MiCOM P132

Feeder Management and Bay Control

P132/EN M/Bn7

Version	P132	-306	$-415 / 416 / 417 / 418 / 419$	-612
	P132	-308	$-420 / 421 / 425 / 426 / 427$	-613
	P132	-308	$-420 / 421 / 425 / 426 / 427$	-614
	P132	-308	$-420 / 421 / 425 / 426 / 427$	-630
	P132	-308	$-420 / 421 / 425 / 426 / 427$	-631
	P132	-308	$-420 / 421 / 425 / 426 / 427$	-632

Technical Manual

Content	P132/EN M/Dc5	(-612)
	P132/EN AD/Bd7	(-613)
	P132/EN AD/Ae7	(-614)
	P132/EN AD/Ck7	(-630)
	P132/EN AD/Bm7	(-631)
	P132/EN AD/An7	(-632)

Volume 1 of 2

MiCOM P132

Feeder Management and Bay Control

P132/EN M/Dc5
(AFSV.12.10092 EN)
Version P132 -306 -415/416/417/418/419 -612

Technical Manual
Volume 1 of 2

Warning

When electrical equipment is in operation dangerous voltage will be present in certain parts of the equipment. Failure to observe warning notices, incorrect use or improper use may endanger personnel and equipment and cause personal injury or physical damage.

Before working in the terminal strip area, the device must be isolated. Where stranded conductors are used, insulated crimped wire end ferrules must be employed.

The signals 'Main: Blocked/faulty' and 'SFMON: Warning (LED)' (permanently assigned to the LEDs labeled 'OUT OF SERVICE' and 'ALARM') can be assigned to output relays to indicate the health of the device. Schneider Electric strongly recommends that these output relays are hardwired into the substation's automation system, for alarm purposes.

Any modifications to this device must be in accordance with the manual. If any other modification is made without the express permission of Schneider Electric, it will invalidate the warranty, and may render the product unsafe.

Proper and safe operation of this device depends on appropriate shipping and handling, proper storage, installation and commissioning, and on careful operation, maintenance and servicing.

For this reason only qualified personnel may work on or operate this device.
The User should be familiar with the warnings in the Safety Guide (SFTY/4LM/G11 or later version), with the warnings in Chapters $5,9,10$ and 11 and with the content of Chapter 13, before working on the equipment. If the warnings are disregarded, it will invalidate the warranty, and may render the product unsafe.

Installation of the DHMI:

A protective conductor (ground/earth) of at least $1.5 \mathrm{~mm}^{2}$ must be connected to the DHMI protective conductor terminal to link the DHMI and the main relay case; these must be located within the same substation.

To avoid the risk of electric shock the DHMI communication cable must not be in contact with hazardous live parts.

The DHMI communication cable must not be routed or placed alongside high-voltage cables or connections. Currents can be induced in the cable which may result in electromagnetic interference.

Qualified Personnel

are individuals who

\square are familiar with the installation, commissioning and operation of the device and of the system to which it is being connected;are able to perform switching operations in accordance with safety engineering standards and are authorized to energize and deenergize equipment and to isolate, ground and label it;are trained in the care and use of safety apparatus in accordance with safety engineering standards;are trained in emergency procedures (first aid).

Note

The operating manual for this device gives instructions for its installation, commissioning and operation. However, the manual cannot cover all conceivable circumstances or include detailed information on all topics. In the event of questions or specific problems, do not take any action without proper authorization. Contact the appropriate Schneider Electric technical sales office and request the necessary information.

Any agreements, commitments, and legal relationships and any obligations on the part of Schneider Electric, including settlement of warranties, result solely from the applicable purchase contract, which is not affected by the contents of the operating manual.

Changes after going to press

1	Application and Scope		1-1
2	Technical Data		2-1
2.1	Conformity		2-1
2.2	General Data		2-1
2.3	Tests		2-2
2.3.1	Type Tests		2-2
2.3.2	Routine Tests		2-5
2.4	Environmental Conditions		2-5
2.5	Inputs and Outputs		2-5
2.6	Interfaces		2-9
2.7	Information Output		2-11
2.8	Settings		2-11
2.9	Deviations		2-12
2.9.1	Deviations of the Operate Values		2-12
2.9.2	Deviations of the Timer Stages		2-13
2.9.3	Deviations of Measured Data Acquisition		2-14
2.10	Resolution of the Fault Value Acquisition		2-15
2.11	Recording Functions		2-16
2.12	Power supply		2-17
2.13	Current Transformer Specifications		2-18
3	Operation		3-1
3.1	Modular Structure		3-1
3.2	Operator-Machine Communication		3-3
3.3	Configuring the Measured Value Panels and Selection of the Control Point	(LOC)*	3-4
3.4	Serial Interfaces		3-11
3.4.1	PC interface	(PC)	3-11
3.4.2	Communication interface 1	(COMM1)	3-13
3.4.3	Communication interface 2	(COMM2)	3-22
3.4 .4	Communication interface 3	(COMM3)	3-25
3.4.5	Communication interface IEC 61850	$\begin{aligned} & \text { (IEC, } \\ & \text { GOOSE, } \\ & \text { GSSE) } \end{aligned}$	3-30
3.5	IRIG-B Clock Synchronization	(IRIGB)	3-38
3.6	Configurable function keys	(FKT_T)	3-39
3.7	Configuration and Operating Mode of the Binary Inputs	(INP)	3-42
3.8	Measured data input	(MEASI)	3-44
3.8.1	Direct Current Input on the Analog (I/O) Module Y		3-46
3.8.2	Connecting a Resistance Thermometer to the "PT 100 Analog Input" on the Analog (I/O) Module Y		3-51
3.8.3	Connecting Temperature Sensors to the Temperature P/C Board (the RTD Module)		3-52
3.9	Configuration, Operating Mode, and Blocking of the Output Relays	(OUTP)	3-55
3.10	Measured data output	(MEASO)	3-58
3.10.1	BCD measured data output		3-61
3.10 .2	Analog measured data output		3-66
3.10 .3	Output of 'External' Measured Data		3-72
3.11	Configuration and Operating Mode of the LED Indicators	(LED)	3-73

[^0]
Contents

(continued)

3.12	Main Functions of the P132	(MAIN)	3-76
3.12.1	Acquisition of Binary Signals for Control		3-76
3.12.2	Bay type selection		3-79
3.12.3	Conditioning of the Measured Variables		3-80
3.12.4	Operating Data Measurement		3-82
3.12 .5	Configuring and Enabling the Device Functions		3-98
3.12.6	Activation of "Dynamic Parameters"		3-102
3.12.7	Inrush stabilization (harmonic restraint)		3-103
3.12 .8	Function blocks		3-105
3.12.9	Multiple blocking		3-106
3.12 .10	Blocked/Faulty		3-107
3.12.11	Coupling between control and protection for the CB closed signal		3-108
3.12.12	Close Command		3-109
3.12 .13	Multiple signaling		3-111
3.12.14	Ground Fault Signaling		3-113
3.12 .15	Starting Signals and Tripping Logic		3-115
3.12 .16	CB trip signal		3-122
3.12.17	Enable for Switch Commands Issued by the Control Functions		3-124
3.12.18	Communication Error		3-127
3.12 .19	Time Tagging and Clock Synchronization		3-128
3.12 .20	Resetting Actions		3-130
3.12.21	Assigning Communications Interfaces to Physical Communications Channels		3-133
3.12 .22	Test mode		3-134
3.13	Parameter subset selection	(PSS)	3-135
3.14	Self-monitoring	(SFMON)	3-137
3.15	Operating data recording	(OP_RC)	3-140
3.16	Monitoring signal recording	(MT_RC)	3-141
3.17	Overload data acquisition	(OL_DA)	3-142
3.18	Overload recording	(OL_RC)	3-145
3.19	Ground fault data acquisition	(GF_DA)	3-148
3.19 .1	Measured Ground Fault Data from Steady-State Power Evaluation		3-149
3.19.2	Measured Ground Fault Data from Steady-State Current Evaluation		3-151
3.19.3	Measured Ground Fault Data from Admittance Evaluation		3-153
3.20	Ground fault recording	(GF_RC)	3-155
3.21	Fault data acquisition	(FT_DA)	3-158
3.22	Fault recording	(FT_RC)	3-170
3.23	Time-overcurrent protection	(DTOC)	3-176
3.24	Inverse-time overcurrent protection	(IDMT1, IDMT2)	3-190
3.25	Short-circuit direction determination	(SCDD)	3-207
3.26	Switch on to fault protection	(SOTF)	3-221
3.27	Protective signaling	(PSIG)	3-223

Contents

(continued)

3.28	Auto-reclosing control	(ARC)	3-229
3.28.1	High-Speed Reclosure (HSR)		3-248
3.28.2	Joint Operation of the ARC and ASC Functions		3-250
3.28 .3	Time-Delay Reclosure (TDR)		3-253
3.28.4	ARC counters		3-255
3.28 .5	Counter for Number of CB Operations		3-255
3.29	Automatic synchronism check	(ASC)	3-256
3.30	Ground Fault Direction Determination Using Steady-State Values	(GFDSS)	3-272
3.30.1	Steady-State Power Evaluation		3-275
3.30.2	Steady-State Current Evaluation		3-280
3.30.3	Steady-State Admittance Evaluation		3-282
3.30.4	Counting the Ground Faults Detected by SteadyState Power and Admittance Evaluation		3-288
3.31	Transient Ground Fault Direction Determination	(TGFD)	3-289
3.32	Motor protection	(MP)	3-297
3.32.1	Overload Protection		3-300
3.32.2	Special Overload Protection Cases		3-308
3.32.3	Low Load Protection		3-312
3.32.4	Protection of Increased-Safety Machines		3-312
3.32.5	Running Time Meter		3-313
3.33	Thermal overload protection	(THERM)	3-314
3.34	Unbalance protection	(12>)	3-324
3.35	Time-voltage protection	($\mathrm{V}<>$)	3-326
3.36	Over-/underfrequency protection	($\mathrm{f}<\gg$)	3-337
3.37	Power directional protection	($\mathrm{P}<>$)	3-344
3.38	Circuit breaker failure protection	(CBF)	3-363
3.39	Circuit Breaker Monitoring	(LSÜ)	3-372
3.39.1	Functional Description		3-372
3.40	Measuring-circuit monitoring	(MCMON)	3-382
3.41	Limit value monitoring	(LIMIT)	3-388
3.42	Programmable logic	(LOGIC)	3-400
3.43	Control and Monitoring of Switchgear Units	(DEV01 to DEV03)	3-407
3.43 .1	Processing Status Signals from Manually Operated Switchgear Units		3-408
3.43 .2	Functional Sequence for Controllable Switchgear Units		3-410
3.44	Interlocking logic	(ILOCK)	3-422
3.45	Single-pole commands	(BEF_1)	3-424
3.46	Single-pole signals	(SIG_1)	3-425

4	Design	4-1
4.1	Designs	4-1
4.2	Dimensional Drawings	4-3
4.2.1	Surface-mounted case	4-3
4.2.2	Flush-mounted case, flush-mount method 1 (without angle brackets)	4-5
4.2.3	Flush mounted case, flush-mounting method 2 (with angle brackets and frame)	4-7
4.2.4	Device views for connection of detachable HMI	4-9
4.3	Modules	4-10
5	Installation and Connection	5-1
5.1	Unpacking and Packing	5-1
5.2	Checking Nominal Data and Design Type	5-2
5.3	Location Requirements	5-3
5.4	Installation	5-4
5.5	Protective and Operational Grounding	5-16
5.6	Connection	5-17
5.6.1	Connecting Measuring and Auxiliary Circuits	5-17
5.6.2	Connecting the IRIG-B interface.	5-26
5.6 .3	Connecting the Serial Interfaces	5-26
5.7	Location diagrams	5-30
5.8	Terminal Connection Diagrams	5-31
6	Local Control Panel	6-1
6.1	Display and Keypad	6-2
6.2	Changing between Display Levels	6-10
6.3	Display Illumination	6-11
6.4	Configurable Function Keys F1 to Fx (general)	6-11
6.5	Configurable Function Keys F1 to Fx (particularly as control keys)	6-13
6.6	Control at Panel Level	6-14
6.7	Control at the Menu Tree Level	6-15
6.7.1	Navigation in the Menu Tree	6-15
6.7.2	Switching Between Address Mode and Plain Text Mode	6-16
6.7 .3	Change-Enabling Function	6-17
6.7 .4	Changing Parameters	6-20
6.7 .5	Setting a List Parameter	6-21
6.7 .6	Memory Readout	6-22
6.7.7	Reset	6-26
6.7 .8	Password-Protected Control Actions	6-28
6.5.9	Changing the Password	6-30
7	Settings	7-1
7.1	Parameter	7-1
7.1.1	Device Identification	7-2
7.1.2	Configuration Parameters	7-6
7.1.3	Function Parameters	7-65
7.1.3.1	Global	7-65
7.1.3.2	General Functions	7-73
7.1.3.3	Parameter Subsets	7-92
7.1.3.4	Control	7-119
7.2	Protection of Increased-Safety Machines	7-124
7.2.1	General	7-124
7.2.2	Restrictive Safety-Oriented Configuration	7-124

Contents

(continued)

$\mathbf{8}$	Information and Control Functions	$8-1$
8.1	Healthy	$8-1$
8.1 .1	Cyclic Values	$8-1$
8.1 .1 .1	Measured Operating Data	$8-1$
8.1 .1 .2	Physical State Signals	$8-9$
8.1 .1 .3	Logic State Signals	$8-18$
8.1 .2	Control and Testing	$8-48$
8.1 .3	Operating data recording	$8-54$
8.2	Events	$8-55$
8.2 .1	Event counters	$8-55$
8.2 .2	Measured event data	$8-58$
8.2 .3	Event recording	$8-63$
$\mathbf{9}$	Commissioning	$\mathbf{9 - 1}$
9.1	Safety Instructions	$9-1$
9.2	Commissioning Tests	$9-3$
$\mathbf{1 0}$	Troubleshooting	$\mathbf{1 0 - 1}$
$\mathbf{1 1}$	Maintenance	$\mathbf{1 1 - 1}$
$\mathbf{1 2}$	Storage	$\mathbf{1 2 - 1}$
$\mathbf{1 3}$	Accessories and Spare Parts	$\mathbf{1 3 - 1}$
$\mathbf{1 4}$	Order Information	$\mathbf{1 4 - 1}$
	Appendix	AN
\mathbf{B}	Contents	$\mathrm{AN}-2$
\mathbf{D}	Glossary	$\mathrm{B}-1$
	Oist of Signals	$\mathrm{D}-1$

1 Application and Scope

The protection functions available in the P 132 provide selective short-circuit protection, ground fault protection, and overload protection in medium- and high-voltage systems. The systems can be operated as impedance-grounded, resonant-grounded, groundedneutral or isolated-neutral systems. The multitude of protection functions incorporated into the device enable the user to cover a wide range of applications in the protection of cable and line sections, transformers and motors. The relevant protection parameters can be stored in four independent parameter subsets in order to adapt the protection device to different operating and power system management states.

The optional control functions are designed for the control of up to three electrically operated switchgear units equipped with plant status signaling and located in the bay of a medium-voltage substation or a high-voltage station with basic topology. The P132 has more than 80 predefined Bay Types stored for selection and it is also possible to load user-defined bay templates.

The control functions are available for the case 40T and the case 84T devices if an additional binary (I/O) module to control switchgear units is ordered and fitted to the following slot:

For case 40T: slot 6
For case 84T: slot 12
The number of external auxiliary devices required is largely minimized by the integration of binary signal inputs operating from any auxiliary voltage, and versatile relay output contacts, by the direct connection option for current and voltage transformers, and by the comprehensive interlocking capabilities. This simplifies the handling of switch bay protection and control technology from planning to commission.

The P132 provides a large number of functions. These can be individually configured and cancelled. These features give the user the means to adapt the protection device to the functionality required in a specific application.

The powerful programmable logic provided by the protection device also makes it possible to accommodate special applications.

1 Application and Scope
 (continued)

Functions

Module configuration variants

The P132 may be ordered in various variants that differ in the number of CTs and VTs fitted. Therefore these variants also differ in the function groups available to the user. The following table lists the function groups available with the respective module configuration.

Furthermore certain function groups (identified with a " \checkmark) ${ }^{11)}$ " as an ordering option) are tied to specific module types. The function group TGFD for example requires that a transient ground fault module is fitted; the availability of the function groups COMM1, COMM2, COMM3, and IRIG-B depend on the choice of a communication module. As a further example, function groups DEV01 to DEV03 are only available if the optional binary I/O module to control switchgear units is fitted to slot 6 on a case 40T or slot 12 on a case 84T device.

1 Application and Scope

(continued)

Protection functions			P132	P132	P132
50/51 P,Q,N	DTOC	Definite-time overcurrent protection, four stages, phase-selective (includes negative-sequence overcurrent protection)		\checkmark	\checkmark
51 P,Q,N	IDMT1	Inverse-time overcurrent protection, one stage, phase-selective (includes negative-sequence overcurrent protection)		\checkmark	\checkmark
51 P,Q,N	IDMT2	Inverse-time overcurrent protection, one stage, phase-selective (includes negative-sequence overcurrent protection)		\checkmark	\checkmark
67 P,N	SCDD	Short-circuit direction determination			\checkmark
50	SOTF	Switch on to fault protection		\checkmark	\checkmark
85	PSIG	Protective signaling		\checkmark	\checkmark
79	ARC	Auto-reclosing control (three-pole)		\checkmark	\checkmark
25	ASC	Automatic synchronism check			(\checkmark)
67W/YN	GFDSS	Ground fault direction determination using steady-state values or admittance evaluation			\checkmark
	TGFD	Transient ground fault direction determination			$(\checkmark)^{1}$
$\begin{aligned} & \hline 37 / 48 / 49 / \\ & 49 L R / 50 S / 66 \end{aligned}$	MP	Motor protection		\checkmark	\checkmark
49	THERM	Thermal overload protection		\checkmark	\checkmark
46	12>	Unbalance protection		\checkmark	\checkmark
27/59/47	$\mathrm{V}<>$	Time-voltage protection	\checkmark		\checkmark
81	f<>	Over-/underfrequency protection	\checkmark		\checkmark
32	P<>	Power directional protection			\checkmark
50BF	CBF	Circuit breaker failure protection		\checkmark	\checkmark
	CBM	Circuit breaker monitoring		\checkmark	\checkmark
	MCMON	Measuring-circuit monitoring	\checkmark	\checkmark	\checkmark
	LIMIT	Limit value monitoring		\checkmark	\checkmark
	LOGIC	Programmable logic	\checkmark	\checkmark	\checkmark

$\checkmark=$ standard; (\checkmark) = ordering option
${ }^{1)}$ not available with P132 in a case 24 T

Control functions

P132

	BMxx	Control and monitoring of 3 switchgear units	$(\checkmark)^{1)}$
	CMD_1	Single-pole commands	$(\checkmark)^{11}$
	SIG_1	Single-pole signals	$(\checkmark)^{1)}$
	ILOCK	Interlocking logic	$(\checkmark)^{1)}$

$(\checkmark)=$ ordering option
${ }^{1)}$ not available with P132 in a case 24 T

Communication Functions		P132	
	COMMx	2 communication interfaces, IRIG-B, InterMiCOM interface ${ }^{1)}$	(\checkmark)
	IRIGB	IRIG-B time synchronization	(\checkmark)
	IEC	IEC 61850 interface	(\checkmark)

$(\checkmark)=$ ordering option

1 Application and Scope
 (continued)

Measured Value Functions		P132 with VTs	P132 with CTs	P132 with CTs and VTs	
	MEASI	9 inputs for resistance thermometers		$(\checkmark)^{1)}$	$(\checkmark)^{1)}$
	MEASI MEASO	20mA input, 2×20 mA outputs, input for resistance thermometer	$(\checkmark)^{1)}$	$(\checkmark)^{1)}$	$(\checkmark)^{1)}$

(\checkmark) o ordering option
${ }^{1)}$ not available with P132 in case 24 T

Global functions
P132

	PSS	Parameter subset selection
	F_KEY	Function keys

${ }^{1)}$ not available with P132 in case 24T

For further functions see Appendix A1

1 Application and Scope
 (continued)

General functions
The functions listed in the table above are complete function groups, which may be individually configured or cancelled (except for ILOCK), depending on the application (e.g. included in or excluded from the protection device's configuration).

A function is selected by a mouse click in the operating program:

Unused or cancelled function groups are hidden to the user, thus simplifying the menu. (An exception is the function MAIN, which is always visible.) Communication functions and measured value functions may also be configured or excluded.

This concept provides a large choice of functions and makes wide-ranging application of the protection device possible, with just one model version. On the other hand simple and clear parameter settings and adaptations to each protection scheme (and optional control purposes) can be made.

In this way the protection and control functions (except for ILOCK) can be included in or excluded from the configuration; they are arranged on the branch "General Functions" of the menu tree.

1 Application and Scope
 (continued)

The optional control functions available with the P132 are designed for the control of up to three electrically operated switchgear units equipped with plant status signaling. Acquisition of switchgear contact positions and control is handled via binary signal inputs and output relays situated on the optional binary I/O module $\mathrm{X}(6 x \mathrm{l}, 6 \mathrm{xO})$ for switchgear control.

Control of switchgear units is accessed either though binary signal inputs, the optional communication interface or the function keys on the local control panel.

Up to 12 operation signals can be acquired though binary signal inputs and they are processed according to their primary significance (e.g. CB readiness). Each binary signal input for signals from switchgear units and single-pole operations can have the de-bouncing and chatter suppression from three groups assigned, for which the de-bouncing and chatter time can be individually set.

The P132 only issues control signals after it has checked the readiness and validity to carry out such commands, and it then monitors the operating time of the switchgear units. If the protection device detects that a switchgear unit has failed, it will signal this information (e.g. by configuration to a LED indicator).

Before a switching command is issued the interlocking logic on the P132 checks if this new switchgear status corresponds to a valid bay and substation topology. The interlocking logic is stored in form of bay interlocking, with and without station interlocking, for each Bay Panel in the default setting. The interlocking conditions can be adapted to the actual bay and station topology. Interlocking display and operation correspond to the programmable logic.

When a P132 is included in a substation control system then 'bay interlock with substation interlock' is applied.

When the protection device is not included in a substation control system or when it is included via IEC 61850 then 'bay interlock without substation interlock' is applied, and external ring feeders or messages received via IEC 61850 (IEC-GOOSE) may be included in the interlocking logic.

If the bay and station topology are found to be valid the switching command is issued. If a non-permissible status would result from the switching action then the issuing of such a switching command is refused and an alarm is issued.

If not all binary outputs are required by the bay type then these vacant binary outputs can be freely utilized for other purposes.

Besides issuing switching commands binary outputs may also be triggered by persistent commands.

1 Application and Scope
 (continued)

Global functions

The MiCOM P132 includes an internal clock which can be set from the key pad on the local control panel. All events that have occurred are time tagged (1 ms resolution) and stored in the recording memories depending on significance, and are then transmitted through the communications interface.

If there is a substation control level available the internal clock may be synchronized with a time message using one of the communication protocols per MODBUS, DNP3, IEC 60870-3-103, or IEC 60870-3-101. The internal clock may also be synchronized with selectable SNTP servers using the communication protocol per IEC 61850.

Always available for time synchronization is an IRIG-B input. The time on the internal clock is tracked and during synchronization with above communication protocols it operates with a deviation of $\pm 10 \mathrm{~ms}$ and with the IRIG-B input the deviation is $\pm 1 \mathrm{~ms}$.

The relevant protection parameters can be stored in four independent parameter subsets in order to adapt the protection device to different operating and power system management conditions. Switching between these parameter subsets is carried out from the local control panel or via binary input signals.

1 Application and Scope
 (continued)

Operating data recording

Overload data acquisition

Overload recording

Ground fault data acquisition

For the continuous recording of processes in system operation as well as of events, a non-volatile (NV) memory is provided (cyclic buffer) to store up to 128 entries. The "operationally relevant" signals, each fully tagged with date and time at signal start and signal end, are recorded in chronological order. Included are control actions such as enabling or disabling functions and triggering for testing and resetting purposes. The onset and end of events in the system that represent a deviation from normal operation such as overloads, ground faults or short-circuits are also recorded.

System overload situations represent a deviation from normal operation and may only be permitted to continue for a limited time duration. The overload functions enabled in the protection device will detect a system overload situation and collect respective measured values of this overload, such as the magnitude of the overload current, the relative temperature increase during the overload event and the duration of the overload.

For the duration of the system overload situation "operationally relevant" signals, each fully tagged with date and time at signal start and signal end, are recorded in chronological order in a NV memory. Measured overload values, each fully tagged with date and time at time of detection, are also recorded.

A total of 8 system overload events can be recorded. After eight overload events have been logged, the oldest overload log will be overwritten, unless memories have been cleared in the interim.

A ground fault in an isolated neutral system or a resonant-grounded system is considered a system fault but, in general, unlimited system operation may continue. The ground fault determination functions enabled in the protection device will detect a system ground fault and collect respective measured values of this ground fault, such as the magnitude of the neutral-point displacement voltage and the duration of the ground fault.

For the duration of the system ground fault situation "operationally relevant" signals, each fully tagged with date and time at signal start and signal end, are recorded in chronological order in a NV memory. Measured ground fault values, each fully tagged with date and time at time of detection, are also recorded.

A total of 8 system ground fault events can be recorded. After eight ground fault events have been logged, the oldest ground fault log will be overwritten, unless memories have been cleared in the interim.

1 Application and Scope
 (continued)

Fault data acquisition

A short-circuit in the system is considered a fault. The short-circuit functions enabled in the protection device will detect a system short-circuit and collect respective measured values of this fault, such as the magnitude of the short-circuit current and the duration of the fault. Either the end of the fault or the time when the trip command is issued may be selected as the point of detection. Triggering from an external signal is also possible. Fault data acquisition occurs based on the measurement loop selected by the protection device and provides current, voltage, and angle values as well as impedance and reactance values.

The distance to the fault is determined from the short-circuit reactance measured value which corresponds to the 100% value set for the protected line section. Output of the fault location is made either during each general starting or only when a trip command is issued.

Fault recording

For the duration of the fault "operationally relevant" signals, each fully tagged with date and time at signal start and signal end, are recorded in chronological order in a NV memory. The measured fault values, fully tagged with the acquisition date and time, are also recorded.

Furthermore sampled values of all analog input variables such as phase currents and phase-to-ground voltages are recorded during a fault.

A total of 8 fault events can be recorded. After eight fault events have been logged, the oldest fault log will be overwritten, unless memories have been cleared in the interim.

Blocking functions

Protection functions and their respective timer stages may be temporarily blocked during commissioning or cyclic tests. For this purpose, individual as well as multiple blocking functions are available.

Blocking functions may be triggered from any of the communications interfaces, the function keys on the local control panel or using binary signal inputs on the MiCOM P132.

Resetting options

Counter and memory data, latching modes, Boolean equations, and stored measured values may be reset individually or by group functions.

A resetting function may be triggered from any of the communications interfaces, the function keys on the local control panel or using binary signal inputs on the MiCOM P132.

Furthermore it is always possible to adapt the functional range of the CLEAR key to the respective requirements.

Self-monitoring

Comprehensive monitoring routines ensure that internal hardware or software faults are detected and do not lead to protection device malfunctions.

A functional test is carried out when the auxiliary voltage is turned on. Cyclic selfmonitoring tests are run during protection device operation. Should testing results differ from set values the corresponding signal will be stored in the non-volatile monitoring signal memory. Depending on the type of internal fault detected either blocking of the protection device will occur or just a warning signal will be issued.

1 Application and Scope
 (continued)

Local control panel

Control and display

Information interfaces
Information is exchanged through the local control panel, the PC interface, or two optional communication interfaces (channel 1 and channel 2).

Using one of the two available communication interfaces (communication protocols per IEC 870-5-103, IEC 60870-5-101, DNP 3, MODBUS or Courier) the numerical protection device can be wired either to the substation control system or a telecontrol system.

The second communication interface (communication protocol per IEC 60870-5-103 only) is designed for remote control.

External clock synchronization can be accomplished by using the optional IRIG-B input.
A direct link to other MiCOM protection devices can be set up by applying the optional InterMiCOM interface (channel 3).

Function keys
On the case 40T and case 84T devices there are six freely configurable function keys available. These may be used for easy control operation access.

Design
The P132 is modular in design. The plug-in modules are housed in a robust aluminum case and electrically interconnected via one analog p/c board and one digital p/c board.

1 Application and Scope
 (continued)

Inputs and outputs
The following inputs and outputs are available:
. 4 current-measuring inputs
$\square 4$ or 5 voltage-measuring inputs

- 4, 10 or 16 additional binary logic inputs (case $24 \mathrm{~T}: 4$ additional binary logic inputs) with user-definable function assignment

8, 16 or 24 output relays (case 24 T : 8 output relays) with user-definable function assignment
\square optionally 6 additional output relays (4 of these fitted with triacs) or 4 output relays fitted with high-power contacts, each with user-definable function assignment

- for case 40T and case 84T devices there are optionally 6 or 12 additional binary logic inputs (opto-coupler) and 6 or 12 additional output relays available which are used to control up to 3 switchgear units
(For detailed ordering options see Chapter "Order Information".)
The nominal currents and nominal voltages of the standard measuring inputs can be set.

The nominal voltage range of the binary signal inputs (opto-coupler) is 24 to 250 V DC. As an option binary signal input modules with a higher operate threshold are available.

The auxiliary voltage input for the power supply is also designed for an extended range. The nominal voltage ranges are 48 to 250 V DC and 100 to 230 V AC. As an option there is a variant available for the lower nominal voltage range 24 V to $36 \mathrm{~V} D C$.

All output relays can be utilized for signaling and command purposes.
The optional (up to 10) inputs for resistance thermometers on the temperature p / c board are lead-compensated and balanced.

The optional 0 to 20 mA input provides open-circuit and overload monitoring, zero suppression defined by a setting, plus the option of linearizing the input variable via 20 adjustable interpolation points.

Two selectable measured variables (cyclically updated measured operating data and stored measured fault data) can be output as a burden-independent direct current via the two optional 0 to 20 mA outputs. The characteristics are defined by 3 adjustable interpolation points allowing a minimum output current (4 mA , for example) for slave-side open-circuit monitoring, knee-point definition for fine scaling, and a limitation to lower nominal currents (10 mA , for example). Where sufficient output relays are available, a selectable measured variable can be output by contacts in BCD format.

1 Application and Scope

2 Technical Data

2 Technical Data

2.1 Conformity

Notice
Declaration of conformity
Applicable to P132, version -306-415/416/417/418/419-612.
(Per Article 10 of EC Directive 72/73/EC.)
The product designated 'P132 Time-Overcurrent Protection and Control Unit' has been designed and manufactured in conformance with the European standards EN 60255-6 and EN 61010-1 and with the 'EMC Directive' and the 'Low Voltage Directive' issued by the Council of the European Community.

2.2 General Data

General device data
Design
Surface-mounted case suitable for wall installation or flush-mounted case for 19 " cabinets and for control panels.

Installation Position
Vertical $\pm 30^{\circ}$.

Degree of Protection
Per DIN VDE 0470 and EN 60529 or IEC 529.
IP 52; IP 20 for rear connection space with flush-mounted case
(IP 10 for ring-terminal connection)
Weight
24 TE case: Approx. 5 kg
40 TE case: Approx. 7 kg
84 TE case: Approx. 11 kg
Dimensions and Connections
See dimensional drawings (Chapter 4) and terminal connection diagrams (Chapter 5).
Terminals
PC interface (X6): EIA RS232 connector (DIN 41652), type D-Sub, 9-pin.
Communication interfaces COMM1 to COMM3:
Optical fibers
(X7, X8 and X31, X32): F-SMA optical fiber connection per IEC 60874-2 (for plastic fibers) or optical fiber connection BFOC-ST ${ }^{\circledR}$ connector 2.5 per IEC 60874-10-1 (for glass fibers) $\left(\mathrm{ST}^{\circledR}\right.$ is a registered trademark of AT\&T Lightguide Cable Connectors)
or
Wire leads
(X9, X10 and X33): M2 threaded terminal ends for wire cross-sections up to $1.5 \mathrm{~mm}^{2}$
or (for COMM3 only
(InterMiCOM))
RS 232 (X34): EIA RS232 (DIN 41652) connector, type D-Sub, 9-pin.

2 Technical Data

(continued)

IRIG-B Interface (X11): BNC plug
Communication interface IEC 61850:
Optical fibers

(X7, X8):	optical fiber connection BFOC-ST ${ }^{\circledR}$ connector 2.5 per IEC 60874-10 (for glass fibers) (ST^{\circledR} is a registered trademark of AT\&T Lightguide Cable Connectors)
or Optical fibers	
(X13):	SC connector per IEC 60874-14-4 (for glass fibers)
Wire leads	
(X12):	RJ45 connector per ISO/IEC 8877.

Current Measuring Inputs:
Threaded terminal ends, pin-type cable lugs: M5, self-centering with cage clamp to protect conductor cross-sections $\leq 4 \mathrm{~mm}^{2}$
or:
Threaded terminal ends, ring-type cable lugs: M4
Other Inputs and Outputs:
Threaded terminal ends, pin-type cable lugs: M3, self-centering with cage clamp to protect conductor cross-sections 0.2 to $2.5 \mathrm{~mm}^{2}$ or:
Threaded terminal ends, ring-type cable lugs: M4
Creepage Distances and Clearances
Per EN 61010-1 or IEC 664-1
Pollution degree 3, working voltage 250 V
overvoltage category III, impulse test voltage 5 kV .

2.3 Tests

2.3.1 Type Tests

Type tests

Electromagnetic compatibility (EMC)

All tests per EN 60255-6 or IEC 255-6.

Interference Suppression
Per EN 55022 or IEC CISPR 22, Class A.
1 MHz Burst Disturbance Test
Per IEC 255 Part 22-1 or IEC 60255-22-1, Class III
Common-mode test voltage: 2.5 kV
Differential test voltage: 1.0 kV
Test duration: > 2 s
Source impedance: 200Ω
Immunity to Electrostatic Discharge
Per EN 60255-22-2 or IEC 60255-22-2, severity level 3
Contact discharge
Single discharges: > 10
Holding time: > 5 s
Test voltage: 6 kV
Test generator: 50 to $100 \mathrm{M} \Omega, 150 \mathrm{pF} / 330 \Omega$

2 Technical Data

(continued)

Immunity to Radiated Electromagnetic Energy

Per EN 61000-4-3 and ENV 50204, severity level 3
Antenna distance to tested device: > 1 m on all sides
Test field strength, frequency band 80 to 1000 MHz : $10 \mathrm{~V} / \mathrm{m}$
Test using AM: 1 kHz / 80 \%
Single test at 900 MHz : AM $200 \mathrm{~Hz} / 100 \%$.
Electrical Fast Transient or Burst Requirements
Per IEC 60255-22-4, Class B:
Power supply: Amplitude: 2 kV , Burst frequency: 5 kHz
Inputs and outputs: Amplitude: 2 kV , Burst frequency: 5 kHz
Communications: Amplitude: 1 kV , Burst frequency: 5 kHz
Per EN 61000-4-4, severity level 4:
Power supply:
Amplitude: 4 kV , Burst frequency: 2.5 kHz and 5 kHz
Inputs and outputs: Amplitude: 2 kV , Burst frequency: 5 kHz
Communications: Amplitude: 2 kV , Burst frequency: 5 kHz
Rise time of one pulse: 5 ns
Impulse duration (50% value): 50 ns
Burst duration: 15 ms
Burst period: 300 ms
Source impedance: 50Ω
Power Frequency Immunity
Per IEC 60255-22-7, Class A:
Phase-to-phase:
RMS value 150 V ,
Coupling resistance 100Ω
Coupling capacitor $0.1 \mu \mathrm{~F}$, for 10 s .
Phase-to-ground:
RMS value 300 V ,
Coupling resistance 220Ω
Coupling capacitor $0.47 \mu \mathrm{~F}$, for 10 s .
To comply with this standard, the parameter
INP: Filter (010 220) should be set as advised
in Chapter 7.
Current/Voltage Surge Immunity Test
Per EN 61000-4-5 or IEC 61000-4-5, insulation class 4
Testing of circuits for power supply and asymmetrical or symmetrical lines.
Open-circuit voltage, front time / time to half-value: 1.2 / $50 \mu \mathrm{~s}$
Short-circuit current, front time / time to half-value: 8 / $20 \mu \mathrm{~s}$
Amplitude: 4 / 2 kV , Pulses: > 5 / min,
Source impedance: 12 / 42Ω.
Immunity to Conducted Disturbances Induced by Radio Frequency Fields
Per EN 61000-4-6 or IEC 61000-4-6, severity level 3
Test voltage: 10 V .
Power Frequency Magnetic Field Immunity
Per EN 61000-4-8 or IEC 61000-4-8, severity level 4
Test frequency: 50 Hz
Test field strength: $30 \mathrm{~A} / \mathrm{m}$.
Alternating Component (Ripple) in DC Auxiliary Energizing Quantity Per IEC 255-11, 12 \%.

2 Technical Data

(continued)

Insulation

Voltage Test

Per EN 61010-1 and IEC 255-5
2 kV AC, 60 s
Only direct voltage (2.8 kV DC) must be used for the voltage test on the power supply inputs. The PC interface must not be subjected to the voltage test.

Impulse Voltage Withstand Test

Per IEC 255-5
Front time: $1.2 \mu \mathrm{~s}$
Time to half-value: $50 \mu \mathrm{~s}$
Peak value: 5 kV
Source impedance: 500Ω.

Mechanical robustness

Vibration Test

Per EN 60255-21-1 or IEC 255-21-1, test severity class 1:
Frequency range in operation: 10 to $60 \mathrm{~Hz}, 0.035 \mathrm{~mm}$ and 60 to $150 \mathrm{~Hz}, 0.5 \mathrm{~g}$
Frequency range during transport: 10 to $150 \mathrm{~Hz}, 1 \mathrm{~g}$
Shock Response and Withstand Test, Bump Test
Per EN 60255-21-2 or IEC 255-21-2,
acceleration and pulse duration:
Shock Response tests are carried out to verify full operability (during operation), test severity class 1 , 5 g for 11 ms ,
Shock Withstand tests are carried out to verify the endurance (during transport), test severity class 1 , 15 g for 11 ms

Seismic Test

Per EN 60255-21-3 or IEC 60255-21-3, test procedure A, class 1
Frequency range:
5 to $8 \mathrm{~Hz}, 3.5 \mathrm{~mm} / 1.5 \mathrm{~mm}, 8$ to $35 \mathrm{~Hz}, 10 / 5 \mathrm{~m} / \mathrm{s}^{2}, 3 \times 1$ cycle.
Vibration Test ${ }^{1)}$
Per EN 60255-21-1 or IEC 255-21-1, test severity class 2:
Frequency range in operation: 10 to $60 \mathrm{~Hz}, 0.075 \mathrm{~mm}$ and 60 to $150 \mathrm{~Hz}, 1.0 \mathrm{~g}$
Frequency range during transport: 10 to $150 \mathrm{~Hz}, 2$ g
Shock Response and Withstand Test, Bump Test ${ }^{1)}$
Per EN 60255-21-2 or IEC 255-21-2,
acceleration and pulse duration:
Shock Response tests are carried out to verify full operability (during operation), test severity class 2, 10 g for 11 ms ;
Shock Withstand tests are carried out to verify the endurance (during transport), test severity class 1 , 15 g for 11 ms
Shock bump tests are carried out to verify permanent shock (during transport), test severity class 1, 10 g for 16 ms
Seismic Test ${ }^{1)}$
Per EN 60255-21-3 or IEC 60255-21-3, test procedure A, class 2
Frequency range:
5 to $8 \mathrm{~Hz}, 7.5 \mathrm{~mm} / 3.5 \mathrm{~mm}, 8$ to $35 \mathrm{~Hz}, 20 / 10 \mathrm{~m} / \mathrm{s}^{2}, 3 \times 1$ cycle

[^1]
2 Technical Data

(continued)

2.3.2 Routine Tests

All tests per EN 60255-6 or IEC 255-6 and DIN 57435 Part 303.

Voltage Test
Per IEC 255-5
2.2 kV AC, 1 s

Only direct voltage (2.8 kV DC) must be used for the voltage test on the power supply inputs.
The PC interface must not be subjected to the voltage test.
Additional Thermal Test
100\% controlled thermal endurance test, inputs loaded.

2.4 Environmental Conditions

Environment

Temperatures

Recommended temperature range: $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ or $+23^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}$ Limit temperature range: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ or $-13^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$.

Ambient Humidity Range
$\leq 75 \%$ relative humidity (annual mean),
56 days at $\leq 95 \%$ relative humidity and $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, condensation not permitted.

Solar Radiation

Direct solar radiation on the front of the device must be avoided.

2.5 Inputs and Outputs

Measuring inputs
Current
Nominal current Inom: 1 and 5 A AC (adjustable)
Nominal consumption per phase: <0.1 VA at Inom
Load rating:
continuous: 4 Inom,
for 10 s : $30 \mathrm{I}_{\mathrm{nom}}$,
for 1 s : $100 I_{\text {nom, }}$
Nominal surge current: 250 Inom

Voltage
Nominal voltage Vnom: 50 to 130 V AC (adjustable)
Nominal consumption per phase: $<0.3 \mathrm{VA}$ at $\mathrm{V}_{\text {nom }}=130 \mathrm{~V}$ AC
Load rating: continuous 150 V AC.
Frequency
Nominal frequency fnom: 50 Hz and 60 Hz (adjustable)
Operating range: 0.95 to $1.05 \mathrm{f}_{\text {nom }}$
Frequency protection: 40 to 70 Hz

2 Technical Data

(continued)

Binary signal inputs

Threshold Pickup and Drop-off Points as per Ordering Option
 18 V standard variant ($\mathrm{V}_{\mathrm{A}, \text { nom }}$: $=24$ to 250 V DC):
 Switching threshold in the range $14 \mathrm{~V} . . .19 \mathrm{~V}$

Special variants with switching thresholds from 58 to 72% of the nominal input voltage (i.e. definitively 'low' for $V_{A}<58 \%$ of the nominal supply voltage,
definitively 'high' for VA > 72% of the nominal supply voltage)
"Special variant 73 V": Nominal supply voltage 110 V DC
"Special variant 90 V": Nominal supply voltage 127 V DC
"Special variant 146 V": Nominal supply voltage 220 V DC
"Special variant 155 V": Nominal supply voltage 250 V DC
Power consumption per input
Standard variant:
$\mathrm{V}_{\mathrm{A}}=19 \ldots 110 \mathrm{~V}$ DC: $0.5 \mathrm{~W} \pm 30 \%$,
$V_{A}>110 V D C: V_{A} \cdot 5 \mathrm{~mA} \pm 30 \%$.
Special variant:
$\mathrm{V}_{\text {in }}>$ Switching threshold: $\mathrm{V}_{\mathrm{A}} \cdot 5 \mathrm{~mA} \pm 30 \%$.

Notes

The standard variant of binary signal inputs (opto couplers) is recommended in most applications, as these inputs operate with any voltage from 19 V . Special versions with higher pick-up/drop-off thresholds are provided for applications where a higher switching threshold is expressly required.

The maximum voltage permitted for all binary signal inputs is 300 V DC.
IRIG-B interface
Minimum / maximum input voltage level (peak-peak): $100 \mathrm{mVpp} / 20 \mathrm{Vpp}$. Input impedance: $33 \mathrm{k} \Omega$ at 1 kHz .
Electrical isolation: 2 kV

2 Technical Data

(continued)

Analog Inputs and Outputs
Direct current input
Input current: 0 to 26 mA
or 0.00 to $1.20 \mathrm{I}_{\mathrm{DC}, \text { nom }}\left(\mathrm{I}_{\mathrm{DC}, \text { nom }}=20 \mathrm{~mA}\right)$
Maximum permissible continuous current: 50 mA .
Maximum permissible input voltage: 17 V .
Input resistance: 100Ω.
Open-circuit monitoring: 0 to 10 mA (adjustable)
Overload monitoring: > 24.8 mA
Zero suppression: 0.000 to $0.200 \mathrm{I}_{\mathrm{DC}, \text { nom }}$ (adjustable).
Resistance thermometer
Only PT 100 permitted for analog (I/O) module, mapping curve per IEC 75.1
PT 100, Ni 100 or Ni 120 permitted for temperature p/c board (the RTD module)
Value range: $-40.0^{\circ} \mathrm{C}$ to $+215.0^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+419^{\circ} \mathrm{F}\right)$
3-wire configuration: max. 20Ω per conductor
Open and short-circuited input permitted
Operate values of the measuring circuit monitoring signal: $\Theta>+215^{\circ} \mathrm{C}\left(+419^{\circ} \mathrm{F}\right)$ and $\Theta<-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$

Direct current output
Output current: 0 to 20 mA
Maximum permissible load: 500Ω
Maximum output voltage: 15 V

2 Technical Data

(continued)

Output relays
Binary I/O module X ($6 \mathrm{xI}, 6 \mathrm{xO}$):
for switchgear control
Rated voltage: 250 V DC, 250 V AC
Continuous current:
Short-duration current:
8 A

Making capacity:
Breaking capacity:
30 A for 0.5 s
$1000 \mathrm{~W}(\mathrm{VA})$ at $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$
0.2 A at 220 V DC and $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$,

4 A at 230 V AC and $\cos \varphi=0.4$
Binary I/O module $\mathrm{X}(4 \mathrm{H})$:
with heavy duty contacts, use only for direct voltage/current
250 V DC
Continuous current:
Short-duration current:
10 A
250 A for 30 ms
Making capacity:
Breaking capacity:
30 A for 3 s
30 A
7500 W (resistive load) or 30 A at 250 V DC, Maximum values: 30 A and 300 V DC
2500 W inductive(L/R 40 ms) or 10 A at 250 V DC,
Maximum values: 10 A and 300 V DC

All other modules:
Rated voltage:
Continuous current:
Short-duration current:
250 V DC, 250 V AC
5 A
Making capacity:
30 A for 0.5 s
$1000 \mathrm{~W}(\mathrm{VA})$ at $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$
Breaking capacity:
0.2 A at 220 V DC and $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$, 4 A at 230 VAC and $\cos \varphi=0.4$

2 Technical Data

(continued)

Local control panel
Input or output:
via 7 keys (40TE and 84TE cases: additional 6 function keys)
and a 4×20 character-LCD display
State and fault signals:
40TE and 84TE cases: 23 LED indicators (5 permanently assigned, 18 freely
configurable)
24TE cases: 10 LED indicators (5 permanently assigned, 5 freely configurable)

PC interface
Transmission rate: 300 to 115,200 baud (adjustable)

The communication module can be provided with up to three communication channels, depending on the module variant. Channel 1 and 3 may either be equipped to connect wire leads or optical fibers and channel 2 is only available to connect wire leads.

