SE Current Monitoring Series
H221-S6

SPECIFICATIONS

Sensor Power 30 mA (max.) @ 12-30 VDC
Amperage Range 0-100 A to 0-300 A (scalable)
Sensor Output 4-20 mA
Response Time 2 sec.
Insulation Class 300 VAC RMS,
 insulated conductors only
Frequency 50/60 Hz
Temperature Range -15° to 60°C (5° to 140°F)
Humidity Range 10-90% RH non-condensing
Accuracy ±2% FS from 10% to 100%
of selected range
Terminal Block Wire Size 0.2 to 2.1 mm²
 (24 to 14 AWG)
Terminal Block Torque 0.4 to 0.5 N-m
 (3.5 to 4.4 in-lb)
Agency Approvals CE:EN61010-1:2001
Installation Category Cat. III, pollution degree 2

For CE compliance, conductor shall be insulated according to IEC 61010-1:2010.

The Schneider Electric H221-S6 is a current transducer that monitors current (amperage) in
the conductor passing through it. The amperage range is field adjustable, with ranges of 0-100 A to
0-300 amperes possible. The device transforms the monitored current into a 4-20 mA DC output,
suitable for connection to building controllers or other appropriate data acquisition equipment. The
H221-S6 requires a 12-30 VDC external power supply to generate its output.

DIMENSIONS

For safe electrical work practices, see NFPA 70E in the USA, or applicable local codes.
This equipment must only be installed and serviced by qualified electrical personnel.
Read, understand and follow the instructions before installing this product.
Turn off all power supplying equipment before working on or inside the equipment.
Use a properly rated voltage sensing device to confirm power is off.
DO NOT DEPEND ON THIS PRODUCT FOR VOLTAGE INDICATION
Only install this product on insulated conductors.
Failure to follow these instructions will result in death or serious injury.
A qualified person is one who has skills and knowledge related to the construction and
operation of this electrical equipment and the installation, and has received safety
training to recognize and avoid the hazards involved.
NEC2011 Article 100
No responsibility is assumed by the manufacturer for any consequences arising out of
the use of this material.

NOTICE

• This product is not intended for life or safety applications.
• Do not install this product in hazardous or classified locations.
• The installer is responsible for conformance to all applicable codes.
• Mount this product inside a suitable fire and electrical enclosure.
INSTALLATION
Disconnected and lock out power to the enclosure containing the conductor to be monitored.
1. Determine cable routing for the controller connection, allowing the device to reach the monitored conductor.
2. Wire the output connections between the device, the power supply, and the controller (4-20 mA).
3. Snap the device over the conductor.
4. Secure the I-bar to the main body of the transducer with wire ties or other secure method.
5. Secure the enclosure and reconnect power.
6. Scale the transducer range, then scale the controller software to match the transducer's output (see Scaling section).

WIRING
Output is not polarity sensitive. Use a 12-30 VDC power supply to operate the transducer.

External Power

Sinking or Sourcing Panel

SCALING

Load Current

% of Set Span

Sensor Output

20mA

4mA

0 10 20 30 40 50 60 70 80 90 100%
CALIBRATION

1. Set Zero.
 Apply power to the sensor with no load on the conductor. Turn the zero setpoint screw until the controller reads 4 mA. The setpoint screw has no stops.

2. Calculate the maximum and target readings.
 A. Determine the maximum current to be measured.
 B. Find the actual current using an external measurement device.
 C. Calculate the target output:
 If \(A \) = the max. current, and \(B \) = the reading from the amp clamp, then:
 \[
 \text{target output} = 16 \text{ mA} \times \frac{B}{A} + 4 \text{ mA}
 \]
 e.g. target output = \(16 \text{ mA} \times \frac{250}{300} + 4 \text{ mA} = 17.33 \text{ mA} \)

3. Set span
 Turn the span setpoint screw until the controller reading equals the target output.

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
</tr>
</thead>
</table>
| No Reading at Controller | • Confirm that a 12-30 VDC power supply is in series with the sensor output terminals and the controller analog input terminals.
 | • Assure that sensor core mating surfaces are clean and that the core clamp is completely closed. |

PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Ordering Code</th>
<th>Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>324-0210-000</td>
<td>H221-S6</td>
<td>I-Xdcr,0-300AAC Adj.: 4-20mA</td>
</tr>
</tbody>
</table>