Utilizing a Digital Twin for Electrical Distribution to Drive Efficient Facilities

05/2024

Purpose of the Document

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

(ⓐ) (≡) (<) Life Is On

Target Audience

This document is intended to address End User Engineering, Operations and Maintenance, Consultants, EPCs (Engineering, Procurement, and Construction) and Service teams and other gualified personnel.

Objective

To understand the challenges of designing and operating a Semiconductor Fab with an efficient and sustainable electrical distribution strategy.

Table of Contents

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Life Is On

SECTION 1: Introduction to the Semiconductor Fab

Introduces the context and the challenges of a Semiconductor Fab.

SECTION 3: Digital Solutions and Services

Gives information about EcoStruxure Power capabilities for Semiconductor Fabs, sorted by value proposition:

- <u>Transverse Lifecycle Capabilities</u>
- <u>Capabilities to Improve Time To Market</u>
- <u>Capabilities to Increase Efficiency</u>
- <u>Capabilities to Improve Resiliency</u>
- <u>Capabilities to Grow Sustainability</u>

SECTION 2: How Schneider Electric Can Support the Semiconductor Fab Industry with EcoStruxure Power

Describes the solutions that EcoStruxure Power provides for Semiconductor Fabs, with typical electrical and digital architectures.

BIBLIOGRAPHY

Contains useful documents to find out more about capabilities. Provides details about Green Premium. Reference Guide

EcoStruxure[™] Power for Semiconductor Fabs

SECTION 1 – Introduction to the Semiconductor Fab Industry

Semiconductor Fab Industry

Semiconductor Fab Industry Challenges

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Life Is On

Schneider GElectric

SECTION 1

Introduction to the Semiconductor Fab Industry

WHY READ THIS SECTION?

The objective of this section is to:

- Introduce the growth, trends and challenges of the Semiconductor Fab industry
- Present the 4 pillars to meet the Semiconductor Fab challenges.

SECTION 1 – Introduction to the Semiconductor Fab Industry

Semiconductor Fab Industry

Semiconductor Fab Industry Challenges

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Schneider Belectric

Life Is On

Semiconductor Fab Market

An industry driven by the growth of new technology

Sources

Strong Robust Growth:

https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry

Hunt for Talent Intensifies: https://asia.nikkei.com/Business/Business-Spotlight/Chip-talent-war-Taiwan-faces-critical-staffing-shortage

Focus on Sustainability:

https://arstechnica.com/science/2022/04/can-semiconductor-makers-meet-surging-demands-sustainably/

Geopolitical Impacts:

https://www.voanews.com/a/race-for-semiconductors-influences-taiwan-conflict-/6696432.html

Acceleration of Digital Transformation:

https://quixy.com/blog/top-digital-transformation-statistics-trendsforecasts/#:~:text=According%20to%20Markets%20and%20Markets,by%205.1%25%20according%20to%20Gartner.

Chip Shortages Continue:

https://www.mynewsdesk.com/rolandberger/pressreleases/global-semiconductor-shortage-to-persist-for-several-years-beyond-2022-3151267

SECTION 1 – Introduction to the Semiconductor Fab Industry

Semiconductor Fab Industry Challenges

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Life Is On

Semiconductor Fab Market

The market trends: a changing landscape

Significant investment for expansions and modernization

A growing focus on efficiency and sustainability

High demand for **power** and **water** to meet semiconductor production capacity

 \sim

Cybersecurity

D	60.000		\frown	
RH	erer	CE	51110	e
		~~	- u. u	

SECTION 1 – Introduction to the Semiconductor Fab Industry

Semiconductor Fab Industry

Semiconductor Fab Industry Challenges

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Life Is On

Semiconductor Fab Industry Challenges

Four pillars to drive efficiency, resiliency and sustainability KPIs

The strong growth of the semiconductor industry leads to an increase in fabrication capacity. Creating or expanding this capacity is not without its challenges. Four pillars must be addressed:

Reference Guide

EcoStruxure[™] Power for Semiconductor Fabs

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab ▼

Solutions to Address the Four Pillars

EcoStruxure Power Value Proposition

Example of Electrical & Digital Architectures

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Schneider

Life Is On

SECTION 2

How EcoStruxure Power Can Support the Semiconductor Fab Industry

WHY READ THIS SECTION?

