movimiento al pulso índice.
Método 17: Movimiento a la distancia al punto de conmutación

Tipo B

Método 2: Movimiento al pulso índice.
Método 18: Movimiento a la distancia al punto de conmutación
Movimiento de referencia al interruptor de referencia en dirección positiva

En el gráfico siguiente se muestra un movimiento de referencia al interruptor de referencia en dirección positiva.

1. Movimiento al interruptor de referencia con velocidad HMv
2. Movimiento al punto de conmutación del interruptor de referencia con velocidad HMv_{out}
3. Movimiento al pulso índice o movimiento a la distancia al punto de conmutación con velocidad HMv_{out}

Tipo A

Método 7: Movimiento al pulso índice.
Método 23: Movimiento a la distancia al punto de conmutación

Tipo B

Método 8: Movimiento al pulso índice.
Método 24: Movimiento a la distancia al punto de conmutación

Tipo C

Método 9: Movimiento al pulso índice.
Método 25: Movimiento a la distancia al punto de conmutación

Tipo D

Método 10: Movimiento al pulso índice.
Método 26: Movimiento a la distancia al punto de conmutación
Movimiento de referencia al interruptor de referencia en dirección negativa

En el siguiente gráfico se muestra un movimiento de referencia al interruptor de referencia en dirección negativa.

Movimiento al interruptor de referencia con velocidad iHV_{mv}

Movimiento al punto de conmutación del interruptor de referencia con velocidad iHV_{out}

Movimiento al pulso índice o movimiento a la distancia al punto de conmutación con velocidad iHV_{out}

Tipo A

Método 11: Movimiento al pulso índice.

Método 27: Movimiento a la distancia al punto de conmutación

Tipo B

Método 12: Movimiento al pulso índice.

Método 28: Movimiento a la distancia al punto de conmutación

Tipo C

Método 13: Movimiento al pulso índice.

Método 29: Movimiento a la distancia al punto de conmutación

Tipo D

Método 14: Movimiento al pulso índice.

Método 30: Movimiento a la distancia al punto de conmutación
Movimiento de referencia en el pulso índice

En el siguiente gráfico se muestra un movimiento de referencia al pulso índice. Movimiento de referencia en el pulso índice

1. Movimiento al pulso índice con velocidad HMv_{out}.
Estados de funcionamiento y modos de funcionamiento

Establecimiento de medida

Designación

Por medio del establecimiento de medida, la posición actual se ajusta al valor de posición del parámetro HMp_setP. Así se define también el punto cero.

Un establecimiento de medida solo se puede llevar a cabo estando parado el motor. Se mantiene una desviación de posición activa, que puede ser compensada por el controlador de posición incluso después del establecimiento de medida.

Ajustar posición de establecimiento de medida

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMp_setP</td>
<td></td>
<td>Posición de establecimiento de medida</td>
<td></td>
<td></td>
<td>Posición para modo de funcionamiento Homing, método 35. Los ajustes modificados se aceptan de inmediato.</td>
<td>usr_p</td>
<td>0</td>
<td>INT32</td>
</tr>
</tbody>
</table>

Valor de ejemplo

Posicionamiento en 4000 unidades de usuario con establecimiento de medida

2. Por medio del establecimiento de medida a 0, la posición actual se ajusta al valor de posición 0 y, simultáneamente, se define el nuevo punto cero.
Opciones de ajuste adicionales

Se pueden usar las siguientes funciones para el procesamiento del valor de destino:
- Capítulo Limitación de tirones (véase página 295)
- Capítulo Interrumpir el movimiento con Parada (véase página 296)
- Capítulo Detener movimiento con Quick Stop (véase página 298)
- Capítulo Limitación de la velocidad mediante entradas de señales (véase página 300)
- Capítulo Limitación de la corriente mediante entradas de señales (véase página 301)
- Capítulo Establecer la salida de señal mediante parámetro (véase página 303)
- Capítulo Registro de posición por entrada de señal

Se pueden usar las siguientes funciones para la monitorización del movimiento:
- Capítulo Final de Carrera (véase página 319)
- Capítulo Interruptor de referencia (véase página 320)
- Capítulo Final de carrera de software (véase página 321)
- Capítulo Desviación de posición debida a la carga (error de seguimiento) (véase página 323)
- Capítulo Parada del motor y dirección de movimiento (véase página 328)
- Capítulo Ventana de parada (véase página 331)
- Capítulo Registro de posición (véase página 333)
- Capítulo Ventana de desviación de posición (véase página 339)
- Capítulo Ventana de desviación de velocidad (véase página 341)
- Capítulo Umbral de velocidad (véase página 343)
- Capítulo Umbral de corriente (véase página 345)
Capítulo 8
Funciones para el funcionamiento

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Funciones para el procesamiento del valor de destino</td>
<td>292</td>
</tr>
<tr>
<td>8.2</td>
<td>Funciones para monitorizar el movimiento</td>
<td>318</td>
</tr>
<tr>
<td>8.3</td>
<td>Funciones para monitorizar señales internas del equipo</td>
<td>351</td>
</tr>
</tbody>
</table>
Sección 8.1
Funciones para el procesamiento del valor de destino

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil de movimientos para la velocidad</td>
<td>293</td>
</tr>
<tr>
<td>Limitación de tirones</td>
<td>295</td>
</tr>
<tr>
<td>Interrumpir el movimiento con Parada</td>
<td>296</td>
</tr>
<tr>
<td>Detener movimiento con Quick Stop</td>
<td>298</td>
</tr>
<tr>
<td>Limitación de la velocidad mediante entradas de señales</td>
<td>300</td>
</tr>
<tr>
<td>Limitación de la corriente mediante entradas de señales</td>
<td>301</td>
</tr>
<tr>
<td>Zero Clamp</td>
<td>302</td>
</tr>
<tr>
<td>Establecer la salida de señal mediante parámetro</td>
<td>303</td>
</tr>
<tr>
<td>Iniciar movimiento con entrada de señal</td>
<td>304</td>
</tr>
<tr>
<td>Registro de posición a través de entrada de señal (perfil específico del fabricante)</td>
<td>305</td>
</tr>
<tr>
<td>Registro de posición a través de entrada de señal (perfil DS402)</td>
<td>308</td>
</tr>
<tr>
<td>Movimiento relativo tras Capture (RMAC)</td>
<td>312</td>
</tr>
<tr>
<td>Compensación de juego</td>
<td>316</td>
</tr>
</tbody>
</table>
Perfil de movimientos para la velocidad

La posición destino y la velocidad de destino son variables de entrada que introduce el usuario. A partir de esas variables de entrada se calcula un perfil de movimientos para la velocidad.

El perfil de movimiento para la velocidad se compone de una aceleración, una deceleración y una velocidad máxima.

Como forma de rampa se dispone de una rampa lineal para las dos direcciones del movimiento.

Disponibilidad

La disponibilidad del perfil de movimiento para la velocidad depende del modo de funcionamiento.

El perfil de movimientos para la velocidad está permanentemente activo en los siguientes modos de funcionamiento:
- Jog
- Profile Position
- Homing

El perfil de movimiento para la velocidad puede activarse y desactivarse en los siguientes modos de funcionamiento:
- Profile Velocity

El perfil de movimientos para la velocidad no está disponible en los siguientes modos de funcionamiento:
- Profile Torque
- Interpolated Position

Pendiente de la rampa

La pendiente de rampa determina la variación de velocidad del motor por unidad de tiempo. La pendiente de rampa se puede ajustar para la aceleración y la deceleración.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMP_v_enable</td>
<td>Activación del perfil de movimientos para la velocidad</td>
<td>-</td>
<td>0 / Profile Off: Perfil desactivado</td>
<td>1 / Profile On: Perfil activado</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 3006:2Bh, Modbus 1622</td>
</tr>
</tbody>
</table>

0198441113758 09/2017 293
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMP_v_max</td>
<td>Máxima velocidad del perfil de movimientos para la velocidad</td>
<td>usr_v</td>
</tr>
<tr>
<td></td>
<td>Si en uno de estos modos de funcionamiento se ajusta una velocidad de referencia superior, se produce automáticamente una limitación a RAMP_v_max. De esta forma es posible realizar con mayor facilidad una puesta en marcha con velocidad limitada. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>UINT32</td>
</tr>
<tr>
<td></td>
<td>RAMP_v_acc</td>
<td>Aceleración del perfil de movimientos para la velocidad</td>
</tr>
<tr>
<td></td>
<td>RAMP_v_dec</td>
<td>Deceleración del perfil de movimientos para la velocidad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13200</td>
<td>2147483647</td>
</tr>
<tr>
<td>1</td>
<td>600</td>
<td>2147483647</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI Nombre HMI</th>
<th>Designación</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMP_v_max</td>
<td>Designación</td>
<td>usr_v</td>
<td>UINT32</td>
</tr>
<tr>
<td></td>
<td>Ajuste de fábrica</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td>Persistente</td>
<td>-</td>
<td>Experto</td>
</tr>
<tr>
<td></td>
<td>Dirección de parámetro vía bus de campo</td>
<td>CANopen 607F:0h Modbus 1554</td>
<td></td>
</tr>
<tr>
<td>RAMP_v_acc</td>
<td>Ajuste de fábrica</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td>Persistente</td>
<td>-</td>
<td>Experto</td>
</tr>
<tr>
<td></td>
<td>Dirección de parámetro vía bus de campo</td>
<td>CANopen 6083:0h Modbus 1556</td>
<td></td>
</tr>
<tr>
<td>RAMP_v_dec</td>
<td>Ajuste de fábrica</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td>Persistente</td>
<td>-</td>
<td>Experto</td>
</tr>
<tr>
<td></td>
<td>Dirección de parámetro vía bus de campo</td>
<td>CANopen 6084:0h Modbus 1558</td>
<td></td>
</tr>
</tbody>
</table>
Limitación de tirones

Designación

Con la limitación de tirones se alisan cambios repentinos en la aceleración, lográndose una transición más suave y casi sin tirones.

![Gráfico de velocidad contra tiempo](image)

Disponibilidad

La limitación de tirones está disponible en los siguientes modos de funcionamiento:

- Jog
- Profile Position
- Homing

Ajustes

La limitación de tirones se puede activar y ajustar mediante el parámetro `RAMP_v_jerk`.

Nombre de parámetro Menú HMI Nombre HMI	Designación	Unidad	Valor mínimo	Ajuste de fábrica Valor máximo	Tipo de dato	Persistente	Experto	Dirección de parámetro vía bus de campo	
`RAMP_v_jerk`	Limitación de tirones del perfil de movimientos para la velocidad 0 / Off / oFF: Desactivado 1 / 1 / 1: 1 ms 2 / 2 / 2: 2 ms 4 / 4 / 4: 4 ms 8 / 8 / 8: 8 ms 16 / 16 / 16: 16 ms 32 / 32 / 32: 32 ms 64 / 64 / 64: 64 ms 128 / 128 / 128: 128 ms El ajuste solo es posible con el modo de funcionamiento inactivo (x_end=1). Los ajustes modificados se aceptan durante el siguiente movimiento del motor.	ms	0	128	UINT16	R/W	per.	-	CANopen 3006:Dh Modbus 1562
Interrumpir el movimiento con Parada

Con Parada se interrumpe el movimiento actual y puede volver a accionarse. Un Halt puede activarse a través de una entrada de señal digital o de un comando de bus de campo. Para poder interrumpir un movimiento mediante una entrada de señal, la función de entrada de señal "Halt" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209). El movimiento puede ser interrumpido con 2 tipos de deceleración diferentes.

- Deceleración vía rampa de deceleración
- Deceleración vía rampa de par

Ajustar el tipo de deceleración

El tipo de deceleración se ajusta por medio del parámetro LIM_HaltReaction.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM_HaltReaction</td>
<td>Código de opción Parada</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>INT16</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 / Deceleration Ramp</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3 / Torque Ramp</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ajustar rampa de deceleración

La rampa de deceleración se ajusta con el parámetro Ramp_v_dec a través del perfil de movimiento para la velocidad, véase el capítulo Perfil de movimiento para la velocidad (véase página 293).
Ajustar rampa de par

La rampa de par se ajusta usando el parámetro `LIM_I_maxHalt`.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LIM_I_maxHalt</code></td>
<td>Corriente para parada</td>
<td>A<sub> rms </sub></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Este valor se limita únicamente mediante el valor mínimo y máximo del rango de parámetro (no se produce una limitación del valor por parte del motor/etapa de potencia).

En parada, la limitación de la corriente (_Imax_act) se corresponde con el menor de los siguientes valores:
- `LIM_I_maxHalt`
- `_M_I_max`
- `_PS_I_max`

En caso de parada también se tienen en cuenta otras limitaciones de la corriente resultantes de la monitorización I²t.

Predeterminado: `_PS_I_max` con frecuencia PWM de 8 kHz y tensión de red de 230/480 V
En pasos de 0,01 A_{rms}.

Los ajustes modificados se aceptan de inmediato.
Detener movimiento con Quick Stop

Con Quick Stop se detiene el movimiento actual.
Un Quick Stop puede ser activado por un error de la clase 1 y 2 ó por un comando de bus de campo.
El movimiento puede ser detenido con 2 tipos diferentes de deceleración.

- Deceleración vía rampa de deceleración
- Deceleración vía rampa de par

De forma adicional puede ajustarse a qué estado de funcionamiento debe cambiarse tras la deceleración:

- Cambio al estado de funcionamiento 9 Fault
- Cambio al estado de funcionamiento 7 Quick Stop Active

Ajustar el tipo de deceleración

El tipo de deceleración se ajusta por medio del parámetro LIM_QStopReact.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM_QStopReact</td>
<td>Código de opción Quick Stop</td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>CANopen 3006:18h, Modbus 1584</td>
</tr>
</tbody>
</table>

-2 / Torque ramp (Fault): Utilizar la rampa de par y cambiar al estado de funcionamiento 9 Fault
-1 / Deceleration Ramp (Fault): Utilizar la rampa de deceleración y cambiar al estado de funcionamiento 9 Fault
6 / Deceleration ramp (Quick Stop): Utilizar la rampa de deceleración y permanecer en el estado de funcionamiento 7 Quick Stop
7 / Torque ramp (Quick Stop): Utilizar la rampa de par y permanecer en el estado de funcionamiento 7 Quick Stop

Tipo de deceleración para Quick Stop.

Ajuste para la rampa de deceleración con el parámetro RAMPquickstop.
Ajuste para la rampa de momentos con el parámetro LIM_I_maxQSTP.
Si ya se ha activado una rampa de deceleración no se puede escribir el parámetro. Los ajustes modificados se aceptan de inmediato.

Ajustar rampa de deceleración

La rampa de deceleración se ajusta usando el parámetro RAMPquickstop.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMPquickstop</td>
<td>Rampa de deceleración para Quick Stop Rampa de deceleración para un stop de software o un error de clase 1 ó 2. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td>usu_a</td>
<td></td>
<td>UINT32</td>
<td>CANopen 3006:12h, Modbus 1572</td>
</tr>
</tbody>
</table>

1 6000 2147483647 | INT32 |
Ajustar rampa de par

La rampa de par se ajusta usando el parámetro `LIM_I_maxQSTP`.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LIM_I_maxQSTP</code></td>
<td>Corriente para Quick Stop</td>
<td>A_{\text{rms}}</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3011:D_{h} Modbus 4378</td>
</tr>
<tr>
<td></td>
<td>Este valor se limita únicamente mediante el valor mínimo y máximo del rango de parámetro (no se produce una limitación del valor por parte del motor/etapa de potencia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En Quick Stop, la limitación de la corriente (I{\text{max,act}}) se corresponde con el menor de los siguientes valores:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <code>LIM_I_{maxQSTP}</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <code>_M_I_{max}</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <code>_PS_I_{max}</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En caso de Quick Stop también se tienen en cuenta otras limitaciones de la corriente resultantes de la monitorización I2t.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predeterminado: <code>_PS_I_{max}</code> con frecuencia PWM de 8 kHz y tensión de red de 230/480 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A_{\text{rms}}.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limitación de la velocidad mediante entradas de señales

Limitación mediante entrada de señal digital

Mediante una entrada de señal digital se puede limitar la velocidad a un valor determinado. A través del parámetro IO_v_limit se ajuste la limitación de la velocidad.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO_v_limit</td>
<td>Limitación de velocidad vía entrada Mediante una entrada digital se puede activar una limitación de la velocidad. En el modo de funcionamiento Profile Torque, la velocidad mínima se limita internamente a 100 min⁻¹. Los ajustes modificados se aceptan de inmediato.</td>
<td>usr_v</td>
<td>0</td>
<td>10</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W persistente</td>
</tr>
</tbody>
</table>

Para poder limitar la velocidad mediante una entrada de señal digital, la función de entrada de señal "Velocity Limitation" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).
Limitación de la corriente mediante entradas de señales

Limitación mediante entrada de señal digital

Mediante una entrada de señal digital se puede limitar la corriente a un valor determinado.

A través del parámetro `IO_I_limit` se ajusta la limitación de la corriente.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>IO_I_limit</code></td>
<td>Limitación de la corriente vía entrada</td>
<td>A<sub>ms</sub></td>
<td>0,00</td>
<td>0,20</td>
<td>300,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3006:27h, Modbus 1614</td>
</tr>
</tbody>
</table>

Para poder limitar la corriente mediante una entrada de señal digital, la función de entrada de señal "Current Limitation" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).
Zero Clamp

Designación
El motor puede pararse a través de una entrada de señal digital. Para ello, la velocidad del motor debe ser inferior a un valor de velocidad parametrizable.

Disponibilidad
La función de entrada de señal "Zero Clamp" está disponible en los siguientes modos de funcionamiento:
- Profile Velocity

Ajustes
Las velocidades de destino por debajo del valor de velocidad parametrizable se interpretan como "cero".
La función de entrada de señal "Zero Clamp" tiene una histéresis del 20%.
A través del parámetro MON_v_zeroclamp se ajusta el valor de velocidad.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_v_zeroclamp</td>
<td>Limitación de velocidad para Zero Clamp</td>
<td>usr_v</td>
<td>0</td>
<td>10</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td></td>
<td>CANopen 3006:28h Modbus 1616</td>
</tr>
<tr>
<td></td>
<td>Zero Clamp sólo es posible cuando el valor de referencia de velocidad está por debajo del valor límite de la velocidad para Zero Clamp. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para poder parar el motor a través de una entrada de señal digital, la función de entrada de señal “Zero Clamp” debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).
Establecer la salida de señal mediante parámetro

Las salidas de señales digitales pueden establecerse de manera arbitraria a través del bus de campo. Para poder establecer una salida de señal digital a través del parámetro, la función de entrada de señal "Freely Available" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).

Las salidas de señales digitales se establecen a través del parámetro \texttt{IO_DQ_set}.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{IO_DQ_set}</td>
<td>Activar salidas digitales directamente
Las salidas digitales solo pueden ajustarse directamente si la función de salida de señal se ha ajustado a "Available as required".
Asignación de bits:
Bit 0: DQ0
Bit 1: DQ1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 3008:11h Modbus 2082</td>
<td></td>
</tr>
</tbody>
</table>

0198441113758 09/2017

303
Iniciar movimiento con entrada de señal

Con la función de entrada de señal “Start Profile Positioning” se ajusta la señal de inicio del movimiento para el modo de funcionamiento Profile Position. El movimiento se llevará a cabo cuando la entrada digital tenga flanco ascendente.
Registro de posición a través de entrada de señal (perfil específico del fabricante)

La posición del motor se puede registrar en una entrada Capture en el momento que llegue una señal.

Número de las entradas Capture

El número de las entradas Capture depende de la versión de hardware:

- Con la versión de hardware ≥RS03:
 - 2 entradas Capture: DI0/CAP1 y DI1/CAP2
- Con la versión de hardware <RS03:
 - 1 entrada Capture: DI0/CAP1

Elección del método

La posición del motor se puede registrar aplicando 2 métodos diferentes:

- Registro único de la posición del motor
 Registro único significa que la posición del motor se registra con el primer flanco.
- Registro continuo de la posición del motor
 Registro continuo significa que la posición del motor se registra de nuevo con cada flanco. Entonces se pierde el valor antes registrado.

La posición del motor se puede registrar con flanco ascendente o descendente en la entrada Capture.

Precisión

Debido a la fluctuación de 2 µs, a una velocidad de 3000 min⁻¹ se produce una imprecisión en el registro de la posición de aprox. 1,6 unidades de usuario.

\[(3000 \text{ min}^{-1} = \frac{(3000 \times 16384)}{(60 \times 10^6)} = 0,8 \text{ usu}_. \text{p}/\mu\text{s})\]

Con el ajuste de fábrica de la escala, 1,6 unidades de usuario corresponden a 0,035 °.

Durante la fase de aceleración y la fase de desaceleración la posición de motor registrada es menos exacta.

Ajustar el flanco

El flanco para el registro de posición se ajusta a través de los siguientes parámetros.

- Ajuste el flanco deseado a través de los parámetros Cap1Config y Cap2Config.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro via bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap1Config</td>
<td>Configuración entrada Capture 1 0 / Falling Edge: Registro de posición con flanco descendente 1 / Rising Edge: Registro de posición con flanco ascendente 2 / Both Edges: Registro de posición en ambos flancos Los ajustes modificados se aceptan de inmediato.</td>
<td>0 0 2</td>
<td>UINT16</td>
<td>CANopen 300A.2h Modbus 2564</td>
</tr>
<tr>
<td>Cap2Config</td>
<td>Configuración entrada Capture 2 0 / Falling Edge: Registro de posición con flanco descendente 1 / Rising Edge: Registro de posición con flanco ascendente Disponible con la versión de hardware ≥ RS03. Los ajustes modificados se aceptan de inmediato.</td>
<td>0 0 1</td>
<td>UINT16</td>
<td>CANopen 300A.3h Modbus 2566</td>
</tr>
</tbody>
</table>
Iniciar registro de posición

El registro de posición se inicia a través de los siguientes parámetros.

- Ajuste el método deseado a través de los parámetros `Cap1Activate` y `Cap2Activate`.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad valor mínimo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menú HMI</td>
<td>Cap1Activate</td>
<td>Valor máximo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre HMI</td>
<td>Entrada Capture 1 Arranque/Parada</td>
<td>-</td>
<td>UINT16</td>
<td>-</td>
<td>CANopen 300A:4h</td>
</tr>
<tr>
<td></td>
<td>0 / Capture Stop: Cancelar función de Captura</td>
<td>0</td>
<td>R/W</td>
<td>-</td>
<td>Modbus 2568</td>
</tr>
<tr>
<td></td>
<td>1 / Capture Once: Iniciar Capture única</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Capture Continuous: Iniciar Capture continuada</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Reserved: Reservado</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Reserved: Reservado</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Disponible con la versión de hardware ≥ RS03.

Los ajustes modificados se aceptan de inmediato.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad valor mínimo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menú HMI</td>
<td>Cap2Activate</td>
<td>Valor máximo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre HMI</td>
<td>Entrada Capture 2 Arranque/Parada</td>
<td>-</td>
<td>UINT16</td>
<td>-</td>
<td>CANopen 300A:5h</td>
</tr>
<tr>
<td></td>
<td>0 / Capture Stop: Cancelar función de Captura</td>
<td>0</td>
<td>R/W</td>
<td>-</td>
<td>Modbus 2570</td>
</tr>
<tr>
<td></td>
<td>1 / Capture Once: Iniciar Capture única</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Capture Continuous: Iniciar Capture continuada</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Reserved: Reservado</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Reserved: Reservado</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Disponible con la versión de hardware ≥ RS03.

Los ajustes modificados se aceptan de inmediato.

Mensajes de estado

Con el parámetro `_CapStatus` se indica el estado del registro.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad valor mínimo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menú HMI</td>
<td>_CapStatus</td>
<td>Valor máximo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre HMI</td>
<td>Estado de las entradas Capture</td>
<td>-</td>
<td>UINT16</td>
<td>-</td>
<td>CANopen 300A:1h</td>
</tr>
<tr>
<td></td>
<td>Acceso de lectura:</td>
<td>-</td>
<td>R/-</td>
<td>-</td>
<td>Modbus 2562</td>
</tr>
<tr>
<td></td>
<td>Bit 0: Efectuado el registro de posición mediante entrada CAP1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: Efectuado el registro de posición mediante entrada CAP2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Posición registrada

La posición registrada se indica con los siguientes parámetros.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_Cap1PosCons</td>
<td>Posición registrada de entrada Capture 1 (consistente)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300A:18h Modbus 2608</td>
</tr>
<tr>
<td></td>
<td>Posición registrada en el momento de la “Señal Captura”. Después del “Establecimiento” o “Referenciado”, la posición registrada se calcula de nuevo. Leyendo el parámetro ",Cap1CountCons", este parámetro se actualiza y se bloquea contra cambios. De este modo, ambos valores de parámetro permanecen consistentes. Disponible con la versión de firmware ≥ V01.12.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Cap1CountCons</td>
<td>Contador de eventos de entrada Capture 1 (consistente)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300A:17h Modbus 2606</td>
</tr>
<tr>
<td></td>
<td>Cuenta las incidencias de Capture. El contador de eventos se restablece al activar la entrada Capture 1. Leyendo este parámetro, el parámetro ",Cap1PosCons" se actualiza y se bloquea contra cambios. De este modo, ambos valores de parámetro permanecen consistentes. Disponible con la versión de firmware ≥ V01.12.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Cap2PosCons</td>
<td>Posición registrada de entrada Capture 2 (consistente)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300A:1Ah Modbus 2612</td>
</tr>
<tr>
<td></td>
<td>Posición registrada en el momento de la “Señal Captura”. Después del “Establecimiento” o “Referenciado”, la posición registrada se calcula de nuevo. Leyendo el parámetro ",Cap2CountCons", este parámetro se actualiza y se bloquea contra cambios. De este modo, ambos valores de parámetro permanecen consistentes. Disponible con la versión de hardware ≥ RS03. Disponible con la versión de firmware ≥ V01.12.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Cap2CountCons</td>
<td>Contador de eventos de entrada Capture 2 (consistente)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300A:19h Modbus 2610</td>
</tr>
<tr>
<td></td>
<td>Cuenta las incidencias de Capture. El contador de eventos se restablece al activar la entrada Capture 2. Leyendo este parámetro, el parámetro ",Cap2PosCons" se actualiza y se bloquea contra cambios. De este modo, ambos valores de parámetro permanecen consistentes. Disponible con la versión de hardware ≥ RS03. Disponible con la versión de firmware ≥ V01.12.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Registro de posición a través de entrada de señal (perfil DS402)

La posición del motor se puede registrar en una entrada Capture en el momento que llegue una señal.

Número de las entradas Capture

El número de las entradas Capture depende de la versión de hardware:
- Con la versión de hardware ≥RS03:
 2 entradas Capture: DI0/CAP1 y DI1/CAP2
- Con la versión de hardware <RS03:
 1 entrada Capture: DI0/CAP1

Elección del método

La posición del motor se puede registrar aplicando 2 métodos diferentes:
- Registro único de la posición del motor
 Registro único significa que la posición del motor se registra con el primer flanco.
- Registro continuo de la posición del motor
 Registro continuo significa que la posición del motor se registra de nuevo con cada flanco. Entonces se pierde el valor antes registrado.

La posición del motor se puede registrar con flanco ascendente o descendente en la entrada Capture.

Precisión

Debido a la fluctuación de 2 µs, a una velocidad de 3000 min⁻¹ se produce una imprecisión en el registro de la posición de aprox. 1,6 unidades de usuario.

\[
(3000 \text{ min}^{-1} = \frac{3000\times16384}{60\times10^6} = 0,8 \text{ usr} _{\mu}\text{s})
\]

Con el ajuste de fábrica de la escala, 1,6 unidades de usuario corresponden a 0,035 °.

Durante la fase de aceleración y la fase de desaceleración la posición de motor registrada es menos exacta.

Ajustar e iniciar el registro de posición

A través de los siguientes parámetros se ajusta e inicia el registro de posición.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Unidad Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>TouchProbeFct</td>
<td>Función Touch Probe</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 60B8:0h Modbus 7028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIT</th>
<th>Valor 0</th>
<th>Valor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Desactivar entrada Capture 1</td>
<td>Activar entrada Capture 1</td>
</tr>
<tr>
<td>1</td>
<td>Registro único</td>
<td>Registro continuo</td>
</tr>
<tr>
<td>2-3</td>
<td>Reservado (debe ser 0)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Desactivar registro con flanco ascendente</td>
<td>Activar registro con flanco ascendente</td>
</tr>
<tr>
<td>5</td>
<td>Desactivar registro con flanco descendente</td>
<td>Activar registro con flanco descendente</td>
</tr>
<tr>
<td>6-7</td>
<td>Reservado (debe ser 0)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Desactivar entrada Capture 2</td>
<td>Activar entrada Capture 2</td>
</tr>
<tr>
<td>9</td>
<td>Registro único</td>
<td>Registro continuo</td>
</tr>
<tr>
<td>10-11</td>
<td>Reservado (debe ser 0)</td>
<td>-</td>
</tr>
</tbody>
</table>
NOTA: En el caso de la entrada Capture 2, la posición del motor solo puede registrarse con flanco ascendente o solo con flanco descendente. No es posible realizar un registro en ambos flancos.

Mensajes de estado

A través de los siguientes parámetros se indica el estado del registro.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_TouchProbeStat</td>
<td></td>
<td>Estado de Touch Probe</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 60B9:0h Modbus 7030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥V01.16.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIT</th>
<th>Valor 0</th>
<th>Valor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Entrada Capture 1 desactivada</td>
<td>Entrada Capture 1 activada</td>
</tr>
<tr>
<td>1</td>
<td>Entrada Capture 1, ningún valor registrado para flanco ascendente</td>
<td>Entrada Capture 1, valor registrado para flanco ascendente</td>
</tr>
<tr>
<td>2</td>
<td>Entrada Capture 1, ningún valor registrado para flanco descendente</td>
<td>Entrada Capture 1, valor registrado para flanco descendente</td>
</tr>
<tr>
<td>3-7</td>
<td>Reservado</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Entrada Capture 2 desactivada</td>
<td>Entrada Capture 2 activada</td>
</tr>
<tr>
<td>9</td>
<td>Entrada Capture 2, ningún valor registrado para flanco ascendente</td>
<td>Entrada Capture 2, valor registrado para flanco ascendente</td>
</tr>
<tr>
<td>10</td>
<td>Entrada Capture 2, ningún valor registrado para flanco descendente</td>
<td>Entrada Capture 2, valor registrado para flanco descendente</td>
</tr>
<tr>
<td>11-15</td>
<td>Reservado</td>
<td>-</td>
</tr>
</tbody>
</table>
Posición registrada

La posición registrada se indica con los siguientes parámetros.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_Cap1PosRisEdge</td>
<td>Posición registrada de entrada Capture 1 con flanco ascendente. Este parámetro contiene la posición registrada al producirse un flanco ascendente. Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo. Disponible con la versión de firmware ≥V01.16.</td>
<td>usr_p</td>
<td>INT32</td>
<td>R-</td>
<td></td>
<td>CANopen 60BA:0h Modbus 2634</td>
<td></td>
</tr>
<tr>
<td>_Cap1CntRise</td>
<td>Entrada Capture 1 contador de eventos con flancos ascendentes. Cuenta los eventos de Capture con flancos ascendentes. El contador de eventos se restablece al activar la entrada Capture 1. Disponible con la versión de firmware ≥V01.16.</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300A:2Bh Modbus 2646</td>
<td></td>
</tr>
<tr>
<td>_Cap1PosFallEdge</td>
<td>Posición registrada de entrada Capture 1 con flanco descendente. Este parámetro contiene la posición registrada al producirse un flanco descendente. Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo. Disponible con la versión de firmware ≥V01.16.</td>
<td>usr_p</td>
<td>INT32</td>
<td>R-</td>
<td></td>
<td>CANopen 60BB:0h Modbus 2636</td>
<td></td>
</tr>
<tr>
<td>_Cap1CntFall</td>
<td>Entrada Capture 1 contador de eventos con flancos descendentes. Cuenta los eventos de Capture con flancos descendentes. El contador de eventos se restablece al activar la entrada Capture 1. Disponible con la versión de firmware ≥V01.16.</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300A:2Ch Modbus 2648</td>
<td></td>
</tr>
<tr>
<td>_Cap2PosRisEdge</td>
<td>Posición registrada de entrada Capture 2 con flanco ascendente. Este parámetro contiene la posición registrada al producirse un flanco ascendente. Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo. Disponible con la versión de firmware ≥V01.16.</td>
<td>usr_p</td>
<td>INT32</td>
<td>R-</td>
<td></td>
<td>CANopen 60BC:0h Modbus 2638</td>
<td></td>
</tr>
<tr>
<td>_Cap2CntRise</td>
<td>Entrada Capture 2 contador de eventos con flancos ascendentes. Cuenta los eventos de Capture con flancos ascendentes. El contador de eventos se restablece al activar la entrada Capture 2. Disponible con la versión de firmware ≥V01.16.</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300A:2Dh Modbus 2650</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro Menú HMI Nombre HMI</td>
<td>Designación</td>
<td>Unidad Valor mínimo Ajuste de fábrica Valor máximo</td>
<td>Tipo de dato R/W Persistente Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Cap2PosFallEdge</td>
<td>Posición registrada de entrada Capture 2 con flanco descendente Este parámetro contiene la posición registrada al producirse un flanco descendente. Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo. Disponible con la versión de firmware ≥V01.16.</td>
<td>usr_p - - -</td>
<td>INT32 R/- - -</td>
<td>CANopen 60BD:0h Modbus 2640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Cap2CntFall</td>
<td>Entrada Capture 2 contador de eventos con flancos descendentes Cuenta los eventos de Capture con flancos descendentes. El contador de eventos se restablece al activar la entrada Capture 2. Disponible con la versión de firmware ≥V01.16.</td>
<td>- - - -</td>
<td>UINT16 R/- - -</td>
<td>CANopen 300A:2Eh Modbus 2652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_CapEventCounters</td>
<td>Entradas Capture 1 y 2 resumen de los contadores de eventos Este parámetro contiene los eventos de Capture contados. Bits 0 ... 3: _Cap1CntRise (4 bits menores) Bits 4 ... 7: _Cap1CntFall (4 bits menores) Bits 8 ... 11: _Cap2CntRise (4 bits menores) Bits 12 ... 15: _Cap2CntFall (4 bits menores) Disponible con la versión de firmware ≥V01.16.</td>
<td>- - - -</td>
<td>UINT16 R/- - -</td>
<td>CANopen 300A:2Fh Modbus 2654</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Movimiento relativo tras Capture (RMAC)

Designación

Con un movimiento relativo tras Capture (RMAC) se inicia, a través de una entrada de señal, un movimiento relativo a partir de un movimiento en curso. La posición destino y la velocidad pueden parametrizarse.

1. Movimiento con modo de funcionamiento ajustado (por ejemplo, Profile Velocity)
2. Inicio del movimiento relativo tras Capture con la función de entrada de señal Start Signal Of RMAC
3. El movimiento relativo tras Capture (RMAC) se ejecuta con velocidad sin modificar
3a. El movimiento relativo tras Capture (RMAC) se ejecuta con velocidad parametrizada
4. Posición de destino alcanzada

Disponibilidad

En los siguientes modos de funcionamiento puede iniciarse un movimiento relativo tras Capture (RMAC):
- Jog
- Profile Torque
- Profile Velocity
- Profile Position

Disponible con la versión de hardware ≥RS03.

Funciones de entrada de señal

La función de entrada de señal “Start Signal Of RMAC” es necesaria para poder iniciar el movimiento relativo.

La función de entrada de señal debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).
Indicación del estado

El estado se puede indicar mediante una salida de señal o mediante el bus de campo.

Para poder indicar el estado a través de una salida de señal, la función de salida de señal "RMAC Active Or Finished" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).

Para poder mostrar el estado a través del bus de campo, deben estar ajustados los bits de estado de los parámetros de estado, véase el capítulo Bits configurables de los parámetros de estado (véase página 347).

De forma adicional, el estado puede mostrarse a través de los parámetros _RMAC_Status y _RMAC_DetailStatus.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_RMAC_Status</td>
<td></td>
<td>Estado del movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3023:11h, Modbus 8994</td>
</tr>
<tr>
<td>_RMAC_DetailStatus</td>
<td></td>
<td>Estado detallado de movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3023:12h, Modbus 8996</td>
</tr>
</tbody>
</table>

Activar movimiento relativo tras Capture

Para que pueda iniciarse el movimiento relativo, el movimiento relativo tras Capture (RMAC) debe activarse.

A través del siguiente parámetro se activa el movimiento relativo tras Capture (RMAC):

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMAC_Activate</td>
<td></td>
<td>Activación del movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3023:Cn, Modbus 8984</td>
</tr>
</tbody>
</table>

De forma alternativa, el movimiento relativo tras Capture (RMAC) también puede activarse a través de la función de entrada de señal "Activate RMAC".
Valores de destino

A través de los siguientes parámetros pueden ajustarse la posición destino y la velocidad para el movimiento relativo.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMAC_Position</td>
<td></td>
<td>Posición destino del movimiento relativo tras Capture (RMAC)</td>
<td>Usr_p</td>
<td>0</td>
<td></td>
<td></td>
<td>INT32</td>
<td>CANopen 3023:Dh, Modbus 8986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los valores máximos/minimos dependen de:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Factor de escalada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Velocity</td>
<td></td>
<td>Velocidad del movimiento relativo tras Capture (RMAC)</td>
<td>Usr_v</td>
<td>0</td>
<td>0</td>
<td>2147483647</td>
<td>UINT32</td>
<td>CANopen 3023:Eh, Modbus 8988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor 0: Utilizar la velocidad actual del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor >0: El valor corresponde a la velocidad de destino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El valor se limita internamente al ajuste de RAMP_v_max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flanco para la señal de inicio

A través de los siguientes parámetros se ajusta el flanco en el que debe ejecutarse el movimiento relativo.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMAC_Edge</td>
<td></td>
<td>Flanco de la señal de Capture para el movimiento relativo tras Capture</td>
<td>Usr_16</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>CANopen 3023:10h, Modbus 8992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / Falling edge: Flanco descendente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / Rising edge: Flanco ascendente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reacción al sobrepasar la posición destino

En función de la velocidad, posición destino y rampa de deceleración ajustadas, el motor puede sobrepasar la posición destino.

A través de los siguientes parámetros se ajusta la reacción al sobrepasar la posición destino.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMAC_Response</td>
<td>Reacción al sobrepasar la posición destino</td>
<td>0 / Error Class 1: Clase de error 1: Sin movimiento a la posición destino 1 / No Movement To Target Position: Sin movimiento a la posición destino 2 / Movement To Target Position: Movimiento a la posición destino Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.10.</td>
<td>- 0 0 2</td>
<td>UINT16</td>
<td>R/W</td>
<td>Persistente Experto</td>
<td>CANopen 3023:Fh, Modbus 8990</td>
</tr>
</tbody>
</table>
Compensación de juego

Ajustando una compensación de juego se puede compensar un juego mecánico.

Ejemplo de un juego mecánico

Con la compensación de juego activada, el variador compensa automáticamente el juego mecánico en cada movimiento.

Disponibilidad

Disponible con la versión de firmware ≥V01.14.

La compensación de juego es posible en los siguientes modos de funcionamiento:

- Jog
- Profile Position
- Interpolated Position
- Homing

Parametrización

Para una compensación de juego debe ajustarse el tamaño del juego mecánico.

El tamaño del juego mecánico se ajusta en unidades de usuario mediante el parámetro BLSH_Position.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLSH_Position</td>
<td>Valor de posición para compensación de juego</td>
<td>usr_p</td>
<td>0</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Además se puede ajustar un tiempo de procesamiento. Con el tiempo de procesamiento se establece el espacio de tiempo en el que debe compensarse el juego mecánico.
El tiempo de procesamiento se ajusta mediante el parámetro `BLSH_Time`.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>BLSH_Time</code></td>
<td>Tiempo de procesamiento para compensación de juego</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>16383</td>
<td>UINT16</td>
<td>CANopen 3006:44h Modbus 1672</td>
</tr>
<tr>
<td></td>
<td>Valor 0: Compensación de juego inmediato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor >0: Tiempo de procesamiento para compensación de juego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia. Disponible con la versión de firmware ≥ V01.14.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activar compensación de juego

Para que pueda activarse una compensación de juego debe realizarse primero un movimiento en dirección positiva o negativa. La compensación de juego se activa mediante el parámetro `BLSH_Mode`.

- Efectúe un movimiento en dirección positiva o negativa. El movimiento debe efectuarse hasta que se haya movido la mecánica conectada al motor.
- Si se efectúa el movimiento en dirección positiva (valor de destino positivo), active la compensación de juego con el valor "OnAfterPositiveMovement".
- Si se efectúa el movimiento en dirección negativa (valor de destino negativo), active la compensación de juego con el valor "OnAfterNegativeMovement".

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>BLSH_Mode</code></td>
<td>Modo de procesamiento para compensación de juego</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>UINT16</td>
<td>CANopen 3006:41h Modbus 1666</td>
</tr>
<tr>
<td></td>
<td>0 / Off: La compensación de juego está desactivada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / OnAfterPositiveMovement: La compensación de juego está activada; el último movimiento se realizó en dirección negativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / OnAfterNegativeMovement: La compensación de juego está activada; el último movimiento se realizó en dirección positiva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.14.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sección 8.2
Funciones para monitorizar el movimiento

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final de carrera</td>
<td>319</td>
</tr>
<tr>
<td>Interruptor de referencia</td>
<td>320</td>
</tr>
<tr>
<td>Finales de carrera de software</td>
<td>321</td>
</tr>
<tr>
<td>Desviación de posición debida a la carga (error de seguimiento)</td>
<td>322</td>
</tr>
<tr>
<td>Desviación de la velocidad debida a la carga</td>
<td>326</td>
</tr>
<tr>
<td>Parada del motor y dirección de movimiento</td>
<td>328</td>
</tr>
<tr>
<td>Ventana de par</td>
<td>329</td>
</tr>
<tr>
<td>Velocity Window</td>
<td>330</td>
</tr>
<tr>
<td>Ventana de parada</td>
<td>331</td>
</tr>
<tr>
<td>Registro de posición</td>
<td>333</td>
</tr>
<tr>
<td>Ventana de desviación de posición</td>
<td>339</td>
</tr>
<tr>
<td>Ventana de desviación de velocidad</td>
<td>341</td>
</tr>
<tr>
<td>Umbral de velocidad</td>
<td>343</td>
</tr>
<tr>
<td>Umbral de corriente</td>
<td>345</td>
</tr>
<tr>
<td>Bits configurables de los parámetros de estado</td>
<td>347</td>
</tr>
</tbody>
</table>
Final de carrera

El uso de finales de carrera puede ofrecer una cierta protección contra peligros (por ejemplo golpe en el tope mecánico debido a valores de referencia incorrectos).

ADVERTENCIA

PÉRDIDA DEL CONTROL DE MANDO
- Instale finales de carrera si su análisis de riesgos indica que estos son necesarios en su aplicación.
- Asegúrese de que los finales de carrera están conectados correctamente.
- Asegúrese de que los finales de carrera están montados a una distancia del tope mecánico de forma que quede un recorrido de frenado suficiente.
- Asegure la parametrización y la función correctas de los finales de carrera.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Final de carrera

Con finales de carrera se puede supervisar un movimiento. Para la supervisión se puede usar un final de carrera positivo y un final de carrera negativo.

Cuando se activa el final de carrera positivo o negativo se para el movimiento. Se indica un mensaje de error y el estado de funcionamiento cambia a 7 Quick Stop Active.

El mensaje de error se puede reiniciar con "Fault Reset". El estado de funcionamiento vuelve a 6 Operation Enabled.

Se puede continuar con el movimiento, pero sólo en la dirección contraria a la que se activó el interruptor de final de carrera. Si se activó el final de carrera positivo, por ejemplo, sólo se podrá efectuar un movimiento en dirección negativa. Si se produce otro movimiento en dirección positiva, se emitirá otro mensaje de error y el estado de funcionamiento volverá a cambiar a 7 Quick Stop Active.

El tipo de final de carrera se ajusta a través de los parámetros IOsigLIMP y IOsigLIMN.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOsigLIMP</td>
<td>Evaluación de señal para final de carrera positivo 0 / Inactive: Inactivo 1 / Normally Closed: Contacto de reposo 2 / Normally Open: Contacto de cierre Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:10h Modbus 1568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOsigLIMN</td>
<td>Evaluación de señal para final de carrera negativo 0 / Inactive: Inactivo 1 / Normally Closed: Contacto de reposo 2 / Normally Open: Contacto de cierre Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:Fh Modbus 1566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las funciones de entrada de señal “Positive Limit Switch (LIMP)” y “Negative Limit Switch (LIMN)” deben estar parametrizadas, véase el capítulo Entradas y salidas digitales (véase página 209).
Interruptor de referencia

El interruptor de referencia sólo está activo en el modo de funcionamiento Homing.
El tipo de interruptor de referencia se ajusta a través del parámetro \textit{IOsigREF}.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{IOsigREF}</td>
<td>Evaluación de señal para interruptor de referencia</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>R/W</td>
<td>CANopen 3006:Eh</td>
</tr>
</tbody>
</table>

\textit{1 / Normally Closed:} Contacto de reposo
\textit{2 / Normally Open:} Contacto de cierre
El interruptor de referencia sólo se activa durante el procesamiento del movimiento de referencia al interruptor de referencia. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.

La función de entrada de señal “Reference Switch (REF)” debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).
Finales de carrera de software

Designación
Con un final de carrera de software puede monitorizarse un movimiento. Para la monitorización puede ajustarse un límite de posición positivo y un límite de posición negativo.

Si se alcanza el límite de posición positivo o negativo, el movimiento se detiene. Se indica un mensaje de error y el estado de funcionamiento cambia a 7 Quick Stop Active.

El mensaje de error se puede reiniciar con "Fault Reset". El estado de funcionamiento vuelve a 6 Operation Enabled.

Se puede continuar con el movimiento, pero solo en la dirección contraria a la que se ha alcanzado el límite de posición. Si se ha alcanzado, por ejemplo, el límite de posición positivo, solo podrá proseguirse el movimiento en dirección negativa. Si se produce otro movimiento en dirección positiva, se emitirá otro mensaje de error y el estado de funcionamiento volverá a cambiar a 7 Quick Stop Active.

Requisito previo
La monitorización de los finales de carrera de software solo es efectiva con el punto cero válido, véase el capítulo Tamaño del área de desplazamiento (véase página 191).

Comportamiento en los modos de funcionamiento con posiciones destino
En los modos de funcionamiento con posiciones destino, antes de iniciar el movimiento se compara la posición destino con los límites de posición. El movimiento se inicia con normalidad incluso aunque la posición destino sea superior al límite de posición positivo o inferior al límite de posición negativo. Sin embargo, el movimiento se detiene antes de que se sobrepase el límite de posición.

En los siguientes modos de funcionamiento, la posición destino se comprueba antes de iniciar el movimiento:
- Jog (movimiento paso a paso)
- Profile Position

Comportamiento en los modos de funcionamiento sin posiciones destino
En los modos de funcionamiento sin posiciones destino se activa un Quick Stop en el límite de posición.

En los siguientes modos de funcionamiento se activa un Quick Stop en el límite de posición.
- Jog (movimiento continuo)
- Profile Torque
- Profile Velocity

Con la versión de firmware ≥V01.16 es posible ajustar a través del parámetro MON_SWLimMode el comportamiento al alcanzar un límite de posición.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_SWLimMode</td>
<td>Comportamiento al alcanzar un límite de posición</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 3006:47h Modbus 1678</td>
</tr>
<tr>
<td></td>
<td>0 / Standstill Behind Position Limit: Quick Stop se activa en el límite de posición y se alcanza la parada detrás del límite de posición</td>
<td>0</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 / Standstill At Position Limit: Quick Stop se activa delante del límite de posición y se alcanza la parada detrás del límite de posición</td>
<td>1</td>
<td>Persistente</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.16.</td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
</tbody>
</table>
Para que en los modos de funcionamiento sin posiciones destino sea posible una parada en el límite de posición, el parámetro LIM_QStopReact debe estar ajustado a "Deceleration ramp (Quick Stop)", véase el capítulo Detener movimiento con Quick Stop (véase página 298). Si el parámetro LIM_QStopReact está ajustado a "Torque ramp (Quick Stop)", el movimiento puede pararse delante o detrás del límite de posición debido a diferentes cargas.

Activación

Los finales de carrera de software se activan a través del parámetro MON_SW_Limits.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_SW_Limits</td>
<td>Activación de los finales de carrera de software 0 / None: Desactivado 1 / SWLIMP: Activación del final de carrera de software en sentido positivo 2 / SWLIMN: Activación del final de carrera de software en sentido negativo 3 / SWLIMP+SWLIMN: Activación del final de carrera de software en ambos sentidos Los finales de carrera de software solo pueden activarse por un punto cero válido. Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>UINT16</td>
<td>R/W per. Modbus 1542</td>
</tr>
</tbody>
</table>

Ajustar los límites de posición

Los finales de carrera de software se ajustan a través de los parámetros MON_swLimP y MON_swLimN.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_swLimP</td>
<td>Límite de posición positivo para finales de carrera de software Al ajustar un valor de usuario fuera del rango permitido, los límites del final de carrera se limitan internamente de forma automática al valor de usuario máximo. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>usr_p</td>
<td>-2147483647</td>
<td>-2147483648</td>
<td>-2147483647</td>
<td>INT32 R/W per. Modbus 1544</td>
<td></td>
</tr>
<tr>
<td>MON_swLimN</td>
<td>Límite de posición negativo para finales de carrera de software Véase la descripción de 'MON_swLimP'. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>usr_p</td>
<td>-2147483647</td>
<td>-2147483648</td>
<td>-2147483647</td>
<td>INT32 R/W per. Modbus 1546</td>
<td></td>
</tr>
</tbody>
</table>
Desviación de posición debida a la carga (error de seguimiento)

Designación

La desviación de posición debida a la carga es la diferencia, causada por la carga, entre el valor de referencia de posición y la posición real.

Mediante parámetros se pueden indi...
A través de los siguientes parámetros, el valor máximo de la desviación de posición actual debida a la carga puede indicarse en unidades de usuario o en revoluciones.

<table>
<thead>
<tr>
<th>Nombre de parámetro Menú HMI Nombre HMI</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Unidad Valor máximo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_p_dif_load_peak_usr</td>
<td>Valor máximo de la desviación de posición debida a la carga Este parámetro contiene la máxima desviación de posición debida a la carga que se ha producido hasta el momento. Por medio de un acceso de escritura se vuelve a reposicionar el valor. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.05.</td>
<td>usr_p 0 - 2147483647</td>
<td>INT32 R/W - -</td>
<td>CANopen 301E:15h Modbus 7722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_p_dif_load_peak</td>
<td>Valor máximo de la desviación de posición debida a la carga Este parámetro contiene la máxima desviación de posición debida a la carga que se ha producido hasta el momento. Por medio de un acceso de escritura se vuelve a reposicionar el valor. A través del parámetro _p_dif_load_peak_usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones. Los ajustes modificados se aceptan de inmediato.</td>
<td>Revolución 0,0000 - 429496,7295</td>
<td>UINT32 R/W - -</td>
<td>CANopen 301E:1Bh Modbus 7734</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ajustar la desviación de posición

A través del siguiente parámetro se ajusta la desviación de posición máxima debida a la carga con la que debe mostrarse un error de la clase de error 0.

<table>
<thead>
<tr>
<th>Nombre de parámetro Menú HMI Nombre HMI</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Unidad Valor máximo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_p_dif_warn</td>
<td>Máxima desviación de posición debida a la carga (clase de error 0) 100,0 % equivale a la máxima desviación de posición (error de seguimiento), tal como se ha ajustado en el parámetro MON_p_dif_load. Los ajustes modificados se aceptan de inmediato.</td>
<td>% 0 75 100</td>
<td>UINT16 R/W per. -</td>
<td>CANopen 3006:29h Modbus 1618</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A través del siguiente parámetro se ajusta la desviación de posición máxima debida a la carga con la que el movimiento se detiene con un error de la clase de error 1, 2 o 3.