For communication interface 1, communication protocols based on IEC 870-5-103, IEC 60870-5-101, MODBUS, DNP 3.0, or Courier can be set, Transmission rate: 300 to 64,000 bits/s (adjustable).

Communication interface 2 can only be operated with the interface protocol based on IEC 60870-5-103.
Transmission rate: 300 to 57,600 bits/s (adjustable).
Communication interface 3 permits end-end channel-aided digital communication schemes to be configured for real time protective signaling between two protection devices (asynchronous, full-duplex InterMiCOM protective interface) Transmission rate: 600 to 19,200 bits/s (adjustable).

Wire Leads

Per RS 485 or RS 422, 2 kV isolation
Distance to be bridged
Point-to-point connection: max. 1200 m
Multipoint connection: max. 100 m

Plastic Fiber Connection
Optical wavelength: typically 660 nm
Optical output: min. -7.5 dBm
Optical sensitivity: min. -20 dBm
Optical input: max. -5 dBm
Distance to be bridged: max. 45 m
(Distance to be bridged given for identical optical outputs and inputs at both ends, a system reserve of 3 dB , and typical fiber attenuation)

2 Technical Data

(continued)

Glass Fiber Connection G 50/125
Optical wavelength: typically 820 nm
Optical output: min. -19.8 dBm
Optical sensitivity: min. -24 dBm
Optical input: max. -10 dBm
Distance to be bridged: max. 400 m
(Distance to be bridged given for identical optical outputs and inputs at both ends, a system reserve of 3 dB , and typical fiber attenuation)

Glass Fiber Connection G 62.5/125
Optical wavelength: typically 820 nm
Optical output: min. -16 dBm
Optical sensitivity: min. -24 dBm
Optical input: max. -10 dBm
Distance to be bridged: max. 1,400 m
(Distance to be bridged given for identical optical outputs and inputs at both ends, a
system reserve of 3 dB , and typical fiber attenuation)
IEC Communication
interface

Wire Leads

IEC 61850-compliant, Ethernet-based communications:
Transmission rate: 10 or $100 \mathrm{Mbit} / \mathrm{s}$
RJ45, 1.5 kV isolation
Maximum distance: 100 m
for optical fibers ($100 \mathrm{Mbit} / \mathrm{s}$)
IEC 61850-compliant, Ethernet-based communications:
ST connector or SC connector
Optical wavelength: typically $1,300 \mathrm{~nm}$
Glass fiber G50/125:
Optical output: min. -23.5 dBm
Optical sensitivity: min. -31 dBm
Optical input: max. -14 dBm
Glass fiber G62.5/125:
Optical output: min. -20 dBm
Optical sensitivity: min. -31 dBm
Optical input: max. -14 dBm
IRIG-B interface
B122 format
Amplitude-modulated signal
Carrier frequency: 1 kHz
BCD- coded variable data (daily)

2 Technical Data

 (continued)
2.7 Information Output

Counters, measured data, and indications: see Chapter 8.

2.8 Settings

Typical characteristic data

Main function

Minimum output pulse for trip command: 0.1 to 10 s (adjustable)
Minimum output pulse for close command: 0.1 to 10 s (adjustable)
Definite-time and inverse-time overcurrent protection
Shortest tripping time:
Time-delayed stages:
non-directional mode: approx. 0.7 period
directional mode: approx. 1.2 period
Residual current stage: $\leq 10 \mathrm{~ms}$ (with tIN> $=0 \mathrm{~ms}$)
Starting reset time: approx. 1.5 period
(from 2 -fold operate value to 0): Starting and measurement resetting ratio (hysteresis): 0.95

Short-Circuit Direction Determination

Nominal acceptance angle for forward decision: $\pm 90^{\circ}$
Resetting ratio forward/backward recognition: $\leq 7^{\circ}$
Base point release for phase currents: 0.1 Inom
Base point release for phase-to-phase voltages: $0.002 \mathrm{~V}_{\text {nom }}$ at $\mathrm{V}_{\text {nom }}=100 \mathrm{~V}$
Base point release for residual currents: 0.01 Inom
Base point release for neutral displacement voltage: 0.015 to $0.6 \mathrm{~V}_{\text {nom }} / \sqrt{ } 3$ (adjustable)

Time-Voltage Protection

Operate time including output relay (measured variable from nominal value to 1.2 -fold operate value or measured variable from nominal value to 0.8 -fold operate value):
$\leq 40 \mathrm{~ms}$, approx. 30 ms
Reset time (measured variable from 1.2-fold operate value to nominal value or measured variable from 0.8 -fold operate value to nominal value):
$\leq 45 \mathrm{~ms}$, approx. 30 ms
Resetting ratio for $\mathrm{V}<>$: 1 to 10 \% (adjustable)

Power Directional Protection

Operate time including output relay (measured variable from nominal value to 1.2 -fold operate value or measured variable from nominal value to 0.8 -fold operate value): $\leq 60 \mathrm{~ms}$, approx. 50 ms
Reset time (measured variable from 1.2-fold operate value to nominal value or measured variable from 0.8 -fold operate value to nominal value):
$\leq 40 \mathrm{~ms}$, approx. 30 ms
Resetting ratio for
$\mathrm{P}>, \mathrm{Q}>: 0.05$ to 0.95 (adjustable)
$\mathrm{P}<, \mathrm{Q}<: 1.05$ to 20 (adjustable)

2 Technical Data

(continued)

Definitions

Measuring-Circuit
Monitoring
Operate values Idiff>, Vmin<

2.9 Deviations

2.9.1 Deviations of the Operate Values

Reference Conditions

Sinusoidal signals at nominal frequency fnom, total harmonic distortion $\leq 2 \%$, ambient temperature $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, and nominal auxiliary voltage $\mathrm{V}_{\mathrm{A}, \text { nom }}$.

Deviation
Deviation relative to the setting under reference conditions.

Deviation: ± 3 \%
Definite-time and inverse-
time overcurrent protection
Phase and Residual Current Stages
Deviation: ± 5 \%

Negative-Sequence System Stages
Deviation: ± 5 \%

Short-Circuit Direction
Determination

Motor protection and thermal overload protection
(reaction time)

Unbalance Protection

Time-Voltage Protection

Over-/underfrequency protection

Power Directional
Protection

Deviation $\pm 7.5 \%$ when $I / I_{\text {ref }}=6$

Operate values $\mathrm{f}<>$
$\pm 30 \mathrm{mHz}\left(f_{\text {nom }}=50 \mathrm{~Hz}\right)$
$\pm 40 \mathrm{mHz}\left(f_{\text {nom }}=60 \mathrm{~Hz}\right)$

Operate values df/dt
$\pm 0.1 \mathrm{~Hz} / \mathrm{s}\left(f_{\text {nom }}=50\right.$ or 60 Hz)
Deviation: $\pm 10^{\circ}$

Deviation: ± 5 \%

Operate Values

V<>, Vpos<>: ± 1 \% (in the range 0.6 to 1.4 Vnom)
VNG>, Vneg>: $\pm 1 \%$ (in the range > 0.3 Vnom)

Operate Values $\mathrm{P}<>, \mathrm{Q}<>$
Deviation: ± 5 \%

2 Technical Data

(continued)

Ground Fault Direction
Determination Using
Steady-State Values
(GFDSS)
Operate values VNG>, IN, act>, IN, reac>, IN>
Deviation: ± 3 \%
Sector angle:
Deviation: 1°
Direct current input

Resistance thermometer
Deviation: $\pm 2^{\circ}$ or $\pm 1 \%$

Analog measured data
output
Deviation: ± 1 \%
Output residual ripple with max. load: $\pm 1 \%$

2.9.2 Deviations of the Timer Stages

Definitions

Reference Conditions

Sinusoidal signals at nominal frequency fnom, total harmonic distortion $\leq 2 \%$, ambient temperature $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, and nominal auxiliary voltage $\mathrm{V}_{\mathrm{A}, \text { nom }}$.

Deviation

Deviation relative to the setting under reference conditions.
Definite-time stages
Deviation: $\pm 1 \%+20$ to 40 ms
Residual current stage: $\leq 3 \mathrm{~ms}$ (with tIN> $=0 \mathrm{~ms}$)
Inverse-time stages
Deviation when $\mathrm{I} \geq 2$ Iref:

$$
\pm 5 \%+10 \text { to } 25 \mathrm{~ms}
$$

For IEC characteristic 'extremely inverse' and for thermal overload protection:
$\pm 7.5 \%+10$ to 20 ms

2 Technical Data

(continued)
Definitions
Operating Data
Measurement

Reference Conditions

Sinusoidal signals at nominal frequency fnom, total harmonic distortion $\leq 2 \%$, ambient temperature $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, and nominal auxiliary voltage $\mathrm{V}_{\mathrm{A}, \text { nom }}$.

Deviation
Deviation relative to the setting under reference conditions.
Measurement

Measuring Input Currents

Deviation: ± 1 \%
Measuring Input Voltages
Deviation: ± 0.5 \%

Internally Formed Resultant Current and Negative-Sequence System Current

Deviation: ± 2 \%
Internally Formed Neutral-point Displacement Voltage and Voltages of Positive- and Negative-Sequence Systems
Deviation: ± 2 \%
Active and Reactive Power / Active and Reactive Energy
Deviation: $\pm 2 \%$ when $\cos \varphi= \pm 0.7$
Deviation: $\pm 5 \%$ when $\cos \varphi= \pm 0.3$
Load angle
Deviation: $\pm 1^{\circ}$
Frequency
Deviation: $\pm 10 \mathrm{mHz}$
Direct Current of Measured Data Input and Output
Deviation: ± 1 \%
Temperature
Deviation: $\pm 2^{\circ} \mathrm{C}$
Fault data
Short-Circuit Current and Voltage
Deviation: ± 3 \%
Short-Circuit Impedance, Reactance, and Fault Location
Deviation: ± 5 \%

Internal clock
With free running internal clock:
Deviation: < $1 \mathrm{~min} /$ month
With external synchronization (with a synchronization interval $\leq 1 \mathrm{~min}$):
Deviation: < 10 ms
With synchronization via IRIG-B interface: $\pm 1 \mathrm{~ms}$

2 Technical Data

(continued)

2.10 Resolution of the Fault Value Acquisition

Time resolution of fault recording

20 sampled values per period
Phase currents system
Dynamic range: $100 \mathrm{I}_{\text {nom }}$ or $25 \mathrm{I}_{\text {nom }}$
Amplitude resolution:
at $\mathrm{I}_{\text {nom }}=1 \mathrm{~A}: 6.1 \mathrm{~mA}_{\mathrm{rms}}$ or $1.5 \mathrm{~mA}_{\text {rms }}$
at $I_{\text {nom }}=5 \mathrm{~A}: 30.5 \mathrm{~mA}_{\text {rms }}$ or $7.6 \mathrm{~mA}_{\text {rms }}$

Residual current

> Dynamic range: $16 \mathrm{I}_{\text {nom }}$ or $2 \mathrm{I}_{\text {nom }}$ Amplitude resolution:
> at $\mathrm{I}_{\text {nom }}=1 \mathrm{~A}: 0.98 \mathrm{~mA}_{\text {rms }}$ or $0.12 \mathrm{~mA}_{\text {rms }}$
> at $\mathrm{I}_{\text {nom }}=5 \mathrm{~A}: 4.9 \mathrm{~mA}_{\text {rms }}$ or $0.61 \mathrm{~mA}_{\text {rms }}$

Voltage
Dynamic range: 150 V
Amplitude resolution: $9.2 \mathrm{mV}_{\mathrm{rms}}$

2 Technical Data

(continued)

2.11 Recording Functions

Organization of the Recording Memories:
Operating data memory
\(\left.$$
\begin{array}{ll}\text { Scope for signals: } & \begin{array}{l}\text { All signals relating to normal operation; from a total of } \\
1024 \text { different logic state signals }\end{array}
$$

Depth: \& The 100 most recent signals\end{array}\right]\)| | |
| :--- | :--- |
| Scope for signals: | All signals relevant for self-monitoring from a total of
 1024 different logic state signals |
| Depth: | Up to 30 signals |

Overload memory

Number: The 8 most recent overload events
Scope for signals: All signals relevant for an overload event from a total of 1024 different logic state signals
Depth: 200 entries per overload event

Ground fault memory
Number: The 8 most recent ground fault events
Scope for signals: All signals relevant for a ground fault event from a total of 1024 different logic state signals
Depth: 200 entries per ground fault event

Fault memory

Number: The 8 most recent fault events

Scope for signals: Signals:
All fault-relevant signals from a total of 1024 different logic state signals

Depth for fault values:
Sampled values for all measured currents and voltages
Depth for signals Signals:
200 entries per fault event
Depth for fault values:
max. number of cycles per fault can be set by user;
820 periods in total for all faults, that is 16.4 s (for fnom $=50 \mathrm{~Hz}$) or
13.7 s (for fnom $=60 \mathrm{~Hz}$)

2 Technical Data

(continued)

2.12 Power supply

Power supply
Nominal auxiliary voltage $\mathrm{V}_{\mathrm{A}, \mathrm{nom}}$:
24 V DC or 48 to 250 V DC and 100 to 230 V AC (ordering option)
Operating range for direct voltage:
0.8 to $1.1 \mathrm{~V}_{\mathrm{A}, \text { nom }}$ with a residual ripple of up to $12 \% \mathrm{~V}_{\mathrm{A}, \text { nom }}$

Operating range for alternating voltage: 0.9 to $1.1 \mathrm{~V}_{\mathrm{A}, \text { nom }}$
Nominal consumption with $\mathrm{V}_{\mathrm{A}}=220 \mathrm{~V}$ DC and with maximum module configuration (relays de-energized/energized) 24 TE case: approx. $11 \mathrm{~W} / 20 \mathrm{~W}$ (relays de-energized/energized): 40 TE case: approx. $11 \mathrm{~W} / 25 \mathrm{~W}$ (relays de-energized/energized): 84 TE case: approx. $11 \mathrm{~W} / 44 \mathrm{~W}$ Start-up peak current: < 3 A for duration of 0.25 ms
Stored energy time $\geq 50 \mathrm{~ms}$ for interruption of $\mathrm{V}_{\mathrm{A}} \geq 220 \mathrm{~V}$ DC

2 Technical Data

(continued)

2.13 Current Transformer Specifications

The following equation is used to calculate the specifications of a current transformer for the offset maximum primary current:
$\mathrm{V}_{\text {sat }}=\left(\mathrm{R}_{\text {nom }}+\mathrm{R}_{\mathrm{i}}\right) \cdot \mathrm{n} \cdot \mathrm{I}_{\text {nom }} \geq\left(\mathrm{R}_{\mathrm{op}}+\mathrm{R}_{\mathrm{i}}\right) \cdot \mathrm{k} \cdot \mathrm{I}_{1, \max }$
with:
$\mathrm{V}_{\text {sat }}$: \quad saturation voltage (IEC knee point)
$I_{1, \text { max }}$: non-offset maximum primary current, converted to the secondary side
$I_{\text {nom: }}$ rated secondary current
n : rated overcurrent factor
k : over-dimensioning factor
$\mathrm{R}_{\text {nom }}$: rated burden
$R_{\text {op }} \quad$ actual connected operating burden
$R_{i} \quad$ internal burden

The specifications of a current transformer can then be calculated for the minimum required saturation voltage $\mathrm{V}_{\text {sat }}$ as follows:
$V_{s a t} \geq\left(R_{o p}+R_{i}\right) \cdot k \cdot I_{1, \max }^{\prime}$
As an alternative, the specifications of a current transformer can also be calculated for the minimum required rated overcurrent factor n by specifying a rated power $P_{\text {nom }}$ as follows:
$n \geq \frac{\left(R_{o p}+R_{i}\right)}{\left(R_{\text {nom }}+R_{i}\right)} \cdot k \cdot \frac{I_{1, \text { max }}^{\prime}}{I_{\text {nom }}}=\frac{\left(P_{o p}+P_{i}\right)}{\left(P_{\text {nom }}+P_{i}\right)} \cdot k \cdot \frac{I_{1, \text { max }}^{\prime}}{I_{\text {nom }}}$

With

$$
\begin{aligned}
& P_{n o m}=R_{n o m} \cdot I_{n o m}^{2} \\
& P_{o p}=R_{o p} \cdot I_{n o m}^{2} \\
& P_{i}=R_{i} \cdot I_{n o m}^{2}
\end{aligned}
$$

Theoretically, the specifications of the current transformer could be calculated for lack of saturation by inserting instead of the required over-dimensioning factor k its maximum value:
$k_{\max } \approx 1+\omega T_{1}$
with:
ω : system angular frequency
T_{1} : system time constant
However, this is not necessary. Instead, it is sufficient to calculate the over-dimensioning factor k such that the normal behavior of the analyzed protective function is guaranteed under the given conditions.

2 Technical Data

(continued)

If the P132 is to be used for definite-time overcurrent protection, then the overdimensioning factor k that is to be selected is primarily a function of the ratio of the maximum short-circuit current to the set operate value and, secondly, of the system time constant T_{1}. The required over-dimensioning factor can be read from the empirically determined curves in Figure 2-1. When inverse-time maximum current protection is used, the over-dimensioning factor can be taken from Figure 2-2.

2-1 Required over-dimensioning factor for definite-time overcurrent protection with fnom =50 Hz

2 Technical Data

(continued)

2-2 Required over-dimensioning factor for inverse-time maximum current protection with fnom $=50 \mathrm{~Hz}$

3 Operation

3 Operation

3.1 Modular Structure

The P132, a numeric device, is part of the MiCOM P 30 family of devices. The device types included in this family are built from identical uniform hardware modules. Figure 3-1 shows the basic hardware structure of the P132.

The external analog and binary quantities - electrically isolated - are converted to the internal processing levels by the peripheral modules T, Y, and X . Commands and signals generated by the device internally are transmitted to external destinations via floating contacts through the binary I/O modules X. The external auxiliary voltage is applied to the power supply module V , which supplies the auxiliary voltages that are required internally.

The analog data are always transferred from the transformer module T to the processor module P by way of the analog bus module. The processor module contains all the elements necessary for the conversion of measured analog variables, including multiplexers and analog/digital converters. The analog data processed by analog module Y are fed to the processor module P by way of the digital bus module. Binary signals are fed to the processor module by the binary I/O modules X via the digital bus module. The processor handles the processing of digitized measured variables and of binary signals, generates the protective trip as well as signals, and transfers them to the binary I/O modules X via the digital bus module. The processor module also handles overall device communication. As an option, communication module A can be mounted on the processor module to provide serial communication with substation control systems.

The control and display elements of the integrated local control panel and the integrated PC interface are housed on control module L.

3 Operation

(continued)
'Parameters' branch
‘Operation' branch

3.2 Operator-Machine Communication

The following interfaces are available for the exchange of information between operator and device:

- Integrated local control panel
\square PC interface
ㅁ Communication interface
All setting parameters and signals as well as all measured variables and control functions are arranged within the branches of the menu tree following a scheme that is uniform throughout the device family. The main branches are:

This branch carries all setting parameters, including the device identification data, the configuration parameters for adapting the device interfaces to the system, and the function parameters for adapting the device functions to the process. All values in this group are stored in non-volatile memory, which means that the values will be preserved even if the power supply fails.

This branch includes all information relevant for operation such as measured operating data and binary signal states. This information is updated periodically and consequently is not stored. In addition, various control parameters are grouped here, for example those for resetting counters, memories and displays.
'Events' branch
The third branch is reserved for the recording of events. Therefore all information contained in this group is stored. In particular the start/end signals during a fault, the measured fault data as well as sampled fault records are stored here and can be read out at a later time.

Settings and signals are displayed either in plain text or as addresses, in accordance with the user's choice.

The configuration of the local control panel also permits the installation of 'Measured Value Panels' on the LCD display. Different panels are automatically displayed for certain system operating conditions. Priority increases from normal operation to operation under overload conditions and finally to operation following a short circuit in the system. Thus the P132 provides the measured data relevant for the prevailing conditions.

3 Operation

(continued)

3.3 Configuring the Measured Value Panels and Selection of the Control Point (Function Group LOC)

The P132 provides Measured Value Panels that display the measured values relevant at a given time.

During normal power system operation, the Operation Panel is displayed. When an event occurs, the display switches to the appropriate Event Panel - provided that measured values have been selected for the Event Panels. In the event of overload or ground fault events, the display will automatically switch to the Operation Panel at the end of the event. In the event of a fault, the Fault Panel remains active until the LED indicators or the fault memories are reset.

3 Operation

(continued)

Operation Panel
The Operation Panel is displayed after the set return time has elapsed, provided that at least one measured value has been configured.

The user can select which of the measured operating values will be displayed on the Operation Panel by means of an ' m out of n ' parameter. If more measured values are selected for display than the LC display can accommodate, then the display will switch to the next set of values at intervals defined by the setting at LOC: Hold-Time for Panels or when the appropriate key on the local control panel is pressed.

3 Operation
 (continued)

Fault Panel
The Fault Panel is displayed in place of another data panel when there is a fault, provided that at least one measured value has been configured. The Fault Panel remains on display until the LED indicators or the fault memories are cleared.

The user can select the measured fault values that will be displayed on the Fault Panel by setting an 'm out of n ' parameter. If more measured values are selected for display than the LC display can accommodate, then the display will switch to the next set of values at intervals defined by the setting at LOC: Hold-Time for Panels or when the appropriate key on the local control panel is pressed.

[^2]
3 Operation

(continued)

Ground Fault Panel
The Ground Fault Panel is automatically displayed in place of another data panel when there is a fault, provided that at least one measured value has been configured. The Ground Fault Panel remains on display until the ground fault ends, unless a fault occurs. In this case the display switches to the Fault Panel.

The user can select the measured values that will be displayed on the Ground Fault Panel by setting a ' m out of n ' parameter. If more measured values are selected for display than the LC display can accommodate, then the display will switch to the next set of values at intervals defined by the setting at LOC: Hold-Time for Panels or when the appropriate key on the local control panel is pressed.

3-4 Ground Fault Panel

3 Operation
 (continued)

Overload Panel

The Overload Panel is automatically displayed in place of another data panel when there is an overload, provided that at least one measured value has been configured. The Overload Panel remains on display until the overload ends, unless a fault occurs. In this case the display switches to the Fault Panel.

The user can select the measured values that will be displayed on the Overload Panel by setting a 'm out of n ' parameter. If more measured values are selected for display than the LC display can accommodate, then the display will switch to the next set of values at intervals defined by the setting at LOC: Hold-Time for Panels or when the appropriate key on the local control panel is pressed.

3-5

3 Operation
 (continued)

Selection of the control point

Switchgear units can be controlled from a remote location or locally. Switching between local and remote control is achieved using an external key switch. The position of this switch is interrogated via an appropriately configured binary input (configuration via MAIN: Inp.asg. L/R key sw.)

This setting at LOC: Fct. assign. L/R key determines whether the switching (using the key switch) is between remote / local control (LR) or between remote and local control / local control (R\&LL).

If only remote control is enabled then there will be a local access blocking. If only local control is enabled then there will be a remote access blocking.

3 Operation

The P132 has a Clear key to which one or more reset functions can be assigned by selecting the required functions at LOC: Fct. reset key. Details on the functions' resetting mechanisms are given in section "Resetting Actions" of Chapter 3 ("Main Functions of the P132 (Function Group MAIN)").

3 Operation

(continued)

3.4 Serial Interfaces

The P132 has a PC interface as a standard component. Communication module A is optional and can be provided with one or two communication channels - depending on the design version. Communication between the P132 and the control station's computer is through the communication module A. Setting and interrogation is possible through all the P132's interfaces.

If the communication module A with two communication channels is installed, settings for two communication interfaces will be available. The setting of communication interface 1 (COMM1) may be assigned to the physical communication channels 1 or 2 (see section "Main Functions"). If the COMM1 settings have been assigned to communication channel 2 , then the settings of communication interface 2 (COMM2) will automatically be active for communication channel 1 . Communications channel 2 can only be used to transmit data to and from the P132 if its PC interface has been de-activated. As soon as the PC interface is used to transmit data, communications channel 2 becomes "dead".

If tests are run on the P132, the user is advised to activate the test mode. In this way the PC or the control system will recognize all incoming test signals accordingly (see section "Main Functions").

3.4.1 PC Interface (Function Group PC)

Communication between the device and a PC is through the PC interface. In order for data transfer between the P132 and the PC to function, several settings must be made in the P132.

There is an operating program available as an accessory for P132 control (see Chapter 13).

3 Operation
 (continued)

MAIN: Test mode
[037071]

3 Operation
 (continued)

3.4.2 Communication Interface 1 (Function Group COMM1)

There are several different interface protocols available at the communication interface 1. The following user-selected interface protocols are available for use with the P132:
\square IEC 60870-5-103, "Transmission protocols - Companion standard for the informative interface of protection equipment, first edition, 1997-12 (corresponds to VDEW / ZVEI Recommendation, "Protection communication companion standard 1, compatibility level 2", February 1995 edition) with additions covering control and monitoring
\square IEC 870-5-101, "Telecontrol equipment and systems - Part 5: Transmission protocols - Section 101 Companion standard for basic telecontrol tasks," first edition 1995-11
\square ILS-C, internal protocol of Schneider Electric

- MODBUS
- DNP 3.0
\square COURIER
In order for data transfer to function properly, several settings must be made in the P132.
Communication interface 1 can be blocked through a binary signal input. In addition, a signal or measured-data block can also be imposed through a binary signal input.

3 Operation
 (continued)

3 Operation

(continued)

3 Operation

(continued)

[^3]
3 Operation

(continued)

3 Operation
 (continued)

3 Operation

(continued)

3 Operation
 (continued)

3-14 Communication interface 1, settings for the COURIER protocol

3 Operation

(continued)

Checking spontaneous
signals
For interface protocols based on IEC 60870-5-103, IEC 870-5-101, or ILS_C it is possible to select a signal for test purposes. The transmission of this signal to the control station as 'sig. start' or 'sig. end' can then be triggered via setting parameters.

3.4.3 Communication Interface 2 (Function Group COMM2)

Communication interface 2 supports the IEC 60870-5-103 interface protocol.
In order for data transfer to function properly, several settings must be made in the P132.

3 Operation

(continued)

3 Operation
 (continued)

Checking spontaneous
signals
It is possible to select a signal for test purposes. The transmission of this signal to the control station as 'sig. start' or 'sig. end' can then be triggered via the local control panel.

3-17 Checking spontaneous signals

3 Operation

(continued)

Application

Physical medium

3.4.4 Communication Interface 3 (Function Group COMM3)

Communication interface 3 is designed to establish a digital communication link between two MiCOM devices over which up to 8 binary protection signals may be transmitted. Whereas communication interfaces 1 and 2 are designed as information interfaces to connect to data acquisition subsystems and for remote access, communication interface 3 is designed as a protection signaling interface that will transmit real time signals (InterMiCOM protection signaling interface). Its main application is to transmit signals from protective signaling (function group PSIG). In addition, any other internal or external binary signals may also be transmitted.

COMM3 is provided as an asynchronous, full-duplex communication interface. To transmit data the following physical media are available:

Direct link without use of external supplementary equipment:
\square Glass fiber (e.g. via $2 \times$ G62.5/125 up to max. 1.4 km)

- Twisted pair (RS 422 up to max. 1.2 km)

Use of external transmission equipment:
\square FO module (e.g. OZD 485 BFOC-1300 / Hirschmann up to max. 8/14/20 km)
\square Universal modem (e.g. PZ 511 via twisted pair $2 \times 2 \times 0.5 \mathrm{~mm}$ up to max. 10 km)
\square Voice frequency modem (e.g. TD-32 DC / Westermo up to max. 20 km)
Digital network:
\square Asynchronous data interface of primary multiplexing equipment

Activating and Enabling

In order to use InterMiCOM, the communication interface COMM3 has to be configured using the parameter COMM3: Function group COMM3. This setting parameter is only visible if the relevant optional communication module is fitted. After activation of COMM3, all addresses associated to this function group (setting parameters, binary state signals etc.) become visible.
The function can then be enabled or disabled by setting
COMM3: General enable USER.
Telegram configuration
The communication baud rate is settable (COMM3: Baud rate) to adapt to the transmission channel requirements. Sending and receiving addresses
(COMM3: Source address and COMM3: Receiving address can be set to different values, thus avoiding that the device communicates with itself.

The InterMiCOM protection signaling interface provides independent transmission of eight binary signals in each direction. For the send signals
(COMM3: Fct. assignm. send x, with $x=1$ to 8) any signal from the selection table of the binary outputs (OUTP) can be chosen. For the receive signals (COMM3: Fct. assignm. rec. x, with $x=1$ to 8) any signal from the selection table of the binary inputs (INP) can be chosen.

3 Operation

(continued)

For each receive signal, an individual operating mode can be set
(COMM3: Oper. mode receive x, with $x=1$ to 8), thus defining the required checks for accepting the received binary signal. In addition a specifically selected telegram structure subdivides the 8 binary signals into two groups. The signal encoding along with the set operating mode for the telegram check defines the actual balance of "Speed", "Security" and "Dependability" for each signal:
\square Binary signals 1 to 4:
Operating mode settable to 'Blocking' or 'Direct intertrip'

- Binary signals 5 to 8:

Operating mode settable to 'Permissive' or 'Direct intertrip'
EN 60834-1 classifies 3 categories of command based teleprotection schemes according to their specific requirements (see figure 3-19). By selection of a binary signal and by setting its operating mode appropriately, these requirements can be fulfilled as follows:
\square Direct transfer trip or intertripping:
Preference: Security
Implication: No spurious pickup in the presence of channel noise.
Recommended setting: \quad Select binary signal from groups 1 to 4 or 5 to 8 and set operating mode 'Direct intertrip'
\square Permissive teleprotection scheme:
Preference: Dependability.
Implication: Maximizes probability of signal transmission in the presence of channel noise.
Recommended setting: Select binary signal from group 5 to 8 and set operating mode 'Permissive'
\square Permissive teleprotection scheme:
Preference: Dependability.
Implication: Maximizes probability of signal transmission in the presence of channel noise.
Recommended setting: \quad Select binary signal from group 1 to 8 and set operating mode 'Permissive'

3 Operation
 (continued)

3-18
Comparison of speed, security and dependability offered by the three operating modes.

COMM3: Time-out comm.fault is used for monitoring the transmission channel (this timer is re-triggered with each complete and correct received telegram). The wide setting range allows adaptation to the actual channel transmission times and above all this is needed for time-critical schemes such as the blocking scheme. After the timer has elapsed, signals COMM3: Communications fault and
SFMON: Communic.fault COMM3 are issued and the received signals are automatically set to their user-defined default values
(COMM3: Default value rec. x, with $x=1$ to 8). As the main application for this protective signaling the fault signal may be mapped to the corresponding input signal in function group PSIG with the COMM3: Sig.asg. comm.fault setting.

COMM3: Time-out link fail. is used to determine a persistent failure of the data transmission channel. After the timer has elapsed, signals COMM3: Comm. Iink failure and SFMON: Comm.link fail.COMM3 are issued.

3 Operation
 (continued)

3 Operation

(continued)

Supervision of communication link quality

After a syntax check of each received message, InterMiCOM updates the ratio of incorrectly received messages, based on a total of the last 1000 received messages. The result is provided as an updating measurand COMM3: No. tel. errors p.u. and the overall maximum ratio can be read from
COMM3: No.t.err.,max,stored
If the set threshold COMM3: Limit telegr. errors is exceeded the corresponding signals COMM3: Lim.exceed.,tel.err.
and SFMON: Lim.exceed.,tel.err. will be issued. All corrupted telegrams are counted (COMM3: No. telegram errors). This counter as well as the stored maximum ratio of corrupted messages can be reset via
COMM3: Rset.No.tlg.err.USER (as well as via the binary signal COMM3: Reset No.tlg.err.EXT).

Commissioning tools

The actual values of send and receive signals can be read from the device as physical state signals (COMM3: State send x and COMM3: State receive x, with $x=1$ to 8). In addition, InterMiCOM provides 2 test facilities for commissioning of the protection interface.

For a loop-back test, the send output is directly linked back to the receive input. After setting the bit pattern wanted (as an equivalent decimal number at
COMM3: Loop back send) the test can be triggered via
COMM3: Loop back test. This bit pattern is sent for the duration of the hold time set at COMM3: Hold time for test. For this test only, the source address is set to ' 0 '; this value is not used for regular end-to-end communication. The test result can be checked as long as the hold-time is running by reading the measured operating data COMM3: Loop back result and COMM3: Loop back receive. As soon as the hold-time has expired, the loopback test is terminated and InterMiCOM reverts to the normal sending mode (e.g. sending the actual values of the configured send signals, using the set source address).

Thus, in case of problems with the InterMiCOM protection signaling interface, the loopback test can be used to verify or to exclude a defective device. The transmission channel including the receiving device can be checked manually by setting individual binary signals
(COMM3: Send signal for test) to user-defined test values
(COMM3: Log. state for test). After triggering the test by
COMM3: Send signal, test, the preset binary signal is sent with the preset value for the set hold time COMM3: Hold time for test. The 7 remaining binary signals are not affected by this test procedure and remain to be sent with their actual values. During the hold time, a received signal can be checked at the receiving device, e.g. by reading the physical state signal. After the hold time has expired, the test mode is reset automatically and the actual values of all 8 signals are transmitted again.

3.4.5 Communication Interface IEC61850 (Function groups IEC, GOOSE and GSSE)

The IEC 61850 communication protocol is implemented by these function groups and the Ethernet module.

Note:

Function group IEC is only available as an alternative to function group COMM1 (hardware ordering option!).

3.4.5.1 Communication Interface IEC 61850 (Function Group IEC)

As a further option the P132 includes an interface protocol according to the Ethernetbased communication standard IEC 61850.

IEC 61850 was created jointly by users and manufacturers as an international standard. The main target of IEC 61850 is interoperability of devices. This includes the capability of two or more intelligent electronic devices (IED), manufactured by the same company or different companies, to exchange data for combined operation.
Now this new communication standard IEC 61850 has created an open and common basis for communication from the process control level down to the network control level, for the exchange of signals, data, measured values and commands.
For a standardized description of all information and services available in a field device a data model, which lists all visible functions, is created. Such a data model, specifically created for each device, is used as a basis for an exchange of data between the devices and all process control installations interested in such information. In order to facilitate engineering at the process control level a standardized description file of the device, based on XML, is created with the help of the data model. This file can be imported and processed further by the relevant configuration program used by the process control device. This makes possible an automated creation of process variables, substations and signal images.

The following documentation with the description of the IEC 61850 data model, used with the P132, is available:
\square IDC file based on XML in the SCL (Substation Configuration Description Language) with a description of data, properties and services, available from the device, that are to be imported into the system configurator.

- PICS_MICS_ADL file with the following contents:
\square PICS (Protocol Implementation Conformance Statement) with an overview of available services.
\square MICS (Model Implementation Conformance Statement) with an overview of available object types.
\square ADL (Address Assignment List) with an overview of the assignment of parameter addresses (signals, measuring values, commands, etc.) used by the device with the device data model as per IEC 61850.

3 Operation
 (continued)

Ethernet Module

Activating and Enabling
The IEC function group can be activated by setting the parameter IEC: Function group IEC. This parameter is only visible if the optional Ethernet communication module is fitted to the device. After activation of IEC, all data points associated with this function group (setting parameters, binary state signals etc.) become visible.
The function can then be enabled or disabled by setting
IEC: General enable USER.

The parameter settings for function groups IEC, GOOSE and GSSE in the device are not automatically activated. An activation occurs either when the command IEC: Enable configuration is executed or automatically when the device is switched online with MAIN: Device on-line.

Client Log-on

Communication in Ethernet no longer occurs in a restrictive master slave system, as is common with other protocols. Instead server or client functionalities, as defined in the 'Abstract Communication Service Interface' (ACSI, IEC 61870-7-2), are assigned to the devices. A 'server' is always that device which provides information to other devices. A client may log-on to this server so as to receive information, for instance 'reports'. In a network a server can supply any number of clients with spontaneous or cyclic information.

In its function as server the P132 can supply up to 16 clients with information.

3 Operation
 (continued)

Clock Synchronization

Control and Monitoring of Switchgear Units

Fault Transmission
With IEC 61850 clock synchronization occurs via the SNTP protocol, defined as standard for Ethernet. Here the P132 functions as a SNTP client.

For clock synchronization one can select between the operating modes Broadcast from SNTP Server or Request from Server. With the first operating mode synchronization occurs by a broadcast message sent from the SNTP server to all devices in the network, and in the second operating mode the P 132 requests the device specific time signal during a settable cycle.

Two SNTP servers may be set. In this case, clock synchronization is preferably performed by the first server. The second server is used only when messages are no longer received from the first server.

When looking at the source priority for clock synchronization, which is set at the MAIN function then, by selecting "COMM1", synchronization per IEC 61850 is automatically active but only if this communication protocol is applied.

Control of switchgear units (external devices) by the P132 can be carried out from all clients that have previously logged-on to the device. Only one control command is executed at a time, i.e. further control requests issued by other clients during the execution of such a command are rejected. To control external devices the following operating modes can be set at
IEC: DEV control model:
\square Control service mode
\square Direct control with enhanced security
\square SBO (Select before operate) with enhanced security
When set to the operating mode Select before operate the switchgear unit is selected by the client before the control command is issued. Because of this selection the switchgear unit is reserved for the client. Control requests issued by other clients are rejected. If, after a selection no control command is issued by the client, the P132 resets this selection after 2 minutes have elapsed.
The switchgear units' contact positions signaled to the clients are made with the Report Control Blocks of the switchgear units.

Transmission of fault files is supported per "File Transfer".

3 Operation
 (continued)

Transmission of "Goose Messages"

Communication with the
Operating Program MiCOM S1 via the Ethernet Interface

The so-called "Goose Message" is a particular form of data transmission. Whereas normal server-client-services are transmitted at the MMS and TCP/IP level, the "Goose Message" is transmitted directly at the Ethernet level with a high transmission priority. Furthermore these "Goose Messages" can be received by all participants in the respective sub-network, independent of their server or client function. In IEC 61850 "Goose Messages" are applied for the accelerated transmission of information between two or more devices. Application fields are, for example, a reverse interlocking, a transfer trip or a decentralized substation interlock. In future the "Goose Message" will therefore replace a wired or serial protective interface.

According to IEC 61850 there are two types of "Goose Messages", GSSE and IEC-GOOSE. The GSSE is used to transmit binary information with a simple configuration by 'bit pairs', and it is compatible with UCA2. However IEC-GOOSE enables transmission of all data formats available in the data model, such as binary information, integer values or even analog measured values. But this will require more extensive configuration with the help of the data model from the field unit situated on the opposite side. With IEC-GOOSE the P132 at this time supports sending and receiving of binary information or two-pole external device states.

Direct access by the operating program MiCOM S1 via the Ethernet interface on the device may occur through the "tunneling principle". Transmission is carried out by an Ethernet Standard Protocol, but this is only supported by the associated operating program MiCOM S1 (specific manufacturer solution). Such transmission is accomplished over the same hardware for the network, which is used for server-client communication and "Goose Messages".
Available are all the familiar functions offered by the operating program MiCOM S1 such as reading/writing of setting parameters or retrieving stored data.

The various settings, measured values and signals for function group IEC are described in chapters 7 and 8 .

3 Operation

(continued)

Function group GOOSE can be activated by setting the parameter
GOOSE: Function group GOOSE. This parameter is only visible if the optional Ethernet communication module is fitted to the device. After activation of GOOSE, all data points associated to this function group (setting parameters, binary state signals etc.) become visible.
The function can then be enabled or disabled by setting
GOOSE: General enable USER.
The parameter settings for function groups IEC, GOOSE and GSSE in the device are not automatically activated. An activation occurs either when the command IEC: Enable configuration is executed or automatically when the device is switched online with MAIN: Device on-line. In addition function group IEC must be configured and enabled.

Sending GOOSE

3.4.5.2 Generic Object Oriented Substation Event (Function Group GOOSE)

For high-speed exchange of information between individual IEDs (intelligent electronic devices) in a local network, the P132 provides function group GOOSE (IEC-GOOSE) as defined in the IEC 61850 standard. GOOSE features high-speed and secure transmission for reverse interlocking, decentralized substation interlock, trip commands, blocking, enabling, contact position signals and other signals.
"Goose Messages" are only transmitted by switches but not by routers. "Goose Messages" therefore remain in the local network to which the device is logged-on.

With GOOSE up to 32 logic binary state signals and up to 3 two-pole states from the maximum of 3 possible external devices associated to the P132 can be sent. Selection of binary state signals is made by setting GOOSE: Output n fct. assig. ($\mathrm{n}=1$ to 32). The up to 3 two-pole states of the external devices are a fixed part of GOOSE for which there is no necessity to set parameters. The assignment of data object indexes to logic state signals is made in the range from 1 to 32 according to the assignment to GOOSE outputs. The two-pole state signals from external devices 1 to 3 receive a permanent assignment of data object indexes in ascending order from 33 to 35 .
GOOSE is automatically sent with each new state change of a configured binary state signal or an external device. There are numerous send repetitions in fixed ascending time periods ($10 \mathrm{~ms}, 20 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}, 500 \mathrm{~ms}, 1000 \mathrm{~ms}, 2000 \mathrm{~ms}$). If after 2 seconds there is no further state change apparent, GOOSE is then sent cyclically at 2-second intervals.

In order to have unambiguous identification of GOOSE sent, characteristics such as the Goose ID number, MAC address, application ID and VLAN identifier must be entered through parameter settings. Further characteristics are the 'Dataset Configuration Revision' with the fixed value "100" as well as the 'Dataset Reference', which is made up of the IED name (setting in function group IEC) and the fixed string
"System/LLNO\$GooseST".

3 Operation
 (continued)

With GOOSE up to 16 logic binary state signals and the two-pole contact position signals from up to 16 external devices can be received. Configuration of the logic state signals received (GOOSE: Input n fct.assig. ($\mathrm{n}=1$ to 16)) is made on the basis of the selection table of the binary inputs (opto coupler inputs). Contact position signals received from external devices are listed in the selection table for interlocking equations of the function group ILOCK, which are available to design a decentralized substation interlock.

For each state or contact position signal to be received from an external device the "Goose Message" must be selected that includes the information wanted by setting the Goose ID, the Application ID and the 'Dataset Reference'. With the further setting of the data object index and the data attribute index through parameters, the required information from the chosen GOOSE will be selected. The device will not evaluate the identification features VLAN identifier and 'Dataset Configuration Revision' that are also included in the GOOSE received.

3 Operation

(continued)

Each GOOSE includes time information on the duration of validity of its information. This corresponds to the double time period to the next GOOSE repetition. If the duration of validity has elapsed without having received this GOOSE again (i.e. because of a communications fault), the received signals will automatically be set to their respective default values GOOSE: Input n default or GOOSE: Ext.Dev n default ($n=1$ to 16).

The various settings, measured values and signals for function group GOOSE are described in chapters 7 and 8.

3 Operation

(continued)

Activating and Enabling

Sending GSSE

Receiving GSSE

3.4.5.3 Generic Substation State Event (Function Group GSSE)

For high-speed exchange of information between individual IEDs (intelligent electronic devices) in a local network, the P132 provides, as an additional functionality, the function group GSSE (UCA2.0-GOOSE) as defined in the IEC 61850 standard. GSSE features high-speed and secure transmission of logic binary state signals such as reverse interlocking, trip commands, blocking, enabling and other signals.

Function Group GSSE can be activated by setting the parameter GSSE: Function group GSSE. This parameter is only visible if the optional Ethernet communication module is fitted to the device. After activation of GSSE, all data points associated to this function group (setting parameters, binary state signals etc.) become visible.
The function can then be enabled or disabled by setting
GSSE: General enable USER.
The parameter settings for function groups IEC, GOOSE and GSSE in the device are not automatically activated. An activation occurs either when the command IEC: Enable configuration is executed or automatically when the device is switched online with MAIN: Device on-line. In addition the function group IEC must be configured and enabled.