The objective of this section is to:

- Present the solutions to address the four pillars to meet the Semiconductor Fab industry challenges
- Explain how Schneider Electric EcoStruxure Power can support this industry
- Give an example of electrical and digital architectures.

Ref	erei	nce	Guid	6
1761				

Life Is On

SECTION 1 – Introduction to the

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

Example of Electrical & Digital Architectures

Semiconductor Fab Industry

Solutions to Address the Four Pillars EcoStruxure Power Value Proposition

SECTION 3 – Digital Solutions

and Services

BIBLIOGRAPHY

Life Is On

EcoStruxure Power Value Proposition

EcoStruxure Power for Semiconductor Fabs

From **electrical design** to **operations** and **maintenance**

We are your **end-to-end digital partner** to design, build, operate and maintain semiconductor fabs with the utmost **efficiency** and **resiliency** towards a **sustainable** future.

Our collaborative environments, enhanced by the Electrical Distribution Digital Twin of your fab, enable high productivity operations.

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

Solutions to Address the Four Pillars

EcoStruxure Power Value Proposition

Example of Electrical & Digital Architectures

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

(ඛ)(☰)(<)

Life Is On

Example of Electrical and Digital Architectures

Typical front-end Semiconductor Fab

Energy is key, whether for processes or for utilities: specific attention must be given to the design of the electrical architecture and associated digital architecture which will enable digital solutions and services.

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

Solutions to Address the Four Pillars

EcoStruxure Power Value Proposition

Example of Electrical & Digital Architectures

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Life Is On

Typical electrical architecture for a Semiconductor Fab

Example of Electrical and Digital Architectures

Example of Electrical Architecture

<...>

50 % PROCESS UTILITY Diffusion / 4 **Cooling Water System** Chilled Water A Photolithography (MV Chillers, Cooling Towers) Etching Process Cooling Water (PCW) • AHU, FCU, FFU, Dry Coil 🔨 🐓 Ion Implantation Exhaust System 🕂 🗲 **Chemical Mechanical** Planarization (CMP) /!\ Clean Dry Ari (CDA) and N₂ Physical Vapor Deposition (PVD)/ Chemical Vapor Deposition (CVD) Ultrapure Water (UPW) Others Lighting Wastewater · Air Recirculation Make-Up Air Unit Bulk Gases · Automated Materials Handling System (AMHS) Abatement Critical Process High Energy demand = Power Availability = Efficient Energy Management

Example of Electrical and Digital Architectures

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

Solutions to Address the Four Pillars

EcoStruxure Power Value Proposition

Example of Electrical & Digital Architectures

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Electric

Example of Digital Architecture (High-Level View)

 $\diamond \bullet \bullet \bullet \diamond \diamond$

Example of Digital Architecture (High-Level View)

Example of Electrical and Digital Architectures

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

Solutions to Address the Four Pillars

EcoStruxure Power Value Proposition

Example of Electrical & Digital Architectures

Schneider

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

(白) (三) <</p>

Life Is On

Example of Digital Architecture (Detailed View)

(• • • • **)**

Reference Guide

EcoStruxure[™] Power for Semiconductor Fabs

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

 ∇

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Improve Your Process

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On Schneider

SECTION 3

Digital Solutions & Services

WHY READ THIS SECTION?

This section gives information about EcoStruxure Power capabilities for Semiconductor Fabs aligned to the industry challenges.

Life Is On

Digital Solutions that support your project from the Design, Build, Commission to Operate & Maintain phases.

Overview of Digital Solutions and Services

Electrical Digital Twin

Green Premium Cybersecurity

Life Is On Schneider

Transverse Lifecycle Capabilities

Electrical Digital Twin

Green Premium Cybersecurity

Life Is On

SECTION 1 – Introduction to the

Can Support the Semiconductor Fab

and Services

Introduction

Overview of Digital Solutions and Services

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power

SECTION 3 – Digital Solutions

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Maintain a Digital Twin of your electrical distribution

Benefits

- Intelligent user-interface for all levels of AC and DC networks
- Enables users, from the design to operate phases, to model, simulate, analyze and validate electrical power systems to predict their electrical network behavior
- Takes the day-to-day system modeling and design tasks to a new level of speed, accuracy and ease

Electrical Digital Twin

etap

Transverse Lifecycle Capabilities

Electrical Digital Twin

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Capabilities to Increase Efficiency

Transverse Lifecycle Capabilities

Green Premium

Manage sustainability from design to end of life

Benefits

 Green Premium* products provide detailed information on their regulatory compliance, material content, environmental impact, and circularity attributes.