<table>
<thead>
<tr>
<th>Nombre de parámetro HMI</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>RW</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_p_dif_load_usr</td>
<td></td>
<td>Máxima desviación de posición debida a la carga</td>
<td>usr_p</td>
<td>1</td>
<td>16384</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td></td>
<td>CANopen 3006:3Eh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La desviación de posición debida a la carga es la diferencia, causada por la carga, entre el valor de referencia de posición y la posición real.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El valor mínimo, el ajuste de fábrica y el valor máximo dependen del factor de escalada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.05.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MON_p_dif_load</td>
<td></td>
<td>Máxima desviación de posición debida a la carga</td>
<td>Revolución</td>
<td>0,0001</td>
<td>1,0000</td>
<td>200,0000</td>
<td>UINT32</td>
<td>R/W</td>
<td></td>
<td>CANopen 6065:0h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La desviación de posición debida a la carga es la diferencia, causada por la carga, entre el valor de referencia de posición y la posición real.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A través del parámetro MON_p_dif_load_usr es posible introducir el valor en unidades de usuario.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>En pasos de 0,0001 revoluciones.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ajustar clase de error

Usando el siguiente parámetro se ajusta la clase de error para una desviación de posición excesiva debida a la carga.

<table>
<thead>
<tr>
<th>Nombre de parámetro HMI</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>RW</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErrorResp_p_dif</td>
<td></td>
<td>Reacción de error a una desviación de posición excesiva debida a la carga</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>UINT16</td>
<td>R/W</td>
<td></td>
<td>CANopen 3005:Bh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / Error Class 1: Clase de error 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / Error Class 2: Clase de error 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 / Error Class 3: Clase de error 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Funciones para el funcionamiento

Desviación de la velocidad debida a la carga

Designación

La desviación de velocidad debida a la carga es la diferencia provocada por la carga entre la velocidad de referencia y la velocidad actual.

La máxima desviación posible de velocidad debida a la carga se puede parametrizar. Además se puede parametrizar la clase de error.

Disponibilidad

La monitorización de la desviación de velocidad debida a la carga está disponible en los siguientes modos de funcionamiento:

- Profile Velocity

Mostrar la desviación de velocidad

A través de los siguientes parámetros, la desviación de velocidad debida a la carga puede indicarse en unidades de usuario.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_dif_usr</td>
<td></td>
<td></td>
<td>Desviación actual de la velocidad debida a la carga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La desviación de velocidad debida a la carga es la diferencia entre la velocidad de referencia y la velocidad actual. Disponible con la versión de firmware ≥ V01.26.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>usr_v -2147483648 -2147483647</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INT32 R/ W Persistente Experto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CANopen 301E:2Ch Modbus 7768</td>
</tr>
</tbody>
</table>

Ajustar la desviación de velocidad

A través de los siguientes parámetros se ajusta la desviación de velocidad máxima debida con la que se interrumpe el movimiento.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_VelDiff</td>
<td></td>
<td></td>
<td>Desviación máxima de la velocidad debida a la carga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valor 0: Monitorización desactivada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valor >0: Valor máximo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.26.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>usr_v 0 2147483647</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UINT32 R/W Persistente Experto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CANopen 3006:4Bh Modbus 1686</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_VelDiff_Time</td>
<td></td>
<td></td>
<td>Ventana de tiempo para desviación máxima de la velocidad debida a la carga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valor 0: Monitorización desactivada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valor >0: Ventana de tiempo para valor máximo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.26.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ms 0 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UINT16 R/W Persistente Experto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CANopen 3006:4Ch Modbus 1688</td>
</tr>
</tbody>
</table>
Ajustar clase de error

Usando el siguiente parámetro se ajusta la clase de error para una desviación de velocidad excesiva debida a la carga.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErrorResp_v_dif</td>
<td>Reacción de error a una desviación de la velocidad excesiva debida a la carga 1 / Error Class 1: Clase de error 1: 2 / Error Class 2: Clase de error 2: 3 / Error Class 3: Clase de error 3: Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia. Disponible con la versión de firmware ≥ V01.26.</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>UINT16</td>
<td>CANopen 3005:3Ch Modbus 1400</td>
</tr>
</tbody>
</table>
Parada del motor y dirección de movimiento

Disponibilidad

La monitorización depende de la versión del firmware.
- Parada del motor: disponible con la versión del firmware ≥V01.00.
- Dirección de movimiento: disponible con la versión de firmware ≥V01.14.

Designación

El estado de un movimiento puede supervisarse y mostrarse. Puede mostrarse si el motor se encuentra en parada, o si el motor se mueve en una determinada dirección.

Una velocidad inferior a 10 min⁻¹ se interpreta como parada.

![Diagrama de velocidad y estado del motor](image)

El estado se puede indicar mediante las salidas de señal. Para poder indicar el estado, la función de salida de señal "Motor Standstill", "Motor Moves Positive" o "Motor Moves Negative" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).
Ventana de par

Designación
Con la ventana de par se puede supervisar si el motor ha alcanzado el par de destino. Si la diferencia entre el par de destino y el par real permanece dentro de la ventana de par durante el tiempo MON_tq_winTime, se considera que se ha alcanzado el par de destino.

Disponibilidad
La ventana de par está disponible en los siguientes modos de funcionamiento:
- Profile Torque

Ajustes
Los parámetros MON_tq_win y MON_tq_winTime definen el tamaño de la ventana.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Unidad Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_tq_win</td>
<td>Ventana de par, diferencia permitida</td>
<td>%</td>
<td>0,0</td>
<td>UINT16</td>
<td>CANopen 3006:2Dh Modbus 1626</td>
</tr>
<tr>
<td></td>
<td>La ventana de par sólo se puede activar en el modo de funcionamiento Profile Torque. En pasos de 0,1 %, los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td>3,0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000,0</td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
<tr>
<td>MON_tq_winTime</td>
<td>Ventana de par, tiempo</td>
<td>ms</td>
<td>0</td>
<td>UINT16</td>
<td>CANopen 3006:2Eh Modbus 1628</td>
</tr>
<tr>
<td></td>
<td>Valor 0: Supervisión de la ventana de par, desactivada. Al modificar el valor se reinicia la supervisión del par. La ventana de par sólo se usa en el modo de funcionamiento Profile Torque. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16383</td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
</tbody>
</table>
Velocity Window

Designación
Con la ventana de velocidad se puede supervisar si el motor ha alcanzado la velocidad de destino. Si la diferencia entre la velocidad de destino y la velocidad actual permanece dentro de la ventana de velocidad durante el tiempo MON_v_winTime, se considera que se ha alcanzado la velocidad de destino.

Disponibilidad
La ventana de velocidad está disponible en los siguientes modos de funcionamiento:
- Profile Velocity

Ajustes

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_v_win</td>
<td>Ventana de velocidad, diferencia permitida</td>
<td>UINT32*</td>
<td>1</td>
<td>10</td>
<td>2147483647</td>
<td>R/W per.</td>
<td>CANopen 606D:0h</td>
</tr>
<tr>
<td>MON_v_winTime</td>
<td>Ventana de velocidad, tiempo</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>18383</td>
<td>UINT16</td>
<td>CANopen 606E:0h</td>
</tr>
</tbody>
</table>

1. Velocidad de destino
2. Velocidad de destino alcanzada (la velocidad de destino estuvo dentro de la desviación permitida MON_v_win durante el tiempo MON_v_winTime).

Los parámetros MON_v_win y MON_v_winTime definen el tamaño de la ventana.
Ventana de parada

Designación
A través de la ventana de parada se puede controlar si el accionamiento ha alcanzado la posición deseada.
Si la diferencia entre la posición de destino y la posición actual permanece dentro de la ventana durante el tiempo MON_p_winTime, se considera que se ha alcanzado la posición de destino.

Disponibilidad
La ventana de parada está disponible en los siguientes modos de funcionamiento:
- Jog (movimiento paso a paso)
- Profile Position
- Homing

Ajustes

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_p_win_usr</td>
<td>Ventana de parada, desviación de control permitida</td>
<td>usr_p</td>
<td>0</td>
<td>16</td>
<td>INT32</td>
<td>CANopen 3006:40h Modbus 1664</td>
</tr>
</tbody>
</table>

Disponible con la versión de firmware ≥ V01.05.
Funciones para el funcionamiento

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_p_win</td>
<td>Ventana de parada, desviación de control permitida</td>
<td>Revolución</td>
<td>0,0000</td>
<td>0,010</td>
<td>3,2767</td>
<td>UINT16*</td>
<td>CANopen 6067:0h, Modbus 1608</td>
</tr>
<tr>
<td></td>
<td>La desviación de control para el tiempo de parada debe encontrarse dentro de este rango de valores para que se reconozca una parada del accionamiento.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>El procesamiento de la ventana de parada tiene que activarse por medio del parámetro MON_p_winTime.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A través del parámetro MON_p_win_usr es posible introducir el valor en unidades de usuario.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,0001 revoluciones. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Tipo de datos para CANopen: UINT32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MON_p_winTime</td>
<td>Ventana de parada, tiempo</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>32767</td>
<td>UINT16*</td>
<td>CANopen 6068:0h, Modbus 1610</td>
</tr>
<tr>
<td></td>
<td>Valor 0: Supervisión de la ventana de parada, desactivada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor >0: Tiempo en ms durante el que la desviación de control debe encontrarse dentro de la ventana de parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
<tr>
<td>MON_p_winTout</td>
<td>Tiempo de desbordamiento para supervisión de la ventana de parada</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>16000</td>
<td>UINT16*</td>
<td>CANopen 3006:26h, Modbus 1612</td>
</tr>
<tr>
<td></td>
<td>Valor 0: Supervisión del tiempo de desbordamiento desactivada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor >0: Tiempo de desbordamiento en ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los valores para el procesamiento de la ventana de parada se ajustan en los parámetros MON_p_win y MON_p_winTime.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La supervisión de tiempo comienza desde el momento en el que se alcanza la posición de destino (valor de referencia de posición del controlador de posición) o al finalizar el procesamiento del generador del perfil de movimiento.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Registro de posición

Designación
Con el registro de posición se puede supervisar si el motor se encuentra dentro de un rango de posiciones parametrizables.

Un movimiento se puede supervisar aplicando 4 métodos diferentes:
- La posición del motor es mayor o igual que el valor de comparación A.
- La posición del motor es menor o igual que el valor de comparación A.
- La posición del motor se encuentra dentro del rango entre el valor de comparación A y el valor de comparación B.
- La posición del motor se encuentra fuera del rango entre el valor de comparación A y el valor de comparación B.

Para la monitorización están disponibles canales que pueden parametrizarse por separado.

Número de los canales
El número de los canales depende de la versión de firmware:
- 4 canales (con la versión de firmware ≥V01.06)
- 2 canales (con la versión de firmware <V01.06)

Mensajes de estado
El estado del registro de posición se indica mediante el parámetro _PosRegStatus.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PosRegStatus</td>
<td>Estado de los canales del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 300B:1h, Modbus 2818</td>
</tr>
<tr>
<td></td>
<td>Estado de la señal:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Criterio de comparación no cumplido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Criterio de comparación cumplido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: Estado del canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: Estado del canal 2 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: Estado del canal 3 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: Estado del canal 4 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El estado también se puede indicar mediante las salidas de señal. Para poder indicar el estado a través de las salidas de señal, las funciones de salida de señal "Position Register Channel 1", "Position Register Channel 2", "Position Register Channel 3" y "Position Register Channel 4" deben estar parametrizadas, véase el capítulo Entradas y salidas digitales (véase página 209).

Iniciar registro de posición

A través de los siguientes parámetros se inician los canales del registro de posición.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PosReg1Start</td>
<td>Inicio/Parada del canal 1 del registro de posición</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 300B:2h Modbus 2820</td>
</tr>
<tr>
<td></td>
<td>0 / Off (keep last state): El canal 1 del registro de posición está desconectado y el bit de estado conserva el último estado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / On: El canal 1 del registro de posición está activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Off (set state 0): El canal 1 del registro de posición está desconectado y el bit de estado se ajusta a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Off (set state 1): El canal 1 del registro de posición está desconectado y el bit de estado se ajusta a 1 Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg2Start</td>
<td>Inicio/Parada del canal 2 del registro de posición</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 300B:3h Modbus 2822</td>
</tr>
<tr>
<td></td>
<td>0 / Off (keep last state): El canal 2 del registro de posición está desconectado y el bit de estado conserva el último estado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / On: El canal 2 del registro de posición está activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Off (set state 0): El canal 2 del registro de posición está desconectado y el bit de estado se ajusta a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Off (set state 1): El canal 2 del registro de posición está desconectado y el bit de estado se ajusta a 1 Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg3Start</td>
<td>Inicio/Parada del canal 3 del registro de posición</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 300B:Cn Modbus 2840</td>
</tr>
<tr>
<td></td>
<td>0 / Off (keep last state): El canal 3 del registro de posición está desconectado y el bit de estado conserva el último estado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / On: El canal 3 del registro de posición está activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Off (set state 0): El canal 3 del registro de posición está desconectado y el bit de estado se ajusta a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Off (set state 1): El canal 3 del registro de posición está desconectado y el bit de estado se ajusta a 1 Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Funciones para el funcionamiento

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
</table>
| **PosReg4Start** | Inicio/Parada del canal 4 del registro de posición
0 / Off (keep last state): El canal 4 del registro de posición está desconectado y el bit de estado conserva el último estado
1 / On: El canal 4 del registro de posición está activado
2 / Off (set state 0): El canal 4 del registro de posición está desconectado y el bit de estado se ajusta a 0
3 / Off (set state 1): El canal 4 del registro de posición está desconectado y el bit de estado se ajusta a 1
Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥V01.06. | - | 0 | 0 | 3 | UINT16 | R/W | - | CANopen 300B:Dh
Modbus 2842 |
| **PosRegGroupStart** | Inicio/Parada de los canales del registro de posición
0 / No Channel: Ningún canal activo
1 / Channel 1: Canal 1 activo
2 / Channel 2: Canal 2 activo
3 / Channel 1 & 2: Canales 1 y 2 activos
4 / Channel 3: Canal 3 activo
5 / Channel 1 & 3: Canales 1 y 3 activos
6 / Channel 2 & 3: Canales 2 y 3 activos
7 / Channel 1 & 2 & 3: Canales 1, 2 y 3
8 / Channel 4: Canal 4 activo
9 / Channel 1 & 4: Canales 1 y 4 activos
10 / Channel 2 & 4: Canales 2 y 4 activos
11 / Channel 1 & 2 & 4: Canales 1, 2 y 4 activos
12 / Channel 3 & 4: Canales 3 y 4 activos
13 / Channel 1 & 3 & 4: Canales 1, 3 y 4 activos
14 / Channel 2 & 3 & 4: Canales 2, 3 y 4 activos
15 / Channel 1 & 2 & 3 & 4: Canales 1, 2, 3 y 4 activos
Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥V01.14. | - | 0 | 0 | 15 | UINT16 | R/W per. | - | CANopen 300B:16h
Modbus 2860 |
Ajustar criterio de comparación

Usando los siguientes parámetros se ajusta el criterio de comparación.

Con el criterio de comparación "Pact in" y "Pact out" se diferencia entre "basic" (simple) y "extended" (avanzado).

- Simple: el movimiento a ejecutar permanece dentro del rango de movimiento.
- Avanzado: el movimiento a ejecutar puede exceder el rango de movimiento.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PosReg1Mode</td>
<td></td>
<td></td>
<td>Selección de los criterios de comparación para el canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 300B:4h, Modbus 2824</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 / Pact greater equal A: La posición actual es mayor o igual que el valor de comparación A para el canal 1 del registro de posición</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W per.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 / Pact less equal A: La posición actual es menor o igual que el valor de comparación A para el canal 1 del registro de posición</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>Persistente</td>
<td>Experto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 / Pact in [A-B] (basic): La posición actual está dentro del rango A-B, límites inclusive (simple)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 / Pact out [A-B] (basic): La posición actual está fuera del rango A-B, excluidos los límites (simple)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>per.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| PosReg2Mode | | | Selección de los criterios de comparación para el canal 2 del registro de posición | | | | | CANopen 300B:5h, Modbus 2826 |
| | | | 0 / Pact greater equal A: La posición actual es mayor o igual que el valor de comparación A para el canal 2 del registro de posición | | 0 | | | UINT16 | R/W per. |
| | | | 1 / Pact less equal A: La posición actual es menor o igual que el valor de comparación A para el canal 2 del registro de posición | | 0 | | | Persistente | Experto |
| | | | 2 / Pact in [A-B] (basic): La posición actual está dentro del rango A-B, límites inclusive (simple) | | 0 | | | R/W | per. |
| | | | 3 / Pact out [A-B] (basic): La posición actual está fuera del rango A-B, excluidos los límites (simple) | | 0 | | | per. | |</p>
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo/Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
</table>
| PosReg3Mode | Selección de los criterios de comparación para el canal 3 del registro de posición
0 / **Pact greater equal A**: La posición actual es mayor o igual que el valor de comparación A para el canal 3 del registro de posición
1 / **Pact less equal A**: La posición actual es menor o igual que el valor de comparación A para el canal 3 del registro de posición
2 / **Pact in [A-B]** (basic): La posición actual está dentro del rango A-B, límites inclusive (simple)
3 / **Pact out [A-B]** (basic): La posición actual está fuera del rango A-B, excluidos los límites (simple)
4 / **Pact in [A-B]** (extended): La posición actual está dentro del rango A-B, límites inclusive (ampliado)
5 / **Pact out [A-B]** (extended): La posición actual está fuera del rango A-B, excluidos los límites (ampliado)
Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06. | - 0 0 5 | UINT16 | R/W | per. | - | CANopen 300B:Eh Modbus 2844 |
| PosReg4Mode | Selección de los criterios de comparación para el canal 4 del registro de posición
0 / **Pact greater equal A**: La posición actual es mayor o igual que el valor de comparación A para el canal 4 del registro de posición
1 / **Pact less equal A**: La posición actual es menor o igual que el valor de comparación A para el canal 4 del registro de posición
2 / **Pact in [A-B]** (basic): La posición actual está dentro del rango A-B, límites inclusive (simple)
3 / **Pact out [A-B]** (basic): La posición actual está fuera del rango A-B, excluidos los límites (simple)
4 / **Pact in [A-B]** (extended): La posición actual está dentro del rango A-B, límites inclusive (ampliado)
5 / **Pact out [A-B]** (extended): La posición actual está fuera del rango A-B, excluidos los límites (ampliado)
Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06. | - 0 0 5 | UINT16 | R/W | per. | - | CANopen 300B:Fh Modbus 2846 |
Ajustar valores de comparación

A través de los siguientes parámetros se ajustan los valores de comparación.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PosReg1ValueA</td>
<td>Valor de comparación A para el canal 1 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
<tr>
<td>PosReg1ValueB</td>
<td>Valor de comparación B para el canal 1 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
<tr>
<td>PosReg2ValueA</td>
<td>Valor de comparación A para el canal 2 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
<tr>
<td>PosReg2ValueB</td>
<td>Valor de comparación B para el canal 2 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
<tr>
<td>PosReg3ValueA</td>
<td>Valor de comparación A para el canal 3 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
<tr>
<td>PosReg3ValueB</td>
<td>Valor de comparación B para el canal 3 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
<tr>
<td>PosReg4ValueA</td>
<td>Valor de comparación A para el canal 4 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
<tr>
<td>PosReg4ValueB</td>
<td>Valor de comparación B para el canal 4 del registro de posición</td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Disponible con la versión de firmware ≥ V01.06.
Ventana de desviación de posición

Designación

Con la ventana de desviación de posición se puede supervisar si el motor se encuentra dentro de una desviación de posición parametrizable.

La desviación de posición es la diferencia entre el valor de referencia de posición y la posición real.

La ventana de desviación de posición se compone de la desviación de posición y del tiempo de monitorización.

Disponibilidad

La ventana de desviación de posición está disponible en los siguientes modos de funcionamiento:

- Jog
- Profile Position
- Homing

Ajustes

Los parámetros MON_p_DiffWin_usr (MON_p_DiffWin) y MON_ChkTime definen el tamaño de la ventana.

Indicación del estado

El estado se puede indicar mediante una salida de señal o mediante el bus de campo.

Para poder indicar el estado a través de una salida de señal, la función de salida de señal “In Position Deviation Window” debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).

Para poder mostrar el estado a través del bus de campo, deben estar ajustados los bits de estado de los parámetros de estado, véase el capítulo Bits configurables de los parámetros de estado (véase página 347).
El parámetro MON_ChkTime actúa conjuntamente para los parámetros MON_p_DiffWin_usr (MON_p_DiffWin), MON_v_DiffWin, MON_v_Threshold y MON_I_Threshold.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_p_DiffWin_usr</td>
<td>ConF -> ACG-in-P</td>
<td>Supervisión de desviación de posición</td>
<td>usrp_p</td>
<td>0</td>
<td>16</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:3Fh, Modbus 1662</td>
</tr>
<tr>
<td>MON_p_DiffWin</td>
<td>ConF -> ACG-in-P</td>
<td>Supervisión de desviación de posición</td>
<td>Revolución</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.9999</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:19h, Modbus 1586</td>
</tr>
<tr>
<td>MON_ChkTime</td>
<td>ConF -> -thr</td>
<td>Supervisión de la ventana de tiempo</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>9999</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:1Dh, Modbus 1594</td>
</tr>
</tbody>
</table>
Ventana de desviación de velocidad

Designación

Con la ventana de desviación de velocidad se puede supervisar si el motor se encuentra dentro de una desviación de velocidad parametrizable.

La desviación de velocidad es la diferencia entre el valor de referencia de la velocidad y la velocidad real.

La ventana de desviación de velocidad se compone de la desviación de velocidad y del tiempo de monitorización.

Disponibilidad

La ventana de desviación de velocidad está disponible en los siguientes modos de funcionamiento:

- Jog
- Profile Velocity
- Profile Position
- Homing

Ajustes

Los parámetros MON_v_DiffWin y MON_ChkTime definen el tamaño de la ventana.
Indicación del estado

El estado se puede indicar mediante una salida de señal o mediante el bus de campo.

Para poder indicar el estado a través de una salida de señal, la función de salida de señal "In Velocity Deviation Window" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).

Para poder mostrar el estado a través del bus de campo, deben estar ajustados los bits de estado de los parámetros de estado, véase el capítulo Bits configurables de los parámetros de estado (véase página 347).

El parámetro MON_ChkTime actúa conjuntamente para los parámetros MON_p_DiffWin_usr (MON_p_DiffWin), MON_v_DiffWin, MON_v_Threshold y MON_I_Threshold.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_v_DiffWin</td>
<td>ConF → i → o → in → o</td>
<td>Supervisión de desviación de velocidad</td>
<td>Se comprueba si dentro del tiempo parametrizable MON_ChkTime el variador se encuentra dentro de la desviación definida. Es posible mostrar el estado mediante una salida parametrizable. Los ajustes modificados se aceptan de inmediato.</td>
<td>usr_v</td>
<td>1</td>
<td>10</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W per.</td>
</tr>
<tr>
<td>MON_ChkTime</td>
<td>ConF → i → o → tthr</td>
<td>Supervisión de la ventana de tiempo</td>
<td>Ajuste de un tiempo para la supervisión de la desviación de posición, la desviación de velocidad, el valor de velocidad y el valor de corriente. Si el valor supervisado permanece dentro del rango permitido durante el tiempo ajustado, la función de supervisión suministra un resultado positivo. Es posible mostrar el estado mediante una salida parametrizable. Los ajustes modificados se aceptan de inmediato.</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>9999</td>
<td>UINT16</td>
<td>R/W per.</td>
</tr>
</tbody>
</table>
Umbral de velocidad

Designación

Con el umbral de velocidad se puede supervisar si la velocidad real está por debajo de un valor de velocidad parametrizable.

El umbral de velocidad se compone del valor de velocidad y del tiempo de monitorización.

Ajustes

Los parámetros MON_v_Threshold y MON_ChkTime definen el tamaño de la ventana.
Indicación del estado

El estado se puede indicar mediante una salida de señal o mediante el bus de campo.

Para poder indicar el estado a través de una salida de señal, la función de salida de señal “Velocity Below Threshold” debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).

Para poder mostrar el estado a través del bus de campo, deben estar ajustados los bits de estado de los parámetros de estado, véase el capítulo Bits configurables de los parámetros de estado (véase página 347).

El parámetro MON_ChkTime actúa conjuntamente para los parámetros MON_p_DiffWin_usr (MON_p_DiffWin), MON_v_DiffWin, MON_v_Threshold y MON_I_Threshold.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_v_Threshold</td>
<td>Supervisión del umbral de velocidad Se comprueba si el variador se encuentra por debajo del valor definido aquí durante el tiempo parametrizado a través de MON_ChkTime. Es posible mostrar el estado mediante una salida parametrizable. Los ajustes modificados se aceptan de inmediato.</td>
<td>usrv</td>
<td>1</td>
<td>10</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W</td>
</tr>
<tr>
<td>MON_ChkTime</td>
<td>Supervisión de la ventana de tiempo Ajuste de un tiempo para la supervisión de la desviación de posición, la desviación de velocidad, el valor de velocidad y el valor de corriente. Si el valor supervisado permanece dentro del rango permitido durante el tiempo ajustado, la función de supervisión suministra un resultado positivo. Es posible mostrar el estado mediante una salida parametrizable. Los ajustes modificados se aceptan de inmediato.</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>9999</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
</tbody>
</table>
Umbral de corriente

Con el umbral de corriente se puede supervisar si la corriente actual está por debajo de un valor de corriente parametrizable.

El umbral de corriente se compone del valor de corriente y del tiempo de monitorización.

Ajustes

Los parámetros MON_I_Threshold y MON_ChkTime definen el tamaño de la ventana.
Indicación del estado

El estado se puede indicar mediante una salida de señal o mediante el bus de campo.

Para poder indicar el estado a través de una salida de señal, la función de salida de señal "Current Below Threshold" debe estar parametrizada, véase el capítulo Entradas y salidas digitales *(véase página 209)*.

Para poder mostrar el estado a través del bus de campo, deben estar ajustados los bits de estado de los parámetros de estado, véase el capítulo Bits configurables de los parámetros de estado *(véase página 347)*.

El parámetro MON_ChkTime actúa conjuntamente para los parámetros MON_p_DiffWin_usr (MON_p_DiffWin), MON_v_DiffWin, MON_v_Threshold y MON_I_Threshold.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_I_Threshold</td>
<td>Conf → i-o-ithr</td>
<td>Monitorización del valor de umbral de corriente</td>
<td>A_{rms}</td>
<td>0,00</td>
<td>0,20</td>
<td>300,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3006:1Ch Modbus 1592</td>
</tr>
<tr>
<td></td>
<td>Conf → i-o-ithr</td>
<td>Supervisión de la ventana de tiempo</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>9999</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3006:1Dh Modbus 1594</td>
</tr>
</tbody>
</table>
Bits configurables de los parámetros de estado

Sinopsis

Pueden ajustarse los bits de estado de los siguientes parámetros:

- Parámetros _actionStatus
 - Ajuste del bit 9 a través del parámetro DPL_intLim
 - Ajuste del bit 10 a través del parámetro DS402intLim

- Parámetros _DPL_motionStat
 - Ajuste del bit 9 a través del parámetro DPL_intLim
 - Ajuste del bit 10 a través del parámetro DS402intLim

- Parámetros _DCOMstatus
 - Ajuste del bit 11 a través del parámetro DS402intLim

Parámetros de estado

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_actionStatus</td>
<td>Action Word</td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 301C:4h Modbus 7176</td>
</tr>
</tbody>
</table>

- Estado de la señal:
 - 0: No activado
 - 1: Activado

- Asignación de bits:
 - Bit 0: Clase de error 0
 - Bit 1: Clase de error 1
 - Bit 2: Clase de error 2
 - Bit 3: Clase de error 3
 - Bit 4: Clase de error 4
 - Bit 5: Reservado
 - Bit 6: Motor parado (_n_act < 9)
 - Bit 7: Movimiento del motor en dirección positiva
 - Bit 8: Movimiento del motor en dirección negativa
 - Bit 9: La asignación puede ajustarse a través del parámetro DPL_intLim
 - Bit 10: La asignación puede ajustarse a través del parámetro DS402intLim
 - Bit 11: El generador del perfil de movimiento está parado (el valor de velocidad de referencia es 0)
 - Bit12: Generador del perfil de movimiento decelerado
 - Bit13: Generador del perfil de movimiento acelerado
 - Bit14: Generador del perfil de movimiento a velocidad constante
 - Bit 15: Reservado
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_DCOMstatus</td>
<td>Palabra de estado DriveCom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 6041:0h Modbus 6916</td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: Estado de funcionamiento Ready To Switch On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: Estado de funcionamiento Switched On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: Estado de funcionamiento Operation Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: Estado de funcionamiento Fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: Voltage Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 5: Estado de funcionamiento Quick Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 6: Estado de funcionamiento Switch On Disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 7: Error de clase de error 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 8: HALT request active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 9: Remote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 10: Target Reached</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 11: Internal Limit Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 12: Específico del modo de funcionamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 13: x_err</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 14: x_end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 15: ref_ok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_DPL_motionStat</td>
<td>Perfil de accionamiento Drive Profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 301B:27h Modbus 6990</td>
</tr>
<tr>
<td></td>
<td>Lexium motionStat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parámetros para ajustar los bits de estado

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPL_intLim</td>
<td>Ajuste para bit 9 de _DPL_motionStat y _actionStatus</td>
<td>UINT16</td>
<td>-0</td>
<td>11</td>
<td>R/W</td>
<td>CANopen 301B:35h Modbus 7018</td>
</tr>
<tr>
<td></td>
<td>0 / None: No se utiliza (reservado) 1 / Current Below Threshold: Umbral de corriente 2 / Velocity Below Threshold: Umbral de velocidad 3 / In Position Deviation Window: Ventana de desviación de posición 4 / In Velocity Deviation Window: Ventana de desviación de velocidad 5 / Position Register Channel 1: Canal 1 del registro de posición 6 / Position Register Channel 2: Canal 2 del registro de posición 7 / Position Register Channel 3: Canal 3 del registro de posición 8 / Position Register Channel 4: Canal 4 del registro de posición 9 / Hardware Limit Switch: Finales de carrera de hardware 10 / RMAC active or finished: El movimiento relativo tras Capture está activo o ha finalizado 11 / Position Window: Ventana de posición Ajuste para: Bit 9 del parámetro _actionStatus Bit 9 del parámetro _DPL_motionStat Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.08.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DS402intLim</td>
<td>Palabra de estado DS402: Ajuste para bit 11 (límite interno)</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente</td>
</tr>
</tbody>
</table>

0 / None: No se utiliza (reservado)
1 / Current Below Threshold: Umbral de corriente
2 / Velocity Below Threshold: Umbral de velocidad
3 / In Position Deviation Window: Ventana de desviación de posición
4 / In Velocity Deviation Window: Ventana de desviación de velocidad
5 / Position Register Channel 1: Canal 1 del registro de posición
6 / Position Register Channel 2: Canal 2 del registro de posición
7 / Position Register Channel 3: Canal 3 del registro de posición
8 / Position Register Channel 4: Canal 4 del registro de posición
9 / Hardware Limit Switch: Finales de carrera de hardware
10 / RMAC active or finished: El movimiento relativo tras Capture está activo o ha finalizado
11 / Position Window: Ventana de posición

Ajuste para:
Bit 11 del parámetro _DCOMstatus
Bit 10 del parámetro _actionStatus
Bit 10 del parámetro _DPL_motionStat
Los ajustes modificados se aceptan de inmediato.
Sección 8.3
Funciones para monitorizar señales internas del equipo

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitorización de la temperatura</td>
<td>352</td>
</tr>
<tr>
<td>Monitorización de la carga y la sobrecarga (monitorización I^2t)</td>
<td>353</td>
</tr>
<tr>
<td>Monitorización de la conmutación</td>
<td>355</td>
</tr>
<tr>
<td>Monitorización de fases de red</td>
<td>356</td>
</tr>
<tr>
<td>Monitorización de defecto a tierra</td>
<td>358</td>
</tr>
</tbody>
</table>
Monitorización de la temperatura

La temperatura de la etapa de potencia y la del motor se supervisan.

Temperatura de la etapa de potencia

Con el parámetro _PS_T_current se indica la temperatura de la etapa de potencia.

El parámetro _PS_T_warn contiene el valor de umbral para error de clase 0. Con el parámetro _PS_T_max se indica la temperatura máxima de la etapa de potencia.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PS_T_current</td>
<td>Mon</td>
<td>Temperatura de la etapa de potencia °C</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 301C:10h Modbus 7200</td>
</tr>
<tr>
<td>_PS_T_warn</td>
<td>Mon</td>
<td>Temperatura máxima de la etapa de potencia (clase de error 0) °C</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 3010:6h Modbus 4108</td>
</tr>
<tr>
<td>_PS_T_max</td>
<td>Mon</td>
<td>Temperatura máxima etapa de potencia °C</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 3010:7h Modbus 4110</td>
</tr>
</tbody>
</table>

Temperatura del motor

Con el parámetro _M_T_current se indica la temperatura del motor.

Con el parámetro _M_T_max se indica la temperatura máxima del motor.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_M_T_current</td>
<td>Mon</td>
<td>Temperatura del motor °C</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 301C:11h Modbus 7202</td>
</tr>
<tr>
<td>_M_T_max</td>
<td>Mon</td>
<td>Máxima temperatura del motor °C</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 300D:10h Modbus 3360</td>
</tr>
</tbody>
</table>
Monitorización de la carga y la sobrecarga (monitorización I^2t)

Designación

Denominamos carga a la carga de la etapa de potencia, del motor y de la resistencia de frenado.

La carga y la sobrecarga de los distintos componentes se supervisa internamente, pudiendo leerse por medio de los parámetros.

La sobrecarga comienza a partir del 100 % de la carga.

1. **Cargar**
2. **Sobrecarga**

Monitorización de la carga

La carga se puede indicar por medio de los siguientes parámetros:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS_load</td>
<td>Π α n</td>
<td>L d F P</td>
<td>Carga de la etapa de potencia</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:17h Modbus 7214</td>
</tr>
<tr>
<td>M_load</td>
<td>Π α n</td>
<td>L d F M</td>
<td>Carga del motor</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:1Ah Modbus 7220</td>
</tr>
<tr>
<td>RES_load</td>
<td>Π α n</td>
<td>L d F b</td>
<td>Carga de la resistencia de frenado</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:14b Modbus 7208</td>
</tr>
</tbody>
</table>

Se supervisará la resistencia de frenado configurada mediante el parámetro RESint_ext.
Monitorización de la sobrecarga

En el caso de una sobrecarga del 100 % de la etapa de potencia o del motor, se activa una limitación interna de la corriente. En el caso de una sobrecarga del 100 % de la resistencia de frenado, la resistencia de frenado se desconecta.

La sobrecarga y el valor de cresta se indican por medio de los siguientes parámetros:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PS_overload</td>
<td>Sobrecarga de la etapa de potencia</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:24h Modbus 7240</td>
</tr>
<tr>
<td>_PS_maxoverload</td>
<td>Valor de cresta de la sobrecarga de la etapa de potencia</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:18h Modbus 7216</td>
</tr>
<tr>
<td>_M_overload</td>
<td>Sobrecarga del motor (I2t)</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:19h Modbus 7218</td>
</tr>
<tr>
<td>_M_maxoverload</td>
<td>Valor de cresta de la sobrecarga del motor</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:1Bh Modbus 7222</td>
</tr>
<tr>
<td>_RES_overload</td>
<td>Sobrecarga de la resistencia de frenado (I2t)</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:13h Modbus 7206</td>
</tr>
<tr>
<td>_RES_maxoverload</td>
<td>Valor de cresta de la sobrecarga de la resistencia de frenado</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:15h Modbus 7210</td>
</tr>
</tbody>
</table>
Monitorización de la conmutación

La monitorización de la conmutación comprueba la plausibilidad de la aceleración y el par aplicado. Cuando el motor acelera, a pesar de que el variador decelera el motor con la corriente máxima, se detecta un error. La desactivación de la monitorización de conmutación puede provocar movimientos involuntarios.

| ADVERTENCIA |
| MOVIMIENTO INVOLUNTARIO |
| • Desactive la monitorización de conmutación únicamente para fines de prueba durante la puesta en marcha. |
| • Asegúrese de que la monitorización de conmutación está activada antes de poner en marcha el equipo de forma definitiva. |
| El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo. |

Usando el parámetro MON_commutat se puede desactivar la monitorización de conmutación.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>RW</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_commutat</td>
<td>Monitorización de la conmutación</td>
<td>Unidad</td>
<td>0 / Off: Supervisión de conmutación, desactivada</td>
<td>1 / On (OpState6): Monitorización de conmutación en el estado de funcionamiento 6</td>
<td>2 / On (OpState6+7): Monitorización de conmutación en los estados de funcionamiento 6 y 7</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>UINT16</td>
</tr>
</tbody>
</table>
Monitorización de fases de red

En un producto trifásico, cuando falta una fase de red y la monitorización de fases de red está ajustada de manera incorrecta, el producto puede sobrecargarse.

AVISO

EQUIPO INOPERATIVO DEBIDO A LA FALTA DE UNA FASE DE RED

- En caso de alimentación a través de las fases de red, asegúrese de que la monitorización de fases de red esté ajustada a "Automatic Mains Detection" o a "Mains ..." con el valor de tensión correcto.
- En caso de alimentación a través del bus DC, asegúrese de que la monitorización de fases de red esté ajustada a "DC bus only ..." con el valor de tensión correcto.

El incumplimiento de estas instrucciones puede causar daño al equipo.

Usando el parámetro `ErrorResp_Flt_AC` se puede ajustar la reacción de error de una fase de red cuando se está operando con equipos trifásicos.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErrorResp_Flt_AC</td>
<td>Reacción de error de una fase de red 0 / Error Class 0: Clase de error 0: 1 / Error Class 1: Clase de error 1: 2 / Error Class 2: Clase de error 2: 3 / Error Class 3: Clase de error 3: Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>0</td>
<td>Error Class 0: Clase de error 0</td>
<td>2</td>
<td>CANopen 3005:Ah, Modbus 1300</td>
<td></td>
</tr>
</tbody>
</table>

Cuando el producto es alimentado a través del bus DC, la monitorización de las fases de red se debe ajustar a "DC bus only ..." con el valor de tensión correcto.

Mediante el parámetro `MON_MainsVolt` se ajusta la monitorización de las fases de red.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_MainsVolt</td>
<td>Detección y supervisión de las fases de red</td>
<td></td>
<td>-</td>
<td>0</td>
<td>5</td>
<td>UINT16</td>
<td>CANopen 3005:Fh, Modbus 1310</td>
</tr>
<tr>
<td></td>
<td>0 / Automatic Mains Detection: Detección y supervisión automáticas de la tensión de red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W, per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / DC-Bus Only (Mains 1230 V / 3480 V): Sólo alimentación bus DC, corresponde a 230 V de tensión de red (monofásica) ó 480 V (trifásica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Expert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / DC-Bus Only (Mains 1115 V / 3208 V): Sólo alimentación bus DC, corresponde a 115 V de tensión de red (monofásica) ó 208 V (trifásica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Mains 1230 V / 3480 V: Tensión de red de 230 V (monofásica) ó 480 V (trifásica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Mains 1115 V / 3208 V: Tensión de red de 115 V (monofásica) ó 208 V (trifásica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 / Reserved: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 0: En cuanto se detecta tensión de red, el equipo comprueba automáticamente en los equipos monofásicos si la tensión de red es de 115 V o 230 V y, en los equipos trifásicos, si la tensión de red es de 208 V ó 400/480 V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores 1 ... 2: Cuando el equipo sólo es alimentado a través del bus DC, se tiene que ajustar el parámetro al valor de tensión que corresponda al valor de tensión del equipo alimentador. No se lleva a cabo una supervisión de la tensión de red.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores 3 ... 4: Si no se detecta correctamente la tensión de red al arrancar, la tensión de red a utilizar se podrá ajustar manualmente. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monitorización de defecto a tierra

Estando activada la etapa de potencia, el equipo supervisa los defectos a tierra en las fases del motor. Se produce defecto a tierra cuando una o varias fases del motor presentan un cortocircuito a tierra de la aplicación.

Se detecta un defecto a tierra de una o varias fases del motor. No se detecta un defecto a tierra del bus DC o de la resistencia de frenado.

Cuando la monitorización de defectos a tierra está desactivada, el producto puede quedar dañado de forma irreparable por un defecto a tierra.

AVISO

EQUIPO INOPERATIVO DEBIDO A UN DEFECTO A TIERRA

- Desactive la monitorización de defectos a tierra únicamente para fines de prueba durante la puesta en marcha.
- Asegúrese de que la monitorización de defectos a tierra está activada antes de poner en marcha el equipo de forma definitiva.

El incumplimiento de estas instrucciones puede causar daño al equipo.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_GroundFault</td>
<td>Monitorización de defecto a tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNT16</td>
<td>CANopen 3005:10h, Modbus 1312</td>
</tr>
<tr>
<td></td>
<td>0 / Off: Supervisión de defecto a tierra, desactivada</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / On: Supervisión de defecto a tierra, activada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistente Experto</td>
<td></td>
</tr>
</tbody>
</table>
Capítulo 9
Ejemplos

Ejemplos

Indicaciones generales

Los ejemplos muestran algunas opciones de aplicación características del producto. La finalidad de esos ejemplos es proporcionar una visión de conjunto, pero no son esquemas de cableado completos.

Los ejemplos que se describen aquí sólo tienen fines didácticos. En general, están pensados para ayudarlo a comprender la manera de desarrollar, probar, poner en funcionamiento e integrar la lógica de la aplicación o el cableado del dispositivo del equipo asociado a su propio diseño en sus sistemas de control. Los ejemplos no están pensados para usarse directamente en productos que forman parte de una máquina o un proceso.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPORTAMIENTO NO INTENCIONADO</td>
</tr>
<tr>
<td>No incluya ninguna información de cableado, programación o lógica de configuración, ni tampoco valores de parametrización de los ejemplos en su máquina o proceso sin probar a fondo toda la aplicación.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

El uso de la función de seguridad STO incluida en este producto exige una planificación meticulosa. Encontrará más información en el capítulo Función de seguridad STO ("Safe Torque Off") (véase página 78).
Ejemplo del funcionamiento en el bus de campo
La activación se efectúa vía CANopen.

Ejemplo de cableado

1. PARADA DE EMERGENCIA
2. PLC
3. Accesorio para la puesta en marcha
4. resistencia de frenado externa
5. Estaciones de bus CANopen
Capítulo 10
Diagnóstico y resolución de fallos

Contenido de este capítulo
Este capítulo contiene las siguientes secciones:

<table>
<thead>
<tr>
<th>Sección</th>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Diagnóstico a través de HMI</td>
<td>362</td>
</tr>
<tr>
<td>10.2</td>
<td>Diagnóstico mediante las salidas de señal</td>
<td>367</td>
</tr>
<tr>
<td>10.3</td>
<td>Diagnóstico a través de bus de campo</td>
<td>370</td>
</tr>
<tr>
<td>10.4</td>
<td>Mensajes de error</td>
<td>379</td>
</tr>
</tbody>
</table>
Sección 10.1
Diagnóstico a través de HMI

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnóstico a través de la HMI integrada</td>
<td>363</td>
</tr>
<tr>
<td>LEDs de estado del bus de campo</td>
<td>364</td>
</tr>
<tr>
<td>Confirmar la sustitución de un motor</td>
<td>365</td>
</tr>
<tr>
<td>Identificación de mensajes de error a través de la HMI</td>
<td>366</td>
</tr>
</tbody>
</table>
Diagnóstico y resolución de fallos

Diagnóstico a través de la HMI integrada

Sinopsis

Con el display de 7 segmentos se emiten informaciones para el usuario.

Con el ajuste de fábrica, el display de 7 segmentos muestra los estados de funcionamiento. Los estados de funcionamiento se describen en el capítulo Estado de funcionamiento (véase página 238).

<table>
<thead>
<tr>
<th>Mensaje</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>Estado de funcionamiento 1 Start</td>
</tr>
<tr>
<td>NRDY</td>
<td>Estado de funcionamiento 2 Not Ready To Switch On</td>
</tr>
<tr>
<td>D5</td>
<td>Estado de funcionamiento 3 Switch On Disabled</td>
</tr>
<tr>
<td>RDY</td>
<td>Estado de funcionamiento 4 Ready To Switch On</td>
</tr>
<tr>
<td>S5N</td>
<td>Estado de funcionamiento 5 Switched On</td>
</tr>
<tr>
<td>RUNY</td>
<td>Estado de funcionamiento 6 Operation Enabled</td>
</tr>
<tr>
<td>S5TO</td>
<td>Estado de funcionamiento 7 Quick Stop Active</td>
</tr>
<tr>
<td>FLK</td>
<td>Estado de funcionamiento 8 Fault Reaction Active y 9 Fault</td>
</tr>
</tbody>
</table>

Mensajes adicionales

En la siguiente tabla se muestra un resumen de los mensajes que pueden indicarse adicionalmente en la HMI integrada.

<table>
<thead>
<tr>
<th>Mensaje</th>
<th>Designación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card</td>
<td>Los datos en la tarjeta de memoria difieren de los datos en el producto. Véase el procedimiento a seguir en el capítulo Tarjeta de memoria (véase página 180).</td>
</tr>
<tr>
<td>Disp</td>
<td>Está conectada una HMI externa. La HMI integrada no tiene función.</td>
</tr>
<tr>
<td>FSU</td>
<td>Lleve a cabo un First Setup. Véase el capítulo Primera conexión del equipo (véase página 141).</td>
</tr>
<tr>
<td>Mot</td>
<td>Se ha detectado un nuevo motor. Véase el capítulo Confirmar la sustitución del motor (véase página 365) para sustituir un motor.</td>
</tr>
<tr>
<td>Prot</td>
<td>A través del parámetro HMIlocked se han bloqueado partes de la HMI integrada.</td>
</tr>
<tr>
<td>W0LAW</td>
<td>Tensión de alimentación del control muy baja al inicializar.</td>
</tr>
<tr>
<td>WdG</td>
<td>Error del sistema desconocido. Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>BBBBB</td>
<td>Subtensión de la alimentación de control.</td>
</tr>
</tbody>
</table>
LEDs de estado del bus de campo

General

Los LEDs de estado del bus de campo indican el estado del bus de campo.

En la figura 10.3 se indican los estados de la comunicación con el bus de campo.

Señales intermitentes de los LEDs de estado (Run=GN; Err=RD) del bus CAN

1. Estado NMT PRE-OPERATIONAL
2. Estado NMT STOPPED
3. Estado NMT OPERATIONAL
4. Ajustes incorrectos, por ejemplo, dirección del nodo no válida
5. Alcanzado límite, por ejemplo, tras 16 intentos fallidos de transmisión.
6. Evento de monitorización (Node-Guarding)
7. CAN es BUS-OFF, por ejemplo, tras 32 intentos fallidos de transmisión.
8. Comunicación con el bus de campo sin mensaje de error.
Confirmar la sustitución de un motor

Proceda del siguiente modo para confirmar la sustitución de un motor a través de la HMI integrada:

Cuando el display de 7 segmentos muestra mot.
- Pulse el botón de navegación.
 En la indicación de 7 segmentos se muestra sava.
- Pulse el botón de navegación para guardar en la EEPROM los nuevos parámetros del motor.
 El producto cambia al estado de funcionamiento 4 Ready To Switch On.

Confirmar la sustitución del motor en la HMI integrada.

1 La HMI muestra que se ha detectado el cambio de un motor
2 Cancelación de la operación de memorización
3 Guardar y cambiar al estado de funcionamiento 4 Ready To Switch On.
Identificación de mensajes de error a través de la HMI

Restablecer un error de la clase de error 0

En el caso de un error de la clase de error 0, los dos puntos derechos del display de 7 segmentos (2) parpadean. El código de error no se emite directamente en el display de 7 segmentos, sino que el usuario debe consultarla.

Proceda de la siguiente manera para leer y restablecer mensajes de error:

- Elimine la causa.
- Pulse el botón de navegación y manténgalo pulsado. El código de error se muestra en el display de 7 segmentos.
- Suelte el botón de navegación. En la indicación de 7 segmentos se muestra F r E 5.
- Pulse el botón de navegación para restablecer el mensaje de error. El display de 7 segmentos regresa a la indicación de partida.

Encontrará los significados de los códigos de error en el capítulo Mensajes de error (véase página 379).

Leer y confirmar errores de la clase de error 1 ... 4

En caso de un error de la clase de error 1, en el display de 7 segmentos se muestra el código de error de forma alterna con la indicación 5 t a P.

En caso de un error de la clase de error 2 ... 4, en el display de 7 segmentos se muestra el código de error de forma alterna con la indicación F L E.

Proceda de la siguiente manera para leer y restablecer mensajes de error:

- Elimine la causa.
- Pulse el botón de navegación. En la indicación de 7 segmentos se muestra F r E 5.
- Pulse el botón de navegación para restablecer el mensaje de error. El producto cambia al estado de funcionamiento 4 Ready To Switch On.

Encontrará los significados de los códigos de error en el capítulo Mensajes de error (véase página 379).
Sección 10.2
Diagnóstico mediante las salidas de señal

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostrar estado de funcionamiento</td>
<td>368</td>
</tr>
<tr>
<td>Mostrar mensajes de error</td>
<td>369</td>
</tr>
</tbody>
</table>
Mostrar estado de funcionamiento

A través de las salidas de señal se dispone de información sobre el estado de funcionamiento. En la siguiente tabla se muestra un resumen.

<table>
<thead>
<tr>
<th>Estado operacional</th>
<th>Función de salida de señal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"No fault"(^{(1)})</td>
</tr>
<tr>
<td>1 Start</td>
<td>0</td>
</tr>
<tr>
<td>2 Not Ready To Switch On</td>
<td>0</td>
</tr>
<tr>
<td>3 Switch On Disabled</td>
<td>0</td>
</tr>
<tr>
<td>4 Ready To Switch On</td>
<td>1</td>
</tr>
<tr>
<td>5 Switched On</td>
<td>1</td>
</tr>
<tr>
<td>6 Operation Enabled</td>
<td>1</td>
</tr>
<tr>
<td>7 Quick Stop Active</td>
<td>0</td>
</tr>
<tr>
<td>8 Fault Reaction Active</td>
<td>0</td>
</tr>
<tr>
<td>9 Fault</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{(1)}\) La función de salida de señal es ajuste de fábrica en la salida de señal DQ0
\(^{(2)}\) La función de salida de señal es ajuste de fábrica en la salida de señal DQ1
Mostrar mensajes de error

Pueden mostrarse mensajes de error seleccionados a través de las salidas de señal. Para poder mostrar un mensaje de error a través de una señal de salida, la función de salida de señal "Selected Warning" o "Selected Error" debe estar parametrizada, véase el capítulo Entradas y salidas digitales (véase página 209).

Con los parámetros MON_IO_SelWar1 y MON_IO_SelWar2 se indican los códigos de error con la clase de error 0.

Con los parámetros MON_IO_SelErr1 y MON_IO_SelErr2 se indican los códigos de error con las clases de error 1 ... 4.

Si se detecta un error indicado en estos parámetros, se establece la salida de señal correspondiente.

Encontrará una lista de los mensajes de error ordenada por códigos de error en el capítulo Mensajes de error (véase página 379).