With GSSE up to 32 logic binary state signals can be sent. Selection of binary state signals is made by setting GSSE: Output n fct.assig. ($n=1$ to 32). Each selected state signal is to be assigned to a bit pair in GSSE
(GSSE: Output n bit pair ($n=1$ to 32) , which will transmit this state signal.
GSSE is automatically sent with each state change of a selected state signal. There will be multiple send repetitions at ascending time periods. The first send repetition occurs at the given cycle time set with the parameter GSSE: Min. cycle. The cycles for the following send repetitions result from a conditional equation with the increment set with the parameter GSSE: Increment. Should no further state changes occur up to the time when the maximum cycle time has elapsed (GSSE: Max. cycle), then GSSE will be sent cyclically at intervals as set for the max. cycle time.

In order to have unambiguous identification of a GSSE sent, the IED name is used which was set in function group IEC.

With GSSE up to 32 logic binary state signals can be received. Configuration of the logic binary state signals received (GSSE: Input n fct.assig. ($n=1$ to 32)) is made on the basis of the selection table of the binary inputs (opto coupler inputs).
For each state signal to be received, the GSSE message, which will include the required information, must be selected by setting the IED name (GSSE: IED name). Selection of information wanted from the selected GSSE will occur by setting the bit pair (GSSE: Bit pair).
Each GSSE includes time information on the duration of validity of its information. This corresponds to the double time period to the next GSSE repetition. If the duration of validity has elapsed without having received this GSSE again (i.e. because of a communications fault), the signals received will automatically be set to their respective default value (GSSE: Input n default ($n=1$ to 32)).
The various settings, measured values and signals for function group GOOSE are described in chapters 7 and 8.

3 Operation
 (continued)

3.5 Time Synchronization via the IRIG-B Interface (Function Group IRIGB)

If a GPS receiver with an IRIG-B connection is available, for example, then the internal clock in the P132 can be synchronized to GPS time through the optional IRIG-B interface. The user must keep in mind that the IRIG-B signal contains only one piece of information about the date (the day as numbered since the beginning of the year). On the basis of this piece of information about the date, the P132 calculates the current date (DD.MM.YY) based on the year set in the P132.

Disabling and enabling the IRIG-B interface

Synchronization readiness
Once the IRIG-B interface has been enabled and is receiving a signal, the P132 checks the received signal for plausibility. Non-plausible signals are rejected by the P132. If a correct signal is not received by the P132 continuously, then the synchronization function is no longer ready.

3 Operation
 (continued)

Configuration of function keys with a single function

3.6 Configurable Function Keys (Function Group F_KEY)

The P132 includes six additional function keys that are freely configurable. Function keys F1 toFx will only be enabled after the password has been entered at F_Key: Password funct.key x.

As an example the operation of function key F1 is shown in figure 3-22. After the password has been entered the function key will remain active for the time period set at F_KEY: Return time fct.keys. Thereafter, the function key is disabled until the password is entered again. The same is valid for function keys F2 to F6. Exception: If a function key is configured as a control key a password request is only issued when the command "Local/Remote switching" has been assigned to this function key.

Each function key may be configured with a single function by selecting a logic state signal at F_KEY: Fct. assignm. Fx (Fx: F1 to F6), but with the exception: LOC: Trig. menu jmp x EXT (x: 1 or 2). This function is triggered by pressing the respective function key on the P132.

Configuration of function

keys with menu jump lists

Instead of a single function each function key may have one of the two menu jump lists assigned at $\mathrm{F}_{\mathrm{K}} \mathrm{KEY}$: Fct. assignm. Fx (Fx: F1 to F6) by selecting the listing at LOC: Trig. menu jmp x EXT (x: 1 or 2). The functions of the selected menu jump list are triggered in sequence by repeated pressing of the assigned function key.

Both menu jump lists are assembled at LOC: Fct. menu jmp list x (x: 1 or 2). Up to 16 functions such as setting parameters, event counters and/or event logs may be selected.

Note: LED indicators including the six positioned directly next to the function keys are configured independently and in this respect there is no relationship to the respective function key configuration.

Configuration of the
 READ key

As with LOC: Fct. menu jmp list x up to 16 functions may also be selected from the same menu jump list at LOC: Assignment read key. They are triggered in sequence by repeated pressing of the "READ" key.

3 Operation
 (continued)

Configuring function keys as control keys

Each function key may be configured as a control key by selecting one of the listings at F_KEY: Fct. assignm. Fx (Fx: F1 to F6).

- MAIN: Local/Remote key
- MAIN: Device selection key
- MAIN: Device OPEN key
- MAIN: Device CLOSE key

These control functions may only be used sensibly if all four of the above commands have been configured thus engaging four of the available six function keys.

Operating mode of the function keys

For each function key the operating mode may be selected at F_KEY: Operating mode Fx (Fx: F1 to F6). Here it is possible to select whether the function key operates as a key or as a switch. In the operating mode "Key" the selected function is active while the function key is pressed. In the operating mode "Switch" the selected function is switched on or off every time the function key is pressed. The state of the function keys can be displayed.

Exception: For function keys configured as control keys the operating mode is irrelevant and it is therefore ignored.

Handling keys

If backlighting for the LC display is switched off it will automatically light up when a function key or the "READ" key is pressed. The assigned function will only be triggered when the respective key is pressed a second time. This is also valid for the other keys.

3 Operation

(continued)

3-22
Configuration and operating mode of function keys. The assigned function is either a single function or a menu jump list.

3 Operation
 (continued)

3.7 Configuration and Operating Mode of the Binary Inputs (Function Group INP)

The P132 has opto coupler inputs for processing binary signals from the substation. The functions that will be activated in the P132 by triggering these binary signal inputs are defined by the configuration of the binary signal inputs. In order to ensure that during normal operation the P132 will recognize an input signal, it must persist for at least 20 ms . With the occurrence of a general starting this time period may have to be increased to 40 ms under unfavorable conditions.

Configuring the binary inputs

Operating mode of the binary inputs

One function can be assigned to each binary signal input by configuration. The same function can be assigned to several signal inputs. Thus one function can be activated from several control points having different signal voltages.

In this manual, we assume that the required functions (marked 'EXT' in the address description) have been assigned to binary signal inputs by configuration.

It should be noted that time-critical applications such as time synchronization commands should not be mapped to the binary signal inputs of the analog I/O module as these have an increased reaction time due to internal processing.

The operating mode for each binary signal input can be defined. The user can specify whether the presence (Active 'high' mode) or absence (Active 'low' mode) of a voltage shall be interpreted as the logic ' 1 ' signal. The display of the state of a binary signal input - "low" or "high" - is independent of the setting for the operating mode of the signal input.

An additional filter function may be enabled in order to suppress transient interference peaks at the logic signal inputs (operating modes Active 'high', filt. or Active 'low', filt.). With this function enabled a status change at the binary logic input is only signaled when the input signal remains at a steady signal level during a set number of sampling steps (sampling step size = period / 20). The number of sampling steps is set at parameter INP: Filter.

3 Operation

(continued)

3-23
Configuration and operating mode of the binary signal inputs

3 Operation

(continued)

3.8 Measured Data Input (Function Group MEASI)

There is a second optional analog module available for the P132. In addition to the analog (I/O) module Y with analog inputs and outputs there is now a second analog module obtainable, the temperature p/c board (also called the RTD module).

When the P132 is equipped with the analog (I/O) module Y it has two analog inputs available for measured data input. Direct current is fed to the P132 through the 20 mA analog input (input channel 1). The other input is designed for connection of a PT 100 resistance thermometer.

The temperature p/c board (the RTD module) mounted in the P132 has 9 analog inputs available to connect temperature sensors T1 to T9. These analog inputs are designed for connection of PT 100, Ni 100 or Ni 120 resistance thermometers.

The input current I_{DC} present at the analog (I / O) module Y is displayed as a measured operating value. The current that is conditioned for monitoring purposes ($\mathrm{I}_{\mathrm{D}, \mathrm{Clin}}$) is also displayed as a measured operating value. In addition, it is monitored by the Limit Value Monitoring function to detect whether it exceeds or falls below set thresholds (see "Limit Value Monitoring").

The measured temperatures are also displayed as measured operating values and monitored by the Limit Value Monitoring function to determine whether they exceed or fall below set thresholds (see "Limit Value Monitoring").

All measured variables are also forwarded to the Thermal Overload Protection function. With this protection it is possible to set whether the PT 100 resistance thermometer, the 20 mA analog input or - if configured - one of the temperature sensors T1 to T9 is to be used for the thermal replica (see "Thermal Overload Protection").

3 Operation
 (continued)

Disabling or enabling the measured data input function

The measured data input function can be disabled or enabled using a setting parameter.

3.8.1 Direct Current Input on the Analog (I/O) Module Y

External measuring transducers normally supply an output current of 0 to 20 mA that is directly proportional to the physical quantity being measured - the temperature, for example.
If the output current of the measuring transducer is directly proportional to the measured quantity only in certain ranges, linearization can be arranged, provided that the measured data input is set accordingly. Furthermore, for certain applications it may be necessary to limit the range being monitored or to monitor certain parts of the range with a higher or lower sensitivity.
By setting the value pair MEASI: IDC x and MEASI: IDC,Iin x, the user specifies which input current I_{DC} will correspond to the current that is monitored by the Limit Value Monitoring function, i.e., $\mathrm{I}_{\mathrm{DC}, \text { lin. }}$. The resulting points, called "interpolation points", are connected by straight lines in an $\mathrm{I}_{\mathrm{DC}}{ }^{-\mathrm{I}_{\mathrm{DC}}}$, lin diagram. In order to implement a simple characteristic, it is sufficient to specify two interpolation points, which are also used as limiting values (see figure 3-25). Up to 20 interpolation points are available to implement a complex characteristic.

When setting the characteristic the user must remember that only a rising/rising or falling/falling curve sense is allowed (no peak or vee-shapes). If the setting differs, the signal MEASI: Invalid scaling IDC will be generated.

IDClin / IDC,nom

3 Operation

(continued)

3-26
Example of a characteristic with five interpolation points (characteristic with zero suppression setting of $0.1 I_{D C, n o m}$ is shown as a broken line)

Zero suppression is defined by setting MEASI: Enable IDC p.u. If the direct current does not exceed the set threshold, the per-unit input current $I_{D C}$ p.u. and the current I_{DC}, lin will be displayed as having a value of ' 0 '.

3 Operation
 (continued)

Open-circuit and overload monitoring

The device is equipped with an open-circuit monitoring function. If current I_{DC} falls below the set threshold MEASI: IDC< open circuit, the signal MEASI: Open circ. 20 mA inp. is issued.

The input current is monitored in order to protect the 20 mA analog input against overloading. If it exceeds the set threshold of 24.8 mA , the signal MEASI: Overload 20 mA input is issued.

The open circuit signal on the 20 mA analog input from the function group MEASI is forwarded to the Thermal Overload Protection function. Here it is possible to set whether the resistance thermometer connected to the PT 100 input or - if configured one of the temperature sensors T1 to T9, connected to the temperature p/c board (the RTD module), is to be used as a backup sensor (see "Thermal Overload Protection").

3 Operation

(continued)

3 Operation
 (continued)

Beyond the linearization described above, the user has the option of scaling the linearized values. Thereby negative values, for example, can be displayed as well and are available for further processing by protection functions.

3 Operation
 (continued)

3.8.2 Connecting a Resistance Thermometer to the "PT 100 Analog Input" on the Analog (I/O) Module Y

This analog input on the analog (I/O) module Y is designed to connect a PT 100 resistance thermometer. The mapping curve $R=f(T)$ of PT 100 resistance thermometers is defined in standard IEC 751. If the PT 100 resistance thermometer is connected using the 3-wire method, then no further calibration is required.

The result of a temperature measurement can be read out as a direct measurand (temperature T), a normalized value (temperature norm. T), and as the maximum value since the last reset.

If there is an open measuring circuit due to a broken wire, the signal MEASI: Open circ. PT100 is issued.

The open circuit signal on the PT 100 analog input from the function group MEASI is forwarded to the functions Thermal Overload Protection and Limit Value Monitoring. In the Thermal Overload Protection it is possible to set whether the 20 mA input or - if configured - one of the temperature sensors T1 to T9, connected to the temperature p/c board (the RTD module), is to be used as a backup (see "Thermal Overload Protection"). In the Limit Value Monitoring function the limit values assigned to the faulty PT 100 are blocked.

3 Operation
 (continued)

3.8.3 Connecting Temperature Sensors to the Temperature P/C Board (the RTD Module)

The temperature p/c board (the RTD module) mounted in the P132P132 has 9 analog inputs available to connect temperature sensors T1 to T9. These analog inputs are designed for connection of PT 100, Ni 100 or Ni 120 resistance thermometers.

If the PT 100 resistance thermometer is connected using the 3-wire method, then no further calibration is required.

All nine temperature sensors must be of the same type, which is set under MEASI: Type of TempSensors

The result of a temperature measurement can be read out as a direct measurand (temperature Tx), a normalized value (temperature norm. Tx) and as the maximum value since the last reset (temperature Tx max).

Open-circuit monitoring

If one of the measuring circuits is open due to a broken wire, the signal MEASI: Open circ. PT100 Tx ($x=1$ to 9) is issued.

The open circuit signals from temperature sensors, issued by function group MEASI, are forwarded to the Thermal Overload Protection function. Should the main temperature sensor (that has been set in the Thermal Overload Protection) fail, it is possible to select in whether the 20 mA input or - if configured - one of the temperature sensors T1 to T9, connected to the temperature p/c board (the RTD module), is to be used as a backup sensor (see "Thermal Overload Protection").

In addition to this, the open circuit signals from the temperature sensors, issued by the function group MEASI, are forwarded to the Limit Value Monitoring function. The selection of such backup sensors for the Limit Value Monitoring function is made in the function group MEASI.

For this purpose the temperature sensors connected to the temperature p / c board (RTD board) are divided into three groups:

Group 1: T1, T2, T3
Group 2: T4, T5, T6
Group 3: T7, T8, T9
If MEASI: BackupTempSensor PSx is set to Without, the Limit Value Monitoring function will operate without backup sensors.

If MEASI: BackupTempSensor PSx is set to Group 1-2, the defective temperature sensor from group 1 is replaced by the corresponding sensor from group 2.

If the backup temperature sensor from group 2 also fails it will be replaced by the corresponding sensor from group 3, under the assumption that MEASI: BackupTempSensor PSx is set to Group 1-2/3.

The association of backup temperature sensors is listed below:

Main sensor	Backup sensor from group 2	Backup sensor from group 3
	With setting: Group 1-2 or Group 1-2/3	With setting: Group 1-2/3
T1	T4	T7
T2	T5	T8
T3	T6	T9

Should temperature sensor T1 fail, with the setting Group $1-2 / 3$, it will replaced by T4. Should temperature sensor T4 also fail it will replaced by T7.

For further details refer to section with the description of the "Limit Value Monitoring".

3 Operation
 (continued)

Application example
A motor protection application is shown in the figure below with temperature sensors T1 to T9 connected to the temperature p/c board (RTD module) and a "PT 100" resistance thermometer connected to the analog (I/O) module Y.

[^4]
3 Operation
 (continued)

3.9 Configuration, Operating Mode, and Blocking of the Output Relays (Function Group OUTP)

The P132 has output relays for the output of binary signals. The binary signals to be issued are defined by configuration.

Configuration of the output relays

Operating mode of the output relays

Blocking the output relays
The user can set an operating mode for each output relay. The operating mode determines whether the output relay will operate in an energize-on-signal arrangement (ES, logic " 1 " = energize relay coil) or normally energized arrangement (NE, logic " 1 " = de-energize relay coil) and whether it will operate in latching mode. Latching is disabled either manually through a user interface or an appropriately configured binary signal input either at the onset of a new fault or at the onset of a new system disturbance, depending on the operating mode selected.

The P132 offers the option of blocking all output relays via a user interface or by way of an appropriately configured binary signal input. The output relays are likewise blocked if the device is disabled via appropriately configured binary inputs or if the self-monitoring function detects a hardware fault. An output relay configured for the signal MAIN: Blocked/faulty is not included in blocking.

3 Operation

(continued)

3-32 Configuration, setting the operating mode, and blocking the output relays

3 Operation

(continued)

Testing the output relays

For testing purposes, the user can select an output relay and trigger it via a user interface. In this case the device has to be switched to "offline". Triggering persists for the duration of the set hold time.

3 Operation
 (continued)

3.10 Measured Data Output (Function Group MEASO)

Measurands made available by the P132 can be provided in BCD (binary coded decimal) form through output relays or in analog form as direct current output. Output as direct current can only occur if the device is equipped with analog module Y. BCDcoded output is always possible, whether the device is equipped with analog module Y or not.

Disabling or enabling the measured data output function

The measured data output function can be disabled or enabled using a setting parameter.

3 Operation

(continued)

Enabling measured data output

The measured data output can be enabled through a binary signal input, provided that the function MEASO: Outp. enabled EXT has been configured. If the function MEASO: Outp. enabled EXT has not been configured to a binary signal input, then the measured data output is always enabled.

3 Operation
 (continued)

Resetting the measured data output function

BCD-coded or analog output of measurands is terminated for the duration of the hold time if one of the following conditions is met:
\square The measured data output function is reset through a user interface or an appropriately configured binary signal input.
\square There is a general reset.
\square LED indicators are reset.

3-36
Resetting the measured data output function

Scaling
Scaling is used to map the physical measuring range to the device inherent setting range.

Scaling of analog output is also suited for directional-signed output of some fault measurands, in particular fault location in percent.

3 Operation

(continued)

3.10.1 BCD-coded Measured Data Output

The user can select a measurand for output in BCD-coded form by assigning output relays.

The selected measurand is available in BCD-coded form for the duration of the set hold time MEASO: Hold Time Output BCD. If the selected variable was not measured, then there is no output of a value.

Output of measured event values

Output of measured operating values

If the measured event value is updated during the hold time, the measurand output memory is cleared and the hold time is re-started. This leads to immediate availability at the output of the updated value.

The selected measured operating value is available for the duration of the set hold time. After the hold time has elapsed, the current value is saved and the hold time is restarted. If the hold time has been set to "blocked", the measured operating value that has been output will be stored until the measured data output function is reset.

3 Operation
 (continued)

In order to define the resolution for measured data output the measurand range (Mx,min ... Mx,max) in scaled form (as Mx,scal,min ... Mx,scal,max) and the associated $B C D$ display range (BCD, min ... BCD, max) have to be set.

- MEASO: Scaled min. val. BCD
\square MEASO: Scaled max. val. BCD
- MEASO: BCD-Out min. value

■ MEASO: BCD-Out max. value
The BCD display range should be set so that the value 399 is never exceeded. If this should occur or if the measurand is outside the acceptable measuring range, then the value for "Overflow" (all relays triggered) is transmitted.

Measurands	Range
Measurands of the variable Mx	$\mathrm{Mx}, \mathrm{RL1} \ldots \mathrm{Mx}, \mathrm{RL2}$
Associated scaled measurands	$0 \ldots 1$

Scaling is made with reference to the complete range of values for the selected measurand (variable $M x$). The complete range of values is defined by their end values $M x, R L 1$ and $M x, R L 2$. ($M x, R L 1$ and $M x, R L 2$ are listed in the operating program S\&R-103 - PC Access Software MiCOM S1 - under "minimum" and "maximum".)

Measurands to be output	Range
Measurands to be output	$\mathrm{Mx}, \min . \ldots \mathrm{Mx}, \max$.
Scaled measurands to be output	$\mathrm{Mx}, \mathrm{scal}, \min \ldots \mathrm{Mx}, \mathrm{scal}, \max$ with: $\mathrm{Mx}, \mathrm{scal}, \min =(\mathrm{Mx}, \min -\mathrm{Mx}, \mathrm{RL1}) /(\mathrm{Mx}, \mathrm{RL2}-\mathrm{Mx}, \mathrm{RL1})$ $\mathrm{Mx}, \mathrm{scal}, \max =(\mathrm{Mx}, \max -\mathrm{Mx}, \mathrm{RL1}) /(\mathrm{Mx}, \mathrm{RL2}-\mathrm{Mx}, \mathrm{RL1})$
Designation of the set values in the data model	"Scaled min. val. BCD" ..."Scaled max. val. BCD"

Measurands	BCD-coded display values
Measurands in the range "Measurands to be output":	BCD-Out min. value ... BCD-Out max. value (Valid BCD value)
Measurands: $M x, R L 1 ~=~ M x ~=~ M x, m i n . ~$	BCD-Out min. value (BCD value not valid)
Measurands $M x:$ $M x, \max =M x=M x, R L 2$.	BCD-Out max. value (BCD value not valid)
Measurands $M x:$ $M x<M x, R L 1$ or $M x>M x, R L 2$	BCD-Out max. value (Overflow)

3 Operation
 (continued)

Example for scaling of BCD output

The value range for the fault measurand is set from -320.00% to $+320.00 \%$. The PU fault location is given in the range from 0\% to 200\%.

Measurands	Range
Fault measurand: FT_DA: Fault locat. percent	$-320,00 \% \ldots+320,00 \%$
Associated scaled measurands	$0 \ldots 1$

Measurands to be output	Range
Measurands to be output	$0 \% \ldots 200 \%$
Scaled measurands to be	$0.5 \ldots 0.813$
output	with:
	$0.500=320 / 640$
	$0.813=520 / 640$

Measurands	BCD-coded display values
Measurands in the range "Measurands to be output"	$0 \ldots 200$

In this example the following device settings are selected:
/Parameter/Config.parameters/

Address	Description	Current value
056020	MEASO: Function group MEASO	'With'
031074	MEASO: General enable USER	'Yes'
053002	MEASO: Fct. assignm. BCD	FT_DA: Fault locat. percent
010010	MEASO: Hold time output BCD	1.00 s
037140	MEASO: Scaled min. val. BCD	0.500
037141	MEASO: Scaled max. val. BCD	0.813
037142	MEASO: BCD-Out min. value	0
037143	MEASO: BCD-Out max. value	200

3 Operation
 (continued)

The following figure displays the values output as a function of the fault location. The $B C D$-coded value and the signal MEASO: Valid BCD value = 'Yes' are only issued in the value range 0\% to 200%.

3 Operation

(continued)

3 Operation
 (continued)

Output of measured event values

Output of measured operating values

Configuration of output relays assigned to the output channels

3.10.2 Analog Measured Data Output

Analogue output of measured data is two-channel.
The user can select two of the measurands available in the P132 for output in the form of load-independent direct current. Three interpolation points per channel can be defined for specific adjustments such as adjustment to the scaling of a measuring instrument. The direct current that is output is displayed as a measured operating value.

The selected measurand is output as direct current for the duration of the set hold time MEASO: Hold Time Output A-x. If the selected variable was not measured, then there is no output of a measurand value.

If the measured event value is updated during the hold time, the measurand output memory is cleared and the hold time is re-started. This leads to an immediate availability at the output of the updated value.

The selected measured operating value is available for the duration of the set hold time. After the hold time has elapsed, the current value is saved and the hold time is restarted. If the hold time has been set to "blocked", the measured operating value that has been output will be stored until the measured data output function is reset.

The user must keep in mind that direct current output only occurs when the output relays assigned to the output channels are configured for MEASO: Value A-x Output, since the output channels would otherwise remain short-circuited (see terminal connection diagrams).

3 Operation
 (continued)

Scaling the analog display

Measurand range to be output

In order to define the resolution for measured data output the measurand range in scaled form and the associated display range have to be set. One additional value for the knee point must also be defined. In this way the user can obtain an analog output characteristic similar to the characteristic shown in Figure 3-39.

The measurand range to be output is ($\mathrm{Mx}, \min \ldots \mathrm{Mx}, \mathrm{knee} \ldots \mathrm{Mx}, \max$), with:
Mx , min: minimum value to be output
Mx ,knee: Knee point value for the measurand range to be output Mx,max: maximum value to be output

This measurand range to be output is defined by setting the following parameters:

- MEASO: Scaled min. val. A-x
- MEASO: Scaled knee val. A-x
\square MEASO: Scaled max. val. A-x
Scaling is made with reference to the complete range of values for the selected measurand (variable $M x$). The complete range of values is defined by their end values $M x, R L 1$ and $M x, R L 2$. ($M x, R L 1$ and Mx,RL2 are listed in the operating program S\&R-103 - PC Access Software MiCOM S1 - under "minimum" and "maximum".)

Measurands	Range
Measurands of the variable Mx	$\mathrm{Mx}, \mathrm{RL1} \ldots \mathrm{Mx}, \mathrm{RL2}$
Associated scaled measurands	$0 \ldots 1$

Measurands to be output	Range
Measurands with knee-point to be output	Mx,min ... Mx,knee ... Mx, max
Scaled measurands with a scaled knee-point to be output	$M x$,scal,min ... $M x$,scal,knee ... Mx,scal,max with: $M x, s c a l, \min =(M x, \min -M x, R L 1) /(M x, R L 2-M x, R L 1)$ Mx,scal,knee $=(M x, k n e e-M x, R L 1) /(M x, R L 2-M x, R L 1)$ $M x, s c a l, \max =(M x, \max -M x, R L 1) /(M x, R L 2-M x, R L 1)$
Designation of the set values in the data model	"Scal. min. value Ax" "Scal. knee-point Ax" "Scal. max. value Ax"

3 Operation
 (continued)

The associated display range is defined by setting the following parameters:

- MEASO: AnOut min. val. A-x

ㅁ MEASO: AnOut knee point A-x

- MEASO: AnOut max. val. A-x

Measurands	Analog display values
Measurands in the range "Measurands to be output"	"AnOut min. val. A-x" "AnOut knee point $A-x$ ""AnOut max. val. $A-x$ " (Value A-x valid)
Measurands: $M x, R L 1=M x=M x, \min$	"AnOut min. val." (Value A-x not valid)
Measurands $M x$: $M x, \max =M x=M x, R L 2$	"AnOut max. val." (Value A-x not valid)
Measurands $M x$: $M x<M x, R L 1$ or $M x>M x, R L 2$	"AnOut max. val." (Overflow)

3 Operation
 (continued)

Example for scaling of analog display ranges

Voltage A-B is selected as the measurand to be transmitted by channel A-1.
The measuring range is from 0 to $1.5 \mathrm{~V}_{\text {nom }}$ with $\mathrm{V}_{\text {nom }}=100 \mathrm{~V}$.
The range to be transmitted is from 0.02 to $1 \mathrm{~V}_{\text {nom }}$
with the associated display range from 4 mA to 18 mA .
The knee-point of the characteristic is $0.1 \mathrm{~V}_{\text {nom }}$ with an associated display of 16 mA .

Measurands	Range
Measurands of the variable Mx	$0 \mathrm{~V} \ldots 150 \mathrm{~V}$
Associated scaled measurands	$0 \ldots 1$

Measurands to be output	Range
Measurands with knee-point to be output	$2 \mathrm{~V} \ldots 10 \mathrm{~V} \ldots 100 \mathrm{~V}$
Associated scaled measurands	$0.013 \ldots 0.067 \ldots 0.67$
	with:
	Mx, scal,min $=(2 \mathrm{~V}-0 \mathrm{~V}) /(150 \mathrm{~V}-0 \mathrm{~V})=0.013$
	Mx, scal, $\mathrm{knee}=(10 \mathrm{~V}-0 \mathrm{~V}) /(150 \mathrm{~V}-0 \mathrm{~V})=0.067$
	Mx, scal,max $=(100 \mathrm{~V}-0 \mathrm{~V}) /(150 \mathrm{~V}-0 \mathrm{~V})=0.67$

Measurands	Analog display values
Measurands in the range "Measurands to be output"	$4 \mathrm{~mA} \ldots 16 \mathrm{~mA} \ldots 18 \mathrm{~mA}$
$0.02 \ldots 0.1 \mathrm{~V}_{\text {nom }} \ldots 1 \mathrm{~V}_{\text {nom }}$	

In this example the following device settings are selected:
/Parameter/Config.parameters/

Address	Description	Current value
056020	MEASO: Function group MEASO	'With'
031074	MEASO: General enable USER	'Yes'
053000	MEASO: Fct. assignm. A-1	MAIN: Voltage A-B PU
010114	MEASO: Hold time output A-1	1.00 s
037104	MEASO: Scaled min. val. A-1	0.013 (corresponds with 0.02 Vnom)
037105	MEASO: Scaled knee val. A-1	0.067 (corresponds with 0.10 Vnom)
037106	MEASO: Scaled max. val. A-1	0.667 (corresponds with 1.00 Vnom)
037107	MEASO: AnOut min. val. A-1	4 mA
037108	MEASO: AnOut knee point A-1	16 mA
037109	MEASO: AnOut max. val. A-1	18 mA

3 Operation
 (continued)

By setting MEASO: AnOut Min. val. A-x, the user can specify the output current that will be output when values are smaller than or equal to the set minimum measured value to be transmitted. The setting at MEASO: AnOut max. val. A-x defines the output current that is output for the maximum measured value to be transmitted. By defining the knee-point, the user can obtain two characteristic curve sections with different slopes. When entering this setting the user must keep in mind that only a rising/rising or falling/falling curve sense is permitted (peaky or vee shapes not allowed). If the setting was not properly entered, the signal SFMON: Invalid scaling A-x will be issued.

Note:

A check of the set characteristic and its acceptance by the device, if the setting was properly entered, will only occur after the device, with the setting MAIN: Device online is again switched on-line.

Example of a characteristic curve for analog measured data output . In this example the range starting value is $=0$; also possible is directional-signed output (see corresponding example in section BCD-coded Measured Data Output).

3 Operation

(continued)

3 Operation
 (continued)

3.10.3 Output of 'External’ Measured Data

Measured data from external devices, which must be scaled to $0 \ldots 100 \%$, can be written to the following parameters of the P132 via the communications interface.

■ MEASO: Output Value 1

- MEASO: Output Value 2
- MEASO: Output Value 3

These "external" measured values are output by the P132 either in BCD-coded data form or as load-independent direct current, provided that the BCD-coded measured data output function or the channels of the analogue measured data output function are configured accordingly.

3.11 Configuration and Operating Mode of the LED Indicators (Function Group LED)

The P132 has 23 LED indicators for the indication of binary signals. Four of the LED indicators are permanently assigned to fixed functions. The other LED indicators are freely configurable. These freely configurable LEDs will emit either red or green or amber light (amber is made up of red and green light and may not be configured independently).

Configuring the LED indicators

One binary signal can be assigned to each of the red and green LED color indications. The same binary signal can be assigned to several LED indicators (or colors), if required.

LED indicator	Label	Configuration

H 1 (green)	"HEALTHY"	Not configurable. H 1 indicates the operational readiness of the device (supply voltage is present).
H 17 (red)	"EDIT MODE"	Not configurable. H 17 indicates the input (edit) mode. Only when the device is in this mode, can parameter settings be changed by pressing the "Up" and "Down" keys. (See Chapter 6, section 'Display and Keypad')

H 2 (amber)	"OUT OF SERVICE"	Permanently configured with function MAIN: Blocked/faulty.
H 3 (amber)	"ALARM"	Permanently configured with function SFMON: Warning (LED).

H 4 (red)	"TRIP COMMAND"	With the P132 this LED indicator is customarily configured with function MAIN: Gen.trip signal - but the configuration may be modified. The factory setting for LED indicator H 4 is shown in the terminal connection drawings at the end of Chapter 5 and it is included in the supporting documents.
H 4 (green)	----	Function assignment to this green LED indicator is freely configurable.

H 5 to H 16 H 18 to H 23	---	For each of these LED indicators both colors (red \& green) may be configured freely and independently. (Note: H10-H $16 \& H 18-\mathrm{H} 23$ are not available with case 24T devices.)

The following figures illustrate the layout of LED indicators situated on the local control panel with case 40T/84T (left) devices and with case 24T devices (right).

3 Operation
 (continued)

Operating mode of the LED indicators

For each of the freely configurable LED indicators, the operating mode can be selected separately. This setting will determine whether the LED indicator will operate either in energize-on-signal (ES) or normally-energized (NE) mode, whether it will be flashing and whether it will be in latching mode. Latching is disabled either manually via setting parameters or by an appropriately configured binary signal input (see "Main Functions of the P132"), at the onset of a new fault or of a new system disturbance, depending on the selected operating mode.

Therefore the operating modes turn out to be the $2^{3}=8$ possible combinations of the following components:

- flashing / continuous,
- energize-on-signal (ES) / normally-energized (NE),
- updating / latching with manual reset,
in addition to these there are the following 4 operating modes
- energize-on-signal (ES) with reset after new fault (flashing / continuous) and
- energize-on-signal (ES) with reset after new system disturbance (flashing / continuous),
so that there are 12 possible operating modes in total.

3 Operation

(continued)

3-41
Configuration and Operating Mode of the LED Indicators

3 Operation
 (continued)

3.12 Main Functions of the P132 (Function Group MAIN)

3.12.1 Acquisition of Binary Signals for Control

In the acquisition of signals for control purposes, the functions real time acquisition (time tagging), debouncing and chatter suppression are included as standard. Each of these signals can be assigned to one of three groups and for each of these groups the debouncing time and chatter suppression can be set. Matching of these two parameters achieves the suppression of multiple spurious pickups.

[^5]
3 Operation
 (continued)

Debouncing
The first pulse edge of a signal starts a timer stage running for the duration of the set debouncing time. Each pulse edge during the debouncing time re-triggers the timer stage.

If the signal is stable until the set debouncing time elapses, a telegram containing the time tag of the first pulse edge is generated. As an alternative the time tag may be generated after debouncing by setting parameter MAIN: Time tag to the value 'After debounce time'.

After the set debouncing time has elapsed, the state of the signal is checked. If it is the same as prior to the occurrence of the first pulse edge, no telegram is generated.

Time-tagged entries of the first pulse edge are only generated after debounce time has elapsed. If these entries are saved without delay (setting of MAIN: Time tag to the value '1stEdge,OpMem unsort') they are not necessarily saved in chronological order in the operating data memory. If above parameter has been set to the value '1stEdge, OpMem sorted' then all entries are always saved in chronological order in the operating data memory.

[^6]
3 Operation
 (continued)

Chatter suppression
Sending of the first telegram starts a timer stage running for the duration of the set monitoring time. While the timer stage is elapsing, telegrams are generated for the admissible signal changes. The number of admissible signal changes can be set. After the first "inadmissible" signal change, no further telegrams are generated and the timer stage is re-triggered. While the timer stage is elapsing, it is re-triggered by each new signal change. Once the timer stage has elapsed, each signal change triggers a telegram.

3-44 Signal flow for debouncing and chatter suppression		
Example:	Set debouncing time:	20 ms
	Set chatter monitoring time:	200 ms
	Number of admissible signal changes:	4
	s:	start
	e:	end

3 Operation
 (continued)

3.12.2 Bay type selection

The P132 is designed to control up to three switchgear units. The Bay Panel type defines the layout of a bay with its switchgear units.

The P132 offers a selection from pre-defined bay types. Should the required bay type be missing from the standard selection then the user can contact the manufacturer of the P132 to request the definition of a customized bay type to download into the P132. By applying the bay editor from the PC Access Software MiCOM S1 the user can also define new bay types. The number of this additional bay type will then be displayed at MAIN: Customized bay type.

Once the user has selected a bay type, the P132 can automatically configure the binary inputs and output relays with function assignments for the control of switchgear units. The assignment of inputs and outputs for an automatic configuration is shown in the List of Bay Types in the Appendix.

3 Operation

(continued)

3.12.3 Conditioning of the Measured Variables

The secondary phase currents of the system transformers are fed to the P132. There is the option of connecting up to five voltage transformers. The measured variables are electrically isolated - converted to normalized electronics levels. Air-gap transformers are used in the phase current path to suppress low frequency (DC decays and offsets) signal components. The analog quantities are digitized and are thus available for further processing.

Settings that do not refer to nominal quantities are converted by the P132 to nominal quantities. The user must therefore set the secondary nominal currents and voltages of the system transformers.

The connection direction of the measuring circuits on the P132 must also be set. Figure 3-46 shows the standard connection. By this setting the phase of the digitized currents is rotated by 180°.

If the P132 is to operate with the GFDSS function (ground fault direction determination using steady-state values), current transformer T4 needs to be connected to a current transformer in Holmgreen connection (dashed lines in Figure 3-46) or to a core balance current transformer.

When the P132 is equipped with the temperature p/c board (RTD module for PT 100, Ni 100 or Ni 120, terminal connection diagram in Annex D) further resistance thermometers, in addition to the PT 100 resistance thermometer connected to the analog module (I/O), can be connected to the RTD module as described in Chapter 3 section "Measured Data Input", 'Connecting resistance thermometers to the RTD module'.

3 Operation

3 Operation

(continued)

3.12.4 Operating Data Measurement

The P132 has an operating data measurement function for the display of currents and voltages measured as well as quantities derived from these measured values. For the display of measured values, set lower thresholds need to be exceeded, to avoid fluctuating small values from noise. If these lower thresholds are not exceeded, the value "not measured" is displayed. The following measured variables are displayed:
\square Phase currents for all three phases

- Maximum phase current
\square Minimum phase current
\square Delayed and stored maximum phase current - maximum demand values
\square Residual current measured by the P132 at the T 4 transformer
\square Phase-to-ground voltages
\square Sum of the three phase-to-ground voltages
- Phase-to-phase voltages
\square Maximum phase-to-phase voltage
\square Minimum phase-to-phase voltage
\square Positive and negative sequence voltage referred to Vnom
\square Positive- and negative-sequence current and voltage, taking into account the set phase sequence (alternative terminology: Rotary field)
\square Neutral-point displacement voltage measured by the P132 at the T 90 transformer
\square Reference voltage measured by the P132 at the T 15 transformer
\square Active, reactive and apparent power
\square Active power factor
\square Load angle φ in all three phases (as a quantity and a per-unit quantity referred to 100°)
\square Angle between the measured values for the residual current and the neutral-point displacement voltage (as a quantity and a per-unit quantity referred to 100°)
\square Phase relation between calculated and measured residual current (as a quantity and a per-unit quantity referred to 100°)
- Frequency
\square Active and reactive energy output and input
The measured data are updated at 1 s intervals. Updating is interrupted when a general starting signal is issued or if the self-monitoring function detects a hardware fault.

3 Operation

(continued)

Measured current values
The measured current values are displayed both as per-unit quantities referred to the nominal quantities of the P132 and as primary quantities. To allow display in primary values, the primary nominal current of the system current transformer should be set in the P132.

Phase sequence A-B-C (alternative terminology: clockwise rotary field)
$\underline{\mathrm{I}}_{\text {neg }}=\frac{1}{3} \cdot\left|\left(\underline{\mathrm{I}}_{\mathrm{A}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}} \cdot \underline{\underline{I}}_{\mathrm{C}}\right)\right|$
$\underline{\mathrm{I}}_{\text {pos }}=\frac{1}{3} \cdot\left|\left(\underline{I}_{\mathrm{A}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{C}}\right)\right|$
$\underline{\mathrm{a}}=\mathrm{e}^{\mathrm{j} 120^{\circ}}$
$\underline{a}^{2}=e^{j 240^{\circ}}$

Phase sequence $A-C-B$
(alternative terminology: anti-clockwise rotary field)
$\underline{I}_{\text {neg }}=\frac{1}{3} \cdot\left|\left(\underline{I}_{\mathrm{A}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{C}}\right)\right|$
$\underline{\mathrm{I}}_{\text {pos }}=\frac{1}{3} \cdot\left|\left(\underline{I}_{\mathrm{A}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{I}}_{\mathrm{C}}\right)\right|$

3 Operation

(continued)

3 Operation

(continued)

3 Operation
 (continued)

Delayed maximum phase current display

The P132 offers the option of a delayed display of the maximum value of the three phase currents (thermal ammeter function). The delayed maximum phase current display is an exponential function of the maximum phase current $\mathrm{I}_{\mathrm{P}, \max }$ (see upper curve in
Figure 3-49). The time after which the delayed maximum phase current display will have reached 95% of maximum phase current $I_{P, \max }$ is set at MAIN: Settl. t. IP,max,del.

Stored maximum phase current display

The stored maximum phase current follows the delayed maximum phase current. If the value of the delayed maximum phase current is declining, then the highest value of the delayed maximum phase current remains stored. The display remains constant until the actual delayed maximum phase current exceeds the value of the stored maximum phase current (see middle curve in Figure 3-49). The stored maximum phase current to the actual value of the delayed maximum phase current is set at MAIN: Reset IP, max, stored (see lower curve in Figure 3-49).

3 Operation

(continued)

3-49
Operation of delayed and stored maximum phase current display

3 Operation

(continued)

Measured voltage values
The measured voltage values are displayed both as per-unit quantities referred to the nominal quantities of the P132 and as primary quantities. To allow a display in primary values, the primary nominal voltage of the system transformer needs to be set in the P132.

[^7]
3 Operation

(continued)

3 Operation
 (continued)

3-52 Measured operating data - neutral-point displacement voltage

3-53 Measured operating data - reference voltage

3 Operation
 (continued)

Measured values for power, active power factor, and angle

The load angle and the angle between the measured values for the residual current and the neutral-point displacement voltage are only determined when associated currents and voltages exceed minimum thresholds.

Parameter MAIN: Meas. direction P,Q may be changed from 'Standard' to 'Opposite' if the user wishes to have the following measured operating data displayed with the opposite sign (see figure 3-54):
\square MAIN: Active power P p.u
\square MAIN: Reac. power Q p.u.
\square MAIN: Active power P prim.

- MAIN: Reac. power Q prim.

The remaining measured operating data is not influenced by the setting of this parameter. It must be noted that by inverting the sign only, the display of measured operating data is involved but all protection functions will still apply internally noninverted measured values.

3 Operation

(continued)

3-54 Measured operating data - power, active power factor, and angle

3 Operation

(continued)

Phase relation I_{N}
The P132 checks if the phase relations of calculated residual current and measured residual current agree. If the phase displacement between the two currents is $\leq 45^{\circ}$, then the indication 'Equal phase' is displayed.

3 Operation

(continued)

Frequency

The P132 determines the frequency from the voltage $\mathrm{V}_{\mathrm{A}-\mathrm{B}}$. This voltage needs to exceed a minimum threshold of $0.65 \mathrm{~V}_{\text {nom }}$ in order for frequency to be determined.

3-56
Frequency measurement

3 Operation
 (continued)

Active and reactive energy output and input

The P132 determines the active and reactive energy output and input based on the primary active or reactive power.

There are two procedures available to determine active and reactive energy. If procedure 1 is selected, active and reactive energy are determined every 2 s (approximately). If procedure 2 is selected, active and reactive energy are determined every 100 ms (approximately). In this way higher accuracy is achieved. Whenever the maximum value of 655.35 MWh or 655.35 MVAr h is exceeded, a counter is incremented and the determination of the energy output is restarted. The value that exceeded the range is transferred to the new cycle.

3 Operation
 (continued)

The total energy is calculated as follows:
Total energy $=$ number of overflows $* 655.35+$ current count

3-57

3 Operation
 (continued)

Selection of the procedure

 to determine energy output| Procedure | Characteristics | Applications |
| :---: | :--- | :--- |
| 1 | \squareDetermination of the active and reactive energy
 every 2 s (approximately)
 \square | \square Reduced system loading
 Constant load and slow load variations (no
 signicant load variations within 1 second).
 Phase angles below $70^{\circ}(\cos \varphi>0.3)$. |
| 2 | \squareDetermination of the active and reactive energy
 every 100 ms (approximately).
 Increased system loading | \square Fast load variations |

The maximum phase-angle error of the P 132 of 1° leads to greater errors in measurement when the phase angle increases, as shown (for the range $0^{\circ} \leq \varphi<90^{\circ}$) in the following diagram.

Error of measurement: \quad approx. $\pm 2 \%$ of the measured value for $|\cos \varphi| \geq 0.7$ approx. $\pm 5 \%$ of the measured value for $|\cos \varphi| \geq 0.3$ where the whole measuring range is $-180^{\circ} \leq \varphi \leq 180^{\circ}$.

3 Operation
 (continued)

angles φ with $|\cos \varphi|<0.3$, or when the error of measurement resulting from the maximum phase-angle error is not acceptable, external counters should be used to determine the energy output.

3.12.5 Configuring and Enabling the Device Functions

The device can be adapted to the requirements of a specific high-voltage system by configuring the available function range. By including the desired device functions in the configuration and canceling all other, the user creates an individually configured device appropriate to the specific application. Parameters, signals and measured values of cancelled device functions are not displayed on the local control panel. Functions of general applicability such as operating data recording (OP_RC) or main functions (MAIN) cannot be cancelled.

Canceling a device function

The following conditions must be met before a device function can be cancelled or removed:
\square The device function must be disabled.
\square None of the functions of the device function to be cancelled can be assigned to a binary input.
\square None of the signals of the device function can be assigned to a binary output or an LED indicator.
\square No functions of the device function being cancelled can be selected in a list setting.
If the above conditions are met, proceed through the 'Configuration' branch of the menu tree to access the setting relevant for the device function to be cancelled. If, for example, the "LIMIT" function group is to be cancelled, the setting of LIMIT: Function group LIMIT is set to 'Without'. To re-include the "LIMIT" function in the device configuration, the same setting is accessed and its value is changed to 'With'.

The device function to which a setting, a signal, or a measured value belongs is defined by the function group designation (example: "LIMIT"). In the following description of the device functions, it is presumed that the corresponding device function is included in the configuration.