Compliance and transparency

(compliance certificates, circularity profiles, environmental footprint, etc.)

Green Premium Value Proposition

* The Green Premium label was created to provide Schneider Electric's customers with more sustainable products and to be transparent with environmental information.

Supporting your efforts for a LEED certified building

Helping you achieve Living Building Challenge certification

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Transverse Lifecycle Capabilities

Cybersecurity

Help secure the digital power distribution system

Benefits

- · Provides a selection of cybersecurity certified products
- · Provides certified system architectures and solutions
- Delivers lifecycle services

Certified products developed according to IEC 62443 functional requirements with Secure Development Lifecvcle processes.

Certified secure system architecture according to IEC 62443-3-3 with documented processes and solutions for a secure system. Cybersecurity system configuration software for consistent security policy deployment.

Lifecycle services

Consulting services from design, implementation, operations and maintenance to tailor your security solutions to your strategy and budget.

Capabilities to Improve Time to Market

Electrical Digital Twin

Life Is On

SECTION 1 – Introduction to the

Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

AC and DC Electrical Network Bus Design and Simulation

Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power

Overview of Digital Solutions and Services

Efficient profile management .

Single solution/environment

- User-defined loading and generation profiles

- Unified AC & DC solution from HV to I V - One unique platform and one database

- External data profile based on field measurements
- Scalability
 - Load growth study for future planning
- · Event simulations within the calculation period

Optimize bus design allocation and simulation

ETAP Electrical Network Model

Capabilities to Improve Time to Market

Primary Department

 Design Construction

Benefits

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Troduction to the Design and simulate unbalanced short circuits

Primary Department

- Design
- Construction

Benefits

- Expedite design studies with a wide range of calculation scenarios, including advanced fault analysis
 - IEC & ANSI duty calculation for balanced and unbalanced faults
 - Simultaneous fault at selected nodes
 - Inclusive 3-Phase and 1-Phase fault analysis
 - Pre-Fault system loading consideration

Electrical Network Short Circuit Simulation in ETAP

Capabilities to Improve Time to Market

Electrical Network Short Circuit Simulation

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

Life Is On

BIBLIOGRAPHY

Perform power flow analysis and voltage drop calculations

Primary Department

- Design
- Construction

Benefits

- Simulation of bus voltages, branch power factors, currents, system losses, power generation versus loading
- Use of ETAP Electrical Digital Twin model with powerful calculation engines and user-friendly interface
- Simulation using multiple loading and generation conditions

Network Load Flow and Voltage Drop Simulation in ETAP

Capabilities to Improve Time to Market

Network Load Flow and Voltage Drop Simulation

SECTION 1 – Introduction to the

and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions

Capabilities to Improve Time to Market

Device Coordination and Selectivity

etap

Automatically detect and evaluate the system protection and coordination/selectivity

Primary Department

- Design
- Construction

Benefits

- Verified and validated libraries
- Graphically adjustable device settings
- · Detailed device settings reporting
- Continuous synchronization with one-line and integrated equipment database

Device Coordination and Selectivity in ETAP

SECTION 1 – Introduction to the Semiconductor Fab Industry

Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

SECTION 2 – How EcoStruxure Power

Capabilities to Increase Efficiency

Perform sequence of operation for arc fault and bolted fault

Primary Department

Capabilities to Improve Time to Market

- Design
- Construction

Benefits

· Evaluate, verify, and confirm the operation and selectivity of the protective devices for various types of faults for any location directly from the single-line diagram

Arc Fault Protection and Coordination

- Animation displayed on the single-line diagram
- 3-phase / 1-phase sequence of operation

Arc Fault Protection and Coordination in ETAP

.