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_IO_SelWar1</td>
<td>Primer código de error para la función de salida de señal Selected Warning</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 303B:8h, Modbus 15120</td>
<td></td>
</tr>
<tr>
<td>MON_IO_SelWar2</td>
<td>Segundo código de error para la función de salida de señal Selected Warning</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 303B:9h, Modbus 15122</td>
<td></td>
</tr>
<tr>
<td>MON_IO_SelErr1</td>
<td>Primer código de error para la función de salida de señal Selected Error</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 303B:6h, Modbus 15116</td>
<td></td>
</tr>
<tr>
<td>MON_IO_SelErr2</td>
<td>Segundo código de error para la función de salida de señal Selected Error</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 303B:7h, Modbus 15118</td>
<td></td>
</tr>
</tbody>
</table>
Sección 10.3
Diagnóstico a través de bus de campo

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnóstico de error de la comunicación con el bus de campo</td>
<td>371</td>
</tr>
<tr>
<td>Último error detectado - bits de estado</td>
<td>372</td>
</tr>
<tr>
<td>Último error detectado - código de error</td>
<td>375</td>
</tr>
<tr>
<td>Memoria de errores</td>
<td>376</td>
</tr>
</tbody>
</table>
Diagnóstico y resolución de fallos

Diagnóstico de error de la comunicación con el bus de campo

Comprobar las conexiones

Para poder evaluar los mensajes de estado y de error, es necesario un funcionamiento correcto del bus de campo.

Si no fuera posible activar el equipo a través del bus de campo, compruebe primero las conexiones.

Compruebe las siguientes conexiones:
- Alimentación de tensión de la instalación
- Conexiones de alimentación
- Cable y cableado de bus de campo
- Conexión del bus de campo

Prueba funcional del bus de campo

Si la conexiones fueran correctas, compruebe si puede accederse al producto a través del bus de campo.
Último error detectado - bits de estado

Parámetros DCOMstatus

El parámetro DCOMstatus forma parte de la comunicación de los datos de proceso. El parámetro DCOMstatus se transmite de forma asíncrona y controlado por eventos cada vez que hay algún cambio en las informaciones de estado.

En el caso de un error de la clase de error 0, en el parámetro DCOMstatus se activa el bit 7.

En el caso de un error de las clases de error 1, 2, 3 o 4, en el parámetro DCOMstatus se activa bit 13.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_DCOMstatus</td>
<td>Palabra de estado DriveCom Asignación de bits: Bit 0: Estado de funcionamiento Ready To Switch On Bit 1: Estado de funcionamiento Switched On Bit 2: Estado de funcionamiento Operation Enabled Bit 3: Estado de funcionamiento Fault Bit 4: Voltage Enabled Bit 5: Estado de funcionamiento Quick Stop Bit 6: Estado de funcionamiento Switch On Disabled Bit 7: Error de clase de error 0 Bit 8: HALT request active Bit 9: Remote Bit 10: Target Reached Bit 11: Internal Limit Active Bit 12: Específico del modo de funcionamiento Bit 13: x_err Bit 14: x_end Bit 15: ref_ok</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 6041:0h Modbus 6916</td>
</tr>
</tbody>
</table>
Bits de error

Los parámetros _WarnLatched y _SigLatched contienen información sobre errores de la clase de error 0 y errores de las clases de error 1 ... 4.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persitente</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_WarnLatched</td>
<td>Errores memorizados de la clase de error 0, codificados por bits</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>-</td>
<td>CANopen 301C:C, Modbus 7192</td>
</tr>
</tbody>
</table>

Asignación de bits:
- Bit 0: General
- Bit 1: Reservado
- Bit 2: Rango sobrepasado (final de carrera de softwares, Tuning)
- Bit 3: Reservado
- Bit 4: Modo de funcionamiento activo
- Bit 5: Interfaz de puesta en marcha (RS485)
- Bit 6: Bus de campo integrado
- Bit 7: Reservado
- Bit 8: Error de seguimiento
- Bit 9: Reservado
- Bit 10: Entradas STO_A y/o STO_B
- Bits 11 ... 12: Reservado
- Bit 13: Tensión del bus DC baja, o falta fase de red
- Bits 14 ... 15: Reservado
- Bit 16: Interfaz de encoder integrado
- Bit 17: Temperatura elevada en el motor
- Bit 18: Temperatura elevada en la etapa de potencia
- Bit 19: Reservado
- Bit 20: Tarjeta de memoria
- Bit 21: Módulo de bus de campo
- Bit 22: Módulo de encoder
- Bit 23: Módulo de seguridad eSM o módulo IOM1
- Bits 24 ... 27: Reservado
- Bit 28: Transistor para sobrecarga de la resistencia de frenado (I2t)
- Bit 29: Sobrecarga de la resistencia de frenado (I2t)
- Bit 30: Sobrecarga de la etapa de potencia (I2t)
- Bit 31: Sobrecarga del motor (I2t)

Las funciones de supervisión varían en función del producto.
Estado almacenado de las señales de supervisión

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SigLatched</td>
<td>Estado almacenado de las señales de supervisión</td>
<td>UINT32</td>
<td>-</td>
<td>-</td>
<td>R/W</td>
<td>CANopen 301C:8h</td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus 7184</td>
</tr>
<tr>
<td></td>
<td>Bit 0: Fallo general</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: Final de carrera de hardware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: Rango sobrepasado (final de carrera de software, Tuning)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: Quick Stop a través del bus de campo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: Error en el modo de funcionamiento activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 5: Interfaz de puesta en marcha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 6: Bus de campo integrado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 7: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 8: Error de seguimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 9: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 10: Entradas STO a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 11: Diferentes entradas STO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 12: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 13: Tensión del bus DC baja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 14: Tensión del bus DC alta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 15: Falta la fase de red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 16: Interfaz de encoder integrado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 17: Sobretensión de la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 18: Sobretensión del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 19: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 20: Tarjeta de memoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 21: Módulo de bus de campo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 22: Módulo de encoder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 23: Módulo de seguridad eSM o módulo IOM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 24: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 25: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 26: Conexión del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 27: Sobrecorriente/cortocircuito en el motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 28: Frecuencia de señal piloto demasiado elevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 29: Detectado error en EEPROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 30: Arranque del motor (hardware o parámetros)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 31: Detectado error del sistema (por ejemplo, watchdog, interfaz de hardware interna)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las funciones de supervisión varían en función del producto.
Último error detectado - código de error

Si el controlador superior recibe una nota sobre un error a través de la comunicación de datos de proceso, mediante los siguientes parámetros se podrá leer el código de error.

Encontrará una lista de los mensajes de error ordenada por códigos de error en el capítulo Mensajes de error (véase página 379).

Último error detectado con la clase de error de clase 0

Mediante el parámetro `_LastWarning` puede leerse el número del último error detectado con la clase de error 0.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LastWarning LWrn</td>
<td>Código de error del último error detectado de la clase de error 0</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C-9h Modbus 7186</td>
</tr>
</tbody>
</table>

Último error detectado con la clase de error de clase 1 ... 4

Mediante el parámetro `_LastError` puede leerse el número del último error detectado con la clase de error 1 ... 4.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica Valor máximo</th>
<th>Tipo de dato R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LastError LErr</td>
<td>Error que desencadena una parada (clase de error 1 a 4) Código del último error detectado. Otros errores detectados no sobrescriben este código de error. Ejemplo: Si la reacción de error a un error de final de carrera desencadenara un error de sobretensión, este parámetro incluirá el código del error del final de carrera detectado. Excepción: Los errores detectados de la clase de error 4 sobrescriben entradas existentes.</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 603F:0h Modbus 7178</td>
</tr>
</tbody>
</table>
Memoria de errores

General

La memoria de errores incluye los 10 últimos mensajes de error. No se borra, ni tan siquiera cuando se desconecta el producto. Mediante la memoria de errores se pueden consultar y evaluar los eventos ocurridos con anterioridad.

Acerca de los eventos se guardan las siguientes informaciones:

- Clase de error
- Código de error
- Corriente del motor
- Cantidad de ciclos de conexión
- Informaciones adicionales (por ejemplo: números de los parámetros)
- Temperatura del producto
- Temperatura de la etapa de potencia
- Instante del error (referido al contador de horas de funcionamiento)
- Tensión del bus DC
- Velocidad
- Cantidad de ciclos Enable desde la conexión
- Tiempo transcurrido desde Enable hasta el error

Los datos memorizados indican la situación respectiva en el instante en que se produjo el error.

Encontrará una lista de los mensajes de error ordenada por códigos de error en el capítulo Mensajes de error (véase página 379).

Leer la memoria de errores

La memoria de errores sólo puede leer de manera secuencial. Con el parámetro \texttt{ERR_reset} hay que restablecer el puntero de lectura. Después se podrá leer el primer registro de error. El puntero de lectura pasa automáticamente al siguiente registro de error. Al leer otra vez se suministra el siguiente registro de error. Si se devuelve un 0 como código de error, significa que ya no hay más registros de error.

<table>
<thead>
<tr>
<th>Posición del registro</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primer mensaje de error (mensaje más antiguo).</td>
</tr>
<tr>
<td>2</td>
<td>Segundo mensaje de error (mensaje más reciente).</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>Décimo mensaje de error. En caso de haber diez mensajes de error, aquí estará el mensaje más reciente.</td>
</tr>
</tbody>
</table>

Un registro de error individual se compone de varias informaciones, las cuales se consultan con diferentes parámetros. Al leer un registro de error, siempre debe leerse primero el código de error con el parámetro \texttt{ERR_number}.

La memoria de errores se puede gestionar con los siguientes parámetros:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro via bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ERR_class</td>
<td></td>
<td>Clase de error</td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen \texttt{303C:2h}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor 0: clase de error 0</td>
<td></td>
<td></td>
<td></td>
<td>R/-</td>
<td>Modbus 15364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor 1: clase de error 1</td>
<td></td>
<td></td>
<td></td>
<td>R/-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor 2: clase de error 2</td>
<td></td>
<td></td>
<td></td>
<td>R/-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor 3: clase de error 3</td>
<td></td>
<td></td>
<td></td>
<td>R/-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valor 4: clase de error 4</td>
<td></td>
<td></td>
<td></td>
<td>R/-</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>_ERR_number</td>
<td>Código de error</td>
<td></td>
<td>-</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>CANopen 303C:1h Modbus 15362</td>
</tr>
<tr>
<td></td>
<td>La consulta de este parámetro traslada el registro completo del error detectado (clase de error, momento de la detección del error, ...) a una memoria intermedia, desde la que posteriormente será posible consultar los elementos del error detectado. Además, el indicador de lectura de la memoria de errores pasa automáticamente al siguiente registro de error.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_motor_I</td>
<td>Corriente del motor en el momento de la detección del error En pasos de 0,01 A<sub>rms</sub>.</td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>0</td>
<td>4294967296</td>
<td>UINT16</td>
<td>CANopen 303C:9h Modbus 15378</td>
</tr>
<tr>
<td>_ERR_powerOn</td>
<td>Cantidad de ciclos de conexión</td>
<td></td>
<td>-</td>
<td>0</td>
<td>4294967296</td>
<td>UINT32</td>
<td>CANopen 303B:2h Modbus 15108</td>
</tr>
<tr>
<td></td>
<td>Non</td>
<td></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>UINT32</td>
<td>CANopen 303C:4h Modbus 15368</td>
</tr>
<tr>
<td></td>
<td>Powa</td>
<td></td>
<td>-</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>CANopen 303C:5h Modbus 15382</td>
</tr>
<tr>
<td>_ERR_qual</td>
<td>Información adicional sobre el error detectado Este registro contiene información adicional sobre el error detectado en función del código de error. Ejemplo: una dirección de parámetro</td>
<td></td>
<td>-</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>CANopen 303C:5h Modbus 15382</td>
</tr>
<tr>
<td>_ERR_temp_dev</td>
<td>Temperatura del equipo en el momento de la detección del error</td>
<td>°C</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 303C:6h Modbus 15382</td>
</tr>
<tr>
<td>_ERR_temp_ps</td>
<td>Temperatura de la etapa de potencia en el momento de la detección del error</td>
<td>°C</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 303C:7h Modbus 15380</td>
</tr>
<tr>
<td>_ERR_time</td>
<td>Momento de la detección del error Referido al contador de horas de servicio</td>
<td>s</td>
<td>0</td>
<td>536870911</td>
<td>-</td>
<td>UINT32</td>
<td>CANopen 303C:3h Modbus 15366</td>
</tr>
<tr>
<td>_ERR_DCbus</td>
<td>Tensión del bus DC en el momento de detectarse el error En pasos de 0,1 V.</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 303C:7h Modbus 15374</td>
</tr>
<tr>
<td>_ERR_motor_v</td>
<td>Velocidad del motor en el momento de detección del error</td>
<td>usr_v</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>CANopen 303C:8h Modbus 15376</td>
</tr>
<tr>
<td>_ERR_enable_cycl</td>
<td>Cantidad de ciclos de activación de la etapa de potencia en el instante del error Cantidad de procesos de activación de la etapa de potencia tras aplicar la alimentación de tensión (tensión de control) hasta el momento en el que se ha detectado el error.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 303C:5h Modbus 15370</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>_ERR_enable_time</td>
<td>Tiempo entre la activación de la etapa de potencia y la detección del error</td>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
</tr>
<tr>
<td>ERR_reset</td>
<td>Reiniciar el puntero de lectura de la memoria de errores</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
<tr>
<td>ERR_clear</td>
<td>Vaciar la memoria de errores</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
</tbody>
</table>
Sección 10.4
Mensajes de error

Contenido de esta sección
Esta sección contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción de los mensajes de error</td>
<td>380</td>
</tr>
<tr>
<td>Tabla de los mensajes de error</td>
<td>381</td>
</tr>
</tbody>
</table>
Descripción de los mensajes de error

Designación

Si las funciones de monitorización del variador detectan un error, el variador genera un mensaje de error. Todos los mensajes de error se identifican mediante un código de error. Para cada mensaje de error está disponible la siguiente información:

- Código de error
- Clase de error
- Descripción del error
- Causas posibles
- Soluciones

Ámbito de los mensajes de error

En la siguiente tabla se muestra la clasificación de los códigos de error según el ámbito.

<table>
<thead>
<tr>
<th>Código de error</th>
<th>Ámbito</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 1xxx</td>
<td>General</td>
</tr>
<tr>
<td>E 2xxx</td>
<td>Sobrecorriente</td>
</tr>
<tr>
<td>E 3xxx</td>
<td>Tensión</td>
</tr>
<tr>
<td>E 4xxx</td>
<td>Temperatura</td>
</tr>
<tr>
<td>E 5xxx</td>
<td>Hardware</td>
</tr>
<tr>
<td>E 6xxx</td>
<td>Software</td>
</tr>
<tr>
<td>E 7xxx</td>
<td>Interfaz, cableado</td>
</tr>
<tr>
<td>E 8xxx</td>
<td>Bus de campo</td>
</tr>
<tr>
<td>E Axxx</td>
<td>Movimiento del motor</td>
</tr>
<tr>
<td>E Bxxx</td>
<td>Comunicación</td>
</tr>
</tbody>
</table>

Clase de error de los mensajes de error

Los mensajes de error están subdivididos en las siguientes clases de error:

<table>
<thead>
<tr>
<th>Clase de error</th>
<th>Transición de estado(1)</th>
<th>Error response</th>
<th>Reinicio del mensaje de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>No se interrumpe el movimiento</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>1</td>
<td>T11</td>
<td>Detener el movimiento con "Quick Stop"</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>2</td>
<td>T13, T14</td>
<td>Detener el movimiento con "Quick Stop" y desactivar la etapa de potencia durante la parada del motor</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>3</td>
<td>T13, T14</td>
<td>Desactivar de inmediato la etapa de potencia sin detener antes el movimiento</td>
<td>Función "Fault Reset"</td>
</tr>
<tr>
<td>4</td>
<td>T13, T14</td>
<td>Desactivar de inmediato la etapa de potencia sin detener antes el movimiento</td>
<td>Desconexión y reconexión</td>
</tr>
</tbody>
</table>

\(1\) Véase el capítulo Estado de funcionamiento (véase página 238)
Tabla de los mensajes de error