3 Operation

(continued)

Enabling or disabling a device function

Besides canceling device functions from the configuration, it is also possible to disable protection via a function parameter or binary signal inputs. Protection can only be disabled or enabled through binary signal inputs if the MAIN: Disable Protect. EXT and MAIN: Enable protect. EXT functions are both configured. When neither or only one of the two functions is configured, the condition is interpreted as "Protection externally enabled". If the triggering signals of the binary signal inputs are implausible - i.e. both are at logic level = "1" - then the last plausible state remains stored in memory.

Note: If the protection is disabled via a binary signal input that is configured for MAIN: Disable Protect. EXT, the signal MAIN: Blocked/Faulty is not issued.

3 Operation
 (continued)

Enabling or disabling the residual current systems of the DTOC/IDMT protection

Disabling or enabling may be carried out with parameters or binary signal inputs.
Enabling of the residual current systems of the DTOC/IDMT protection depends on the setting at MAIN: Syst.IN enabled USER. If this enabling function has been activated, the residual current systems of the DTOC/IDMT protection can be disabled or enabled with parameters or through appropriately configured binary signal inputs. Parameters and configured binary signal inputs have equal status. If only the MAIN: System IN enable EXT function is assigned to a binary signal input, then the residual current systems of the DTOC/IDMT protection will be enabled by a positive edge of the input signal and disabled by a negative edge. If only the MAIN: System IN disable EXT function has been assigned to a binary signal input, then a signal at this input will have no effect.

3 Operation

(continued)

3-60
Disabling or enabling the residual current systems of the DTOC/IDMT protection

3 Operation
 (continued)

3.12.6 Activation of "Dynamic Parameters"

For several of the protection functions, it is possible for the duration of the set hold time to switch over to other settings - the "dynamic parameters" - via an appropriately configured binary signal input. If the hold time is set to 0 s , switching is effective as long as the binary signal input is being triggered.

[^8]
3 Operation
 (continued)

3.12.7 Inrush stabilization (harmonic restraint)

The inrush stabilization function detects high inrush current flows that occur when transformers or machines are switched on, and, if detected, it will then block the following functions:
\square The phase current starting and negative-sequence current starting of definite-time overcurrent protection (DTOC)The phase current starting and negative-sequence current starting of inverse-time overcurrent protection (IDMT).

The inrush stabilization function identifies an inrush current by evaluating the ratio of the second harmonic current components to the fundamental. If this ratio exceeds the set threshold, then the inrush stabilization function operates. Another settable current trigger blocks inrush stabilization if the current exceeds this trigger. The setting of the operating mode determines whether inrush stabilization will operate phase-selectively or across all phases.

3 Operation

(continued)

3-62 Inrush stabilization

3 Operation

(continued)

3.12.8 Function blocks

By including function blocks in the bay interlock conditions, switching operations can be prevented independent of the switching status at the time, for example, by an external signal "CB drive not ready" or by the trip command from an external protection device.

Binary input signals conditioned by debouncing and chatter suppression or output signals from the programmable logic function can be assigned to the function blocks 1 and 2 by setting a ' 1 out of n ' parameter. The input signal from the function blocks starts a timer stage and after it has elapsed, the signal MAIN: Fct. block. X active is issued.

3 Operation
 (continued)

3.12.9 Multiple blocking

Two multiple blocking conditions can be defined via ' m out of n ' parameters. The functions defined by selection may be blocked via an appropriately configured binary signal input.

3-64 Multiple blocking

3 Operation

(continued)

3.12.10 Blocked/Faulty

If the protective functions are blocked, the condition is signaled by continuous illumination of the amber LED indicator H 2 on the local control panel and by a signal from an output relay configured MAIN: Blocked/Faulty. In addition functions can be selected that will issue the MAIN: Blocked/Faulty signal by setting a 'm out of n' parameter.

3 Operation
 (continued)

3.12.11 Coupling between control and protection for the CB closed signal

Bay type selection defines the external device (DEV01 or DEV02 or ...) that represents the circuit breaker. Coupling between control and protection for the "Closed" position signal is made by the setting MAIN: Sig. asg. CB closed. As a result, the CB status signal needs to be assigned to one binary signal input only if this coupling is implemented.

3 Operation
 (continued)

3.12.12 Close Command

The circuit breaker can be closed by the auto-reclosing control function (ARC), by the automatic synchronism check (ASC), by parameters or via an appropriately configured binary signal input. The close command by parameters or a binary signal input is only executed if there is no trip command present and no trip has been issued by a protection device operating in parallel. Moreover, the close command is not executed if there is a "CB closed" position signal present. The duration of the close command can be set.

If the ARC function issues a close request while the ASC function is enabled, then the close command requires a close enable by the ASC function.

Close command counter.
The number of close commands are counted. This counter may be reset individually or together with other counters (see section 'Resetting Actions'). If the ARC function issues a close request while the ASC function is enabled, then the close command requires a close enable by the ASC function.

3 Operation

(continued)

3-67 Close Command

3 Operation
 (continued)

3.12.13 Multiple signaling

The multiple signals 1 and 2 are formed by the programmable logic function using OR operators. The programmable logic output to be interpreted as multiple signaling is defined by the configuration of the binary signal input assignment with the corresponding multiple signaling. Both an updated and a stored signal are generated. The stored signal is reset by the following actions:
\square General reset
\square Latching reset
\square LED indicators reset
\square A command received through the communication interface.
If the multiple signaling is still present at the time of a reset, the stored signal will follow the updated signal.

3 Operation
 (continued)

3-68 Multiple signaling

3 Operation

(continued)

3.12.14 Ground Fault Signaling

If a ground fault has been detected by either the GFDSS function (ground fault direction determination by steady-state values) or the TGFD function (transient ground fault direction determination), the P132 analyzes the phase-to-ground voltages and identifies the phase on which the ground fault has occurred.

During a ground fault, the P132 determines the lowest phase-to-ground voltage and checks if the two other phase-to-ground voltages exceed the threshold of $0.2 \mathrm{~V}_{\text {nom }}$. In addition, the two higher phase-to-ground voltages must exceed the lowest phase-toground voltage by a factor of 1.5. If these conditions are met, a ground fault signal is issued for the phase with the lowest phase-to-ground voltage.

3 Operation

(continued)

Ground fault signals generated either by ground fault direction determination using steady-state values (GFDSS) or transient ground fault direction determination (TGFD) are grouped together to form multiple signaling.

[^9]
3 Operation
 (continued)

3.12.15 Starting Signals and Tripping Logic

Phase-selective starting signals

Common phase-selective starting signals are formed from the internal phase-selective starting signals of definite-time overcurrent protection and of inverse-time overcurrent protection.

An adjustable timer stage is started by the phase-selective starting signals, the residual current starting signal and the negative-sequence starting signal. While this timer stage is running, the starting signals are blocked. The starting signals are also blocked directly by the motor protection if the startup of a motor has been detected. Blocking is suspended if a trip signal is present.

The operate delays for the residual current and negative-sequence current stages of the DTOC and IDMT protection functions can be blocked for a single-pole or multi-pole starting (depending on the setting).

3 Operation

(continued)

[^10]
3 Operation

(continued)

General starting

The general starting signal is formed from the starting signals of the DTOC and IDMT protection functions. A setting governs whether the residual current stages and the negative-sequence current stage will be involved in forming the general starting signal. If the operate signal from one of the residual current stages and the negative-sequence current stage does not cause a general starting (due to the setting) then the associated operate delays will be blocked. As a result, a trip command cannot be issued by residual current and negative-sequence current stages.

3-72
General starting (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.)

3 Operation
 (continued)

Counter for general starting signals.

The number of general starts is counted.
Multiple signaling by the
DTOC and IDMT protection functions

The trip signals generated by the DTOC and IDMT protection functions are grouped together to form multiple signaling.

3-73 Multiple signaling by the DTOC and IDMT protection functions (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.) (DTOC stage IN>>>> is available as of version -602.)

3 Operation
 (continued)

Trip command

Latching of the trip
The P132 provides two trip commands. The functions required to issue a trip can be selected by setting a 'm out of n ' parameter independently for each of the two trip commands. The minimum trip command closure time may be set. The trip signals are present only as long as the conditions for the signal are met.

Each of the trip commands can be individually set to operate in the latching mode. The trip command, set to latch mode, will remain active until reset by parameters or reset through an appropriately configured binary signal input. Latching is ineffective if a trip command has been issued by the ARC function.

Blocking of the trip commands

The trip commands can be blocked via parameters or an appropriately configured binary signal input. This blocking is then effective for both trip commands. The trip signals are not affected by this blocking. If the trip commands are both blocked, it is indicated by the continuously illuminated amber LED indicator H 2 on the local control panel and by a signal from an output relay configured to "Blocked/Faulty".

Trip command counter
The number of trip commands is counted. The counters can be reset either individually or as a group.

3 Operation
 (continued)

3 Operation

(continued)

Manual trip command

A manual trip command may be issued via a parameter or a binary signal input configured accordingly, but it is not executed unless the manual trip is included in the selection of possible functions to cause a trip.

Manual trip command

Counter of trip commands
The number of trip commands is counted. The counters can be reset either individually or as a group.

3 Operation
 (continued)

3.12.16 CB trip signal

The signal MAIN: CB trip internal is issued if the following conditions are met simultaneously:
\square The binary signal input configured for "tripping" is set to a logic value of ' 1 ' or the selected trip command from the P132 is present.
\square At the binary signal input configured as "CB trip" a logic value of ' 1 ' is present.
The CB trip signal from an external device can also be signaled. For this task, two binary signal inputs need to be configured as "CB trip enable ext." and as "CB trip ext.".

3 Operation

(continued)

3.12.17 Enable for Switch Commands Issued by the Control Functions

Before a switching unit within the bay is closed or opened by the control functions of the P132, the P132 first checks whether the switch command may be executed. A switch command will be executed if the optional control enable has been issued and the interlock conditions are met. The interlock conditions are defined in the interlocking logic for each switching unit within the bay that is subject to control actions and for each control direction (Open/Close). Different conditions are defined for the bay interlock equations to operate with or without station interlock. The check of bay or station interlock equations can be cancelled for all electrically controllable switchgear units within a bay. If the station interlock is active, it may be cancelled selectively for each switching unit and each control direction (see section 'Control and Monitoring of Switchgear Units').

If "Local" has been selected as the control point, the bay and station interlocks may be cancelled through an appropriately configured binary signal input.

3 Operation

(continued)

3 Operation

(continued)

3 Operation

(continued)

3.12.18 Communication Error

If a link to the control station cannot be established or if the link is interrupted, the signal "Communication error" will be issued. This signal will also be issued if communication module A is not fitted.

3 Operation
 (continued)

3.12.19 Time Tagging and Clock Synchronization

The data stored in the operating data memory, the monitoring signal memory and the event memories are date- and time-tagged. For correct tagging, the date and time need to be set in the P132.

The time of different devices may be synchronized by a pulse given to an appropriately configured binary signal input. The P132 evaluates the rising edge. This will set the clock to the nearest full minute, rounding either up or down. If several start/end signals occur (bouncing of a relay contact), only the last edge is evaluated.

[^11]
3 Operation
 (continued)

The P132 provides numerous options to synchronize the internal clock:
o Telegram with the time of day via the communication interface COMM1/IEC (full time)
o Telegram with the time of day via the communication interface COMM2/PC (full time)
o IRIG-B Signal (IRIGB; time of day only)
o Minute pulse presented at a binary signal input (MAIN), see figure 3-81 and previous paragraph

With older device versions these interfaces had equal ranking i.e. clock synchronization was carried out regardless of which sub-function initiated triggering. No conflicts have to be taken into account as long as synchronization sources (communication master, IRIG-B and minute pulse source) operate at the same time of day. Should the synchronization sources operate with a different time basis unwanted step changes in the internal clock may occur. On the other hand a redundant time of day synchronization is often used so as to sustain time synchronization via IRIG-B interface even if and while the SCADA communication is out of service.

With the current device versions a primary and a backup source for time of day synchronization may now be set, where both provide the four options listed in the above.
MAIN: Prim.Source TimeSync
MAIN: BackupSourceTimeSync
With this feature synchronization occurs continuously from the primary source as long as time synchronization telegrams or minute pulses are received within a time-out period set at MAIN: Time sync. time-out. The backup source is required if after the set time-out there is no synchronization through the primary source.

When selecting the time telegram via IEC as the primary source the device will expect time synchronization telegrams from server SNTP2 after server SNTP 1 has become defective, before it will switch over to the backup source.

Time synchronization occurs solely from the primary source when the time-out stage is blocked.

3.12.20 Resetting Actions

Stored data such as event logs, measured fault data etc, can be cleared in several ways. The following types of resetting actions are possible:
\square Automatic resetting of the event signals provided by LED indicators (given that the LED operating mode has been set accordingly) and of the display of measured event data on the local control panel LCD whenever a new event occurs. In this case only the displays on the local control panel LCD are cleared but not the internal memories such as the fault memory.
\square Resetting of LED indicators and measured event data displayed on the local control panel LCD by pressing the "CLEAR" key (C) located on the local control panel. By selecting the required function at LOC: Fct. reset key further memories may be assigned which will then also be cleared when the "CLEAR" key is pressed.
\square Selective resetting of a particular memory type (e.g. only the fault memory) via setting parameters. (For this example: Navigate to menu point FT_RC: Reset record. USER and set to 'Execute', see also the exact step-by-step description in Chapter 6 "Local Control", section 'Reset'.)
\square Selective resetting of a particular memory type (e.g. only the fault memory) through appropriately configured binary signal inputs. (For this example: Assign parameter FT_RC: Reset record. EXT to the relevant binary signal input e.g. INP: Fct. assignm. U 301.)
\square Group resetting by setting parameters, by navigating to menu point MAIN: Group reset X USER and setting it to 'Execute'. For this the relevant memories (i.e. those to be reset) must be assigned to parameter MAIN: Fct.assign. reset x.
\square Group resetting through appropriately configured binary signal inputs. (That is assign parameter MAIN: Group reset. x EXT to the relevant binary signal input, e.g. INP: Fct. assignm. U 301 after memories to be reset have been assigned to parameter MAIN: Fct.assign. reset x.)
\square General resetting by setting parameters (menu point MAIN: General reset USER). All memories, counters, events etc. are reset without any special configuration options.
\square General resetting through appropriately configured binary signal inputs. (MAIN: General reset EXT is assigned to the relevant binary signal input.) All memories, counters, events etc. are reset without any special configuration options.

Should several resetting actions have been configured for one particular memory then they all have equal priority.

In the event of a cold restart, namely simultaneous failure of both internal battery and substation auxiliary supply, all stored signals and values will be lost.

3 Operation
 (continued)

Further resetting possibilities are basically not distinct resetting actions but make access especially easy to one of the resetting actions described above i.e. by configuring them to a function key.
\square Function keys may be configured such that resetting of a specific memory is assigned. Technically this is similar to resetting through an appropriately configured binary signal input. When a function key is pressed a signal to a binary signal input is simulated. (See section 'Configurable Function Keys'.)
\square Similar to this, but one step less direct, is the possibility to assign one of the two menu jump lists (LOC: Trig. Menu jmpxEXT) to a function key and to include the relevant menu point for a resetting action (e.g.
OUTP: Reset Iatch. USER) in the definition
(LOC: Fct. Menu jmp list x) of the selected menu jump list.
\square The same may be achieved with the "READ" key by assigning it a menu point for a resetting action through LOC: Assignment read key.

3 Operation

(continued)

3-83 "CLEAR" key on the local control panel and, as an example, group resetting of the operating data recording (e.g. as an example for the reset signal OP_RC: Reset record. EXT); further examples for resetting signals generated in this way are:
[004 140] TGFD: Reset signal EXT

- [005 210] MAIN: Reset c. cl/tr.c EXT
- [005 211] MAIN: Reset IP,max,st. EXT
- [005 212] MAIN: Reset meas.v.en. EXT
- [005 240] MT_RC: Reset record. EXT
- [005 241] OL_RC: Reset record. EXT
- [005 242] GF_RC: Reset record. EXT
- [005 243] FT_RC: Reset record. EXT
- $\quad[005$ 244] ARC: Reset counters EXT
- [005 245] GFDSS: Reset counters EXT
- [005 246] TGFD: Reset counters EXT
- [005 247] CBM: Reset meas.val. EXT
- [005 255] MAIN: General reset EXT
- [006 054] COMM3: Reset No.tlg.err.EXT
- [006 074] ASC: Reset counters EXT
- [006 075] f<>: Reset meas.val. EXT
- [006 076] MEASI: Reset Tmax EXT
- [036 087] MEASI: Reset output EXT
[038 061] THERM: Reset replica EXT
- [040 015] OUTP: Reset latch. EXT
- [040 138] MAIN: Reset latch.trip EXT
- [041 082] MP: Reset replica EXT

3 Operation
 (continued)

3.12.21 Assigning Communications Interfaces to Physical Communications Channels

Depending on the design version of the communications module A there are up to two communications channels available (see Chapter "Technical Data"). These physical communications channels may be assigned to communications interfaces COMM1 and COMM2.

If communications interface COMM1 is assigned to communications channel 2, then the settings of communications interface COMM2 are automatically assigned to communications channel 1. Communications channel 2 can only be used to transmit data to and from the P132 if its PC interface has been de-activated. As soon as the PC interface is used to transmit data, communications channel 2 becomes "dead".

3 Operation

(continued)

3.12.22 Test mode

If tests are run on the P132, the user is advised to activate the test mode so that all incoming signals via the serial interfaces will be identified accordingly.

3-85 Setting the test mode

3 Operation
 (continued)

Selecting the parameter subset

The control path that will determine the active parameter subset (function parameter or binary signal input) can be selected via the function parameter PSS: Control via USER or the external signal PSS: Control via user EXT. Depending on the selection made, the parameter subset will be selected either in accordance with the preset function parameter PSS: Param. subs. sel. USER or as a function of external signals. The parameter subset that is active at any given time can be determined by scanning the logic state signals PSS: Actual param.subset or PSS: PSx active.

If the binary signal inputs are to be used for parameter subset selection, then the P132 first checks to determine whether at least two binary inputs are configured for parameter subset selection. If this is not the case, then the parameter subset selected via the function parameter will be active. The P132 also checks to determine whether the signals present at the binary signal inputs allow an unambiguous parameter subset selection. This is true only when just one binary signal input is set to a logic value of ' 1 '. If more than one signal input is set to a logic value of ' 1 ', then the parameter subset previously selected remains active. Should a dead interval occur while switching between parameter subsets (this is the case if all binary signal inputs have a logic value of ' 0 '), then the stored energy time is started. While this timer stage is running, the previously selected parameter subset remains active. As soon as a signal input has a logic value of ' 1 ', the associated parameter subset becomes active. If, after the stored energy time has elapsed, there is still no signal input with a logic value of ' 1 ', the parameter subset selected via a function parameter becomes active.

If, after the supply voltage is turned on, no logic value of ' 1 ' is present at any of the binary signal inputs selected for the parameter subset selection, then the parameter subset selected via a function parameter will become active once the stored energy time has elapsed. The previous parameter subset remains active while the stored energy timer stage is running.

Parameter subset selection may also occur during a starting condition. When subset selection is handled via binary signal inputs, a maximum inherent delay of approximately 100 ms must be taken into account.

Settings for which only one address is given in the following sections are equally effective for all four parameter subsets.

3 Operation
 (continued)

3 Operation
 (continued)

Tests during start-up

3.14 Self-Monitoring (Function Group SFMON)

Comprehensive monitoring routines in the P132 ensure that internal faults are detected and do not lead to malfunctions. The selection of function assignments to the alarm signal includes, among others, self-monitoring signals from the communication monitor, measuring-circuit monitoring (V, Vref, I), open-circuit monitoring (20 mA input, temperature sensors) and the logic outputs 30 to 32 and $30(\mathrm{t})$ to $32(\mathrm{t})$.

After the supply voltage has been turned on, various tests are carried out to verify full operability of the P132. If the P132 detects a fault in one of the tests, then start-up is terminated. The display shows which test was running when termination occurred. No control actions may be carried out. A new attempt to start up the P132 can only be initiated by turning the supply voltage off and then on again.

Cyclic tests

After start-up has been successfully completed, cyclic self-monitoring tests will be run during operation. In the event of a positive test result, a specified monitoring signal will be issued and stored in a non-volatile(NV) memory - the monitoring signal memory along with the assigned date and time (see section 'Monitoring Signal Recording').

The self-monitoring function monitors the built-in battery for any drop below the minimum acceptable voltage level. If the associated monitoring signal is displayed, then the battery should be replaced within a month, since otherwise there is the danger of data loss if the supply voltage should fail. Chapter 11 gives further instructions on battery replacement.

Signal
The monitoring signals are also signaled via the output relay configured SFMON: Warning. The output relay operates as long as an internal fault is detected.

3 Operation

(continued)

Device response
The response of the P132 is dependent on the type of monitoring signal. The following responses are possible:

Signaling Only

If there is no malfunction associated with the monitoring signal, then only a signal is issued, and there are no further consequences. This situation exists, for example, when internal data acquisition memories overflow.

- Selective Blocking

If a fault is diagnosed solely in an area that does not affect the protective functions, then only the affected area is blocked. This would apply, for example, to the detection of a fault on the communication module or in the area of the PC interface.

ㅁ Warm Restart

If the self-monitoring function detects a fault that might be eliminated by a system restart - such as a fault in the hardware -, then a procedure called a warm restart is automatically initiated. During this procedure, as with any start-up, the computer system is reset to a defined state. A warm restart is characterized by the fact that no stored data and, in particular, no setting parameters are affected by the procedure. A warm restart can also be triggered manually by control action. During a warm restart sequence the protective functions and the communication through serial interfaces will be blocked. If the same fault is detected after a warm restart has been triggered by the self-monitoring system, then the protective functions remain blocked but communication through the serial interfaces will usually be possible again.

Cold Restart

If a corrupted parameter subset is diagnosed during the checksum test, which is part of the self-monitoring procedure, then a cold restart is carried out. This is necessary because the protection device cannot identify which parameter in the subset is corrupted. A cold restart causes all internal memories to be reset to a defined state. This means that all the protection device settings are also erased after a cold restart. In order to establish a safe initial state, the default values have been selected so that the protective functions are blocked. Both the monitoring signal that triggered the cold restart and the value indicating parameter loss are entered in the monitoring signal memory.

3 Operation
 (continued)

Monitoring signal memory

Monitoring signal memory time tag

Depending on the type of internal fault detected the device will respond by trying to eliminate the problem with a warm restart. (See above; for further details read also about device behavior with problems in Chapter 10 "Troubleshooting".) Whether or not this measure will suffice can only be determined if the monitoring signal has not already been stored in the monitoring signal memory because of a previous fault. If it was already stored and a second fault is detected then, depending on the type of fault detected, the device will be blocked after the second warm restart.

In order to monitor this behavior better the parameter at
SFMON: Mon.sig. retention is applied. This parameter may either be set to 'blocked' or to a time duration period (in hours).

The default for this timer stage is 'blocked' e.g. blocking of the protection device with two identical faults occurs independent of the time evolved since the first fault monitoring signal was issued.

The behavior caused by sporadic faults could lead to an unwanted blocking of the device if the monitoring signal memory has not been reset in the interim, for example, because the substation is difficult to reach in wintertime or reading-out and clearing of the monitoring signal memory via the communication interfaces was not enabled. To defuse this problem it is suggested to set the function parameter to a specific time duration period so that blocking will only occur if the same fault occurs again within this time period. Otherwise, the device will continue to operate normally after a warm restart.

The time when the device fault occurred last is recorded.

3 Operation

3.15 Operating Data Recording (Function Group OP_RC)

For the continuous recording of processes in system operation as well as of events, a non-volatile ring memory is provided. The operationally relevant signals, each fully tagged with date and time at signal start and signal end, are entered in chronological order. The signals relevant for operation include control actions such as function disabling and enabling and triggers for testing and resetting. The onset and end of events in the system that represent a deviation from normal operation such as overloads, ground faults, or short-circuits are also recorded. The operating data memory can be cleared.

Counter for signals relevant to system operation

The signals stored in the operating data memory are counted.

[^12]
3 Operation
 (continued)

3.16 Monitoring Signal Recording (Function Group MT_RC)

The monitoring signals generated by the self-monitoring function are recorded in the monitoring signal memory. The memory depth allows for a maximum of 30 entries. If more than 29 monitoring signals occur without interim memory clearance, the SFMON: Overflow MT_RC signal is entered as the last entry. Monitoring signals prompted by a hardware fault in the unit are always entered in the monitoring signal memory. Monitoring signals prompted by a peripheral fault can be entered into the monitoring signal memory, if desired. The user can select this option by setting an 'm out of n ' parameter (see Self-Monitoring).

If at least one entry is stored in the monitoring signal memory, this fact is signaled by the red LED indicator H 3 on the local control panel. Each new entry is indicated by a flashing light.

The monitoring signal memory can only be cleared manually by a control action. Entries in the monitoring signal memory are not even cleared automatically if the corresponding test in a new test cycle has a negative result. The contents of the monitoring signal memory can be read from the local control panel or through the PC or communication interface. The time and date information assigned to the individual entries can be read out through the PC or communication interface or from the local control panel.

The number of entries stored in the monitoring signal memory is displayed on the monitoring signal counter (MT_RC: No. monit. signals).

3 Operation
 (continued)

3.17 Overload Data Acquisition (Function Group OL_DA)

Overload duration
In the event of an overload, the P132 determines the overload duration. The overload duration is defined as the time between the start and end of the OL_RC: Record. in progress signal.

3 Operation
 (continued)

Acquisition of measured overload data by the motor protection function

During motor startup, the measured data for the startup time, the maximum startup current and the startup heating are determined and stored at the end of the startup process.

3-91 Measured overload data of the motor protection function

3 Operation

(continued)

Acquisition of the measured overload data of thermal overload protection

The measured overload data are derived from the measured operating data of the thermal overload protection function. They are stored at the end of the overload event.

3-92 Measured overload data of thermal overload protection

3 Operation
 (continued)

3.18 Overload Recording (Function Group OL_RC)

Start of overload recording
An overload exists and therefore overload recording begins if a starting signal is issued by either the motor protection function (MP: Starting k*|ref>) or the thermal overload protection function (THERM: Starting k*Iref>).

Counting overload events
Overload events are counted and identified by sequential number.

3 Operation
 (continued)

Time tagging
The date that is assigned to each overload event by the internal clock is stored. An overload event's individual start or end signals are likewise time-tagged by the internal clock. The date and time assigned to an overload event when the event begins can be read out from the overload memory on the local control panel or through the PC and communication interfaces. The time information (relative to the onset of the overload) that is assigned to the signals can be retrieved from the overload memory or through the PC or one of the communication interfaces.

Overload logging

Protection signals during an overload event are logged in chronological order with reference to the specific event. A total of eight overload events, each involving a maximum of 200 start or end signals, can be stored in the non-volatile overload memories. After eight overload events have been logged, the oldest overload log will be overwritten, unless memories have been cleared in the interim. If more than 199 start or end signals have occurred during a single overload event, then OL_RC: Overl. mem. overflow will be entered as the last signal.

In addition to the signals, the measured overload data are also entered in the overload memory.

The overload logs can be read from the local control panel or through the PC or communication interfaces.

3 Operation

(continued)

12 Z6117 A_EN

3 Operation
 (continued)

Resetting the measured ground fault data

3.19 Ground Fault Data Acquisition (Function Group GF_DA)

In the event of a ground fault, the P132 acquires the following measured ground fault data:
\square Duration of the ground fault recording
\square When the GFDSS function (ground fault direction determination using steady-state values) is enabled:

- Ground fault duration determined by steady-state power, steady-state current or admittance evaluation
- Neutral-point displacement voltage V_{NG} determined by steady-state power or admittance evaluation
- Residual current I_{N}
- Active component of residual current determined by steady-state power evaluation
- Reactive component of the residual current determined by steady-state power evaluation
- Filtered residual current determined by steady-state current evaluation
- Admittance, conductance and susceptance if the admittance evaluation mode is enabled

After the reset key ' C ' on the local control panel is pressed, the ground fault data value is displayed as 'Not measured'. However, the values are not erased and can continue to be read out through the PC and communication interfaces.

Duration of the ground fault recording

The ground fault duration is defined as the time between the start and end of the OL_RC: Record. in progress signal.

[^13]
3 Operation
 (continued)

3.19.1 Measured Ground Fault Data from Steady-State Power Evaluation

Ground fault duration
Ground fault duration is defined as the time between operation and dropout of the trigger GFDSS: VNG>. However, there is only a time output after the end of a ground fault if the trigger GFDSS: VNG> has operated at least for the set time GFDSS: tVNG>. After GFDSS: tVNG> has elapsed, the display of the ground fault duration of the last ground fault is automatically cleared.

3 Operation
 (continued)

Residual current

The residual current that is present at the time the timer stage GFDSS: tVNG> elapses is stored in memory. In addition, the active or reactive component of the residual current at the time of the direction decision output is also stored. All measured data are output as per-unit quantities referred to the nominal current $\mathrm{I}_{\text {nom }}$ of the device.

Neutral displacement voltage

The neutral displacement voltage that is present at the time the timer stage GFDSS: tVNG> elapses is stored in memory.

3-97 Residual current and neutral-displacement voltage for steady-state power evaluation

3 Operation

(continued)

3.19.2 Measured Ground Fault Data from Steady-State Current Evaluation

Ground fault duration
Ground fault duration is defined as the time between operation and dropout of the trigger GFDSS: IN>. However, there is only a time output after the end of a ground fault if the trigger GFDSS: IN> has operated at least for the duration of the set operate delay (GFDSS: Operate delay IN). After the operate delay has elapsed, the display of the ground fault duration of the last ground fault is automatically cleared.

3-98 Measurement and storage of ground fault duration, steady-state current evaluation

3 Operation
 (continued)

Residual current

Both the unfiltered and the filtered residual current at the time when the operate delay GFDSS: Operate delay IN elapses are stored.

3 Operation

(continued)

3.19.3 Measured Ground Fault Data from Admittance Evaluation

Ground fault duration
Ground fault duration is defined as the time between operation and dropout of the trigger GFDSS: VNG>. However, there is only a time output after the end of a ground fault if the trigger GFDSS: VNG> has operated at least for the set time GFDSS: tVNG>. After GFDSS: tVNG> has elapsed, the display of the ground fault duration of the last ground fault is automatically cleared.

[^14]
3 Operation
 (continued)

Acquisition of admittance, conductance and susceptance

Residual current

Neutral displacement voltage

Conductance and susceptance are stored at the time when the direction decision is issued. The acquisition of the admittance data value is carried out at the time when timer stage GFDSS: Operate delay $Y(N)>$ elapses.

The residual current that is present at the time the timer stage GFDSS: tVNG> elapses is stored in memory. The measured data value is output as per-unit quantity referred to the nominal current $\mathrm{I}_{\text {nom }}$ of the device.

The neutral displacement voltage that is present at the time the timer stage GFDSS: tVNG> elapses is stored in memory.

3-101 Measured ground fault data for the admittance evaluation mode

3 Operation
 (continued)

3.20 Ground Fault Recording (Function Group GF_RC)

Start of ground fault recording

A fault exists, and therefore fault recording begins, if at least one of the following conditions is met:

- A ground fault has been detected by the GFDSS function (ground fault direction determination using steady-state values).
- A ground fault has been detected by transient ground fault direction determination.

Ground fault counting
The ground faults are counted and identified by sequential number.

[^15]
3 Operation
 (continued)

Time tagging

The date that is assigned to each ground fault by the internal clock is stored. A ground fault's individual start or end signals are likewise time-tagged by the internal clock. The date and time assigned to a ground fault event when the event begins can be read out from the ground fault memory on the local control panel or through the PC and communication interfaces. The time information (relative to the onset of the ground fault event) that is assigned to the signals can be retrieved from the ground fault memory or through the PC or communication interfaces.

Protection signals issued during a ground fault are logged in chronological order with reference to the specific ground fault. A total of eight ground fault logs, each involving a maximum of 200 start or end signals, can be stored in the non-volatile ground fault memories. After eight ground faults have been logged, the oldest ground fault log will be overwritten, unless memories have been cleared in the interim. If more than 199 start or end signals have occurred during a single ground fault, then GF_RC: GF memory overflow will be entered as the last signal.

In addition to the signals, the measured ground fault data are also entered in the ground fault memory.

The ground fault recordings can be read from the local control panel or through the PC or communication interfaces.

3 Operation

(continued)

3 Operation
 (continued)

3.21 Fault Data Acquisition (Function Group FT_DA)

When there is a fault in the system, the P132 collects the following measured fault data:
\square Running time
\square Fault duration
\square Fault current (short-circuit current)
\square Fault voltage (short-circuit voltage)
\square Short-Circuit Impedance
\square Fault reactance (short-circuit reactance) in percent of line reactance and in Ω
\square Fault angle
ㅁ Fault distance

- Ground fault current
\square Ground fault angle
- Fault location in \%
- Fault location in km

3 Operation

(continued)

Running time and fault duration

The running time is defined as the time between the start and end of the general starting signal that is generated within the P132, and the fault duration is defined as the time between the start and end of the FT_RC: Record. in progress signal.

3-104
Running time and fault duration

3 Operation
 (continued)

Fault data acquisition time
The FT_DA: Start data acqu. setting governs the point during a fault at which the measured fault data are acquired. The following settings are possible:
\square End of fault
Acquisition at the end of the fault.

- Trigg./Trip/GS end

Acquisition at one of the following points:

- Triggering of an appropriately configured binary signal input during a general starting state
- Issue of a general trip signal
- End of a general starting state

Output of fault location occurs - depending on the setting - either when there is a general starting signal or when there is both a general starting signal and a simultaneous general trip signal.

3 Operation
 (continued)

Acquisition of measured
fault data
The P132 selects a measuring loop based on the phase-selective starting decision. The short-circuit impedance (fault impedance) and fault direction are determined from this measuring loop's voltage and current. In the case of single-pole starting with ground fault detection, the currents corrected by the ground factor are selected as measured variables. In the case of three-phase starting, either grounded or ungrounded, the minimum voltage of the phase-to-phase voltages and the associated phase-to-phase current are selected as measured variables.

Fault Detection	Variables Selected for Measurement
A	IA-kG / VA-G
B	IB-kG / VB-G
C	IC-kG / VC-G
A-G	IA-kG / VA-G
B-G	IB-kG / VB-G
C-G	IC-kG / VC-G
A-B	IA-B / VA-B
B-C	IB-C / VB-C
C-A	IC-A / VC-A
A-B-G	IA-B / VA-B
B-C-G	IB-C / VB-C
C-A-G	IC-A / VC-A
A-B-C	IP-P(min) / VP-P (min)
A-B-C-G	IP-P(min) / VP-P (min)

3 Operation

(continued)

3 Operation

(continued)

[^16]The fault must last for at least 60 ms so that the fault data can be determined.
The fault data are determined using the measured variables $\underline{I}_{\text {meas }}$ and $\underline{V}_{\text {meas }}$ selected by measured variable selection, if the fault is detected by fault data acquisition. One phase current is selected as the fault current in accordance with the measuring loop selected. In the case of multi-phase starting this is the current of the leading phase in the cycle. The primary fault reactance is calculated from the per-unit fault reactance using the nominal data for the set primary current and voltage transformers.

The ground fault data are only determined if a phase-to-ground loop has been selected for measurement in conjunction with the fault data acquisition function. The vector sum of the three phase currents is displayed as the ground fault current. The ground fault angle is the phase displacement between ground fault current and selected measuring voltage.

If there is an m.c.b. trip signal or the transformer module is not fitted with a voltage transformer, then only fault current is determined, and the maximum phase current is displayed.

Fault current and voltage are displayed as per-unit quantities referred to $I_{\text {nom }}$ and $V_{\text {nom }}$. If the measured or calculated values are outside the acceptable measuring range, the 'Overflow' indication is displayed.

3 Operation

(continued)

3 Operation

(continued)

Acquisition of fault location
In order for the fault location to be determined in percent of line length and in km , the user must enter two settings in the P132: the value of the line reactance that corresponds to 100% of the line section being monitored and the value of the corresponding line length in km.

[^17]
3 Operation
 (continued)

Acquisition of load data
In addition to fault data and fault location, the following load data are determined when the general starting signal drops out:
\square Load impedance

- Load angle
- Residual current

The same measuring loop used to determine fault impedance is used to determine load impedance and load angle. The load current and the voltage must exceed the thresholds $0.1 \mathrm{I}_{\text {nom }}$ and $0.1 \mathrm{~V}_{\text {nom }}$, respectively, in order for the load data to be determined. If the thresholds are not reached or if the general starting signal does not last as long as 60 ms , the display 'Not measured' appears.

3 Operation

(continued)

3-110 Acquisition of load data

3 Operation
 (continued)

Fault data reset
After the reset key ' C ' on the local control panel is pressed, the fault data value is displayed as 'Not measured'. However, the values are not erased and can continue to be read out through the PC and communication interfaces.

3 Operation
 (continued)

3.22 Fault Recording (Function Group FT_RC)

Start of fault recording
A fault exists, and therefore fault recording begins, if at least one of the following signals is present:

- MAIN: General starting
\square MAIN: Gen. Trip signal 1
\square MAIN: Gen. trip signal 2
ㅁ FT_RC: Trigger
■ FT_RC: I>
In addition, the user can set an 'm out of n ' parameter in order to configure signals whose appearance will trigger fault recording.

Fault counting
Faults are counted and identified by sequential number.

3 Operation

(continued)

3-111 Start of fault recording and fault counter

3 Operation
 (continued)

Time tagging
The date that is assigned to each fault by the internal clock is stored. A fault's individual start or end signals are likewise time-tagged by the internal clock. The date and time assigned to a fault when the fault begins can be read out from the fault memory on the local control panel or through the PC and communication interfaces. The time information (relative to the onset of the fault) that is assigned to the signals can be retrieved from the fault memory or through the PC or communication interfaces.

Fault recordings
Protection signals during a fault, including the signals during the settable pre-fault and post-fault times, are logged in chronological order with reference to the specific fault. A total of eight faults, each involving a maximum of 200 start or end signals, can be stored in the non-volatile fault memories. After eight faults have been recorded, the oldest fault recording will be overwritten, unless memories have been cleared in the interim. If more than 199 start or end signals have occurred during a single fault, then FT_RC: Fault mem. overflow will be entered as the last signal. If the time and date are changed during the pre-fault time, the signal FT_RC: Faulty time tag is generated.

In addition to the fault signals, the measured fault data are also entered in the fault memory.

The fault recordings can be read from the local control panel or through the PC or communication interfaces.

3 Operation

(continued)

3 Operation
 (continued)

Fault value recording

The following analog signals are recorded:
\square Phase currents
\square Phase-to-ground voltages
\square Residual current, measured by the P132 at the T 4 transformer
\square Neutral-displacement voltage, measured by the P132 at the T 90 transformer
\square Reference voltage $\mathrm{V}_{\text {ref }}$ (when a synchrocheck VT is fitted).
The signals are recorded before, during and after a fault. The times for recording before and after the fault can be set. A maximum time period of 16.4 s is available for recording. This period can be divided among a maximum of eight faults. The maximum recording time per fault can be set. If a fault, including the set pre-fault and post-fault times, lasts longer than the set maximum recording time, then recording will terminate when the set maximum recording time is reached.

The pre-fault time is exactly adhered to if it is shorter than the set maximum recording time. Otherwise; the pre-fault time is set to the maximum recording time minus a sampling increment, and the post-fault time is set to zero.

If the maximum recording time of 16.4 s is exceeded, the analog values for the oldest fault are overwritten, but not the binary values. If more than eight faults have occurred since the last reset, then all data for the oldest fault are overwritten.

The analog data of the fault record can only be read out through the PC or communication interfaces.

When the supply voltage is interrupted or after a warm restart, the values of all faults remain stored.

3 Operation

(continued)

3-113 Fault value recording

3 Operation
 (continued)

3.23 Definite-Time Overcurrent Protection (Function Group DTOC)

A three-stage definite-time overcurrent protection function (DTOC protection) is available in the P132. Three separate measuring systems are available for this purpose for:

- Phase currents system
- Negative-sequence current systemResidual currents system
Either the short-circuit direction determination function (SCDD) or the auto-reclosing control may intervene in the functional sequence of the DTOC function.

Enabling or disabling
DTOC protection
DTOC protection can be disabled or enabled via parameter settings. Moreover, enabling can be carried out separately for each parameter subset.

3-114 Disabling or enabling DTOC protection

3 Operation
 (continued)

The three phase currents are monitored by the P132 with three-stage functions to detect when they exceed the set thresholds. Alternatively, two different threshold types can be active. The "dynamic" thresholds are active for the set hold time (see section 'Activation of Dynamic Parameters') and the "normal" thresholds are active when no hold time is running. If the current exceeds the set thresholds in one phase, timer stages are started and after the time periods have elapsed, a signal is issued. The timer stages can be blocked by appropriately configured binary signal inputs.

When the inrush stabilization function (see: 'Main Functions of the P132') is triggered, the 1st stage of the DTOC function is blocked.

The trip signals from all phase current stages are blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.

The trip signals from the DTOC function (stages I> and l>> only) can be blocked by the short-circuit direction determination function. Depending on the setting of the shortcircuit direction determination function, the trip signal of stages $\mid>$ or $\mid \gg$ will be enabled.

3 Operation
 (continued)

3 Operation

(continued)

3 Operation
 (continued)

The P132 calculates the negative-sequence current from the three phase current values according to this formula. The result depends on the set phase sequence (alternative terminology: Rotary field).

Phase sequence A-B-C
(alternative terminology: clockwise rotary field)
$\underline{\mathrm{I}}_{\text {neg }}=\frac{1}{3} \cdot\left|\left(\underline{I}_{\mathrm{A}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{I}}_{\mathrm{C}}\right)\right|$
$\underline{a}=e^{j 120^{\circ}}$
$a^{2}=e^{j 240^{\circ}}$

Phase sequence A-C-B
(alternative terminology: anti-clockwise rotary field)
$\underline{\mathrm{I}}_{\text {neg }}=\frac{1}{3} \cdot\left|\left(\underline{\mathrm{I}}_{\mathrm{A}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{C}}\right)\right|$

The negative-sequence current is monitored by the P132 with three-stage functions to detect when it exceeds the set thresholds. Alternatively, two different threshold types can be active. The "dynamic" thresholds are active for the set hold time for the "dynamic parameters" (see section 'Activation of Dynamic Parameters') and the "normal" thresholds are active when no hold time is running. If the current exceeds the set thresholds, timer stages are started and after the time periods have elapsed, a trip signal is issued.

The timer stages can be blocked by appropriately configured binary signal inputs. In addition these timer stages can also be automatically blocked by single-pole or multipole starting (depending on the setting).

The trip signals from the negative-sequence current stages are only enabled if the operating mode for the general starting has been set to "With starting IN, Ineg".

When the inrush stabilization function (see section 'Main Functions of the P132') is triggered, the 1st stage of the negative-sequence current function is blocked.

When the short-circuit direction determination function (SCDD) is active, trip signals from the DTOC negative-sequence current stages have no directional dependence.

The trip signals from all negative-sequence current stages are blocked by the autoreclosing control function (ARC) when this function is able to issue a trip command.

3 Operation

(continued)

[^18]
3 Operation

(continued)

3-118
Trip signals from the DTOC negative-sequence current stages

Enable/disable the DTOC protection.

DTOC residual current stages can be disabled or enabled via setting parameters or through binary signal inputs.

Residual current stages

The residual current is monitored by the P 132 with four-stage functions to detect when it exceeds the set thresholds. Alternatively, two different threshold types can be active. The "dynamic" thresholds are active for the set hold time (see section 'Activation of Dynamic Parameters') and the "normal" thresholds are active when no hold time is running. If the residual current exceeds the set thresholds, timer stages are started and after the time periods have elapsed, a signal is issued.

The timer stages can be blocked by appropriately configured binary signal inputs. In addition these timer stages can also be automatically blocked by single-pole or multipole starting (depending on the setting).

The trip signals from the residual current stages are only enabled if the operating mode for the general starting has been set to "With starting IN, Ineg".

The trip signals from the residual current stages are blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.

The trip signals from the DTOC function (stages IN> and IN>> only) can be blocked by the short-circuit direction determination function (SCDD). Depending on the setting of the short-circuit direction determination function, the trip signal of stages $\mathrm{IN}>$ or $\mathrm{IN} \gg$ will be enabled.

Selecting the measured variable

A setting specifies which current will be used by the P132 as the residual current of the stages IN>, IN>> AND IN>>>: either the residual current calculated from the three phase currents or the residual current directly measured at the fourth transformer (T 4).
For stage IN>>>> (available as of version -602) the calculated residual current is always used.

3 Operation

(continued)

3 Operation

(continued)

3-120 Residual current stages

3 Operation

(continued)

3-121 Trip signal from the DTOC residual current stages

3 Operation
 (continued)

Hold-time logic for intermittent ground faults

A hold-time logic for the treatment of intermittent ground faults is available in the P132.
\square As the IN> starting in the residual current stage commences, the hold time is reset. At the same time, the starting time is accumulated when IN> starting commences.