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Power Quality Simulation and Modeling

Evaluate and validate distortion due to harmonics

Primary Department

Capabilities to Improve Time to Market

- Design
- Construction

Benefits

- Simulate harmonic current and voltage sources:
 - To identify potential harmonic problems (report of harmonic voltage and current distortion limit violations)
 - To identify the need for a harmonics filter
- Simulate and analyze the size of the harmonics filter your system will need to optimize performance and reduce nuisance trips

Power Quality Simulation and Modeling in ETAP

etap

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Introduction

Overview of Digital Solutions and Services

Design and optimize the microgrid system

Primary Department

Capabilities to Improve Time to Market

- Design
- Construction

Benefits

- · Build renewable energy models combined with full spectrum power system analysis calculations for:
 - Accurate simulation
 - Predictive analysis
 - Equipment sizing
 - Field verification of wind, solar farms and other DERs
- Enable designers and engineers to conceptualize the collector systems, determine wind penetration and perform grid interconnection studies

Solar Thermal Plant 28.938 Line1 Line11 AC GRID I Line2 66 k 5 109

Microgrid Energy Storage Sizing Simulation in ETAP

Renewable and Microgrid Energy Storage Sizing Simulation

etap

Reference Guide

Semiconductor Fabs

SECTION 2 -	How	EcoStru	uxure I	Power
Can Support	the S	emicon	ductor	Fab

1.0.4	d	1100	
1010		10(04	

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

EcoStruxure[™] Power for

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 3 – Digital Solutions and Services

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Life Is On

Capabilities to Improve Time to Market

Power System Study

Work with engineering experts to provide Power System Studies

Primary Department

- Design
- Construction
- Facilities Electrical Department

Benefits

- Partner with a global team of experts, engaged with industry standards committees, to develop common safety standards and practices.
- Create a standardized approach to Power System Studies to support multisite deployments with consistent results

Capabilities to Increase Efficiency

Electrical Digital Twin

ē ls On	Schneide
---------	----------

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Principle of Operator Training Simulation Application

Operator Training Simulation

Training of Operators Trainees can test actions and procedures using backups of the EcoStruxure Power Operation production system with actual graphics. Trainee #1 Trainee #r EcoStruxure EcoStruxure EcoStruxure Power Operation Power Operation Power Operation Simulated Environment Simulated Environment Simulated Environment Simulation of the Installation ETAP Simulation Engine: etap · Optionally collects real-time Real-time data data of the electrical installation from EcoStruxure FTAP Power Operation Simulation Engine Simulates the actions taken EcoStruxure by trainees and provides Power Operation results Live Environment Data Acquisition Technical I AN (from field devices)

••• >

Train new employees and build confidence on new systems

Primary Department

· Facility Operations & Maintenance

Benefits

- Practice operation within a simulated but highly realistic environment to enhance safety and operational efficiency
- Track and review trainee actions to analyze and challenge them

Operator Training Simulation (IEC / NEMA)

Learn more about:

Operator Training Simulation Reference Architecture

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

(1) (三) < (1)</p>

Life Is ()n

Determine where to focus energy conservation initiatives

Energy Monitoring and Usage Analysis

Primary Department

Capabilities to Increase Efficiency

· Facility Operations & Maintenance

Benefits

- Bring awareness to utility consumption
 - Turn data into easy-to-interpret graphical dashboards and reports to raise awareness amongst key stakeholders
- · Identify "quick-win" opportunities for energy savings
 - By comparing and visualizing energy usage and cost for different utilities over different time periods
 - By identifying and prioritizing which areas lend themselves to a high energy-saving return on investment

Energy Usage Analysis Dashboards in EcoStruxure Power Operation

Eco **3**truxure

(• • • • **)**

Energy Monitoring and Usage Analysis Reference Architecture

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Analyze the energy performance of a plant against a model baseline

Energy Performance, Modeling and Verification

Primary Department

Capabilities to Increase Efficiency

· Facility Operations & Maintenance

Benefits

- Provide energy usage information based on equipment and processes
- Compare model versus actual consumption
- Compare pre-retrofit versus post-retrofit energy consumption to track improved performance and savings as a result of energy conservation initiatives

Learn more about:

- Energy Performance (IEC / NEMA)
- Energy Modeling and verification (<u>IEC</u> / <u>NEMA</u>)

Measured values against expected values 10000 2014-35 8000 14-23 2014-28 2014-3 2014-31 2014-18 2014-2014-19 6000 2014-32 2014-36 2014-15 2014-37 2014-14 -b014-17 4000 /2014-4 2014-7 2014-10 2014-12 2000 2014-45 Weather Temperature Fahrenheit (Weeks) WeatherStation VictoriaBC Keating.HVAC - Values Keating.HVAC - Regression

Energy Performance, Modeling and Verification Output in EcoStruxure Power Operation

Energy Performance Modeling and Verification Reference Architecture

EcoStruxure™ Power for Semiconductor Fabs

SECTION 1 – Introduction to the

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Semiconductor Fab Industry

Capacity Management

Monitor the capacity of electrical distribution

Primary Department

Capabilities to Increase Efficiency

Facility Operations & Maintenance

Benefits

- Monitor electrical network capacity
- Track and review capacity efficiency
- · Minimize downtime by tracking the capacity of transformers, circuit breakers, UPSs, generators, etc.

Breaker Capacity Single-line Diagram in EcoStruxure Power Operation

Capacity Management Reference Architecture

Capabilities to Improve Resiliency

Life Is On Schneide

Electrical Digital Twin Green Premium

Cybersecurity

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Help employees make better decisions

Primary Department

Capabilities to Improve Resiliency

Predictive Simulation

- Facility Engineering
- Design Engineering

Benefits

- Reduce safety risks by practicing emergencies and high-risk situations
- Enhance operational efficiency by running "what-if" scenarios
- · Provide faster analysis response to incidents

Reference Architecture

Principle of Predictive Simulation Application

• • • • • • • • • • 🔊

EcoStruxure Power Operation

Live Environment

Predictive Simulation Reference Architecture

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Primary Department

Facility Operations & Maintenance

Benefits

- · Provide operators with a list of potential side effects, prior to executing a command
- Empower employees to feel more confident when operating their facilities by providing real time quidance
- Reduce human error that could lead to outages or safety concerns

Simulate Before Operate (IEC / NEMA)

Learn more about:

Principle of Simulate before Operate Application

Capabilities to Improve Resiliency

Empower operators with predictive outcomes

Simulate Before Operate Reference Architecture

EcoStruxure™ Power for Semiconductor Fabs

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Monitor and control electrical network

Electrical Distribution Monitoring and Alarming

Primary Department

Capabilities to Improve Resiliency

· Facility Operations & Maintenance

Benefits

- Show real-time status of the power distribution
- Customized single-line diagram
- 24/7 power monitoring and alarm notification

Learn more about:

- Electrical distribution monitoring and alarming (IEC / NEMA)
 - Power Source and Load Control (<u>IEC</u> / <u>NEMA</u>)

Electrical Distribution Monitoring and Alarming Single-line Diagram in EcoStruxure Power Operation

Electrical Distribution Monitoring and Alarming Reference Architecture

EcoStruxure™ Power for Semiconductor Fabs

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

SECTION 1 – Intro<u>ductio</u>

Analyze the root causes of electrical events

Primary Department

Capabilities to Improve Resiliency

· Facility Operations & Maintenance

Power Events Analysis

Benefits

- Automatically classifies and describes any electrical events
- Uses system intelligence to determine root cause and location of events
- Shows context and sequence of events using the timeline analysis interface