Lista de los mensajes de error clasificados por código de error

<table>
<thead>
<tr>
<th>Código de error</th>
<th>Clase de error</th>
<th>Designación</th>
<th>Causa</th>
<th>Soluciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 1100</td>
<td>0</td>
<td>El parámetro está fuera del rango de valores admitido</td>
<td>El valor introducido quedaba fuera del rango de valores admisible para este parámetro.</td>
<td>El valor introducido debe quedar dentro del rango de valores admisible.</td>
</tr>
<tr>
<td>E 1101</td>
<td>0</td>
<td>El parámetro no existe</td>
<td>La gestión de parámetros ha detectado el error: El parámetro (índice) no existe.</td>
<td>Elija otro parámetro (índice).</td>
</tr>
<tr>
<td>E 1102</td>
<td>0</td>
<td>El parámetro no existe</td>
<td>La gestión de parámetros ha detectado el error: El parámetro (subíndice) no existe.</td>
<td>Elija otro parámetro (subíndice).</td>
</tr>
<tr>
<td>E 1103</td>
<td>0</td>
<td>Escritura del parámetro no autorizada (solo lectura)</td>
<td>Acceso de escritura en un parámetro de sólo lectura.</td>
<td>Escribir sólo en los parámetros que permiten escritura.</td>
</tr>
<tr>
<td>E 1104</td>
<td>0</td>
<td>Acceso de escritura denegado (sin derechos de acceso)</td>
<td>Sólo se puede acceder al parámetro en el modo avanzado.</td>
<td>Necesario acceso de escritura avanzado.</td>
</tr>
<tr>
<td>E 1105</td>
<td>0</td>
<td>Block Upload/Download no inicializado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1106</td>
<td>0</td>
<td>Comando no autorizado con la etapa de potencia activada</td>
<td>Comando no permitido mientras está activada la etapa de potencia (estado de funcionamiento Operation Enabled o Quick Stop Active).</td>
<td>Desactive la etapa de potencia y repita el comando.</td>
</tr>
<tr>
<td>E 1107</td>
<td>0</td>
<td>Acceso bloqueado por otra interfaz</td>
<td>Acceso ocupado por otro canal (ejemplo: el software de puesta en marcha está activo y, simultáneamente, se intenta acceder a través del bus de campo).</td>
<td>Comprobar el canal que bloquea el acceso.</td>
</tr>
<tr>
<td>E 1108</td>
<td>0</td>
<td>No se ha podido subir el archivo: ID de archivo incorrecto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1109</td>
<td>1</td>
<td>Los datos que se grabaron después de un fallo de alimentación de red no son válidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 110A</td>
<td>0</td>
<td>Detectado error del sistema: sin cargador de arranque disponible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 110B</td>
<td>3</td>
<td>Detectado error durante la descarga de la configuración (información adicional = dirección de registro Modbus) Parámetro _SigLatched bit 30</td>
<td>Error detectado al comprobar parámetros (ejemplo: el valor de referencia de velocidad para el modo de funcionamiento Profile Position es mayor que la máxima velocidad admisible del variador).</td>
<td>El valor que aparece en la información de errores adicional indica la dirección de registro Modbus del parámetro en la que ha aparecido el fallo de inicialización.</td>
</tr>
<tr>
<td>E 110D</td>
<td>1</td>
<td>Configuración básica del variador requerida tras el ajuste de fábrica.</td>
<td>"First Setup" (FSU) no se ha llevado a cabo en absoluto o únicamente de forma incompleta.</td>
<td>Lleve a cabo un First Setup.</td>
</tr>
<tr>
<td>E 110E</td>
<td>0</td>
<td>Se ha modificado un parámetro que precisa un reinicio del amplificador de accionamiento.</td>
<td>Se muestra sólo por el software de puesta en marcha. Tras modificar un parámetro, es necesario desconectar y volver a conectar el amplificador de accionamiento.</td>
<td>Reinicie el amplificador de accionamiento para activar la función del parámetro. Véase en el capítulo Parámetros la información relativa al parámetro que hace necesario reiniciar el variador.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 110F</td>
<td>0</td>
<td>Función no disponible en esta función de equipo</td>
<td>Esta versión de equipo en particular no es compatible con la función o el valor del parámetro.</td>
<td>Asegúrese de que dispone de la versión de equipo correcta, especialmente el tipo de motor, el tipo de encoder y el freno de parada.</td>
</tr>
<tr>
<td>E 1110</td>
<td>0</td>
<td>ID de archivo incorrecto para carga o descarga</td>
<td>Este modelo especial del equipo no soporta archivos de ese tipo.</td>
<td>Asegúrese de que usa el tipo de equipo correcto o el archivo de configuración correcto.</td>
</tr>
<tr>
<td>E 1111</td>
<td>0</td>
<td>No se ha inicializado correctamente la transferencia de archivos</td>
<td>Se ha cancelado una transferencia de archivo previa.</td>
<td></td>
</tr>
<tr>
<td>E 1112</td>
<td>0</td>
<td>No se puede bloquear la configuración</td>
<td>Una herramienta externa ha intentado bloquear la configuración del variador para la carga o descarga. La configuración no se puede bloquear cuando otra herramienta ya ha bloqueado la configuración del variador, ni cuando el variador se encuentra en un estado de funcionamiento en el que no es posible efectuar un bloqueo.</td>
<td></td>
</tr>
<tr>
<td>E 1113</td>
<td>0</td>
<td>El sistema no está bloqueado para transferir la configuración</td>
<td>Una herramienta externa ha intentado bloquear la subida o descarga de la configuración del variador.</td>
<td></td>
</tr>
<tr>
<td>E 1114</td>
<td>4</td>
<td>Descarga de la configuración cancelada</td>
<td>Al descargar una configuración se ha producido un error de comunicación o un error en la herramienta externa. Solo se ha transmitido al variador una parte de la configuración y es posible que ahora sea incoherente.</td>
<td>Desconecte y vuelva a conectar el variador e intente descargar de nuevo la configuración, o bien restablezca los ajustes de fábrica del mismo.</td>
</tr>
<tr>
<td>E 1115</td>
<td>0</td>
<td>Formato incorrecto del archivo de configuración</td>
<td>Una herramienta externa ha efectuado una descarga de una configuración con un formato no válido.</td>
<td></td>
</tr>
<tr>
<td>E 1116</td>
<td>0</td>
<td>La solicitud se procesará de forma asíncrona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1117</td>
<td>0</td>
<td>Solicitud asíncrona bloqueada</td>
<td>Una solicitud para un módulo está bloqueada porque el módulo está procesando otra solicitud en ese momento.</td>
<td></td>
</tr>
<tr>
<td>E 1118</td>
<td>0</td>
<td>Datos de configuración incompatibles con el equipo</td>
<td>Los datos de configuración contienen datos de otro equipo.</td>
<td>Compruebe el tipo de equipo y el tipo de la etapa de potencia.</td>
</tr>
<tr>
<td>E 1119</td>
<td>0</td>
<td>Longitud de datos incorrecta, demasiados bytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 111A</td>
<td>0</td>
<td>Longitud de datos incorrecta, bytes insuficientes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 111B</td>
<td>4</td>
<td>Detectado error durante la descarga de la configuración (información adicional = dirección de registro Modbus)</td>
<td>Durante la descarga de la configuración, el variador no ha aceptado uno o varios valores de configuración.</td>
<td>Asegúrese de que el archivo de configuración sea válido y que coincida con el tipo y la versión del variador. El valor en la información adicional sobre errores indica la dirección de registro Modbus del parámetro en la que se ha detectado el error de inicialización.</td>
</tr>
<tr>
<td>E 111C</td>
<td>1</td>
<td>No es posible la inicialización del nuevo cálculo de la escala</td>
<td>No ha sido posible inicializar un parámetro.</td>
<td>La dirección del parámetro que ha originado el error detectado puede consultarse a través del parámetro _PAR_ScalingError.</td>
</tr>
<tr>
<td>E 111D</td>
<td>3</td>
<td>No puede restablecerse el estado original de un parámetro después de haberse detectado un error al calcular de nuevo parámetros con unidades de usuario.</td>
<td>El variador se ha configurado de forma no válida. Al realizar el nuevo cálculo se ha detectado un error.</td>
<td>Desconecte el variador y conéctelo de nuevo. De esta forma es posible que puedan identificarse los parámetros afectados. Cambiar los valores de los parámetros según sea necesario. Antes de iniciar el nuevo cálculo, asegúrese de que la configuración de los parámetros es correcta.</td>
</tr>
<tr>
<td>E 111F</td>
<td>1</td>
<td>No es posible un nuevo cálculo.</td>
<td>Factor de escalada inválido</td>
<td>Asegúrese de que no se ha indicado un factor de escala incorrecto. Utilice otro factor de escala. Antes de calcular de nuevo la escala, restablezca los parámetros con unidades de usuario.</td>
</tr>
<tr>
<td>E 1120</td>
<td>1</td>
<td>No es posible iniciar el nuevo cálculo de la escala</td>
<td>No ha sido posible calcular de nuevo un parámetro.</td>
<td>La dirección del parámetro que ha originado este estado puede consultarse a través del parámetro _PAR_ScalingError.</td>
</tr>
<tr>
<td>E 1121</td>
<td>0</td>
<td>Secuencia incorrecta de los pasos en la escala (bus de campo).</td>
<td>El nuevo cálculo ha comenzado antes de inicializarlo.</td>
<td>La inicialización del nuevo cálculo debe realizarse antes de iniciarlo.</td>
</tr>
<tr>
<td>E 1122</td>
<td>0</td>
<td>No es posible iniciar el nuevo cálculo de la escala</td>
<td>Ya está activo un nuevo cálculo de la escala.</td>
<td>Esperar a que concluya el nuevo cálculo en marcha de la escala.</td>
</tr>
<tr>
<td>E 1123</td>
<td>0</td>
<td>El parámetro no puede modificarse</td>
<td>Está activo un nuevo cálculo de la escala.</td>
<td>Esperar a que concluya el nuevo cálculo en marcha de la escala.</td>
</tr>
<tr>
<td>E 1124</td>
<td>1</td>
<td>Tiempo excedido al realizar el nuevo cálculo de la escala</td>
<td>Se ha excedido el tiempo entre la inicialización del nuevo cálculo y el comienzo del mismo (30 segundos).</td>
<td>El nuevo cálculo debe comenzar antes de transcurren los 30 segundos posteriores a su inicialización.</td>
</tr>
<tr>
<td>E 1125</td>
<td>1</td>
<td>La escala no es posible</td>
<td>Los factores de escalada para posición, velocidad o aceleración/deceleración exceden los límites de cálculo internos.</td>
<td>Intentarlo de nuevo con factores de escalada modificados.</td>
</tr>
<tr>
<td>E 1126</td>
<td>0</td>
<td>La configuración está bloqueada por otro canal de acceso.</td>
<td></td>
<td>Cierre el otro canal de acceso (por ejemplo, otra instancia del software de puesta en marcha).</td>
</tr>
<tr>
<td>E 1127</td>
<td>0</td>
<td>Se ha recibido una clave incorrecta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 1128</td>
<td>0</td>
<td>Se requiere un inicio de sesión específico para el firmware de prueba de fabricación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1129</td>
<td>0</td>
<td>No se ha inicializado aún la etapa de test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 112D</td>
<td>0</td>
<td>No se admite la configuración de los flancos</td>
<td>La entrada Capture seleccionada no admite la detección simultánea de flancos ascendentes y descendentes.</td>
<td>Ajustar el flanco a "ascendente" o a "descendente".</td>
</tr>
<tr>
<td>E 112F</td>
<td>0</td>
<td>No se pueden modificar los ajustes del filtro de tiempo</td>
<td>Ya se ha activado el registro de posición con un filtro de tiempo. Los ajustes del filtro no pueden modificarse.</td>
<td>Desactivar registro de posición.</td>
</tr>
<tr>
<td>E 1300</td>
<td>3</td>
<td>Función de seguridad STO activada (STO_A, STO_B) Parámetro _SigLatched bit 10</td>
<td>La función de seguridad STO ha sido activada en el estado de funcionamiento Operation Enabled.</td>
<td>Asegúrese de que las entradas de la función de seguridad STO están cableadas correctamente y lleve a cabo un Fault Reset.</td>
</tr>
<tr>
<td>E 1301</td>
<td>4</td>
<td>STO_A y STO_B con niveles diferentes Parámetro _SigLatched bit 11</td>
<td>Los niveles de las entradas STO_A y STO_B han sido diferentes durante más de 1 segundo.</td>
<td>Asegúrese de que las entradas de la función de seguridad STO están cableadas correctamente.</td>
</tr>
<tr>
<td>E 1302</td>
<td>0</td>
<td>Función de seguridad STO activada (STO_A, STO_B) Parámetro _WarnLatched bit 10</td>
<td>La función de seguridad STO ha sido activada estando desactivada la etapa de potencia.</td>
<td>Asegúrese de que las entradas de la función de seguridad STO están cableadas correctamente.</td>
</tr>
<tr>
<td>E 1311</td>
<td>0</td>
<td>Configuración de la función de entrada de señal o función de salida de señal no posibles.</td>
<td>En el modo de funcionamiento activo no se puede utilizar la función de entrada o de salida de señal elegida.</td>
<td>Elegir otra función o cambiar el modo de funcionamiento.</td>
</tr>
<tr>
<td>E 1312</td>
<td>0</td>
<td>Señal del final de carrera o señal del interruptor de referencia no definidas para la función de entrada de señal</td>
<td>Los movimientos de referencia requieren finales de carrera. No se ha asignado ningún final de carrera a las entradas.</td>
<td>Asignar funciones de entrada de señal a finales de carrera positivos (Positive Limit Switch), finales de carrera negativos (Negative Limit Switch) e interruptores de referencia (Reference Switch).</td>
</tr>
<tr>
<td>E 1313</td>
<td>0</td>
<td>El tiempo de antirrebote configurado no se puede utilizar con esta función de entrada de señal.</td>
<td>La función de entrada de señal para esta entrada no soporta el tiempo de antirrebote elegido.</td>
<td>Poner el tiempo de antirrebote a un valor válido.</td>
</tr>
<tr>
<td>E 1314</td>
<td>4</td>
<td>Al menos dos entradas de señal tienen la misma función de entrada de señal.</td>
<td>Al menos dos entradas de señal tienen la misma función de entrada de señal.</td>
<td>Configurar de nuevo las entradas.</td>
</tr>
<tr>
<td>E 1316</td>
<td>1</td>
<td>Actualmente no es posible el registro de posición a través de la entrada de señal Parámetro _SigLatched bit 28</td>
<td>El registro de posición ya se está utilizando.</td>
<td></td>
</tr>
<tr>
<td>E 1501</td>
<td>4</td>
<td>Detectado error del sistema: máquina de estado finito DriveCom en estado indeterminable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1502</td>
<td>4</td>
<td>Detectado error del sistema: máquina de estado finito HWL Low Level en estado indeterminable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>E 1503</td>
<td>1</td>
<td>Quick Stop activado por bus de campo</td>
<td>Se ha activado un Quick Stop mediante el bus de campo. Se ha ajustado el código de opción Quick Stop en -1 o -2, lo que hace que el variador pase al estado de funcionamiento 9 Fault en lugar del 7 Quick Stop Active.</td>
<td></td>
</tr>
<tr>
<td>E 1600</td>
<td>0</td>
<td>Osciloscopio: no hay más datos disponibles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1601</td>
<td>0</td>
<td>Osciloscopio: parametrización incompleta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1602</td>
<td>0</td>
<td>Osciloscopio: variable de disparador no definida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1606</td>
<td>0</td>
<td>El registro aún está activo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1607</td>
<td>0</td>
<td>Registro: ningún disparador definido</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1608</td>
<td>0</td>
<td>Registro: opción disparador no válida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1609</td>
<td>0</td>
<td>Registro: no se ha seleccionado canal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 160A</td>
<td>0</td>
<td>Registro: no hay datos disponibles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 160B</td>
<td>0</td>
<td>No es posible registrar el parámetro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 160C</td>
<td>1</td>
<td>Autotuning: Momento de inercia fuera del rango permitido</td>
<td>El momento de inercia de la carga es excesivamente elevado.</td>
<td>Comprobar que el sistema tiene libertad de movimientos. Compruebe la carga. Utilizar un equipo con otro dimensionamiento.</td>
</tr>
<tr>
<td>E 160E</td>
<td>1</td>
<td>Autotuning: No ha podido iniciarse el desplazamiento de prueba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 160F</td>
<td>1</td>
<td>Autotuning: No puede activarse la etapa de potencia.</td>
<td>El Autotuning no ha sido iniciado en el estado de funcionamiento Ready to Switch On.</td>
<td>Iniciar el Autotuning cuando el variador se encuentre en el estado de funcionamiento Ready to Switch On.</td>
</tr>
<tr>
<td>E 1610</td>
<td>1</td>
<td>Autotuning: Procesamiento detenido</td>
<td>Autotuning finalizado por orden del usuario o cancelado debido a un error detectado en el variador (véase el mensaje de error adicional en la memoria de errores, por ejemplo, subtensión del bus DC, final de carrera activado)</td>
<td>Eliminar la causa del stop y reiniciar Autotuning.</td>
</tr>
<tr>
<td>E 1611</td>
<td>1</td>
<td>Detectado error del sistema: no se ha podido escribir el parámetro durante el autotuning</td>
<td>(información adicional = dirección de registro de Modbus)</td>
<td></td>
</tr>
<tr>
<td>E 1612</td>
<td>1</td>
<td>Detectado error del sistema: no se ha podido leer el parámetro durante el autotuning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1613</td>
<td>1</td>
<td>Autotuning: Sobrepasado el máximo rango de movimiento permitido</td>
<td>Un movimiento ha sobrepasado el rango ajustado para el movimiento durante el Autotuning.</td>
<td>Aumentar el valor para el área de desplazamiento o desactivar la supervisión del área de desplazamiento con AT_DIS = 0.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 1614 0</td>
<td>0</td>
<td>Autotuning: Ya está activo</td>
<td>Se ha iniciado el Autotuning dos veces simultáneamente, o un parámetro de Autotuning ha sido modificado durante el Autotuning (parámetros AT_dis y AT_dir).</td>
<td>Esperar a que termine el Autotuning e iniciarlo de nuevo.</td>
</tr>
<tr>
<td>E 1615 0</td>
<td>0</td>
<td>Autotuning: Este parámetro no puede modificarse mientras el autotuning esté activo</td>
<td>Durante el Autotuning se escribe en los parámetros AT_gain o AT_J.</td>
<td>Esperar a que termine el Autotuning y cambiar luego el parámetro.</td>
</tr>
<tr>
<td>E 1617 1</td>
<td>1</td>
<td>Autotuning: Par de fricción o par de carga demasiado elevados</td>
<td>Se ha alcanzado la máxima intensidad (parámetro CTRL_I_max).</td>
<td>Comprobar que el sistema tiene libertad de movimientos. Compruebe la carga. Utilizar un equipo con otro dimensionamiento.</td>
</tr>
<tr>
<td>E 1618 1</td>
<td>1</td>
<td>Autotuning: Optimización cancelada</td>
<td>El proceso de autotuning interno no ha concluido; es probable que la desviación de posición fuera excesiva.</td>
<td>Encontrará informaciones adicionales sobre el error en la memoria de errores.</td>
</tr>
<tr>
<td>E 1619 0</td>
<td>0</td>
<td>Autotuning: el salto de velocidad en el parámetro AT_n_ref no es suficiente</td>
<td>Parámetro AT_n_ref < 2 * AT_n_tolerance. El variador solo lo comprueba durante el primer salto de velocidad.</td>
<td>Modificar el parámetro AT_n_ref o AT_n_tolerance para alcanzar el estado deseado.</td>
</tr>
<tr>
<td>E 1620 1</td>
<td>1</td>
<td>Autotuning: Par de carga excesivo</td>
<td>El dimensionado del producto no es adecuado para la carga de la máquina. El momento de inercia detectado de la máquina es demasiado alto con respecto al momento de inercia del motor.</td>
<td>Reducir la carga, comprobar el dimensionamiento</td>
</tr>
<tr>
<td>E 1621 1</td>
<td>1</td>
<td>Detectado error del sistema: error de cálculo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1622 0</td>
<td>0</td>
<td>Autotuning: No se puede realizar el Autotuning</td>
<td>El Autotuning sólo se puede realizar cuando no está activo ningún modo de funcionamiento.</td>
<td>Finalizar el modo de funcionamiento activo o desactivar la etapa de potencia.</td>
</tr>
<tr>
<td>E 1623 1</td>
<td>1</td>
<td>Autotuning: Cancelación del autotuning mediante una solicitud de PARADA</td>
<td>El Autotuning sólo se puede realizar cuando no está activo ningún modo de funcionamiento.</td>
<td>Finalizar el modo de funcionamiento activo o desactivar la etapa de potencia.</td>
</tr>
<tr>
<td>E 1A00 0</td>
<td>0</td>
<td>Detectado error del sistema: desbordamiento de memoria FIFO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1A01 3</td>
<td>3</td>
<td>El motor se ha cambiado (otro tipo de motor) Parámetro _SigLatched bit 16</td>
<td>El motor detectado difiere del motor detectado anteriormente.</td>
<td>Confirmar cambio</td>
</tr>
<tr>
<td>E 1A03 4</td>
<td>4</td>
<td>Detectado error del sistema: el hardware y el firmware no son compatibles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1B00 3</td>
<td>3</td>
<td>Detectado error del sistema: parámetros erróneos para el motor y la etapa de potencia Parámetro _SigLatched bit 30</td>
<td>Valores erróneos (datos) para los parámetros del fabricante en la memoria no volátil del equipo.</td>
<td>Sustituya el aparato.</td>
</tr>
<tr>
<td>E 1B02 3</td>
<td>3</td>
<td>Valor de destino demasiado alto. Parámetro _SigLatched bit 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1B05 2</td>
<td>2</td>
<td>Detectado error durante la conmutación de parámetros Parámetro _SigLatched bit 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1B0C 3</td>
<td>3</td>
<td>La velocidad del motor es excesiva.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 1B0D</td>
<td>3</td>
<td>El valor de velocidad determinado por el Velocity Observer es demasiado alto</td>
<td>La inercia del sistema utilizada para los cálculos por el Velocity Observer no es correcta. La dinámica del Velocity Observer no es correcta. La inercia del sistema varía durante el funcionamiento. En este caso, no es posible un funcionamiento con Velocity Observer, y el Velocity Observer debe desactivarse.</td>
<td>Cambiar la dinámica del Velocity Observer a través del parámetro CTRL_SpdObsDyn. Cambiar la inercia del sistema, utilizada para los cálculos para el Velocity Observer, a través del parámetro CTRL_SpdObsInert. Desactivar el Velocity Observer si el error detectado persiste.</td>
</tr>
<tr>
<td>E 1B0F</td>
<td>3</td>
<td>Desviación de velocidad excesiva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 2300</td>
<td>3</td>
<td>Sobrecorriente en etapa de potencia Parámetro _SigLatched bit 27</td>
<td>Cortocircuito del motor y desconexión de la etapa de potencia. Fases del motor confundidas.</td>
<td>Asegurar la conexión de red correcta del motor.</td>
</tr>
<tr>
<td>E 2301</td>
<td>3</td>
<td>Sobrecorriente resistencia de frenado Parámetro _SigLatched bit 27</td>
<td>Cortocircuito de la resistencia de frenado</td>
<td>Cuando se vaya a usar la resistencia de frenado interna, contactar con el servicio de asistencia técnica. Cuando se vaya a utilizar una resistencia de frenado externa, asegurar el cableado y el dimensionamiento correctos de la resistencia de frenado.</td>
</tr>
<tr>
<td>E 3100</td>
<td>par.</td>
<td>Falta de alimentación de red, subtensión en la alimentación de red o sobretensión en la alimentación de red Parámetro _SigLatched bit 15</td>
<td>Falta(n) fase(s) durante más de 50 ms. La tensión de red no está dentro del rango válido. La frecuencia de red no está en el rango válido.</td>
<td>Asegúrese de que la tensión de la red con la que se está funcionando coincide con los datos técnicos.</td>
</tr>
<tr>
<td>E 3200</td>
<td>3</td>
<td>Sobretensión en el bus DC Parámetro _SigLatched bit 14</td>
<td>Recuperación de energía durante la deceleración demasiado elevada.</td>
<td>Comprobar la rampa de deceleración, el dimensionamiento del variador y la resistencia de frenado.</td>
</tr>
<tr>
<td>E 3201</td>
<td>3</td>
<td>Subtensión en el bus DC (umbral de desconexión) Parámetro _SigLatched bit 13</td>
<td>Pérdida de la tensión de alimentación, mala alimentación de tensión.</td>
<td>Asegurar la alimentación de red.</td>
</tr>
<tr>
<td>E 3202</td>
<td>2</td>
<td>Subtensión en el bus DC (umbral de Quick Stop) Parámetro _SigLatched bit 13</td>
<td>Pérdida de la tensión de alimentación, mala alimentación de tensión.</td>
<td>Asegurar la alimentación de red.</td>
</tr>
<tr>
<td>E 3206</td>
<td>0</td>
<td>Subtensión en el bus DC, falta de alimentación de red, subtensión en la alimentación de red o sobretensión en la alimentación de red Parámetro _WarnLatched bit 13</td>
<td>Falta(n) fase(s) durante más de 50 ms. La tensión de red no está dentro del rango válido. La frecuencia de red no está en el rango válido. La tensión de red y el ajuste del parámetro MON_MainsVolt no coinciden (ejemplo: la tensión de red es de 230 V y MON_MainsVolt está ajustado a 115 V).</td>
<td>Asegúrese de que la tensión de la red con la que se está funcionando coincide con los datos técnicos. Comprobar el ajuste de los parámetros para la tensión de red reducida.</td>
</tr>
<tr>
<td>E 3300</td>
<td>0</td>
<td>La tensión de devanado del motor es inferior a la tensión de alimentación nominal del variador.</td>
<td>Si la tensión de devanado del motor es inferior a la tensión de alimentación nominal del variador, puede darse una ondulación de corriente demasiado intensa.</td>
<td>Comprobar la temperatura del motor. En caso de sobretensura, utilizar un motor con una tensión de devanado superior o un variador con una tensión de alimentación nominal inferior.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>E 4100</td>
<td>3</td>
<td>Sobretimp. en etapa de potencia</td>
<td>Sobretimp. de los transistores: temperatura ambiente demasiado alta, fallo del ventilador, polvo.</td>
<td>Comprobar ventilador, mejorar la disipación de calor del armario de distribución.</td>
</tr>
<tr>
<td>E 4101</td>
<td>0</td>
<td>Sobretimp. en etapa de potencia</td>
<td>Sobretimp. de los transistores: temperatura ambiente demasiado alta, fallo del ventilador, polvo.</td>
<td>Comprobar ventilador, mejorar la disipación de calor del armario de distribución.</td>
</tr>
<tr>
<td>E 4102</td>
<td>0</td>
<td>Sobrecarga de la etapa de potencia</td>
<td>La intensidad ha superado el valor nominal durante un tiempo prolongado.</td>
<td>Mejorar la disipación de calor del armario eléctrico. Si hubiera un ventilador instalado, asegure el funcionamiento correcto del mismo. Instale un ventilador en el armario eléctrico. Mejore la transmisión de calor de la parte posterior del equipo al armario eléctrico.</td>
</tr>
<tr>
<td>E 4200</td>
<td>3</td>
<td>Sobretimp. en equipo</td>
<td>Temperatura ambiente excesiva o empeoramiento de la disipación de calor, por ejemplo, debido al polvo.</td>
<td>Comprobar la instalación del motor: el calor debe disiparse a través de la superficie de montaje. Reducir la temperatura ambiente. Garantizar la ventilación.</td>
</tr>
<tr>
<td>E 4302</td>
<td>0</td>
<td>Sobrecarga del motor</td>
<td>La intensidad ha superado el valor nominal durante un tiempo prolongado.</td>
<td>Comprobar que el sistema tiene libertad de movimientos. Compruebe la carga. En caso oportuno, utilizar un motor con un dimensionamiento diferente.</td>
</tr>
<tr>
<td>E 4303</td>
<td>0</td>
<td>Sin supervisión de la temperatura del motor</td>
<td>Los parámetros de temperatura (en la placa de características electrónica del motor, memoria no volátil del encoder) no están disponibles o no son válidos; el parámetro A12 es igual a 0.</td>
<td>Póngase en contacto con el servicio de asistencia técnica. Cambiar motor.</td>
</tr>
<tr>
<td>E 4304</td>
<td>0</td>
<td>El encoder no admite la monitorización de la temperatura del motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 4402 0</td>
<td></td>
<td>Sobrecarga de la resistencia de frenado (I2t > 75 %)</td>
<td>La energía retroalimentada es excesiva. La carga externa es demasiado elevada. La velocidad del motor es excesiva. El valor para la deceleración es demasiado alto. La resistencia de frenado no es suficiente.</td>
<td>Reducir la carga, la velocidad y la deceleración. Asegúrese de que la resistencia de frenado está dimensionada de forma suficiente.</td>
</tr>
<tr>
<td>E 4403 par.</td>
<td></td>
<td>Sobrecarga de la resistencia de frenado (I2t > 100 %)</td>
<td>La energía retroalimentada es excesiva. La carga externa es demasiado elevada. La velocidad del motor es excesiva. El valor para la deceleración es demasiado alto. La resistencia de frenado no es suficiente.</td>
<td>Reducir la carga y/o la deceleración.</td>
</tr>
<tr>
<td>E 4404 0</td>
<td></td>
<td>Sobrecarga del transistor para la resistencia de frenado</td>
<td>La energía retroalimentada es excesiva. La carga externa es demasiado elevada. El valor para la deceleración es demasiado alto.</td>
<td>Reducir la carga y/o la deceleración.</td>
</tr>
<tr>
<td>E 5101 0</td>
<td></td>
<td>No hay alimentación de tensión para Modbus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 5102 4</td>
<td></td>
<td>Tensión de alimentación del encoder del motor</td>
<td>La alimentación de tensión del encoder no está dentro del rango de 8 V a 12 V.</td>
<td>Sustituya el aparato. Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 5200 4</td>
<td></td>
<td>Detectado error en la conexión entre el motor y el encoder</td>
<td>Cable de encoder incorrecto o cable no conectado, CEM.</td>
<td>Compruebe la conexión del cable y la pantalla del cable.</td>
</tr>
<tr>
<td>E 5201 4</td>
<td></td>
<td>Detectado error de comunicación con el encoder del motor</td>
<td></td>
<td>Compruebe la conexión del cable y la pantalla del cable.</td>
</tr>
<tr>
<td>E 5202 4</td>
<td></td>
<td>El encoder del motor no es compatible</td>
<td>Tipo de encoder conectado incompatible.</td>
<td>Asegúrese de que se está utilizando un encoder adecuado.</td>
</tr>
<tr>
<td>E 5203 4</td>
<td></td>
<td>Detectado error de conexión del encoder del motor</td>
<td></td>
<td>Compruebe la conexión del cable.</td>
</tr>
<tr>
<td>E 5204 3</td>
<td></td>
<td>Se ha perdido la comunicación con el encoder del motor</td>
<td>Cable de encoder (la comunicación se ha interrumpido).</td>
<td>Compruebe la conexión del cable.</td>
</tr>
<tr>
<td>E 5206 0</td>
<td></td>
<td>Error de comunicación detectado con el encoder</td>
<td>Perturbaciones en la comunicación, CEM.</td>
<td>Compruebe la especificación de cables, la conexión apantallada y la CEM.</td>
</tr>
<tr>
<td>E 5207 1</td>
<td></td>
<td>La función no es compatible</td>
<td>La función no es compatible con la versión de hardware.</td>
<td></td>
</tr>
<tr>
<td>E 5302 4</td>
<td></td>
<td>El motor requiere una frecuencia PWM (16 kHz) que no es compatible con la etapa de potencia.</td>
<td>El motor conectado sólo opera con una frecuencia PWM de 16 kHz (registro en la placa de características electrónica del motor). Pero la etapa de potencia no soporta esa frecuencia PWM.</td>
<td>Usar un motor que opere con una frecuencia PWM de 8 kHz.</td>
</tr>
<tr>
<td>E 5430 4</td>
<td></td>
<td>Detectado error del sistema: error de lectura de EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>E 5431</td>
<td>3</td>
<td>Error del sistema: error de escritura EEPROM</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5432</td>
<td>3</td>
<td>Error del sistema: máquina de estado finito EEPROM</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5433</td>
<td>3</td>
<td>Error del sistema: error de dirección EEPROM</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5434</td>
<td>3</td>
<td>Error del sistema: longitud errónea de datos EEPROM</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5435</td>
<td>4</td>
<td>Error del sistema: EEPROM no formateado</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5436</td>
<td>4</td>
<td>Error del sistema: estructura incompatible con EEPROM</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5437</td>
<td>4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (datos del fabricante)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5438</td>
<td>3</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (parámetros del usuario)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5439</td>
<td>3</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (parámetros del bus de campo)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 543B</td>
<td>4</td>
<td>Detectado error del sistema: datos de fabricante no válidos</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 543E</td>
<td>3</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (parámetros Nolnit)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 543F</td>
<td>3</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (parámetros del motor)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5441</td>
<td>4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (juego de parámetros de lazo de control global)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5442</td>
<td>4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (juego de parámetros de lazo de control 1)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>E 5443</td>
<td>4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (juego de parámetros de lazo de control 2)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 5444 4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (parámetros NoReset)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 5445 4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (información de hardware)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 5446 4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (para datos de fallo de red)</td>
<td>Parámetro _SigLatched bit 29</td>
<td>EEPROM interna inoperativa.</td>
<td>Conmute de nuevo el variador. Póngase en contacto con el servicio de asistencia técnica si el error persiste.</td>
</tr>
<tr>
<td>E 5448 2</td>
<td>Detectado error del sistema: error de comunicación de la tarjeta de memoria</td>
<td>Parámetro _SigLatched bit 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 5449 2</td>
<td>Detectado error del sistema: bus de la tarjeta de memoria ocupado</td>
<td>Parámetro _SigLatched bit 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 544A 4</td>
<td>Detectado error del sistema: error en suma de comprobación de EEPROM (datos de administración)</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 544C 4</td>
<td>Detectado error del sistema: EEPROM está protegida contra escritura</td>
<td>Parámetro _SigLatched bit 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 544D 2</td>
<td>Detectado error del sistema: tarjeta de memoria</td>
<td>Parámetro _SigLatched bit 20</td>
<td>Es posible que el último proceso de guardar en la tarjeta de memoria no se haya realizado correctamente o que la tarjeta de memoria no esté operativa.</td>
<td>Guardar de nuevo los datos. Sustituir la tarjeta de memoria.</td>
</tr>
<tr>
<td>E 544E 2</td>
<td>Detectado error del sistema: tarjeta de memoria</td>
<td>Parámetro _SigLatched bit 20</td>
<td>Es posible que el último proceso de guardar en la tarjeta de memoria no se haya realizado correctamente o que la tarjeta de memoria no esté operativa.</td>
<td>Guardar de nuevo los datos. Sustituir la tarjeta de memoria.</td>
</tr>
<tr>
<td>E 544F 2</td>
<td>Detectado error del sistema: tarjeta de memoria</td>
<td>Parámetro _SigLatched bit 20</td>
<td>Es posible que el último proceso de guardar en la tarjeta de memoria no se haya realizado correctamente o que la tarjeta de memoria no esté operativa.</td>
<td>Guardar de nuevo los datos. Sustituir la tarjeta de memoria.</td>
</tr>
<tr>
<td>E 5451 0</td>
<td>Detectado error del sistema: no hay tarjeta de memoria disponible</td>
<td>Parámetro _WarnLatched bit 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 5452 2</td>
<td>Detectado error del sistema: los datos de la tarjeta de memoria y del equipo no son compatibles</td>
<td>Parámetro _SigLatched bit 20</td>
<td>Tipo de equipo diferente. Tipo de etapa de potencia diferente. Los datos de la tarjeta de memoria no son compatibles con la versión de firmware del equipo.</td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 5453</td>
<td>2</td>
<td>Detectado error del sistema: datos incompatibles en la tarjeta de memoria</td>
<td>Parámetro _SigLatched bit 20</td>
<td></td>
</tr>
<tr>
<td>E 5454</td>
<td>2</td>
<td>Detectado error del sistema: capacidad de memoria insuficiente de la tarjeta de memoria detectada</td>
<td>Parámetro _SigLatched bit 20</td>
<td></td>
</tr>
<tr>
<td>E 5455</td>
<td>2</td>
<td>Detectado error del sistema: tarjeta de memoria no formateada</td>
<td>Parámetro _SigLatched bit 20</td>
<td>Actualizar la tarjeta de memoria a través del comando "dtoc" (drive-to-card) en la HMI.</td>
</tr>
<tr>
<td>E 5456</td>
<td>1</td>
<td>Detectado error del sistema: la tarjeta de memoria está protegida contra escritura</td>
<td>Parámetro _SigLatched bit 20</td>
<td>Retirar la tarjeta de memoria o eliminar la protección contra escritura a través de la HMI.</td>
</tr>
<tr>
<td>E 5457</td>
<td>2</td>
<td>Detectado error del sistema: tarjeta de memoria incompatible</td>
<td>Parámetro _SigLatched bit 20</td>
<td>Sustituir la tarjeta de memoria.</td>
</tr>
<tr>
<td>E 5462</td>
<td>0</td>
<td>El equipo escribe de manera implícita en la tarjeta de memoria</td>
<td>Parámetro _WarnLatched bit 20</td>
<td>El contenido de la tarjeta de memoria y el del EEPROM no son iguales</td>
</tr>
<tr>
<td>E 546C</td>
<td>0</td>
<td>Archivo de EEPROM no disponible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 5600</td>
<td>3</td>
<td>Detectado error de fase en conexión del motor</td>
<td>Parámetro _SigLatched bit 26</td>
<td>Falta fase del motor. Compruebe la conexión de las fases del motor.</td>
</tr>
<tr>
<td>E 5603</td>
<td>3</td>
<td>Error de conmutación detectado</td>
<td>Parámetro _SigLatched bit 26</td>
<td>Cableado incorrecto del cable de motor. Se pierden señales del encoder a causa de perturbaciones de acoplamiento. El par de carga es mayor que el par del motor. La EEPROM del encoder contiene datos que no son válidos (desfase defectuoso del encoder). Motor no calibrado. Compruebe las fases del motor y el cableado del encoder. Compruebe la CEM y asegure una puesta a tierra y una conexión apantallada correctas. Utilice un motor dimensionado para el par de carga. Compruebe los datos del motor. Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 6102</td>
<td>4</td>
<td>Detectado error del sistema: error de software interno</td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
</tr>
<tr>
<td>E 6103</td>
<td>4</td>
<td>Detectado error del sistema: desbordamiento de pila del sistema</td>
<td>Parámetro _SigLatched bit 31</td>
<td></td>
</tr>
<tr>
<td>E 6104</td>
<td>0</td>
<td>Detectado error del sistema: división entre cero (interno)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 6105</td>
<td>0</td>
<td>Detectado error del sistema: desbordamiento en cálculo de 32 bits (interno)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 6106</td>
<td>4</td>
<td>Detectado error del sistema: tamaño inadecuado de la interfaz de datos</td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
</tr>
<tr>
<td>E 6107</td>
<td>0</td>
<td>Parámetro fuera del rango de valores (detectado error en el cálculo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 6108 0</td>
<td>0</td>
<td>Función no disponible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 6109 0</td>
<td>0</td>
<td>Detectado error del sistema: rango excedido internamente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 610A 2</td>
<td></td>
<td>Detectado error del sistema: el valor calculado no puede representarse como valor de 32 bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 610D 0</td>
<td></td>
<td>Detectado error en el parámetro de selección</td>
<td>Seleccionado valor de parámetro incorrecto.</td>
<td>Compruebe el valor del parámetro que se va a escribir.</td>
</tr>
<tr>
<td>E 610E 4</td>
<td></td>
<td>Detectado error del sistema: 24 V CC por debajo del umbral de tensión para desconexión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 610F 4</td>
<td></td>
<td>Detectado error del sistema: falta base interna de Timer (Timer0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 6111 2</td>
<td></td>
<td>Detectado error del sistema: intervalo de memoria bloqueado</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 6112 2</td>
<td></td>
<td>Detectado error del sistema: sin memoria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 6113 1</td>
<td></td>
<td>Detectado error del sistema: el valor calculado no puede representarse como valor de 16 bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 6114 4</td>
<td></td>
<td>Detectado error del sistema: activación de función Interrupt-Service-Routine no permitida</td>
<td>Programación incorrecta</td>
<td>Cambie primero del cierre manual del freno de parada a ‘Automatic’ y, seguidamente, a la apertura manual del freno de parada.</td>
</tr>
<tr>
<td>E 6117 0</td>
<td></td>
<td>El freno de parada no puede abrirse manualmente.</td>
<td>El freno de parada no puede abrirse manualmente puesto que aún está cerrado manualmente.</td>
<td>Póngase en contacto con el servicio de asistencia técnica o sustituya el equipo.</td>
</tr>
<tr>
<td>E 7100 4</td>
<td></td>
<td>Detectado error del sistema: datos de etapa de potencia no válidos</td>
<td>Los datos de etapa de potencia almacenados en el equipo son erróneos (CRC erróneo), detectado error en los datos internos de la memoria.</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7110 2</td>
<td></td>
<td>Detectado error del sistema: resistencia de frenado interna</td>
<td>Resistencia de frenado interna inoperativa o desconectada</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 7111 0</td>
<td></td>
<td>No es posible modificar el valor del parámetro porque la resistencia de frenado externa está activa.</td>
<td>Se ha intentado modificar el valor de uno de los parámetros RESext_ton, RESext_P o RESext_R a pesar de que la resistencia de frenado externa está activa.</td>
<td>La resistencia de frenado externa no debe estar activa cuando deba modificarse uno de los parámetros RESext_ton, RESext_P o RESext_R.</td>
</tr>
<tr>
<td>E 7112 2</td>
<td></td>
<td>No hay resistencia de frenado externa conectada</td>
<td>Se ha activado la resistencia de frenado externa (parámetro RESint_ext) pero no se ha detectado ninguna resistencia de frenado externa.</td>
<td>Compruebe el cableado de la resistencia de frenado externa. Asegúrese de que el valor de resistencia es correcto.</td>
</tr>
<tr>
<td>E 7120 4</td>
<td></td>
<td>Datos del motor no válidos</td>
<td>Datos del motor incorrectos (CRC incorrecta)</td>
<td>Póngase en contacto con el servicio de asistencia técnica o sustituya el motor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7121 2</td>
<td></td>
<td>Detectado error del sistema: comunicación entre el motor y el encoder</td>
<td>CEM, encontrará información detallada en la memoria de errores que incluye el código de error del encoder.</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 7122 4</td>
<td>4</td>
<td>Datos del motor no válidos</td>
<td>Los datos del motor almacenados en el encoder son erróneos, detectado error en los datos internos de la memoria.</td>
<td>Póngase en contacto con el servicio de asistencia técnica o sustituya el motor.</td>
</tr>
<tr>
<td>E 7124 4</td>
<td>4</td>
<td>Detectado error del sistema: el encoder del motor no está operativo</td>
<td></td>
<td>Póngase en contacto con el servicio de asistencia técnica o sustituya el motor.</td>
</tr>
<tr>
<td>E 7125 4</td>
<td>4</td>
<td>Detectado error del sistema: longitud de datos de usuario indicada demasiado grande</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7129 0</td>
<td>0</td>
<td>Detectado error del sistema: encoder del motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 712C 0</td>
<td>0</td>
<td>Detectado error del sistema: no es posible comunicar con el encoder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 712D 4</td>
<td>4</td>
<td>No se ha encontrado la placa de características electrónica del motor.</td>
<td>Datos del motor incorrectos (CRC incorrecta). Motor sin placa de características electrónica (por ejemplo: motor SER)</td>
<td>Póngase en contacto con el servicio de asistencia técnica o sustituya el motor.</td>
</tr>
<tr>
<td>E 712F 0</td>
<td>0</td>
<td>Ningún segmento de datos de la placa electrónica de características del motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7132 0</td>
<td>0</td>
<td>Detectado error del sistema: no se puede escribir la configuración del motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7134 4</td>
<td>4</td>
<td>Configuración del motor incompleta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7135 4</td>
<td>4</td>
<td>Formato no compatible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7136 4</td>
<td>4</td>
<td>El tipo de encoder seleccionado con el parámetro MotEnctype no es correcto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7137 4</td>
<td>4</td>
<td>Detectado error en la conversión interna de la configuración del motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7138 4</td>
<td>4</td>
<td>Parámetro de la configuración del motor fuera del rango de valores permitido</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7139 0</td>
<td>0</td>
<td>Offset de encoder: El segmento de datos en el encoder es erróneo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 713A 3</td>
<td>3</td>
<td>Aún no se ha determinado el valor de ajuste en el encoder del motor externo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>E 7200</td>
<td>4</td>
<td>Detectado error del sistema:</td>
<td>calibración del convertidor analógico-digital en la fabricación</td>
<td>Póngase en contacto con el serviço de asistencia técnica.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>archivo BLE erróneo</td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
</tr>
<tr>
<td>E 7320</td>
<td>4</td>
<td>Detectado error del sistema:</td>
<td>parámetro de encoder no válido</td>
<td>Acoplamiento de interferencias en el canal de comunicación (Hiperface) con el encoder o encoder del motor no parametrizado en fábrica.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7321</td>
<td>3</td>
<td>Tiempo excedido al leer la posición absoluta del encoder</td>
<td>Acoplamiento de interferencias en el canal de comunicación (Hiperface) con el encoder o encoder del motor no operativo.</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder o sustituya el motor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7327</td>
<td>0</td>
<td>Bit de error ajustado en respuesta de Hiperface</td>
<td>CEM insuficiente.</td>
<td>Compruebe el cableado (pantalla del cable).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _WarnLatched bit 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7328</td>
<td>4</td>
<td>Encoder del motor: detectado error en la evaluación de posición</td>
<td>El encoder ha detectado una evaluación de posición errónea.</td>
<td>Póngase en contacto con el servicio de asistencia técnica o sustituya el motor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7329</td>
<td>0</td>
<td>Señal 'Warn' del encoder del motor</td>
<td>CEM.</td>
<td>Póngase en contacto con el servicio de asistencia técnica o sustituya el motor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _WarnLatched bit 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7330</td>
<td>4</td>
<td>Detectado error del sistema:</td>
<td>inicialización del encoder del motor</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 16</td>
<td></td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 7331</td>
<td>4</td>
<td>Detectado error del sistema:</td>
<td>inicialización del encoder del motor</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 30</td>
<td></td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 7335</td>
<td>0</td>
<td>Comunicación con el encoder del motor activa</td>
<td>Se está procesando el comando, o la comunicación puede haberse interrumpido (CEM).</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _WarnLatched bit 16</td>
<td></td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 733F</td>
<td>4</td>
<td>La amplitud de la señal analógica del encoder es demasiado pequeña</td>
<td>Cableado erróneo del encoder.</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 16</td>
<td></td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 7340</td>
<td>3</td>
<td>Lectura de posición absoluta cancelada</td>
<td>Acoplamiento de interferencias en el canal de comunicación (Hiperface) con el encoder. El encoder del motor no está operativo.</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder, sustituya el motor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parámetro _SigLatched bit 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 7341 0</td>
<td></td>
<td>Sobretensión encoder</td>
<td>Se ha excedido la duración de conexión relativa máxima permitida. El motor no se ha montado correctamente, p. ej. el aislamiento térmico. El motor está bloqueado de forma que consume más corriente que en condiciones normales. La temperatura ambiente es excesiva.</td>
<td>Reducir la duración de conexión relativa, por ejemplo reducir la aceleración. Garantizar una refrigeración adicional, por ejemplo utilizando un ventilador. Montar el motor de tal forma que aumente la conductividad térmica. Utilizar un motor o un variador con otro dimensionamiento. Sustituya el motor.</td>
</tr>
<tr>
<td>E 7342 2</td>
<td></td>
<td>Sobretensión encoder</td>
<td>Se ha excedido la duración de conexión relativa máxima permitida. El motor no se ha montado correctamente, p. ej. el aislamiento térmico. El motor está bloqueado de forma que consume más corriente que en condiciones normales. La temperatura ambiente es excesiva.</td>
<td>Reducir la duración de conexión relativa, por ejemplo reducir la aceleración. Garantizar una refrigeración adicional, por ejemplo utilizando un ventilador. Montar el motor de tal forma que aumente la conductividad térmica. Utilizar un motor o un variador con otro dimensionamiento. Sustituya el motor.</td>
</tr>
<tr>
<td>E 7343 0</td>
<td></td>
<td>Diferencia entre posición absoluta y posición incremental</td>
<td>Acoplamiento de interferencias CEM en el encoder - El encoder del motor no está operativo.</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder, sustituya el motor.</td>
</tr>
<tr>
<td>E 7344 3</td>
<td></td>
<td>Diferencia entre posición absoluta y posición incremental</td>
<td>Acoplamiento de interferencias CEM en el encoder - El encoder del motor no está operativo.</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder, sustituya el motor.</td>
</tr>
<tr>
<td>E 7345 0</td>
<td></td>
<td>Amplitud de la señal analógica del encoder demasiado grande, se ha excedido el valor límite de la conversión AD</td>
<td>Acoplamiento de interferencias de CEM en las señales del encoder (conexión apantallada, cableado, etc.) El encoder no está operativo</td>
<td>Compruebe el cableado y la conexión apantallada. Sustituya el encoder.</td>
</tr>
<tr>
<td>E 7346 4</td>
<td></td>
<td>Detectado error del sistema: el encoder no está preparado</td>
<td>Acoplamiento de interferencias en señal analógica y digital de encoder El encoder no está operativo</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder. Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 7347 0</td>
<td></td>
<td>Detectado error del sistema: no es posible inicializar la posición</td>
<td>Acoplamiento de interferencias en señal analógica y digital de encoder El encoder no está operativo</td>
<td>Reduzca el acoplamiento de interferencias en las señales del encoder, compruebe la conexión apantallada. Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 7348 3</td>
<td></td>
<td>Límite de tiempo en la lectura de la temperatura del encoder</td>
<td>Encoder sin sensor de temperatura, comunicación errónea del encoder.</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder. Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 7349</td>
<td>0</td>
<td>Diferencia entre fases de encoder absolutas y análogas</td>
<td>Acoplamiento de interferencias en señales de encoder. El encoder no está operativo</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder. Cambiar motor. Póngase en contacto con el servicio de asistencia técnica.</td>
</tr>
<tr>
<td>E 734A</td>
<td>3</td>
<td>Cableado erróneo del encoder. Interfaz de hardware del encoder inoperativa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 734B</td>
<td>0</td>
<td>Cableado erróneo del encoder. Interfaz de hardware del encoder inoperativa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 734C</td>
<td>par.</td>
<td>Es posible que el eje del motor se haya girado mientras el variador estaba desconectado. Se ha detectado una posición casi absoluta fuera del área de desplazamiento permitida del eje del motor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 734D</td>
<td>0</td>
<td>Encoder conectado de forma incorrecta. Acoplamiento de interferencias de CEM en las señales del encoder (conexión apantallada, cableado, etc.)</td>
<td>Compruebe el cableado y la conexión apantallada del cable de encoder. Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 734E</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 7500</td>
<td>0</td>
<td>CEM, cableado.</td>
<td>Compruebe los cables.</td>
<td></td>
</tr>
<tr>
<td>E 7501</td>
<td>0</td>
<td>CEM, cableado.</td>
<td>Compruebe los cables.</td>
<td></td>
</tr>
<tr>
<td>E 7502</td>
<td>0</td>
<td>CEM, cableado.</td>
<td>Compruebe los cables.</td>
<td></td>
</tr>
<tr>
<td>E 7503</td>
<td>0</td>
<td>CEM, cableado.</td>
<td>Compruebe los cables.</td>
<td></td>
</tr>
<tr>
<td>E 7623</td>
<td>0</td>
<td>En la entrada indicada con ENC_abs_Source no hay ningún encoder disponible.</td>
<td>Compruebe el cableado y el encoder. Cambie el valor del parámetro ENC_abs_source.</td>
<td></td>
</tr>
<tr>
<td>E 7625</td>
<td>0</td>
<td>No hay ningún encoder conectado en la entrada para el encoder 1.</td>
<td>Conecte un encoder en la entrada para el encoder 1 antes de establecer directamente la posición absoluta a través de ENC1_abs_pos.</td>
<td></td>
</tr>
<tr>
<td>E 7701</td>
<td>4</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 7702</td>
<td>4</td>
<td>Detectado error del sistema: se han recibido datos no válidos de la etapa de potencia Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 7703</td>
<td>4</td>
<td>Detectado error del sistema: se ha interrumpido el intercambio de datos con la etapa de potencia Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 7704</td>
<td>4</td>
<td>Detectado error del sistema: no se han podido intercambiar los datos de identificación de la etapa de potencia Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 7705</td>
<td>4</td>
<td>Detectado error del sistema: suma de comprobación incorrecta de los datos de identificación de la etapa de potencia Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 7706</td>
<td>4</td>
<td>Detectado error del sistema: no se ha recibido ninguna trama de identificación de la etapa de potencia Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 7707</td>
<td>4</td>
<td>Detectado error del sistema: el tipo de etapa de potencia y los datos de fabricación no son compatibles</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 7708</td>
<td>4</td>
<td>La tensión de alimentación del PIC es demasiado baja Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 7709</td>
<td>4</td>
<td>Detectado error del sistema: se ha recibido un número no válido de datos Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 770A</td>
<td>2</td>
<td>El PIC recibió datos con paridad errónea Parámetro _SigLatched bit 31</td>
<td>Póngase en contacto con el servicio de asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>E 8110</td>
<td>0</td>
<td>CANopen: Desbordamiento de la cola interna de recepción (mensaje perdido) Parámetro _WarnLatched bit 21</td>
<td>Dos mensajes breves de CAN se han enviado demasiado rápido (sólo con 1 MBit).</td>
<td></td>
</tr>
<tr>
<td>E 8120</td>
<td>0</td>
<td>CANopen: controlador CAN en estado Error Passive Parámetro _WarnLatched bit 21</td>
<td>Demasiadas tramas con errores. Compruebe la instalación del bus CAN.</td>
<td></td>
</tr>
<tr>
<td>E 8130</td>
<td>2</td>
<td>CANopen: detectado error en Heartbeat o Life Guard Parámetro _SigLatched bit 21</td>
<td>El ciclo de bus del maestro de CANopen es mayor que el tiempo programado de Heartbeat o de Node Guarding. Compruebe la configuración de CANopen, aumente el tiempo de Heartbeat o de Node-Guarding.</td>
<td></td>
</tr>
<tr>
<td>E 8131</td>
<td>0</td>
<td>CANopen: detectado error en Heartbeat o Life Guard Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 8140</td>
<td>0</td>
<td>CANopen: el controlador CAN estaba en el estado 'Bus-Off', ahora se puede volver a establecer la comunicación Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E 8141</td>
<td>2</td>
<td>CANopen: controlador CAN en estado 'Bus-Off' Parámetro _SigLatched bit 21</td>
<td>Demasiadas tramas defectuosas, equipos CAN con diferentes velocidades de transmisión.</td>
<td>Compruebe la instalación del bus CAN.</td>
</tr>
<tr>
<td>E 8142</td>
<td>0</td>
<td>CANopen: controlador CAN en estado 'Bus-Off' Parámetro _WarnLatched bit 21</td>
<td>Demasiadas tramas defectuosas, equipos CAN con diferentes velocidades de transmisión.</td>
<td>Compruebe la instalación del bus CAN.</td>
</tr>
<tr>
<td>E 8281</td>
<td>0</td>
<td>CANopen: RxPDO1 no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td>Detectado error en el procesamiento de Receive PDO1: PDO1 contiene un valor no válido.</td>
<td>Compruebe el contenido de RxPDO1 (aplicación).</td>
</tr>
<tr>
<td>E 8282</td>
<td>0</td>
<td>CANopen: RxPDO2 no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td>Detectado error en el procesamiento de Receive PDO2: PDO2 contiene un valor no válido.</td>
<td>Compruebe el contenido de RxPDO2 (aplicación).</td>
</tr>
<tr>
<td>E 8283</td>
<td>0</td>
<td>CANopen: RxPDO3 no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td>Detectado error en el procesamiento de Receive PDO3: PDO3 contiene un valor no válido.</td>
<td>Compruebe el contenido de RxPDO3 (aplicación).</td>
</tr>
<tr>
<td>E 8284</td>
<td>0</td>
<td>CANopen: RxPDO4 no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td>Detectado error en el procesamiento de Receive PDO4: PDO4 contiene un valor no válido.</td>
<td>Compruebe el contenido de RxPDO4 (aplicación).</td>
</tr>
<tr>
<td>E 8291</td>
<td>0</td>
<td>CANopen: TxPDO no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 8292</td>
<td>0</td>
<td>CANopen: TxPDO no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 8293</td>
<td>0</td>
<td>CANopen: TxPDO no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 8294</td>
<td>0</td>
<td>CANopen: TxPDO no ha podido procesarse Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 82A0</td>
<td>0</td>
<td>CANopen: inicialización de pila de CANopen Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 82A1</td>
<td>0</td>
<td>CANopen: desbordamiento de la cola interna de envío (mensaje perdido) Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 82B1</td>
<td>0</td>
<td>CANopen: el protocolo de túnel de datos no es Modbus RTU Parámetro _WarnLatched bit 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 82B2</td>
<td>0</td>
<td>CANopen: la trama de red todavía está en proceso Parámetro _WarnLatched bit 21</td>
<td>Se ha escrito una nueva trama de red, pero la anterior sigue en proceso.</td>
<td>Volver a escribir la trama de red más tarde.</td>
</tr>
<tr>
<td>E A065</td>
<td>0</td>
<td>No pueden escribirse los parámetros Parámetro _WarnLatched bit 4</td>
<td>Todavía hay un registro de datos activo.</td>
<td>Espere hasta que el registro de datos activo haya finalizado.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E A300</td>
<td>0</td>
<td>Deceleración tras requerimiento de PARADA aún activo</td>
<td>La PARADA se ha invalidado demasiado pronto. Se envió otro comando antes de que el motor se detuviera tras una PARADA.</td>
<td>Antes de retirar la señal de PARADA, esperar a una parada completa. Espere hasta que el motor se encuentre totalmente parado.</td>
</tr>
<tr>
<td>E A301</td>
<td>0</td>
<td>Variador en el estado de funcionamiento Quick Stop Active</td>
<td>Detectado error de clase de error 1. Variador detenido con Quick Stop.</td>
<td></td>
</tr>
<tr>
<td>E A302</td>
<td>1</td>
<td>Stop por final de carrera positivo Parámetro _SigLatched bit 1</td>
<td>Se ha activado el final de carrera positivo porque se ha salido del área de desplazamiento, final de carrera inoperativo o perturbación de la señal.</td>
<td>Compruebe la aplicación. Compruebe la función y la conexión de los finales de carrera.</td>
</tr>
<tr>
<td>E A303</td>
<td>1</td>
<td>Stop por final de carrera negativo Parámetro _SigLatched bit 1</td>
<td>Se ha activado el final de carrera negativo porque se ha salido del área de desplazamiento, final de carrera inoperativo o perturbación de la señal.</td>
<td>Compruebe la aplicación. Compruebe la función y la conexión de los finales de carrera.</td>
</tr>
<tr>
<td>E A304</td>
<td>1</td>
<td>Parada con interruptor de referencia Parámetro _SigLatched bit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A305</td>
<td>0</td>
<td>No es posible activar la etapa de potencia en el estado de funcionamiento ‘Not Ready To Switch On’</td>
<td>Bus de campo: Intento de activar la etapa de potencia en el estado de funcionamiento Not Ready to Switch On.</td>
<td>Véase el diagrama de estado finito</td>
</tr>
<tr>
<td>E A306</td>
<td>1</td>
<td>Stop por parada de software activada por el usuario Parámetro _SigLatched bit 3</td>
<td>Tras una solicitud de parada a través del software, el accionamiento se encuentra en el estado de funcionamiento Quick Stop Active. No es posible activar un nuevo modo de funcionamiento, el código de error se envía como respuesta al comando de activación.</td>
<td>Concluya el estado con el comando Fault Reset.</td>
</tr>
<tr>
<td>E A307</td>
<td>0</td>
<td>Parada debida a parada de software interna</td>
<td>El movimiento se interrumpe por una parada interna del software en los modos de funcionamiento Homing y Jog. No es posible activar un nuevo modo de funcionamiento, el código de error se envía como respuesta al comando de activación.</td>
<td>Ejecute un Fault Reset.</td>
</tr>
<tr>
<td>E A308</td>
<td>0</td>
<td>El variador se encuentra en el estado de funcionamiento Fault o Fault Reaction Active</td>
<td>Detectado error de clase de error 2 o superior.</td>
<td>Compruebe el código de error (HMI o software de puesta en marcha), elimine la causa del error y lleve a cabo un Fault Reset.</td>
</tr>
<tr>
<td>E A309</td>
<td>0</td>
<td>El accionamiento no se encuentra en el estado de funcionamiento Operation Enabled</td>
<td>Se ha enviado un comando cuya ejecución presupone que el variador se encuentra en el estado de funcionamiento Operation Enabled (por ejemplo: un comando para cambiar el modo de funcionamiento).</td>
<td>Poner el accionamiento en el estado de funcionamiento Operation Enabled y repetir el comando.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>E A310</td>
<td>0</td>
<td>Etapa de potencia no activada</td>
<td>No se puede ejecutar el comando porque la etapa de potencia no está activada (estado de funcionamiento Operation Enabled o Quick Stop Active).</td>
<td>Poner el accionamiento en un estado de funcionamiento con etapa de potencia activada; véase el diagrama de estado.</td>
</tr>
<tr>
<td>E A311</td>
<td>0</td>
<td>Cambio de modo de funcionamiento activo</td>
<td>Se ha recibido una solicitud de inicio para un modo de funcionamiento mientras estaba activo un cambio del modo de funcionamiento.</td>
<td>Antes de activar una solicitud de inicio para otro modo de funcionamiento, esperar hasta que el cambio del modo de funcionamiento haya concluido.</td>
</tr>
<tr>
<td>E A312</td>
<td>0</td>
<td>Generación de perfil interrumpida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A313</td>
<td>0</td>
<td>Desbordamiento de posición por lo que el punto cero ha dejado de ser válido (ref_ok=0)</td>
<td>Se han superado los límites del área de desplazamiento, y el punto cero ha dejado de ser válido. Un movimiento absoluto exige un punto cero válido.</td>
<td>Defina un punto cero válido en el modo de funcionamiento Homing.</td>
</tr>
<tr>
<td>E A314</td>
<td>0</td>
<td>Sin punto cero válido</td>
<td>El comando exige un punto cero válido (ref_ok=1).</td>
<td>Defina un punto cero válido en el modo de funcionamiento Homing.</td>
</tr>
<tr>
<td>E A315</td>
<td>0</td>
<td>Modo de funcionamiento Homing activo</td>
<td>Mientras esté activo el modo de funcionamiento Homing no se puede ejecutar el comando.</td>
<td>Esperar hasta que haya terminado el movimiento de referencia.</td>
</tr>
<tr>
<td>E A316</td>
<td>0</td>
<td>Desbordamiento en el cálculo de la aceleración</td>
<td>Se ha enviado un comando que no está permitido mientras el motor no esté parado. P. ej.: - Modificación final de carrera de software - Modificar el tratamiento de las señales de supervisión - Ajustar un punto de referencia - Introducir un registro de datos</td>
<td>Espere hasta que el motor se encuentre en parada (x_end = 1).</td>
</tr>
<tr>
<td>E A317</td>
<td>0</td>
<td>El motor no está parado</td>
<td>No es posible activar un modo de funcionamiento nuevo mientras haya otro modo de funcionamiento activo.</td>
<td>Espere hasta que haya concluido el comando en el modo de funcionamiento (x_end=1) o finalice el modo de funcionamiento actual con el comando PARADA.</td>
</tr>
<tr>
<td>E A318</td>
<td>0</td>
<td>Modo de funcionamiento activo (x_end = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A319</td>
<td>1</td>
<td>Tuning/Autotuning manual: movimiento fuera del rango Parámetro _SigLatched bit 2</td>
<td>El movimiento sobrepasa el área de desplazamiento máximo parametrizado.</td>
<td>Compruebe el área de desplazamiento permitido y el intervalo de tiempo.</td>
</tr>
<tr>
<td>E A31A</td>
<td>0</td>
<td>Tuning/Autotuning manual: Amplitud/Offset excesivos</td>
<td>La amplitud más el offset para el tuning sobrepasa los valores límite de velocidad o intensidad.</td>
<td>Seleccione valores más bajos para la amplitud y el offset.</td>
</tr>
<tr>
<td>E A31B</td>
<td>0</td>
<td>Parada solicitada</td>
<td>Comando no permitido cuando existe una solicitud de parada.</td>
<td>Finalizar solicitud de parada y repetir comando.</td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>E A31C</td>
<td>0</td>
<td>Ajuste de posición inadmisible en el final de carrera de software</td>
<td>El valor para el final de carrera de software negativo (positivo) es superior (inferior) al valor del final de carrera de software positivo (negativo).</td>
<td>Corregir los valores de posición.</td>
</tr>
<tr>
<td>E A31D</td>
<td>0</td>
<td>Rango de velocidad sobrepasado (parámetros CTRL_v_max, M_n_max)</td>
<td>La velocidad se ha ajustado a un valor superior a la velocidad máxima permitida (valor menor de los parámetros CTRL_v_max o M_n_max).</td>
<td>Si el valor del parámetro M_n_max es superior al valor del parámetro CTRL_v_max, aumentar el valor del parámetro CTRL_v_max o disminuir el valor de la velocidad.</td>
</tr>
<tr>
<td>E A31E</td>
<td>1</td>
<td>Interrupción por final de carrera de software positivo Parám. _SigLatched bit 2</td>
<td>El comando no puede ejecutarse porque se ha activado el final de carrera de software positivo.</td>
<td>Retroceder al área de desplazamiento permitido.</td>
</tr>
<tr>
<td>E A31F</td>
<td>1</td>
<td>Stop por final de carrera de software negativo Parám. _SigLatched bit 2</td>
<td>El comando no puede ejecutarse porque se ha activado el final de carrera de software negativo.</td>
<td>Retroceder al área de desplazamiento permitido.</td>
</tr>
<tr>
<td>E A320</td>
<td>par.</td>
<td>Excedida desviación de posición permitida Parám. _SigLatched bit 8</td>
<td>Carga externa o aceleración demasiado elevadas.</td>
<td>Reduzca la carga externa o la aceleración. En caso oportuno, utilizar un variador con otro dimensionamiento. La reacción de error se puede ajustar con el parámetro ErrorResp_p_dif.</td>
</tr>
<tr>
<td>E A321</td>
<td>0</td>
<td>Ajuste no válido para la interfaz de posición RS422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A322</td>
<td>0</td>
<td>Detectado error en el cálculo de rampa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A323</td>
<td>3</td>
<td>Detectado error del sistema: detectado error de procesamiento al generar el perfil</td>
<td>Se ha finalizado el movimiento de homing como reacción a un error detectado; puede consultar información detallada sobre la causa del error en la información adicional de la memoria de errores</td>
<td>Posibles códigos del error detectado: E A325, E A326, E A327, E A328 o E A329.</td>
</tr>
<tr>
<td>E A324</td>
<td>1</td>
<td>Detectado error durante homing (información adicional = código de error detallado) Parám. _SigLatched bit 4</td>
<td>Se ha finalizado el movimiento de homing como reacción a un error detectado; puede consultar información detallada sobre la causa del error en la información adicional de la memoria de errores</td>
<td>Posibles códigos del error detectado: E A325, E A326, E A327, E A328 o E A329.</td>
</tr>
<tr>
<td>E A325</td>
<td>1</td>
<td>Final de carrera no está activado Parám. _SigLatched bit 4</td>
<td>Homing desactivado al final de carrera positivo o al final de carrera negativo.</td>
<td>Activar final de carrera mediante "IOsigLimP" o "IOsigLimN".</td>
</tr>
<tr>
<td>E A326</td>
<td>1</td>
<td>No se ha encontrado el interruptor de referencia entre el final de carrera positivo y el final de carrera negativo. Parám. _SigLatched bit 4</td>
<td>Interruptor de referencia inoperativo o conectado incorrectamente.</td>
<td>Compruebe la función y el cableado del interruptor de referencia.</td>
</tr>
<tr>
<td>E A329</td>
<td>1</td>
<td>Hay más de una señal activa del final de carrera positivo/final de carrera negativo/interruptor de referencia. Parám. _SigLatched bit 4</td>
<td>El interruptor de referencia o algún final de carrera no están bien conectados, o la tensión de alimentación para los interruptores es muy baja.</td>
<td>Compruebe el cableado de la alimentación de 24 VCC.</td>
</tr>
</tbody>
</table>
Código de error | Clase de error | Designación | Causa | Soluciones
--- | --- | --- | --- | ---
E A32A | 1 | El final de carrera positivo ha sido activado con un movimiento en dirección negativa. Parámetro _SigLatched bit 4 | Inicie un movimiento de referencia con dirección de movimiento negativa (por ejemplo, movimiento de referencia al final de carrera negativo) y active el final de carrera positivo (interruptor en la dirección de movimiento contraria). | Compruebe la función y la conexión del final de carrera. Activar el movimiento de Jog con dirección de movimiento negativa (el final de carrera de destino tiene que estar conectado al final de carrera negativo). |
E A32B | 1 | El final de carrera negativo ha sido activado con un movimiento en dirección positiva. Parámetro _SigLatched bit 4 | Inicie un movimiento de referencia con dirección de movimiento positiva (por ejemplo, movimiento de referencia al final de carrera positivo) y active el final de carrera negativo (interruptor en la dirección de movimiento contraria). | Compruebe la función y la conexión del final de carrera. Activar el movimiento de Jog con dirección de movimiento positiva (el final de carrera de destino tiene que estar conectado al final de carrera positivo). |
E A32C | 1 | Detectado error en interruptor de referencia (señal del interruptor activada brevemente o interruptor sobrepasado) Parámetro _SigLatched bit 4 | Anomalía en la señal del final de carrera. El motor sufre vibraciones o cargas de impacto cuando se detiene tras activar la señal de conmutación. | Compruebe la alimentación de tensión, el cableado y la función del interruptor. Compruebe la reacción del motor tras la parada y optimice los ajustes del bucle de control. |
E A32D | 1 | Detectado error en el final de carrera positivo (señal del interruptor activada brevemente o interruptor sobrepasado) Parámetro _SigLatched bit 4 | Anomalía en la señal del final de carrera. El motor sufre vibraciones o cargas de impacto cuando se detiene tras activar la señal de conmutación. | Compruebe la alimentación de tensión, el cableado y la función del interruptor. Compruebe la reacción del motor tras la parada y optimice los ajustes del bucle de control. |
E A32E | 1 | Detectado error en el final de carrera negativo (señal del interruptor activada brevemente o interruptor sobrepasado) Parámetro _SigLatched bit 4 | Anomalía en la señal del final de carrera. El motor sufre vibraciones o cargas de impacto cuando se detiene tras activar la señal de conmutación. | Compruebe la alimentación de tensión, el cableado y la función del interruptor. Compruebe la reacción del motor tras la parada y optimice los ajustes del bucle de control. |
E A32F | 1 | No se ha encontrado el pulso índice Parámetro _SigLatched bit 4 | Señal para el pulso índice no conectada o inoperativa. | Compruebe la señal del pulso índice y la conexión. |
E A330 | 0 | El movimiento de referencia al pulso índice no es reproducible. El pulso índice está demasiado cerca del interruptor Parámetro _WarnLatched bit 4 | La diferencia de posición entre el pulso índice y el punto de conmutación es insuficiente. | Incrementar la distancia entre el pulso índice y el punto de conmutación. Si fuera posible, seleccionar una distancia de media revolución del motor entre el pulso índice y el punto de conmutación. |
E A332 | 1 | Detectado error en movimiento en el modo de funcionamiento Jog (información adicional = código de error detallado) Parámetro _SigLatched bit 4 | El movimiento en el modo de funcionamiento Jog se ha detenido como reacción a un error detectado. | Puede obtener información adicional del código de error detallado de la memoria de errores. |
E A333 | 3 | Detectado error del sistema: selección interna no válida | | |
E A334 | 2 | Tiempo excedido en la supervisión de la ventana de parada | La desviación de posición tras el movimiento es mayor que la ventana de parada. Esto puede deberse a una carga externa, por ejemplo. | Compruebe la carga. Compruebe los ajustes para la ventana de parada (parámetros MON_p_win, MON_p_winTime y MON_p_winTout). Optimice los ajustes del bucle de control. |
<table>
<thead>
<tr>
<th>Código de error</th>
<th>Clase de error</th>
<th>Designación</th>
<th>Causa</th>
<th>Soluciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>E A336</td>
<td>1</td>
<td>Detectado error del sistema: limitación de triones con offset de posición al finalizar el movimiento (información adicional = Offset in Inc.)</td>
<td>La reanudación de un movimiento que ha sido interrumpido en el modo de funcionamiento Profile Position no es posible porque entretanto se había activado otro modo de funcionamiento. En el modo de funcionamiento Secuencia de movimiento no es posible proseguir si se ha interrumpido un movimiento encadenado.</td>
<td>Inicie de nuevo el modo de funcionamiento.</td>
</tr>
<tr>
<td>E A337</td>
<td>0</td>
<td>No se puede continuar con el modo de funcionamiento Parámetro _WarnLatched bit 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A338</td>
<td>0</td>
<td>Modo de funcionamiento no disponible Parámetro _WarnLatched bit 4</td>
<td>El modo de funcionamiento seleccionado no está disponible.</td>
<td></td>
</tr>
<tr>
<td>E A339</td>
<td>0</td>
<td>No se ha seleccionado el procesamiento del encoder de motor o el registro rápido de la posición al pulso índice del motor está activo Parámetro _WarnLatched bit 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A33A</td>
<td>0</td>
<td>Sin punto cero válido (ref_ok=0) Parámetro _WarnLatched bit 4</td>
<td>No hay ningún punto cero definido con el modo de funcionamiento Homing. El punto cero ha dejado de ser válido porque se ha salido del área de desplazamiento. El motor no tiene encoders absolutos.</td>
<td>Defina un punto cero válido en el modo de funcionamiento Homing. Usar un motor con encoder absoluto.</td>
</tr>
<tr>
<td>E A33C</td>
<td>0</td>
<td>Función no disponible en este modo de funcionamiento Parámetro _WarnLatched bit 4</td>
<td>Activación de una función que no está disponible en el modo de funcionamiento activo. Ejemplo: inicio de la compensación de juego con el autotuning/tuning manual activo.</td>
<td></td>
</tr>
<tr>
<td>E A33D</td>
<td>0</td>
<td>El movimiento encadenado ya está activo Parámetro _WarnLatched bit 4</td>
<td>Modificación del movimiento encadenado durante un movimiento encadenado en curso (la posición final del movimiento encadenado no se ha alcanzado todavía).</td>
<td>Espere a que finalice el movimiento encadenado antes de establecer la siguiente posición.</td>
</tr>
<tr>
<td>E A33E</td>
<td>0</td>
<td>Ningún movimiento activo Parámetro _WarnLatched bit 4</td>
<td>Activar un movimiento encadenado sin movimiento.</td>
<td>Inicie el movimiento antes de activar el movimiento encadenado.</td>
</tr>
<tr>
<td>E A33F</td>
<td>0</td>
<td>Posición del movimiento encadenado fuera del rango del movimiento en curso Parámetro _WarnLatched bit 4</td>
<td>La posición del movimiento encadenado está fuera del área de desplazamiento.</td>
<td>Compruebe la posición del movimiento encadenado y el área de desplazamiento.</td>
</tr>
<tr>
<td>E A341</td>
<td>0</td>
<td>Posición del movimiento encadenado ya sobrepasada Parámetro _WarnLatched bit 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A342</td>
<td>1</td>
<td>No se ha alcanzado la velocidad de destino en la posición del movimiento encadenado. Parámetro _SigLatched bit 4</td>
<td>Se ha rebasado la posición del movimiento encadenado, no se ha alcanzado la velocidad de destino.</td>
<td>Reducir la velocidad de rampa para que se alcance la velocidad de destino en la posición del movimiento encadenado.</td>
</tr>
</tbody>
</table>
Código de error | Clase de error | Designación | Causa | Soluciones
--- | --- | --- | --- | ---
E A343 | 0 | Procesamiento solo permitido con rampa lineal Parámetro _WarnLatched bit 4 | La posición del movimiento encadenado se ha ajustado con una rampa no lineal. | Ajuste una rampa lineal.
E A347 | 0 | Excedida desviación de posición permitida Parámetro _WarnLatched bit 8 | Carga externa o aceleración demasiado elevadas. | Reduzca la carga externa o la aceleración. El valor umbral se puede ajustar con el parámetro MON_p_dif_warn.
E A349 | 0 | El ajuste de posición excede el valor límite del sistema | El escalado de posición de POSscaleDenom y POSscaleNum conlleva un factor de escala insuficiente. | Modificar POSscaleDenom y POSscaleNum de forma que el factor de escala sea mayor.
E A34A | 0 | El ajuste de la velocidad excede los valores límite del sistema | El escalado de velocidad de "VELscaleDenom" y "VELscaleNum" conlleva un factor de escala insuficiente. Se ha ajustado la velocidad a un valor superior a la máxima velocidad permitida (la máxima velocidad permitida es 13200 rpm). | Modificar "VELscaleDenom" y "VELscaleNum" de forma que el factor de escala sea mayor.
E A34B | 0 | El ajuste de rampa excede los valores límite del sistema | El escalado de rampa de "RAMPscaleDenom" y "RAMPscaleNum" conlleva un factor de escala insuficiente. | Modificar "RAMPscaleDenom" y "RAMPscaleNum" de forma que el factor de escala sea mayor.
E A34C | 0 | La resolución de la escala es excesiva (rango excedido) | Esta función no puede ejecutarse cuando Modulo está activo. | Desactivar Modulo si debe utilizarse la función.
E A34D | 0 | Función no disponible cuando Modulo está activo | Esta función no puede ejecutarse cuando Modulo está activo. | Ajustar el valor de destino correcto para el movimiento absoluto.
E A34E | 0 | El valor de destino para el movimiento absoluto no es posible con el rango Modulo definido y el procesamiento Modulo. | En caso de ajuste de 'MOD_Absolute': Distancia más corta: El valor de destino no se encuentra dentro del rango Modulo definido. Dirección positiva: El valor de destino es menor que 'MOD_Min'. Dirección negativa: El valor de destino es mayor que 'MOD_Max'. | Utilizar otros factores de escalada o desactivar la función seleccionada.
E A34F | 0 | Posición destino fuera de rango Modulo. En su lugar se ha ejecutado un movimiento correspondiente dentro del rango Modulo. | Con el ajuste de 'MOD_AbsMultiRng' solo están permitidos movimientos dentro del rango Modulo. | Modificar el parámetro 'MOD_AbsMultiRng' para permitir movimientos fuera del rango Modulo.
E A351 | 1 | No es posible realizar la función con este factor de escala de posición Parámetro _SigLatched bit 4 | El factor de escalada de posición es inferior a 1 revolución / 131072 usr_p lo que es menos que la resolución interna. En el modo de funcionamiento Cyclic Synchronous Position, la resolución no se ha ajustado a 1 revolución / 131072 usr_p. | Utilizar otros factores de escalada o desactivar la función seleccionada.
E A352 | 0 | Lista de posiciones activa | | |
E A353 | 0 | Lista de posiciones no clasificada | | |
E A354 | 0 | La lista de posiciones no es adecuada para la configuración del rango Modulo | | |
<table>
<thead>
<tr>
<th>Código de error</th>
<th>Clase de error</th>
<th>Designación</th>
<th>Causa</th>
<th>Soluciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>E A355 1</td>
<td>Detectado error en movimiento relativo tras Capture (información adicional = código de error detallado) Parámetro _SigLatched bit 4</td>
<td>El movimiento se ha detenido por un error.</td>
<td>Compruebe la memoria de errores.</td>
<td></td>
</tr>
<tr>
<td>E A356 0</td>
<td>La función movimiento relativo tras Capture no se ha asignado a ninguna entrada digital.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A357 0</td>
<td>Deceleración aún en curso</td>
<td>El comando no está permitido durante la deceleración.</td>
<td>Espere hasta que el motor se encuentre totalmente parado.</td>
<td></td>
</tr>
<tr>
<td>E A358 1</td>
<td>Posición destino con la función Movimiento relativo tras Capture excedida Parámetro _SigLatched bit 4</td>
<td>En el momento de producirse el Capture, el recorrido de frenado era demasiado corto o la velocidad demasiado elevada.</td>
<td>Reducir la velocidad.</td>
<td></td>
</tr>
<tr>
<td>E A359 0</td>
<td>El requerimiento no puede procesarse porque aún está activo el Movimiento relativo tras Capture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A35B 0</td>
<td>No puede activarse Modulo Parámetro _WarnLatched bit 4</td>
<td>No se admite Modulo en el modo de funcionamiento configurado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E A35D par.</td>
<td>Excedida desviación de velocidad permitida Parámetro _SigLatched bit 8</td>
<td>Carga o aceleración demasiado elevadas.</td>
<td>Reducir la carga o la aceleración.</td>
<td></td>
</tr>
<tr>
<td>E B100 0</td>
<td>RS485/Modbus: servicio indeterminable Parámetro _WarnLatched bit 5</td>
<td>Se ha recibido un servicio de Modbus no compatible.</td>
<td>Compruebe la aplicación en el maestro de Modbus.</td>
<td></td>
</tr>
<tr>
<td>E B120 2</td>
<td>Comunicación cíclica: duración de ciclo errónea. Parámetro _SigLatched bit 21</td>
<td>El variador no admite la duración de ciclo configurada o la diferencia entre la duración de ciclo configurada y la duración de ciclo medida es demasiado grande.</td>
<td>Cambie la duración de ciclo en el controlador superior a una duración de ciclo admitida por el variador o compruebe los requerimientos de la sincronización.</td>
<td></td>
</tr>
<tr>
<td>E B121 2</td>
<td>Comunicación cíclica: falta la señal de sincronización Parámetro _SigLatched bit 21</td>
<td>Se han recibido dos ciclos sin señal de sincronización.</td>
<td>Comprobar la comunicación.</td>
<td></td>
</tr>
<tr>
<td>E B122 2</td>
<td>Comunicación cíclica: sincronización errónea Parámetro _SigLatched bit 21</td>
<td>Falta una señal y la segunda señal prevista se ha recibido en un momento incorrecto. Puede ser que el controlador superior no pueda suministrar las señales de sincronización necesarias en la duración de ciclo ajustada, por ejemplo por no disponer de suficiente capacidad de cálculo.</td>
<td>Analizar la comunicación o aumentar la duración de ciclo.</td>
<td></td>
</tr>
<tr>
<td>E B123 2</td>
<td>Comunicación cíclica: la tolerancia de la duración de ciclo elegida es demasiado grande Parámetro _SigLatched bit 21</td>
<td>La tolerancia de la duración de ciclo no debe superar la cuarta parte de la duración de ciclo ajustada.</td>
<td>Introducir un valor correcto.</td>
<td></td>
</tr>
<tr>
<td>E B124 0</td>
<td>Comunicación cíclica: El variador no está sincronizado con el período maestro Parámetro _WarnLatched bit 21</td>
<td>Se ha activado un modo de funcionamiento, pero el variador no está sincronizado con la señal de sincronización. Después del inicio del mecanismo de sincronización, espere 120 ciclos y, una vez transcurridos, active el modo de funcionamiento.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código de error</td>
<td>Clase de error</td>
<td>Designación</td>
<td>Causa</td>
<td>Soluciones</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>E B201</td>
<td>2</td>
<td>RS485/Modbus: interrupción de la conexión Parámetro _SigLatched bit 5</td>
<td>La supervisión de conexión ha detectado una interrupción de la conexión.</td>
<td>Compruebe los cables y las conexiones utilizados para el intercambio de datos. Asegúrese de que el equipo está conectado.</td>
</tr>
<tr>
<td>E B202</td>
<td>0</td>
<td>RS485/Modbus: interrupción de la conexión Parámetro _WarnLatched bit 5</td>
<td>La supervisión de conexión ha detectado una interrupción de la conexión.</td>
<td>Compruebe los cables y las conexiones utilizados para el intercambio de datos. Asegúrese de que el equipo está conectado.</td>
</tr>
<tr>
<td>E B203</td>
<td>0</td>
<td>RS485/Modbus: número erróneo de objetos de supervisión Parámetro _WarnLatched bit 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E B400</td>
<td>2</td>
<td>CANopen: reset NMT con etapa de potencia activa Parámetro _SigLatched bit 21</td>
<td>Se ha recibido el comando NMT Reset mientras el variador se encuentra en el estado de funcionamiento Operation Enabled.</td>
<td>Desactivar la etapa de potencia antes de enviar un comando de reset NMT.</td>
</tr>
<tr>
<td>E B401</td>
<td>2</td>
<td>CANopen: parada NMT con etapa de potencia activa Parámetro _SigLatched bit 21</td>
<td>Se ha recibido el comando NMT Stop mientras el variador se encuentra en el estado de funcionamiento Operation Enabled.</td>
<td>Desactiva la etapa de potencia antes de enviar un comando de Stop NMT.</td>
</tr>
<tr>
<td>E B402</td>
<td>0</td>
<td>CAN PLL activo Parámetro _WarnLatched bit 21</td>
<td>Se ha intentado iniciar el mecanismo de sincronización a pesar de que ya estaba activo.</td>
<td>Desactive el mecanismo de sincronización.</td>
</tr>
<tr>
<td>E B403</td>
<td>2</td>
<td>Desviación excesiva del período Sync Parámetro _SigLatched bit 21</td>
<td>El período de las señales de sincronización no es estable. La desviación es superior a 100 usec.</td>
<td>Las señales de sincronización del Motion Controller deben ser más exactas.</td>
</tr>
<tr>
<td>E B404</td>
<td>2</td>
<td>Detectado error en señal Sync Parámetro _SigLatched bit 21</td>
<td>La señal SYNC no ha estado disponible en más de dos ocasiones.</td>
<td>Compruebe la conexión del CAN y el Motion Controller.</td>
</tr>
<tr>
<td>E B405</td>
<td>2</td>
<td>No ha sido posible adaptar el variador al período del maestro. Parámetro _SigLatched bit 21</td>
<td>Inestabilidad del objeto de sincronización demasiado elevada o requisitos del bus de movimiento no cumplidos.</td>
<td>Compruebe los requisitos de tiempo relativos a la duración de interpolación y el número de equipos.</td>
</tr>
<tr>
<td>E B406</td>
<td>0</td>
<td>La velocidad de transmisión no es compatible Parámetro _WarnLatched bit 21</td>
<td>La velocidad de transmisión configurada no es compatible</td>
<td>Seleccione una de las siguientes velocidades de transmisión: 250 kB, 500 kB, 1000 kB.</td>
</tr>
<tr>
<td>E B407</td>
<td>0</td>
<td>El variador no está sincronizado con el período maestro Parámetro _WarnLatched bit 21</td>
<td>El modo de funcionamiento 'Cyclic Synchronous Mode' no se puede activate quando el variador no está sincronizado.</td>
<td>Compruebe el Motion Controller. El Motion Controller debe enviar cíclicamente señales de sincronización para estar sincronizado.</td>
</tr>
<tr>
<td>E B700</td>
<td>0</td>
<td>Drive Profile Lexium: Al activar el perfil no se ha mapeado ni dmControl ni refA ni refB.</td>
<td>No se han mapeado dmControl, refA ni refB.</td>
<td>Mapée dmControl, refA o refB.</td>
</tr>
<tr>
<td>E B702</td>
<td>1</td>
<td>Resolución de velocidad insuficiente debido a escalado de velocidad</td>
<td>En el escalado de velocidad configurado, la resolución de velocidad en REFAL6 es insuficiente.</td>
<td>Cambiar el escalado de velocidad.</td>
</tr>
</tbody>
</table>
Capítulo 11
Parámetros

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representación de parámetros</td>
<td>410</td>
</tr>
<tr>
<td>Lista de los parámetros</td>
<td>413</td>
</tr>
</tbody>
</table>
Representación de parámetros

Este capítulo muestra un resumen de los parámetros que pueden utilizarse para manejar el producto. De forma adicional se incluye una descripción de parámetros especiales para la comunicación vía bus de campo en el correspondiente manual de bus de campo.