- As IN> starting ends, the timer stage DTOC: Puls.prol.IN>,intPSx is started and the charging of the accumulation buffer is thereby lengthened by the set value of the timer stage.
- The accumulation result is compared with the settable limit value DTOC: tIN>, interm. PSx.
- If the limit value is reached and a general starting is present, then a trip results, provided that it is permitted by the relevant MAIN settings:
- MAIN: Block tim.st. IN, neg (Address 017 015)
- MAIN: Gen. starting mode (Address 017 027)
- MAIN: Fct.assig.trip cmd. 1 (Address 021 001)
- MAIN: Fct.assig.trip cmd. 2 (Address 021 002)
- If the limit value is reached while the timer stage DTOC: Puls.prol.IN >, intPSx is running, then a trip will occur when the next general starting phase commences.
- With each release of the trigger stage $\mathrm{IN}>$, the set hold-time DTOC: Hold-t. tIN>, intmPSX is restarted. When the hold time has elapsed or after the hold-time logic has issued a trip
(DTOC: Trip sig. tIN>,intm.), accumulation is stopped and the accumulation buffer is cleared.

3 Operation

(continued)

3 Operation
 (continued)

3-123 Signal flow for values below the accumulation limit value

3 Operation

(continued)

3 Operation
 (continued)

3.24 Inverse-time Overcurrent Protection (Function Groups IDMT1 and IDMT2)

Note:
In this section IDMT represents IDMT1.
This description is also valid for IDMT2 (if there is no indication to the contrary).
The addresses given apply to IDMT1. The addresses for function group IDMT2 are given in chapters 7 and 8 .
For example, the address for IDMT1: General enable USER is 017096 (given in the following picture), but the address for IDMT2: General enable USER is 017052.

3 Operation
 (continued)

The inverse-time overcurrent protection function (IDMT) operates with three separate measuring systems for:

- Phase currents system
- Negative-sequence current
\square Residual current.
Either the short-circuit direction determination function (SCDD) or the auto-reclosing control function may intervene in the functional sequence of the IDMT function.

Disabling or enabling IDMT protection

IDMT protection can be disabled or enabled via parameter settings. Moreover, enabling can be carried out separately for each parameter subset.

Disabling or enabling IDMT protection (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.)

The measuring systems for phase currents, residual current and negative-sequence current operate independently of each other and can be set separately. The user can select from a large number of characteristics (see table below). The measured variable is the maximum phase current, the negative-sequence current, or the residual current, depending on the measuring system. The tripping characteristics available for selection are shown in figures 3-126 to 3-129.

3 Operation

(continued)

3 Operation

Characteristic No. 1

Characteristic No. 3

Characteristic No. 2

Characteristic No. 4

3-126 Tripping characteristics as per IEC 255-3

3 Operation
 (continued)

3-127 Tripping characteristics as per IEEE C37.112

3 Operation

(continued)

3 Operation
 (continued)

3-129 RI-type inverse and RXIDG-type inverse tripping characteristics

3 Operation

(continued)

Phase current stage
The three phase currents are monitored by the P132 to detect when they exceed the set thresholds. Alternatively, two different thresholds can be active. The "dynamic" threshold is active for the set hold time for the "dynamic parameters" (see section 'Activation of Dynamic Parameters') and the "normal" threshold is active when no hold time is running. The IDMT protection will trigger when the 1.05 -fold of the set reference current value is exceeded in one phase. The P132 will then determine the maximum current flowing in the three phases and this value is used for further processing. Depending on the characteristic selected and the current magnitude the P132 will determine the tripping time. Moreover the tripping time will under no circumstances fall below a settable minimum time threshold irrespective of the current flow magnitude.

When the inrush stabilization function (see section 'Main Functions of the P132') is triggered, the phase current stage is blocked.

The inverse-time stage can be blocked by an appropriately configured binary signal input.

The trip signal from the IDMT1 protection may also be blocked by the short-circuit direction determination or the auto-reclosing control function. Depending on the setting of the short-circuit direction determination the trip signal will be enabled. The trip signals of the phase current stages IDMT1 and IDMT2 are blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.

3 Operation

(continued)

3-130 Phase current stage (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.) (Trip signal: see following figure)

3 Operation

(continued)

3-131a Trip signal of the phase current stage IDMT1

1	2		3	4	5	6	7
IDMT 2: tIref, P> elapsed [ARC: Blocki ARC: Blocking trip [042000]		\&					$\begin{aligned} & \text { IDMT1: Trip signal } \\ & \text { tIref, P> } \\ & {[040023]} \end{aligned}$

3-131b Trip signal of the phase current stages IDMT2

3 Operation
 (continued)

According to the following formulas the P132 will determine the negative-sequence current and positive-sequence current, taking into account the set phase sequence (alternative terminology: Rotary field):

Phase sequence A-B-C
(alternative terminology: clockwise rotary field)
$\underline{\mathrm{I}}_{\text {neg }}=\frac{1}{3} \cdot\left|\left(\underline{I}_{\mathrm{A}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{I}}_{\mathrm{C}}\right)\right|$
$\underline{a}=e^{j 120^{\circ}}$
$a^{2}=e^{j 240^{\circ}}$

Phase sequence $A-C-B$

(alternative terminology:
anti-clockwise rotary field)
$\underline{\mathrm{I}}_{\text {neg }}=\frac{1}{3} \cdot\left|\left(\underline{\mathrm{I}}_{\mathrm{A}}+\underline{\mathrm{a}} \cdot \underline{\mathrm{I}}_{\mathrm{B}}+\underline{\mathrm{a}}^{2} \cdot \underline{\mathrm{I}}_{\mathrm{C}}\right)\right|$

The negative-sequence current is monitored by the P 132 to detect when it exceeds the set thresholds. Alternatively, two different thresholds can be active. The "dynamic" threshold is active for the set hold time for the "dynamic parameters" (see section 'Activation of Dynamic Parameters') and the "normal" threshold is active when no hold time is running. The IDMT protection will trigger when the 1.05 -fold of the set reference current value is exceeded by the negative-sequence current. Depending on the characteristic selected and the residual current magnitude the P132 will determine the tripping time. Moreover the tripping time will under no circumstances fall below a settable minimum time threshold irrespective of the negative-sequence current flow magnitude.

When the inrush stabilization function (see section: 'Main Functions of the P132') is triggered, the negative-sequence current stage is blocked.

The inverse-time stage can be blocked by an appropriately configured binary signal input. In addition the inverse-time stage can also be automatically blocked by singlepole or multi-pole starting (depending on the setting).

When the short-circuit direction determination function (SCDD) is enabled, a trip signal from the IDMT negative-sequence current stage is always non-directional.

The trip signal from the negative-sequence current stage is blocked by the autoreclosing control function (ARC) when this function is able to issue a trip command.

3 Operation

(continued)

[^19]
3 Operation
 (continued)

Selecting the measured variable for the residual current stage

A setting specifies which current will be used by the P132 as the residual current: either the residual current calculated from the three phase currents or the residual current directly measured at the fourth current transformer (T 4).

[^20]
3 Operation
 (continued)

Residual current stage
The residual current is monitored by the P 132 to detect when it exceeds the set thresholds. Alternatively, two different thresholds can be active. The "dynamic" threshold is active for the set hold time for the "dynamic parameters" (see section 'Activation of Dynamic Parameters') and the "normal" threshold is active when no hold time is running. The IDMT protection will trigger when the 1.05 -fold of the set reference current value is exceeded by the residual current. Depending on the characteristic selected and the residual current magnitude the P132 will determine the tripping time. Moreover the tripping time will under no circumstances fall below a settable minimum time threshold irrespective of the residual current flow magnitude.

The inverse-time stage can be blocked by an appropriately configured binary signal input. In addition the inverse-time stage can also be automatically blocked by singlepole or multi-pole starting (depending on the setting).

The trip signal from the IDMT1 protection may also be blocked by the short-circuit direction determination or the auto-reclosing control function. Depending on the setting of the short-circuit direction determination the trip signal will be enabled. The trip signals of the residual current stages IDMT1 and IDMT2 are blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.

3 Operation

(continued)

3-134 Residual current stage (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.) (Trip signal: see following figure)

3 Operation

(continued)

3-135a Trip signal of the residual current stage

Holding time

Depending on the current flow the P132 will determine the tripping time and a timer stage is started. The setting of the hold time defines the time period during which the IDMT protection starting time is stored after the starting has dropped out. Should starting recur during the hold time period then the time of the renewed starting will be added to the time period stored. When the starting times sum reach the tripping time value determined by the P132 then the corresponding signal will be issued. Should starting not recur during the hold time period then, depending on the setting, the memory storing the accumulated starting times value will either be cleared without delay or according to the characteristic set. In figure 3-136 the effect of hold time is shown by the example of a phase current stage.

3 Operation
 (continued)

3-136 Effect of hold time shown with a phase current stage as an example
 Example A: Hold time determined is not reached.
 Example B : Hold time determined is reached.

(IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.)

3 Operation
 (continued)

3.25 Short-Circuit Direction Determination (Function Group SCDD)

The P132 provides short circuit direction determination (SCDD). With this feature it is possible to apply the P132 for directional definite-time overcurrent protection and directional inverse-time overcurrent protection. Two separate measuring systems are available for this purpose for:

ㅁ Phase currents system
\square Residual currents system
Enable/disable the shortcircuit direction determination

The short-circuit direction determination can be disabled or enabled via setting parameters. Moreover, enabling can be carried out separately for each parameter subset.

3 Operation
 (continued)

Phase current stages

To determine direction in the phase current stages and depending on the type of fault a phase current and the opposed phase-to-phase voltage as well as the respective optimum characteristic angle are used.

As an example for a single-pole fault in phase A to ground the phase A current value $\left(I_{A}\right)$, the phase B to phase C voltage value (V_{B-C}) and the characteristic angle $\alpha_{P}=+45^{\circ}$ are selected as measured variables (see figure 3-138).

The vector of the selected phase-to-phase voltage is the reference quantity. Beginning with the reference quantity the characteristic angle α_{p} will determine the measuring relation. Depending on the type of fault the P 132 will present various characteristic angles. The measuring relation is defined as the angle bisector for the directional zone "Forward". Forward directional is apparent if the vector of the selected phase current lies in the range $\leq \pm 90^{\circ}$ of the measuring relation.

Backward directional is apparent if the vector of the selected phase current lies in the range $> \pm 90^{\circ}$ of the measuring relation.

3-138 single-pole fault in phase A to ground (A-G) and with an inductive system and a phase sequence A-B-C (or clockwise rotary field direction)

3 Operation
 (continued)

Enabling for phase current stages (without voltage memory)

Direction determination for phase current stages is only enabled if the following conditions are met simultaneously:

- The short-circuit direction determination is enabled.
\square Measuring-circuit monitoring has detected no faults in the voltage measuring loop (see section 'Measuring Circuit Monitoring').
\square A phase current starting signal is present.
\square At lease two phase-to-phase voltage values exceed 200 mV .
\square All three phase current values exceed $0.1 \mathrm{I}_{\text {nom }}$.
\square The external signal MAIN: M.c.b. trip V EXT is not present.
If the short-circuit direction determination is disabled the internal signal SCDD: Phase curr.stage bl. is generated.

As of variant -602 the voltage memory can be applied when 3-pole faults have occurred. (See description at the end of this section.)

3 Operation
 (continued)

After being enabled and depending on the direction determination decision one of the following signals will be issued:
\square With a fault in forward direction, SCDD: Fault P forward
\square With a fault in forward direction,
SCDD: Fault P backward
To inhibit transient contention problems starting and dropping out of a direction determination decision in both directions is delayed for 30 ms .

3-140 Direction determination for phase current stages
(Note: Previous terminology of MAIN: Phase sequence was MAIN: Rotary field)

3 Operation
 (continued)

Forming the blocking signal for the phase current stages

To form the blocking signal for the two DTOC phase current stages and the IDMT phase current stage the fault direction to evaluate the measuring decision may be set separately for each of the stages to either 'Forward directional', 'Backward directional' or 'Non-directional'.

A blocking signal for the first DTOC phase current stage is formed when one of the following conditions is met:
\square The direction for tl> is set to 'Forward directional' and the short-circuit direction determination detects a fault in backward direction.
\square The direction for tl> is set to 'Backward directional' and the short-circuit direction determination detects a fault in forward direction.

A blocking signal for the second DTOC phase current stage is formed when one of the following conditions is met:
\square The direction for tl>> is set to 'Forward directional' and the short-circuit direction determination detects a fault in backward direction.
\square The direction for $\mathrm{tl} \gg$ is set to 'Backward directional' and the short-circuit direction determination detects a fault in forward direction.

A blocking signal for the IDMT phase current stage is formed when one of the following conditions is met:
\square The direction for tlref, $\mathrm{P}>$ is set to 'Forward directional' and the short-circuit direction determination detects a fault in backward direction.
\square The direction for tlref,P> is set to 'Backward directional' and the short-circuit direction determination detects a fault in forward direction.

In case the direction determination function is not enabled (e.g. with a M.c.b. trip) it is possible to select whether stages set to 'Forward directional' may be operated with biased tripping by enabling SCDD: Trip bias PSx.

3 Operation

(continued)

Forming the blocking signals for the phase current stages

3 Operation
 (continued)

To determine direction in the residual current stages the residual current measured $\left(\underline{I}_{N}\right)$ and the neutral-point displacement voltage $\left(\underline{\mathrm{V}}_{\mathrm{N}-\mathrm{G}}=-\underline{\mathrm{V}}_{\mathrm{G}-\mathrm{N}}\right)$ are used. The specification of a good characteristic angle is carried out by the user according to the neutral-point treatment of the system. The characteristic angle α_{N} may be set in
the range: -90° to $+90^{\circ}$
The reference quantity is the neutral-point displacement vector. Beginning with the reference quantity the characteristic angle will determine the measuring relation. The measuring relation is defined as the angle bisector for the directional zone "Forward". Forward directional is apparent if the vector of the residual current lies in the range $\leq \pm 90^{\circ}$ of the measuring relation.

Backward directional is apparent if the vector of the residual current lies in the range $> \pm 90^{\circ}$ of the measuring relation.

In the following example the system neutral is grounded with a relatively low resistance. Here the residual current apparent with a single-pole fault in phase A to ground (A-G) and a forward directional fault will take up the approximate position as shown in figure $3-142$. With the characteristic angle $\alpha_{N}=-45^{\circ}$ a forward directional decision will be issued.

3 Operation
 (continued)

Conditioning and selecting the measured variables

For the short-circuit direction determination it is possible to use either the neutral-point displacement voltage calculated by the P132 from the three phase-to-ground voltages or the displacement voltage measured at the T 90 transformer.

[^21]
3 Operation

(continued)

Enabling for residual current stages

Direction determination for residual current stages is only enabled if the following conditions are met simultaneously:
\square The short-circuit direction determination is enabled
\square The short-circuit direction determination is not blocked by the measuring-circuit monitoring (see section 'Measuring Circuit Monitoring')
\square A residual current starting signal is present
\square The residual current exceeds $0.01 \mathrm{I}_{\text {nom }}$
\square The external signal MAIN: M.c.b. trip VEXT is not present.
\square The neutral-point displacement voltage exceeds the threshold value set at SCDD: VNG> PSx.

[^22]
3 Operation
 (continued)

After being enabled and depending on the direction determination decision one of the following signals will be issued:
\square With a fault in forward direction, SCDD: Ground fault forward
\square With a fault in backward direction,
SCDD: Ground fault backward
To inhibit transient contention problems starting and dropping out of a direction determination decision in both directions is delayed for 30 ms .

3-144 Direction determination for residual current stages

3 Operation
 (continued)

Forming the blocking signal for the residual current stages

To form the blocking signal for the two DTOC residual current stages and the IDMT residual current stage the fault direction to evaluate the measuring decision may be set separately for each of the stages to either 'Forward directional', 'Backward directional' or 'Non-directional'.

A blocking signal for the first DTOC residual current stage is formed when one of the following conditions is met:
\square The direction for $\mathrm{tl}_{N}>$ is set to 'Forward directional' and the short-circuit direction determination detects a fault in backward direction.
\square The direction for $\mathrm{tl}_{\mathrm{N}}>$ is set to 'Backward directional' and the short-circuit direction determination detects a fault in forward direction.

A blocking signal for the second DTOC residual current stage is formed when one of the following conditions is met:
\square The direction for $\mathrm{tl}_{N} \gg$ is set to 'Forward directional' and the short-circuit direction determination detects a fault in backward direction.
\square The direction for tIN>> is set to 'Backward directional' and the short-circuit direction determination detects a fault in forward direction.

A blocking signal for the IDMT residual current stage is formed when one of the following conditions is met:
\square The direction for $\mathrm{tl}_{\text {ref, } \mathrm{N}}>$ is set to 'Forward directional' and the short-circuit direction determination detects a fault in backward direction.
\square The direction for $\mathrm{tl}_{\text {ref, } \mathrm{N}}>$ is set to 'Backward directional' and the short-circuit direction determination detects a fault in forward direction.

In case the direction determination function is not enabled (e.g. with a M.c.b. trip) it is possible to select whether stages set to 'Forward directional' may be operated with biased tripping by enabling SCDD: Trip bias PSx. In case of a phase current starting bias tripping in the residual current stage may be suppressed by enabling SCDD: Block. Bias G PSx.

3 Operation
 (continued)

3 Operation
 (continued)

Signaling logic

Fault directional signals generated by the directional determination function of the phase and residual current stages are grouped together to a combined function.

3-146 Fault signals from phase or residual current stages forward or backward directional

Short-circuit direction

 determination using voltage memoryThe short-circuit direction determination (SCDD) function group is subdivided into two subsets.

Direction determination in a residual current system

For direction determination in a residual current system the measured residual current IN and the vector addition of the phase-ground voltages are applied.
In this case voltage memory is not used.

Direction determination in a phase system

For direction determination in a phase system the SCDD function uses the faultdependent short-circuit current and - in general - the phase-to-phase, un-faulted voltages (not involved in the short-circuit) assigned to the type of fault. This ensures that with single-pole and two-pole faults there is always sufficient voltage available for direction determination.
This procedure can also be applied to three-pole faults with a phase-to-phase voltage $>200 \mathrm{mV}$.

Should a three-pole fault occur close to the point of measurement, there could be such a large 3-phase voltage drop, that direction determination on above basis is no longer possible. For such fault occurrences there is a voltage memory available from which the SCDD function can obtain the necessary voltage information for direction determination.

3 Operation

(continued)

With a three-pole fault in the phase-current stage the measurement loop voltage (VABmeas) is compared to the selected operate value (Vop.Val.) of the voltage memory set by the user at SCDD: Oper.val.Vmemory PSx. If VABmeas < Vop.Val. then the SCDD function will not use VABmeas but will revert to the voltage memory, if it has been enabled. The following signal is issued:

SCDD: Direct. using memory
If the voltage memory has not been enabled (i.e. |Delta $f \mid>2.5 \mathrm{~Hz}$) the SCDD function will check if VABmeas is sufficient for direction determination.
Should the result with a disabled voltage memory be VABmeas $>200 \mathrm{mV}$ the direction will be determined on the basis of VABmeas. The following signal is issued:

SCDD: Direct. using Vmeas
If V 12 meas $<200 \mathrm{mV}$, a forward fault is detected if the voltage memory is disabled and if the pre-orientation is active (set under SCDD: Trip bias), otherwise the directional decision is blocked. The following signal is issued:

SCDD: Forw. w/o measurem.
These signals are additionally delivered to the following signals:

```
SCDD: Fault P forward
SCDD: Fault P backward
SCDD: Fault P Fault P or G forwd.
SCDD: Fault P Fault P or G backw.
```


3 Operation

(continued)

3.26 Switch on to Fault Protection (Function Group SOTF)

When the circuit breaker is closed manually, it is possible to switch on to an existing fault. This is particularly critical since the time-overcurrent protection would not clear the fault until after the set operate delay had elapsed. In this situation, however, the fastest possible clearance is desired.

To ensure rapid clearing with manual closing, the manual close signal must be issued not only to the circuit breaker but also to the P132 at the same time. If there is no close request from the ARC and if no HSR cycle of an external auto-reclosure control is running, an adjustable timer stage is started with the manual close command. By setting a parameter, the user can choose which of the time-overcurrent protection starting decisions will generate a trip signal while the timer stage is elapsing:

An internal blocking signal is generated with the starting signal for the timer stage. This signal prevents the ARC from being activated when a manual close causes switching on to a fault.

3 Operation
 (continued)

3-147 Switch on to fault protection. (IDMT stands for IDMT1 and IDMT2; the address applies to IDMT1.)

3 Operation
 (continued)

3.27 Protective Signaling (Function Group PSIG)

Protective signaling

Disabling or enabling protective signaling

Protective signaling is used together with short-circuit direction determination in power systems with single-side infeed and a subsequent parallel line configuration (line section). Selective instantaneous clearing of the line section affected by the fault is initiated by this function, while the IDMT or DTOC tripping times are bypassed.

The function can be disabled or enabled by setting or through binary signal inputs.
Activation is enabled independent of parameter subset via PSIG: General enable USER. Activation is enabled for parameter subset PSx via PSIG: Enable PSx. Subsequently, protective signaling can be enabled by setting or through appropriately configured binary signal inputs. Enabling either by setting or through binary signal inputs is equally effective. If only PSIG: Enable EXT is assigned to a binary signal input then protective signaling will be enabled by a positive edge of the input signal; it will be disabled by a negative edge. If only PSIG: Disable EXT is assigned to a binary signal input then a signal present at the input will have no effect.

Readiness of the protective signaling function

In order for protective signaling (PSIG) to function, the following requirements must be satisfied:
\square It must be activated.
\square There is no external block
\square There is no transmission fault.

3 Operation
 (continued)

3 Operation

(continued)

Forming the communication link

To form the communication link it is necessary to connect either the break contact or the make contact of the transmitting relay, depending on the transmitting relay mode selected ('Transm. relay make contact' or 'Transm. relay break contact'), to the PSIG: Receive EXT input of the remote station by means of pilot wires (see 'Installation and Connection' and Figure 3-148). With both operating modes, a receive signal (DC loop closed) is present in both protection devices in the idle state.

3 Operation
 (continued)

Operation of the protective signaling function

If a general starting condition begins, then the loop is opened without delay (transmitting). When a general starting signal is present and the set starting time has elapsed, loop reclosing takes place as follows in accordance with the mode selected at PSIG: Direct. depend. PSx and as a function of the direction decisions:
\square Independently of any direction decision
\square As a function of the condition that there not be any direction decision in the backward direction of the phase current stage
\square As a function of the condition that there not be any direction decision in the backward direction of the residual current stage
\square As a function of whether one of the following conditions in the table is satisfied (if one line of statements is true, then one condition is satisfied):

Fault Residual current stage Backwards	Fault Residual current stage Forwards	Fault Phase current stage Backwards	Fault Phase current stage Forwards
no	no	no	no
no	no	no	yes
no	yes	no	no
no	yes	no	yes

After the loop has reclosed and provided that both a general starting condition and a status signal through the PSIG: Receive EXT input of a closed loop are present, then the signal PSIG: Trip by PSIG is generated without delay. The loop recloses after dropout of the general starting condition and after a delay equal to the release time that can be set at PSIG: Release t. send. PSx.

If protective signaling is not ready, the DC loop will be open if Transm. relay make contact has been selected as operating mode for the transmitting relay or closed if Transm. relay break contact has been selected.

3 Operation

(continued)

3 Operation
 (continued)

Protective signaling monitoring and loop check

The pilot wires are monitored for interruptions. If, in fault-free operation (i.e., in the absence of a general starting condition), no signal is received through the loop for a period longer than the set release time of the transmitting relay +600 ms , then the signal PSIG: Telecom. faulty is issued (see Figure 3-150). A communication malfunction or failure leads to a protective signaling block.

To check the loop, the communications link can be opened via a user interface by means of the function PSIG: Test telecom. USER.

3-151 Faulty transmission channel of protective signaling

3 Operation

(continued)

3.28 Auto-Reclosure Control (Function Group ARC)

Under certain conditions the automatic reclosure control function (ARC) will cause a line section to be cleared and then, when the dead time has elapsed, automatic reclosure of the line section will occur.

Figure 3-152 shows an example for the usual sequence of a failed high-speed reclosure (HSR) followed by a subsequent successful time-delay reclosure (TDR).

3 Operation
 (continued)

3 Operation

(continued)

ARC operating modes
The ARC function available in the P132 offers the possibility of triggering starting times with different starting signals. Once the starting times have elapsed, a trip signal is generated. Multiple reclosures are possible with the ARC function available in the P132. When the ARC operating mode has been set accordingly, multiple reclosures first begin with a high-speed reclosure (HSR). If the fault is not cleared after reclosure by a HSR, then another attempt can be made to clear the fault with a time-delay reclosure (TDR). Multiple reclosures using only TDRs are also possible if the ARC operating mode is set accordingly.

3 Operation
 (continued)

Enabling and disabling the ARC function

Disabling or enabling may be carried out with parameters or binary signal inputs.
The activation of the function is enabled generally (independent of parameter subsets) via ARC: General enable USER. It is enabled as a function of a parameter subset via ARC: Enable PSx. If these enabling functions have been activated, the Auto-reclose control function can be disabled or enabled by setting parameters or through appropriately configured binary signal inputs. Parameters and configured binary signal inputs have equal priority. If only the ARC: Enable EXT function is assigned to a binary signal input, then ARC will be enabled by a positive edge of the input signal and disabled by a negative edge. If only the parameter ARC: Disable EXT has been assigned to a binary signal input, then a signal at this input will have no effect.

3 Operation

(continued)

3 Operation
 (continued)

ARC blocking
Under certain conditions the ARC will be blocked and the signal ARC: Blocked will be issued, provided that one of the following conditions is met:
\square A blocking signal is present because of a manual close.
\square An external signal ARC: Blocking EXT is present.
\square ARC is disabled.

- Protection is disabled (off).
- A manual trip command is issued via setting parameter.

When all blocking conditions have been removed, the blocking time is started. When the blocking time has elapsed, ARC blocking is canceled.

3 Operation
 (continued)

ARC ready to operate
An ARC cycle can only start if the ARC is ready. For this purpose the following conditions need to be met simultaneously:
\square Protection is activated (on).
\square ARC is not blocked.
ㅁ The circuit breaker must be capable of opening and closing again (CB opening \& closing drive is ready).
\square The circuit breaker contacts must be in closed position (closed position scanning is optional).
\square No ARC cycle is running.

3 Operation
 (continued)

When protection functions operating with auto-reclosure control are started, the tripping times (HSR or TDR) are started together with the operative time. If the tripping time has elapsed during an active ARC cycle while the operative time is still running, a trip signal is issued. The HSR or TDR trip time having caused the trip signal also determines which dead time (HSR or TDR) is to be triggered. Once the dead time commences, all tripping times already triggered and the operative time will be terminated.
The beginning of the following starts or input signals trigger the tripping times provided that the starting conditions are met and the respective tripping times are not "blocked". If short-circuit direction determination (SCDD) is enabled, then some of the starting signals are directional:
\square General starting
\square DTOC starting I> (directional)

- DTOC starting l>> (directional)
- DTOC Starting l>>>
- DTOC starting IN> (directional)
- DTOC starting IN>> (directional)
- DTOC Starting IN>>>
\square DTOC1 Starting Iref,P> (directional)
ㅁ DTOC1 Starting Iref,N> (directional)
- DTOC1 Starting Iref,neg>
\square Start by programmable logic
\square Ground fault direction determination by steady-state values (GFDSS) has operated and detected one of the following faults:
■ GFDSS starting fault 'forward/LS'
- GFDSS starting $\mathrm{Y}(\mathrm{N})>$

■ GFDSS starting fault 'forward/LS' or GFDSS starting $\mathrm{Y}(\mathrm{N})>$
If - in the operating mode "HSR/TDR permitted" - only one of the starting conditions listed above applies, then the first trip signal is always generated by the HSR trip time stage, regardless of the duration of the HSR or TDR tripping time setting. HSR precedes TDR. If more than one starting is present then the trip signal will be issued after the HSR tripping time that has elapsed first. As an exception, a TDR will be triggered first after having elapsed first, if the associated HSR tripping time is set to 'Blocked'.

If the trip signal has been generated by a TDR tripping time stage, then no HSR will be initiated within the same ARC cycle.

The ARC trip signal must be included in the 'm out of n' selection of the trip commands.

3 Operation

(continued)

3 Operation
 (continued)

3-158
 Tripping time, part 2

3 Operation

(continued)

3-159 Tripping time, part 3 (In this figure IDMT represents IDMT1)

3 Operation
 (continued)

3-160 Tripping time, part 4

3 Operation

(continued)

3-161 Tripping time, part 5

3-162

3 Operation
 (continued)

Blocking and resetting the tripping times

Except by the setting value "Blocked" the HSR tripping time stages are blocked or reset by one of the following conditions:

- With ARC: Operating mode PSx set to "Test HSR only permitted"
$\square 1 \ggg$ starting is present and ARC: HSR blocking by $1 \ggg P S x$ has been selected.
- With ARC: Operating mode PSx set to 'TDR only permitted'.
\square An HSR is not permitted because an HSR or TDR has already occurred within the current ARC cycle.
\square The ARC is blocked.

Except by the setting value "Blocked" the TDR tripping time stages are blocked or reset by one of the following conditions:
\square With ARC: Operating mode PSx set to 'Test HSR only permitted'.
$\square 1 \ggg$ starting is present and ARC: TDR blocking by $1 \ggg P S x$ has been selected.
\square The ARC is blocked.
\square The number of permitted TDRs has been reached and thus no further TDRs are permitted.

3 Operation

(continued)

3-163 Blocking and resetting the tripping time stages

ARC cycle
An ARC cycle begins, provided that the starting condition is met, with the presence of a relevant starting option (DTOC/IDMT starting, starting via programmable logic, GFDSS, or start of a test HSR), as long as the signal ARC: Ready is present at this time. As the ARC cycle proceeds, the signal ARC: Ready is no longer taken into account.

An ARC cycle is running if the ARC is not blocked and one of the following conditions is met:
\square The operative time is running.
\square A dead time is running.
\square The reclaim time is running.

3 Operation
 (continued)

Blocking the DTOC or IDMT protection function, the GFDSS function, and programmable logic

If the ARC is ready, it will block the trip signals of DTOC, IDMT1 and IDMT2 protection as well as the GFDSS function and the programmable logic via the signal
ARC: Blocking trip. ARC permits the generation of a trip command by the other protection functions if one of the following conditions is met:
\square ARC: Cycle running is not applicable, and ARC is not ready.
ㅁ The final reclaim time is running.
\square Only an HSR test is permitted ("Test HSR only permit").
\square ARC is blocked.
\square The operative time is running during a running tripping time.
\square A relevant starting type begins while a dead time is running.
\square One or more starts do not trigger a tripping time stage because the relevant tripping time stages are disabled (t set to "Blocked"). If a tripping time stage is started in this condition by an additional starting and as long as no final trip command has been issued, the ARC again generates a trip command.

3 Operation
 (continued)

This example (see figure 3-164) illustrates the possible interconnection and the binary signal output for starting the tripping time stage via a binary signal input.

By using the programmable logic a binary signal input with serial operate delay and an AND element is implemented. The function ARC: Blocking trip 'NOT' has been assigned to the second input on this AND element. The output from the AND element must be included in the configuration of the ' m out of n ' selection for the general trip command. The tripping time can be started by the output signal ARC: Start by logic.

For this example the following list parameters need to be set from the local control panel (see section 'Setting a List Parameter' in Chapter "Local Control").

	List Parameter	
LOGIC: Fct.assignm. output 1 (address 030 000)	OR	e.g. LOGIC: Input 4 EXT (address 034 003)
LOGIC: Fct.assignm. output 2	OR	LOGIC: Output 1 (t) (address 042 033)
	AND NOT	ARC: Blocking trip (address 042 000)

In general, any equation within the programmable logic function can be used to start the ARC tripping time.

One of the options offered by the programmable logic is the triggering of the ARC by an external protection device.

3 Operation
 (continued)

3-164 Example of programmable logic in the ARC

General control functions

The entire ARC sequence is monitored and controlled by a sequence control function.
While the ASC function is enabled, reclosure requires a close enable by the ASC function, which implements a check of the synchronism conditions.

3 Operation

(continued)

Parameter	$\begin{aligned} & \text { ARC: Operating } \\ & \text { mode PSX } \end{aligned}$	$\begin{aligned} & \text { ARC: Operative } \\ & \text { time } \end{aligned}$	$\begin{aligned} & \text { ARC: HSR dead } \\ & \text { time PSK } \end{aligned}$	$\begin{aligned} & \text { ARC: TDR dead } \\ & \text { time PS* } \end{aligned}$	$\begin{aligned} & \text { ARC: NO, permit. } \\ & \text { TDR PSX } \end{aligned}$	$\begin{aligned} & \text { ARC: Reclaim } \\ & \text { time } \\ & \text { PSX } \end{aligned}$
set 1	015051	015066	015056	015057	015068	015054
set 2	024025	024035	024030	024031	024037	024028
set 3	024085	024095	024090	024091	024097	024088
set 4	025045	025055	025050	025051	025057	025048

3.28.1 High-Speed Reclosure (HSR)

If the starting conditions are met then any ARC-relevant protection startings will trigger an ARC cycle. The startings set off the associated tripping time stages and the operative time. If an HSR tripping time is running during the operative time then the signal ARC: Trip signal is issued and this signal can lead to a trip command if the function assignment for the trip commands is configured appropriately. With the release of the starting, the operative time is terminated and the HSR dead time begins. If there is no starting during the dead time, a reclosure command is issued once the dead time has elapsed. The reclaim time is started simultaneously. If during the reclaim time there is no starting with trip command, the signal ARC: Reclosure successful is issued and the ARC cycle is terminated once the reclaim time has elapsed.

If the HSR does not succeed and another starting occurs then a TDR is started if at least one TDR is permitted. If TDR after HSR is not permitted then the current reclaim time will be the last reclaim time of the ARC cycle. If the last reclaim time has elapsed and another starting occurs then the tripping time stages are no longer started. Instead the signal ARC: Blocking trip is set to a logic value of ' 0 ' and a trip by other protection functions is enabled. If a trip signal occurs during the last reclaim time then it will be regarded as a final trip. The ARC cycle is completed after the last reclaim time has elapsed.

When the signal ARC: Cycle running appears, the signal
ARC: Sig.interr. CB trip. (interruption breaker trip signal) is issued and it is reset after the final HSR or TDR of the current ARC cycle, once the close command pulse time has elapsed. This signal is also reset immediately when the signal ARC: Blocked appears during an ARC cycle.

If the operative time has elapsed before the starting drops out, the last reclaim time will be started directly and the blocking of protection trip signals is cancelled.

During the dead time, the P132 keeps checking whether any ARC-relevant startings occur. If this is the case, the last reclaim time is started and the blocking of protection trip signals is cancelled.

While the ASC function is enabled, the procedures described in the following section "Joint Operation of the ARC and ASC Functions" are also applicable.

3 Operation

(continued)

3.28.2 Joint Operation of the ARC and ASC Functions

Figure 3-167 shows the joint operation of the ARC and ASC functions, illustrated for a high-speed reclosure (HSR).

If the starting conditions are met then any ARC-relevant protection startings will trigger an ARC cycle. The startings set off the associated tripping time stages and the operative time. If a HSR tripping time is running during the operative time then the signal ARC: Trip signal is issued, and this signal can lead to a trip command if the function assignment for the trip commands is configured appropriately. With the release of the starting, the operative time is terminated and the HSR dead time begins. After the dead time has elapsed, a close request is sent to the ASC. The ASC checks to determine whether reclosure is possible. If a positive decision is reached during the ASC operative time, then there is a close enable, and the close command is issued.

If the ASC is disabled or deactivated, or if its decisions are to be ignored, then a close command is issued immediately. Moreover, the reclaim time is started. If during the reclaim time there is no starting with trip command, the signal ARC: Reclosure successful is issued and the ARC cycle is terminated once the reclaim time has elapsed.

If the ASC function decides against a reclosure then the reclaim time is started and the ARC cycle is completed after the reclaim time has elapsed.

3 Operation

(continued)

3-167 HSR signal sequence with ASC enabled

3 Operation
 (continued)

Test HSR

A test HSR can only be triggered when the ARC is ready to operate and if the operating mode has been set to 'Test HSR only permit.'. In this operating mode, the blocking of the trip signals from the DTOC, IDMT and other protection functions is cancelled so that any system fault can be properly cleared.

Once a test HSR has been triggered, a trip signal of defined duration is issued. The subsequent sequence corresponds to a successful HSR (open and reclose command when the HSR dead time has elapsed). Once the close command pulse time has elapsed, further triggering during the reclaim time does not result in a further HSR.

A test HSR can be triggered either via setting parameter or via a binary signal input and adds an increment to the ARC: Number HSR counter.

Each 'Test HSR' request that does not result in a test HSR generates the signal ARC: Reject test HSR.

3.28.3 Time-Delay Reclosure (TDR)

Multiple reclosures using TDRs are possible if the operating mode is set accordingly. A TDR may occur after a HSR if reclosure has occurred as the result of the HSR or if the operating mode set for the ARC allows only TDRs. This is only possible if the setting for ARC: No. of permit. TDR PSx (number of permitted TDRs) is not zero.

If the starting conditions are met then any ARC-relevant protection startings will trigger the associated tripping times. The operative time is started simultaneously. If a TDR tripping time is running during the operative time then the signal ARC: Trip signal is issued and this signal can lead to a trip command if the function assignment for the trip commands is configured appropriately. With the release of the starting, the operative time is terminated and the TDR dead time begins. If there is no starting during the dead time, a reclosure command is issued once the dead time has elapsed. The reclaim time is started simultaneously. If no further TDR is permitted during the current ARC cycle then this will be the last reclaim time. If the last reclaim time has elapsed and another starting occurs then the tripping time stages are no longer started. Instead the signal ARC: Blocking trip is set to a logic value of ' 0 ' and a final trip by other protection functions is enabled. If a trip signal occurs during the last reclaim time then it will be regarded as a final trip. The ARC cycle is completed after the last reclaim time has elapsed. If during the last reclaim time there is no starting with trip command, the signal ARC: Reclosure successful will be issued.

If there is a new starting during the reclaim time and at least one TDR is still permitted then the reclaim time is terminated and another trip is issued when the tripping time has elapsed. Once the dead time has elapsed, a further reclosure command is issued.

When the signal ARC: Cycle running appears, the signal
ARC: Sig.interr. CB trip (interruption breaker trip signal) is issued automatically and it is reset after the final HSR or TDR of the current ARC cycle, once the close command pulse time has elapsed. This signal is also reset immediately when the signal ARC: Blocked appears during an ARC cycle.

If the operative time has elapsed before the starting drops out, the last reclaim time will be started directly and the blocking of protection trip signals is cancelled.

During the dead time, the P132 keeps checking whether any ARC-relevant startings occur. If this is the case, the last reclaim time is started and the blocking of protection trip signals is cancelled.

While the ASC function is enabled, the procedures described in the previous section "Joint Operation of the ARC and ASC Functions" are also applicable.

3 Operation
 (continued)

3 Operation
 (continued)

3.28.4 ARC counters

The following events are counted:
\square Number of high-speed reclosures (HSR) that have been carried out
\square Number of time-delay reclosures (TDR) that have been carried out.
The associated counters can be reset either individually or as a group.

3.28.5 Counter for Number of CB Operations

The maximum number of $C B$ operations within an ARC cycle (or within a specific time period) may be set with parameter MAIN: CB1 max oper. cap. Associated with this parameter is the counter at MAIN: CB1 act. oper. cap. to which the maximum number of CB operations permitted is assigned as soon as the positive edge of an event is present that has been selected by a '1 out of n ' parameter at MAIN: CB1 ready fct.assign

The number of CB operations permitted, set with the counter at MAIN: CB1 act. oper. cap. are then decremented by 1 with each CB operation. Operation of the CB is recognized from the contact position signals
DEVxx: Switch. device open and DEVxx: Switch.device closed.
The counter at MAIN: CB1 act. oper. cap. may only be decremented to a value of 1 . Reaching a value of 1 will in no way effect the protection or control functionality, in particular there will be no blocking of CB operation! When a CB fault has occurred (i.e. MAIN: CB1 faulty EXT is set to Yes) the counter MAIN: CB1 act. oper. cap. is immediately set to 1 .

3 Operation
 (continued)

3.29 Automatic Synchronism Check (Function Group ASC)

The automatic synchronism check (ASC) function allows the device to verify that before a close or reclose command is issued synchronism exists between system sections that are to be synchronized (paralleled) or whether one of the system sections is deenergized. In order to check for synchronism, two voltages - generally the voltages on the line and busbar sides - are compared for differences in frequency, angle, and voltage. Connecting the reference voltage transformer will determine which of the system sections will provide the reference voltage (e.g. the line side or the busbar side). The measurement loop must be set to correspond to the reference voltage connection (ASC: Measurement loop PSx) so that the correct measuring voltage is selected for the comparison. In the connection example shown in the section 'Conditioning the Measured Variables' (see Chapter 3 section 'Main Functions of the $P 132$ '), the busbar voltage \underline{V}_{A-B} is the reference voltage.

3 Operation
 (continued)

Disabling and enabling the ASC function

Disabling or enabling may be carried out with parameters or binary signal inputs.
The activation of the function is enabled generally (independent of parameter subsets) via ASC: General enable USER. It is enabled as a function of a parameter subset via ASC: Enable PSx. If these enabling functions have been activated, ASC can be disabled or enabled via setting parameters or through appropriately configured binary signal inputs. Parameters and configured binary signal inputs have equal status. If only the ASC: Enable EXT function is assigned to a binary signal input, then ASC will be enabled by a positive edge of the input signal and disabled by a negative edge. If only the ASC: Disable EXT function has been assigned to a binary signal input, then a signal at this input will have no effect.

If the ASC function is disabled an activation enable will always be issued.

3 Operation
 (continued)

3-172
Enable/disable the automatic synchronism check function

3 Operation
 (continued)

ASC readiness and blocking

The ASC function is ready if it is activated and enabled and if there is no blocking. Blocking can be brought about if a voltage transformer M.c.b. was tripped or by an appropriately configured binary signal input. The user can specify whether closing or reclosing will always be enabled or not (reclosure with or without a check) when the ASC function is blocked.

The user can also specify separately for high-speed reclosures (HSR) and time-delay reclosures (TDR) whether reclosure will be carried out with or without a check.

3 Operation
 (continued)

3-173 ASC readiness and blocking

3 Operation

(continued)

Close request

The ASC function can be triggered by ARC, via setting parameters, from an appropriately configured binary signal input (ASC: Close request EXT), or via a close request from the control function. Close requests via a setting parameter, the binary signal input or the control function are only accepted if no ARC cycle is running.

3 Operation
 (continued)

The ASC operative time is started with the close request. If the close enable is issued before the ASC operative time has elapsing, the close command is issued. Otherwise an ASC: Close rejection signal is generated for 100 ms .

3 Operation

(continued)

ASC operating modes
The criteria for a close enable are determined by the ASC operating mode setting (see Figure 3-177). The following operating mode settings are possible:

\square Voltage-checked

- Synchronism-checked
- Voltage/synchronism-checked

Voltage-checked
The synchronism-checked close enable can be bypassed using the voltage-checked close enable without affecting the former. For this purpose the three phase-to-ground voltages and the reference voltage $\underline{V}_{\text {ref }}$ are monitored to determine whether they exceed or fall below the set threshold values (ASC: V> volt. check and ASC: V< volt. check). Depending on the operating mode selected for the voltage check, all three phase-to-ground voltages need to exceed or fall below the set value in order to meet the condition for voltage-checked closing. If the conditions corresponding to the set operating mode for the voltage-checked synchronism check are met, then the close enable is issued after the set minimum time has elapsed
(ASC: tmin volt. check). The following operating modes for voltage checking can be selected separately for each parameter subset:

- Vref but not V
- V but not Vref
- Not V and not Vref

ㅁ Not V or not Vref

3 Operation
 (continued)

3 Operation
 (continued)

Synchronism-checked
Before a close enable is issued, the ASC checks the voltages for synchronism. Synchronism is recognized if the following conditions are met simultaneously:
\square The three phase voltage and the reference voltage must exceed the set threshold value (ASC: V> sync. check). When with a three-phase voltage the setting of MAIN: Neutral-point treat. is 'Low-imped. grounding' both the phase-toground and the phase-to-phase voltages are checked. If the setting is 'Isolated/res.ground.' only the phase-to-phase voltages are checked.
\square The difference in magnitude between measuring voltage and reference voltage must not exceed the set threshold value (ASC: Delta Vmax).
\square The frequency difference between measuring voltage and reference voltage must not exceed the set threshold value (ASC: Delta f max).
\square The angle difference between measuring voltage and reference voltage must not exceed the set threshold value (ASC: Delta phi max). In these comparisons the set offset angle ASC: Phi offset is taken into account.

If these conditions are met for at least the set time ASC: tmin sync. check, then a close enable is issued. The ASC operating time for determination of differences in voltage, angle, and frequency is approximately 100 ms .

The voltage magnitude difference, angle difference, and frequency difference are stored as measured synchronism data at the time the close request is issued. In the event of another close request, they are automatically overwritten by the new data.

3 Operation

(continued)

3-177 Synchronism-checked close enable

3 Operation

(continued)

Voltage/synchronismchecked

If this setting has been selected, then the close enable is issued if the conditions for voltage- or synchronism-checked closing are met.

3-178
ASC sequence control

3 Operation
 (continued)

Testing the ASC function
For test purposes a close request can be issued via a setting parameters or an appropriately configured binary signal input (see Figure 3-179). In this case no close command is issued and it is not counted.