Alarm Status – A	II Alarm	S	Update in 14:37 Q Search Alarm Display			
State	÷	Name ‡	Type 0	Source \$	Last Occurrence 0 0cc	urrences
 3 days 22 hr ago 		Transient	Transient	Production.Incomer	12/4/2021 5:38:19:176 PM	10
• 5 days 1 hr ago		Swell (Voltage)	Swell (Voltage)	Production. Preparation	12/3/2021 3:16:32:442 PM	
• 5 days 1 hr ago		Swell (Voltage)	Swell (Voltage)	Production. CleanInPlace	12/3/2021 3 18:32:422 PM	
• 5 days 1 hr ago		Swell (Voltage)	Swell (Voltage)	Production.Bottling	12/3/2021 3:18:32:421 PM	
 5 days 1 hr ago 		Swell (Voltage)	Swell (Voltage)	Production.Warehouse	12/3/2021 3:16:32:421 PM	
• 5 days 1 hr ago		Swell (Voltage)	Swell (Voltage)	Production.Incomer	12/3/2021 3:16:32:421 PM	
• 5 days 1 hr ago		Process Impact Alarm – Current Avg	General Setpoint	Botting Boller	12/3/2021 3:16:29.000 PM	
 9 days 0 hr ago 		Switchgear Monitoring – Transformer 01 Pre-Alarm	Thermal Monitor	MV.SMD	11/29/2021 4:04:43.000 PM	

Event and Alarm Status view in EcoStruxure Power Operation

Event and Alarm Status Timeline in EcoStruxure Power Operation

Power Events Analysis Reference Architecture

SECTION 1 – Introduction to the

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

- Introduction
- Overview of Digital Solutions and Services
- Transverse Lifecycle Capabilities
- Capabilities to Improve Time to Market
- Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Semiconductor Fab Industry

Benefits

- Move from reactive or preventive to condition-based (predictive) maintenance strategies for critical assets like circuit breakers, gensets, transformers, etc.
- Provide event details and notification to the operator if a protection setting has been changed
- · Receive notifications and diagnostics reports from expert service engineers with recommendations to optimize maintenance by asset or site

0.49% 17.072.0 h 0.49% 17 000 0 h 50 - 79 % 556.0.1 50 - 79 % 557.0 h 80 - 89 % 0.0 h 80 - 89 % 00 h 90 - 100 % 0.0 h 90 - 100 % 0.0 h Temperature Profile Temperature Profile < -30 deg. Cel. 0.0 h < -30 deg. Cel.: 0.0 h -30 - 59 deg. Cel 1,524,772.1h -30 - 59 deg. Cel. 1 526 335 8h 60 - 74 deg. Cel. 303 842 8 h 60 - 74 deg. Cel. 304 154 4 h

Gigafactory Breaker Aging Monitoring System

.

Aging Diagram for Circuit Breakers in EcoStruxure Power Operation

Benefit from a strategic maintenance approach

Primary Department

Capabilities to Improve Resiliency

Asset Performance

Facility Operations & Maintenance

1

0 12

.....

î. 1.15

Asset Performance Reference Architecture

Eco **1** truxure⁻

Asset Performance Reference Architecture

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Gain insights to improve power quality and comply with standards

Power Quality Monitoring and Compliance

Primary Department

Capabilities to Improve Resiliency

· Facility Operations & Maintenance

Benefits

- Bring awareness of power quality
- Enhance operational efficiency by making sure clean power is fed to sensitive process equipment
- Help protect sensitive equipment by tracking power quality problems before they arise

Learn more about:

Power Quality Monitoring and Compliance (IEC / NEMA)

Eco **B**truxure

Power Quality and Compliance Dashboards in EcoStruxure Power Operation

Schnei GEle	ider								EN5	0160
4/12/2016 12:00:00 AM - 5/12/2016 12:00:00 AM (Server Local)							ver Local)			
Complete Compliance in this Summary? No										
Victoria_Bertram er_Lab	.DataCent	Power Frequency	Supply Voltage Magnitude	Flicker	Supply Voltage Dips	Short And Long Interruptions	Temporary Overvoltages	Supply Voltage Unbalance	Harmonic Voltage	Interharmonic Voltage
Observation 1	4/16/2016	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Observation 2	4/23/2016	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Observation 3	4/30/2016	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Observation 4	5/7/2016	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes

Power Quality and Compliance Report in EcoStruxure Power Operation

🔇 • • • • • • • • • 🔊

Power Quality Monitoring and Compliance Reference Architecture

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Help protect sensitive equipment from power quality issues

Power Quality and Power Factor Correction

Primary Department

Capabilities to Improve Resiliency

• Facility Operations & Maintenance

Benefits

- Monitor sensitive process lines and busbars
- · Provide clean power to sensitive process equipment
- Track Power Quality problems to help avoid downtime
- Reduce financial impact of power factor on energy bill