Los valores de parámetro inadecuados o los datos inadecuados pueden provocar movimientos involuntarios, activar señales, dañar piezas y desactivar funciones de monitorización. Algunos valores de parámetro o datos no se activan hasta no haber reiniciado el equipo.

ADVERTENCIA

COMPORTAMIENTO NO INTENCIONADO

- Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.
- No utilice el sistema de accionamiento con valores de parámetro o datos desconocidos.
- Modifique solo los valores de aquellos parámetros que conozca.
- Después de efectuar modificaciones, reinicie el equipo y compruebe los datos de servicio y/o los valores de parámetro guardados tras el cambio.
- En la puesta en marcha y al efectuar actualizaciones u otros cambios en el variador, realice un test meticuloso de todos los estados de funcionamiento y casos de error.
- Compruebe las funciones después de sustituir el producto y también después de realizar modificaciones en los valores de parámetro y/o en los datos de servicio.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Sinopsis

La representación de parámetros contiene información sobre la identificación inequívoca, las posibilidades de ajuste, los ajustes previos y las propiedades de un parámetro.

Estructura de la representación de parámetros:

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDEuos</td>
<td>Breve descripción</td>
<td>Apk 0.00</td>
<td>3.00</td>
<td>300.00</td>
<td>UINT32</td>
<td>R/W per.</td>
<td>Bus de campo 1234</td>
</tr>
<tr>
<td>Prn</td>
<td>Valores de selección</td>
<td>1 / Abc1 / Rbc 1: Explicación 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Abc1 / Rbc 2: Explicación 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descripción detallada y detalles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Campo "Nombre de parámetro"

El nombre de parámetro sirve para identificar de forma inequívoca un parámetro.

Campo "Menú HMI" y "Nombre HMI"

"Menú HMI" muestra la secuencia de menús y comandos para acceder a los parámetros a través de la HMI.

Campo "Descripción"

Breve descripción:

La descripción breve contiene información sobre el parámetro y una referencia a la página en la que se describe el uso del parámetro.

Valores de selección:

En el caso de parámetros que ofrecen valores de selección, debe introducirse en cada valor de selección el valor introduciendo el bus de campo, la denominación introduciendo el software de puesta en marcha y la denominación introduciendo el HMI.

1 = valor introducido mediante el bus de campo

Abc1 = denominación introducida mediante el software de puesta en marcha
Parámetros

Abc1 = denominación introducida mediante el HMI
Descripción y detalles:
Proporciona más información sobre el parámetro.

Campo "Unidad"
La unidad del valor.

Campo "Valor mínimo"
El valor más pequeño que se puede indicar.

Campo "Ajuste de fábrica"
Ajustes al suministrar el producto.

Campo "Valor máximo"
El valor más elevado que se puede indicar.

Campo "Tipo de datos"
El tipo de datos determina el rango de valores válido cuando el valor mínimo y el valor máximo no se indican explicitamente.

<table>
<thead>
<tr>
<th>Tipo de dato</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT8</td>
<td>–128</td>
<td>127</td>
</tr>
<tr>
<td>UINT8</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>INT16</td>
<td>–32768</td>
<td>32767</td>
</tr>
<tr>
<td>UINT16</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>INT32</td>
<td>–2147483648</td>
<td>2147483647</td>
</tr>
<tr>
<td>UINT32</td>
<td>0</td>
<td>4294967295</td>
</tr>
</tbody>
</table>

Campo "R/W"
Indicación acerca de la capacidad de leer y escribir los valores
R/-: Sólo se puede leer los valores.
R/W: Se puede leer y escribir los valores.

Campo "Persistente"
"per." Identifica si el valor del parámetro es persistente, es decir, si permanece guardado en memoria después de la desconexión del equipo.
Si se cambia el valor de un parámetro persistente a través de la HMI, el variador guarda automáticamente el valor en la memoria persistente.
Si se modifica el valor de un parámetro persistente a través del software de puesta en marcha o del bus de campo, el usuario debe guardar expresamente el valor modificado en la memoria persistente.

Campo "Dirección de parámetro"
Cada parámetro cuenta con una dirección de parámetro inequívoca. A través de la dirección de parámetro se accede al parámetro mediante el bus de campo.
Números decimales introducidos a través del bus de campo

Preste atención a que los valores de los parámetros se introduzcan en el bus de campo sin signos decimales. Deben introducirse siempre todos los decimales.

Ejemplo:

<table>
<thead>
<tr>
<th>Valor</th>
<th>Software de puesta en marcha</th>
<th>Bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5,0</td>
<td>5,0</td>
<td>50</td>
</tr>
<tr>
<td>23,57</td>
<td>23,57</td>
<td>2357</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Lista de los parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccessInfo</td>
<td>Información sobre el canal de acceso</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 3001:Cₙ</td>
</tr>
<tr>
<td></td>
<td>Byte bajo: Acceso exclusivo</td>
<td>-</td>
<td>R/-</td>
<td>Modbus 280</td>
</tr>
<tr>
<td></td>
<td>Valor 0: No</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 1: Si</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte alto: Canal de acceso</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 0: Reservado</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 1: E/S</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 2: HMI</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 3: Modbus RS485</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 4: Canal principal bus de campo</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores 5 ... 12: Modbus TCP, CANopen</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>segundo SDO o maestro Profibus clase 2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores 13 ... 28: Canales explícitos</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EtherNet/IP</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>actionStatus</td>
<td>Action Word</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 301C:4ₙ</td>
</tr>
<tr>
<td></td>
<td>Estado de la señal:</td>
<td>-</td>
<td>R/-</td>
<td>Modbus 7176</td>
</tr>
<tr>
<td></td>
<td>0: No activado</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Activado</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: Clase de error 0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: Clase de error 1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: Clase de error 2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: Clase de error 3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: Clase de error 4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 5: Reservado</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 6: Motor parado (._n_act < 9)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 7: Movimiento del motor en dirección positiva</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 8: Movimiento del motor en dirección negativa</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 9: La asignación puede ajustarse a través del parámetro DPL_INTLim</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 10: La asignación puede ajustarse a través del parámetro DS402INTLim</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 11: El generador del perfil de movimiento está parado (el valor de velocidad de referencia es 0)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 12: Generador del perfil de movimiento decelerado</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 13: Generador del perfil de movimiento acelerado</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 14: Generador del perfil de movimiento a velocidad constante</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 15: Reservado</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AT_J</td>
<td>Moménto de inercia del sistema</td>
<td>kg cm²</td>
<td>UINT16</td>
<td>CANopen 302F:3ₙ</td>
</tr>
<tr>
<td></td>
<td>completo</td>
<td>0,1</td>
<td>R/-</td>
<td>Modbus 12056</td>
</tr>
<tr>
<td></td>
<td>Se calcula automáticamente durante el autotuning.</td>
<td>0,1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 kg cm².</td>
<td>6553,5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AT_M_friction</td>
<td>Par de fricción del sistema</td>
<td>A rms</td>
<td>UINT16</td>
<td>CANopen 302F:7ₙ</td>
</tr>
<tr>
<td></td>
<td>Se calcula durante el autotuning.</td>
<td>-</td>
<td>R/-</td>
<td>Modbus 12046</td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A rms.</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>_AT_M_load</td>
<td>Par de carga constante</td>
<td>A\text{rms}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_AT_progress</td>
<td>Avance del autotuning</td>
<td>%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>_AT_state</td>
<td>Estado del autotuning</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_CanDiag</td>
<td>Palabra de diagnóstico CANopen</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap1CntFall</td>
<td>Entrada Capture 1 contador de eventos con flancos descendentes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap1CntRise</td>
<td>Entrada Capture 1 contador de eventos con flancos ascendentes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap1Count</td>
<td>Entrada Capture 1 contador de eventos</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>_Cap1CountCons</td>
<td>Contador de eventos de entrada Capture 1 (consistente) Cuenta las incidencias de Capture. El contador de eventos se restablece al activar la entrada Capture 1. Leyendo este parámetro, el parámetro ",_Cap1PosCons" se actualiza y se bloquea contra cambios. De este modo, ambos valores de parámetro permanecen consistentes. Disponible con la versión de firmware ≥ V01.12.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap1Pos</td>
<td>Entrada Capture 1 posición registrada Posición registrada en el momento de la "Señal Captura". Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo.</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap1PosCons</td>
<td>Posición registrada de entrada Capture 1 (consistente) Posición registrada en el momento de la "Señal Captura". Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo. Leyendo el parámetro "_Cap1CountCons", este parámetro se actualiza y se bloquea contra cambios. De este modo, ambos valores de parámetro permanecen consistentes. Disponible con la versión de firmware ≥ V01.12.</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap1PosFall Edge</td>
<td>Posición registrada de entrada Capture 1 con flanco descendente Este parámetro contiene la posición registrada al producirse un flanco descendente. Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo. Disponible con la versión de firmware ≥ V01.16.</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap1PosRis Edge</td>
<td>Posición registrada de entrada Capture 1 con flanco ascendente Este parámetro contiene la posición registrada al producirse un flanco ascendente. Después del "Establecimiento" o "Referenciado", la posición registrada se calcula de nuevo. Disponible con la versión de firmware ≥ V01.16.</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap2CntFall</td>
<td>Entrada Capture 2 contador de eventos con flancos descendentes Cuenta los eventos de Capture con flancos descendentes. El contador de eventos se restablece al activar la entrada Capture 2. Disponible con la versión de firmware ≥ V01.16.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Ajuste de fábrica</td>
<td>Valor mínimo</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>_Cap2CntRise</td>
<td>Entrada Capture 2 contador de eventos con flancos ascendentes</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap2Count</td>
<td>Entrada Capture 2 contador de eventos</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap2CountCons</td>
<td>Contador de eventos de entrada Capture 2 (consistente)</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap2Pos</td>
<td>Entrada Capture 2 posición registrada</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap2PosCons</td>
<td>Posición registrada de entrada Capture 2 (consistente)</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>_Cap2PosFall Edge</td>
<td>Posición registrada de entrada Capture 2 con flanco descendente</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cap2PosRis Edge</td>
<td>Posición registrada de entrada Capture 2 con flanco ascendente</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_CapEventCounter</td>
<td>Entradas Capture 1 y 2 resumen de los contadores de eventos</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_CapStatus</td>
<td>Estado de las entradas Capture</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_Cond_State4</td>
<td>Condiciones para cambiar al estado de funcionamiento Ready To Switch On Estado de la señal: 0: Condición no cumplida 1: Condición cumplida</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
</table>
| _CTRL_ActParSet | Juego de parámetros de lazo de control activo
Valor 1: Juego de parámetros de lazo de control 1 activo
Valor 2: Juego de parámetros de lazo de control 2 activo
Un juego de parámetros de lazo de control se activa después de transcurrir el tiempo ajustado para la conmutación de parámetros (CTRL_ParChgTime). | - | - | - | - | UINT16 R/- | - | - | CANopen 3011:17h
Modbus 4398 |
| _CTRL_KPid | Controlador de corriente componente d factor P
El valor se calcula a partir de los parámetros de motor.
En pasos de 0,1 V/A.
Los ajustes modificados se aceptan de inmediato. | V/A
0,5
-
1270,0 | - | - | - | UINT16 R/- per. | - | - | CANopen 3011:1h
Modbus 4354 |
| _CTRL_KPiq | Controlador de corriente componente q factor P
El valor se calcula a partir de los parámetros de motor.
En pasos de 0,1 V/A.
Los ajustes modificados se aceptan de inmediato. | V/A
0,5
-
1270,0 | - | - | - | UINT16 R/- per. | - | - | CANopen 3011:3h
Modbus 4358 |
| _CTRL_TNId | Controlador de corriente componente d tiempo de acción integral
El valor se calcula a partir de los parámetros de motor.
En pasos de 0,01 ms.
Los ajustes modificados se aceptan de inmediato. | ms
0,13
-
327,67 | - | - | - | UINT16 R/- per. | - | - | CANopen 3011:2h
Modbus 4356 |
| _CTRL_TNiq | Controlador de corriente componente q tiempo de acción integral
El valor se calcula a partir de los parámetros de motor.
En pasos de 0,01 ms.
Los ajustes modificados se aceptan de inmediato. | ms
0,13
-
327,67 | - | - | - | UINT16 R/- per. | - | - | CANopen 3011:4h
Modbus 4360 |
| _DataError | Código de error de errores síncronos detectados (bit DE)
Perfil de accionamiento Lexium:
Código de errores específico del fabricante, que causó la activación del bit DataError.
Por lo general, este error se detecta si cambia un valor de datos en el canal de datos del proceso. El bit DataError se refiere a parámetros independientes de MT. | - | - | - | - | UINT16 R/- | - | - | CANopen 301B.1Bh
Modbus 6966 |
<table>
<thead>
<tr>
<th>Nombre de parámetro Menú HMI Nombre HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_DataErrorInfo</td>
<td>Información adicional sobre el DataError detected (bit DE) Perfil de acionamiento Lexium: Indica qué parámetro de mapeado ha originado la activación del bit DE. El bit DE se activa cuando parámetros independientes de MT generan un error en un comando de escritura durante el mapeado activo. Ejemplo: 1 = Primer parámetro mapeado 2 = Segundo parámetro mapeado etc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UUINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301B;1Dh Modbus 6970</td>
</tr>
<tr>
<td>_DCOMstatus</td>
<td>Palabra de estado DriveCom Asignación de bits: Bit 0: Estado de funcionamiento Ready To Switch On Bit 1: Estado de funcionamiento Switched On Bit 2: Estado de funcionamiento Operation Enabled Bit 3: Estado de funcionamiento Fault Bit 4: Voltage Enabled Bit 5: Estado de funcionamiento Quick Stop Bit 6: Estado de funcionamiento Switch On Disabled Bit 7: Error de clase de error 0 Bit 8: HALT request active Bit 9: Remote Bit 10: Target Reached Bit 11: Internal Limit Active Bit 12: Específico del modo de funcionamiento Bit 13: x_err Bit 14: x_end Bit 15: ref_ok</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UUINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 6041;0h Modbus 6916</td>
</tr>
<tr>
<td>_DEV_T_current</td>
<td>Temperatura del equipo</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301C:12h Modbus 7204</td>
</tr>
</tbody>
</table>
_DPL_BitShiftRefA16_

Desplazamiento de bit para RefA16 para perfil de accionamiento Drive Profile Lexium. El escalado de velocidad puede llevar a valores que no pueden representarse como valor de 16 bits. En caso de utilizar RefA16, este parámetro indica el número de bits que se desplaza el valor de forma que sea posible una transferencia. El maestro debe tener en cuenta este valor antes de la transferencia y desplazar los bits hacia la derecha de forma correspondiente. El número de bits se calcula de nuevo con cada activación de la etapa de potencia. Los ajustes modificados se aceptan de inmediato.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPL_BitShiftRefA16</td>
<td>Desplazamiento de bit para RefA16 para perfil de accionamiento Drive Profile Lexium</td>
<td>mV</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301B:5h Modbus 6922</td>
</tr>
</tbody>
</table>

_DPL_driveInput_

Perfil de accionamiento Drive Profile Lexium driveInput

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPL_driveInput</td>
<td>Perfil de accionamiento Drive Profile Lexium driveInput</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301B:28h Modbus 6992</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_DPL_driveStat_

Perfil de accionamiento Drive Profile Lexium driveStat

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPL_driveStat</td>
<td>Perfil de accionamiento Drive Profile Lexium driveStat</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301B:25h Modbus 6986</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_DPL_mfStat_

Perfil de accionamiento Drive Profile Lexium mfStat

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPL_mfStat</td>
<td>Perfil de accionamiento Drive Profile Lexium mfStat</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301B:26h Modbus 6988</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_DPL_motionStat_

Perfil de accionamiento Drive Profile Lexium motionStat

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPL_motionStat</td>
<td>Perfil de accionamiento Drive Profile Lexium motionStat</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301B:27h Modbus 6990</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_ENC_AmplMax_

Valor máximo de la amplitud de SinCos. Este valor solo está disponible si se ha activado la monitorización de la amplitud SinCos. Disponible con la versión de firmware ≥ V01.26.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC_AmplMax</td>
<td>Valor máximo de la amplitud de SinCos</td>
<td>mV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 303F:60h Modbus 16320</td>
</tr>
</tbody>
</table>

_ENC_AmplMean_

Valor medio de la amplitud de SinCos. Este valor solo está disponible si se ha activado la monitorización de la amplitud SinCos. Disponible con la versión de firmware ≥ V01.26.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC_AmplMean</td>
<td>Valor medio de la amplitud de SinCos</td>
<td>mV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 303F:5Eh Modbus 16316</td>
</tr>
</tbody>
</table>

_ENC_AmplMin_

Valor mínimo de la amplitud de SinCos. Este valor solo está disponible si se ha activado la monitorización de la amplitud SinCos. Disponible con la versión de firmware ≥ V01.26.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC_AmplMin</td>
<td>Valor mínimo de la amplitud de SinCos</td>
<td>mV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 303F:5Dh Modbus 16318</td>
</tr>
</tbody>
</table>

_ENC_AmplVal_

Valor de la amplitud de SinCos. Este valor solo está disponible si se ha activado la monitorización de la amplitud SinCos. Disponible con la versión de firmware ≥ V01.26.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC_AmplVal</td>
<td>Valor de la amplitud de SinCos</td>
<td>mV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 303F:5Ch Modbus 16314</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_class</td>
<td>Clase de error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 303C:2h, Modbus 15364</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 0: clase de error 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 1: clase de error 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 2: clase de error 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 3: clase de error 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 4: clase de error 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_DCbus</td>
<td>Tensión del bus DC en el momento de detectarse el error</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 303C:7h, Modbus 15374</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_enable_cycl</td>
<td>Cantidad de ciclos de activación de la etapa de potencia en el instante del error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 303C:5h, Modbus 15370</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cantidad de procesos de activación de la etapa de potencia tras aplicar la alimentación de tensión (tensión de control) hasta el momento en el que se ha detectado el error.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_enable_time</td>
<td>Tiempo entre la activación de la etapa de potencia y la detección del error</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 303C:6h, Modbus 15372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_motor_I</td>
<td>Corriente del motor en el momento de la detección del error</td>
<td>A<sub>ms</sub></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 303C:9h, Modbus 15378</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A<sub>ms</sub>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_motor_v</td>
<td>Velocidad del motor en el momento de detección del error</td>
<td>us<sub>r_v</sub></td>
<td></td>
<td></td>
<td></td>
<td>INT32</td>
<td>CANopen 303C:8h, Modbus 15376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_number</td>
<td>Código de error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 303C:1h, Modbus 15362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La consulta de este parámetro traslada el registro completo del error detectado (clase de error, momento de la detección del error, ...) a una memoria intermedia, desde la que posteriormente será posible consultar los elementos del error detectado. Además, el indicador de lectura de la memoria de errores pasa automáticamente al siguiente registro de error.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_powerOn</td>
<td>Cantidad de ciclos de conexión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT32</td>
<td>CANopen 303B:2h, Modbus 15108</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4294967295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_qual</td>
<td>Información adicional sobre el error detectado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>CANopen 303C:4h, Modbus 15368</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Este registro contiene información adicional sobre el error detectado en función del código de error. Ejemplo: una dirección de parámetro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_temp_dev</td>
<td>Temperatura del equipo en el momento de la detección del error</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>CANopen 303C:Bh, Modbus 15382</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ERR_temp_ps</td>
<td>Temperatura de la etapa de potencia en el momento de la detección del error</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>CANopen 303C:Ah, Modbus 15380</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>_ERR_time</td>
<td>Momento de la detección del error Referido al contador de horas de servicio</td>
<td>s</td>
<td>0</td>
<td>536870911</td>
<td>UINT32</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 303C:3h Modbus 15366</td>
</tr>
<tr>
<td>_ErrNumFbParSvc</td>
<td>Último código de error de los servicios de parámetros del bus de campo Algunos tipos de bus de campo suministran sólo códigos de error generales si la solicitud de un servicio de parámetro no ha tenido éxito. Este parámetro devuelve el código de error específico del fabricante del último servicio fallido.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 3040:43h Modbus 16518</td>
</tr>
<tr>
<td>_HMdisREFtoIDX</td>
<td>Distancia del punto de conmutación al pulso índice Permite comprobar la distancia que hay entre el pulso índice y el punto de conmutación, sirviendo de criterio para saber si se puede reproducir o no el movimiento de referencia con pulso índice. A través del parámetro _HMdisREFtoIDX_usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones.</td>
<td>Revolución</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 3028:C4h Modbus 10264</td>
</tr>
<tr>
<td>_HMdisREFtoIDX_usr</td>
<td>Distancia del punto de conmutación al pulso índice Permite comprobar la distancia que hay entre el pulso índice y el punto de conmutación, sirviendo de criterio para saber si se puede reproducir o no el movimiento de referencia con pulso índice. Disponible con la versión de firmware ≥ V01.05.</td>
<td>usr_p</td>
<td>-2147483648</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 3028:Fh Modbus 10270</td>
</tr>
<tr>
<td>_hwVersCPU</td>
<td>Versión de hardware de Control Board</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 3002:12h Modbus 548</td>
</tr>
<tr>
<td>_hwVersPS</td>
<td>Versión de hardware de etapa de potencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 3002:14h Modbus 552</td>
</tr>
<tr>
<td>_I_act</td>
<td>Corriente total del motor En pasos de 0,01 A<sub>rms</sub></td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 301E:3h Modbus 7686</td>
</tr>
<tr>
<td>_Id_act_rms</td>
<td>Corriente real del motor (componente d, debilitamiento del campo) En pasos de 0,01 A<sub>rms</sub></td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 301E:2h Modbus 7684</td>
</tr>
<tr>
<td>_Id_ref_rms</td>
<td>Corriente de consigna del motor (componente d, debilitamiento del campo) En pasos de 0,01 A<sub>rms</sub></td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td></td>
<td></td>
<td>CANopen 301E:11h Modbus 7714</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>_Imax_act</td>
<td>Limitación de corriente efectiva actualmente</td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-/R</td>
<td>CANopen 301C:28h, Modbus 7248</td>
</tr>
<tr>
<td></td>
<td>Valor de la limitación de corriente efectiva actualmente. En cada caso se trata del menor de los siguientes valores:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_I_max (solo en funcionamiento regular)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LIM_I_maxQSTP (solo en Quick Stop)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LIM_I_maxHalt (solo en parada)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Limitación de la corriente a través de entrada digital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _M_I_max (solo cuando está conectado el motor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _PS_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>También se tienen en cuenta las limitaciones resultantes de la supervisión I2t.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A<sub>rms</sub>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Imax_system</td>
<td>Limitación de corriente del sistema</td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-/R</td>
<td>CANopen 301C:27h, Modbus 7246</td>
</tr>
<tr>
<td></td>
<td>Este parámetro indica la corriente máxima del sistema. Se trata del valor menor de la corriente máxima del motor o de la corriente máxima de la etapa de potencia. Si no hay conectado ningún motor, para este parámetro se tiene en cuenta únicamente la corriente máxima de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A<sub>rms</sub>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_InvalidParam</td>
<td>Dirección Modbus del parámetro con un valor no válido</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>UINT16</td>
<td>R/-</td>
<td>-/R</td>
<td>CANopen 301C:6h, Modbus 7180</td>
</tr>
<tr>
<td></td>
<td>Cuando se detecta un error en la configuración, la dirección Modbus del parámetro se indica aquí con un valor no válido.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_IO_act</td>
<td>Estado físico de las entradas y salidas digitales</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-/R</td>
<td>CANopen 3008:1h, Modbus 2050</td>
</tr>
<tr>
<td></td>
<td>Byte inferior:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: DI0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: DI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: DI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: DI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte superior:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 8: DQ0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 9: DQ1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_IO_DI_act</td>
<td>Estado de las entradas digitales</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-/R</td>
<td>CANopen 3008:Fh, Modbus 2078</td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: DI0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: DI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: DI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: DI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_IO_DQ_act</td>
<td>Estado de las salidas digitales</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-/R</td>
<td>CANopen 3008:10h, Modbus 2080</td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: DQ0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: DQ1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_IO_STO_act</td>
<td>Estado de las entradas para la función de seguridad STO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-/R</td>
<td>CANopen 3008:26h, Modbus 2124</td>
</tr>
<tr>
<td></td>
<td>Codificación de cada una de las señales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: STO_A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: STO_B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>_Iq_act_rms</td>
<td>corriente real del motor (componente q, generador de par)</td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301E:1h, Modbus 7682</td>
</tr>
<tr>
<td>_Iq_ref_rms</td>
<td>corriente de consigna del motor (componente q, generador de par)</td>
<td>A<sub>rms</sub></td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301E:10h, Modbus 7712</td>
</tr>
<tr>
<td>_LastError</td>
<td>error que desencadena una parada (clase de error 1 a 4)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 603F:0h, Modbus 7178</td>
</tr>
<tr>
<td>_LastError_Qual</td>
<td>información adicional sobre el último error detectado</td>
<td></td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301C:1Fh, Modbus 7230</td>
</tr>
<tr>
<td>_LastWarning</td>
<td>código de error del último error detectado de la clase de error 0</td>
<td></td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301C:9h, Modbus 7186</td>
</tr>
<tr>
<td>_M_BRK_T_apply</td>
<td>hora de desconexión (bloquear freno de parada)</td>
<td>ms</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 300D:21h, Modbus 3394</td>
</tr>
<tr>
<td>_M_BRK_T_release</td>
<td>hora de conexión (abrir freno de parada)</td>
<td>ms</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 300D:22h, Modbus 3396</td>
</tr>
<tr>
<td>_M_Enc_Cosine</td>
<td>tensión de la señal de coseno del encoder</td>
<td>V</td>
<td></td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301C:2Bh, Modbus 7254</td>
</tr>
<tr>
<td>_M_Enc_Sine</td>
<td>tensión de la señal de seno del encoder</td>
<td>V</td>
<td></td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301C:2Ch, Modbus 7256</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Denominación</td>
<td>Unidad</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_Encoder</td>
<td>Tipo del encoder del motor</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:3h Modbus 3334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_HoldingBrake</td>
<td>Identificación del freno de parada</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:20h Modbus 3392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_I_0</td>
<td>Corriente de parada permanente del motor</td>
<td>A<sub>rms</sub></td>
<td>UINT16</td>
<td>CANopen 300D:13h Modbus 3366</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_I_max</td>
<td>Corriente máxima del motor</td>
<td>A<sub>rms</sub></td>
<td>UINT16</td>
<td>CANopen 300D:6h Modbus 3340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_I_nom</td>
<td>Corriente nominal del motor</td>
<td>A<sub>rms</sub></td>
<td>UINT16</td>
<td>CANopen 300D:7h Modbus 3342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_Jrot</td>
<td>Momento de inercia del motor</td>
<td>motor<sub>f</sub></td>
<td>UINT32</td>
<td>CANopen 300D:6h Modbus 3352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_kE</td>
<td>Constante de tensión del motor kE</td>
<td>motor<sub>u</sub></td>
<td>UINT32</td>
<td>CANopen 300D:6h Modbus 3350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_L_d</td>
<td>Inductancia del motor componente d</td>
<td>mH</td>
<td>UINT16</td>
<td>CANopen 300D:Fh Modbus 3358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_L_q</td>
<td>Inductancia del motor componente q</td>
<td>mH</td>
<td>UINT16</td>
<td>CANopen 300D:Eh Modbus 3356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_load</td>
<td>Carga del motor</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 301C:1A, Modbus 7220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_M_0</td>
<td>Par de parada continua del motor</td>
<td>motor_m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:16, Modbus 3372</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Este parámetro equivale a un valor del 100 % en el modo de funcionamiento Profile Torque.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidades:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores rotatorios: Ncm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores lineales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_M_max</td>
<td>Par máximo del motor</td>
<td>Nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:9, Modbus 3346</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 Nm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_M_nom</td>
<td>Par nominal/fuerza nominal del motor</td>
<td>motor_m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:8, Modbus 3344</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidades:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores rotatorios: Ncm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores lineales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_maxoverload</td>
<td>Valor de cresta de la sobrecarga del motor</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 301C:1B, Modbus 7222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sobrecarga máxima del motor que se ha producido en los últimos 10 segundos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_n_max</td>
<td>Velocidad máxima permitida/velocidad del motor</td>
<td>motor_v</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:4, Modbus 3336</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidades:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores rotatorios: min-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores lineales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_n_nom</td>
<td>Velocidad nominal del motor</td>
<td>motor_v</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:5, Modbus 3338</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidades:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores rotatorios: min-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motores lineales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_overload</td>
<td>Sobrecarga del motor (I2t)</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 301C:19, Modbus 7218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_Polepair</td>
<td>Número de pares de polos del motor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:14, Modbus 3368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_PolePairPitch</td>
<td>Amplitud de pares de polos del motor</td>
<td>mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:23, Modbus 3398</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.03.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_R_UV</td>
<td>Resistencia del bobinado del motor</td>
<td>Ω</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 300D:D, Modbus 3354</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 Ω.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_T_current</td>
<td>Temperatura del motor</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 301C:11, Modbus 7202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_M_T_max</td>
<td>Máxima temperatura del motor</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>CANopen 300D:10, Modbus 3360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>RW</td>
<td>Persistente</td>
<td>Experto</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>_M_Type</td>
<td>Tipo de motor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CanF - inF - MtyP</td>
<td>Valor 0: No se ha seleccionado ningún motor</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_M_U_max</td>
<td>Tensión máxima del motor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_M_U_nom</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_ManuSdoAbort</td>
<td>CANopen SDO Abort Code específico del fabricante</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_ModeError</td>
<td>Código de error de los errores síncronos detectados (bit ME)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_ModeErrorInfo</td>
<td>Información adicional sobre el ModeError detectado (bit ME)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_n_act</td>
<td>Velocidad real</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_n_act_ENC1</td>
<td>Velocidad real del encoder 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_n_ref</td>
<td>Valor de referencia de velocidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_OpHours</td>
<td>Numerador de horas de servicio</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Menú HMI</td>
<td>Nombre HMI</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>_p_absENC</td>
<td>Parámetros</td>
<td>_p_absENC</td>
<td>Posición absoluta referente a la zona de funcionamiento del encoder. Este valor corresponde a la posición del módulo del rango del encoder absoluto. Este valor se invalida si se cambia la relación de multiplicación entre el encoder de la máquina y el encoder del motor. En este caso es necesario reiniciar.</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/-</td>
<td>-</td>
</tr>
<tr>
<td>_p_absmodulo</td>
<td>Mon PAMu</td>
<td>Posición absoluta referida a la resolución interna en unidades internas. Este valor se basa en la posición en bruto del encoder referida a la resolución interna (131072 inc).</td>
<td>INC</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_p_act</td>
<td>Mon PACu</td>
<td>Posición actual</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_p_act_ENC1</td>
<td>_p_act_ENCl</td>
<td>Posición real del encoder 1 Disponible con la versión de firmware ≥ V01.03.</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_p_act_ENCl_int</td>
<td>_p_act_ENCl_int</td>
<td>Posición real del encoder 1 en unidades internas Disponible con la versión de firmware ≥ V01.03.</td>
<td>INC</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_p_act_int</td>
<td>_p_act_int</td>
<td>Posición real en unidades internas</td>
<td>INC</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_p_dif</td>
<td>_p_dif</td>
<td>Desviación de posición con desviación de posición dinámica incluida La desviación de posición es la diferencia entre el valor de referencia de posición y la posición real. La desviación de posición está compuesta por la desviación de posición en función de la carga y por la desviación de posición dinámica. A través del parámetro _p_dif_usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones.</td>
<td>Revolución -214748,3648 - 214748,3647</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 60F4:0h Modbus 7716</td>
<td></td>
</tr>
<tr>
<td>_p_dif_load</td>
<td>_p_dif_load</td>
<td>Desviación de posición debida a la carga entre posición de referencia y posición real La desviación de posición debida a la carga es la diferencia, causada por la carga, entre el valor de referencia de posición y la posición real. Este valor de la desviación se usa para la supervisión del error de seguimiento. A través del parámetro _p_dif_load_usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones.</td>
<td>Revolución -214748,3648 - 214748,3647</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301E:1Ch Modbus 7736</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>_p_dif_load_peak</td>
<td>Valor máximo de la desviación de posición debida a la carga que se ha producido hasta el momento. Por medio de un acceso de escritura se vuelve a reposicionar el valor. A través del parámetro _p_dif_load_peak_usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones. Los ajustes modificados se aceptan de inmediato.</td>
<td>Revolución</td>
<td>0.0000</td>
<td>429496,7295</td>
<td>UIN32</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 301E:1Bh Modbus 7734</td>
</tr>
<tr>
<td>_p_dif_load_peak_usr</td>
<td>Valor máximo de la desviación de posición debida a la carga que se ha producido hasta el momento. Por medio de un acceso de escritura se vuelve a reposicionar el valor. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.05.</td>
<td>usr_p</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 301E:15h Modbus 7722</td>
</tr>
<tr>
<td>_p_dif_load_usr</td>
<td>Desviación de posición debida a la carga entre posición de referencia y posición real. La desviación es la diferencia, causada por la carga, entre el valor de referencia de posición y la posición real. Este valor de la desviación se usa para la supervisión del error de seguimiento. Disponible con la versión de firmware ≥ V01.05.</td>
<td>usr_p</td>
<td>–2147483648</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301E:16h Modbus 7724</td>
</tr>
<tr>
<td>_p_dif_usr</td>
<td>Desviación de posición con desviación de posición dinámica incluida. La desviación de posición está compuesta por la desviación de posición en función de la carga y por la desviación de posición dinámica. Disponible con la versión de firmware ≥ V01.05.</td>
<td>usr_p</td>
<td>–2147483648</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANopen 301E:14h Modbus 7720</td>
</tr>
<tr>
<td>_p_ref</td>
<td>Valor de referencia de posición El valor corresponde a la posición deseada del controlador de posición</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANOpen 301E:Ch Modbus 7704</td>
</tr>
<tr>
<td>_p_ref_int</td>
<td>Posición deseada en unidades internas El valor corresponde a la posición deseada del controlador de posición</td>
<td>INC</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
<td>CANOpen 301E:9h Modbus 7698</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>PAR.ScalingError</td>
<td>Información adicional en el caso de un error detectado durante el nuevo cálculo. Codificación: Bits 0 ... 15: Dirección del parámetro que ha originado el error Bits 16 ... 31: Reservado. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.05.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3004:16h Modbus 1068</td>
</tr>
<tr>
<td>PAR.ScalingState</td>
<td>Estado del nuevo cálculo de los parámetros con unidades de usuario. 0 / Recalculation Active: Nuevo cálculo en curso. 1 / Reserved (1): Reservado. 2 / Recalculation Finished - No Error: Nuevo cálculo concluído sin error. 3 / Error During Recalculation: Error en nuevo cálculo. 4 / Initialization Successful: Inicialización correcta. 5 / Reserved (5): Reservado. 6 / Reserved (6): Reservado. 7 / Reserved (7): Reservado. Estado del nuevo cálculo de los parámetros con unidades de usuario calculados de nuevo con un factor de escalada modificado. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.05.</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 3004:15h Modbus 1066</td>
</tr>
<tr>
<td>_PosRegStatus</td>
<td>Estado de los canales del registro de posición. Estado de la señal: 0: Criterio de comparación no cumplido. 1: Criterio de comparación cumplido. Asignación de bits: Bit 0: Estado del canal 1 del registro de posición. Bit 1: Estado del canal 2 del registro de posición. Bit 2: Estado del canal 3 del registro de posición. Bit 3: Estado del canal 4 del registro de posición.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 300B:1h Modbus 2818</td>
</tr>
<tr>
<td>_Power_act</td>
<td>Potencia suministrada.</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:Dh Modbus 7194</td>
</tr>
<tr>
<td>_Power_mean</td>
<td>Potencia media suministrada.</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:Eh Modbus 7196</td>
</tr>
<tr>
<td>_pref_acc</td>
<td>Aceleración del valor de referencia para el control feed-forward de aceleración. Signo positivo / negativo de acuerdo a la modificación de la velocidad: Aumento de la velocidad: Signo positivo. Disminución de la velocidad: Signo negativo.</td>
<td>usr_a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301F:9h Modbus 7954</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Menú HMI</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>RW</td>
<td>Persistente</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>_pref_v</td>
<td></td>
<td>Velocidad del valor de referencia para el control feed-forward de velocidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT32</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>ConF-prgNoDEV</td>
<td></td>
<td>Número de firmware del equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT32</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>ConF-prgRevDEV</td>
<td></td>
<td>Revisión de firmware del equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>ConF-prgVerDEV</td>
<td></td>
<td>Versión de firmware del equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>ConF-PS_I_max</td>
<td></td>
<td>Corriente máxima de la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/per.</td>
<td>-</td>
</tr>
<tr>
<td>ConF-PS_I_nom</td>
<td></td>
<td>Corriente nominal de la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/per.</td>
<td>-</td>
</tr>
<tr>
<td>Nan_LdFP</td>
<td></td>
<td>Carga de la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>Nan_Ps_maxoverload</td>
<td></td>
<td>Valor de cresta de la sobrecarga de la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>Nan_Ps_overload</td>
<td></td>
<td>Sobrecarga de la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>ConF-PS_overload_ cte</td>
<td></td>
<td>Sobrecarga de la etapa de potencia (temperatura del chip)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>ConF-PS_overload_ I2t</td>
<td></td>
<td>Sobrecarga de la etapa de potencia (I^2t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>ConF-PS_overload_ psq</td>
<td></td>
<td>Sobrecarga de la etapa de potencia (potencia al cuadrado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT16</td>
<td>R/</td>
<td>-</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>_PS_T_current</td>
<td>Temperatura de la etapa de potencia</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 301C:10h, Modbus 7200</td>
</tr>
<tr>
<td>_PS_T_max</td>
<td>Temperatura máxima etapa de potencia</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 3010:7h, Modbus 4110</td>
</tr>
<tr>
<td>_PS_T_warn</td>
<td>Temperatura máxima de la etapa de potencia (clase de error 0)</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 3010:6h, Modbus 4108</td>
</tr>
<tr>
<td>_PS_U_maxDC</td>
<td>Máxima tensión admisible del bus DC</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 3010:3h, Modbus 4102</td>
</tr>
<tr>
<td>_PS_U_minDC</td>
<td>Mínima tensión admisible del bus DC</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 3010:4h, Modbus 4104</td>
</tr>
<tr>
<td>_PS_U_minStopDC</td>
<td>Umbral de subtensión de bus DC para Quick Stop</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 3010:A0h, Modbus 4116</td>
</tr>
<tr>
<td>_PT_max_val</td>
<td>Máximo valor posible para el modo de funcionamiento Profile Torque</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 301C:1Eh, Modbus 7228</td>
</tr>
<tr>
<td>_RAMP_p_act</td>
<td>Posición real del generador del perfil de movimiento</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 301F:2h, Modbus 7940</td>
</tr>
<tr>
<td>_RAMP_p_target</td>
<td>Posición de destino del generador del perfil de movimiento</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 301F:1h, Modbus 7938</td>
</tr>
<tr>
<td>_RAMP_v_act</td>
<td>Velocidad real del generador del perfil de movimiento</td>
<td>usr_v</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 606B:0h, Modbus 7948</td>
</tr>
<tr>
<td>_RAMP_v_target</td>
<td>Velocidad de destino del generador del perfil de movimiento</td>
<td>usr_v</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 301F:5h, Modbus 7946</td>
</tr>
<tr>
<td>_RES_load</td>
<td>Carga de la resistencia de frenado</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 301C:14h, Modbus 7208</td>
</tr>
<tr>
<td>_RES_maxoverload</td>
<td>Valor de cresta d la sobrecarga de la resistencia de frenado</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANOpen 301C:15h, Modbus 7210</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>_RES_overload</td>
<td>Sobrecarga de la resistencia de frenado (I²t)</td>
<td>%</td>
<td>Resint_ext_</td>
<td>INT16</td>
<td>-</td>
<td>433</td>
<td>CANOpen</td>
<td>301C:13h, Modbus 7206</td>
<td></td>
</tr>
<tr>
<td>_RESint_P</td>
<td>Potencia nominal resistencia de frenado interna</td>
<td>W</td>
<td>-</td>
<td>UINT16</td>
<td>-</td>
<td>3010:9h</td>
<td>CANOpen</td>
<td>4114</td>
<td></td>
</tr>
<tr>
<td>_RESint_R</td>
<td>Valor de la resistencia de frenado interna</td>
<td>Ω</td>
<td>-</td>
<td>UINT16</td>
<td>-</td>
<td>3010:8h</td>
<td>CANOpen</td>
<td>4112</td>
<td></td>
</tr>
<tr>
<td>_RMAC_DetailStatus</td>
<td>Estado detallado de movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td>0 / Not Activated: No activado</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANOpen</td>
<td>3023:12h, Modbus 8996</td>
<td></td>
</tr>
<tr>
<td>_RMAC_Status</td>
<td>Estado del movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td>0 / Not Active: No activo</td>
<td>-</td>
<td>1</td>
<td>UINT16</td>
<td>CANOpen</td>
<td>3023:11h, Modbus 8994</td>
<td></td>
</tr>
<tr>
<td>_ScalePOSmax</td>
<td>Valor de usuario máximo para posiciones</td>
<td>usr_p</td>
<td>-</td>
<td>INT32</td>
<td>-</td>
<td>-</td>
<td>CANOpen</td>
<td>301F:Ah, Modbus 7956</td>
<td></td>
</tr>
<tr>
<td>_ScaleRAMPmax</td>
<td>Valor de usuario máximo para aceleraciones y deceleraciones</td>
<td>usr_a</td>
<td>-</td>
<td>INT32</td>
<td>-</td>
<td>-</td>
<td>CANOpen</td>
<td>301F:Cb, Modbus 7960</td>
<td></td>
</tr>
<tr>
<td>_ScaleVELmax</td>
<td>Valor de usuario máximo para velocidad</td>
<td>usr_v</td>
<td>-</td>
<td>INT32</td>
<td>-</td>
<td>-</td>
<td>CANOpen</td>
<td>301F:Bb, Modbus 7958</td>
<td></td>
</tr>
<tr>
<td>_SigActive</td>
<td>Estado de las funciones de monitorización</td>
<td></td>
<td>-</td>
<td>UINT32</td>
<td>-</td>
<td>-</td>
<td>CANOpen</td>
<td>301C:7h, Modbus 7182</td>
<td></td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SigLatched</td>
<td>Estado almacenado de las señales de supervisión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT32</td>
<td>CANopen 301C:8h, Modbus 7184</td>
</tr>
<tr>
<td></td>
<td>Asignación de bits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: Fallo general</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: Final de carrera de hardware (LIMP/LIMN/REF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: Rango sobrepasado (final de carrera de software, Tuning)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: Quick Stop a través del bus de campo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: Error en el modo de funcionamiento activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 5: Interfaz de puesta en marcha (RS485)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 6: Bus de campo integrado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 7: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 8: Error de seguimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 9: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 10: Entradas STO a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 11: Diferentes entradas STO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 12: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 13: Tensión del bus DC baja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 14: Tensión del bus DC alta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 15: Falta la fase de red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 16: Interfaz de encoder integrado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 17: Sobretensión del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 18: Sobretensión de la etapa de potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 19: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 20: Tarjeta de memoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 21: Módulo de bus de campo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 22: Módulo de encoder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 23: Módulo de seguridad eSM o módulo IOM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 24: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 25: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 26: Conexión del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 27: Sobrecorriente/cortocircuito en el motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 28: Frecuencia de señal piloto demasiado elevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 29: Detectado error en EEPROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 30: Arranque del motor (hardware o parámetros)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 31: Detectado error del sistema (por ejemplo, watchdog, interfaz de hardware interna)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las funciones de supervisión varían en función del producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modos de funcionamiento soportados por DSP402

<p>| Nombre de parámetro | Modos de funcionamiento soportados por DSP402 | | | | | | |
|---------------------|---| | | | | | |
| SuppDriveModes | Bit 0: Profile Position | | | | | | |
| | Bit 2: Profile Velocity | | | | | | |
| | Bit 3: Profile Torque | | | | | | |
| | Bit 5: Homing | | | | | | |
| | Bit 6: Interpolated Position | | | | | | |
| | Bit 7: Cyclic Synchronous Position | | | | | | |
| | Bit 8: Cyclic Synchronous Velocity | | | | | | |
| | Bit 9: Cyclic Synchronous Torque | | | | | | |
| | Bit 16: Jog | | | | | | |
| | Bit 21: Ajuste manual | | | | | | |</p>
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>_TouchProbeStat</td>
<td>Estado de Touch Probe</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 60B9:0h, Modbus 7030</td>
</tr>
<tr>
<td>_tq_act</td>
<td>Par actual</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 6077:0h, Modbus 7752</td>
</tr>
<tr>
<td>_Ud_ref</td>
<td>Tensión nominal del motor componente d</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301E:5h, Modbus 7690</td>
</tr>
<tr>
<td>_UDC_act</td>
<td>Tensión en el bus DC</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:Fh, Modbus 7198</td>
</tr>
<tr>
<td>_Udq_ref</td>
<td>Tensión total del motor (suma vectorial de componentes d y q)</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301E:6h, Modbus 7692</td>
</tr>
<tr>
<td>_Uq_ref</td>
<td>Tensión teórica del motor componente q</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301E:4h, Modbus 7688</td>
</tr>
<tr>
<td>_v_act</td>
<td>Velocidad real</td>
<td>usr_v</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 606C:0h, Modbus 7744</td>
</tr>
<tr>
<td>_v_act_ENC1</td>
<td>Velocidad real del encoder 1</td>
<td>usr_v</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301E:29h, Modbus 7762</td>
</tr>
<tr>
<td>_v_dif_usr</td>
<td>Desviación actual de la velocidad debida a la carga</td>
<td>usr_v</td>
<td>-2147483648</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301E:2Ch, Modbus 7768</td>
</tr>
<tr>
<td>_v_ref</td>
<td>Velocidad de referencia</td>
<td>usr_v</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301E:1Fh, Modbus 7742</td>
</tr>
<tr>
<td>_Vmax_act</td>
<td>Limitación de velocidad efectiva</td>
<td>usr_v</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/-</td>
<td>-</td>
<td>CANopen 301C:29h, Modbus 7250</td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoltUtil</td>
<td>Grado de utilización de la tensión del bus DC</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/–</td>
<td>–</td>
<td>–</td>
<td>CANopen 301E:13h Modbus 7718</td>
</tr>
<tr>
<td>WarnActive</td>
<td>Error presente de la clase de error 0, con codificación por bits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/–</td>
<td>–</td>
<td>–</td>
<td>CANopen 301C:Bh Modbus 7190</td>
</tr>
<tr>
<td>WarnLatched</td>
<td>Errores memorizados de la clase de error 0, codificados por bits</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/–</td>
<td>–</td>
<td>–</td>
<td>CANopen 301C:Cn Modbus 7192</td>
</tr>
</tbody>
</table>

Asignación de bits:

- **Bit 0**: General
- **Bit 1**: Reservado
- **Bit 2**: Rango sobrepasado (final de carrera de software, Tuning)
- **Bit 3**: Reservado
- **Bit 4**: Modo de funcionamiento activo
- **Bit 5**: Interfaz de puesta en marcha (RS485)
- **Bit 6**: Bus de campo integrado
- **Bit 7**: Reservado
- **Bit 8**: Error de seguimiento
- **Bit 9**: Reservado
- **Bit 10**: Entradas STO_A y/o STO_B
- **Bits 11 ... 12**: Reservado
- **Bit 13**: Tensión del bus DC baja, o falta fase de red
- **Bits 14 ... 15**: Reservado
- **Bit 16**: Interfaz de encoder integrado
- **Bit 17**: Temperatura elevada en el motor
- **Bit 18**: Temperatura elevada en la etapa de potencia
- **Bit 19**: Reservado
- **Bit 20**: Tarjeta de memoria
- **Bit 21**: Módulo de bus de campo
- **Bit 22**: Módulo de encoder
- **Bit 23**: Módulo de seguridad eSM o módulo IOM1
- **Bits 24 ... 27**: Reservado
- **Bit 28**: Transistor para sobrecarga de la resistencia de frenado (I²t)
- **Bit 29**: Sobrecarga de la resistencia de frenado (I²t)
- **Bit 30**: Sobrecarga de la etapa de potencia (I²t)
- **Bit 31**: Sobrecarga del motor (I²t)

Las funciones de supervisión varían en función del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbsHomeRequest</td>
<td>Posicionamiento absoluto sólo tras el homing</td>
<td>-</td>
<td>0</td>
<td>No</td>
<td>1</td>
<td>Yes: Sí</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td>AccessLock</td>
<td>Bloquear otros canales de acceso</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>AT_dir</td>
<td>Dirección de movimiento para el autotuning</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
</tr>
</tbody>
</table>

0 / No: No
1 / Yes: Sí
Este parámetro no tiene función si el parámetro 'PP_ModeRangeLim' se ha ajustado a '1' lo que permite superar el rango de movimiento (ref_ok se ajusta a 0 cuando se supera el rango de movimiento).
Los ajustes modificados se aceptan de inmediato.

Ejemplo:
El bus de campo está usando el canal de acceso.
En este caso no es posible realizar el control a través del software de puesta en marcha o de la HMI.
Solo se puede bloquear el canal de acceso después de haber finalizado el modo de funcionamiento activo.
Los ajustes modificados se aceptan de inmediato.