The ASC cycle and the operating time are started by the test close request. The network synchronism is checked during the whole operating time and ASC: Close enable is set accordingly. If at the end of the operate time no network synchronism is registered, a 100 ms signal ASC: Close rejection is issued.

[^23]
3 Operation
 (continued)

Integrating the ASC function into the control and monitoring of switchgear units

ASC triggering by a close request from the control functions is also possible.
This requires that the circuit breaker is assigned to an external device and that the ASC system integration is set to 'Autom. synchr. Control'. If the control function issues a close request then the close command for the circuit breaker requires a 'close enable' by the ASC function (see 'Issue of the switching commands' in section 'Control and Monitoring of Switchgear Units').

However if ASC: System integrat. PSx is set to 'Autom. synchron. check' ASC will not interfere with any switching commands. Data generated and continuously updated by the ASC function is transmitted - when configurations have been set accordingly - to the central control station, where operators may make decisions as to which external device is to be given a switching command.

3 Operation
 (continued)

Measured values obtained
by ASC
The following measured values are obtained and calculated during an ASC cycle and are transmitted during a set cycle time:
\square Voltage from the reference voltage channel
\square Voltage from the selected measuring loop
\square Difference in phase voltage magnitudes
\square Difference in phase angles
\square Frequency difference
Outside of the ASC cycle the measured values have the status of "not measured".

3-181 Measured values obtained by ASC

3 Operation
 (continued)

ASC counters
The following ASC signals are counted:

- Number of reclosures after a close request via setting parameters or an appropriately configured binary signal input.
\square Number of close requests
\square Number of close rejections
The counters can be reset individually (at the address at which they are displayed) or as a group.

3-182 ARC counters

3 Operation
 (continued)

Enable/disable the ground
fault direction determination using steady-state values

3.30 Ground Fault Direction Determination Using Steady-State Values (Function Group GFDSS)

Ground fault direction determination is carried out by evaluating the neutral-point displacement voltage and the residual current using the steady-state power evaluation mode or, as an alternative, the admittance evaluation mode. Also possible is a steadystate current evaluation only. In this case only the filtered residual current is used as a criterion for a ground fault. Ground fault direction determination is then not possible.

By using the ARC function it is possible to intervene in the functional sequence of ground fault direction determination using steady-state values.

The ground fault direction determination using steady-state values can be disabled or enabled via setting parameters. Switching over to 'Steady-state current' evaluation is made by setting parameters or an appropriately configured binary signal input. Moreover, enabling can be carried out separately for each parameter set.

Ground fault direction determination using steady-state values is ready

A ready signal is issued for the evaluation mode selected if the protection and the ground fault direction determination using steady-state values are enabled.

3 Operation

(continued)

3-183
Enabling, disabling and readiness of the ground fault direction determination using steady-state values

3 Operation
 (continued)

Conditioning and selecting the measured variables

For the conditioning of measured variables the P132 is fitted with integrated transformers. As an alternative it is possible to use the neutral-point displacement voltage calculated by the P132 from the three phase-to-ground voltages or the displacement voltage measured at the T 90 transformer for steady-state power evaluation. The current transformer has been especially designed for this application so that it will perform with a very small phase-angle error.

[^24]Selecting the measuring voltage

3 Operation

(continued)

3.30.1 Steady-State Power Evaluation

The ground fault direction determination using steady-state values requires the neutralpoint displacement voltage and the residual current values to be able to determine a ground fault direction. The frequency provided by the setting $\mathrm{f} / \mathrm{f}_{\text {nom }}$ is filtered from these values by using a Fourier analysis. Three periods are used for evaluation if the time stage GFDSS: tVNG> has been set to a time period equal to or greater than 60 ms . This will result in the suppression of typical ripple-control frequencies in addition to all integer-frequency harmonics. If the time stage was set to a time period less than 60 ms only one period will be used for filtering.

The measurement is enabled when the time period set at GFDSS: tVNG> and which was triggered by VNG> has elapsed. Dependent on the operating mode selected (e.g. 'cos phi circuit' or 'sin phi circuit') the sign of the active power (GFDSS: Op. mode GF pow./adm 'cos phi circuit') or of the reactive power (GFDSS: Op. mode GF pow./adm 'sin phi circuit') is used to determine the direction. Connection of the measuring circuits is taken into account by the setting at GFDSS: Measuring direction. When the connection 'Standard' has been made a ground fault on the line side will issue the decision 'LS' and a ground fault on the busbar side will issue the decision 'BS'.

3 Operation

(continued)

3-185 Direction determination with the operating mode 'steady-state power'

3 Operation
 (continued)

cos phi circuit

The directional decision is not enabled until the active component of the residual current exceeds the set threshold and the phase displacement between residual current and neutral-point displacement voltage is smaller than the set sector angle. The sector angle makes it possible to extend the "dead zone" to take into account the expected phaseangle errors of the measured variables. These settings make it possible to achieve the characteristic shown in Figure 3-186.

Output of the direction decisions is operate- and reset-delayed.
The trip signal 'forward directional' issued by the ground fault direction determination using steady-state values (GFDSS) is blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.
(

3 Operation
 (continued)

sin phi circuit
The direction decision is enabled if the reactive component of the residual current has exceeded the set threshold operate value. This setting makes it possible to achieve the characteristic shown in Figure 3-187.

Output of the direction decisions is operate- and reset-delayed.
The trip signal 'forward directional' issued by the ground fault direction determination using steady-state values (GFDSS) is blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.

3-187 Characteristic of the ground fault direction determination using steady-state values, operating mode 'sin phi circuit'

3 Operation

(continued)

3-188
Output of the direction decisions with the operating mode 'steady-state power'

3 Operation
 (continued)

3.30.2 Steady-State Current Evaluation

The frequency provided by the setting $f / f_{\text {nom }}$ is filtered from the residual current value by using a Fourier analysis. Three periods are used for evaluation. If the residual current value exceeds the set threshold a ground fault signal is issued after the settable operate delay time period has elapsed.

[^25]
3 Operation
 (continued)

Counting ground faults
The number of ground faults is counted. The counter may be reset either individually or together with other counters.

3-190 Counting ground faults

3.30.3 Steady-State Admittance Evaluation

To determine a ground fault direction the steady-state admittance evaluation requires the neutral-point displacement voltage and the residual current values. The frequency provided by the setting $\mathrm{f} / \mathrm{f}_{\text {nom }}$ is filtered from these values by using a Fourier analysis.

The measurement is enabled when the time period set at GFDSS: tVNG> and which was triggered by VNG> has elapsed. Dependent on the operating mode selected (e.g. 'cos phi circuit' or 'sin phi circuit') the sign of the active power
(GFDSS: Op. mode GF pow./adm 'cos phi circuit') or of the reactive power (GFDSS: Op. mode GF pow./adm 'sin phi circuit') is used to determine the direction. Connection of the measuring circuits is taken into account by the setting at GFDSS: Measuring direction. When the connection 'Standard' has been made a ground fault on the line side will issue the decision 'LS' and a ground fault on the busbar side will issue the decision 'BS'. Phase-angle errors of the system transformers can be compensated with the setting at GFDSS: Correction angle.

3 Operation

(continued)

3-191
Direction determination with the operating mode 'steady-state admittance'

3 Operation
 (continued)

cos phi circuit
Direction determination is enabled when the conductance value (conductance $G(N)$) on the ground return exceeds the set threshold. This setting makes it possible to achieve the characteristic shown in Figure 3-192.

Output of the direction decisions is operate- and reset-delayed.
The trip signal in forward direction issued by the ground fault direction determination using steady-state values (GFDSS) is blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.

3-192 Characteristic of the ground fault direction determination using steady-state admittance, operating mode 'cos phi circuit'

3 Operation
 (continued)

sin phi circuit
Direction determination is enabled when the conductance value (susceptance $B(N)$) on the ground return exceeds the set threshold. This setting makes it possible to achieve the characteristic shown in Figure 3-193.

Output of the direction decisions is operate- and reset-delayed.
The trip signal in forward direction issued by the ground fault direction determination using steady-state values (GFDSS) is blocked by the auto-reclosing control function (ARC) when this function is able to issue a trip command.

3 Operation

(continued)

3 Operation

(continued)

Non-directional ground fault determination

The admittance value from the ground return is used for evaluation. If the admittance value exceeds the set threshold a ground fault signal is issued after the settable operate delay time period has elapsed.

The trip signal from the non-directional ground fault determination is blocked by the autoreclosing control function (ARC) when this function is able to issue a trip command.

3-195 Evaluating admittance

3 Operation
 (continued)

3.30.4 Counting the Ground Faults Detected by Steady-State Power and Admittance Evaluation

The number of ground faults and directional decisions are counted. The counters may be reset individually or together with other counters (see section 'Resetting Actions').

[^26]
3 Operation
 (continued)

Enable/disable the

 transient ground fault detection function.The transient ground fault detection function is ready

3.31 Transient Ground Fault Detection (Function Group TGFD)

By applying the transient ground fault measuring procedure the ground fault direction is determined by evaluating the neutral-point displacement voltage and the residual current.

The transient ground fault detection function (TGFD) can be disabled or enabled via setting parameters. Moreover, enabling can be carried out separately for each parameter set.

A ready signal is issued if the following conditions are met:The protection is enabled.
\square The transient ground fault detection function is enabled.
\square The nominal frequency is set to 50 Hz .There is no external blocking.Transient ground fault detection has issued no directional decisions.
\square Self-monitoring has detected no faults with transient ground fault detection.

3 Operation

(continued)

3-197 Enabling, disabling and readiness of the transient ground fault detection function

3 Operation

(continued)

Conditioning and selecting the measured variables

To condition measured variables VNG and IN the P132 is fitted with integrated transformers. As an alternative it is possible to use the neutral-point displacement voltage calculated by the P132 from the three phase-to-ground voltages.
Connection of the measuring circuits is taken into account by the setting at TGFD: Measuring direction. A pole reversal of the residual current measuring circuit through the global setting at MAIN: Conn. meas. circ. IN will in no way influence direction determination by the transient ground fault detection function.

3-198
Selecting the neutral-point displacement voltage

3 Operation
 (continued)

Determining the ground fault direction

A ground fault direction can only be determined if the TGFD function is ready.
The higher frequency content is filtered from the measured values for residual current and neutral-point displacement voltage. Settable triggers monitor the amplitudes of the residual current and neutral-point displacement voltage harmonics as well as the neutralpoint displacement voltage fundamental. To determine the ground fault direction the P132 will evaluate trigger decisions by the harmonics monitoring function, separately for the positive and negative half-wave.

The sign of the neutral-point displacement voltage harmonic is determined immediately after the current harmonic has exceeded the positive or negative threshold value. Trigger decisions for current and voltage are compared to determine the ground fault direction where, as a rule, evaluation depends on the connection of the measuring circuits. Connection of the measuring circuits is taken into account by the setting at TGFD: Measuring direction. When the connection 'Standard' has been made a ground fault on the line side will issue the decision 'LS' and a ground fault on the busbar side will issue the decision 'BS'. The directional decision is enabled after the operate delay period has elapsed, which follows monitoring of the neutral-point displacement voltage fundamental.

Furthermore the starting of a current trigger will start a timer stage that, after it has elapsed, will enable the TGFD function to detect further transient ground faults. The time period after which a new transient ground fault may be detected is given by the setting of the operate delay +40 ms .

3 Operation

(continued)

3 Operation
 (continued)

Directional decisions are issued for the duration of the set buffer time. If buffer time is set to 0 s directional decisions are issued for as long as the neutral-point displacement voltage fundamental exceeds the trigger threshold set at TGFD: VNG>.

[^27]
3 Operation

(continued)

Resetting a directional decision

While the buffer time is elapsing the directional decisions can be reset from the integrated local control panel, a setting parameter or through an appropriately configured binary signal input. Should the buffer time be set to ∞ ("infinity") the directional decision must be reset so that a new transient ground fault can again be detected.

3-201 Resetting directional decisions

Monitoring the measured variables

TGFD is blocked after 5 s if the respective set threshold value is exceeded by the current or the higher frequency content of the neutral-point displacement voltage in the absence of a ground fault (that is while the neutral-point displacement voltage fundamental stays below the set trigger threshold).

3 Operation
 (continued)

Counting transient ground faults

The number of transient ground faults and directional decisions are counted. The counters can be reset either individually or as a group.

3-203 Counting transient ground faults

3.32 Motor Protection (Function Group MP)

The P132 features a motor protection function (MP function). This motor protection function is specifically designed to protect directly switched high-voltage asynchronous motors with thermally critical rotors. Protection functions specially adapted for this application are available:
\square Overload protection including a thermal replica of the motor (complete memory)
\square Taking into account heat dispersion processes in the rotor after several startups
\square Separate cooling time constants for running and stopped motors
ㅁ Monitoring of startup frequency including re-start blocking
ㅁ Heavy starting logic
\square Locked rotor protection
\square Logic function for the operating mode including thermal overload protection (THERM)
\square Special startup measured values during commissioningRunning time meter

The definite-time overcurrent protection stages required for global motor protection operation as well as the necessary unbalance protection are described in sections 'DTOC Protection' and 'Unbalance Protection (I2>)', respectively.

3 Operation
 (continued)

Enable/disable the motor protection function

The motor protection function can be enabled or disabled via a parameter setting. Moreover, enabling can be carried out separately for each parameter subset.

3-204

3 Operation

(continued)

Starting conditions

The overcurrent stage $\mathrm{I}_{\text {ref, } \mathrm{P}}>$ is used as a starting stage for overload protection. For this the maximum value of the three phase currents is evaluated. The settable reference current $I_{\text {ref }}$ is used as the reference quantity for the operate value and the tripping time. When the threshold $\mathrm{kP} \cdot \mathrm{I}_{\text {ref }}$ is exceeded then the current stage operates.

The output signal from the current stage $\mathrm{I}_{\text {ref, } \mathrm{P}}>$ is used as the starting signal.

3-205 Starting conditions

3 Operation
 (continued)

3.32.1 Overload Protection

Operating state recognition

The P132 features an operating state recognition function with which the overload protection function is controlled, e.g. the thermal replica is plotted as precisely as possible. The possible individual operating states with a directly switched asynchronous motor are detected via various trigger stages as listed below:
\square Machine stopped:
If the measured maximum RMS phase current value has dropped below the threshold of $0.1 \cdot I_{\text {ref }}$ the function will decide on 'machine stopped' (signaled by
MP: Machine stopped). No-load currents for asynchronous motors lie significantly above the current threshold value of $0.1 \mathrm{I}_{\text {ref }}$.
\square Machine running:
If the measured maximum RMS phase current value exceeds the threshold of $0.1 I_{\text {ref }}$ the function will decide on 'machine running' (signaled by
MP: Machine running).
\square Overload range:
For a machine the overload range starts with current values exceeding the maximum permissible continuous thermal current of the machine. The overload memory will be incremented if the measured maximum RMS phase current value exceeds the threshold value of $I_{\text {ref, } P}>$.
\square Startup:
The onset of startup in a directly switched asynchronous motor is detected when the measured maximum RMS phase current value exceeds the threshold value set at MP: IStUp> PSx for a minimum time duration period set at MP: tIStUp> . The end of a startup process is detected when, after the onset of startup has been identified, the measured maximum RMS phase current value falls below the threshold value of $0.6 \cdot I_{\text {stup }}>$.

Overload memory

The thermal overload protection function featured by the P132 is specifically suited for protection of high-voltage asynchronous motors with thermally critical rotors, a very common motor type. For this there is a specific overload memory available that presents a replica of the protected object's relative over-temperature based on the coolant temperature and with a values range from 0 to 100%. The following values stored in the overload memory have particular significance within the range of this model:
\square 0\%:
The value 0\% represents the cold state of a protected object, e.g. it has cooled down to ambient temperature.

- 20\%:

The value 20% represents the minimum value stored by the overload memory when the protected object is at operating temperature or after initial startup. A running machine is always considered as being at operating temperature.
ㅁ 40\%:
The value 40\% temporarily represents the minimum value stored by the overload memory after two consecutive startups of the machine.
\square 60\%:
The value 60\% temporarily represents the minimum value stored by the overload memory after three consecutive startups of the machine.

3 Operation

(continued)

ㅁ 100\%:
The instant when the overload memory reaches the value of 100\% (trip threshold) an overload protection trip will be issued. The hysteresis for a defined release of the trip signal is 1%.
The overload memory mapping process that results in a replica of the actual thermal conditions existing in the protected object includes the following operations:
\square Mapping of heating:
Basically the overload memory is continuously incremented when the maximum RMS phase current value measured will have exceeded the threshold value of $k P I_{\text {ref }}$ (overload range). The rate of this increase of the storing value depends on the magnitude of the maximum RMS phase current value and, to a certain extent, on the selected tripping characteristic (MP: Characteristic P PSx).
\square Mapping of heat transfer:
After a startup has been identified and the maximum RMS phase current value has fallen below the current threshold of $0.6 \mathrm{I}_{\text {stup }}>$ (load range), then the stored value is continuously and automatically pre-decreased, governed by the settable heat dispersion time constant MP: Tau after st.-up PSx of the overload memory. This time constant is used to map the heat transfer in the asynchronous motor from the copper of the rotor to the rotor's iron core. This continuous pre-decreasing of the stored value is carried out linearly up to the minimum value stored after initial startup (mentioned above) and depending on the count of the startup frequency monitor. The rate for this pre-decreasing of the stored value is constant and ranges at about 40% of the discharge (τ after startup $=20$) within a time duration of 60 s , for example.
\square Mapping of cooling:
When the measured maximum RMS phase current value has fallen below the current threshold of $\mathrm{I}_{\mathrm{klref}, \mathrm{P}}>$ and when the mapping of heat transfer, if applicable, has been completed, then cooling of the protected object is simulated by a continuous decreasing of the value stored in the overload memory. If the machine is running, decreasing of the stored value will be governed by the cooling time constant MP: Tau mach. running PSx and will continue until the minimum loading state of 20% is reached. If the machine is stopped, decreasing of the stored value will be governed by the constant MP: Tau mach. stopped PSx and will continue until the minimum loading state of 0% is reached. Decreasing of the stored value is an exponential function of time. The cooling time duration from an initial value m_{0} to an interim value of $m(t)$ can be determined as follows:

■ Machine running: $t=\tau_{\text {machine.running }} \cdot \ln \frac{m_{0}-0.2}{m(t)-0.2}$
■ Machine stopped: $t=\tau_{\text {machine.stooped }} \cdot \ln \frac{m_{0}}{m(t)}$

3 Operation

(continued)

The P132 features a startup counter in 'count down' circuit configuration for startup frequency monitoring. Depending on the setting of MP: Perm. No. st.-ups PSx, the permissible number of consecutive startups is either 'three from cold or two from warm' or 'two from cold or one from warm'. The counter reading at any given time indicates the number of consecutive startups that are still permitted. The startup counter is controlled as follows (see Figure 3-206):
\square Decrementing the startup counter (number of startups still permitted):
As the end of a startup is detected, the startup counter is decremented by ' 1 '. When the counter reading reaches its minimum value of ' 0 ', then the signal MP: RC blocking is issued and can - and indeed should - be configured to an output relay with which CB closure is blocked.
\square Incrementing the startup counter (number of startups still permitted):
When the setting for the permissible number of consecutive startups is 'three from cold or two from warm' and the machine is running, then the startup counter is incremented by ' 1 ' if the stored value in the overload memory drops below a threshold value of 40% or 22%, respectively, in conjunction with 'mapping of cooling' of the protected object. When the machine is stopped then the startup counter will be incremented by ' 1 ' if the stored value in the overload memory drops below 40%, 20% or 2%, respectively, in conjunction with 'mapping of cooling' of the protected object.
When the setting for the maximum permissible number of consecutive startups is 'two from cold or one from warm' and the machine is running, then the startup counter will be incremented by the value ' 1 ' if the stored value in the overload memory drops below the threshold of 22%, in conjunction with 'mapping of cooling' of the protected object. When the machine is stopped then the startup counter will be incremented by ' 1 ' if the stored value in the overload memory drops below the threshold of 20% or 2%, respectively, in conjunction with 'mapping of cooling' of the protected object. The signal MP: RC blocking is withdrawn if the stored value in the overload memory drops below the threshold of 40\% (for 'three from cold or two from warm') or 22\% (for 'two from cold or one from warm').

3 Operation
 (continued)

The heavy starting application involves a situation in which a machine's startup time $\mathrm{t}_{\text {stup }}$ exceeds its maximum possible blocking time t_{E} from operating temperature. For this application the P132 features a specific logic function that can be activated by the following two settings:
\square The permissible number of consecutive startups is limited to 'two from cold or one from warm' (MP: Perm. No. st.-ups PSx)).
\square For the permissible startup time $t_{\text {StUp }}$ (MP: St.-up time tStUp PSx), a higher value is set than for the maximum permissible blocking time t_{E} from operating temperature (MP: Blocking time tE PSx). These two setting values are only relevant for this particular application; if both settings are identical, they have no effect on the protective function and the heavy starting logic is not active.

When this logic function has been activated, then the two timer stages t_{E} and $t_{\text {StUp }}$ are triggered at the time when the onset of a startup is detected, corrected by the discrimination time $t_{\text {StUp }}>$. Once the set time t_{E} has elapsed, the logic function checks to see whether the machine is actually running. The presence of an external signal - from an overspeed monitor, for example - serves as the criterion for a running machine.

When a running machine is detected once the set time t_{E} has elapsed, then the stored value in the overload memory is automatically frozen and tracking is only restarted after the set startup time $\mathrm{t}_{\text {stup }}$ has elapsed. When a locked rotor state is detected after the set time t_{E} has elapsed, the overload memory is automatically set to a value of 100%, which leads to an immediate trip decision.

The P132 user can choose between the following two tripping time characteristics:

where m_{0} in each case signifies the pre-charging of the overload memory at time $t=0$. With reference to the basic physical model (two-body model), the logarithmic characteristic in the overload range also takes into account heat transfer to the coolant, but this heat transfer becomes less significant as the overcurrent increases. At $I=6 \cdot I_{\text {ref }}$, for example, the tripping time increase is only about 1.4% and is thus below the specified accuracy of the protection device. For a low overcurrent range, selection of the logarithmic characteristic provides significantly higher tripping times than selection of the reciprocally squared characteristic (see Figure 3-207), since the latter characteristic neglects any heat transfer to the cooling medium in the overload range. The possibility of choosing between two different tripping time characteristics takes into account the fact that the user or the application may require a more restrictive or a less restrictive type of protection. For currents in excess of $10 I_{\text {ref }}$, the tripping times are limited in the direction of lower values.

The equation for determining the setting value $\mathrm{t}_{6 \text { lref }}$ can be derived from the above equations for tripping time t. For this the startup current $I_{\text {startup }}$ and the maximum permissible blocking time from cold $\mathrm{t}_{\text {block,cold }}$ for the asynchronous motor must be known. Setting the overload protection function on the basis of the 'cold' tripping time where $m_{0}=0 \%$ ('cold curve') is permitted since the conditions for a machine at operating temperature are automatically taken into account. The conditional equations for the setting value $\mathrm{t}_{6 \text { Iref }}$ are therefore the following:
$\square \quad$ Reciprocal squared: $\quad t_{6 l_{\text {ref }}}=t_{\text {block,cold }} \cdot \frac{\left(I_{\text {startup }} / I_{\text {ref }}\right)^{2}}{36}$

3 Operation

3 Operation
 (continued)

3 Operation

Plausibility conditions

Initialization or plausibility check of the thermal replica

A number of plausibility conditions need to be observed in order to ensure that the protected object is given optimum protection and that unintended tripping is prevented.
\square When the permissible number of consecutive startups is set for the sequence 'three from cold or two from warm' and if this set permissible number of consecutive startups is also intended to be used up during operation, then the heating during startup in the overload memory (OL_DA: Heat. dur. start-up, MP) must not exceed 60%. When the calculation is based on a constant startup current (OL_DA: Start-up current) over the entire startup period, then this will result in the plausibility condition $t_{\text {startup }}=0.6 \cdot t_{\text {block,cold }}$. However, since the startup current decreases during the course of the startup time
(OL_DA: Time taken f. startup), thereby causing the rate of value storing into the memory to decrease as well, it can therefore be assumed that there is a corresponding extra margin available.
\square The setting value for the overload protection function is determined on the basis of the stated maximum permissible blocking time from the cold state $t_{\text {block,cold. }}$ However, when a machine at operating temperature is connected, a protective trip during the t_{E} period must be guaranteed. Therefore, it is always necessary to check and ensure that the plausibility condition $\mathrm{t}_{\text {block, cold }}=1.25 \cdot \mathrm{t}_{\mathrm{E}}$ is met.

Under the following conditions, the P132 will not be able to track the thermal replica of the protected object, and re-initialization of the thermal replica will be triggered:
\square The power supply has been interrupted
\square Protection has been disabled (off)
\square Motor protection has been disabled (off)
If the above conditions no longer apply, a plausibility check of the thermal replica is automatically performed prior to cyclic processing.
\square Operation condition 'machine running' but not 'starting up':
A cyclic plausibility check of the thermal replica is carried out such that if the stored value in the overload memory is below 20% it is increased to the minimum value of 20\% (= machine at operating temperature).
\square Operation condition 'machine starting up':
Once the end of a startup is detected and the startup counter is decremented as a result, the stored value in the overload memory is increased, if appropriate, to the associated minimum value.

For each of the above procedures involving initialization or a plausibility check of the thermal replica, the stored value status in the overload memory is always coupled to the reading of the counter MP: St-ups still permitt. Therefore, if the value in the overload memory is set automatically, the counter reading is also changed to a plausible value as a function of the protection setting.

3 Operation
 (continued)

3.32.2 Exceptional Overload Protection Cases

Logic function for the operating mode with thermal overload protection (THERM)

For particular applications, the machine may be operated in the overload range for a longer period of time. In such cases the motor protection function (MP) is too restrictive. For such applications the MP and THERM protection functions are combined. The MP protection function then serves as rotor protection and the THERM protection function as stator protection.

When MP: Operating mode PSx is set to 'With THERM', the overload memory will be incremented when the maximum RMS phase current is above the current threshold set at MP: IStUp >PSx. If this threshold is not exceeded, the stored value in the memory after a startup will initially be decremented until the mapping of the heat transfer from the copper of the rotor to the rotor core is complete. Thereafter, the value stored in the overload memory will remain constant and the thermal model of the thermal overload protection function (THERM) will become active. With the onset of another startup of the asynchronous motor (not the first startup), the thermal model of the THERM protection function will be temporarily blocked during the startup time.

3 Operation
 (continued)

Change of threshold for 'reclosure permitted'

Depending on the particular application, it is possible to change the overload memory threshold value assumed for general use, when mapping protected object cooling, to either 40\% (with 'three startups from cold or two from warm') or 22\% (with 'two startups from cold or one from warm).' This threshold value set at MP: RC permitted, T< PSx can differ from these average values so as to be more restrictive or less restrictive.

3 Operation

(continued)

3 Operation
 (continued)

Startup counter

The motor startups are counted. The counter can be reset either individually or with others as a group.

3-211
ounter

Resetting the thermal replica

The thermal replica for motor heating can be reset at the local control panel or via an appropriately configured binary signal input.

3-212

3 Operation
 (continued)

3.32.3 Low Load Protection

The low load protection function makes it possible to monitor the load torque of a motor drive for a minimum level. If the operating state recognition function detects a running machine and the measured maximum RMS phase current falls below the set operate value for a set time, then an appropriate signal is issued. The signal needs to be configured to a separate output relay, as it cannot be linked directly to either the general starting signal or the trip command.

3.32.4 Protection of Increased-Safety Machines

Motors that are operated in hazardous areas must not reach a temperature level in the case of overload or blocking that would be critical for the existing air-gas mixture.

The P132 is suitable for this type of application, which requires increased-safety protection (type 'Ex e'.), but the device must be installed outside the hazardous area.

Please follow the setting information in chapter "Settings" ('Protection of IncreasedSafety Machines').

3 Operation
 (continued)

3.32.5 Running Time Meter

The P132 features a running time meter to monitor the number of hours a protected machine has operated. The time period (in hours) is measured during which the P132 has detected 'Machine running' (compare with signal MP: Machine stopped) and this value is compared with the maximum number to be set at MP: Hours_Run >. When the time period value measured exceeds the set value at MP: Hours_Run > the value for MP: Sig. Hours_Run > is set to 'Yes'.

Additionally the number of hours run may be defaulted to any desired initial value ranging from 0 to 65000 hours. This value is defined at MP: Init. val. Hours_Run. The default is initialized by setting MP: Initialize Hours_Run to 'Execute'.

3 Operation
 (continued)

3.33 Thermal Overload Protection (Function Group THERM)

Using this function, Thermal Overload Protection can be implemented. The Thermal Overload Protection function can be operated together with the Motor Protection function.

Disabling or enabling
Thermal Overload
Protection

The power thermal overload function can be disabled or enabled using a setting parameter. Moreover, enabling can be carried out separately for each parameter set.

1200200200178

3 Operation
 (continued)

The maximum r.m.s. phase current is used to track a first-order thermal replica as specified in IEC 255-8. The following parameters will govern the tripping parameters:
\square The set thermal time constant (τ) of the protected object
THERM: Tim.const. 1(>lbl)PSx
\square The set tripping level THERM: Θ trip PSx
\square The accumulated thermal load Θ_{p}.
\square The updated measured coolant temperature Θ_{c} for the protected object.
\square The maximum permissible coolant temperature $\Theta_{\mathrm{c}, \max }$.
\square The maximum permissible object temperature $\Theta_{\max }$
$t=\tau \cdot \ln \frac{\left(\frac{I}{I_{\text {ref }}}\right)^{2}-\Theta_{P}}{\left(\frac{I}{I_{\text {ref }}}\right)^{2}-\Theta_{\text {trip }} \cdot\left(1-\frac{\Theta_{c}-\Theta_{c, \max }}{\Theta_{\text {max }}-\Theta_{c, \text { max }}}\right)}$

Figure 3-214 shows the tripping characteristics for $\Theta_{p}=0 \%$ and with a measured coolant temperature Θ_{c} identical to the maximum permissible coolant temperature.

The setting for the operating mode selects an 'absolute' or 'relative' replica. If the setting is for Absolute replica, the P132 will operate with a fixed trip threshold $\Theta_{\text {trip }}$ of 100%.

3 Operation
 (continued)

3-215 Tripping characteristic of Thermal Overload Protection (tripping characteristics apply to $\Theta_{P}=0 \%$ and with a measured coolant temperature Θ_{c} identical to the setting for the maximum permissible coolant temperature $\Theta_{c, \text { max }}$)

3 Operation

(continued)

To permit coolant temperature acquisition, one of the analog modules Y must be fitted either the analog (I/O) module Y with a 20 mA current input and the "PT100" input or the temperature p/c board (the RTD module) with the temperature sensor inputs T1 to T9. If neither module is available in the P132 then the setting THERM: Coolant temp. PSx is used in the calculation of the tripping time. The setting THERM: Select meas.inputPSx will determine which of these 11 inputs ("PT100", $20 \mathrm{~mA}, \mathrm{~T} 1$ to T9) will influence the thermal replica.

One of the following signals is issued when an open circuit to a sensor has ocurred on one of these analog inputs (see function description for 'Measured data input'):

MEASI: Open circ. 20 mA inp.
MEASI: PT100 open circuit
MEASI: Open circ. T1
to
MEASI: Open circ. T9
The open circuit signal from the function group MEASI is forwarded to the Thermal Overload Protection function.

By setting the parameter THERM: Sel. backup th. PSx to one of the inputs ("PT100", 20 mA , T1 to T9) a temperature sensor with an open circuit can be replaced by one of these backup temperature sensors connected to the corresponding input.

The setting THERM: BI. f. CTA fault PSx defines whether the Thermal Overload Protection function will be blocked in the event of a fault in the coolant temperature acquisition.

3 Operation
 (continued)

3-216 Monitoring the coolant temperature acquisition with an analog module (I/O) if the parameter THERM: Sel. backup th. PSx is set to 'Without'.

3 Operation

(continued)

If the the temperature p/c board (the RTD module) is installed in addition to the analog (I/O) module y one of the temperature sensors T1 to T9 may be selected by setting THERM: Select meas.inputPSx. Depending on the setting one of these open circuit signals will be processed:

```
MEASI: Open circ. 20mA inp.
MEASI: PT100 open circuit
MEASI: Open circ. T1
to
MEASI: Open circ. T9
```

If one of the analog inputs (PT100, 20mA, T1 to T9) was selected as a backup by setting THERM: Sel. backup th. PSx the coolant temperature acquisition will continue to operate with the selected backup sensor input when an open circuit to the main sensor input has occurred. Only after the selected backup sensor has also become defective the coolant temperature can no longer be measured and the signal THERM: CTA fault is issued.

3 Operation

(continued)

3-217
Monitoring the coolant temperature acquisition with main and backup sensors

3 Operation
 (continued)

Warning

A warning signal can be set in accordance with the set operate value THERM: Rel. O/T warning PSx Additionally, a pre-trip time limit can be set, when the time left until tripping falls below this pre-trip limit, a warning will be issued.

If the current falls below the default threshold of $0.1 \mathrm{I}_{\text {ref }}$, the buffer is discharged with the set time constant THERM: Tim.const. $2,<\mathrm{IbI}$ PSx. The thermal replica may be reset using a setting parameter or from an appropriately configured binary signal input. Resetting is possible even when Thermal Overload Protection is disabled. Thermal Overload Protection can be blocked via an appropriately configured binary signal input.

If the Thermal Overload Protection function is operated together with the Motor Protection function and if another startup of an asynchronous motor occurs (other than the first startup), then the Thermal Overload Protection function will be temporarily blocked during the startup time. If the Motor Protection function (MP) and the Thermal Overload Protection function (THERM) are used simultaneously, then MP will act on THERM protection and not vice versa.

3 Operation
 (continued)

3 Operation

(continued)

3 Operation
 (continued)

3.34 Unbalance Protection (Function Group I2>)

A two-stage unbalance protection function (I2>) is implemented in the P132.
Enabling or disabling unbalance protection

Unbalance protection can be disabled or enabled by setting Moreover, enabling can be carried out separately for each parameter set.

3 Operation
 (continued)

Operation

The presence or absence of unbalance is assessed on the basis of the negativesequence system current. The negative-sequence current is monitored to determine whether it exceeds the set thresholds. After the set operate delay periods have elapsed, a signal is issued. The following stages are available for the negative-sequence current:
\square Unbalance stage $I_{\text {neg }}>$ with time delay $\mathrm{t}_{\mathrm{Ineg}}>$.
\square Unbalance stage $I_{\text {neg }} \gg$ with time delay $\mathrm{t}_{\text {Ineg }} \gg$.
The elapsing of all operate delays may be blocked via appropriately configured binary signal inputs.

The unbalance protection signals can be configured to separate output relays. These signals cannot be linked to the general starting signal but can be configured to the trip command.

19Z5083B_EN

3 Operation
 (continued)

3.35 Under and Overvoltage Protection (Function Group V<>)

The time-voltage protection function evaluates the fundamental wave of the phase voltages and of the neutral-point displacement voltage as well as the positive-sequence voltage and negative-sequence voltage obtained from the fundamental waves of the three phase-to-ground voltages.

Disabling or enabling
V <> protection
V<> protection can be disabled or enabled via setting parameters. Moreover, enabling can be carried out separately for each parameter subset.
$V<>$ protection readiness
$\mathrm{V}<>$ protection is ready if it is enabled and no fault has been detected in the voltagemeasuring circuit by measuring-circuit monitoring.

[^28]
3 Operation
 (continued)

Monitoring the phase voltages

The P132 checks the voltages to determine whether they exceed or fall below set thresholds. Dependent on the set operating mode of $\mathrm{V}<>$ protection, either the phase-to-ground voltages ('Star' operating mode) or the phase-to-phase voltages ('Delta' operating mode) are monitored. The triggers are followed by timer stages that can be blocked via appropriately configured binary signal inputs.

If the decisions of undervoltage monitoring are to be included in the trip commands, then it is recommended that transient signals be used. Otherwise the trip command would always be present when the system voltage was disconnected, and thus it would not be possible to close the circuit breaker again.

Minimum current monitoring

Furthermore there is an enabling threshold available with the $\mathrm{V}<>$ element which is based on minimum current monitoring for undervoltage stage $\mathrm{V}<$. The following two settings may be used to activate the operating mode for minimum current monitoring and to set the enabling threshold:V<>: I enable V< PSx
$\square \mathrm{V}<>$: Op. mode $\mathrm{V}<$ mon. PSx

3 Operation
 (continued)

3-223 Selecting measured variables

3 Operation

(continued)

3 Operation
 (continued)

3 Operation
 (continued)

Monitoring the positiveand negative-sequence voltages

The P132 determines the positive-sequence and negative-sequence voltages from the fundamental components of the phase-to-ground voltages according to the formulas given below. This is based on the MAIN: Phase sequence setting (alternative terminology: Rotary field).

Phase sequence A-B-C (alternative terminology: clockwise rotary field):
Positive-sequence voltage: $\quad \underline{V}_{p o s}=\frac{1}{3} \cdot\left|\left(\underline{V}_{A-G}+\underline{a} \cdot \underline{V}_{B-G}+\underline{a}^{2} \cdot V_{C-G}\right)\right|$

Negative-sequence voltage: $\quad V_{\text {neg }}=\frac{1}{3} \cdot\left|\left(\underline{V}_{A-G}+\underline{a}^{2} \cdot \underline{V}_{B-G}+\underline{a} \cdot \underline{V}_{C-G}\right)\right|$
Phase sequence A-C-B (alternative terminology: anti-clockwise rotary field):
Positive-sequence voltage: $\quad \underline{V}_{p o s}=\frac{1}{3} \cdot\left|\left(\underline{V}_{A-G}+\underline{a}^{2} \cdot \underline{V}_{B-G}+\underline{a} \cdot \underline{V}_{C-G}\right)\right|$

Negative-sequence voltage: $\quad \underline{V}_{n e g}=\frac{1}{3} \cdot\left|\left(\underline{V}_{A-G}+\underline{a} \cdot \underline{V}_{B-G}+\underline{a}^{2} \cdot \underline{V}_{C-G}\right)\right|$
$\underline{a}=e^{j 120^{\circ}}$
$\underline{a}^{2}=e^{j 240^{\circ}}$

3 Operation

(continued)

Determination of positive- and negative-sequence voltages
(Note: Previous terminology of MAIN: Phase sequence was MAIN: Rotary field)

The positive-sequence voltage is monitored to determine whether it exceeds or falls below set thresholds, and the negative-sequence voltage is monitored to determine whether it exceeds set thresholds. If the voltage exceeds or falls below the set thresholds, then a signal is issued once the set operate delays have elapsed. The timer stages can be blocked by appropriately configured binary signal inputs.

If the decisions of undervoltage monitoring are to be included in the trip commands, then it is recommended that transient signals be used. Otherwise the trip command would always be present when the system voltage was disconnected, and thus it would not be possible to close the circuit breaker again.

3 Operation

(continued)

3 Operation
 (continued)

3 Operation

(continued)

Monitoring the neutralpoint displacement voltage

Dependent on the setting, the $\mathrm{V}<>$ function monitors either the neutral-point displacement voltage calculated by the P132 from the three phase-to-ground voltages or the neutral-point displacement voltage formed externally via the fourth voltage measuring input, for example the neutral-point displacement voltage from the open delta winding of the voltage transformers (see section 'Conditioning of Measured Variables'). The neutral-point displacement voltage is monitored to determine whether it exceeds set thresholds. The triggers are followed by timer stages that can be blocked via appropriately configured binary signal inputs.

3 Operation
 (continued)

3-230 Monitoring the neutral-point displacement voltage

3 Operation
 (continued)

3.36 Over-/Underfrequency Protection (Function Group f<>)

The P132 monitors the selected voltage to determine whether it exceeds or falls below set frequencies. The frequency is determined from the difference in time between the zero crossings of the voltage (voltage zeroes). The over-/underfrequency protection function has four stages. The operation of over-/underfrequency protection will be explained below using the first stage as an example.

Disabling or enabling over-/underfrequency protection

Over-/underfrequency protection can be disabled or enabled via setting arameters. Moreover, enabling can be done separately for each parameter subset.

3 Operation
 (continued)

Selecting the measuring voltage

By selecting a measuring voltage setting, the user defines the voltage that is used by the over-/underfrequency protection function for measurement purposes. This can be either a phase-to-ground voltage or a phase-to-phase voltage.

3-232 Selecting the measuring voltage

3 Operation

(continued)

Undervoltage blocking and evaluation time

Over-/underfrequency protection requires a measuring voltage of sufficient magnitude. Over-/underfrequency protection will be blocked instantaneously if the measuring voltage falls below the set threshold of the undervoltage stage.

In order to avoid frequency stage starting caused by brief frequency fluctuations or interference, the evaluation time can be set by the user. The operate conditions must be satisfied for at least the duration of the set evaluation time in order for a signal to be issued.

3 Operation
 (continued)

Operating modes of over--
underfrequency protection
For each stage of the over-/underfrequency protection function, the user can choose between the following operating modes:

- Frequency monitoring

Frequency monitoring combined with differential frequency gradient monitoring (df/dt)\square Frequency monitoring combined with mean frequency gradient monitoring ($\Delta \mathrm{f} / \Delta \mathrm{t}$)

Frequency monitoring

Frequency monitoring combined with differential frequency gradient monitoring (df/dt)

Depending on the setting, the P132 monitors the frequency to determine whether it exceeds or falls below set thresholds. If an operate threshold in excess of the set nominal frequency is set, the P132 checks to determine whether the frequency exceeds the operate threshold. If an operate threshold below the set nominal frequency is set, the P132 checks to determine whether the frequency falls below the operate threshold. If it exceeds or falls below the set threshold, a set timer stage is started. The timer stage can be blocked by way of an appropriately configured binary signal input.

In this operating mode of the over-/ underfrequency protection function, the frequency is also checked to determine whether the set frequency gradient is reached (in addition to being monitored for exceeding or falling below the set threshold). Monitoring for overfrequency is combined with monitoring for a frequency increase; monitoring for underfrequency is combined with monitoring for a frequency decrease. If both operate conditions are satisfied, a set timer stage is started. The timer stage can be blocked by way of an appropriately configured binary signal input.

3 Operation
 (continued)

Frequency monitoring combined with mean frequency gradient monitoring ($\Delta f / \Delta t$)

The frequency gradient can differ for system disturbances in individual substations and may vary over time due to power swings. Therefore it makes sense to take the mean value of the frequency gradient into account for load-shedding systems.

In this operating mode of over-/underfrequency protection, frequency monitoring must be set for 'underfrequency monitoring'.

Monitoring the mean value of the frequency gradient is started with the starting of frequency monitoring. If the frequency decreases by the set value Δf within the set time Δt, then the $\Delta t / \Delta f$ monitoring function operates instantaneously and generates a trip signal. If a frequency change does not lead to an operate decision of the monitoring function, then the $\Delta t / \Delta f$ monitoring function will be blocked until the underfrequency monitoring function drops out. The trip signal can be blocked by way of an appropriately configured binary signal input.

3 Operation

(continued)

3 Operation
 (continued)

$f_{\min }-/ f_{\max }$ Acquisition
For the acquisition of the minimum frequency during an underfrequency condition and for the acquisition of the maximum frequency during an overfrequency condition, the two following measured event values are available:
f<>: max. frequ. for f>
$\mathrm{f}<>$: min. frequ. for $\mathrm{f}<$

At the beginning of a new over- and underfrequency condition the two measured event values are automatically reset. A manual reset is also possible:
$\mathrm{f}<>$: Reset meas.val. USER

3 Operation
 (continued)

3.37 Power Directional Protection (Function Group P<>)

The power directional protection function determines the active and reactive power from the fundamental currents and voltages. The sign of the active or the reactive power, respectively, is evaluated for direction determination

Disabling or enabling
P<> protection
The power directional protection function can be disabled or enabled using a setting parameter. Moreover, enabling can be carried out separately for each parameter set.

3-236 Enabling or disabling power directional protection

Power determination
The P132 determines the active and reactive power from the three phase and the phase-to-ground voltages. If the measuring-circuit monitoring function detects malfunctioning in the voltage measuring circuit, power determination will be blocked.

Power monitoring
The P132 checks the determined power values to detect whether they exceed or fall below set thresholds. The triggers are followed by timer stages that can be blocked via appropriately configured binary signal inputs.

If the decisions of power monitoring are to be included in the trip commands when values have fallen below set thresholds, then it is recommended that transient signals be used. Otherwise, the trip command would always be present when the system voltage was disconnected, and thus it would not be possible to close the circuit breaker again.

3 Operation
 (continued)

3-237 Power determination

3 Operation
 (continued)

Active power monitoring when set thresholds are exceeded

The P132 monitors the active power with two-stage functions to detect when it exceeds the set thresholds. The resetting ratio of the threshold stages can be set.

When the active power exceeds the set thresholds, a starting results. The starting signal is followed by the set operate and resetting delays.

3 Operation

(continued)

3 Operation
 (continued)

Active power direction when set thresholds are exceeded

The P132 determines the sign of the active power. If the sign is positive, a forwarddirectional decision is issued; if it is negative, a backward-directional decision results. A setting determines whether a trip signal is triggered by a forward-directional, a backwarddirectional or a non-directional decision.

3-239 The direction-dependent trip signal of the active power protection function when set thresholds are exceeded

3 Operation
 (continued)

Reactive power monitoring when set thresholds are exceeded

The P132 monitors the reactive power with two-stage functions to detect when it exceeds the set thresholds. The resetting ratio of the threshold stages can be set.