Learn more about:
 Power Quality Correction (IEC / NEMA)
 Power Factor Correction (IEC / NEMA)

Power Quality Information in EcoStruxure Power Operation

Before and After Power Quality and Power Factor Correction Implementation

Power Quality and Power Factor Correction Reference Architecture

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Capabilities to Improve Resiliency

Continuous Thermal Monitoring & Partial Discharge Monitoring Eco 2 truxure

Help prevent electrical fires and help protect employees and equipment

Primary Department

· Facility Operations & Maintenance

Benefits

- Provide early detection of internal arcing or temperature abnormalities in equipment that can cause damage
 - To help reduce the risk of equipment and electrical room damage
 - To improve service continuity
- Enable optimized maintenance schedules by providing continuous monitoring vs calendar-based service

Continuous Thermal Monitoring & Partial Discharge Monitoring Reference Architecture

Continuous Thermal Monitoring in the Single-line Diagram of EcoStruxure Power Operation

Continuous Thermal Monitoring and Partial Discharge Monitoring Reference Architecture

EcoStruxure™ Power for Semiconductor Fabs

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

SECTION 3 – Digital Solutions and Services

Life Is On

Capabilities to Improve Resiliency

Arc Flash Protection

Help protect employees and equipment

Primary Department

Facility Operations & Maintenance

Benefits

- · Help prevent loss of life and reduce the risk of equipment and electrical room damage
- Improve maintenance team awareness to help troubleshoot and identify the root cause of arc flash events

Arc Flash Protection (IEC / NEMA)

Learn more about:

Arc Flash in a Switchboard

Arc Flash Alert and Location in EcoStruxure Power Operation

Arc Flash Protection Reference Architecture

EcoStruxure™ Power for Semiconductor Fabs

Capabilities to Grow Sustainability

Electrical Digital Twin

Life Is On

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

Introduction

- Overview of Digital Solutions and Services
- Transverse Lifecycle Capabilities
- Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Carbon Neutrality Consulting Services

Eco **3** truxure + Services

Track and reduce carbon emissions to demonstrate the carbon neutrality of the company

Primary Department

Capabilities to Grow Sustainability

- Facility Operations & Maintenance
- · Sustainability Office

Benefits

• Get support from our consulting services to define your strategy for achieving carbon neutrality

Carbon neutrality						
1 Reduce Carbon Emissions	Produce Renewable Energy	3 Purchase Renewables/Offsets				
 Energy Efficiency Sustainable building design & operations HVAC Efficiency Lighting Efficiency Operational Efficiency 	Behind-the-Meter Renewables • Solar Panels / Heating • Wind • Geothermal	 Purchase Renewables Renewable Power Purchasing Agreements (PPA) Renewable Energy Certificates (REC) Biofuels 				
	 Supporting Technologies Microgrid with Smart Management Battery Storage Fuel Cells 	Purchase Offsets Carbon Credits Carbon Capture Tree Planting 				

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION	2 – Hov	v EcoStr	uxure F	owe
Can Supp	ort the	Semicon	ductor	Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

- Capabilities to Improve Time to Market
- Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On

Schneider

Comply with standards related to energy management systems

Primary Department

Capabilities to Improve Sustainability

- Facility Operations & Maintenance
- Sustainability Office

Benefits

· Report and show facility compliance to local sustainability requirements

Energy Efficiency Compliance

- To benefit from tax credits
- To gain credibility to participate in new projects

Sustainable Organizations and Standards

EcoStruxure Resource Advisor Dashboard in EcoStruxure Power Operation

EcoStruxure Power Operation Energy Star Compliance Dashboard

Energy Efficiency Compliance Reference Architecture

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 -	How	EcoStrux	ure F	Power
Can Support	the S	emicondu	ctor	Fab

SECTION 3 – Digital Solutions and Services

Introduction

Overview of Digital Solutions and Services

Transverse Lifecycle Capabilities

Capabilities to Improve Time to Market

Capabilities to Increase Efficiency

Capabilities to Improve Resiliency

Capabilities to Grow Sustainability

BIBLIOGRAPHY

Life Is On Schneider

Capabilities to Improve Sustainability

Greenhouse Gas Reporting

Track and report carbon emissions

Primary Department

- · Facility Operations & Maintenance
- Sustainability Office

Benefits

- Track and report carbon emissions and waste (e.g., water) in one single place
- Provide period-over-period usage comparison to detect a drift