1 / Positive Negative Home / Pn h:
Primero dirección positiva, después dirección negativa con retorno a la posición inicial
2 / Negative Positive Home / nP h:
Primero dirección negativa, después dirección positiva con retorno a la posición inicial
3 / Positive Home / P - h:
Sólo dirección positiva con retorno a la posición inicial
4 / Positive / P - -:
Sólo dirección positiva sin retorno a la posición inicial
5 / Negative Home / n - h:
Sólo dirección negativa con retorno a la posición inicial
6 / Negative / n - -:
Sólo dirección negativa sin retorno a la posición inicial
Los ajustes modificados se aceptan durante el siguiente movimiento del motor.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT_dis oP→tun→dist</td>
<td>Rango de movimiento del autotuning</td>
<td>Revolución</td>
<td>1,0</td>
<td>2,0</td>
<td>999,9</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 302F:3h, Modbus 12038</td>
</tr>
<tr>
<td>AT_dis_usr oP→tun→dis_usr</td>
<td>Área de desplazamiento en la que se realiza el proceso automático de optimización de los parámetros del lazo de control. Se introduce el rango relativo a la posición actual. En caso de "Movimiento solo en una dirección" (parámetro AT_dir), se empleará el área de desplazamiento indicada para cada paso de optimización. El movimiento corresponde normalmente a un valor 20 veces mayor, aunque no está limitado. A través del parámetro AT_dis_usr es posible introducir el valor en unidades de usuario. En pasos de 0,1 revoluciones. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_p</td>
<td>1</td>
<td>32768</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 302F:12h, Modbus 12068</td>
</tr>
<tr>
<td>AT_mechanical oP→tun→Mech</td>
<td>Tipo de acoplamiento del sistema</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 302F:Eh, Modbus 12060</td>
</tr>
<tr>
<td>AT_n_ref oP→tun→nJMP</td>
<td>Salto de velocidad para autotuning A través del parámetro AT_n_ref es posible introducir el valor en unidades de usuario. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>1/min</td>
<td>10</td>
<td>100</td>
<td>1000</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 302F:6h, Modbus 12044</td>
</tr>
<tr>
<td>AT_start</td>
<td>Inicio del autotuning</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 302F:1h, Modbus 12034</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>AT_v_ref</td>
<td>Salto de velocidad para autotuning</td>
<td>usr_v</td>
<td>1</td>
<td>100</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 302F:13h Modbus 12070</td>
</tr>
<tr>
<td>AT_wait</td>
<td>Tiempo de espera entre pasos de autotuning</td>
<td>ms</td>
<td>300</td>
<td>500</td>
<td>10000</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 302F:9h Modbus 12050</td>
</tr>
<tr>
<td>BLSH_Mode</td>
<td>Modo de procesamiento para compensación de juego</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:41h Modbus 1666</td>
</tr>
<tr>
<td>BLSH_Position</td>
<td>Valor de posición para compensación de juego</td>
<td>usr_p</td>
<td>0</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:42h Modbus 1668</td>
</tr>
<tr>
<td>BLSH_Time</td>
<td>Tiempo de procesamiento para compensación de juego</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>16383</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:44h Modbus 1672</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Menú HMI</td>
<td>Nombre HMI</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>BRK_AddT_apply</td>
<td>ConF → ACG - b t c l</td>
<td>Retardo adicional al bloquear el freno de parada</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>INT16</td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td>BRK_AddT_release</td>
<td>ConF → ACG - b t r E</td>
<td>Retardo adicional al abrir el freno de parada</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>400</td>
<td>INT16</td>
<td>R/W</td>
<td>per.</td>
</tr>
<tr>
<td>BRK_release</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>CANaddress</td>
<td>ConF → ConF - CoM - CoAd</td>
<td>Dirección CANopen (número de nodo)</td>
<td></td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>127</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
<tr>
<td>CANbaud</td>
<td>ConF → ConF - CoM - CoAd</td>
<td>Velocidad de transmisión CANopen</td>
<td></td>
<td>-</td>
<td>50</td>
<td>250</td>
<td>1000</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>CANpdo1Event</td>
<td>Máscara PDO 1 Event</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CANpdo2Event</td>
<td>Máscara PDO 2 Event</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CANpdo3Event</td>
<td>Máscara PDO 3 Event</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CANpdo4Event</td>
<td>Máscara PDO 4 Event</td>
<td>-</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cap1Activate</td>
<td>Entrada Capture 1 Arranque/Parada</td>
<td>-</td>
<td>0</td>
<td>4</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cap1Config</td>
<td>Configuración entrada Capture 1</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Cap1Source</td>
<td>Fuente de encoder de entrada Capture 1 0 / Pact Encoder 1: La fuente para la entrada Capture 1 es Pact del encoder 1 Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.03.</td>
<td>- 0 0 0</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300A:A_n</td>
<td>Modbus 2580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap2Activate</td>
<td>Entrada Capture 2 Arranque/Parada 0 / Capture Stop: Cancelar función de Captura 1 / Capture Once: Iniciar Capture única 2 / Capture Continuous: Iniciar Capture continuada 3 / Reserved: Reservado 4 / Reserved: Reservado En el caso de Capture única se finaliza la función con el primer valor registrado. En el caso de Capture continuada el registro continúa de forma infinita. Disponible con la versión de hardware ≥RS03. Los ajustes modificados se aceptan de inmediato.</td>
<td>- 0 - 4</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300A:5_n</td>
<td>Modbus 2570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap2Config</td>
<td>Configuración entrada Capture 2 0 / Falling Edge: Registro de posición con flanco descendente 1 / Rising Edge: Registro de posición con flanco ascendente Disponible con la versión de hardware ≥RS03. Los ajustes modificados se aceptan de inmediato.</td>
<td>- 0 0 1</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300A:3_n</td>
<td>Modbus 2566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap2Source</td>
<td>Fuente de encoder de entrada Capture 2 0 / Pact Encoder 1: La fuente para la entrada Capture 2 es Pact del encoder 1 Los ajustes modificados se aceptan de inmediato.</td>
<td>- 0 0 0</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300A:B_n</td>
<td>Modbus 2582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLSET_p_DiffWin</td>
<td>Desviación de posición para conmutación del juego de parámetros de lazo de control Cuando la desviación de posición del controlador de posición es menor que el valor de este parámetro, se utiliza el juego de parámetros de lazo de control 2. En caso contrario se utiliza el juego de parámetros de lazo de control 1. A través del parámetro CLSET_p_DiffWin_usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones. Los ajustes modificados se aceptan de inmediato.</td>
<td>Revolución 0,0000 0,0100 2,0000</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:1C_n</td>
<td>Modbus 4408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>CLSET_p_DiffWin_usr</td>
<td>Desviación de posición para conmutación del juego de parámetros de lazo de control Cuando la desviación de posición del controlador de posición es menor que el valor de este parámetro, se utiliza el juego de parámetros de lazo de control 2. En caso contrario se utiliza el juego de parámetros de lazo de control 1. El valor mínimo, el ajuste de fábrica y el valor máximo dependen del factor de escalada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.05.</td>
<td>usu_p 0</td>
<td>164</td>
<td>2147483647</td>
<td></td>
<td>INT32</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 3011:25h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLSET_parSwiCond</td>
<td>Condición para cambiar de juego de parámetros 0 / None Or Digital Input: Ninguna o seleccionada función para entrada digital 1 / Inside Position Deviation: Dentro de la distancia de seguimiento (el valor está indicado en el parámetro CLSET_p_DiffWin) 2 / Below Reference Velocity: Por debajo de la velocidad de referencia (el valor está indicado en el parámetro CLSET_v_Threshol) 3 / Below Actual Velocity: Por debajo de la velocidad real (el valor está indicado en el parámetro CLSET_v_Threshol) 4 / Reserved: Reservado Al producirse la conmutación del juego de parámetros, los valores de los siguientes parámetros se modifican gradualmente: - CTRL_KPn - CTRL_TNn - CTRL_KPp - CTRL_TAUnref - CTRL_TAUref - CTRL_KFPp Los valores de los siguientes parámetros se modifican cuando termina el tiempo de espera para cambiar de juego de parámetros (CTRL_ParChgTime): - CTRL_Nf1damp - CTRL_Nf1freq - CTRL_Nf1bandw - CTRL_Nf2damp - CTRL_Nf2freq - CTRL_Nf2bandw - CTRL_Osupdamp - CTRL_Osupdelay - CTRL_Kfric Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 3011:1A</td>
</tr>
</tbody>
</table>
Parámetros

Nombre de parámetro

<table>
<thead>
<tr>
<th>Menú HMI</th>
<th>Nombre HMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Designación

<table>
<thead>
<tr>
<th>Umbral de velocidad para conmutación del juego de parámetros de lazo de control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuando la velocidad de referencia o la velocidad actual son menores que los valores de este parámetro, se utiliza el juego de parámetros de lazo de control 2. En caso contrario se utiliza el juego de parámetros de lazo de control 1. Los ajustes modificados se aceptan de inmediato.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>usr_v</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>2147483647</td>
</tr>
</tbody>
</table>

Tipo de dato

<table>
<thead>
<tr>
<th>R/W</th>
<th>Persistente</th>
<th>Experto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dirección de parámetro vía bus de campo

<table>
<thead>
<tr>
<th>CANopen</th>
<th>Modbus 4410</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011:1Dh</td>
<td></td>
</tr>
</tbody>
</table>

Nombre de parámetro

<table>
<thead>
<tr>
<th>Menú HMI</th>
<th>Nombre HMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Designación

<table>
<thead>
<tr>
<th>Ventana de tiempo para cambiar de juego de parámetros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor 0: Supervisión de ventana, desactivada.</td>
</tr>
<tr>
<td>Valor >0: Tiempo de ventana para los parámetros CLSET_v_Threshol y CLSET_p.DiffWin.</td>
</tr>
<tr>
<td>Los ajustes modificados se aceptan de inmediato.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td>0</td>
<td>1000</td>
</tr>
</tbody>
</table>

Tipo de dato

<table>
<thead>
<tr>
<th>R/W</th>
<th>Persistente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dirección de parámetro vía bus de campo

<table>
<thead>
<tr>
<th>CANopen</th>
<th>Modbus 4406</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011:1Bh</td>
<td></td>
</tr>
</tbody>
</table>

Nombre de parámetro

<table>
<thead>
<tr>
<th>Menú HMI</th>
<th>Nombre HMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Designación

<table>
<thead>
<tr>
<th>Factor de ganancia global (actúa sobre juego de parámetros de lazo de control 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>El factor de ganancia global actúa sobre los siguientes parámetros del juego de parámetros de lazo de control 1:</td>
</tr>
<tr>
<td>- CTRL_KPn</td>
</tr>
<tr>
<td>- CTRL_TNn</td>
</tr>
<tr>
<td>- CTRL_KPp</td>
</tr>
<tr>
<td>- CTRL_TAUnref</td>
</tr>
<tr>
<td>El factor de ganancia global se pone al 100 %</td>
</tr>
<tr>
<td>- cuando los parámetros del lazo de control se ajustan a sus valores estándar</td>
</tr>
<tr>
<td>- al final del Autotuning</td>
</tr>
<tr>
<td>- cuando el juego de parámetros de lazo de control 2 se copia con el parámetro CTRL_ParSetCopy en el juego de parámetros de lazo de control 1</td>
</tr>
<tr>
<td>Si se transfiere una configuración completa a través del bus de campo, el valor para CTRL_GlobGain deberá transferirse antes que los valores para los parámetros del lazo de control CTRL_KPn, CTRL_TNn, CTRL_KPp y CTRL_TAUnref. Si se modificara el valor de CTRL_GlobGain durante la transferencia de una configuración, los parámetros CTRL_KPn, CTRL_TNn, CTRL_KPp y CTRL_TAUnref también deben formar parte de la configuración. En pasos de 0,1 %.</td>
</tr>
<tr>
<td>Los ajustes modificados se aceptan de inmediato.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>5,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tipo de dato

<table>
<thead>
<tr>
<th>R/W</th>
<th>Persistente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dirección de parámetro vía bus de campo

<table>
<thead>
<tr>
<th>CANopen</th>
<th>Modbus 4394</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011:15h</td>
<td></td>
</tr>
</tbody>
</table>

Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL_I_max</td>
<td>Limitación de la corriente</td>
<td>A<sub>rms</sub></td>
<td>0,00</td>
<td>-</td>
<td>463,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:C<sub>H</sub> Modbus 4376</td>
</tr>
<tr>
<td></td>
<td>Durante el servicio, la limitación de la corriente corresponde al menor de los siguientes valores:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- CTRL_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _M_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _PS_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Limitación de la corriente a través de entrada digital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>También se tienen en cuenta las limitaciones resultantes de la supervisión I<sub>2t</sub>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predeterminado: _PS_I_max con frecuencia PWM de 8 kHz y tensión de red de 230/480 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A<sub>rms</sub>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL_I_max_fw</td>
<td>Corriente máxima para debilitamiento del campo (componente d)</td>
<td>A<sub>rms</sub></td>
<td>0,00</td>
<td>0,00</td>
<td>300,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:F<sub>H</sub> Modbus 4382</td>
</tr>
<tr>
<td></td>
<td>Este valor se limita únicamente mediante el valor mínimo y máximo del rango de parámetro (no se produce una limitación del valor por parte del motor/etapa de potencia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La corriente debilitadora del campo real es el valor mínimo de CTRL_I_max_fw y la mitad del valor menor de la corriente nominal de la etapa de potencia y del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A<sub>rms</sub>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL_KFAcc</td>
<td>Control feed-forward de aceleración</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>3000,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:A<sub>H</sub> Modbus 4372</td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,1 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL_ParChgTime</td>
<td>Margen de tiempo para la conmutación del juego de parámetros de lazo de control</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:14h, Modbus 4392</td>
</tr>
<tr>
<td>CTRL_ParSetCopy</td>
<td>Copiado del juego de parámetros de lazo de control</td>
<td>-0,0</td>
<td>0</td>
<td>-0,2</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3011:16h, Modbus 4396</td>
</tr>
<tr>
<td>CTRL_PwrUpParSet</td>
<td>Selección del juego de parámetros de lazo de control al conectar</td>
<td>-0,0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:18h, Modbus 4400</td>
</tr>
<tr>
<td>CTRL_SelParSet</td>
<td>Selección del juego de parámetros de lazo de control (no persistente)</td>
<td>-0,0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3011:19h, Modbus 4402</td>
</tr>
</tbody>
</table>

- **CTRL_ParChgTime**: Al producirse la conmutación del juego de parámetros de lazo de control, los valores de los siguientes parámetros se modifican gradualmente:
 - CTRL_KPn
 - CTRL_TNn
 - CTRL_KPp
 - CTRL_TAUnref
 - CTRL_TAUiref
 - CTRL_KFp

Puede activarse una conmutación de las siguientes formas:
- Modificación del juego de parámetros de lazo de control activo
- Modificación del ajuste global
- Modificación de uno de los parámetros enumerados anteriormente
- Desactivación de la acción integral del controlador de velocidad

Los ajustes modificados se aceptan de inmediato.

- **CTRL_ParSetCopy**: Cuando el juego de parámetros de lazo de control 2 se copia al juego de parámetros de lazo de control 1, el parámetro CTRL_GlobGain se ajusta al 100 %.

Los ajustes modificados se aceptan de inmediato.

- **CTRL_PwrUpParSet**: Se utiliza el juego de parámetros de lazo de control 1.

El valor elegido también se escribe en CTRL_SelParSet (no persistente).

Los ajustes modificados se aceptan de inmediato.

- **CTRL_SelParSet**: Se utiliza el juego de parámetros de lazo de control 2.

Véase CTRL_PwrUpParSet para la codificación.

Los ajustes modificados se aceptan de inmediato.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL_SmoothCurr</td>
<td>Factor de alisado para controlador de corriente</td>
<td>%</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:26h, Modbus 4428</td>
</tr>
<tr>
<td>CTRL_SpdFric</td>
<td>Velocidad hasta la que la compensación de rozamiento es lineal</td>
<td>1/min</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td>UINT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:9h, Modbus 4370</td>
</tr>
<tr>
<td>CTRL_TAUnact</td>
<td>Constante del tiempo de filtro para alisar la velocidad del motor</td>
<td>ms</td>
<td>0,00</td>
<td>-</td>
<td>30,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:8h, Modbus 4368</td>
</tr>
<tr>
<td>CTRL_v_max</td>
<td>Limitación de la velocidad Durante el servicio, la limitación de la velocidad corresponde al menor de los siguientes valores: - CTRL_v_max - M_n_max - Limitación de la velocidad vía entrada digital Los ajustes modificados se aceptan de inmediato.</td>
<td>usr_v</td>
<td>1</td>
<td>13200</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3011:10h, Modbus 4384</td>
</tr>
<tr>
<td>CTRL_VelObActiv</td>
<td>Activación de Velocity Observer 0 / Velocity Observer Off: Velocity Observer desactivado 1 / Velocity Observer Passive: El Velocity Observer está activado, pero no se utiliza para el control del motor 2 / Velocity Observer Active: El Velocity Observer está activado y se utiliza para el control del motor Con el Velocity Observer se disminuye la ondulación de la velocidad y se incrementa el ancho de banda del controlador. Antes de la activación, ajustar los valores correctos para la dinámica y la inercia. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.03.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3011:22h, Modbus 4420</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>CTRL_VelObsDyn</td>
<td>Dinámica del Velocity Observer</td>
<td>ms</td>
<td>0,03</td>
<td>0,25</td>
<td>200,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td></td>
<td>El valor en este parámetro debe ser menor (por ejemplo, entre el 5 % y el 20 %) al tiempo de acción integral del controlador de velocidad (Parameter CTRL1_TNn y CTRL2_TNn). En pasos de 0,01 ms. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.03.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL_VelObsInert</td>
<td>Inercia para el Velocity Observer</td>
<td>g cm²</td>
<td>1</td>
<td>-</td>
<td>2147483648</td>
<td>UINT32</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td></td>
<td>Inercia del sistema utilizada para los cálculos para el Velocity Observer. El valor predefinido es la inercia del motor montado. Para el autotuning puede ajustarse el valor de este parámetro al mismo valor de AT_J. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.03.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL_vPIDDPart</td>
<td>Controlador de velocidad PID: Factor D</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>400,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>ConF d - r C - P d n</td>
<td>En pasos de 0,1 %. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL_vPIDDTIme</td>
<td>Controlador de velocidad PID: Constante de tiempo del filtro de aplanamiento para el factor D</td>
<td>ms</td>
<td>0,01</td>
<td>0,25</td>
<td>10,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>ConF d - r C - t d n</td>
<td>En pasos de 0,01 ms. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_KFPp</td>
<td>Control de velocidad</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>200,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
</tr>
<tr>
<td>ConF d - r C - F P P 1</td>
<td>Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro CTRL1_ParChgTime. En pasos de 0,1 %. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Kfrc</td>
<td>Compensación de rozamiento: ganancia</td>
<td>A RMS</td>
<td>0,00</td>
<td>0,00</td>
<td>10,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td></td>
<td>En pasos de 0,01 A RMS. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_KPn</td>
<td>Factor P del controlador de velocidad</td>
<td>A(min-1)</td>
<td>0,0001</td>
<td>0,0001</td>
<td>2,5400</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_KPp</td>
<td>Factor P controlador de posición</td>
<td>1/s, 2,0, 900,0</td>
<td>UINT16</td>
<td>CANopen 3012:3h, Modbus 4614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Nf1bandw</td>
<td>Filtro Notch 1: ancho de banda</td>
<td>%, 1, 70, 90, 99</td>
<td>UINT16</td>
<td>CANopen 3012:Ah, Modbus 4628</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Nf1damp</td>
<td>Filtro Notch 1: amortiguación</td>
<td>%, 55, 90, 99</td>
<td>UINT16</td>
<td>CANopen 3012:Bh, Modbus 4624</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Nf1freq</td>
<td>Filtro Notch 1: frecuencia</td>
<td>Hz, 50, 1500, 1500</td>
<td>UINT16</td>
<td>CANopen 3012:Ch, Modbus 4632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Nf2bandw</td>
<td>Filtro Notch 2: ancho de banda</td>
<td>%, 1, 70, 90, 99</td>
<td>UINT16</td>
<td>CANopen 3012:Dh, Modbus 4634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Nf2damp</td>
<td>Filtro Notch 2: amortiguación</td>
<td>%, 55, 90, 99</td>
<td>UINT16</td>
<td>CANopen 3012:Eh, Modbus 4638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Nf2freq</td>
<td>Filtro Notch 2: frecuencia</td>
<td>Hz, 50, 1500, 1500</td>
<td>UINT16</td>
<td>CANopen 3012:Fh, Modbus 4638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Osupdamp</td>
<td>Filtro de sobreoscilación: amortiguación</td>
<td>%, 0, 0, 50, 0</td>
<td>UINT16</td>
<td>CANopen 3012:Gh, Modbus 4636</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_Osupdelay</td>
<td>Filtro de sobreoscilación: retardo</td>
<td>ms, 0, 0, 75, 0</td>
<td>UINT16</td>
<td>CANopen 3012:Jh, Modbus 4638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_TAUiref</td>
<td>Constante de tiempo del filtro de referencia de corriente</td>
<td>ms, 0, 0, 4, 0</td>
<td>UINT16</td>
<td>CANopen 3012:Kh, Modbus 4618</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_TAUnref</td>
<td>ConF – drC – kRu1</td>
<td>ms</td>
<td>0,00</td>
<td>9,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W per. CANopen 3012:4h Modbus 4616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL1_TNn</td>
<td>ConF – drC – tIn1</td>
<td>ms</td>
<td>0,00</td>
<td>-</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W per. CANopen 3012:2h Modbus 4612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_KFPp</td>
<td>ConF – drC – FPP2</td>
<td>%</td>
<td>0,00</td>
<td>0,0</td>
<td>200,0</td>
<td>UINT16</td>
<td>R/W per. CANopen 3013:6h Modbus 4876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_Kfric</td>
<td>Compensación de rozamiento: ganancia</td>
<td>Ams</td>
<td>0,00</td>
<td>0,00</td>
<td>10,00</td>
<td>UINT16</td>
<td>R/W per. expert CANopen 3013:10h Modbus 4896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_KPn</td>
<td>Factor P del controlador de velocidad</td>
<td>A(min-1)</td>
<td>0,0001</td>
<td>2,5400</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per. CANopen 3013:1h Modbus 4866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTRL2_KPp</td>
<td>Factor P controlador de posición</td>
<td>1/s</td>
<td>2,0</td>
<td>900,0</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per. CANopen 3013:3h Modbus 4870</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Menú HMI</th>
<th>Nombre HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL1_TAUnref</td>
<td></td>
<td></td>
<td>ConF – drC – kRu1</td>
<td>ms</td>
<td>0,00</td>
<td>9,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W per. CANopen 3012:4h Modbus 4616</td>
</tr>
<tr>
<td>CTRL1_TNn</td>
<td></td>
<td></td>
<td>ConF – drC – tIn1</td>
<td>ms</td>
<td>0,00</td>
<td>-</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W per. CANopen 3012:2h Modbus 4612</td>
</tr>
<tr>
<td>CTRL2_KFPp</td>
<td></td>
<td></td>
<td>ConF – drC – FPP2</td>
<td>%</td>
<td>0,00</td>
<td>0,0</td>
<td>200,0</td>
<td>UINT16</td>
<td>R/W per. CANopen 3013:6h Modbus 4876</td>
</tr>
<tr>
<td>CTRL2_Kfric</td>
<td></td>
<td></td>
<td>Compensación de rozamiento: ganancia</td>
<td>Ams</td>
<td>0,00</td>
<td>0,00</td>
<td>10,00</td>
<td>UINT16</td>
<td>R/W per. expert CANopen 3013:10h Modbus 4896</td>
</tr>
<tr>
<td>CTRL2_KPn</td>
<td></td>
<td></td>
<td>Factor P del controlador de velocidad</td>
<td>A(min-1)</td>
<td>0,0001</td>
<td>2,5400</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per. CANopen 3013:1h Modbus 4866</td>
</tr>
<tr>
<td>CTRL2_KPp</td>
<td></td>
<td></td>
<td>Factor P controlador de posición</td>
<td>1/s</td>
<td>2,0</td>
<td>900,0</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per. CANopen 3013:3h Modbus 4870</td>
</tr>
</tbody>
</table>

Tipo de dato

- R/W: Lectura/ escritura
- pers.: Persistente
- expert: Experto

Dirección de parámetro vía bus de campo

- CANopen 3012:4h Modbus 4616
- CANopen 3012:2h Modbus 4612
- CANopen 3013:6h Modbus 4876
- CANopen 3013:10h Modbus 4896
- CANopen 3013:1h Modbus 4866
- CANopen 3013:3h Modbus 4870
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL2_Nf1bandw</td>
<td>Filtro Notch 1: ancho de banda</td>
<td>%</td>
<td>1,0</td>
<td>70,0</td>
<td>90,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_Nf1damp</td>
<td>Filtro Notch 1: amortiguación</td>
<td>%</td>
<td>55,0</td>
<td>90,0</td>
<td>99,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_Nf1freq</td>
<td>Filtro Notch 1: frecuencia</td>
<td>Hz</td>
<td>50,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_Nf2bandw</td>
<td>Filtro Notch 2: ancho de banda</td>
<td>%</td>
<td>1,0</td>
<td>70,0</td>
<td>90,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_Nf2damp</td>
<td>Filtro Notch 2: amortiguación</td>
<td>%</td>
<td>55,0</td>
<td>90,0</td>
<td>99,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_Nf2freq</td>
<td>Filtro Notch 2: frecuencia</td>
<td>Hz</td>
<td>50,0</td>
<td>1500,0</td>
<td>1500,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_Osupdamp</td>
<td>Filtro de sobreoscilación: amortiguación</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td>50,0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_Osupdelay</td>
<td>Filtro de sobreoscilación: retardo</td>
<td>ms</td>
<td>0,00</td>
<td>0,00</td>
<td>75,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>expert</td>
</tr>
<tr>
<td>CTRL2_TAUiref</td>
<td>Constante de tiempo del filtro del valor de referencia de corriente</td>
<td>ms</td>
<td>0,00</td>
<td>0,50</td>
<td>4,00</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>-</td>
</tr>
<tr>
<td>CTRL2_TAUnref</td>
<td>Constante de tiempo del filtro del valor de referencia de velocidad</td>
<td>ms</td>
<td>0,00</td>
<td>9,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL2_TN</td>
<td>(T_{\text{CTRL2}})</td>
<td>ms</td>
<td>0,00</td>
<td>-</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
<tr>
<td>DCbus_compatibility</td>
<td>Compatibilidad del bus DC LXM32 y ATV32</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
<tr>
<td>DCOMcontrol</td>
<td>Palabra de control DriveCom</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
</tbody>
</table>

CTRL2_TN

Tiempo de acción integral del controlador de velocidad. Se calcula el valor por defecto. Al conmutar entre los dos juegos de parámetros de lazo de control se produce la adaptación de los valores de forma lineal a través del tiempo ajustado en el parámetro **CTRL_ParChgTime**. En pasos de 0,01 ms. Los ajustes modificados se aceptan de inmediato.

DCbus_compatibility

Compatibilidad del bus DC LXM32 y ATV32.
- **0 / No DC bus or LXM32 only**: Bus DC no utilizado o sólo LXM32 conectado a través de bus DC.
- **1 / DC bus with LXM32 and ATV32**: LXM32 y ATV32 conectados a través de bus DC.

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto. Disponible con la versión de firmware ≥ V01.05.

DCOMcontrol

Palabra de control DriveCom. Asignación de bits, véase el capítulo Servicio, estados de funcionamiento.
- Bit 0: Estado de funcionamiento **Switch On**
- Bit 1: Enable Voltage
- Bit 2: Estado de funcionamiento **Quick Stop**
- Bit 3: Enable Operation
- Bits 4 ... 6: Específicos del modo de funcionamiento
- Bit 7: **Fault Reset**
- Bit 8: **Halt**
- Bit 9: Específico del modo de funcionamiento
- Bits 10 ... 15: Reservados (deben ser 0)

Los ajustes modificados se aceptan de inmediato.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOMopmode</td>
<td>Modo de funcionamiento</td>
<td>-6 / Manual Tuning / Autotuning: Tuning manual o autotuning</td>
<td>-6</td>
<td>-</td>
<td>INT16* R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 6060:0h, Modbus 6918</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 / Jog: Jog (movimiento manual)</td>
<td>-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / Reserved: Reservado</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / Profile Position: Profile Position (punto a punto)</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 / Profile Velocity: Profile Velocity</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 / Profile Torque: Profile Torque</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 / Homing: Homing</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 / Interpolated Position: Interpolated Position</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 / Cyclic Synchronous Position: Cyclic Synchronous Position</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 / Cyclic Synchronous Velocity: Cyclic Synchronous Velocity</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 / Cyclic Synchronous Torque: Cyclic Synchronous Torque</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Tipo de datos para CANopen: INT8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI_0_Debounce</td>
<td>Tiempo de antirrebote DI0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UNT16 R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3008:20h, Modbus 2112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / No: Sin antirrebote de software</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / 0.25 ms: 0,25 ms</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / 0.50 ms: 0,50 ms</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 / 0.75 ms: 0,75 ms</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 / 1.00 ms: 1,00 ms</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 / 1.25 ms: 1,25 ms</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 / 1.50 ms: 1,50 ms</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DI_1_Debounce</td>
<td>Tiempo de antirrebote DI1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UNT16 R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3008:21h, Modbus 2114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / No: Sin antirrebote de software</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / 0.25 ms: 0,25 ms</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / 0.50 ms: 0,50 ms</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 / 0.75 ms: 0,75 ms</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 / 1.00 ms: 1,00 ms</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 / 1.25 ms: 1,25 ms</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 / 1.50 ms: 1,50 ms</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DI_2_Debounce</td>
<td>Tiempo de antirrebote DI2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UNT16 R/W</td>
<td>per.</td>
<td>-</td>
<td>CANopen 3008:22h, Modbus 2116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / No: Sin antirrebote de software</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / 0.25 ms: 0,25 ms</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / 0.50 ms: 0,50 ms</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 / 0.75 ms: 0,75 ms</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 / 1.00 ms: 1,00 ms</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 / 1.25 ms: 1,25 ms</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 / 1.50 ms: 1,50 ms</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>DI_3_Debounce</td>
<td>Tiempo de antirrebote DI3</td>
<td>UINT16</td>
<td>0 ms</td>
<td>6 ms</td>
<td>6 ms</td>
<td>R/W per.</td>
<td>CANopen 3008:23h, Modbus 2118</td>
<td></td>
</tr>
<tr>
<td>DPL_Activate</td>
<td>Activación del perfil de accionamiento Drive Profile Lexium</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R/W</td>
<td>CANopen 301B:8h, Modbus 6928</td>
<td></td>
</tr>
<tr>
<td>DPL_dmControl</td>
<td>Perfil de accionamiento Drive Profile Lexium dmControl</td>
<td>UINT16</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>R/W</td>
<td>CANopen 301B:1Fh, Modbus 6974</td>
<td></td>
</tr>
<tr>
<td>DPL_intLim</td>
<td>Ajuste para bit 9 de _DPL_motionStat y _actionStatus</td>
<td>UINT16</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>R/W per.</td>
<td>CANopen 301B:35h, Modbus 7018</td>
<td></td>
</tr>
</tbody>
</table>

Parámetros

Menú HMI: Nombre HMI

Nombre HMI: Designación

Ajuste de fábrica: Unidad

Valor mínimo: Valor máximo

Tipo de dato: Persistente

Dirección de parámetro vía bus de campo: Experto

DI_3_Debounce

0 / No: Sin antirrebote de software
1 / 0.25 ms: 0.25 ms
2 / 0.50 ms: 0.50 ms
3 / 0.75 ms: 0.75 ms
4 / 1.00 ms: 1.00 ms
5 / 1.25 ms: 1.25 ms
6 / 1.50 ms: 1.50 ms

Solo es posible modificar el ajuste con la etapa de potencia desactivada.

Los ajustes modificados se aceptan de inmediato.

DPL_Activate

0: Desactivar perfil de accionamiento Drive Profile Lexium
1: Activar perfil de accionamiento Drive Profile Lexium

El canal de acceso a través del cual se ha activado el perfil de accionamiento es el único canal de acceso que puede utilizar el perfil de accionamiento.

Los ajustes modificados se aceptan de inmediato.

DPL_dmControl

Perfil de accionamiento Drive Profile Lexium dmControl

DPL_intLim

Ajuste para bit 9 de _DPL_motionStat y _actionStatus*

0 / None: No se utiliza (reservado)
1 / Current Below Threshold: Umbral de corriente
2 / Velocity Below Threshold: Umbral de velocidad
3 / In Position Deviation Window: Ventana de desviación de posición
4 / In Velocity Deviation Window: Ventana de desviación de velocidad
5 / Position Register Channel 1: Canal 1 del registro de posición
6 / Position Register Channel 2: Canal 2 del registro de posición
7 / Position Register Channel 3: Canal 3 del registro de posición
8 / Position Register Channel 4: Canal 4 del registro de posición
9 / Hardware Limit Switch: Finales de carrera de hardware
10 / RMAC active or finished: El movimiento relativo tras Capture está activo o ha finalizado
11 / Position Window: Ventana de posición

Ajuste para:
Bit 9 del parámetro _actionStatus
Bit 9 del parámetro _DPL_motionStat

Los ajustes modificados se aceptan de inmediato.

Disponible con la versión de firmware ≥ V01.08.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPL_RefA16</td>
<td>Perfil de accionamiento Drive Profile Lexium RefA16</td>
<td></td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/W</td>
<td>-</td>
<td></td>
<td>CANopen 301B:22h, Modbus 6980</td>
</tr>
<tr>
<td>DPL_RefB32</td>
<td>Perfil de accionamiento Drive Profile Lexium RefB32</td>
<td></td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td></td>
<td>CANopen 301B:21h, Modbus 6978</td>
</tr>
<tr>
<td>DS402compatib</td>
<td>DS402 máquina de estado finito: transición de estado de 3 a 4</td>
<td></td>
<td>-</td>
<td>-</td>
<td>INT16</td>
<td>R/W</td>
<td>-</td>
<td></td>
<td>CANopen 301B:13h, Modbus 6950</td>
</tr>
<tr>
<td>DS402intLim</td>
<td>Palabra de estado DS402: Ajuste para bit 11 (límite interno)</td>
<td>UINT16</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>R/W per.</td>
<td>-</td>
<td></td>
<td>CANopen 301B:1Eh, Modbus 6972</td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM.SHutDownOption</td>
<td>Comportamiento al desactivar la etapa de potencia durante un movimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conf</td>
<td>0 / Disable Immediately / $d \cdot 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>1 / Disable After Halt / $d \cdot 5h$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Este parámetro determina cómo reacciona el variador ante una solicitud de desactivación de la etapa de potencia. Para la deceleración hasta parada se utiliza Parada. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENC1_adjustment</td>
<td>Ajuste de la posición absoluta del encoder 1</td>
<td><usr_p></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El rango de valores depende del tipo de encoder.</td>
<td>Encoder Singleturn: 0 ... x-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 605B:0h, Modbus 1684</td>
</tr>
<tr>
<td>Encoder Multiturn: 0 ... (4096*x)-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder Singleturn (desplazado con parámetro ShiftEncWorkRang): -(x/2) ... (x/2)-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder Multiturn (desplazado con parámetro ShiftEncWorkRang): -(2048x) ... (2048x)-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definición de "x": Posición máxima para una revolución de encoder en las unidades de usuario. Con la escala predefinida, este valor es de 16384. En caso de que el procesamiento deba realizarse con inversión de dirección, ésta deberá ajustarse antes de establecer la posición del encoder. Después del acceso de escritura debe esperarse como mínimo 1 segundo hasta que el variador pueda desconectarse. Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERR_clear</td>
<td>Vaciar la memoria de errores</td>
<td>UINT16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor 1: Eliminar entradas de la memoria de errores</td>
<td>El proceso de borrado estará concluido cuando en la consulta se obtenga un 0. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 303B:4h, Modbus 15112</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad Valor mínimo</td>
<td>Unidad Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERR_reset</td>
<td>Reiniciar el puntero de lectura de la memoria de errores Valores: 0: Poner el puntero de lectura de la memoria de errores en el registro de error más antiguo. Los ajustes modificados se aceptan de inmediato.</td>
<td>0</td>
<td>1</td>
<td>UINT16 R/W</td>
<td>-</td>
<td>-</td>
<td>CANopen 303B:5h Modbus 15114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErrorResp_bit_DE</td>
<td>Reacción de error a un error de datos detectado (bit DE) -1 / No Error Response: Sin reacción de error 0 / Error Class 0: Clase de error 0 1 / Error Class 1: Clase de error 1 2 / Error Class 2: Clase de error 2 3 / Error Class 3: Clase de error 3 Para el perfil de accionamiento Drive Profile Lexium, la reacción de error puede parametrizarse a un error de datos detectado (bit DE). Para el control de errores en EtherCAT RxPDO, este parámetro también se utiliza para clasificar la reacción de error.</td>
<td>-1</td>
<td>-1</td>
<td>INT16 R/W per.</td>
<td>-</td>
<td>-</td>
<td>CANopen 301B:6h Modbus 6924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErrorResp_bit_ME</td>
<td>Reacción a un error detectado en el modo de funcionamiento (bit ME) -1 / No Error Response: Sin reacción de error 0 / Error Class 0: Clase de error 0 1 / Error Class 1: Clase de error 1 2 / Error Class 2: Clase de error 2 3 / Error Class 3: Clase de error 3 Para el perfil de accionamiento Lexium, la reacción de error puede parametrizarse a un error detectado en el modo de funcionamiento (bit ME).</td>
<td>-1</td>
<td>-1</td>
<td>INT16 R/W per.</td>
<td>-</td>
<td>-</td>
<td>CANopen 301B:7h Modbus 6926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErrorResp_Flt_AC</td>
<td>Reacción de error de una fase de red 0 / Error Class 0: Clase de error 0 1 / Error Class 1: Clase de error 1 2 / Error Class 2: Clase de error 2 3 / Error Class 3: Clase de error 3 Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>0</td>
<td>UINT16 R/W per.</td>
<td>-</td>
<td>-</td>
<td>CANopen 3005:Ah Modbus 1300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErrorResp_I2tRES</td>
<td>Reacción de error con 100% resistencia de frenado I2t 0 / Error Class 0: Clase de error 0 1 / Error Class 1: Clase de error 1 2 / Error Class 2: Clase de error 2 Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>0</td>
<td>UINT16 R/W per.</td>
<td>-</td>
<td>-</td>
<td>CANopen 3005:22h Modbus 1348</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErrorResp_p_dif</td>
<td>Reacción de error a una desviación de posición excesiva debida a la carga</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANOpen 3005:Bh</td>
<td>Modbus 1302</td>
</tr>
<tr>
<td></td>
<td>1 / Error Class 1: Clase de error 1:</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Error Class 2: Clase de error 2:</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Error Class 3: Clase de error 3:</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErrorResp_QuasiAbs</td>
<td>Reacción de error a un error detectado durante la posición casi absoluta</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANOpen 3005:3Ah</td>
<td>Modbus 1396</td>
</tr>
<tr>
<td></td>
<td>3 / Error Class 3: Clase de error 3:</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Error Class 4: Clase de error 4:</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia. Disponible con la versión de firmware ≥ V01.26.</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErrorResp_v_dif</td>
<td>Reacción de error a una desviación de la velocidad excesiva debida a la carga</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANOpen 3005:3Ch</td>
<td>Modbus 1400</td>
</tr>
<tr>
<td></td>
<td>1 / Error Class 1: Clase de error 1:</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Error Class 2: Clase de error 2:</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Error Class 3: Clase de error 3:</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia. Disponible con la versión de firmware ≥ V01.26.</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMdis</td>
<td>Distancia desde el punto de conmutación</td>
<td>200</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANOpen 3028:7h</td>
<td>Modbus 10254</td>
</tr>
<tr>
<td></td>
<td>La distancia desde el punto de conmutación se define como punto de referencia. El parámetro sólo se aplica en un movimiento de referencia sin pulso índice. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMIDispPara</td>
<td>Indicación de HMI en el movimiento del motor</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANOpen 303A:2h</td>
<td>Modbus 14852</td>
</tr>
<tr>
<td>N P</td>
<td>0 / OperatingState / St A t: Estado de funcionamiento</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / v_act / V A c t: Velocidad real del motor</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / i_act / I A c t: Corriente real del motor</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad Valor mínimo</td>
<td>Ajuste de fábrica Valor máximo</td>
<td>Tipo de dato R/W Persistente Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMImlocked</td>
<td>Bloquear HMI</td>
<td>-</td>
<td>0</td>
<td>UINT16 R/W</td>
<td>CANopen 303A:1h Modbus 14850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / Not Locked / nLoc: HMI no bloqueada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Locked / Loc: HMI bloqueada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuando la HMI se encuentra bloqueada, no es posible realizar las siguientes acciones:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modificar parámetros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jog (movimiento manual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Autotuning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fault Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMmethod</td>
<td>Método de homing</td>
<td>-</td>
<td>1</td>
<td>INT16* R/W</td>
<td>CANopen 6098:0h Modbus 6936</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: LIMN con pulso índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: LIMP con pulso índice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7: REF+ con pulso índice, inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8: REF+ con pulso índice, inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9: REF+ con pulso índice, no inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10: REF+ con pulso índice, no inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11: REF- con pulso índice, inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12: REF- con pulso índice, inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13: REF- con pulso índice, no inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14: REF- con pulso índice, no inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17: LIMN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18: LIMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23: REF+, inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24: REF+, inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25: REF+, no inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26: REF+, no inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27: REF-, inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28: REF-, inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29: REF-, no inv., interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30: REF-, no inv., exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33: Pulso índice, dirección neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34: Pulso índice dirección pos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35: Establecimiento de medida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abreviaturas:</td>
<td>REF+: Movimiento de búsqueda en dirección pos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REF-: Movimiento de búsqueda en dirección neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inv.: Invertir la dirección en el interruptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no inv.: No invertir la dirección en el interruptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>exterior: Distancia pulso índice fuera del interruptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interior: Distancia pulso índice dentro del interruptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Tipo de datos para CANopen: INT8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Retorno</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>HMoutdis</td>
<td>Máximo recorrido para buscar el punto de conmutación 0 : Supervisión del recorrido de búsqueda inactiva >0: Máximo recorrido</td>
<td>usr_p</td>
<td>0</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANopen 3028:6h Modbus 10252</td>
</tr>
<tr>
<td></td>
<td>Tras detectar el interruptor, el variador comienza a buscar el punto de conmutación definido. Si no se encuentra el punto de conmutación definido tras recorrer el trayecto aquí especificado, se detectará un error y el movimiento de referencia se cancelará. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMp_home</td>
<td>Posición en el punto de referencia Una vez llevado a cabo el movimiento de referencia, este valor de posición se establecerá automáticamente en el punto de referencia. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_p</td>
<td>-2147483648</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANopen 3028:Bh Modbus 10262</td>
</tr>
<tr>
<td>HMp_setP</td>
<td>Posición de establecimiento de medida Posición para modo de funcionamiento Homing, método 35. Los ajustes modificados se aceptan de inmediato.</td>
<td>usr_p</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
<td>CANopen 301B:16h Modbus 6956</td>
</tr>
<tr>
<td>HMprefmethod</td>
<td>Método preferente para Homing Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>1</td>
<td>18</td>
<td>35</td>
<td>INT16</td>
<td>R/W per.</td>
<td>CANopen 3028:Ah Modbus 10260</td>
</tr>
<tr>
<td>HMsrcchdis</td>
<td>Máximo recorrido de búsqueda tras sobrepasar el interruptor 0 : Supervisión del recorrido de búsqueda inactiva >0: Recorrido de búsqueda Dentro de este recorrido de búsqueda el interruptor debe activarse de nuevo, de lo contrario se produce una interrupción del movimiento de referencia. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_p</td>
<td>0</td>
<td>0</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANopen 3028:Dh Modbus 10266</td>
</tr>
<tr>
<td>HMv</td>
<td>Velocidad de destino para la búsqueda del interruptor El valor se limita internamente al ajuste del parámetro en RAMP_v_max. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_v</td>
<td>1</td>
<td>60</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W per.</td>
<td>CANopen 6099:1h Modbus 10248</td>
</tr>
<tr>
<td>HMv_out</td>
<td>Velocidad de destino para movimiento de abandono El valor se limita internamente al ajuste del parámetro en RAMP_v_max. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_v</td>
<td>1</td>
<td>6</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W per.</td>
<td>CANopen 6099:2h Modbus 10250</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>InvertDirOfMove</td>
<td>ConF - RCG - inNo</td>
<td>Inversión de la dirección de movimiento</td>
<td>0 / Inversion Off / oFF: Inversión de la dirección de movimiento desactivada</td>
<td>1 / Inversion On / on: Inversión de la dirección de movimiento activada</td>
<td>El final de carrera hacia el que la aproximación se realiza con un movimiento en dirección positiva, debe conectarse con la entrada para el final de carrera positivo, y viceversa. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td>0 0 1</td>
<td>UINT16</td>
<td>R/W per.</td>
</tr>
<tr>
<td>IO_AutoEnable</td>
<td>ConF - RCG - ioAE</td>
<td>Activación de la etapa de potencia al conectar</td>
<td>0 / RisingEdge / rSE: Un flanco ascendente con la función de entrada de señal "Enable" activa la etapa de potencia</td>
<td>1 / HighLevel / LEVL: Una entrada de señal activa con la función de entrada de señal "Enable" activa la etapa de potencia</td>
<td>2 / AutoOn / Auto: La etapa de potencia se activa automáticamente Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>0 0 2</td>
<td>UINT16</td>
<td>R/W per.</td>
</tr>
<tr>
<td>IO_AutoEnaConfig</td>
<td>ConF - RCG - ioEN</td>
<td>Activación de la etapa de potencia según se ha determinado a través de IO_AutoEnable, también tras un error detectado</td>
<td>0 / Off / oFF: El ajuste en el parámetro IO_AutoEnable se utiliza solo después del arranque</td>
<td>1 / On / on: El ajuste en el parámetro IO_AutoEnable se utiliza tras el arranque y tras detectar un error Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>0 0 1</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3005:4h Modbus 1288</td>
</tr>
<tr>
<td>IO_DQ_set</td>
<td>Activar salidas digitales directamente</td>
<td>Las salidas digitales solo pueden ajustarse directamente si la función de salida de señal se ha ajustado a 'Available as required'.</td>
<td>0 DQ0</td>
<td>1 DQ1</td>
<td>- -</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
</tr>
</tbody>
</table>

Asignación de bits:
Bit 0: DQ0
Bit 1: DQ1
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro HMI</th>
<th>Menú HMI</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO_FaultResetOnEnaInp</td>
<td>IO</td>
<td>Fault Reset adicional para la función de entrada de señal 'Enable'</td>
<td>UINT16</td>
<td>0 / Off / OFF: Sin 'Fault Reset' adicional</td>
<td>1 / OnFallingEdge / FALL: 'Fault Reset' adicional con flanco descendente</td>
<td>2 / OnRisingEdge / rISE: 'Fault Reset' adicional con flanco ascendente</td>
<td>- 0 0 2</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3005:34h Modbus 1384</td>
</tr>
<tr>
<td>IO_I_limit</td>
<td>IO</td>
<td>Limitación de corriente vía entrada</td>
<td>UINT16</td>
<td>0,00</td>
<td>0,20 300,00</td>
<td>Arms</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3006:27h Modbus 1614</td>
<td></td>
</tr>
<tr>
<td>IO_v_limit</td>
<td>IO</td>
<td>Limitación de velocidad vía entrada</td>
<td>UINT32</td>
<td>0</td>
<td>10 2147483647</td>
<td>usr_v</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3006:1Eh Modbus 1596</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>IOfunct_DI0</td>
<td>Función entrada DI0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3007:1h, Modbus 1794</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Freely Available / \non E\</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Fault Reset / F r E 5 : Restablecer tras error</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Enable / E n A b : Activa la etapa de potencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Halt / h A L \ell : Parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 / Start Profile Positioning / 5 P \ell P : Solicitud de inicio para movimiento</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 / Current Limitation / i L , i P : Limita la corriente al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 / Zero Clamp / i L , i P : Zero Clamp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 / Velocity Limitation / v L , v P : Limita la velocidad al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 / Reference Switch (REF) / r E F : Interruptor de referencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 / Positive Limit Switch (LIMP) / L , i P : Final de carrera positivo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 / Negative Limit Switch (LIMN) / L , i P : Final de carrera negativo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 / Switch Controller Parameter Set / l P \ell r : Conmuta el juego de parámetros de lazo de control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 / Velocity Controller Integral Off / i \ell n F : Desconecta la acción integral del controlador de velocidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 / Start Signal Of RMAC / r \ell c : Señal de inicio del movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 / Activate RMAC / r \ell c : Activa el movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 / Release Holding Brake / r E h b : Abre el freno de parada Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>IOfunct_DI1</td>
<td>ConF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3007:2h Modbus 1796</td>
<td></td>
</tr>
</tbody>
</table>

- Función entrada DI1
 1 / Freely Available / \(\text{nonE} \): Disponible de forma libre
 2 / Fault Reset / \(\text{FrES} \): Restablecer tras error
 3 / Enable / \(\text{EnAb} \): Activa la etapa de potencia
 4 / Halt / \(\text{halt} \): Parada
 5 / Start Profile Positioning / \(\text{SPtP} \): Solicitud de inicio para movimiento
 6 / Current Limitation / \(\text{iLiM} \): Limita la corriente al valor del parámetro
 7 / Zero Clamp / \(\text{CLMP} \): Zero Clamp
 8 / Velocity Limitation / \(\text{VLiM} \): Limita la velocidad al valor del parámetro
 21 / Reference Switch (REF) / \(\text{rEF} \): Interruptor de referencia
 22 / Positive Limit Switch (LIMP) / \(\text{LiMP} \): Final de carrera positivo
 23 / Negative Limit Switch (LIMN) / \(\text{LiMn} \): Final de carrera negativo
 24 / Switch Controller Parameter Set / \(\text{CPAr} \): Conmuta el juego de parámetros de lazo de control
 28 / Velocity Controller Integral Off / \(\text{tnoF} \): Desconecta la acción integral del controlador de velocidad
 30 / Start Signal Of RMAC / \(\text{SrMc} \): Señal de inicio del movimiento relativo tras Capture (RMAC)
 31 / Activate RMAC / \(\text{ArMc} \): Activa el movimiento relativo tras Capture (RMAC)
 40 / Release Holding Brake / \(\text{rEhb} \): Abre el freno de parada

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOfunct_DI2</td>
<td>Función entrada DI2</td>
<td>-</td>
<td>1</td>
<td>Freely Available</td>
<td>nane</td>
<td>Disponible de forma libre</td>
<td>-</td>
<td>-</td>
<td>UINT16 R/W per.</td>
</tr>
<tr>
<td>ConF</td>
<td>1 / Fault Reset</td>
<td>-</td>
<td>2</td>
<td>Restablecer tras error</td>
<td>-</td>
<td>CANopen 3007:3h</td>
<td>-</td>
<td>-</td>
<td>CANopen 3007:3h, Modbus 1798</td>
</tr>
<tr>
<td>I-o-d2</td>
<td>3 / Enable</td>
<td>-</td>
<td>4</td>
<td>Activa la etapa de potencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5 / Halt</td>
<td>-</td>
<td>6</td>
<td>Parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7 / Start Profile Positioning</td>
<td>-</td>
<td>8</td>
<td>Solicitud de inicio para movimiento</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6 / Current Limitation</td>
<td>-</td>
<td>9</td>
<td>Limita la corriente al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10 / Zero Clamp</td>
<td>-</td>
<td>11</td>
<td>Zero Clamp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12 / Velocity Limitation</td>
<td>-</td>
<td>13</td>
<td>Limita la velocidad al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17 / Reference Switch (REF)</td>
<td>-</td>
<td>18</td>
<td>Interruptor de referencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>19 / Positive Limit Switch (LIMP)</td>
<td>-</td>
<td>20</td>
<td>Final de carrera positivo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21 / Negative Limit Switch (LIMN)</td>
<td>-</td>
<td>22</td>
<td>Final de carrera negativo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>23 / Switch Controller Parameter Set</td>
<td>-</td>
<td>24</td>
<td>Conmuta el juego de parámetros de lazo de control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>25 / Velocity Controller Integral Off</td>
<td>-</td>
<td>26</td>
<td>Desconecta la acción integral del controlador de velocidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>27 / Start Signal Of RMAC</td>
<td>-</td>
<td>28</td>
<td>Señal de inicio del movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>29 / Activate RMAC</td>
<td>-</td>
<td>30</td>
<td>Activa el movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>31 / Release Holding Brake</td>
<td>-</td>
<td>32</td>
<td>Abre el freno de parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOfunct_DI3</td>
<td>ConF → 1-o→ di3</td>
<td>Función entrada DI3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>CANopen 3007:4h Modbus 1800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / Freely Available / nonE:</td>
<td>Disponible de forma libre</td>
<td>-</td>
<td>-</td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / Fault Reset / FrES:</td>
<td>Restablecer tras error</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 / Enable / EnAb:</td>
<td>Activa la etapa de potencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 / Halt / hALt:</td>
<td>Parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 / Start Profile Positioning / SPtP:</td>
<td>Solicitud de inicio para movimiento</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 / Current Limitation / Current Limitation / CLMP:</td>
<td>Limita la corriente al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 / Velocity Limitation / VLiM:</td>
<td>Limita la velocidad al valor del parámetro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 / Reference Switch (REF) / tnoF:</td>
<td>Interruptor de referencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 / Positive Limit Switch (LIMP) / LIMP:</td>
<td>Final de carrera positivo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 / Negative Limit Switch (LIMN) / LIMN:</td>
<td>Final de carrera negativo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 / Switch Controller Parameter Set / rMc:</td>
<td>Conmuta el juego de parámetros de lazo de control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 / Velocity Controller Integral Off / VLiM:</td>
<td>Desconecta la acción integral del controlador de velocidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 / Start Signal Of RMAC / SrMc:</td>
<td>Señal de inicio del movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31 / Activate RMAC / ArMc:</td>
<td>Activa el movimiento relativo tras Capture (RMAC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 / Release Holding Brake / rEh b:</td>
<td>Abre el freno de parada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOfunct_DQ0</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3007.9h, Modbus 1810</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CanF</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Descripción: Función salida DQ0