When the reactive power exceeds the set thresholds, a starting results. The starting signal is followed by the set operate and resetting delays.

3 Operation

(continued)

3 Operation
 (continued)

Reactive power direction when set thresholds are exceeded

The P132 determines the sign of the reactive power. If the sign is positive, a forwarddirectional decision is issued; if it is negative, a backward-directional decision results. A setting determines whether a trip signal is triggered by a forward-directional, a backwarddirectional or a non-directional decision.

[^29]
3 Operation
 (continued)

Active power monitoring when values fall below set thresholds

The P132 monitors the active power with two-stage functions to detect when it falls below the set thresholds. The resetting ratio of the threshold stages can be set.

When the active power falls below the set thresholds, a starting results. The starting signal is followed by the set operate and resetting delays.

3 Operation

(continued)

3 Operation
 (continued)

Active power direction when values fall below set thresholds

The P132 determines the sign of the active power. If the sign is positive, a forwarddirectional decision is issued; if it is negative, a backward-directional decision results. A setting determines whether a trip signal is triggered by a forward-directional, a backwarddirectional or a non-directional decision.

3 Operation

(continued)

3 Operation

(continued)

3 Operation
 (continued)

Reactive power monitoring when values fall below set thresholds

The P132 monitors the reactive power with two-stage functions to detect when it falls below the set thresholds. The resetting ratio of the threshold stages can be set.

When the reactive power falls below the set thresholds, a starting results. The starting signal is followed by the set operate and resetting delays.

3 Operation

(continued)

3 Operation
 (continued)

Reactive power direction when values fall below set thresholds

The P132 determines the sign of the reactive power. If the sign is positive, a forwarddirectional decision is issued; if it is negative, a backward-directional decision results. A setting determines whether a trip signal is triggered by a forward-directional, a backward-directional or a non-directional decision.

3 Operation

(continued)

3 Operation

(continued)

3 Operation
 (continued)

Starting signal with
 direction

3-248 Directional starting signal issued by the active power monitoring

3-249 Directional starting signal issued by the reactive power monitoring

3 Operation
 (continued)

Enable/disable circuit breaker failure protection

3.38 Circuit Breaker Failure Protection (Function Group CBF)

The P132 features the CB failure protection function. After a trip command has been issued the CBF function monitors that the circuit breaker has actually been triggered.

The activation of the function is enabled at CBF: General enable USER. If this parameter has been activated the CBF function may be enabled or disabled by parameters or through appropriately configured binary signal inputs. Parameters and configured binary signal inputs have equal status. If only the function CBF: Enable EXT is assigned to a binary signal input, then circuit breaker protection will be enabled by a positive edge of the input signal and disabled by a negative edge. If only the function CBF: Disable EXT is assigned to a binary signal input, then a signal at this input will have no effect.

3 Operation
 (continued)

Readiness of circuit breaker protection

Circuit breaker failure protection will not be available under the following conditions:
\square The CBF function is not activated.

- Circuit breaker protection is being blocked by an appropriately configured binary signal input.
$\square \quad$ All CBF timer stages have been set to 'blocked'.

3-251 Signal CBF: Not ready

Detecting a CB tripping
A break in current flow is the preferred criterion to detect a successful CB tripping.
Protection functions that have tripping criteria not directly dependent on current flow may additionally be provided with status signals from CB auxiliary contacts for evaluation.

Current flow monitoring

This function is used to detect a break in current flow safely, immediately and pole selectively. The CBF function continuously compares sampled current values with the set threshold value CBF: $1>$.

As long as current flow criteria are met the monitoring function will continuously issue the phase selective signals CBF: Current flow A, CBF: Current flow B, CBF: Current flow C and the multiple signal CBF: Current flow Phx.

3 Operation

(continued)

3-252 Current flow monitoring
Note: CBF: I> represents an undercurrent criterion. As of version -613 the description text has been changed to CBF: I<.

Evaluation of CB status signals

Trip signals included in the Gen. Trip command 1, which use CB status signals in addition to current flow monitoring, can be selected with the parameter CBF: Fct.assignm. CBAux.

Applying CB status signals depends on the type of auxiliary contacts available. The P132 is capable of checking the following CB status signals for plausibility and evaluating them:
\square The open signal from the circuit breaker, MAIN: CB1 open $3 p$ EXT
\square The closed signal from the circuit breaker, MAIN: CB closed sig. EXT
The evaluation of the CB status signals is blocked, if the configuration of the respective binary signal inputs or the signal levels are not plausible. This will result in the P132 issuing of the signal CBF: CB pos. implausible. Evaluation of current criteria is not affected by this blocking.

If only one of the two possible CB status signals has been configured, then this configured signal will always be considered plausible by the P132.

As an alternative the status signals from the external device may be used by the P132. Assigning necessary for this is made with the parameters MAIN: Sig. asg. CB open or MAIN: Sig. asg. CB closed. Status signals from external devices are processed similar to CB status signals MAIN: CB open $3 p$ EXT and MAIN: CB closed sig. EXT.

3 Operation

(continued)

3-253
Plausibility check of CB status signals

3 Operation
 (continued)

Startup criteria

Timer stages and output logic

The startup of the circuit breaker failure protection function will occur when the CB is recognized as closed during a start criterion. The following criteria are evaluated as a startup criterion:

- Internal startup criterion:

Generating the Gen. Trip signal 1 is considered a start criterion. In addition it may be selected, by setting the parameter CBF: Start for manual trip, that a manual trip signal will also be used as a start criterion.
Current flow monitoring is the primary evaluation criterion. The CB auxiliary contacts are evaluated when no current flow is registered and the respective trip signal, included in the Gen. Trip command 1, has been selected from the protection function in parameter CBF: Fct.assignm. CBAux for the evaluation of the CB auxiliary contacts.

- External startup criterion:

Triggering by a protection device operating in parallel (CBF: Start $3 p \mathrm{EXT}$) may be used as a start criterion.
To be on the safe side an additional two pole triggering may be implemented by applying the signal CBF: Start enable EXT.
Current flow monitoring is the primary evaluation criterion. The CB auxiliary contacts are evaluated when no current flow is registered.

Associated timer stages are started when a startup criterion is met.
\square The signal CBF: Trip signal t1 will be issued if the startup criterion is still present when the time period, set at timer stage CBF: t1 $3 p$, has elapsed. The output command from this timer stage is intended for a second CB trip coil.
\square The signal CBF: Trip signal t2 will be issued if the startup criterion is still present when the time period, set at timer stage CBF: t2, has elapsed. The output command from this timer stage is intended for a backup circuit breaker or protection system.
These trip signals will be issued as long as the startup criteria are met. Should a loss of gas pressure occur in the explosion chambers of installed type SF-6 circuit breakers then all surrounding circuit breakers must be immediately tripped without waiting for a reaction from the damaged switch. In case of an external CB fault the elapse of timer stage t 2 may be interrupted by a signal to the binary signal input appropriately configured at CBF: CB faulty EXT.

3 Operation

(continued)

3-254 Startup of the circuit breaker failure protection
Note: C B F: I> represents an undercurrent criterion. As of version -613 the description text has been changed to CBF: I<.

3 Operation

(continued)

3-255 Timer stages of the circuit breaker failure protection

Trip commands
While trip signals issued by the CB failure protection have no timer stages available the user can set minimum time delay periods for trip commands.

By appropriate setting it can be selected that trip commands, issued by the CB failure protection, will operate in latching mode. The respective trip command, set to latch mode, will remain active until reset by operating parameters or through an appropriately configured binary signal input.

3-256 CBF trip commands

3 Operation

(continued)

Starting trigger

The signal CBF: Starting will be issued when the signal CBF: Starting trig. EXT is presented to an appropriately configured binary signal input and a general starting is present. The signal CBF: Trip signal will be issued after timer stage CBF: Delay/starting trig. has elapsed.

3-257 Starting trigger

Fault behind CB protection
A fault behind a CB (downstream) is a fault that may occur between a circuit breaker already open and a CT, which is fed from the remote end.

Fault behind CB protection recognizes such faults through the current criterion if the circuit breaker does not provide the information that it is closed after the time delay set at CBF: Delay/fault beh. CB has elapsed.

When such a fault behind CB is recognized the signal CBF: Fault beh. CB is issued. In such a case the far end circuit breaker may be triggered by an InterMiCOM protective interface. This may also prevent an unwanted triggering of the circuit breaker failure function.

3-258 Fault behind CB protection
Note: CBF: I> represents an undercurrent criterion. As of version -613 the description text has been changed to $C B F: I<$.

3 Operation

(continued)

CB synchronization supervision

CB synchronization supervision recognizes states where not all circuit breaker contacts are open or closed. This function uses both current flow monitoring and evaluation of CB status signals to detect CB synchronization. In order to bridge CB operate times the time delay CBF: Delay/CB synch.superv can be used. When this time period has elapsed the signal CBF: TripSig CB synch.super is issued. Poles that are recognized as being open will still be signaled.

3-259 CB synchronization supervision

Note: CBF: I> represents an undercurrent criterion. As of version -613 the description text will be changed to CBF: I<.

3 Operation
 (continued)

3.39 Circuit Breaker Monitoring (Function Group CBM)

3.39.1 Functional Description

The P132 features a circuit breaker monitoring function. This function supports statecontrolled maintenance of circuit breakers.

Enable/disable circuit
breaker monitoring
Circuit breaker monitoring may be disabled or enabled by setting parameters.

3-260 Enable/disable circuit breaker monitoring

Variants
The wear condition of a circuit breaker may be determined by a variety of methods:
\square Monitoring the mechanical switching operations
\square Accumulating disconnection current values
\square Accumulating the squared disconnection current values
\square Calculating the current-time integral of disconnection and accumulation current values
\square Calculating the remaining switching operations with reference to the CB wear characteristic.

3 Operation
 (continued)

CB wear characteristic
Manufacturers of circuit breakers usually provide wear characteristics displaying the maximum number of permissible CB operations in relation to the disconnection current.

Figure 3-261 displays the wear characteristics for a circuit breaker with a nominal current of 2000 A and a maximum cutoff current of 63 kA . The medium disconnection current is 48 kA.

3 Operation
 (continued)

Calculating the CB wear state

The knee points in figure 3-261 are necessary to set the wear characteristic for the circuit breaker:
\square The nominal current CBM: Inom,CB for the circuit breaker and the permitted number of CB operations at nominal current CBM: Perm. CB op. Inom,CB
\square The medium disconnection current CBM: Med. Curr. Itrip, CB for the circuit breaker and the permitted number of CB operations at medium disconnection current CBM: Perm. CB op. Imed,CB
\square The maximum cutoff current CBM: Max. curr. Itrip, CB for the circuit breaker and the permitted number of $C B$ operations at maximum cutoff current CBM: Perm. CB op. Imax,CB

Not all types of circuit breakers provide a value for the medium disconnection current. In such a case the parameters for this knee point are to be set to 'blocked'. A knee point is not considered in the characteristic when at least one of the parameters for the knee point is set to 'blocked'.

For proper performance of circuit breaker monitoring it should be observed that the knee points must be applied in a logically correct sequence (continuously descending). When setting currents and numbers of CB operations are not plausible according to the characteristic the P132 will issue an error message and block circuit breaker monitoring.

The current wear state of the circuit breaker is given as the number of remaining CB operations at nominal current conditions. The number of remaining CB operations $\mathrm{n}_{\text {rem }}\left(\mathrm{I}_{\text {nom,CB }}\right)$ is calculated and displayed phase selectively and after each disconnection by the P 132 . Calculation is per this equation:
$n_{\text {rem }}\left(I_{\text {nom }, C B}\right)=n_{\text {rem }, 0}\left(I_{n o m, C B}\right)-\frac{n\left(I_{\text {nom }, C B}\right)}{n\left(I_{a, C B}\right)}$

With:
$\square I_{\text {nom,CB }}$: Nominal current for the CB
$\square \mathrm{n}\left(\mathrm{I}_{\text {nom, }, \mathrm{CB}}\right)$: Max permitted number of CB operations at $\mathrm{I}_{\text {nom,CB }}$
$\square I_{d, C B}$: Disconnection current
$\square \mathrm{n}\left(\mathrm{I}_{\mathrm{d}, \mathrm{CB}}\right)$: Permitted number of CB operations at $\mathrm{I}_{\mathrm{d}, \mathrm{CB}}$ according to wear characteristics
$\square \mathrm{n}_{\text {rem,0 }}\left(\mathrm{I}_{\text {nom,CB }}\right)$: Remaining permitted number of CB operations at $\mathrm{I}_{\text {nom,CB }}$ before disconnection
$\square \mathrm{n}_{\text {rem }}\left(\mathrm{I}_{\text {nom }, \mathrm{CB}}\right)$: Remaining permitted number of CB operations at $\mathrm{I}_{\text {nom, СB }} \underline{\text { after }}$ disconnection

3 Operation

(continued)

Operating modes

Cycle for circuit breaker monitoring

Linking control functions with the trip command

Setting the parameter CBM: Operating mode will select the condition under which the function will be triggered:

\square with trip cmd. only:

Function is triggered only by the general trip command 1
\square with CB sig. EXT only:
Function is triggered by the CB open signal generated by an auxiliary contact

ㅁ CB sig. EXT or trip:

Function is triggered by the general trip command 1 or the CB open signal generated by an auxiliary contact

Measured values and counters are re-determined with each triggering and compared with set threshold values.

A correction value can be set in order to determine the trip time
CBM: Corr. acquis. time. This enables proper evaluation of leading or lagging auxiliary contacts or the delay period between forming of the trip command and opening of the CB contacts.

The cycle for circuit breaker monitoring is defined pole-selectively. During an active cycle the signals CBM: Cycle running $X(X=A, B$ or $C)$ are issued.

The cycle is started by a trigger criterion. Definition for the end of a cycle: The remaining time of a power cycle duration has elapsed after the last detected current zero crossing. The signal CBM: Curr. Flow ended $X(X=A, B$ or $C)$ is then issued.

The maximum cycle time duration is defined with 220 milliseconds. The start of the cycle time is corrected by the settable correction times. A fault on a CB pole is considered to be apparent if further current zero crossings are detected after the maximum cycle time has elapsed. Measured values from the respective CB tripping are canceled and the signal $C B M$: tmax $>X(X=A, B$ or $C)$ is issued.

With the P132, the trip command from the optional control function can be linked with the general trip command 1 of the protection, when setting external devices. In such a case the trip command from the control function must be associated by the parameter CBM: Sig. asg. Trip cmd. so that operational trip commands, issued to the circuit breaker by the control function, are considered additionally to the general trip command 1.

3 Operation
 (continued)

3-262 Forming the linked trip command

The external devices state signal "open" may be linked to the control function state signal "open" by setting the parameter CBM: Sig. asg. trip cmd. So that the function in the P132 will be triggered by CB auxiliary contacts.

[^30]
3 Operation
 (continued)

Pole-selective counter values and measured values

The P132 separately evaluates each phase current and generates an individual wear presentation for each CB pole.

The following counter values are presented pole-selectively:
\square The number of mechanical switching operations made
\square The number of remaining CB operations at CB nominal current This value is derived by evaluating wear with reference to the CB wear characteristic.

The following measured values are presented pole-selectively, and per-unit values refer to CB nominal current:

- Primary disconnection current This value is applied to evaluate wear with reference to the CB wear characteristic.
ㅁ Per-unit disconnection current
\square Second power of the per-unit disconnection current
\square Sum of the per-unit disconnection currents
\square Sum of the squares of the per-unit disconnection currents
\square Current-time integral of the per-unit disconnection current
\square Sum of the current-time integrals of the per-unit disconnection currents
The disconnection current is derived from the RMS current value detected before a last zero crossing.

The integral of the current-time area is calculated between the trip time and current disappearance. Current reset is recognized when there are no further current zero crossings detected. An example for calculation of the current-time integral is displayed in figure 3-264.

3 Operation
 (continued)

3-264
Calculation of the current-time integral when CBM is triggered by a general trip command 1

Resetting measured values
Measured values from the respective last CB tripping may be reset via the interfaces on the device. Accumulated measured values are not affected by such a reset operation.

Setting measured values

Setting measured values in the circuit breaker monitoring function is necessary when the respective CB has already been exposed to operating conditions or has been replaced. The available interfaces on the device may be used to set measured values in the circuit breaker monitoring function.

Note: Only such measured values and counter values in the P132 may be set to new values that do not have their default values set to 'blocked'. The stored value will remain unchanged if the default value is set to 'blocked'. Executing the set command results in initializing all default values in the P132 to 'blocked'.

3 Operation

(continued)

3 Operation

(continued)

Monitoring the number of CB operations

Depending on the selected operating mode the P132 will calculate the current wear state of the circuit breaker after each disconnection. The number of remaining CB operations at CB nominal current are calculated and displayed. A threshold value can be set with the parameter CBM: No. CB operations <. An alarm is issued should the number of remaining CB operations drop below this threshold.

3-266 Monitoring the remaining number of CB operations at nominal current

At the same time each switching operation will increment the P132 counter for the number of CB operations The number of CB operations performed is displayed.
A threshold value can be set with the parameter CBM: No. CB operations >.
An alarm is issued should the number of $C B$ operations performed exceed this threshold.

3-267 Monitoring the number of CB operations performed

3 Operation
 (continued)

Monitoring disconnection currents

In addition to the evaluation of the CB wear state and monitoring of the number of CB operations performed, the P132 features the means to accumulate and display the disconnection current values and the squares of these values. Threshold values can be set with the parameters CBM: $\Sigma I t r i p>, C B M: \Sigma I t r i p * * 2>$ and CBM: $\Sigma I^{*} t$. An alarm is issued should the accumulated current values exceed any of these thresholds.

Blocking circuit breaker monitoring

When protection injection testing is carried out the circuit breaker monitoring function should be blocked, so that such testing does not corrupt monitoring results. CBM protection is blocked if one of the following conditions is met:
\square Circuit breaker monitoring is blocked by parameters.
\square Circuit breaker monitoring is blocked by an appropriately configured binary signal input.

3 Operation
 (continued)

3.40 Measuring-circuit Monitoring (Function Group MCMON)

Monitoring of the reference voltage has been added to the measuring-circuit monitoring function.

The P132 monitors the phase currents and voltages for balance during healthy system operation. If either unbalance or the lack of measuring voltage is detected, action is taken to prevent the unit from malfunctioning.

3-269 Monitoring signals

Measuring-circuit monitoring can be deactivated by the appropriate setting. In the event of a fault, measuring-circuit monitoring is blocked.

3 Operation
 (continued)

Current monitoring
Current monitoring is only enabled if the following conditions are met simultaneously:
\square Measuring-circuit monitoring is enabled.
\square The difference between the maximum and the minimum phase current exceeds $0.05 \cdot{ }_{\mathrm{I}}^{\mathrm{nom}}$.
\square A general starting signal is absent.
Current monitoring is based on checking the difference in the phase current magnitudes under the following operate condition:
$\frac{I_{P, \text { max }}-I_{P, \text { min }}}{I_{P, \text { max }}} \geq I_{\text {diff }}>$
where $\mathrm{I}_{\mathrm{P}, \text { max }}$ is the highest of the three phase currents and $\mathrm{I}_{\mathrm{P}, \text { min }}$ is the lowest; $\mathrm{I}_{\text {diftr }}$ is the set operate value MCMON: Idiff>. In order to suppress short-term transients, the measuring stage Idiffs is followed by a set operate-delayed timer stage MCMON: Operate delay.

If connection is to two current transformers only (phase ANC connection only) evaluation of current $\mathrm{I}_{\text {ref }}$ can be disabled by an appropriate selection for the operating mode.

3 Operation
 (continued)

3-270 Monitoring the current-measuring circuits

3 Operation

(continued)

Voltage monitoring
Voltage monitoring is only enabled if the following conditions are met simultaneously:
\square Measuring-circuit monitoring is enabled.
\square A general starting signal is absent.
In addition to these conditions, either a minimum current having the default threshold setting of $\mathrm{I}>0.05 \cdot \mathrm{I}_{\text {nom }}$ or the closed position of the circuit breaker contacts can be used as enabling criteria. If at least one of the phase-to-phase voltages falls below the set trigger value MCMON: Vmin< for the period of the operate-delayed timer stage MCMON: Operate delay, then the MCMON: Undervoltage signal is issued.

The signal MCMON: Meas. voltage o.k. is generated if all three phase-tophase voltages exceed the fixed threshold of $0.65 \mathrm{~V}_{\text {nom }}$ and there is no incorrect phase sequence.

Phase-sequence
monitoring
Phase-sequence monitoring is only enabled if the following conditions are met simultaneously:
\square Measuring circuit monitoring is enabled.
\square Phase-sequence monitoring is enabled.
\square All three phase-to-ground voltages exceed $0.4 \cdot \mathrm{~V}_{\text {nom }}$.
\square A general starting signal is absent.
In order to suppress short-term transients, the phase-sequence monitoring trigger is followed by a set operate delay of 1 s . Once the operate delay has elapsed, the signal MCMON: Phase sequence faulty is issued.

3 Operation

(continued)

3 Operation
 (continued)

"Fuse Failure" monitoring of the reference voltage

The P132 includes "Fuse Failure" monitoring of the reference voltage function, which is required by the 'Automatic Synchronism Check' (ASC).
Fuse Failure" monitoring is only possible if the ASC function has been configured. This is specifically applied when no auxiliary contact is available on the voltage transformer m.c.b. If "Fuse Failure" monitoring is not wanted it can be disabled from the local control panel.
"Fuse Failure" monitoring must be able to discriminate between a short circuit in the three-phase network being monitored and a reference voltage missing because of a short circuit or an open circuit in the secondary circuits of the reference voltage.

A short circuit or an open circuit in the secondary circuits of the reference voltage is present when the following conditions are met:
\square The circuit breaker is closed.
\square The difference in voltages on the line side and the busbar must exceed $0.1 \mathrm{~V}_{\text {nom }}$.

3 Operation
 (continued)

Enable/disable the Limit Value Monitoring function

Monitoring phase currents and phase voltages

3.41 Limit Value Monitoring (Function Group LIMIT)

Limit Value Monitoring is not designed to be a high-speed protection function; it is only applied for monitoring and signaling purposes as well as to monitor temperature limits.

The Limit Value Monitoring function can be enabled or disabled using a setting parameter.

With the P132 monitoring of the following measured values is possible in order to determine if they exceed set upper limit values or fall below set lower limit values:
\square Maximum phase current
ㅁ Minimum phase current
\square Maximum phase-to-phase voltage
\square Minimum phase-to-phase voltage
\square Maximum phase-to-ground voltage
ㅁ Minimum phase-to-ground voltage
If any of the measured values exceeds or falls below the corresponding upper or lower limit values, then a signal is issued after the associated time period has elapsed.

3 Operation

(continued)

3-273

3 Operation

(continued)

3-274 Limit Value Monitoring of maximum and minimum phase-to-phase voltage and maximum and minimum phase-to-ground voltage

3 Operation

(continued)

Monitoring the neutral displacement voltage

The neutral displacement voltage, calculated from the three phase-to-ground voltages, is monitored by two stages to determine whether it exceeds set thresholds. If any of the thresholds are exceeded, then a signal is issued after the associated time period has elapsed.

3 Operation
 (continued)

Monitoring the linearized
measured DC values
The direct current, linearized by the analog measured data input, is monitored by two stages to determine if it exceeds or falls below set thresholds. If the measured value exceeds or falls below the corresponding upper or lower limit values then a signal is issued after the associated time period has elapsed.

3-276 Monitoring the linearized measured DC values

3 Operation

(continued)

Monitoring the reference voltage

The reference voltage Vref (when synchrocheck VT is fitted) is monitored by two stages to determine whether it exceeds or falls below the corresponding upper or lower limit values. If the measured value exceeds or falls below the corresponding upper or lower limit values then a signal is issued after the associated time period has elapsed.

3-277

3 Operation
 (continued)

Monitoring the measured "PT 100" temperature value

The temperature value that is measured by the P132 with a resistance thermometer (PT 100) connected to the analog (I/O) module Y, is monitored by two stages to determine whether it exceeds or falls below the corresponding upper or lower limit values. If the measured value exceeds or falls below the corresponding upper or lower limit values then a signal is issued after the associated time period has elapsed.

3-278 Monitoring the measured "PT 100" temperature value

3 Operation

(continued)

Monitoring the measured temperature values T1 to T9

The temperatures that are measured by the P132 using temperature sensors connected to the temperature p/c board (RTD module) are each monitored by two stages to determine if they exceed or fall below set thresholds. If any of the measured values exceed or fall below the corresponding upper or lower limit values then a signal is issued after the associated time period has elapsed.

The open circuit signals from the temperature sensors, issued by the function group MEASI (see function description for 'Measured data input') are forwarded to the Limit Value Monitoring function. An open circuit signal MEASI: Open circ. PT100 Tx ($x=1$ to 9) will lead to blocking of these signals:

LIMIT: Starting Tx>, LIMIT: Starting Tx>>,
LIMIT: Starting Tx<, LIMIT: Starting Tx<<,
LIMIT: Starting Tx> elapsed, LIMIT: Starting Tx>> elapsed,
LIMIT: Starting Tx< elapsed, LIMIT: Starting Tx<< elapsed
Backup sensors
When an open circuit has occurred the 2-out-of-3-logic available with the Limit Value Monitoring function will revert to backup sensors.
The selection of such backup sensors for the Limit Value Monitoring function is made in the function group MEASI.

For this purpose the temperature sensors connected to the temperature p/c board (RTD module) are divided into three groups:

Group 1: T1, T2, T3
Group 2: T4, T5, T6
Group 3: T7, T8, T9
If MEASI: BackupTempSensor PSx is set to 'Without' the Limit Value Monitoring function will operate without backup sensors.

If MEASI: BackupTempSensor PSx is set to Group 1-2, the defective temperature sensor from group 1 is replaced by the corresponding sensor from group 2.

If the backup temperature sensor from group 2 also fails it will be replaced by the corresponding sensor from group 3 , under the assumption that MEASI: BackupTempSensor PSx is set to Group 1-2/3.

The association of backup temperature sensors is listed below:

Main sensor	Backup sensor from group 2	Backup sensor from group 3
	With setting: Group 1-2 or Group 1-2/3	With setting: Group 1-2/3
T1	T4	T7
T2	T5	T8
T3	T6	T9

Limit values resulting from temperature values measured by main sensors (from group 1) or their corresponding backup sensors are processed by the '2-out-of-3' Limit Value Monitoring function, LIMIT: 2out of3 with T1,2,3. This is displayed in the following figure.

3 Operation

(continued)

3 Operation
 (continued)

All functions associated with temperature sensors operate in a parallel mode. In this way the '2-out-of-3' Limit Value Monitoring function, LIMIT: 2 out of3 with T4,5,6 may use temperature sensors from group 2 even though these backup sensors are configured to group 1.

3-281 Limit Value Monitoring function '2-out-of-3' for temperature sensors T4 to T6 and T7 to T9. If MEASI: BackupTempSensor PSx is set to 'Without' this scheme will also apply to temperature sensors T1 to T4.

3 Operation
 (continued)

Application example

A motor protection application is shown in the figure below with temperature sensors T1 to T9 connected to the temperature p/c board (RTD module) and a "PT 100" resistance thermometer connected to the analog (I/O) module Y.

These temperature sensors, for example, can be distributed as follows:
\square On the stator there are three temperature sensors as the main sensors (group 1: T1, T2, T3) and three backup sensors (group 2: T4, T5, T6) used by the '2-out-of-3' Limit Value Monitoring function
\square One temperature sensor on each of the bearings is used for individual Limit Value signaling
\square One main and one backup sensor inside the coolant are used by the thermal replica in the Thermal Overload protection

3 Operation

(continued)

3.42 Programmable Logic (Function Group LOGIC)

Programmable (or user-configurable) logic enables the user to link binary signals within a framework of Boolean equations.

Binary signals in the P132 can be linked by logical 'OR' or 'AND' operations or by additional 'NOT' operations by setting LOGIC: Fct. assignm. outp. n, where $\mathrm{n}=1$ to 32. The Boolean equations need to be defined without the use of brackets. The following rule applies to the operators: 'NOT' before 'AND' before 'OR'.

A maximum of 32 elements can be processed in one Boolean equation. In addition to the signals generated by the P132, initial conditions for governing the equations can be set using a setting parameter, through binary signal inputs, or through the serial interfaces.

Logical operations can be controlled through the binary signal inputs in different ways. The binary input signals LOGIC: Input n EXT ($n=1$ to 16) have an updating function, whereas the input signals LOGIC: Set n EXT ($n=1$ to 8) are stored. The logic can only be controlled from the binary signal inputs that are configured for LOGIC: Set n EXT if the corresponding reset input (LOGIC: Reset n EXT) has also been configured for a binary signal input. If only one or neither of the two functions is configured, then this is interpreted as 'Logic externally set'. If the input signals of the two binary signal inputs are implausible (such as when they both have a logic value of ' 1 '), then the last plausible state remains stored in memory.

When using the programmable logic, the user must carry out a functional type test to conform to the requirements of the relevant protection/control application.
In particular, it is necessary to verify that the requirements for the implementation of logic linking (by setting) as well as the time performance during device startup, during operation and when there is a fault (device blocking) are fulfilled.

3 Operation

(continued)

3-283 Control of logic operations via setting parameters or stored input signals

The LOGIC: Trigger n signal is a 'triggering function' that causes a 100 ms pulse to be issued.

3 Operation

(continued)

3 Operation
 (continued)

The output signal of one equation can be processed as the input signal for another higher-order equation, and this makes it possible to have a sequence of nested Boolean equations. The equations are processed in the sequence defined by the order of each equation so that the end result of a sequence of nested Boolean equations is given by the highest-order equation.

The output signal of each equation is fed to a separate timer stage that has two timer elements and a choice of operating modes. This offers the possibility of assigning a freely configurable time characteristic to the output signal of each Boolean equation. In the Minimum time operating mode, the setting of timer stage t2 has no effect. Figures $3-285$ to 3-289 show the time characteristics for the various timer stage operating modes.

Note: If the unit is set to "off-line", the equations are not processed and all outputs are set to a logic value of ' 0 '.

3 Operation
 (continued)

3-286
Operating mode 2: Operate-delay/pulse duration

3 Operation

(continued)

3-288
Operating mode 4: Operate-delay/pulse duration, retriggerable

Through appropriate configuration, it is possible to assign the function of a binary input signal to each output of a logic operation. The output of the logic operation then has the same effect as if the binary signal input to which this function has been assigned were triggered.

3 Operation
 (continued)

3-290 Signal assignment to outputs of Boolean equations

3 Operation
 (continued)

Defining a Bay Panel type

3.43 Control and Monitoring of Switchgear Units (Function Groups DEV01 to DEV03)

The P132 is designed to control up to 3 switchgear units. The Bay Panel type defines the layout of a bay with its switchgear units.

With the selection of a Bay Panel type, the following definitions are made:
\square Manually operated switchgear units with status signals to be processed.
\square Switchgear units to be controlled and signaled by the P132.
\square The bay interlock conditions for the 'Open' / 'Close' command control of the switchgear units, for operation with or without the station interlock function.

When a Bay Panel type is selected, the binary inputs for switchgear status signals and the output relays for control commands are configured automatically if MAIN: Auto-assignment I/O is set to 'Yes'. If set to 'No', the user will need to carry out this configuration. The list of Bay Panel types in the Appendix shows which binary inputs and output relays have been assigned signals or commands for control of switchgear units in the case of automatic configuration.

Setting options for the P132 and the different possibilities to integrate a switchgear unit into the functional sequence of the P132 (processing of status signals only or controlling and signaling) will be explained below, using one switchgear unit as an example. Function group DEV01 will be used throughout in this example. If a signal is identified in the function diagrams by function group "C O M M 1 :" with a blank address [--- ---], it will indicate that it is a signal to or from the communication interface and that it has not been assigned an address.

Switch truck

3.43.1 Processing Status Signals from Manually Operated Switchgear Units

The status signals 'Open' and 'Closed' are assigned to binary signal inputs. The signals conditioned by debouncing and chatter suppression (see section 'Main Functions of the P132') are used for further processing. If no logic value of '1' is present at any of the two binary signal inputs, the running time monitoring function is started. For the duration of the set time period for running time monitoring or until the contacts on the switchgear unit are back to a defined position - either 'Open' or 'Closed' - the signal 'Intermediate position' is issued.

If DEV01: Interm. pos. suppr. is set to 'Yes', the previous switchgear unit status will continue to be signaled while the switchgear unit is operating. Once the contacts on the switchgear unit have reached their new position, the updated status is signaled.

The signal 'Faulty position' is issued if the contacts on the switchgear unit have not reached either their 'Open' or 'Closed' position after the set time period for running time monitoring and the delay time set in MAIN: Delay Man. Op.Superv. have elapsed. If DEV01: Stat.ind.interm.pos. is set to 'Yes', a delay time of 5 s is started. Once this time period has elapsed and there is no status signal for the position, the state actually present at the binary inputs will be signaled.

For switchgear units mounted on switch trucks with switch truck plugs, it is possible to configure a single-pole status signal from the switch truck plug. If such a configuration has been assigned, the status signal for the position of the associated switchgear unit is set to 'Open' while the input has a logic value of '1'.

3 Operation

(continued)

3 Operation
 (continued)

3.43.2 Functional Sequence for Controllable Switchgear Units

Local or remote control of external devices

Selection of the switchgear unit to be controlled and generating a switching request

Usually, remote control of external devices is carried out via the communication interface and local control via appropriately configured function keys on the local control panel. Moreover, switchgear units can be controlled via binary inputs configured appropriately (configuration via DEVxx: Inp.asg.el.ctrl.open or DEVxx: Inp.asg.el.ctr.close). The setting MAIN: Electrical control determines whether the inputs function as remote or local control points.

Dependent on the respective position of control the P132 will issue the following logic state signals:

- MAIN: Cmd. fr. comm.interf
or
\square MAIN: Command from HMI
or
- MAIN: Cmd. fr. electr.ctrl

Additionally the following state signals are issued and entered into the operating data memory:DEVxx: Open cmd. received
ㅁ DEVxx: Close cmd. received

The switchgear unit to be controlled is selected and the switching command is sent to this selected switchgear unit. This can be carried out via the local control panel using the selection key and pressing the 'Open' or 'Close' key to generate the switching request. (It should be noted that the local control panel on the P132 does not feature specific keys for switching functions. If at this point mention of a "selection key" is made, then this would be a function key to which a specific function has been assigned - in this example MAIN: Device selection key. (See Chapter 6, section 'Configurable Function Keys F1 to Fx, particularly as control keys'.)

For control via binary inputs, the appropriate control inputs need to be configured for switchgear units selected to be controlled. For control via the communication interface, the control commands 'Open' or 'Close' will also address the switchgear unit to be controlled.

3 Operation

(continued)

3 Operation
 (continued)

Enabling switching commands

Before a switching command is executed, the P132 checks the interlocking conditions defined in the interlocking logic to determine whether a switching command is permitted or not. Bay interlock conditions for operation with or without the station interlock function can be defined. The assignment of an output relay from the interlocking logic to a switching command determines the interlocking conditions that define, for example, the conditions for the 'Open' command for operation without the station interlock function.
 function

3 Operation
 (continued)

Bay interlock for operation with the station interlock function

For the station interlock function conditions to be interrogated, there needs to be a communication link with the substation control level. If the P132 detects a communication error or if there is no communication interface available, there will be an automatic switch to bay interlock without the station interlock function.

If there is to be a check on the bay interlock and the station interlock function, the bay interlock will be checked first. If bay interlocking issues a switching enable, a switching request will be sent to the substation control level. At substation control level, there will then be a check - taking into account the station interlock functions - as to whether switching is permitted or not. If the substation control level also issues an enabling command, the switching operation is carried out provided that the enable from the bay interlock is still present. Optionally, the 'Open' or 'Close' switching operation can be carried out without checking the station interlock function conditions. In this case, the bay interlock conditions defined for operation without station interlock functions will be considered.

3 Operation
 (continued)

Linking protection commands to switching commands

For circuit breakers, the 'Open' command can be linked to the protection trip signals. The 'Close' command can also be linked to the close command of the protection functions. The Bay Panel type defines which of the switchgear units are circuit breakers. The trip (open) or close commands of the protection functions are executed directly without a check of the interlocking conditions.

3 Operation
 (continued)

Issue of switching commands

Dependent on the operating mode (set at DEVxx: Oper. Mode cmd.) set for commands, switching commands are issued for the set timer durations or according to time control.

When the automatic synchronism check (ASC) is active and the parameter ASC: System integrat. PSx is set to 'Autom. synchr. control' a 'Close' request will automatically issue a 'Close' command for the circuit breaker after a 'close enable' was issued by the ASC.

However if ASC: System integrat. PSx is set to 'Autom. synchron. checkl' ASC will not interfere with any switching commands. Data generated and continuously updated by the ASC function is transmitted - when configurations have been set accordingly - to the central control station, where operators may make decisions as to which external device is to be given a switching command.

If the operating mode time control was selected it is possible to intervene in the control process of external switchgear units by using external termination contacts. It will then be necessary to set the at MAIN: W. ext. cmd. termin. to 'Yes' and binary signal inputs must be configured so they can be connected to the external termination contacts.

3 Operation

(continued)

3-296 Issuing of switching commands

3 Operation
 (continued)

Time control of switching commands

As the switching command ends, running time monitoring for the switchgear unit is started. The P132 expects a status signal - 'Open' or 'Closed' to be issued by the switchgear unit within the duration of the set time period for running time monitoring. The status signal for the position of the contacts on the switchgear unit is present at appropriately configured binary inputs on the P132, which can be set to debouncing and chatter suppression mode (see description for Debouncing and Chatter Suppression in section 'Main Functions of the P132'). For the duration of the set time period for running time monitoring or until the contacts on the switchgear unit are back to a defined position - either ‘Open' or 'Closed' - the signal 'Intermediate position' is issued.

If DEV01: Interm. pos. suppr. is set to 'Yes', the previous switchgear unit status will continue to be signaled while the switchgear unit is operating. Once the contacts on the switchgear unit have reached their new position, the updated status is signaled.

If the contacts on the switchgear unit have not reached either their 'Open' or 'Closed' position after the set time period for running time monitoring has elapsed the signal 'Faulty position' is issued. If DEV01: Stat.ind.interm.pos. is set to 'Yes', a delay time of 5 s is started. Once this time period has elapsed and there is no status signal for the position, the state actually present at the binary inputs will be signaled.

If the operating mode without external termination contacts was selected (MAIN: W. ext. cmd. termin. is set to 'No') the switching command is terminated after the set latching time has elapsed, when either the 'Open' or 'Closed' position status signal is received or the set time period for running time monitoring has elapsed (see Figure 3-292).

If the operating mode with external termination contacts was selected (MAIN: W. ext. cmd. termin. is set to 'Yes') the switching command is terminated, after the set latching time has elapsed, when a termination command is issued while the set time period for running time monitoring is active.

Switch truck

For switchgear units mounted on switch trucks with switch truck plugs, it is possible to configure a single-pole status signal from the switch truck plug. If such a configuration has been assigned, the status signal for the position of the associated switchgear unit is set to 'Open' while the input has a logic value of '1'.

3 Operation

(continued)

3 Operation

(continued)

3 Operation
 (continued)

3 Operation
 (continued)

Monitoring the number of CB operations permitted

The maximum number of CB operations within an ARC cycle (or within a specific time period) may be set with parameter MAIN: CB1 max oper. cap. Associated with this parameter is the counter at MAIN: CB1 act. oper. cap. to which the maximum number of $C B$ operations permitted is assigned as soon as the positive edge of an event is present that has been selected by a ' 1 out of n ' parameter at MAIN: CB1 ready fct.assign.

The number of CB operations permitted, set with the counter at MAIN: CB1 act. oper. cap. are then decremented by 1 with each CB operation. Operation of the CB is recognized from the contact position signals
DEVxx: Switch. device open and DEVxx: Switch.device closed.
The counter at MAIN: CB1 act. oper. cap. may only be decremented to a value of 1. Reaching a value of 1 will in no way effect the protection or control functionality, in particular there will be no blocking of CB operation! When a CB fault has occurred (i.e. MAIN: CB1 faulty EXT is set to 'Yes') the counter
MAIN: CB1 act. oper. cap. is immediately set to 1 .

3 Operation

(continued)

3.44 Interlocking Logic (Function Group ILOCK)

The switching commands to the controllable switchgear units of the bay are not enabled until the interlock conditions have been checked. The interlocks are defined in the form of Boolean equations in the interlocking logic function.

The choice of the bay type automatically defines the bay interlock conditions (or equations) for the 'Open' and 'Close' operations of the individual switchgear units in the bay. Different conditions are defined for the bay interlock equations for operation with or without station interlock (see the section entitled "List of Bay Types" in the Appendix). These automatically defined interlock conditions - determined by the choice of bay type can be modified by the users at any time to fit their station requirements. For the bay interlock, the following signals acquired by the P132 are linked by logic operations:
\square Function blocks 1 and 2
\square The programmable logic outputs
\square The signals from binary inputs after debouncing and chatter suppression
\square The position signals of the switchgear units after debouncing and chatter suppression
A maximum of 32 equations with 32 equation elements each are available for definition of the interlock conditions. The Boolean equations need to be defined without the use of brackets. The following rule applies to the operators: 'NOT' before 'AND' before 'OR'. The output signal of one equation can be processed as the input signal for another higher-order equation, and this makes it possible to have a sequence of nested Boolean equations.

3 Operation

(continued)

3 Operation
 (continued)

3.45 Single-pole Commands (Function Group CMD_1)

Commands may be transmitted to the P132 via the communications interface.
When the P132 receives such a command, and the remote control mode is enabled, an appropriately configured output relay will be triggered and a signal is issued.

The operating mode may be selected individually for each single-pole command. The following settings are possible:

- Long command
- Short command
\square Persistent command
If the operating mode long or short command has been selected the output relay will be triggered for the time period set at MAIN: Cmd. dur.long cmd. or MAIN: Cmd. dur. short cmd.

The setting possibilities and the functional sequence is displayed in the example for Command C001. This will apply accordingly to all other single-pole commands.

3 Operation

(continued)

3.46 Single-Pole Signals (Function Group SIG_1)

Binary, single-pole signals from the station can be transmitted by the P132 to the control station through appropriately configured binary signal inputs.

The input signal is conditioned by debouncing and chatter suppression (see: 'Main Functions of the P132). The conditioned signal is then available as SIG_1: Logic signal $x x x$.

Signaling characteristics can be defined through the communication interface by setting the operating mode. The following settings are possible:
\square Without function:
\square Start/end signal

- Transient signal

If the setting is Without function, then no telegram is sent when there is a state change at the binary input. If the setting is Start/end signal then a telegram is sent each time there is a state change. The requirement for sending the 'start' signal is that the logic ' 1 ' signal be available for the set minimum time. If the setting is Transient signal, telegrams are only sent if there is a state change from logic '0' to logic ' 1 '.

The following figure shows the setting options and the functional sequence for signal S001. Equivalent considerations apply to all other single-pole signals.

3 Operation
 (continued)

3-302 Functional sequence for single-pole signals, illustrated for signal S001

4 Design

The P132 is available in different types of cases and with different combinations of modules.

Irrespective of the type a P132 is equipped with a detachable HMI or a fixed local control panel. (Exception: The case 24 T is only available with a fixed local control panel.) The local control panel is covered with a tough film so that the specified degree of IP protection will be maintained. In addition to the essential control and display elements, a parallel display consisting of a total of 17 LED indicators is also incorporated. The meaning of the various LED indications is shown in plain text on a label strip.

The PC interface (9-pin D-Sub female connector) is located under the hinged cover at the bottom of the local control panel.

4.1 Designs

The P132 is available in a surface-mounted and a flush-mounted case.
Electrical connections are made via plug-in threaded terminal blocks. The threaded terminal blocks in the surface-mounted case are accessible from the front of the device after unscrewing the crosshead screws on the sides (see Figure 4-1, (1) and removing the local control panel. The local control panel can then be secured by inserting the tabs in the slots in the left side wall (see Figure 4-1, (2). The flush-mounted case is connected at the back of the case.

The local control panel is connected to processor module P by a plug-in connecting cable. Do not bend the connecting cable! Secure the local control panel by inserting it in the slots provided on the left.

The secondary circuit of live system current transformers must not be opened! If the secondary circuit of a live CT is opened, there is the danger that the resulting voltages will endanger personnel and damage the insulation.

The threaded terminal block for system current transformer connection is not a shorting block! Therefore always short-circuit the system current transformers before loosening the threaded terminals.
 with (fixed) local control panel

4 Design

(continued)

4.2 Dimensional Drawings

4.2.1 Surface-mounted case

4-2
Dimensional drawing surface-mounted case 24T

4-3

4-4 Dimensional drawing surface-mounted case $84 T$

4 Design

(continued)

4.2.2 Flush-mounted case, flush-mount method 1 (without angle brackets)

 drawings further) is used for the flush-mounted case.

4 Design

(continued)

4-7 Flush-mounted case 84T with panel opening, flush-mount method 1 (without angle brackets)
Note: \quad The device has increased mechanical robus

4 Design

(continued)
4.2.3 Flush mounted case, flush-mounting method 2 (with angle brackets and frame)

4 Design

(continued)

4-9 Flush-mounted case 40T with panel opening, flush-mount method 2 (with angle brackets and frame)
Note: \quad The device has increased mechanical robustness if flush-mount method 2 (with angle brackets and frame, shown in this drawing) is used for the flush-mounted case.