Greenhouse Gas Reporting (IEC / NEMA)

Learn more about:

Greenhouse Gas Reporting and Dashboard Examples in EcoStruxure Power Operation

(• • •

Greenhouse Gas Reporting Reference Architecture

Reference Guide

EcoStruxure[™] Power for Semiconductor Fabs

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY	•
Reference Documents	
Legal Information	

BIBLIOGRAPHY

Reference Documents

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Reference Documents

Legal Information

ESXP2G001EN-05

Design Guide

Life Is On

Digital Applications for Large Buildings and Critical Facilities

The Digital Applications Design Guide provides comprehensive details on the building blocks of EcoStruxure Power: the IoT applications are driven by a software layer to control the traditional electrical distribution infrastructure

Developed to help engineering consultants and designers, this guide is an invaluable resource for specifying, designing and prescribing EcoStruxure Power architectures capable of performing one or more of the business-driven applications described within.

Landing page: https://www.se.com/ww/en/work/campaign/innovation/power-digital-applications-design-guide.jsp

IEC EcoStruxure Power Design Guide Ref: FSXP2G001EN 02/2024

Web version https://www.se.com/ww/en/downl oad/document/ESXP2G001EN/

PDF version https://go.schneiderelectric.com/WW 202004 Digital-Applications-for-Large-Buildings-and-Critical-Facilities EA-LP.html

NEMA EcoStruxure Power Design Guide Ref: 0100DB1802 01/2024

document/0100DB1802/

https://go.schneiderelectric.com/WW 202004 Digital-Applications-Design-Guide EA-LP.html

https://www.se.com/us/en/download/

EcoStruxure™ Power for Semiconductor Fabs

Legal Information

SECTION 1 – Introduction to the Semiconductor Fab Industry

SECTION 2 – How EcoStruxure Power Can Support the Semiconductor Fab

SECTION 3 – Digital Solutions and Services

BIBLIOGRAPHY

Reference Documents

Legal Information

The information provided in this document contains general descriptions, technical characteristics and/or recommendations related to products/solutions.

This document is not intended as a substitute for a detailed study or operational and site-specific development or schematic plan. It is not to be used for determining suitability or reliability of the products/solutions for specific user applications. It is the duty of any such user to perform or have any professional expert of its choice (integrator, specifier or the like) perform the appropriate and comprehensive risk analysis, evaluation and testing of the products/solutions with respect to the relevant specific application or use thereof.

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this document are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owner.

This document and its content are protected under applicable copyright laws and provided for informative use only. No part of this document may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the document or its content, except for a nonexclusive and personal license to consult it on an "as is" basis.

Schneider Electric reserves the right to make changes or updates with respect to or in the content of this document or the format thereof, at any time without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this document, as well as any non-intended use or misuse of the content thereof.

AccuSine[™], Acti 9[™], Altivar[™], ASCO[™], BlokSeT[™], ComPacT[™], EcoStruxure[™], EnerLin'X[™], ETAP[™], EVlink[™], EvoPacT[™], Galaxy[™], Harmony[™], Iso-Gard[™], Masterclad[™], MasterPacT[™], MicroLogic[™], Modicon[™], Okken[™], PowerLink[™], PowerLogic[™], PowerPacT[™], Power-Zone[™], PremSeT[™], PrismaSeT[™], Schneider Electric[™], SM AirSeT[™], Square D[™], SureSeT[™], TeSys[™], TransferPacT[™], Trihal[™], and Vigilohm[™] are trademarks and the property of Schneider Electric SE, its subsidiaries, and affiliated companies.

Schneider Electric Industries SAS 35, rue Joseph Monier CS 30323 92506 Rueil Malmaison Cedex France www.se.com

© 2024 Schneider Electric. All Rights Reserved. All trademarks are owned by Schneider Electric SE, its subsidiaries and affiliated companies. All other brands are trademarks of their respective owners

Life Is On Schneider

2024/05/28 ESXP2RG002EN