1. **Freely Available** / n o n E - Disponible de forma libre
2. **No Fault** / n F L F: Señala los estados de funcionamiento Ready To Switch On, Switched On y Operation Enabled
3. **Active** / R c b: Señaliza el estado de funcionamiento Operation Enabled
4. **RMAC Active Or Finished** / r R c R: El movimiento relativo tras Capture (RMAC) está activo o ha finalizado
5. **In Position Deviation Window** / i P - P: Distancia de seguimiento dentro de la ventana
6. **In Velocity Deviation Window** / i V - V: Desviación de velocidad dentro de ventana
7. **Velocity Below Threshold** / V b h r: Velocidad del motor por debajo del umbral
8. **Current Below Threshold** / i b h r: Corriente del motor por debajo del valor de umbral
9. **Halt Acknowledge** / h A L b: Confirmación de parada
10. **Motor Standstill** / M S t d: Motor parado
11. **Selected Error** / S E r r: Está presente uno de los errores indicados de la clase de error 1 … 4
12. **Valid Reference (ref_ok)** / r E F a: El punto cero es válido (ref_ok)
13. **Selected Warning** / S W r n: Está presente uno de los errores indicados de la clase de error 0
14. **Position Register Channel 1** / P r C 1: Canal 1 del registro de posición
15. **Position Register Channel 2** / P r C 2: Canal 2 del registro de posición
16. **Position Register Channel 3** / P r C 3: Canal 3 del registro de posición
17. **Position Register Channel 4** / P r C 4: Canal 4 del registro de posición
18. **Motor Moves Positive** / M P o s: Movimiento del motor en dirección positiva
19. **Motor Moves Negative** / M n E G: Movimiento del motor en dirección negativa

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOfunct_DQ1</td>
<td>Función salida DQ1</td>
<td>-</td>
<td>-</td>
<td>1 / Freely Available / n a n E :</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3007:Ah Modbus 1812</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 / No Fault / n F L t :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 / Active / r c t :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 / RMAC Active Or Finished / r n c R :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 / In Position Deviation Window / i n - P :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 / In Velocity Deviation Window / i n - V :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 / Velocity Below Threshold / i h r :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 / Current Below Threshold / i h r :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9 / Halt Acknowledge / h R L t :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 / Motor Standstill / d 5 t :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 / Selected Error / r E r r :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 / Valid Reference (ref_ok) / r E F a :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 / Selected Warning / w r r :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 / Position Register Channel 1 / P r C 1 :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 / Position Register Channel 2 / P r C 2 :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 / Position Register Channel 3 / P r C 3 :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 / Position Register Channel 4 / P r C 4 :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 / Motor Moves Positive / P P o 5 :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19 / Motor Moves Negative / P n E E :</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOsigCurrLim</td>
<td>Evaluación de señal para función de entrada de señal Current Limitation 1 / Normally Closed: Contacto de reposo 2 / Normally Open: Contacto de cierre Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3008:28h, Modbus 2128</td>
</tr>
<tr>
<td>IOsigLIMN</td>
<td>Evaluación de señal para final de carrera negativo 0 / Inactive: Inactivo 1 / Normally Closed: Contacto de reposo 2 / Normally Open: Contacto de cierre Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:Fh, Modbus 1566</td>
</tr>
<tr>
<td>IOsigLIMP</td>
<td>Evaluación de señal para final de carrera positivo 0 / Inactive: Inactivo 1 / Normally Closed: Contacto de reposo 2 / Normally Open: Contacto de cierre Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:10h, Modbus 1568</td>
</tr>
<tr>
<td>IOsigREF</td>
<td>Evaluación de señal para interruptor de referencia 1 / Normally Closed: Contacto de reposo 2 / Normally Open: Contacto de cierre El interruptor de referencia sólo se activa durante el procesamiento del movimiento de referencia al interruptor de referencia. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:Eh, Modbus 1564</td>
</tr>
<tr>
<td>IOsigRespOFPS</td>
<td>Reacción a final de carrera activo al activar la etapa de potencia 0 / Error: El final de carrera activo desata un error. 1 / No Error: El final de carrera activo no desata ningún error. Determina la reacción cuando se activa la etapa de potencia con el final de carrera activo. Los ajustes modificados se aceptan de inmediato.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:6h, Modbus 1548</td>
</tr>
<tr>
<td>IOsigVelLim</td>
<td>Evaluación de señal para función de entrada de señal Velocity Limitation 1 / Normally Closed: Contacto de reposo 2 / Normally Open: Contacto de cierre Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3008:27h, Modbus 2126</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo/Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>IP_IntTimInd</td>
<td>Interpolation time index</td>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.08.</td>
<td>-128 -3 63</td>
<td>INT16*</td>
<td>R/W</td>
<td></td>
<td>CANopen 60C2:2h Modbus 7002</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 60C2:1h Modbus 7000</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 60C1:1h Modbus 7004</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 301B:9h Modbus 6930</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3029:3h Modbus 10502</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3029:7h Modbus 10510</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3029:8h Modbus 10512</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3029:5h Modbus 10506</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3029:4h Modbus 10504</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persitente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>LIM_HaltReaction</td>
<td>Código de opción Parada</td>
<td>INT16</td>
<td>1</td>
<td>1</td>
<td>INT16</td>
<td>R/W</td>
<td>Persistente</td>
<td>Experto</td>
<td>CANopen 605D:0h Modbus 1582</td>
</tr>
<tr>
<td></td>
<td>1 / Deceleration Ramp / d E c E : Rampa de deceleración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Torque Ramp / k o r q : Rampa de par</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tipo de deceleración en parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ajuste de la rampa de deceleración con el parámetro RAMP_v_dec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ajuste de la rampa de momentos con el parámetro LIM_I_maxHalt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si ya se ha activado una rampa de deceleración no se puede escribir el parámetro.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIM_I_maxHalt</td>
<td>Corriente para parada</td>
<td>UINT16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANOpen 3011:Eh Modbus 4380</td>
</tr>
<tr>
<td></td>
<td>Este valor se limita únicamente mediante el valor mínimo y máximo del rango de parámetro (no se produce una limitación del valor por parte del motor/etapa de potencia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En parada, la limitación de la corriente (_Imax_act) se corresponde con el menor de los siguientes valores:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LIM_I_maxHalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _M_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- _PS_I_max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En caso de parada también se tienen en cuenta otras limitaciones de la corriente resultantes de la monitorización I2t.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predeterminado: _PS_I_max con frecuencia PWM de 8 kHz y tensión de red de 230/480 V En pasos de 0,01 Airms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>LIM_I maxQSTP</td>
<td>Corriente para Quick Stop</td>
<td>A$_{rms}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3011:Dh Modbus 4378</td>
</tr>
<tr>
<td>Corriente para Quick Stop Este valor se limita únicamente mediante el valor mínimo y máximo del rango de parámetro (no se produce una limitación del valor por parte del motor/etapa de potencia) En Quick Stop, la limitación de la corriente (I{max, act}) se corresponde con el menor de los siguientes valores: - LIM_I_{max}QSTP - M_I{max} - PS_I{max} En caso de Quick Stop también se tienen en cuenta otras limitaciones de la corriente resultantes de la monitorización I2t. Predeterminado: PS_I{max} con frecuencia PWM de 8 kHz y tensión de red de 230/480 V En pasos de 0,01 A$_{rms}$. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIM_QStopReact</td>
<td>Código de opción Quick Stop</td>
<td>-2 / -2</td>
<td>-3</td>
<td>6</td>
<td>7</td>
<td>INT16</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3006:18h Modbus 1584</td>
</tr>
<tr>
<td>Código de opción Quick Stop -2 / Torque ramp (Fault): Utilizar la rampa de par y cambiar al estado de funcionamiento 9 Fault -1 / Deceleration Ramp (Fault): Utilizar la rampa de deceleración y cambiar al estado de funcionamiento 9 Fault 6 / Deceleration ramp (Quick Stop): Utilizar la rampa de deceleración y permanecer en el estado de funcionamiento 7 Quick Stop 7 / Torque ramp (Quick Stop): Utilizar la rampa de par y permanecer en el estado de funcionamiento 7 Quick Stop Tipo de deceleración para Quick Stop. Ajuste para la rampa de deceleración con el parámetro RAMPquickstop. Ajuste para la rampa de momentos con el parámetro LIM_I_{max}QSTP. Si ya se ha activado una rampa de deceleración no se puede escribir el parámetro. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mains_reactor</td>
<td>Inductancia de red</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3005:20h Modbus 1344</td>
</tr>
<tr>
<td>Inductancia de red 0 / No: No 1 / Yes: Sí Valor 0: No hay conectada ninguna inductancia de red. Se reduce la potencia nominal de la etapa de potencia. Valor 1: La inductancia de red está conectada. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección Modbus</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>MBaddress</td>
<td>Dirección Modbus</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>247</td>
<td>R/W</td>
<td>per.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direcciones válidas: 1 a 247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBbaud</td>
<td>Velocidad de transmisión Modbus</td>
<td>UINT32</td>
<td>9600 / 9600 Baud / 9,6: 9600 Baud</td>
<td></td>
<td></td>
<td>R/W</td>
<td>per.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19200 / 19200 Baud / 19,2: 19200 Baud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38400 / 38400 Baud / 38,4: 38400 Baud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfb_ResRatio</td>
<td>Relación de transformación</td>
<td>UINT16</td>
<td>0,3</td>
<td></td>
<td>1,0</td>
<td>R/W</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD_AbsDirection</td>
<td>Dirección del movimiento absoluto con Modulo</td>
<td>UINT16</td>
<td>0</td>
<td></td>
<td>2</td>
<td>R/W</td>
<td>per.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / Shortest Distance: Movimiento con distancia más corta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Positive Direction: Movimiento solo en dirección positiva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Negative Direction: Movimiento solo en dirección negativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si el parámetro está ajustado a 0, el accionamiento calcula el recorrido más corto hasta la posición destino e inicia el movimiento en la dirección correspondiente. Si la distancia hasta la posición destino en dirección negativa y positiva es idéntica, se ejecuta un movimiento en dirección positiva.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.03.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD_AbsMultiRng</td>
<td>Rangos múltiples para movimiento absoluto con Modulo</td>
<td>UINT16</td>
<td>0</td>
<td></td>
<td>1</td>
<td>R/W</td>
<td>per.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / Multiple Ranges Off: Movimiento absoluto en un rango Modulo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Multiple Ranges On: Movimiento absoluto en varios rangos Modulo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.03.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD_Enable</td>
<td>Activación de Modulo</td>
<td>UINT16</td>
<td>0</td>
<td></td>
<td>1</td>
<td>R/W</td>
<td>per.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / Modulo Off / a F F: Modulo desactivado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Modulo On / o n: Modulo activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.03.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Menú HMI</td>
<td>Nombre HMI</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>MOD_Max</td>
<td></td>
<td></td>
<td>Posición máxima del rango Modulo</td>
<td></td>
<td>usr_p</td>
<td>3600</td>
<td>-</td>
<td>INT32</td>
<td>R/W per.</td>
</tr>
<tr>
<td>MOD_Min</td>
<td></td>
<td></td>
<td>Posición mínima del rango Modulo</td>
<td></td>
<td>usr_p</td>
<td>0</td>
<td>-</td>
<td>INT32</td>
<td>R/W per.</td>
</tr>
<tr>
<td>MON_ChkTime</td>
<td></td>
<td></td>
<td>Supervisión de la ventana de tiempo</td>
<td></td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W per.</td>
</tr>
<tr>
<td>MON_commutat</td>
<td></td>
<td></td>
<td>Monitorización de la conmutación</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W per.</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>MON_ConfModification</td>
<td>Configuración de la modificación de la configuración</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3004:1Dh, Modbus 1082</td>
</tr>
<tr>
<td>MON_DCBusVdcThresh</td>
<td>Valor de umbral de monitorización de sobretensión del bus DC</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>-</td>
<td>CANopen 3005:3Dh, Modbus 1402</td>
</tr>
<tr>
<td>MON_ENC_Ampl</td>
<td>Activación de la monitorización de la amplitud de SinCos</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 303F:61h, Modbus 16322</td>
</tr>
<tr>
<td>MON_GroundFault</td>
<td>Monitorización de defecto a tierra 0 / Off: Supervisión de defecto a tierra, desactivada 1 / On: Supervisión de defecto a tierra, activada</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>UINT16</td>
<td>R/W per. expert</td>
<td>CANopen 3005:10h, Modbus 1312</td>
<td></td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_I_Threshold</td>
<td>Monitorización del valor de umbral de corriente</td>
<td>A rms</td>
<td>0,00</td>
<td>0,20</td>
<td>300,00</td>
<td>UINT16</td>
<td>CANopen 3006:1Ch, Modbus 1592</td>
</tr>
<tr>
<td>MON_IO_SelErr1</td>
<td>Primer código de error para la función de salida de señal Selected Error</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>CANopen 303B:6h, Modbus 15116</td>
</tr>
<tr>
<td>MON_IO_SelErr2</td>
<td>Segundo código de error para la función de salida de señal Selected Error</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>CANopen 303B:7h, Modbus 15118</td>
</tr>
<tr>
<td>MON_IO_SelWar1</td>
<td>Primer código de error para la función de salida de señal Selected Warning</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>CANopen 303B:8h, Modbus 15120</td>
</tr>
<tr>
<td>MON_IO_SelWar2</td>
<td>Segundo código de error para la función de salida de señal Selected Warning</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>UINT16</td>
<td>CANopen 303B:9h, Modbus 15122</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MON_MainsVolt</td>
<td>Detección y supervisión de las fases de red</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>UINT16</td>
<td>R/W</td>
</tr>
</tbody>
</table>

MON_MainsVolt

0 / Automatic Mains Detection:
Detección y supervisión automáticas de la tensión de red

1 / DC-Bus Only (Mains 1~230 V / 3~480 V): Sólo alimentación bus DC, corresponde a 230 V de tensión de red (monofásica) ó 480 V (trifásica)

2 / DC-Bus Only (Mains 1~115 V / 3~208 V): Sólo alimentación bus DC, corresponde a 115 V de tensión de red (monofásica) ó 208 V (trifásica)

3 / Mains 1~230 V / 3~480 V: Tensión de red de 230 V (monofásica) ó 480 V (trifásica)

4 / Mains 1~115 V / 3~208 V: Tensión de red de 115 V (monofásica) ó 208 V (trifásica)

5 / Reserved: Reservado

Valor 0: En cuanto se detecta tensión de red, el equipo comprueba automáticamente en los equipos monofásicos si la tensión de red es de 115 V o 230 V y, en los equipos trifásicos, si la tensión de red es de 208 V o 400/480 V.

Valores 1 ... 2: Cuando el equipo sólo es alimentado a través del bus DC, se tiene que ajustar el parámetro al valor de tensión que corresponda al valor de tensión del equipo alimentador. No se lleva a cabo una supervisión de la tensión de red.

Valores 3 ... 4: Si no se detecta correctamente la tensión de red al arrancar, la tensión de red a utilizar se podrá ajustar manualmente. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.

MON_p_dif_load

Máxima desviación de posición debida a la carga

La desviación de posición debida a la carga es la diferencia, causada por la carga, entre el valor de referencia de posición y la posición real.

A través del parámetro MON_p_dif_load_usr es posible introducir el valor en unidades de usuario. En pasos de 0,0001 revoluciones. Los ajustes modificados se aceptan de inmediato.

<table>
<thead>
<tr>
<th>Revolución</th>
<th>UIINT32</th>
<th>R/W</th>
<th>per.</th>
<th>CANopen 6065:0h, Modbus 1606</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0001</td>
<td>1,0000</td>
<td>200,000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_p_dif_load_usr</td>
<td>Máxima desviación de posición debida a la carga</td>
<td>usr_p</td>
<td>1</td>
<td>16384</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:3Eh, Modbus 1660</td>
</tr>
<tr>
<td>MON_p_dif_warn</td>
<td>Máxima desviación de posición debida a la carga (clase de error 0)</td>
<td>%</td>
<td>0</td>
<td>75</td>
<td>100</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:29h, Modbus 1618</td>
</tr>
<tr>
<td>MON_p_DiffWin</td>
<td>Supervisión de desviación de posición</td>
<td>Revolución</td>
<td>0,0000</td>
<td>0,0010</td>
<td>0,9999</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:19h, Modbus 1586</td>
</tr>
<tr>
<td>MON_p_DiffWin_usr</td>
<td>Supervisión de desviación de posición</td>
<td>usrp</td>
<td>0</td>
<td>16</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:3Fh, Modbus 1662</td>
</tr>
</tbody>
</table>

La desviación de posición debida a la carga es la diferencia, causada por la carga, entre el valor de referencia de posición y la posición real.

El valor mínimo, el ajuste de fábrica y el valor máximo dependen del factor de escalada.

Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.05.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_p_win</td>
<td>Ventana de parada, desviación de control permitida</td>
<td>Revolución</td>
<td>0.0000</td>
<td>0.0010</td>
<td>3.2767</td>
<td>UINT16*</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 6067:0h, Modbus 1608</td>
</tr>
<tr>
<td>MON_p_win_usr</td>
<td>Ventana de parada, desviación de control permitida</td>
<td>usr_p</td>
<td>0</td>
<td>16</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:40h, Modbus 1664</td>
</tr>
<tr>
<td>MON_p_winTime</td>
<td>Ventana de parada, tiempo</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>32767</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 6068:0h, Modbus 1610</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>MON_p_winTout</td>
<td>Tiempo de desbordamiento para supervisión de la ventana de parada</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>16000</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 3006:26h Modbus 1612</td>
</tr>
<tr>
<td>MON_SW_Limits</td>
<td>Activación de los finales de carrera de software</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 3006:3h Modbus 1542</td>
</tr>
<tr>
<td>MON_SWLimMode</td>
<td>Comportamiento al alcanzar un límite de posición</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 3006:47h Modbus 1678</td>
</tr>
<tr>
<td>MON_swLimN</td>
<td>Límite de posición negativo para finales de carrera de software</td>
<td>usr_p</td>
<td>-2147483648</td>
<td>-</td>
<td>-2147483648</td>
<td>INT32</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 607D:1h Modbus 1546</td>
</tr>
</tbody>
</table>

Los valores para el procesamiento de la ventana de parada se ajustan en los parámetros MON_p_win y MON_p_winTime.

La supervisión de tiempo comienza desde el momento en que se alcanza la posición de destino (valor de referencia de posición del controlador de posición) o al finalizar el procesamiento del generador del perfil de movimiento.

Los ajustes modificados se aceptan de inmediato.

Los finales de carrera de software solo pueden activarse por un punto cero válido.

Los ajustes modificados se aceptan de inmediato.

Disponible con la versión de firmware ≥ V01.16.

Véase la descripción de 'MON_swLimP'. Solo es posible modificar el ajuste con la etapa de potencia desactivada.

Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON_swLimP</td>
<td>Límite de posición positivo para finales de carrera de software</td>
<td>usr_p</td>
<td>2147483647</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 607D:2h, Modbus 1544</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MON_tq_win</td>
<td>Ventana de par, diferencia permitida</td>
<td>%</td>
<td>0.0</td>
<td>3.0</td>
<td>3000.0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:2Dh, Modbus 1626</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MON_tq_winTime</td>
<td>Ventana de par, tiempo</td>
<td>ms</td>
<td>16383</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:2Eh, Modbus 1628</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MON_v_DiffWin</td>
<td>Supervisión de desviación de velocidad</td>
<td>usr_v</td>
<td>1</td>
<td>10</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:1Ah, Modbus 1588</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MON_v_Threshold</td>
<td>Supervisión del umbral de velocidad</td>
<td>usr_v</td>
<td>1</td>
<td>10</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3006:1Bh, Modbus 1590</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MON_v_win</td>
<td>Ventana de velocidad, diferencia permitida</td>
<td>usr_v</td>
<td>1</td>
<td>10</td>
<td>2147483647</td>
<td>UINT32*</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 606D:0h, Modbus 1576</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MON_v_winTime</td>
<td>Ventana de velocidad, tiempo</td>
<td>ms</td>
<td>16383</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 606E:0h, Modbus 1578</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>MON_v_zeroclamp</td>
<td>Limitación de velocidad para Zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>usr_v</td>
<td>UINT32</td>
<td>R/W</td>
<td>CANopen 3006:28h, Modbus 1616</td>
</tr>
<tr>
<td></td>
<td>Clamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zeroclip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero Clamp sólo es posible cuando</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>el valor de referencia de velocidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>está por debajo del valor límite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>para Zeroclip.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MON_VelDiff</td>
<td>Desviación máxima de la velocidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>usr_v</td>
<td>UINT32</td>
<td>R/W</td>
<td>CANopen 3006:48h, Modbus 1686</td>
</tr>
<tr>
<td></td>
<td>debida a la carga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 0: Monitorización desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor >0: Valor máximo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MON_VelDiff_Time</td>
<td>Ventana de tiempo para desviación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ms</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 3006:4Ch, Modbus 1688</td>
</tr>
<tr>
<td></td>
<td>máxima de la velocidad debida a la</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>carga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 0: Monitorización desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor >0: Ventana de tiempo para</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>valor máximo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT_dismax</td>
<td>Distancia máxima admisible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REVOLUCION</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 302E:3h, Modbus 11782</td>
</tr>
<tr>
<td></td>
<td>Si está activa la magnitud del valor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piloto y se sobrepasa la distancia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>máxima permitida, se detecta un</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>error de la clase de error 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El valor 0 desactiva la supervisión.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A través del parámetro MT_dismax_usr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>es posible introducir el valor en</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unidades de usuario.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En pasos de 0.1 revoluciones.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>durante el siguiente movimiento del</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT_dismax_usr</td>
<td>Distancia máxima admisible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>usr_p</td>
<td>INT32</td>
<td>R/W</td>
<td>CANopen 302E:Ah, Modbus 11796</td>
</tr>
<tr>
<td></td>
<td>Si está activa la magnitud del valor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piloto y se sobrepasa la distancia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>máxima permitida, se detecta un</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>error de la clase de error 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El valor 0 desactiva la supervisión.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El valor mínimo, el ajuste de fábrica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>y el valor máximo dependen del factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de escalada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>durante el siguiente movimiento del</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.05.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parámetros

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_CTRLreset</td>
<td>Restablecer parámetros de bucle de control</td>
<td>-</td>
<td>0</td>
<td>No</td>
<td>0</td>
<td>UINT16</td>
<td>-</td>
<td>-</td>
<td>CANopen 3004:7h, Modbus 1038</td>
</tr>
<tr>
<td></td>
<td>0 / No / n o</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 / Yes / y E S</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Los parámetros de lazo de control se restablecen. Se calculan de nuevo los parámetros de lazo de control tomando como base los datos del motor conectado.

No se restablecen las limitaciones de la corriente ni de la velocidad. Por eso deben restablecerse los parámetros del usuario.

Los nuevos ajustes no se guardan en la EEPROM. Solo es posible modificar el ajuste con la etapa de potencia desactivada.

Los ajustes modificados se aceptan de inmediato.

PAR_ScalingStart	Nuevo cálculo de parámetros con unidades de usuario	-	0	0	2	UINT16	-	-	CANopen 3004:14h, Modbus 1064
	Los parámetros con unidades de usuario pueden calcularse de nuevo con un factor de escalada modificado.	-	0	0	2	-	-	-	-
	Valor 0: Inactivo	-	0	0	2	-	-	-	-
	Valor 1: Inicializar nuevo cálculo	-	0	0	2	-	-	-	-
	Valor 2: Iniciar nuevo cálculo	-	0	0	2	-	-	-	-

Solo es posible modificar el ajuste con la etapa de potencia desactivada.

Los ajustes modificados se aceptan de inmediato.

Disponible con la versión de firmware ≥ V01.05.

<p>| PAREeprSave | Guardar valores de parámetros en EEPROM | - | - | - | - | UINT16 | - | - | CANopen 3004:1h, Modbus 1026 |
| | Valor 1: Guardar parámetros persistentes | - | - | - | - | - | - | - | - |
| | Los parámetros ajustados actualmente se guardan en la memoria no volátil (EEPROM). El proceso de memorización estará finalizado cuando en la lectura del parámetro se obtenga un 0. Los ajustes modificados se aceptan de inmediato. | - | - | - | - | - | - | - | - |</p>
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARfactorySet</td>
<td>ConF → FC5 - rStF</td>
<td>Restaurar ajustes de fábrica (valores por defecto)</td>
<td>No / no : No</td>
<td>Yes / yE 5 : Sí</td>
<td>UINT16</td>
<td>CANopen 3004:2h, Modbus 1028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los parámetros se restablecen a los ajustes de fábrica y se guardan en el EEPROM. Los ajustes de fábrica pueden restablecerse mediante la HMI o el software de puesta en marcha. El proceso de memorización estará finalizado cuando en la lectura del parámetro se obtenga un 0. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente conexión del producto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| PARuserReset | ConF → FC5 - rEsu | Restablecer los parámetros de usuario 0 / No / no : No | 65535 / Yes / yE 5 : Sí | Bit 0: Ajustar los parámetros persistentes del usuario y los parámetros del lazo de control a valores por defecto. Bits 1 … 15: Reservado | UINT16 | CANopen 3004:8h, Modbus 1040 |
| | | Se restablecerán los parámetros, a excepción de los siguientes parámetros: | | | | |
| | | - Parámetro de comunicación | | | | |
| | | - Inversión de la dirección de movimiento | | | | |
| | | - Funciones de las entradas y salidas digitales | | | | |
| | | Los nuevos ajustes no se guardan en la EEPROM. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia. | | | |</p>
<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Ajuste de fábrica</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PosReg1Mode</td>
<td>Selección de los criterios de comparación para el canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 300B:4h Modbus 2824</td>
</tr>
<tr>
<td>0 / Pact greater equal A: La posición actual es mayor o igual que el valor de comparación A para el canal 1 del registro de posición</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 / Pact less equal A: La posición actual es menor o igual que el valor de comparación A para el canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 / Pact in [A-B] (basic): La posición actual está dentro del rango A-B, límites inclusive (simple)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 / Pact out [A-B] (basic): La posición actual está fuera del rango A-B, excluidos los límites (simple)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 / Pact in [A-B] (extended): La posición actual está dentro del rango A-B, límites inclusive (ampliado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 / Pact out [A-B] (extended): La posición actual está fuera del rango A-B, excluidos los límites (ampliado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg1Source</td>
<td>Selección de la fuente para el canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300B:6h Modbus 2828</td>
</tr>
<tr>
<td>0 / Pact Encoder 1: La fuente para el canal 1 del registro de posición es Pact del encoder 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg1Start</td>
<td>Inicio/Parada del canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300B:2h Modbus 2820</td>
</tr>
<tr>
<td>0 / Off (keep last state): El canal 1 del registro de posición está desconectado y el bit de estado conserva el último estado</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 / On: El canal 1 del registro de posición está activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 / Off (set state 0): El canal 1 del registro de posición está desconectado y el bit de estado se ajusta a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 / Off (set state 1): El canal 1 del registro de posición está desconectado y el bit de estado se ajusta a 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg1ValueA</td>
<td>Valor de comparación A para el canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 300B:8h Modbus 2832</td>
</tr>
<tr>
<td>usr_p</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg1ValueB</td>
<td>Valor de comparación B para el canal 1 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 300B:9h Modbus 2834</td>
</tr>
<tr>
<td>usr_p</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg2Mode</td>
<td>Selección de los criterios de comparación para el canal 2 del registro de posición</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 300B:5h, Modbus 2826</td>
<td></td>
</tr>
<tr>
<td>PosReg2Source</td>
<td>Selección de la fuente para el canal 2 del registro de posición</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 300B:7h, Modbus 2830</td>
<td></td>
</tr>
<tr>
<td>PosReg2Start</td>
<td>Inicio/Parada del canal 2 del registro de posición</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>UINT16</td>
<td>R/W</td>
<td>CANopen 300B:3h, Modbus 2822</td>
<td></td>
</tr>
<tr>
<td>PosReg2ValueA</td>
<td>Valor de comparación A para el canal 2 del registro de posición</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANopen 300B:Ah, Modbus 2836</td>
<td></td>
</tr>
<tr>
<td>PosReg2ValueB</td>
<td>Valor de comparación B para el canal 2 del registro de posición</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANopen 300B:Bh, Modbus 2838</td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PosReg3Mode</td>
<td>Selección de los criterios de comparación para el canal 3 del registro de posición</td>
<td></td>
<td>-</td>
<td>0</td>
<td>5</td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 300B.Eh, Modbus 2844</td>
</tr>
<tr>
<td></td>
<td>0 / Pact greater equal A: La posición actual es mayor o igual que el valor de comparación A para el canal 3 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Pact less equal A: La posición actual es menor o igual que el valor de comparación A para el canal 3 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Pact in [A-B] (basic): La posición actual está dentro del rango A-B, límites inclusive (simple)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Pact out [A-B] (basic): La posición actual está fuera del rango A-B, excluidos los límites (simple)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Pact in [A-B] (extended): La posición actual está dentro del rango A-B, límites inclusive (ampliado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 / Pact out [A-B] (extended): La posición actual está fuera del rango A-B, excluidos los límites (ampliado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg3Source</td>
<td>Selección de la fuente para el canal 3 del registro de posición</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300B.10h, Modbus 2848</td>
</tr>
<tr>
<td></td>
<td>0 / Pact Encoder 1: La fuente para el canal 3 del registro de posición es Pact del encoder 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg3Start</td>
<td>Inicio/Parada del canal 3 del registro de posición</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 300B:Cn, Modbus 2840</td>
</tr>
<tr>
<td></td>
<td>0 / Off (keep last state): El canal 3 del registro de posición está desconectado y el bit de estado conserva el último estado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / On: El canal 3 del registro de posición está activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Off (set state 0): El canal 3 del registro de posición está desconectado y el bit de estado se ajusta a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Off (set state 1): El canal 3 del registro de posición está desconectado y el bit de estado se ajusta a 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg3ValueA</td>
<td>Valor de comparación A para el canal 3 del registro de posición</td>
<td></td>
<td>usr.p</td>
<td>-</td>
<td>0</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 300B:12h, Modbus 2852</td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg3ValueB</td>
<td>Valor de comparación B para el canal 3 del registro de posición</td>
<td></td>
<td>usr.p</td>
<td>-</td>
<td>0</td>
<td>INT32</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 300B:13h, Modbus 2854</td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Valor fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro via bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>PosReg4Mode</td>
<td>Selección de los criterios de comparación para el canal 4 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 300B:Fh</td>
</tr>
<tr>
<td></td>
<td>0 / Pact greater equal A: La posición actual es mayor o igual que el valor de comparación A para el canal 4 del registro de posición</td>
<td></td>
<td>0</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>Modbus 2846</td>
</tr>
<tr>
<td></td>
<td>1 / Pact less equal A: La posición actual es menor o igual que el valor de comparación A para el canal 4 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Pact in [A-B] (basic): La posición actual está dentro del rango A-B, límites inclusive (simple)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Pact out [A-B] (basic): La posición actual está fuera del rango A-B, excluidos los límites (simple)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Pact in [A-B] (extended): La posición actual está dentro del rango A-B, límites inclusive (ampliado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 / Pact out [A-B] (extended): La posición actual está fuera del rango A-B, excluidos los límites (ampliado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg4Source</td>
<td>Selección de la fuente para el canal 4 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 300B:11h</td>
</tr>
<tr>
<td></td>
<td>0 / Pact Encoder 1: La fuente para el canal 4 del registro de posición es Pact del encoder 1</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Modbus 2850</td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg4Start</td>
<td>Inicio/Parada del canal 4 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 300B:Dh</td>
</tr>
<tr>
<td></td>
<td>0 / Off (keep last state): El canal 4 del registro de posición está desconectado y el bit de estado conserva el último estado</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Modbus 2842</td>
</tr>
<tr>
<td></td>
<td>1 / On: El canal 4 del registro de posición está activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Off (set state 0): El canal 4 del registro de posición está desconectado y el bit de estado se ajusta a 0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Off (set state 1): El canal 4 del registro de posición está desconectado y el bit de estado se ajusta a 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PosReg4ValueA</td>
<td>Valor de comparación A para el canal 4 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT32</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 300B:14h</td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus 2856</td>
</tr>
<tr>
<td>PosReg4ValueB</td>
<td>Valor de comparación B para el canal 4 del registro de posición</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INT32</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 300B:15h</td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus 2858</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>PosRegGroupStart</td>
<td>Inicio/Parada de los canales del registro de posición</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>UINT16 R/W per.</td>
<td>-</td>
<td>CANopen 300B:16h, Modbus 2960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / No Channel: Ningún canal activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Channel 1: Canal 1 activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Channel 2: Canal 2 activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / Channel 1 & 2: Canales 1 y 2 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / Channel 3: Canal 3 activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 / Channel 1 & 3: Canales 1 y 3 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 / Channel 2 & 3: Canales 2 y 3 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 / Channel 1 & 2 & 3: Canales 1, 2 y 3 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 / Channel 4: Canal 4 activo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 / Channel 1 & 4: Canales 1 y 4 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 / Channel 2 & 4: Canales 2 y 4 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 / Channel 1 & 2 & 4: Canales 1, 2 y 4 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 / Channel 3 & 4: Canales 3 y 4 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 / Channel 1 & 3 & 4: Canales 1, 3 y 4 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 / Channel 2 & 3 & 4: Canales 2, 3 y 4 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 / Channel 1 & 2 & 3 & 4: Canales 1, 2, 3 y 4 activos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.14.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP_ModeRangeLim</td>
<td>Movimiento absoluto excediendo los límites de movimiento</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16 R/W per.</td>
<td>-</td>
<td>CANopen 3023:7h, Modbus 8974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / NoAbsMoveAllowed: No es posible el movimiento absoluto excediendo los límites de movimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / AbsMoveAllowed: Es posible el movimiento absoluto excediendo los límites de movimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP_OpmChgType</td>
<td>Cambio al modo de funcionamiento Profile Position con movimiento contínuo</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>UINT16 R/W per.</td>
<td>-</td>
<td>CANopen 3023:9h, Modbus 8978</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / WithStandStill: Cambio con parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / OnTheFly: Cambio sin parada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia. Disponible con la versión de firmware ≥ V01.06.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPoption</td>
<td>Opciones para el modo de funcionamiento Profile Position</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>UINT16 R/W per.</td>
<td>-</td>
<td>CANopen 60F2:0h, Modbus 6960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determina la posición deseada para un posicionamiento relativo:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Relativo a la posición de destino anterior del generador del perfil de movimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: No soportado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: Relativo a la posición real del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PFPp_target</td>
<td>Posición destino para el modo de funcionamiento Profile Position (punto a punto)</td>
<td>usr_p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 607A:0h, Modbus 6940</td>
</tr>
<tr>
<td>PPv_target</td>
<td>Velocidad de destino para el modo de funcionamiento Profile Position (punto a punto)</td>
<td>usu_v</td>
<td>1</td>
<td>60</td>
<td>4294967295</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 6081:0h, Modbus 6942</td>
</tr>
<tr>
<td>PTttq_target</td>
<td>Par de destino para el modo de funcionamiento Profile Torque</td>
<td>%</td>
<td>-3000,0</td>
<td>0,0</td>
<td>3000,0</td>
<td>INT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 6071:0h, Modbus 6944</td>
</tr>
<tr>
<td>PVv_target</td>
<td>Velocidad de destino para el modo de funcionamiento Profile Velocity</td>
<td>usu_v</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>INT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 60FF:0h, Modbus 6938</td>
</tr>
<tr>
<td>RAMP_tq_enable</td>
<td>Activación del perfil de movimientos para el par</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3006:2Ch, Modbus 1624</td>
</tr>
<tr>
<td>RAMP_tq_slope</td>
<td>Pendiente del perfil de movimientos para el par</td>
<td>%/s</td>
<td>0,1</td>
<td>10000,0</td>
<td>300000000,0</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 6087:0h, Modbus 1620</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>RAMP_v_acc</td>
<td>Aceleración del perfil de movimientos para la velocidad</td>
<td>usr_a</td>
<td>1</td>
<td>600</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 6083:0h, Modbus 1556</td>
</tr>
<tr>
<td></td>
<td>El ajuste del valor 0 no afecta de forma alguna al parámetro. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_v_dec</td>
<td>Deceleración del perfil de movimientos para la velocidad</td>
<td>usr_a</td>
<td>1</td>
<td>600</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 6084:0h, Modbus 1558</td>
</tr>
<tr>
<td></td>
<td>El valor mínimo depende del modo de funcionamiento:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modos de funcionamiento con valor mínimo 1: Profile Velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modos de funcionamiento con valor mínimo 120: Jog Profile Position Homing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El ajuste del valor 0 no afecta de forma alguna al parámetro. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_v_enable</td>
<td>Activación del perfil de movimientos para la velocidad</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 3006:2Bh, Modbus 1622</td>
</tr>
<tr>
<td></td>
<td>0 / Profile Off: Perfil desactivado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Profile On: Perfil activado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_v_jerk</td>
<td>Limitación de tróneos del perfil de movimientos para la velocidad</td>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
<td>CANopen 3006:Dh, Modbus 1562</td>
</tr>
<tr>
<td></td>
<td>0 / Off / OFF: Desactivado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / 1 / 1: 1 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / 2 / 2: 2 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / 4 / 4: 4 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 / 8 / 8: 8 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 / 16 / 16: 16 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 / 32 / 32: 32 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64 / 64 / 64: 64 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>128 / 128 / 128: 128 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El ajuste solo es posible con el modo de funcionamiento inactivo (x_end=1). Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>RAMP_v_max</td>
<td>Máxima velocidad del perfil de movimientos para la velocidad</td>
<td>usr_v</td>
<td>1</td>
<td>13200</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>Modbus 607F:0h</td>
</tr>
<tr>
<td>RAMP_v_sym</td>
<td>Aceleración y deceleración del perfil de movimientos para la velocidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT16</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3006:1h Modbus 1538</td>
</tr>
<tr>
<td>RAMPaccdec</td>
<td>Aceleración y deceleración para el perfil de accionamiento Drive Profile Lexium High-Word: Aceleración Low-Word: Deceleración</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3006:2h Modbus 1540</td>
</tr>
<tr>
<td>RAMPquickstop</td>
<td>Rampa de deceleración para Quick Stop Rampa de deceleración para un stop de software o un error de clase 1 ó 2. Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td>usr_a</td>
<td>1</td>
<td>6000</td>
<td>2147483647</td>
<td>UINT32</td>
<td>R/W</td>
<td>-</td>
<td>CANopen 3006:12h Modbus 1572</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>RESext_P</td>
<td>ConF → ACG - Pobr</td>
<td>Potencia nominal de la resistencia de frenado externa</td>
<td>W</td>
<td>1</td>
<td>10</td>
<td>32767</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3005:12h Modbus 1316</td>
<td></td>
</tr>
<tr>
<td>RESext_R</td>
<td>ConF → ACG - rbr</td>
<td>Valor de la resistencia de frenado externa</td>
<td>Ω</td>
<td>0,00</td>
<td>100,00</td>
<td>327,67</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El valor mínimo depende de la etapa de potencia. En pasos de 0,01 Ω. Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3005:13h Modbus 1318</td>
<td></td>
</tr>
<tr>
<td>RESext_ton</td>
<td>ConF → ACG - tbr</td>
<td>Tiempo de conexión máximo permitido de la resistencia de frenado externa</td>
<td>ms</td>
<td>1</td>
<td>1</td>
<td>30000</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3005:11h Modbus 1314</td>
<td></td>
</tr>
<tr>
<td>RESint_ext</td>
<td>ConF → ACG - Eibr</td>
<td>Selección del tipo de resistencia de frenado</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / Internal Braking Resistor / int: Resistencia de frenado interna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3005:9h Modbus 1298</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / External Braking Resistor / Eth: Resistencia de frenado externa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / Reserved / rSVd: Reservado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada. Los ajustes modificados se aceptan durante la siguiente activación de la etapa de potencia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ResWriComNotOpEn</td>
<td></td>
<td>Reacción al comando de escritura (el estado de funcionamiento no es Operation Enabled)</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W per.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / Emergency Message: Se envía un mensaje de Emergency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3006:49h Modbus 1682</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / Error class 0: Se registra un error con clase de error 0 Este parámetro determina la reacción del variador a un comando de escritura que no puede ejecutarse porque el estado de funcionamiento corresponde a Operation Enabled. Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Activate</td>
<td></td>
<td>Activación del movimiento relativo tras Capture (RMAC)</td>
<td></td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>UINT16</td>
<td>R/W -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / Off: Desactivado 1 / On: activado Los ajustes modificados se aceptan de inmediato. Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CANopen 3023:C9 Modbus 8984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Dirección de parámetro vía bus de campo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Edge</td>
<td>Flanco de la señal de Capture para el movimiento relativo tras Capture</td>
<td>- 0 0 1</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3023-10, Modbus 8992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / Falling edge: Flanco descendente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / Rising edge: Flanco ascendente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Position</td>
<td>Posición destino del movimiento relativo tras Capture (RMAC)</td>
<td>usr_p - 0 - 0 -</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANopen 3023:Dh, Modbus 8986</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los valores máximos/mínimos dependen de:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Factor de escala de alta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Response</td>
<td>Reacción al sobrepasar la posición destino</td>
<td>- 0 0 2</td>
<td>UINT16</td>
<td>R/W per.</td>
<td>CANopen 3023:Fh, Modbus 8990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / Error Class 1: Clase de error 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / No Movement To Target Position: Sin movimiento a la posición destino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 / Movement To Target Position: Movimiento a la posición destino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Velocity</td>
<td>Velocidad del movimiento relativo tras Capture (RMAC)</td>
<td>usr_v - 0 - 0 - 2147483647</td>
<td>UINT32</td>
<td>R/W per.</td>
<td>CANopen 3023:Eh, Modbus 8988</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor 0: Utilizar la velocidad actual del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor >0: El valor corresponde a la velocidad de destino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El valor se limita internamente al ajuste de RAMP_v_max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan durante el siguiente movimiento del motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponible con la versión de firmware ≥ V01.10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScalePOSdenom</td>
<td>Escalado de posición: denominador Descripción, véase numerador</td>
<td>usr_p 1 16384 2147483647</td>
<td>INT32</td>
<td>R/W per.</td>
<td>CANopen 3006-7h, Modbus 1550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ScalePOSnum).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La aceptación de una nueva escala se produce con la transmisión del valor de numerador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
<td>Dirección de parámetro vía bus de campo</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>----------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ScalePOSnum</td>
<td>Escalado de posición: numerador</td>
<td>Revolución</td>
<td>1</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>Persistente</td>
<td>CANopen 3006:8h, Modbus 1552</td>
</tr>
<tr>
<td></td>
<td>Indicación del factor de escalada:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revoluciones del motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidades de usuario [usr_p]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La aceptación de una nueva escala se produce con la transmisión del valor de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>numerador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleRAMPdenom</td>
<td>Escalado de rampa: denominador</td>
<td>usr_a</td>
<td>1</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>Persistente</td>
<td>CANopen 3006:30h, Modbus 1632</td>
</tr>
<tr>
<td></td>
<td>Descripción, véase numerador (ScaleRAMPnum).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La aceptación de una nueva escala se produce con la transmisión del valor de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>numerador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleRAMPnum</td>
<td>Escalado de rampa: numerador</td>
<td>(1/min)/s</td>
<td>1</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>Persistente</td>
<td>CANopen 3006:31h, Modbus 1634</td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleVELdenom</td>
<td>Escalado de velocidad: denominador</td>
<td>usr_v</td>
<td>1</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>Persistente</td>
<td>CANopen 3006:21h, Modbus 1602</td>
</tr>
<tr>
<td></td>
<td>Descripción, véase numerador (ScaleVELnum).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La aceptación de una nueva escala se produce con la transmisión del valor de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>numerador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleVELnum</td>
<td>Escalado de velocidad: numerador</td>
<td>1/min</td>
<td>1</td>
<td>1</td>
<td>2147483647</td>
<td>INT32</td>
<td>R/W</td>
<td>Persistente</td>
<td>CANopen 3006:22h, Modbus 1604</td>
</tr>
<tr>
<td></td>
<td>Indicación del factor de escalada:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revoluciones del motor [min-1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidad de usuario [usr_v]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La aceptación de una nueva escala se produce con la transmisión del valor de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>numerador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo es posible modificar el ajuste con la etapa de potencia desactivada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los ajustes modificados se aceptan de inmediato.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ShiftEncWorkRang

Desplazar el área de trabajo del encoder

0 / Off: desplazamiento desconectado
1 / On: desplazamiento conectado

Después de activar la función de desplazamiento, el rango de posición del encoder se desplaza el equivalente a la mitad del rango.

Ejemplo para el rango de posición de un encoder Multiturn con 4096 revoluciones:

Valor 0:
Los valores de posición se encuentran entre 0 ... 4096 revoluciones.

Valor 1:
Los valores de posición se encuentran entre –2048 y 2048 revoluciones.

Los ajustes modificados se aceptan durante la siguiente conexión del producto.

SimAbsolutePos

Simulación de la posición absoluta al desconectar/conectar

0 / Simulation Off / oFF: No utilizar la última posición mecánica tras la desconexión/conexión
1 / Simulation On / on: Utilizar la última posición mecánica tras la desconexión/conexión

Este parámetro determina cómo se tratan los valores de posición tras la desconexión y la conexión y posibilita la simulación de un encoder absoluto utilizando un encoder Singleturn.

Si esta función está activa, el variador guarda los datos de posición correspondientes antes de desconectarse de manera que pueda restablecerse la posición mecánica al conectarse de nuevo.

En el caso de un encoder Singleturn, puede restablecerse la posición si el eje del motor no se ha girado más de 0,25 revoluciones, mientras el variador está desconectado.

En el caso de un encoder Multiturn, el movimiento permitido del eje del motor es considerablemente mayor y depende del tipo de encoder Multiturn.

Esta función trabaja de forma correcta solo si el variador se desconecta únicamente con el motor parado y el eje del motor no se mueve fuera del rango permitido (por ejemplo, utilizar el freno). Los ajustes modificados se aceptan de inmediato.

Disponible con la versión de firmware ≥ V01.03.

<table>
<thead>
<tr>
<th>Nombre de parámetro</th>
<th>Designación</th>
<th>Unidad</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Tipo de dato</th>
<th>Persistente</th>
<th>Experto</th>
<th>Dirección de parámetro vía bus de campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShiftEncWorkRang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3005:21h Modbus 1346</td>
</tr>
<tr>
<td>SimAbsolutePos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UINT16</td>
<td>R/W</td>
<td>per.</td>
<td>CANopen 3005:23h Modbus 1350</td>
</tr>
<tr>
<td>Nombre de parámetro</td>
<td>Designación</td>
<td>Unidad</td>
<td>Valor mínimo</td>
<td>Ajuste de fábrica</td>
<td>Valor máximo</td>
<td>Tipo de dato</td>
<td>Persistente</td>
<td>Experto</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>SyncMechStart</td>
<td>Activación del mecanismo de sincronización</td>
<td>UINT16</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SyncMechStatus</td>
<td>Estado del mecanismo de sincronización</td>
<td>UINT16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SyncMechTol</td>
<td>Tolerancia de sincronización</td>
<td>UINT16</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TouchProbeFct</td>
<td>Función Touch Probe</td>
<td>UINT16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UsrAppDataMem1</td>
<td>Datos de usuario 1</td>
<td>UINT32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R/W per.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UsrAppDataMem2</td>
<td>Datos de usuario 2</td>
<td>UINT32</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>R/W per.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Capítulo 12
Accesorios y piezas de repuesto

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herramientas de puesta en marcha</td>
<td>500</td>
</tr>
<tr>
<td>Tarjetas de memoria</td>
<td>501</td>
</tr>
<tr>
<td>Etiqueta para aplicaciones</td>
<td>502</td>
</tr>
<tr>
<td>Cables CANopen con conectores</td>
<td>503</td>
</tr>
<tr>
<td>Conectores, distribuidores, resistencias de terminación CANopen</td>
<td>504</td>
</tr>
<tr>
<td>Cable CANopen con extremos de cable abiertos</td>
<td>505</td>
</tr>
<tr>
<td>Cable adaptador para señal de encoder LXM05/LXM15 a LXM32</td>
<td>506</td>
</tr>
<tr>
<td>Cable del motor</td>
<td>507</td>
</tr>
<tr>
<td>Cables del encoder</td>
<td>510</td>
</tr>
<tr>
<td>Conector</td>
<td>511</td>
</tr>
<tr>
<td>Resistencias de frenado externas</td>
<td>512</td>
</tr>
<tr>
<td>Accesorios bus DC</td>
<td>513</td>
</tr>
<tr>
<td>Inductancias de red</td>
<td>514</td>
</tr>
<tr>
<td>Filtro externo de red</td>
<td>515</td>
</tr>
<tr>
<td>Piezas de repuesto: conectores, ventiladores, cubiertas</td>
<td>516</td>
</tr>
</tbody>
</table>
Herramientas de puesta en marcha

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set de conexión a PC, conexión serial entre accionamiento y PC, USB-A a RJ45</td>
<td>TCSMCNAM3M002P</td>
</tr>
<tr>
<td>Multi-Loader, equipo para copiar la configuración de parámetros a un PC o a otro variador</td>
<td>VW3A8121</td>
</tr>
<tr>
<td>Cable Modbus, 1 m (3,28 ft), 2 x RJ45</td>
<td>VW3A8306R10</td>
</tr>
<tr>
<td>Adaptador Modbus-Bluetooth</td>
<td>VW3A8114</td>
</tr>
<tr>
<td>Terminal gráfico externo</td>
<td>VW3A1101</td>
</tr>
</tbody>
</table>
Tarjetas de memoria

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarjeta de memoria para copiar la configuración de parámetros</td>
<td>VW3M8705</td>
</tr>
<tr>
<td>25 tarjetas de memoria para copiar la configuración de parámetros</td>
<td>VW3M8704</td>
</tr>
</tbody>
</table>
Etiqueta para aplicaciones

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiqueta para aplicaciones para colocar en la parte superior del variador, dimensiones 38,5 mm x 13 mm (1,51 x 0,51 in), 50 unidades</td>
<td>VW3M2501</td>
</tr>
</tbody>
</table>
Cables CANopen con conectores

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable CANopen, 0,3 m (0,98 ft), 2 x RJ45</td>
<td>VW3CANCARR03</td>
</tr>
<tr>
<td>Cable CANopen, 1 m (3,28 ft), 2 x RJ45</td>
<td>VW3CANCARR1</td>
</tr>
<tr>
<td>Cable CANopen, 2 m (6,56 ft), 2 x RJ45, cable apantallado, par trenzado</td>
<td>490NTW00002</td>
</tr>
<tr>
<td>Cable CANopen, 5 m (16,4 ft), 2 x RJ45, cable apantallado, par trenzado</td>
<td>490NTW00005</td>
</tr>
<tr>
<td>Cable CANopen, 12 m (39,4 ft), 2 x RJ45, cable apantallado, par trenzado</td>
<td>490NTW00012</td>
</tr>
<tr>
<td>Cable CANopen, 2 m (6,56 ft), 2 x RJ45, cable apantallado, par trenzado con certificados UL y CSA 22.1</td>
<td>490NTW00002U</td>
</tr>
<tr>
<td>Cable CANopen, 5 m (16,4 ft), 2 x RJ45, cable apantallado, par trenzado con certificados UL y CSA 22.1</td>
<td>490NTW00005U</td>
</tr>
<tr>
<td>Cable CANopen, 12 m (39,4 ft), 2 x RJ45, cable apantallado, par trenzado con certificados UL y CSA 22.1</td>
<td>490NTW00012U</td>
</tr>
<tr>
<td>Cable CANopen, 1 m (3,28 ft), D9-SUB (hembra) a RJ45</td>
<td>TCSCCN4F3M1T</td>
</tr>
<tr>
<td>Cable CANopen, 1 m (3,28 ft), D9-SUB (hembra) con resistencia de terminación integrada a RJ45</td>
<td>VW3M3805R010</td>
</tr>
<tr>
<td>Cable CANopen, 3 m (9,84 ft), D9-SUB (hembra) con resistencia de terminación integrada a RJ45</td>
<td>VW3M3805R030</td>
</tr>
<tr>
<td>Cable CANopen, 0,3 m (0,98 ft), 2 x D9-SUB (hembra), cable estándar LSZH (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1)</td>
<td>TSXCANCADD03</td>
</tr>
<tr>
<td>Cable CANopen, 1 m (3,28 ft), D9-SUB (hembra), cable estándar LSZH (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1)</td>
<td>TSXCANCADD1</td>
</tr>
<tr>
<td>Cable CANopen, 3 m (9,84 ft), D9-SUB (hembra), cable estándar LSZH (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1)</td>
<td>TSXCANCADD3</td>
</tr>
<tr>
<td>Cable CANopen, 5 m (16,4 ft), D9-SUB (hembra), cable estándar LSZH (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1)</td>
<td>TSXCANCADD5</td>
</tr>
<tr>
<td>Cable CANopen, 0,3 m (0,98 ft), 2 x D9-SUB (hembra), antiinflamable, comprobado según IEC 60332-2, certificado UL</td>
<td>TSXCANCBDD03</td>
</tr>
<tr>
<td>Cable CANopen, 1 m (3,28 ft), 2 x D9-SUB (hembra), antiinflamable, comprobado según IEC 60332-2, certificado UL</td>
<td>TSXCANCBDD1</td>
</tr>
<tr>
<td>Cable CANopen, 3 m (9,84 ft), 2 x D9-SUB (hembra), antiinflamable, comprobado según IEC 60332-2, certificado UL</td>
<td>TSXCANCBDD3</td>
</tr>
<tr>
<td>Cable CANopen, 5 m (16,4 ft), 2 x D9-SUB (hembra), antiinflamable, comprobado según IEC 60332-2, certificado UL</td>
<td>TSXCANCBDD5</td>
</tr>
</tbody>
</table>
Conectores, distribuidores, resistencias de terminación CANopen

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia de terminación CANopen, 120 Ohm, integrada en un conector RJ45</td>
<td>TCSCAR013M120</td>
</tr>
<tr>
<td>Conector CANopen con interfaz de PC, D9-SUB (hembra), con resistencia de terminación conectable y D9-SUB (macho) adicional para conectar un PC al Bus, interfaz de PC recta, cable de Bus acodado en 90°</td>
<td>TSXCANKCDF90TP</td>
</tr>
<tr>
<td>Conector CANopen, D9-SUB (hembra), con resistencia de terminación conectable, acodado en 90°</td>
<td>TSXCANKCDF90T</td>
</tr>
<tr>
<td>Conector CANopen, D9-SUB (hembra), con resistencia de terminación conectable, recto</td>
<td>TSXCANKCDF180T</td>
</tr>
<tr>
<td>Distribuidor cuádruple, cable principal a 4 derivaciones, 4 x D9-SUB (macho), con resistencia de terminación conectable</td>
<td>TSXCANTDM4</td>
</tr>
<tr>
<td>Distribuidor doble, cable principal a 2 derivaciones con interfaz adicional de puesta en marcha, 3 x RJ45 (hembra), con resistencia de terminación conectable</td>
<td>VW3CANTAP2</td>
</tr>
<tr>
<td>Cable adaptador de CANopen D9-SUB a RJ45, 3 m (9,84 ft)</td>
<td>TCSCCN4F3M3T</td>
</tr>
</tbody>
</table>
Los cables con extremos de cable abiertos están indicados para la conexión de conectores D-Sub. Tenga en cuenta la sección del cable y la sección de conexión del conector necesario.

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable CANopen, 50 m (164 ft), [(2 x AWG 22) + (2 x AWG 24)], cable estándar LSZH (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1), ambos extremos de cable abiertos</td>
<td>TSXCANCA50</td>
</tr>
<tr>
<td>Cable CANopen, 100 m (328 ft), [(2 x AWG 22) + (2 x AWG 24)], cable estándar LSZH (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1), ambos extremos de cable abiertos</td>
<td>TSXCANCA100</td>
</tr>
<tr>
<td>Cable CANopen, 300 m (984 ft), [(2 x AWG 22) + (2 x AWG 24)], cable estándar LSZH (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1), ambos extremos de cable abiertos</td>
<td>TSXCANCA300</td>
</tr>
<tr>
<td>Cable CANopen, 50 m (164 ft), [(2 x AWG 22) + (2 x AWG 24)], antiinflamable, comprobado según IEC 60332-2, certificado UL, ambos extremos de cable abiertos</td>
<td>TSXCANCB50</td>
</tr>
<tr>
<td>Cable CANopen, 100 m (328 ft), [(2 x AWG 22) + (2 x AWG 24)], antiinflamable, comprobado según IEC 60332-2, certificado UL, ambos extremos de cable abiertos</td>
<td>TSXCANCB100</td>
</tr>
<tr>
<td>Cable CANopen, 300 m (984 ft), [(2 x AWG 22) + (2 x AWG 24)], antiinflamable, comprobado según IEC 60332-2, certificado UL, ambos extremos de cable abiertos</td>
<td>TSXCANCB300</td>
</tr>
<tr>
<td>Cable CANopen, 50 m (164 ft), [(2 x AWG 22) + (2 x AWG 24)], cable flexible estándar LSZH HD (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1), para instalación de gran rendimiento o flexible, resistente al aceite, ambos extremos de cable abiertos</td>
<td>TSXCANCD50</td>
</tr>
<tr>
<td>Cable CANopen, 100 m (328 ft), [(2 x AWG 22) + (2 x AWG 24)], cable flexible estándar LSZH HD (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1), para instalación de gran rendimiento o flexible, resistente al aceite, ambos extremos de cable abiertos</td>
<td>TSXCANCD100</td>
</tr>
<tr>
<td>Cable CANopen, 300 m (984 ft), [(2 x AWG 22) + (2 x AWG 24)], cable flexible estándar LSZH HD (generación reducida de humo, sin halógenos, antiinflamable, comprobado según IEC 60332-1), para instalación de gran rendimiento o flexible, resistente al aceite, ambos extremos de cable abiertos</td>
<td>TSXCANCD300</td>
</tr>
</tbody>
</table>
Cable adaptador para señal de encoder LXM05/LXM15 a LXM32

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable adaptador de encoder Molex de 12 polos (LXM05) a RJ45 de 10 polos (LXM32), 1 m (3,28 ft)</td>
<td>VW3M8111R10</td>
</tr>
<tr>
<td>Cable adaptador de encoder D15-SUB (LXM15) a RJ45 10 de polos (LXM32), 1 m (3,28 ft)</td>
<td>VW3M8112R10</td>
</tr>
</tbody>
</table>
Accesorios y piezas de repuesto

Cable del motor

Cable del motor de 1,0 mm²

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de motor 3 m (9,84 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) apantallado; conector redondo de 8 polos Y-TEC en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5100R30</td>
</tr>
<tr>
<td>Cable de motor 5 m (16,4 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) apantallado; conector redondo de 8 polos Y-TEC en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5100R50</td>
</tr>
<tr>
<td>Cable de motor 10 m (32,8 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) apantallado; conector redondo de 8 polos Y-TEC en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5100R100</td>
</tr>
<tr>
<td>Cable de motor 15 m (49,2 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) apantallado; conector redondo de 8 polos Y-TEC en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5100R150</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) apantallado; conector redondo de 8 polos Y-TEC en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5100R250</td>
</tr>
<tr>
<td>Cable de motor de 100 m (328 ft), (4 x 1,0 mm² + 2 x (2 x 0,75 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5300R1000</td>
</tr>
</tbody>
</table>

Cable del motor de 1,5 mm²

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de motor 1,5 m (4,92 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R15</td>
</tr>
<tr>
<td>Cable de motor 3 m (9,84 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R30</td>
</tr>
<tr>
<td>Cable de motor 5 m (16,4 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R50</td>
</tr>
<tr>
<td>Cable de motor 10 m (32,8 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R100</td>
</tr>
<tr>
<td>Cable de motor 15 m (49,2 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R150</td>
</tr>
<tr>
<td>Cable de motor 20 m (65,6 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R200</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R250</td>
</tr>
<tr>
<td>Cable de motor 50 m (164 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R500</td>
</tr>
<tr>
<td>Cable de motor 75 m (248 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5101R750</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5301R250</td>
</tr>
<tr>
<td>Cable de motor de 50 m (164 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5301R500</td>
</tr>
<tr>
<td>Cable de motor de 100 m (328 ft), (4 x 1,5 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5301R1000</td>
</tr>
</tbody>
</table>
Cable del motor de 2,5 mm²

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de motor 3 m (9,84 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R30</td>
</tr>
<tr>
<td>Cable de motor 5 m (16,4 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R50</td>
</tr>
<tr>
<td>Cable de motor 2,5 m (32,8 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R100</td>
</tr>
<tr>
<td>Cable de motor 15 m (49,2 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R150</td>
</tr>
<tr>
<td>Cable de motor 20 m (65,6 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R200</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R250</td>
</tr>
<tr>
<td>Cable de motor 50 m (164 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R500</td>
</tr>
<tr>
<td>Cable de motor 75 m (246 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M23 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5102R750</td>
</tr>
<tr>
<td>Cable de motor de 25 m (82 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5302R250</td>
</tr>
<tr>
<td>Cable de motor de 50 m (164 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5302R500</td>
</tr>
<tr>
<td>Cable de motor de 100 m (328 ft), (4 x 2,5 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5302R1000</td>
</tr>
</tbody>
</table>

Cable del motor de 4 mm²

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de motor 3 m (9,84 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R30</td>
</tr>
<tr>
<td>Cable de motor 5 m (16,4 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R50</td>
</tr>
<tr>
<td>Cable de motor 10 m (32,8 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R100</td>
</tr>
<tr>
<td>Cable de motor 15 m (49,2 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R150</td>
</tr>
<tr>
<td>Cable de motor 20 m (65,6 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R200</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R250</td>
</tr>
<tr>
<td>Cable de motor 50 m (164 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R500</td>
</tr>
<tr>
<td>Cable de motor 75 m (246 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5103R750</td>
</tr>
<tr>
<td>Cable de motor de 25 m (82 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5303R250</td>
</tr>
<tr>
<td>Cable de motor de 50 m (164 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5303R500</td>
</tr>
<tr>
<td>Cable de motor de 100 m (328 ft), (4 x 4 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5303R1000</td>
</tr>
</tbody>
</table>
Accesorios y piezas de repuesto

Cable del motor de 6 mm²

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de motor 3 m (9,84 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R30</td>
</tr>
<tr>
<td>Cable de motor 5 m (16,4 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R50</td>
</tr>
<tr>
<td>Cable de motor 6 m (32,8 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R100</td>
</tr>
<tr>
<td>Cable de motor 15 m (49,2 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R150</td>
</tr>
<tr>
<td>Cable de motor 20 m (65,6 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R200</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R250</td>
</tr>
<tr>
<td>Cable de motor 50 m (164 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R500</td>
</tr>
<tr>
<td>Cable de motor 75 m (246 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5105R750</td>
</tr>
<tr>
<td>Cable de motor 100 m (328 ft), (4 x 6 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5305R1000</td>
</tr>
</tbody>
</table>

Cable del motor de 10 mm²

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de motor 3 m (9,84 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R30</td>
</tr>
<tr>
<td>Cable de motor 5 m (16,4 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R50</td>
</tr>
<tr>
<td>Cable de motor 10 m (32,8 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R100</td>
</tr>
<tr>
<td>Cable de motor 15 m (49,2 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R150</td>
</tr>
<tr>
<td>Cable de motor 20 m (65,6 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R200</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R250</td>
</tr>
<tr>
<td>Cable de motor 50 m (164 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R500</td>
</tr>
<tr>
<td>Cable de motor 75 m (246 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; conector redondo de 8 polos M40 en el lado del motor, el otro extremo del cable abierto</td>
<td>VW3M5104R750</td>
</tr>
<tr>
<td>Cable de motor 25 m (82 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5304R250</td>
</tr>
<tr>
<td>Cable de motor 50 m (164 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5304R500</td>
</tr>
<tr>
<td>Cable de motor 100 m (328 ft), (4 x 10 mm² + (2 x 1 mm²)) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M5304R1000</td>
</tr>
</tbody>
</table>
Cables del encoder

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de encoder 3 m (9,84 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos Y-TEC en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8100R30</td>
</tr>
<tr>
<td>Cable de encoder 5 m (16,4 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos Y-TEC en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8100R50</td>
</tr>
<tr>
<td>Cable de encoder 10 m (32,8 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos Y-TEC en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8100R100</td>
</tr>
<tr>
<td>Cable de encoder 15 m (49,2 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos Y-TEC en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8100R150</td>
</tr>
<tr>
<td>Cable de encoder 25 m (82 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos Y-TEC en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8100R250</td>
</tr>
<tr>
<td>Cable de encoder 1,5 m (4,92 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R15</td>
</tr>
<tr>
<td>Cable de encoder 3 m (9,84 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R30</td>
</tr>
<tr>
<td>Cable de encoder 5 m (16,4 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R50</td>
</tr>
<tr>
<td>Cable de encoder 10 m (32,8 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R100</td>
</tr>
<tr>
<td>Cable de encoder 15 m (49,2 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R150</td>
</tr>
<tr>
<td>Cable de encoder 20 m (65,6 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R200</td>
</tr>
<tr>
<td>Cable de encoder 25 m (82 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R250</td>
</tr>
<tr>
<td>Cable de encoder 50 m (164 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R500</td>
</tr>
<tr>
<td>Cable de encoder 75 m (246 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; conector redondo de 12 polos M23 en el lado del motor, conector de 10 polos RJ45 en el lado del equipo</td>
<td>VW3M8102R750</td>
</tr>
<tr>
<td>Cable de encoder de 25 m (82 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M8222R250</td>
</tr>
<tr>
<td>Cable de encoder de 50 m (164 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M8222R500</td>
</tr>
<tr>
<td>Cable de encoder de 100 m (328 ft), (3 x 2 x 0,14 mm² + 2 x 0,34 mm²) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M8222R1000</td>
</tr>
<tr>
<td>Conector D9-SUB (macho), para módulo de encoder resolver</td>
<td>AEOCON011</td>
</tr>
<tr>
<td>Cable de encoder de 100 m (328 ft), (5 x 2 x 0,25 mm² + 2 x 0,5 mm²) apantallado; ambos extremos del cable abiertos</td>
<td>VW3M8221R1000</td>
</tr>
<tr>
<td>Cable de encoder de 1 m (3,28 ft), apantallado; HD15 D-SUB (macho); el otro extremo de cable abierto</td>
<td>VW3M4701</td>
</tr>
</tbody>
</table>
Conector

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conector para cable de motor, en el lado del motor Y-TEC, 1 mm², 5 unidades</td>
<td>VW3M8219</td>
</tr>
<tr>
<td>Conector para cable de motor, en el lado del motor M23, 1,5 ... 2,5 mm², 5 unidades</td>
<td>VW3M8215</td>
</tr>
<tr>
<td>Conector para cable de motor, en el lado del motor M40, 4 mm², 5 unidades</td>
<td>VW3M8217</td>
</tr>
<tr>
<td>Conector para cable de motor, en el lado del motor M40, 6...10 mm², 5 unidades</td>
<td>VW3M8218</td>
</tr>
<tr>
<td>Conector para cable de encoder, en el lado del motor Y-TEC, 5 unidades</td>
<td>VW3M8220</td>
</tr>
<tr>
<td>Conector para cable de encoder, en el lado del motor M23, 5 unidades</td>
<td>VW3M8214</td>
</tr>
<tr>
<td>Conector para cable de encoder, en el lado del variador RJ45 (10 polos), 5 unidades</td>
<td>VW3M2208</td>
</tr>
</tbody>
</table>

Las herramientas necesarias para la elaboración se pueden solicitar directamente al fabricante.

- Tenazas de engarzado para conector de potencia Y-TEC:
 - Intercontec C0.201.00 o C0.235.00
 - www.intercontec.com
- Tenazas de engarzado para conector de potencia M23/M40:
 - Coninvers SF-Z0025, SF-Z0026
 - www.coninvers.com
- Tenazas de engarzado para conector de encoder Y-TEC:
 - Intercontec C0.201.00 o C0.235.00
 - www.intercontec.com
- Tenazas de engarzado para conector de encoder M23:
 - Coninvers RC-Z2514
 - www.coninvers.com
- Tenazas de engarzado para conector de encoder RJ45 de 10 polos:
 - Yamaichi Y-ConTool-11, Y-ConTool-20, Y-ConTool-30
 - www.yamaichi.com
Resistencias de frenado externas

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia de frenado IP65; 10 Ω; potencia continua máxima 400 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7601R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 10 Ω; potencia continua máxima 400 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7601R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 10 Ω; potencia continua máxima 400 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7601R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 100 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7602R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 100 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7602R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 100 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7602R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 200 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7603R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 200 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7603R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 200 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7603R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 400 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7604R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 400 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7604R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 27 Ω; potencia continua máxima 400 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7604R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 100 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7605R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 100 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7605R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 100 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7605R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 200 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7606R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 200 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7606R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 200 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7606R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 400 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7607R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 400 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7607R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 72 Ω; potencia continua máxima 400 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14)</td>
<td>VW3A7607R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 100 Ω; potencia continua máxima 100 W; cable de conexión de 0,75 m (2,46 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7608R07</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 100 Ω; potencia continua máxima 100 W; cable de conexión de 2 m (6,56 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7608R20</td>
</tr>
<tr>
<td>Resistencia de frenado IP65; 100 Ω; potencia continua máxima 100 W; cable de conexión de 3 m (9,84 ft), 2,1 mm² (AWG 14), UL</td>
<td>VW3A7608R30</td>
</tr>
<tr>
<td>Resistencia de frenado IP20; 15 Ω; potencia continua máxima 1000 W; bornes M6, UL</td>
<td>VW3A7704</td>
</tr>
<tr>
<td>Resistencia de frenado IP20; 10 Ω; potencia continua máxima 1000 W; bornes M6, UL</td>
<td>VW3A7705</td>
</tr>
</tbody>
</table>
Accesorios y piezas de repuesto

Accesorios bus DC

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de conexión para bus DC, 0,1 m (0,33 ft), 2 * 6 mm² (2 * AWG 10), preconfeccionado, 5 unidades</td>
<td>VW3M7101R01</td>
</tr>
<tr>
<td>Cable de conexión para bus DC, 15 m (49,2 ft), 2 * 6 mm² (2 * AWG 10), par trenzado, apantallado</td>
<td>VW3M7102R150</td>
</tr>
<tr>
<td>Juego de conectores bus DC, cajas conector y contactos crimpados para 3 … 6 mm² (AWG 12 … 10), 10 unidades</td>
<td>VW3M2207</td>
</tr>
</tbody>
</table>

Para los contactos de engarzado del juego de conectores se necesitan una crimpadora. Fabricante: Tyco Electronics, Heavy Head Hand Tool, Tool Pt. No 180250
Inductancias de red

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductancia de red monofásica; 50-60 Hz; 7 A; 5 mH; IP00</td>
<td>VZ1L007UM50</td>
</tr>
<tr>
<td>Inductancia de red monofásica; 50-60 Hz; 18 A; 2 mH; IP00</td>
<td>VZ1L018UM20</td>
</tr>
<tr>
<td>Inductancia de red trifásica; 50-60 Hz; 16 A; 2 mH; IP00</td>
<td>VW3A4553</td>
</tr>
<tr>
<td>Inductancia de red trifásica; 50-30 Hz; 60 A; 1 mH; IP00</td>
<td>VW3A4554</td>
</tr>
</tbody>
</table>
Filtro externo de red

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro de red monofásico; 9 A; 115/230 Vca</td>
<td>VW3A4420</td>
</tr>
<tr>
<td>Filtro de red monofásico; 16 A; 115/230 Vca</td>
<td>VW3A4421</td>
</tr>
<tr>
<td>Filtro de red trifásico; 15 A; 208/400/480 Vca</td>
<td>VW3A4422</td>
</tr>
<tr>
<td>Filtro de red trifásico; 25 A; 208/400/480 Vca</td>
<td>VW3A4423</td>
</tr>
</tbody>
</table>
Piezas de repuesto: conectores, ventiladores, cubiertas

<table>
<thead>
<tr>
<th>Designación</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juego de conectores LXM32A: 3 alimentaciones de la etapa de potencia CA (230/400 Vca), 1 alimentación del control, 2 entradas/salidas digitales (4 conectores), 2 motores (10 A / 24 A), 1 freno de parada</td>
<td>VW3M2202</td>
</tr>
<tr>
<td>Juego de ventilador de 40 x 40 mm (1,57 x 1,57 in), carcasa de plástico, con cable de conexión</td>
<td>VW3M2401</td>
</tr>
<tr>
<td>Juego de ventilador de 60 x 60 mm (2,36 x 2,36 in), carcasa de plástico, con cable de conexión</td>
<td>VW3M2402</td>
</tr>
<tr>
<td>Juego de ventilador de 80 x 80 mm (3,15 x 3,15 in), carcasa de plástico, con cable de conexión</td>
<td>VW3M2403</td>
</tr>
</tbody>
</table>
Capítulo 13
Servicio, mantenimiento y reciclaje

Contenido de este capítulo
Este capítulo contiene los siguientes apartados:

<table>
<thead>
<tr>
<th>Apartado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direcciones de servicio</td>
<td>518</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>519</td>
</tr>
<tr>
<td>Sustitución del producto</td>
<td>520</td>
</tr>
<tr>
<td>Sustitución del motor</td>
<td>521</td>
</tr>
<tr>
<td>Envío, almacenamiento y eliminación</td>
<td>522</td>
</tr>
</tbody>
</table>
Direcciones de servicio

Schneider Electric Automation GmbH

Schneiderplatz 1
97828 Marktheidenfeld, Alemania
Teléfono: +49 (0) 9391 / 606 - 0
Fax: +49 (0) 9391 / 606 - 4000
Correo electrónico: info-marktheidenfeld@schneider-electric.com
Internet: http://www.schneider-electric.com

Servicio Machine Solutions

Schneiderplatz 1
97828 Marktheidenfeld, Alemania
Teléfono: +49 (0) 9391 / 606 - 3265
Fax: +49 (0) 9391 / 606 - 3340
Correo electrónico: automation.support.de@schneider-electric.com
Internet: http://www.schneider-electric.com

Otras direcciones de contacto

Encontrará otras direcciones de contacto en nuestro sitio web:
http://www.schneider-electric.com
Mantenimiento

Plan de mantenimiento

Compruebe el producto con regularidad para descartar suciedad o daños.

Las reparaciones deben llevarse a cabo exclusivamente por el fabricante. En caso de modificaciones hechas por uno mismo se extinguirá cualquier tipo de garantía y de responsabilidad.

Observe la información sobre la medidas de precaución y los procedimientos de los capítulos de instalación y puesta en marcha antes llevar a cabo trabajos con el sistema de accionamiento.

Registre los siguientes puntos en el plan de mantenimiento de su máquina.

Conexiones y fijaciones

- Inspeccione regularmente todos los cables de conexión y conexiones para descartar daños. Sustituya de inmediato cualquier cable dañado.
- Compruebe que todos los elementos de salida estén firmemente asentados.
- Reapriete todas las atornilladuras mecánicas y eléctricas con el par prescrito.

Vida útil de la función de seguridad STO

La vida útil de la función de seguridad STO está limitada a 20 años. Una vez transcurrido este tiempo, los datos de las funciones de seguridad dejarán de ser válidos. La fecha de caducidad debe calcularse mediante el valor DOM, indicado en la placa de características del producto, + 20 años.

- Registre este valor en el plan de mantenimiento de la instalación.
 No utilice la función de seguridad una vez vencida esta fecha.

Ejemplo:

En la placa de características del producto está indicado el valor DOM en el formato DD.MM.AA, por ejemplo 31.12.16. (31 de diciembre de 2016). En este caso, la función de seguridad no deberá utilizarse tras el 31 de diciembre de 2036.
Sustitución del producto

Los valores de parámetro inadecuados o los datos inadecuados pueden provocar movimientos involuntarios, activar señales, dañar piezas y desactivar funciones de monitorización. Algunos valores de parámetro o datos no se activan hasta no haber reiniciado el equipo.

<table>
<thead>
<tr>
<th>ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPORTAMIENTO NO INTENCIONADO</td>
</tr>
<tr>
<td>● Arranque el sistema solo cuando no haya personas ni obstáculos en la zona de funcionamiento.</td>
</tr>
<tr>
<td>● No utilice el sistema de accionamiento con valores de parámetro o datos desconocidos.</td>
</tr>
<tr>
<td>● Modifique solo los valores de aquellos parámetros que conozca.</td>
</tr>
<tr>
<td>● Después de efectuar modificaciones, reinicie el equipo y compruebe los datos de servicio y/o los valores de parámetro guardados tras el cambio.</td>
</tr>
<tr>
<td>● En la puesta en marcha y al efectuar actualizaciones u otros cambios en el variador, realice un test meticuloso de todos los estados de funcionamiento y casos de error.</td>
</tr>
<tr>
<td>● Compruebe las funciones después de sustituir el producto y también después de realizar modificaciones en los valores de parámetro y/o en los datos de servicio.</td>
</tr>
<tr>
<td>El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.</td>
</tr>
</tbody>
</table>

Procedimiento al cambiar los equipos.

● Guarde todos los ajustes de parámetros. Utilice para ello una tarjeta de memoria o guarde los datos con ayuda del software de puesta en marcha en su PC, véase el capítulo Gestión de parámetros (véase página 179).

● Desconecte todas las tensiones de alimentación. Asegúrese de que no existe ninguna tensión más (indicaciones de seguridad).

● Identifique todas las conexiones y retire todos los cables de conexión (soltando el enclavamiento de los conectores).

● Desmonte el producto.

● Anote el número de identificación y el número de serie de la placa de características del producto para una identificación posterior.

● Instale el nuevo producto conforme al capítulo Instalación (véase página 89).

● Si el producto que se va a instalar ya ha funcionado en cualquier otro lugar, antes de la puesta en marcha deberán restablecerse los ajustes de fábrica.

● Realice la puesta en marcha conforme al capítulo Puesta en marcha (véase página 119).
Sustitución del motor

Los sistemas de accionamiento pueden desencadenar movimientos indeseados debido al uso de combinaciones no permitidas de variador y motor. Aunque los conectores para la conexión del motor y para la conexión del encoder sean mecánicamente compatibles, esto no significa que el motor pueda utilizarse.

ADVERTENCIA

MOVIMIENTO INVOLUNTARIO
Utilice únicamente combinaciones autorizadas de variador y motor.
El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

- Desconecte todas las tensiones de alimentación. Asegúrese de que no existe ninguna tensión más (indicaciones de seguridad).
- Identifique todas las conexiones y desmonte el producto.
- Anote el número de identificación y el número de serie de la placa de características del producto para una identificación posterior.
- Instale el nuevo producto conforme al capítulo Instalación (véase página 89).

Cuando el motor conectado es sustituido por otro motor, el registro de datos se lee de nuevo. Si el equipo reconoce otro tipo de motor, los parámetros del lazo de control se calculan de nuevo, y en la HMI se muestra **M O T**. Consulte más información al respecto en el capítulo Confirmar la sustitución del motor (véase página 365).

En caso de sustitución también deben ajustarse de nuevo los parámetros del encoder, véase el capítulo Ajustar los parámetros para el encoder (véase página 157).

Modificar el tipo de motor sólo provisionalmente

Si sólo quiere usar transitoriamente el nuevo tipo de motor en este equipo, pulse la tecla ESC en la HMI. Los nuevos parámetros del lazo de control calculados no se memorizan en el EEPROM. De este modo se puede volver a poner en marcha el motor original con los parámetros del lazo de control almacenados hasta el momento.

Modificar el tipo de motor de forma permanente

Pulse el botón de navegación en la HMI si desea utilizar el nuevo tipo de motor de forma permanente en este equipo.
Los nuevos parámetros del lazo de control calculados se memorizan en el EEPROM.
Véase también el capítulo Confirmar la sustitución del motor (véase página 365).
Envío, almacenamiento y eliminación

Envío

El producto sólo debe transportarse protegido contra golpes. En la medida de lo posible, utilice para el envío el embalaje original.

Almacenamiento

Almacene el producto exclusivamente en las condiciones ambientales indicadas y permitidas. Proteja el producto del polvo y de la suciedad.

Eliminación

El producto se compone de diferentes materiales que pueden ser reutilizados. Elimine el producto conforme a las normas locales.

En http://www.schneider-electric.com/green-premium encontrará información y documentación relativa a la protección del medio ambiente según ISO 14025, como:

- EoLi (Product End-of-Life Instructions)
- PEP (Product Environmental Profile)
Glosario

<table>
<thead>
<tr>
<th>Letra</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ajuste de fábrica
Ajustes al suministrar el producto.</td>
</tr>
<tr>
<td>B</td>
<td>Bus DC
Circuito de corriente que alimenta con energía (tensión continua) a la etapa de potencia.</td>
</tr>
<tr>
<td>C</td>
<td>Categoría de protección
El grado de protección es una definición normalizada para medios de servicio eléctricos con el fin de describir la protección contra la penetración de elementos extraños y de agua (ejemplo: IP20).</td>
</tr>
<tr>
<td></td>
<td>CCW
Counter Clockwise.</td>
</tr>
<tr>
<td></td>
<td>CEM
Compatibilidad electromagnética</td>
</tr>
<tr>
<td></td>
<td>Clase de error
Clasificación de errores en grupos. La división en diferentes clases de errores permite reacciones más directas enfocadas a los errores de una clase, por ejemplo según la gravedad de un error.</td>
</tr>
<tr>
<td></td>
<td>CW
Clockwise.</td>
</tr>
<tr>
<td>D</td>
<td>Dirección de movimiento
En el caso de motores rotatorios, la dirección de giro está definida según la norma IEC 61800-7-204: la dirección positiva se entiende cuando el eje del motor gira en el sentido de las agujas del reloj, mirando hacia la superficie frontal del eje del motor sin montar.</td>
</tr>
</tbody>
</table>
| | **DOM**
Date of manufacturing: En la placa de características del producto se indica la fecha de fabricación en el formato DD.MM.AA o en el formato DD.MM.AAAA. P. ej.:
31.12.11 correspondiente al 31 de diciembre de 2011
31.12.2011 correspondiente al 31 de diciembre de 2011 |
| **E** | **E/S**
Entradas/salidas |
| | **Electronic Gear**
Conversión de una velocidad de entrada que se lleva a cabo en el sistema de accionamiento con los valores de una relación de transmisión ajustable para obtener una nueva velocidad de salida para el movimiento del motor. |
| | **Encoder**
Sensor que transforma un recorrido o un ángulo en una señal eléctrica. El variador evalúa esta señal para determinar la posición real de un eje (rotor) o de una unidad de accionamiento. |
| | **Error**
Discrepancia entre un valor o un estado conocido (calculado, medido o transferido por una señal) y el valor o estado correcto previsto o teórico. |
Glosario

Etapa de potencia
El motor se activa a través de la etapa de potencia. De acuerdo con las señales de movimiento del control, la etapa de potencia genera corrientes para activar el motor.

Factor de escala
Este factor indica la relación entre una unidad interna y la unidad de usuario.

Fault
Fault es un estado de funcionamiento. Si se detecta un error por medio de las funciones de monitorización, según la clase de error se activa una transición de estado a este estado de funcionamiento. Es necesario un "Fault Reset" o bien desconectar y volver a conectar para abandonar este estado de funcionamiento. Antes debe solucionarse la causa del error detectado. Encontrará más información en las normas correspondientes, por ejemplo IEC 61800-7, ODVA Common Industrial Protocol (CIP).

Fault Reset
Una función con la que se pueda, por ejemplo, finalizar el estado de funcionamiento Fault. Antes de utilizar la función debe solucionarse la causa del problema.

Finales de carrera
Interruptores que señalan el abandono del área de desplazamiento admisible.

Función de monitorización
Las funciones de monitorización calculan de forma continua o cíclica un valor (por ejemplo, mediante una medición) para comprobar si el valor se encuentra dentro de los límites permitidos. Las funciones de monitorización se utilizan para la detección de errores. Estas funciones de monitorización no son funciones de seguridad.

Función de seguridad
Las funciones de seguridad se definen en la norma IEC 61800-5-2 (por ejemplo, Safe Torque Off (STO), Safe Operating Stop (SOS) o Safe Stop 1 (SS1)). En caso de cableado correcto, las funciones de seguridad cumplen los requisitos estipulados en la IEC 61800-5-2.

ID
Interruptor diferencial (RCD Residual current device).

INC
Incrementos

MBTP
Protective Extra Low Voltage (inglés), pequeña tensión funcional con separación de protección. Más información: IEC 60364-4-41.

N
Gestión de red (NMT), parte del perfil de comunicación CANopen; tareas: inicializar la red y los equipos, arrancar, parar y supervisar las estaciones

Node Guarding
(inglés, supervisión de nodo), supervisión de la conexión con el esclavo en una interfaz para vigilar el tráfico de datos cíclico.

Parámetros
Datos y valores del equipo que el usuario puede leer y ajustar parcialmente.

Persistente
Identificador de un valor del parámetro que permanece guardado en la memoria tras desconectar el equipo.
<table>
<thead>
<tr>
<th>Pulso índice</th>
<th>Señal de un encoder para referenciar la posición del rotor en el motor. El encoder suministra un pulso índice por revolución.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quick Stop</td>
<td>La función puede aplicarse en caso de detectarse un error o, por medio de un comando, para decelerar rápidamente un movimiento.</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>rms</td>
<td>Valor eficaz de una tensión (V_{rms}) o de una corriente (A_{rms}); abreviatura de "Root Mean Square".</td>
</tr>
<tr>
<td>RS485</td>
<td>Interfaz del bus de campo EIA-485 que permite la transmisión serial de datos con varias estaciones.</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Señales de pulso/dirección</td>
<td>Señales digitales con frecuencia de pulso variable que emiten los cambios de posición y de dirección del movimiento a través de cables de señales separadas.</td>
</tr>
<tr>
<td>Sistema de accionamiento</td>
<td>Sistema compuesto por control, variador y motor.</td>
</tr>
<tr>
<td>Supervisión I2t</td>
<td>Supervisión previsora de la temperatura. A partir de la corriente del motor se calcula anticipadamente el calentamiento que se espera en los componentes del equipo. Si se rebasan los valores límite, el accionamiento reduce la corriente del motor.</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unidad de usuario</td>
<td>Unidad cuya relación con el movimiento del motor puede ser determinada por el usuario mediante parámetros.</td>
</tr>
<tr>
<td>Unidades internas</td>
<td>Resolución de la etapa de potencia con la cual se puede posicionar el motor. Las unidades internas se indican siempre en incrementos.</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Valor actual</td>
<td>En la técnica de regulación, el valor actual es el valor de la magnitud de regulación en un momento dado (por ejemplo, velocidad actual, par actual, posición actual). El valor actual es una magnitud de entrada (valor de medición) que utiliza el controlador para alcanzar el valor de referencia deseado.</td>
</tr>
</tbody>
</table>
Índice

A
Ajustar los valores límite, 143
Alimentación del control de 24 V, 39
almacenamiento, 522
Antes de comenzar
 Información de seguridad, 9

C
Canales de acceso, 188
Certificaciones, 49
Clase de error, 240
Clase de error de los mensajes de error, 380
Codificación de los modelos, 23
Componentes e interfaces, 21
Conductores de conexión equipotencial, 59
Conexión del equipo, 141
Cualificación del personal, 9

D
direcciones de servicio, 518

E
eliminación, 522, 522
Emisión, 45
envío, 522
especificaciones de los cables, 62
Estados de funcionamiento, 238

F
Factor de escala, 205
Frecuencia PWM de la etapa de potencia, 30

G
Grado de suciedad y grado de protección, 27

I
Importación automática del registro de datos del motor, 141

L
lugar de instalación y conexión, 26

M
Memoria de errores, 376
Mensajes de error, 379
Motores permitidos, 30

P
parámetro _AccessInfo, 413
parámetro _actionStatus, 347, 413
parámetro _AT_J, 166, 413
parámetro _AT_M_friction, 166, 413
parámetro _AT_M_load, 166, 414
parámetro _AT_progress, 165, 414
parámetro _AT_state, 165, 414
parámetro _CanDiag, 414
parámetro _Cap1CntFall, 310, 414
parámetro _Cap1CntRise, 310, 414
parámetro _Cap1Count, 414
parámetro _Cap1CountCons, 307, 415
parámetro _Cap1CntRise, 310, 414
parámetro _Cap1Pos, 415
parámetro _Cap2CntFall, 311, 414
parámetro _Cap2CntRise, 310, 416
parámetro _Cap2Count, 416
parámetro _Cap2CountCons, 307, 416
parámetro _Cap2Pos, 416
parámetro _Cap2PosCons, 307, 416
parámetro _Cap2PosFallEdge, 311, 417
parámetro _Cap2PosRiseEdge, 310, 417
parámetro _CapEventCounters, 311, 417
parámetro _CapStatus, 306, 417
parámetro _Cond_State4, 417
parámetro _CTRL_A饵ParSet, 170, 226, 418
parámetro _CTRL_KPid, 418
parámetro _CTRL_KPiq, 418
parámetro _CTRL_TNid, 418
parámetro _CTRL_TNiq, 418
parámetro _DataError, 418
parámetro _DataErrorInfo, 419
parámetro _DCOMopmd_act, 419
parámetro _DCOMstatus, 348, 372, 419
parámetro _DEV_T_current, 419
parámetro _DPL_BitShiftRefA16, 420
parámetro _DPL_drvInput, 420
parámetro _DPL_driveStat, 420
parámetro _DPL_mfStat, 420
parámetro _DPL_motionStat, 348, 420
parámetro _ENC_AmplMax, 420
parámetro _ENC_AmplMean, 420
parámetro _ENC_AmplMin, 420
parámetro _ENC_AmplVal, 420
parámetro _ERR_class, 376, 421
parámetro _ERR_DCbus, 377, 421
parámetro _ERR_enable_cycle, 377, 421
parámetro _ERR_enable_time, 378, 421
parámetro _ERR_motor_I, 377, 421
parámetro _ERR_motor_v, 377, 421
parámetro _ErrNumFbParSvc, 422
parámetro _HMdisREFtoIDX, 284, 422
parámetro _HMdisREFtoIDX_usr, 284, 422
parámetro _hwVersCPU, 422
parâmetro _hwVersPS, 422
parâmetro _I_act, 422
parâmetro _I_act_rms, 422
parâmetro _I_act_ref_rms, 422
parâmetro _I_max_act, 423
parâmetro _I_max_system, 423
parâmetro _InvalidParam, 423
parâmetro _IO_act, 147, 423
parâmetro _IO_DI_act, 147, 423
parâmetro _IO_DQ_act, 147, 423
parâmetro _IO_STO_act, 147, 423
parâmetro _Iq_act_rms, 424
parâmetro _Iq_ref_rms, 424
parâmetro _LastError, 375, 424
parâmetro _LastError_Qual, 424
parâmetro _LastWarning, 375, 424
parâmetro _M_BRK_T_apply, 424
parâmetro _M_BRK_T_release, 424
parâmetro _M_Enc_Cosine, 424
parâmetro _M_Enc_Sine, 424
parâmetro _M_Encoder, 425
parâmetro _M_HoldingBrake, 425
parâmetro _M_I_0, 425
parâmetro _M_I_max, 425
parâmetro _M_I_nom, 425
parâmetro _M_I2t, 425
parâmetro _M_Jrot, 425
parâmetro _M_kE, 425
parâmetro _M_L_d, 425
parâmetro _M_L_q, 425
parâmetro _M_load, 353, 426
parâmetro _M_M_0, 426
parâmetro _M_M_max, 426
parâmetro _M_M_nom, 426
parâmetro _M_maxoverload, 354, 426
parâmetro _M_n_max, 426
parâmetro _M_n_nom, 426
parâmetro _M_overload, 354, 426
parâmetro _M_Polepair, 426
parâmetro _M_PolePairPitch, 426
parâmetro _M_R_UV, 426
parâmetro _M_T_current, 352, 426
parâmetro _M_T_max, 352, 426
parâmetro _M_Type, 427
parâmetro _M_U_max, 427
parâmetro _M_U_nom, 427
parâmetro _ManuSdoAbort, 427
parâmetro _ModeError, 427
parâmetro _ModeErrorInfo, 427
parâmetro _n_act, 427
parâmetro _n_act_ENC1, 427
parâmetro _n_ref, 427
parâmetro _OpHours, 427
parâmetro _p_absENC, 157, 428
parâmetro _p_absmodulo, 428
parâmetro _p_act, 276, 428
parâmetro _p_act_ENC1, 428
parâmetro _p_act_ENC1_int, 428
parâmetro _p_act_int, 428
parâmetro _p_dif, 428
parâmetro _p_dif_load, 323, 428
parâmetro _p_dif_load_peak, 324, 429
parâmetro _p_dif_load_peak_usr, 324, 429
parâmetro _p_dif_load_usr, 323, 429
parâmetro _p_dif_usr, 429
parâmetro _p_ref, 429
parâmetro _p_ref_int, 429
parâmetro _PAR_ScalingError, 430
parâmetro _PAR_ScalingState, 430
parâmetro _PosRegStatus, 333, 430
parâmetro _Power_act, 430
parâmetro _Power_mean, 430
parâmetro _pref_acc, 430
parâmetro _pref_v, 431
parâmetro _prgNoDEV, 431
parâmetro _prgRevDEV, 431
parâmetro _prgVerDEV, 431
parâmetro _PS_I_max, 431
parâmetro _PS_I_nom, 431
parâmetro _PS_load, 353, 431
parâmetro _PS_maxoverload, 354, 431
parâmetro _PS_overload, 354, 431
parâmetro _PS_overload_dic, 431
parâmetro _PS_overload_dic2, 431
parâmetro _PS_overload_psq, 431
parâmetro _PS_T_max, 352, 432
parâmetro _PS_T_warm, 352, 432
parâmetro _PS_U_maxDC, 432
parâmetro _PS_U_minDC, 432
parâmetro _PS_U_minStopDC, 432
parâmetro _PT_max_val, 432
parâmetro _RAMP_p_act, 432
parâmetro _RAMP_p_target, 432
parâmetro _RAMP_v_act, 432
parâmetro _RES_load, 353, 432
parâmetro _RES_maxoverload, 354, 432
parâmetro _RES_overload, 354, 433
parâmetro _RESint_P, 433
parâmetro _RESint_R, 433
parâmetro _RMAC_DetailStatus, 313, 433
parâmetro _RMAC_Status, 313, 433
parâmetro _ScalePOSmax, 433
parâmetro _ScaleRAMPmax, 433
parâmetro _ScaleVELmax, 433
parâmetro _SigActive, 433
parâmetro _SigLatched, 374, 434
parâmetro _SuppDriveModes, 434
parâmetro _TouchProbeStat, 309, 435
parâmetro _tq_act, 435
parâmetro _Ud_ref, 435
parâmetro _UDC_act, 435
parâmetro _Udq_ref, 435
parâmetro _Uq_ref, 435
parâmetro _v_act, 435
parâmetro _v_act_ENC1, 435
parâmetro _v_dif_usr, 326, 435
parâmetro _v_ref, 435
índice

parámetro AT_start, 164, 438
parámetro AT_v_ref, 439
parámetro AT_wait, 167, 439
parámetro BLSH_Mode, 317, 439
parámetro BLSH_Position, 316, 439
parámetro BLSH_Time, 317, 439
parámetro BRK_AddT_apply, 151, 440
parámetro BRK_AddT_release, 151, 440
parámetro BRK_release, 154, 440
parámetro CANaddress, 141, 440
parámetro CANbaud, 141, 440
parámetro CANpdo1Event, 441
parámetro CANpdo2Event, 441
parámetro CANpdo3Event, 441
parámetro CANpdo4Event, 441
parámetro Cap1Activate, 306, 441
parámetro Cap1Config, 305, 441
parámetro Cap1Source, 442
parámetro Cap2Activate, 306, 442
parámetro Cap2Config, 305, 442
parámetro Cap2Source, 442
parámetro Cap1Source, 442
parámetro Cap2Source, 442
parámetro CLSET_p_DiffWin, 229, 442
parámetro CLSET_p_DiffWin_usr, 228, 443
parámetro CLSET_ParSwiCond, 228, 443
parámetro CLSET_v_Threshol, 229, 444
parámetro CLSET_winTime, 229, 444
parámetro CTRL_GlobGain, 166, 444
parámetro CTRL_I_max, 143, 445
parámetro CTRL_I_max_fw, 445
parámetro CTRL_KFAcc, 445
parámetro CTRL_ParChgTime, 170, 229, 446
parámetro CTRL_PwrUpParSet, 226, 446
parámetro CTRL_SmoothCurr, 447
parámetro CTRL_SpdFric, 447
parámetro CTRL_TAUnact, 447
parámetro CTRL_v_max, 145, 447
parámetro CTRL_VelObsActiv, 447
parámetro CTRL_VelObsDyn, 448
parámetro CTRL_VelObsInert, 448
parámetro CTRL_vPIDDPart, 448
parámetro CTRL_vPIDDTime, 448
parámetro CTRL1_KFPp, 233, 448
parámetro CTRL1_Kfric, 233, 448
parámetro CTRL1_KPn, 172, 232, 448
parámetro CTRL1_KPp, 177, 232, 449
parámetro CTRL1_Nf1bandw, 233, 449
parámetro CTRL1_Nf1damp, 233, 449
parámetro CTRL1_Nf1freq, 233, 449
parámetro CTRL1_Nf2bandw, 233, 449
parámetro CTRL1_Nf2damp, 233, 449
parámetro CTRL1_Nf2freq, 233, 449
parámetro CTRL1_Osupdamp, 233, 449
parámetro CTRL1_Osudpdelay, 233, 449
parámetro CTRL1_TAUref, 232, 449
parámetro CTRL1_TAUnref, 173, 232, 450
parámetro CTRL1_TNn, 172, 175, 232, 450
parámetro CTRL2_KFPo, 235, 450
parámetro CTRL2_Kfric, 235, 450
parámetro CTRL2_KPn, 172, 234, 450
parámetro CTRL2_KPp, 177, 234, 450
parámetro CTRL2_Nf1bandw, 235, 451
parámetro CTRL2_Nf1damp, 235, 451
parámetro CTRL2_Nf1freq, 235, 451
parámetro CTRL2_Nf2bandw, 235, 451
parámetro CTRL2_Nf2damp, 235, 451
parámetro CTRL2_Nf2freq, 235, 451
parámetro CTRL2_Nf3damp, 235, 451
parámetro CTRL2_Nf3freq, 235, 451
parámetro CTRL2_Nf4damp, 235, 451
parámetro CTRL2_Nf4freq, 235, 451
parámetro CTRL2_TNn, 172, 175, 234, 452
parámetro DCbus_comapt, 452
parámetro DCOMcontrol, 452
parámetro DCOMopmode, 453
parámetro DPL_dimControl, 454
parámetro DPL_intLim, 349, 454
parámetro DPL_RefA16, 455
parámetro DPL_RefB32, 455
parámetro DPL_RemComp, 455
parámetro DS402compatib, 455
parámetro DSM_ShutDownOption, 242, 456
parámetro ENC1_adj, 158, 456
parámetro ERR_clear, 378, 456
parámetro ERR_reset, 378, 456
parámetro ErrorResp_bit_DE, 457
parámetro ErrorResp_bit_ME, 457
parámetro ErrorResp_Flt_AC, 356, 457
parámetro ErrorResp_I2tRES, 457
parámetro ErrorResp_p diffic, 325, 458
parámetro ErrorResp_Abs, 458
parámetro ErrorResp_v diffic, 327, 458
parámetro HMdis, 282, 458
parámetro HMDispPara, 458
parámetro HMIdlelocked, 189, 459
parámetro HMmethod, 281, 459
parámetro HMoutdis, 283, 460
parámetro HMp_home, 282, 460
parámetro HMp_setP, 289, 460
parámetro HMprefmethod, 281, 460
parámetro HMv, 284, 460
parámetro HMv_out, 284, 460
parámetro InvertDirOfMove, 156, 461
parámetro IO_AutoEnable, 461
parámetro IO_AutoEnaConfig, 461
parámetro IO_DQ_set, 303, 461
parámetro IO_FaultResOnEnaInp, 247, 462
parámetro IO_limit, 301, 462
parámetro IO_v_limit, 300, 462
parámetro Iofunct_DI0, 211, 463
parámetro Iofunct_DI1, 212, 464
parámetro Iofunct_DI2, 213, 465
parámetro Iofunct_DI3, 214, 466
parámetro Iofunct_DQ0, 217, 467
parámetro Iofunct_DQ1, 218, 468
parámetro IOsigCurrLim, 469
parámetro IOsigLIMN, 319, 469
parámetro IOsigLIMP, 319, 469
parámetro IOsigREF, 320, 469
parámetro IOsigRespOfPS, 469
parámetro IOsigVelLim, 469
parámetro IP_IntTimInd, 275, 470
parámetro IP_IntTimPerVal, 275, 470
<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Página 1</th>
<th>Página 2</th>
<th>Página 3</th>
<th>Página 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSReg1ValueB</td>
<td>338, 485</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg2ValueA</td>
<td>338, 486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg2Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg2Start</td>
<td>334, 486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg2ValueB</td>
<td>338, 486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg3Mode</td>
<td>337, 487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg3Source</td>
<td>487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg3Start</td>
<td>334, 487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg3ValueA</td>
<td>338, 487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg3ValueB</td>
<td>338, 487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg4Mode</td>
<td>337, 488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg4Source</td>
<td>488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg4Start</td>
<td>335, 488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg4ValueA</td>
<td>338, 488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSReg4ValueB</td>
<td>338, 488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSRegGroupStart</td>
<td>335, 489</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP_OpmChgType</td>
<td>249, 489</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPp_target</td>
<td>268, 490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPActivate</td>
<td>268, 490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVv_target</td>
<td>263, 490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_AccDisable</td>
<td>259, 490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_v_slope</td>
<td>259, 490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_v_acc</td>
<td>294, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_v_dec</td>
<td>294, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_v_speed</td>
<td>293, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_v_jerk</td>
<td>295, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_v_max</td>
<td>294, 492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV_v_sym</td>
<td>492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_tq_enable</td>
<td>259, 490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_tq_slope</td>
<td>259, 490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_acc</td>
<td>294, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_dec</td>
<td>294, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_enable</td>
<td>293, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_jerk</td>
<td>295, 491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_max</td>
<td>294, 492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP_sym</td>
<td>492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESint_ext</td>
<td>160, 493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESint_ext_1</td>
<td>161, 493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESint_ext_2</td>
<td>161, 493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_activate</td>
<td>269, 493</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC EDGE</td>
<td>314, 494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Response</td>
<td>315, 494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Status</td>
<td>315, 494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Config</td>
<td>316, 494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMAC_Velocity</td>
<td>314, 494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScalePOSdenom</td>
<td>206, 494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScalePOSnum</td>
<td>206, 495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleRAMP_denom</td>
<td>208, 495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleRAMP_num</td>
<td>208, 495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleVEL_denom</td>
<td>207, 495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleVEL_num</td>
<td>207, 495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ShiftEncWorkRang</td>
<td>159, 496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimAbsolutePos</td>
<td>496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyncMechStart</td>
<td>274, 497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyncMechStatus</td>
<td>274, 497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyncMechTo</td>
<td>274, 497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TouchProbeB</td>
<td>308, 497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UsrAppDataMem1</td>
<td>497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UsrAppDataMem2</td>
<td>497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Período de muestreo</td>
<td>222, 223, 224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placa de características</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R
Reacción de error, 240
Representación de parámetros, 410
Resistencia de frenado, 42, 74
Resistencia de frenado interna, 42
Resistencias de frenado externas (accesorios), 43
Restablecer el ajuste de fábrica, 185

S
Selección de la resistencia de frenado, 74
Sustitución del producto, 520

T
Transiciones de estado, 241

U
Unidades de usuario, 205
Uso conforme a los fines previstos, 10
usr_a, 205
usr_p, 205
usr_v, 205

V
Vista general del equipo, 20