Flush-mounted case $84 T$ with panel opening, flush-mount method 2 (with angle brackets and frame)
Note: \quad The device has increased mechanical robustness if flush-mount method 2 (with angle brackets and frame, shown in this drawing) is used for the flush-mounted case.

4 Design

(continued)

4.2.4 Device views for connection of detachable HMI

View of case 40T for connection of detachable HMI:

View of case 84T for connection of detachable HMI:

Detachable HMI with panel opening:

4.3 Modules

The P132 is constructed from standard hardware modules. The following table gives an overview of the modules relevant for the P132.
(*: modules that are not shown in the location diagrams, O: optional, •: standard equipment, \square : depending on order).

Type	Item number	Index	Description	Width	24 T	40 T	84 T
A	9650356	A ff	Communication module (for RS 485 wire connection)	4T	\bigcirc	\bigcirc	\bigcirc
A	9650354	A ff	Communication module (for glass fiber, ST connector)	4 T	\bigcirc	\bigcirc	\bigcirc
A	9650355	A ff	Communication module (for plastic fiber)	4T	\bigcirc	\bigcirc	\bigcirc
A	9650353	A ff	Communication module (IRIG-B only)	4T	\bigcirc	\bigcirc	\bigcirc
A	9651471	E ff	Ethernet module (for $100 \mathrm{Mbit} / \mathrm{s}$ Ethernet, glass fiber, ST connector and RJ45 wire)	4 T	\bigcirc	\bigcirc	\bigcirc
A	9651427	$E \mathrm{ff}$	Ethernet module (for $100 \mathrm{Mbit} / \mathrm{s}$ Ethernet, glass fiber, SC connector and RJ45 wire)	4 T	\bigcirc	\bigcirc	\bigcirc
A	9650827	B ff	InterMiCOM Module COMM3 (RS 485)	4 T	\bigcirc	\bigcirc	\bigcirc
A	9650828	B ff	InterMiCOM Module COMM3 (for glass fiber)	4T	\bigcirc	\bigcirc	\bigcirc
A	9650829	B ff	InterMiCOM Module COMM3 (for plastic fiber)	4T	\bigcirc	\bigcirc	\bigcirc
A	9650830	B ff	InterMiCOM Module COMM3 (RS 232)	4T	\bigcirc	\bigcirc	\bigcirc
B	0336186	B ff *	Bus module (digital)		\bullet		
B	0336187	D ff *	Bus module (digital)			\bullet	
B	0336188	C ff *	Bus module (digital)				\bullet
B	0336421	B ff *	Bus module (analog)		-	\bullet	-
L	9650194	C ff *	Local control module (Europ.)			\square	\square
L	9650443	B ff *	Local control module (Cyrillic)			\square	\square
L	9651473	B ff *	Local control module (Europ. for device version with DHMI)			\square	\square
L	9651474	B ff *	Local control module (Cyrillic for device version with DHMI)			\square	\square
L	9650563	B ff *	Front plate (for device version 40T with DHMI)			\square	
L	9650563	B ff*	Front plate (for device version 84T with DHMI)				\square
L	9651491	B ff *	Local control module (Europ.)		\bullet		
L	9651492	B ff *	Local control module (Cyrillic)		\square		
N	0337086	B ff	Transient ground fault evaluation module	4T		O	\bigcirc
			Processor module (up to hardware version -303)				
P	9651472	B ff	Processor module (as of hardware version -304)	4T	\bullet	\bullet	\bullet
T	9650307	A ff	Transformer module $4 \times \mathrm{I}, 4 \times \mathrm{V}$ (pin connection)	8T	\square	\square	\square
T	9650308	A ff	Transformer module $4 \times \mathrm{I}, 5 \times \mathrm{V}$ (pin connection)	8T	\square	\square	\square
T	9650309	A ff	Transformer module 4×1 (pin connection)	8T	\square	\square	\square
T	9650098	$F \mathrm{ff}$	Transformer module $4 \times \mathrm{V}$ (pin connection)	8T	\square	\square	\square
T	9650321	A ff	Transformer module $4 \times \mathrm{I}, 4 \times \mathrm{V}$ (ring connection)	8T	\square	\square	\square
T	9650322	A ff	Transformer module $4 \times \mathrm{I}, 5 \times \mathrm{V}$ (ring connection)	8T	\square	\square	\square
T	9650323	A ff	Transformer module 4×1 (ring connection)	8T	\square	\square	\square

Type	Item number	Index	Description	Width	24 T	40 T	84 T
T	9650335	A ff	Transformer module $4 \times \mathrm{V}$ (ring connection)	8T	\square	\square	\square
V	0337437	E ff	Power supply module 24 V DC Standard variant (switching threshold 18 V)	4 T	\square	\square	\square
V	9651300	A ff	Power supply module 24 V DC, switching threshold 73 V	4 T	\square	\square	\square
V	9651328	A ff	Power supply module 24 V DC, switching threshold 90 V	4 T	\square	\square	\square
V	9651439	A ff	Power supply module 24 V DC, switching threshold 146 V	4 T	\square	\square	\square
V	9651356	A ff	Power supply module 24 V DC, switching threshold 155 V	4 T	\square	\square	\square
V	0337191	M ff	Power supply module 48 to 250 V DC / 100 to 230 V AC, Standard variant (switching threshold 18 V)	4T	\square	\square	\square
V	9651301	A ff	Power supply module 48 to 250 V DC / 100 to 230 V AC, switching threshold 73 V	4 T	\square	\square	\square
V	9651329	A ff	Power supply module 48 to 250 V DC / 100 to 230 V AC, switching threshold 90 V	4 T	\square	\square	\square
V	9651437	A ff	Power supply module 48 to 250 V DC / 100 to 230 V AC, switching threshold 146 V	4 T	\square	\square	\square
V	9651357	A ff	Power supply module 48 to 250 V DC / 100 to 230 V AC, switching threshold 155 V	4 T	\square	\square	\square
X	0337612	A ff	Binary I/O module (24 binary inputs), Standard variant (switching threshold 18 V)	4 T		O	O
X	9651304	A ff	Binary I/O module (24 binary inputs), switching threshold 73 V	4T		O	O
X	9651332	A ff	Binary I/O module (24 binary inputs), switching threshold 90 V	4 T		\bigcirc	\bigcirc
X	9651443	A ff	Binary I/O module (24 binary inputs), switching threshold 146 V	4T		O	O
X	9651360	A ff	Binary I/O module (24 binary inputs), switching threshold 155 V	4 T		\bigcirc	\bigcirc
X	0337377	E ff	Binary I/O module (6 binary inputs \& 6 output relays), Standard variant (switching threshold 18 V)	4 T		O	O
X	9651305	A ff	Binary I/O module (6 binary inputs \& 6 output relays), switching threshold 73 V	4T		O	O
X	9651333	A ff	Binary I/O module (6 binary inputs \& 6 output relays), switching threshold 90 V	4 T		O	O
X	9651444	A ff	Binary I/O module (6 binary inputs \& 6 output relays), switching threshold 146 V	4 T		\bigcirc	\bigcirc
X	9651361	A ff	Binary I/O module (6 binary inputs \& 6 output relays), switching threshold 155 V	4 T		\bigcirc	\bigcirc
X	0336971	D ff	Binary I/O module (6 binary inputs \& 8 output relays), Standard variant (switching threshold 18 V)	4 T		\bigcirc	\bigcirc
X	9651306	A ff	Binary I/O module (6 binary inputs \& 8 output relays), switching threshold 73 V	4 T		\bigcirc	\bigcirc
X	9651334	A ff	Binary I/O module (6 binary inputs \& 8 output relays), switching threshold 90 V	4 T		O	\bigcirc

Type	Item number	Index	Description	Width	24 T	40 T	84 T
X	9651445	A ff	Binary I/O module (6 binary inputs \& 8 output relays), switching threshold 146 V	4 T		\bigcirc	\bigcirc
X	9651362	A ff	Binary I/O module (6 binary inputs \& 8 output relays), switching threshold 155 V	4T		\bigcirc	\bigcirc
X	0336973	B ff	Binary module (6 output relays)	4T	\bigcirc	\bigcirc	\bigcirc
X	9650341	B ff	Binary module (6 output relays, 4 of these with triacs)	4 T	\bigcirc	\bigcirc	\bigcirc
X	9651493	B ff	Binary module (4 high-power contacts)	4 T	\bigcirc	\bigcirc	\bigcirc
Y	0337406	D ff	Analog I/O module, Standard variant (switching threshold 18 V)	4 T		O	O
Y	9651307	A ff	Analog I/O module, switching threshold 73 V	4T		\bigcirc	\bigcirc
Y	9651335	$A \mathrm{ff}$	Analog I/O module, switching threshold 90 V	4T		\bigcirc	\bigcirc
Y	9651446	A ff	Analog I/O module, switching threshold 146 V	4 T		\bigcirc	\bigcirc
Y	9651363	A ff	Analog I/O module, switching threshold 155 V	4T		\bigcirc	\bigcirc
Y	9650735	C ff	Analog I/O module (RTD) / temperature p/c board	4T		O	O

The space available for the modules measures 4 H in height by $24 \mathrm{~T}, 40 \mathrm{~T}$ or 84 T in width $(1 \mathrm{H}=44.45 \mathrm{~mm}, 1 \mathrm{~T}=5.08 \mathrm{~mm})$.

Location

The location of the individual modules and the position of the threaded terminal blocks in the P132 are shown in the location figures and terminal connection diagrams at the end of Chapter 5.

5 Installation and Connection

Only qualified personnel, familiar with the "Warning" page at the beginning of this manual, may work on or operate this device.

The instructions given in the "Protective and Operational Grounding" section should be noted. In particular, check that the protective ground connection is secured with a tooth lock washer, as per the diagram "Installing the protective grounding conductor terminal". If a cable screen is added to this connection or removed from it, then the protective grounding should be checked again.

The SC connector and RJ45 wire of the Ethernet module cannot be connected at the same time. (The selection for IEC: Ethernet Media should be noted.)

5.1 Unpacking and Packing

All P132 overcurrent and control devices are packaged separately into dedicated cartons and shipped with outer packaging. Use special care when opening cartons and unpacking devices, and do not use force. In addition, make sure to remove supporting documents and the type identification label supplied with each individual device from the inside carton. The design revision level of each module included in the device when shipped can be determined from the list of components (assembly list). This list of components should be filed carefully.

After unpacking, each device should be inspected visually to confirm it is in proper mechanical condition.

If the P132 needs to be shipped, both inner and outer packaging must be used. If the original packaging is no longer available, make sure that packaging conforms to DIN ISO 2248 specifications for a drop height $\leq 0.8 \mathrm{~m}$.

5 Installation and Connection
 (continued)

5.2 Checking Nominal Data and Design Type

The nominal data and design type of the P132 can be determined by checking the type identification label (see Figure 5-1). One type identification label is located under the upper hinged cover on the front panel and a second label can be found on the inside of the device. Another copy of the type identification label is fixed to the outside of the P132 packaging.

The P132 design version can be determined from the order number. A breakdown of the order number is given in Chapter 14 of this manual and in the supporting documents supplied with the unit.

5 Installation and Connection
 (continued)

Environmental Conditions

Mechanical conditions

Electrical conditions for auxiliary voltage of the power supply

5.3 Location Requirements

The P132 has been designed to conform to DIN 57435 part 303. Therefore it is important when choosing the installation location to make certain that it provides the operating conditions as specified in above DIN norm sections 3.2 to 3.4. Several of these important operating conditions are listed below.

Ambient temperature:	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left[+23^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right]$
Air pressure.	800 to 1100 hPa

Relative humidity:

Ambient air:

Solar radiation:

Vibration stress:
Earthquake resistance:

The relative humidity must not result in the formation of either condensed water or ice in the P132.

The ambient air must not be significantly polluted by dust, smoke, gases or vapors, or salt content.

Direct solar radiation on the front of the device must be avoided to ensure that the LC-Display remains readable.

10 to $60 \mathrm{~Hz}, 0.035 \mathrm{~mm}$ and 60 to $150 \mathrm{~Hz}, 0.5 \mathrm{~g}$
5 to $8 \mathrm{~Hz}, 3.5 \mathrm{~mm} / 1.5 \mathrm{~mm}, 8$ to $35 \mathrm{~Hz}, 5 \mathrm{~m} / \mathrm{s}^{2}$, 3×1 cycle
0.8 to $1.1 \mathrm{~V}_{\mathrm{A}, \text { nom }}$ with a residual ripple of up to $12 \% \mathrm{~V}_{\mathrm{A}, \text { nom }}$

Substation secondary system design must follow the best of modern practices, especially with respect to grounding and EMC.

5 Installation and Connection

(continued)

5.4 Installation

The dimensions and mounting dimensions for surface-mounted cases are given in Chapter 4. When the P132 is surface-mounted on a panel, the wiring to the P132 is normally run along the front side of the mounting plane. If the wiring is to be at the back, an opening can be provided above or below the surface-mounted case. Figure 5-2 shows such an opening below the surface-mounted case.

5-2 Opening for running the wiring
The opening width
of the 24 T surface-mounted case is: 140 mm
of the 40 T surface-mounted case is: 213 mm (shown in this figure)
of the 84 T surface-mounted case is: 435 mm
The other dimensions are the same for all cases.

Flush-mounted cases are designed for control panels. The dimensions and mounting dimensions are given in Chapter 4. When the P132 is mounted on a cabinet door, special sealing measures are necessary to provide the degree of protection required for the cabinet (IP 51).

Connection of protective grounding conductor: See section 5.5

Instructions for selecting the flush-mount method:

The P132 has increased mechanical robustness if either the surface-mounted case or for the flush-mounted case - flush-mount method 2 (with angle brackets and frame) is used. In this case, test severity class 2 of the vibration test, test severity class of the shock resistance test on operability as well as test severity class 1 of the shock resistance test on permanent shock are applied additionally.

Dimensions of the panel cutouts:

Dimensional drawings of the panel cutouts for all cases and for the detachable HMI can be found in section "Dimensional Drawings" in chapter 4.

For flush-mount method 1 (without angle brackets and frame), the procedure is as follows:

Before the P132 can be installed into a control panel, the local control panel (or the front element of the case for devices with detachable display) must be taken down. The local control panel is removed as described below:
\square Remove both top and bottom hinged flaps from the device. (Lift/lower both hinged flaps 180° up/down. Hold them in the middle and bend them slightly. The side mountings of both hinged flaps can then be disengaged.)
\square Remove the M3 screws (see Figure 5-3).
\square Then remove the local control panel.

The local control panel (or front element) is connected to processor module P by a plugin connecting cable. Remember the connector position! Do not bend the connecting cable.

Then remove the lower M4 screws and only loosen the upper M4 screws (see Figure 5-3). Now insert the P132 into the panel opening from the rear so that the upper M4 screws fit into the corresponding holes. Then tighten all the M4 screws. After this, replace the local control panel.

Note: If the control panel thickness $\geq 2 \mathrm{~mm}$, the longer M 3 and M 4 bolts must be used. Longer screws are enclosed within the device packing.

5 Installation and Connection

(continued)

5-3 Installation of the case into a control panel, flush-mount method 1 (without angle brackets and frame).
Example for a device in a 40 T case.
The P132 has increased mechanical robustness if either the surface-mounted case or for the flush-mounted case flush-mount method 2 (with angle brackets and frame, see figure 5-5.) is used.

Connection of protective grounding conductor: See section 5.5

5 Installation and Connection
 (continued)

For flush-mount method 2 (using the angle brackets and frame), the procedure is as follows:
\square Remove the screws as shown in Figure 5-4, (1) and mount the enclosed angle brackets using these same screws.
\square Then push the device into the control panel cutout from the front.
\square Secure the device to the control panel by using the enclosed M6 screws (see Figure 5-5).
\square Assemble the cover frame and snap-fasten onto the fixing screws.

5-4 Mounting the angle brackets

5 Installation and Connection

(continued)

5-5 Installation of a case into a control panel, flush-mount method 2 (with angle brackets and frame)
Example for a device in a 40 T case.
The cover frame width
of the 24 T case is: 210 mm
of the 40 T case is: 280 mm
of the 84 T case is: 486 mm

The cover frame height is for all cases: 204 mm

The device has an increased mechanical robustness, if flush-mount method 2 (with angle brackets and frame, shown on this page) is used for the flush-mounted cases.

Connection of protective grounding conductor: See section 5.5

5 Installation and Connection
 (continued)

A rack mounting kit can be used to combine a flush-mounted 40 T case with a second sub-rack to form a 19" mounting rack (see Figure 5-6). The second sub-rack can be another device, for example, or an empty sub-rack with a blank front panel. Fit the 19" mounting rack to a cabinet as shown in Figure 5-7.

5-6 Combining 40 T flush-mounted cases to form a 19" mounting rack
Connection of protective grounding conductor: See section 5.5

5 Installation and Connection

(continued)

5-7 Installation of the P132 in a cabinet with a 19" mounting rack
Connection of protective grounding conductor: See section 5.5

5 Installation and Connection
(continued)

5.5 Protective and Operational Grounding

The device must be reliably grounded to meet protective equipment grounding requirements. The surface-mounted case is grounded using the bolt and nut, appropriately marked, as the ground connection. The flush-mounted case must be grounded in the area of the rear sidepieces at the location provided. The cross-section of the ground conductor must conform to applicable national standards. A minimum cross section of $2.5 \mathrm{~mm}^{2}$ is required.

In addition, a protective ground connection at the terminal contact on the power supply module (identified by the letters "PE" on the terminal connection diagram) is also required for proper operation of the device. The cross-section of this ground conductor must also conform to applicable national standards. A minimum cross section of $1.5 \mathrm{~mm}^{2}$ is required.

The grounding connection at both locations must be low-inductance, i.e. it must be kept as short as possible.

5-8 Installing the protective grounding conductor terminal
The protective conductor (earth) must always be connected to the protective grounding conductor terminal in order to guarantee the safety given by this set-up.

The bracket is marked with the protective ground symbol: \triangleq

5 Installation and Connection
 (continued)

Power supply
Before connecting the auxiliary voltage V_{A} for the P 132 power supply, it must be ensured that the nominal value of the auxiliary device voltage corresponds with the nominal value of the auxiliary system voltage.

When connecting the system transformers, it must be ensured that the secondary nominal currents of the system and the device correspond.

The secondary circuit of live system current transformers must not be opened! If the secondary circuit of a live CT is opened, there is the danger that the resulting voltages will endanger personnel and damage the insulation.

The threaded terminal block for system current transformer connection is not a shorting block! Therefore always short-circuit the system current transformers before loosening the threaded terminals.

5 Installation and Connection
(continued)

Connecting the timeovercurrent protection measuring circuits

The system current and voltage transformers must be connected in accordance with the standard schematic diagram shown in Figure 5-9. It is essential that the grounding configuration shown in the diagram be followed. If the CT or VT connection is reversed, this can be taken into account when making settings (see Chapter 7).

The P132 is generally fitted with four current-measuring inputs. Three-pole or two-pole connection is possible to suit the individual power system and substation.

5-9 Standard schematic diagram for time-overcurrent protection

5 Installation and Connection
 (continued)

Connecting the measuring circuits for ground fault direction determination
f the P132 is to function using ground fault direction determination by steady-state values (the GFDSS function), then the T 4 current transformer must be connected to a core balance current transformer or a current transformer in Holmgreen configuration. If the metal shield of the cable is routed through the core balance transformer, the ground wire must be fed through the core again before it is connected to ground. The cable sealing end must be attached so that it is isolated from ground. This ensures that any currents flowing through the shield will not affect measurement.

The steady-state ground fault direction determination requires either the three phase-to-ground voltages or, alternatively, the neutral-point displacement voltage from the open delta winding of a voltage transformer assembly as the measured voltage. The phase voltages are drawn from the same transformers like the measured variables for the time voltage protection. An additional voltage transformer (T 90) is available in the P132 to connect an open delta winding. When setting the protection function, the selected voltage needs to be taken into account.

Figure 5-10 shows the standard connection for ground fault direction determination by steady-state values where the voltage measuring circuit is connected to an open delta winding. With this connection configuration, 'forward/LS' is displayed if a ground fault occurs on the line side. A reversed connection is possible for the system current or voltage transformer if the appropriate setting is configured (see Chapter 7).

5 Installation and Connection
 (continued)

5-10 Connecting the steady-state ground fault direction determination function to Holmgreen-configuration and core balance transformers

5 Installation and Connection
 (continued)

Connecting protective signaling

Either a transmission device or pilot wires are required for signal transmission, depending on the operating mode selected. Twisted pair cores should be used as pilot wires. Two or four cores are required. If only two cores are available, there must be an all-or-nothing relay in each station for coupling received and transmitted signals. The coils of the all-or-nothing relays must be designed for half the loop voltage. Figure 5-11 shows connection with two cores and Figure 5-12 with four cores.

The protective signaling transmitting relay can be set to either Transm. rel. break con. or Transm. rel. make con. In the first case the break contact of the transmitting relay must be wired, and in the second case the make contact must be wired. The figures show the connection for the setting Transm. rel. break con.

5 Installation and Connection
 (continued)

5 Installation and Connection

(continued)

5 Installation and Connection
(continued)

Connecting a resistance
thermometer
A resistance thermometer can be connected if the device is fitted with analog module Y . This analog I/O module input is designed to connect a PT 100 resistance thermometer. The PT 100 should be connected using the 3 -wire method (see Figure 5-13). No supply conductor compensation is required in this case.

5-13 Connecting a PT 100 using the 3-wire method

Connecting binary inputs
and output relays
The binary inputs and output relays are freely configurable. When configuring these components it is important to note that the contact rating of the binary I/O modules (X) varies (see Chapter 2 "Technical Data"). Once the user has selected a bay type, the P132 can automatically configure the binary inputs and output relays with function assignments for the control of switchgear units. The standard configuration of binary inputs and output relays for each bay type is given in the list of bay types to be found in the Appendix to this operating manual.

The polarity for connected binary inputs is to be found in the terminal connection diagrams (see supporting documents supplied with the device or end of this chapter). This is to be understood as a recommendation only. Connection to binary inputs can be made as desired.

5 Installation and Connection

(continued)

Connection example optional control

A connection example for P132 in case 40 TE for connection with pin-type cable terminals is shown in Figure 5-14.

[^31]
5 Installation and Connection
 (continued)

5.6.2 Connecting the IRIG-B interface.

An IRIG-B interface for time synchronization may be installed as an optional feature. It is connected by a BNC connector. A coaxial cable having a characteristic impedance of 50Ω must be used as the connecting cable.

5.6.3 Connecting the Serial Interfaces

PC interface
The PC interface is provided so that personnel can operate the device from a personal computer (PC).

Communication interface

The PC interface is not designed as a permanent connection. Consequently, the female connector does not have the extra insulation from circuits connected to the system that is required per VDE 0106 Part 101.

The communication interface is provided as a permanent connection of the device to a control system for substations or to a central substation unit. Depending on the type, communication interface 1 on the device is connected either by a special fiber-optic connector or a RS 485 interface with twisted pair copper wires. Communication interface 2 is only available as a RS 485 interface.

The selection and assembly of a properly cut fiber-optic connecting cable requires special knowledge and expertise and is therefore not covered in this operating manual.

The fiber-optic interface may only be connected or disconnected when the supply voltage for the device is shut off.

5 Installation and Connection
 (continued)

An RS485 data transmission link between a master and several slave devices can be established by using the optional communication interface. The communication master could be, for instance, a central control station. Devices linked to the communication master, e.g. P132, are set-up as slave devices.

The RS 485 interface available on the P132 was designed so that data transfer in a full duplex transmission mode is possible using a 4 -wire data link between devices. Data transfer between devices using the RS 485 interface is set up only for a half duplex transmission mode. To connect the RS485 communication interface the following must be observed:
\square Only twisted pair shielded cables must be used, that are common in telecommunication installations.
\square At least one symmetrical twisted pair of wires is necessary.
\square Conductor insulation and shielding must only be removed from the core in the immediate vicinity of the terminal strips and connected according to national standards.
\square All shielding must be connected to an effective protective ground surface at both ends.
\square Unused conductors must all be grounded at one end.
A 4-wire data link as an alternative to a 2-wire communications link is also possible. A cable with two symmetrical twisted pair wires is required for a 4-wire data link. A 2wire data link is shown in Figure 5-15, and a 4-wire data link is shown in Figure 5-16 as an example for channel 2 on the communication module. The same is valid if channel 1 on the communication module is available as a RS 485 interface.

2-wire data link:

The transmitter must be bridged with the receiver on all devices equipped electrically with a full duplex communication interface, e.g. the P132. The two devices situated at either far end must have a 200 to 220Ω resistor installed to terminate the data transmission conductor. In most Schneider Electric MiCOM Px3x devices, and also in the P132, a 220Ω resistor is integrated into the RS485 interface hardware and can be connected with a wire jumper. An external resistor is therefore not necessary.

4-wire data link:

Transmitter and receiver must be bridged in the device situated on one far end of the data transmission conductor. The receivers of slave devices, that have an electrically full-duplex communication interface as part of their electrical system, e.g. the P132, are connected to the transmitter of the communication master device, and the transmitters of slave devices are connected to the receiver of the master device. Devices equipped electrically with only a half duplex RS485 communication interface are connected to the transmitter of the communication master device. The last device in line (master or slave device) on the data transmission conductor must have the transmitter and receiver terminated with a 200 to 220Ω resistor each. In most Schneider Electric MiCOM Px3x devices, and also in the P132, a 220Ω resistor is integrated into the RS485 interface hardware and can be connected with a wire jumper. An external resistor is therefore not necessary. The second resistor must be connected externally to the device (resistor order number see Chapter 13).

5 Installation and Connection
 (continued)

5-15 2-wire data link

5 Installation and Connection

5-16 4-wire data link

5 Installation and Connection

(continued)

5.7 Location diagrams

5-17 Location diagrams P132 in case 24 TE (on the left) or 40 TE (on the right)
Pin-terminal connection (24 TE: P132-415, 40 TE: P132-417)
Transformer module: Ring terminal connection, other modules pin-terminal connection (24 TE: P132-416, 40 TE: P132-418)

5-18 Location diagram for P132 in 84 TE case Ring-terminal connection (P132-419)

5 Installation and Connection

(continued)

5.8 Terminal Connection Diagrams

[^32]Note: \quad ' ' is a placeholder for the slot. See also section 5.5 for the Protective and Operational Grounding.

5 Installation and Connection

(continued)

5-20 Terminal connection diagrams P132 (part 2)
Notes: ' ' is a placeholder for the slot. See also section 5.5 for the Protective and Operational Grounding.
${ }^{1)}$ The binary (I/O) module $X(6 \times O)$ is now optionally available with 4 static outputs, parallel to the make contacts $K _02.2, K _03.1, K _04, K _05$. The RTD module is equipped with a grounding bar providing connectors for the 9 cable shields.

5 Installation and Connection

6 Local Control Panel

6 Local Control Panel

Local control panel
All data required for operation of the protection device is entered from the local control panel, and the data important for system management is read out there as well. The following tasks can be handled from the local control panel:
\square Readout and modification of settings
\square Readout of cyclically updated measured operating data and logic status signals
\square Readout of operating data logs and of monitoring signal logs
\square Readout of event logs after overload situations, ground faults, or short circuits in the power system
\square Device resetting and triggering of additional control functions used in testing and commissioning

Control is also possible through the PC interface. This requires a suitable PC and a specific operating program.

6 Local Control Panel

(continued)

6.1 Display and Keypad

Display and Keypad
The local control panel is fitted with a LC display containing 4×20 alphanumeric characters.

Then there are seven keys with permanently assigned functions situated below the LCD and, with case 40T and case 84T devices, there are six additional freely configurable function keys on the right side of the LCD.

Furthermore the local control panel is provided with 17 LED indicators, mounted vertically, and situated on the left side of the LCD and, with case 40T and case 84T devices, there are six additional LED indicators situated on the right side of the six freely configurable function keys.

6-1
View of the local control panel on case $40 T$ and case $84 T$ devices

6 Local Control Panel

(continued)

6-2
View of the local control panel on case $24 T$ devices

6 Local Control Panel

(continued)

Display levels

All data relevant for operation and all device settings are displayed on two levels. At the Panel level, data such as measurements are displayed in Panels that provide a quick overview of the current state of the bay. The 'menu tree' level below the panel level allows the user to select all data points (settings, signals, measured variables, etc.) and to change them, if appropriate. To access a selected event recording from either the panel level or from any other point in the menu tree, press the "READ" key (1II).

The bay panel is only available under these conditions:

1. On the hardware side the protection unit has to have been upgraded with a control functionality. This requires that the optional binary I/O module to control switchgear units has been ordered and is fitted to a slot as listed below:

- for a 40 T case: slot 6
- for a 84 T case: slot 12

2. By selecting and sending a bay type (with parameter MAIN: Type of bay) a bay type has been generated.

To access a selected event recording from either the panel level or from any other point in the menu tree, press the "READ" key ©

From the control and display panels (e.g. measured value panels or the bay panel) the user can access the menu tree level by pressing the "ENTER" key.

To return to the previously selected control and display panel from the menu tree level the user must simultaneously press the keys "Cursor up" and "RESET". (If previously no panel was selected, i.e. after a system restart, then the bay panel, if available, is accessed.)

After the set LOC: Autom. return time has elapsed the protection unit will also return automatically from the menu tree level to the control and display panel last selected.

The user can move from a bay panel to a measured value panel by pressing the key "Cursor left" and back again by pressing the key "Cursor right".

6 Local Control Panel

(continued)

6-3
Display panels and menu tree

6 Local Control Panel

(continued)

If available the bay panel will display switching state signals from external devices (closed, open, intermediate position) and the active control site (local or remote). The text display will show up to 3 external devices, one per line, where the external device selected is marked with the flashing symbol " $>$ " in front of the external devices' designation text.

```
    X0 :Running
> Q0 :Running
    Q8 : Running
Local Remote
```

The sequence for external devices is downwards in columns according to their numbering (DEV01, DEV02, DEV03). To designate these external devices there are up to four characters available, and next to these, separated by a colon, their current state is displayed ("running", "open", "closed" or "interm. pos.").

The active control unit ("Remote" or "Local") is displayed in the fourth line and whether it is "Locked" or "Unlocked".

6 Local Control Panel
 (continued)

Display panels
The P132 can display 'Measured Value Panels' which are selected automatically by the device according to system conditions.

Selected measured values are displayed on the Measured Value Panels. The system condition determines which Panel is called up (examples are the Operation Panel and the Fault Panel). Only the Measured Value Panels relevant for the particular design version of the given device and its associated range of functions are actually available. The Operation Panel is always provided.

Menu tree and data points
All data points (setting values, signals, measured values, etc.) are selected using a menu tree. When navigating through the menu tree, the first two lines of the LC-Display always show the branch of the menu tree that is active, as selected by the user. The data points are found at the lowest level of a menu tree branch and they are displayed either with their plain text description or in numerically encoded form, as selected by the user. The value associated with the selected data point, its meaning, and its unit of measurement are displayed in the line below.

List data points
List data points are a special category. In contrast to other data points, list data points generally have more than one associated value element. This category includes tripping matrices, programmable logic functions, and event logs. When a list data point is selected, the symbol ' \downarrow ' is displayed in the bottom line of the LCD, indicating that a sublevel is situated below this displayed level. The individual value elements of a list data point are found at this sub-level. In the case of a list parameter, the individual value elements are linked by operators such as 'OR'.

6 Local Control Panel

Panel Level:
The 'up'/'down' keys switch between the pages of the Measured Value Panel.

Menu Tree Level:

Press the 'up' and 'down' keys to navigate up and down through the menu tree in a vertical direction. If the unit is in input mode, the 'up' and 'down' keys have a different function.
Input mode:
Settings can only be changed in the input mode, which is signaled by the LED indicator labeled EDIT MODE. Press the 'up' and 'down' keys in this mode to change the setting value.
('Up' key: the next higher value is selected.
'Down' key: the next lower value is selected.)
With list settings, press the 'up' and 'down' key to change the logic operator of the value element.
\square 'Left' and 'Right' Keys

Menu Tree Level:

Press the 'left' and 'right' keys to navigate through the menu tree in a horizontal direction. If the unit is in input mode, the 'left' and 'right' keys have a different function.
Input mode:
Settings can only be changed in the input mode, which is signaled by the LED indicator labeled EDIT MODE. When the 'left' and 'right' keys are pressed, the cursor positioned below one of the digits in the change-enabled value moves one digit to the right or left.
('Left' key: the cursor moves to the next digit on the left. 'Right' key: the cursor moves to the next digit on the right.)
In the case of a list setting, press the 'left' and 'right' keys to navigate through the list of items available for selection.

- ENTER Key

Panel Level:
Press the ENTER key at the Panel level to go to the menu tree.

Menu Tree Level:

Press the ENTER key to enter the input mode. Press the ENTER key a second time to accept the changes as entered and exit the input mode. The LED indicator labeled EDIT MODE signals that the input mode is active.

ㅁ CLEAR Key

Press the CLEAR key to reset the LED indicators and clear all measured event data. The records in the recording memories are not affected by this action. Input mode:
When the CLEAR key is pressed all changes entered are rejected and the input mode is exited.

- READ Key ©

Press the READ key to access a selected event recording from either the Panel level or from any other point in the menu tree.

Function Keys (case 40T and 84T only)
 \square F6
 By pressing a function key the assigned function is triggered. More details on assigning functions to function keys can be found in section "Configurable Function Keys (Function Group F_KEY)" in Chapter 3. More details on handling function keys can be found in this Chapter, in section 6.4 "Configurable Function Keys F1 to Fx (general)" and in section 6.5 " Configurable Function Keys F1 to Fx (particularly as control keys)".

The following presentation of the individual control steps shows which displays can be changed in each case by pressing keys. A small black square to the right of the enter key indicates that the LED indicator labeled EDIT MODE is illuminated. The examples used here are not necessarily valid for the device type described in this manual; they merely serve to illustrate the control principles involved.

6 Local Control Panel

6.2 Changing between Display Levels

After start-up of the device, the menu tree level is displayed.

Jumping from Menu Tree Level to Panel Level

Jumping from Panel Level to Menu Tree Level

Control Step / Description	Control Action	Display
0 From the Menu Tree Level, the user can jump to the Panel Level from any position within the menu tree.		Par/Func/Glob/MAIN Device on-line No (=off)
1 First press the 'up' key and hold it down while pressing the CLEAR key. Note: It is important to press the 'up' key first and release it last in order to avoid unintentional resetting of stored data.	(1)+ (c)	Voltage U A-B prim. 20.7 kV Voltage U B-C prim. $20.6 \text { kV }$
0 Example of a Measured Value Panel.		Voltage U A-B prim. 20.7 kV Voltage U B-C prim. 20.6 kV
1 Press the ENTER key to go from the Panel Level to the Menu Tree Level.	\dagger	XYYY

After the set return time has elapsed (setting in menu tree: "Par/Conf/LOC"), the display will automatically switch to the Panel Level if a Measured Value Panel has been configured.

6 Local Control Panel
 (continued)

6.3 Display Illumination

If none of the control keys are pressed, the display illumination will switch off once the set 'return time illumination' (setting in menu tree: "Par/Conf/LOC") has elapsed. Pressing any of the control keys will turn the display illumination on again. In this case the control action that is normally triggered by that key will not be executed. Reactivation of the display illumination is also possible by using a binary input.

If continuous display illumination is required, the function 'return time illumination' is set to blocked.

6.4 Configurable Function Keys F1 to Fx (general)

If not configured as control keys, function keys F1 to Fx (only available with case 40T and case 84 T devices) are enabled only after the password for function keys has been entered.

Exception: If a function key has been configured at MAIN: Local/Remote key the function will only switch from "Remote" to "Local" control after the password has been entered, but switching from "Local" to "Remote" control will occur without checking the password (see also section 6.5).

It is assumed for the remainder of this section that the function key F1 is enabled only after the password (as assigned at F_KEY: Password funct.key 1) has been entered. After the password has been entered the function key will remain active for the time period set at F_KEY: Return time fct.keys. Thereafter, the function key is disabled until the password is entered again.

For this example it is further assumed that the password for the function keys is the factory-set password. If the user has changed the password (see the chapter entitled "Changing the Password"), the following description will apply accordingly.

6 Local Control Panel

(continued)

Control Step / Description	Control Action	Display
0 Example of a display.		Voltage VAB prim. 20.7 kv voltage VBC prim. 20.
1 Function key F1 is pressed. Eight asterisks (*) appear in the fourth line as a prompt to enter the password.	(F1)	*******
2a Press the following keys in sequence: 'Left' 'Down' 'Right'		$*$
The display will change as shown in the column on the right.	$\stackrel{\Delta}{\Delta}$	*
Now press the ENTER key. If the correct password has been entered, the active display will re-appear.	Θ	$\begin{gathered} \text { voltage VAB prim. } \\ 2.7 \mathrm{kV} \\ \text { voltage } \mathrm{VBC} \text { prim. } \\ 20.6 \mathrm{kV} \end{gathered}$
Function keys F1 to Fx are active only during the set return time for function keys. If an invalid password has been entered, the display shown above in Step 1 will appear.		
2b This control step can be canceled at any time by pressing the CLEAR key before the ENTER key is pressed.	(c)	$\left\lvert\, \begin{gathered} \text { voltage vaB prim. } \\ 20.7 \mathrm{kv} \\ \text { voltage } \\ 20.6 \mathrm{kBV} \\ 20.6 \mathrm{kV} . \end{gathered}\right.$
3 Press F1 again. The function configured to this function key is carried out.	(F1)	$\left\lvert\, \begin{gathered} \text { voltage VAB prim. } \\ 20.7 \mathrm{kv} \\ \text { voltage } \mathrm{VBC} \\ 20.6 \mathrm{kV} \end{gathered}\right.$
4 When function keys are pressed during the return time period, then the configured function is carried out directly, e.g. without again checking for the password.	Fx	Oper/CtrlTest/LOC Param.change enable yes

6 Local Control Panel
 (continued)

6.5 Configurable Function Keys F1 to Fx (particularly as control keys)

As described in section "Configurable Function Keys (Function Group F_KEY)" in Chapter 3 function keys F1 to Fx may be configured as control keys at F_KEY: Fct. assignm. Fx (Fx: F1 to F6).

In this case different rules apply to checking the password (see the previous section) and the configuration to "Key/Switch" is ignored.

In case the control functionality is desired then each of the following four control commands, should be assigned to a function key. The particular selection of the four function keys out of the available six, however, does not matter.

- MAIN: Local/Remote Key

The "Local/Remote" control command is effective only in the bay panel except where a binary signal input has been configured for this function. Depending on the functionality set at LOC: Fct. assign. L/R key, the 'Local/Remote' command toggles either between 'Remote' and 'Local' control, or between 'Local/Remote' and 'Local' control. (The parameter LOC: Fct. assign. L/R key may be set either to $R<->L$ or to $R \& L<->L$ and will then define which of the two switching modes is active.) If the "Local/Remote" command is configured such that it will switch from "Remote" control to "Local" control, then this can only occur if the password has first been entered at LOC: Password L/R. Switching from "Local" to "Remote" control will occur without checking the password. (See also section "Configuring the Measured Value Panels and Selection of the Control Point (Function Group LOC)" in Chapter 3.)

- MAIN: Device selection key

This selection command is effective only in the bay panel and only if "Local" control is activated.
If local control has been selected, pressing the selection key selects the switchgear unit to be controlled. This selected external device is marked on the text display with the flashing symbol ">" in front of the external devices' designation text.

- MAIN: Device OPEN key

The OPEN command is effective in the bay panel only.
Pressing the key assigned to this function controls the selected switchgear unit - taking into account the interlock equation - to assume the 'open' status.

- MAIN: Device CLOSE key

The CLOSE command is effective in the bay panel only.
Pressing the key assigned to this function controls the selected switchgear unit - taking into account the interlock equation - to assume the 'closed' status.

6 Local Control Panel

6.6 Control at Panel Level

The measured values that will be displayed on the Measured Value Panels can first be selected in the menu tree under Par/Conf/LOC. The user can select different sets of measured values for the Operation Panel, the Overload Panel, the Ground Fault Panel, and the Fault Panel. Only the Measured Value Panels relevant for the particular design version of the given device and its associated range of functions are actually available. The selected set of values for the Operation Panel is always available. Please see the section entitled 'Setting a List Parameter' for instructions regarding selection. If the MAIN: Without function setting has been selected for a given panel, then that panel is disabled.

The Measured Value Panels are called up according to system conditions. If, for example, the device detects an overload or a ground fault, then the corresponding Measured Value Panel will be displayed as long as the overload or ground fault situation exists. Should the device detect a fault, then the Fault Panel is displayed and remains active until the measured fault values are reset, by pressing the CLEAR key, for example.

Control Step / Description	Control Action	Display
0 Up to six selected measured values can be displayed simultaneously on the Panel.		Voltage VAB prim. V 20.7 kV Voltage VBC prim 20.6 kV
1 If more than two measured values have been selected, they can be viewed one page at a time by pressing the 'up' or 'down' keys. The device will also show the next page of the Measured Value Panel after the set Hold-time for Panels (setting in menu tree: "Par/Conf/LOC") has elapsed.	$\begin{aligned} & \stackrel{\Delta}{\text { or }} \\ & \stackrel{y}{c} \end{aligned}$	Voltage VCA prim.

6 Local Control Panel

(continued)

6.7 Control at the Menu Tree Level

6.7.1 Navigation in the Menu Tree

Folders and function groups

All data points are organized in different folders based on practical control requirements.
At the root of the menu tree is the unit type; the tree branches into the three main folders 'Settings', 'Measurements \& Tests' and 'Fault \& Event Records', which form the first folder level. Up to two further folder levels follow so that the entire folder structure consists of three main branches and a maximum of three folder levels.

At the end of each branch of folders are the various function groups in which the individual data points (settings) are combined.

6 Local Control Panel

6.7.2 Switching Between Address Mode and Plain Text Mode

The display on the local control panel can be switched between address mode and plain text mode. In the address mode the display shows settings, signals, and measured values in numerically coded form, that is, as addresses. In plain text mode the settings, signals, and measured values are displayed in the form of plain text descriptions. In either case, control is guided by the menu tree. The active branch of the menu tree is displayed in plain text in both modes. In the following examples, the display is shown in plain text mode only.

Control Step / Description	Control Action	Display
O In this example, the user switches from plain text mode to address mode.		Par/Func/Glob/MAIN Device on-line No (=off)
$\boldsymbol{1}$ To switch from address mode to plain text		
mode or vice versa, press the CLEAR key and		
either the 'left' key or the 'right' key		
simultaneously. This can be done at any point		
in the menu tree.		

6 Local Control Panel
 (continued)

Global change-enabling function

Selective change-enabling function

6.7.3 Change-Enabling Function

Although it is possible to select any data point in the menu tree and read the associated value by pressing the keys, it is not possible to switch directly to the input mode. This safeguard prevents unintended changes in the settings.

There are two ways to enter the input mode.
\square To activate the global change-enabling function, set the 'Param. change enabl.' parameter to 'Yes' (menu tree: 'Oper/CtrlTest/LOC').
The change can only be made after the password has been entered. Thereafter, all further changes - with the exception of specially protected control actions (see section "Password-Protected Control Actions") - are enabled without entering the password.
\square Password input prior to any setting change.
This setup is designed to prevent accidental output and applies even when the global change-enabling function has been activated. The following example is based on the factory-set password. If the password has been changed by the user (see section "Changing the Password"), the following description will apply accordingly.

Control Step / Description	Control Action	Display
\mathbf{O} In the menu tree 'Oper/CtrlTest/LOC', select the 'Param. change enabl.' parameter.		Oper/CtrlTest/LOC Param. change enabl. No
1 Press the ENTER key. Eight asterisks (*) appear in the fourth line of the display.	¢	Oper/CtrlTest/LOC Param. change enabl. No \qquad
2 Press the following keys in sequence: 'Left'		Oper/CtrlTest/LOC Param. change enabl. No
'Right'		Oper/CtrlTest/LOC Param. change enabl. No
'Up'		Oper/CtrlTest/LOC Param. change enabl. No
'Down' The display will change as shown in the column on the right.		Oper/CtrlTest/LOC Param. change enabl. No

6 Local Control Panel

Control Step / Description	Control Action	Display
Now press the ENTER key. The LED indicator labeled EDIT MODE will light up. This indicates that the setting can now be changed by pressing the 'up' or 'down' keys. If an invalid password has been entered, the display shown in Step 1 appears.	\odot	Oper/CtrlTest/LOC Param. change enabl. No
3 Change the setting to 'Yes'.	囚 ()	Oper/CtrlTest/LOC Param. change enabl. Yes
4 Press the ENTER key again. The LED indicator will go out. The unit is enabled for further setting changes.	\odot	Oper/CtrlTest/LOC Param. change enabl. Yes

The same procedure applies to any setting change unless the global change-enabling function has been activated. This method is recommended for a single setting change only. If several settings are to be changed, then the global change-enabling function is preferable. In the following examples, the global change-enabling function has been activated.

Automatic return
The automatic return function prevents the change-enabling function from remaining activated after a change of settings has been completed. Once the set return time (menu tree 'Par/Conf/LOC') has elapsed, the change-enabling function is automatically deactivated, and the display switches to a Measured Value Panel corresponding to the current system condition. The return time is restarted when any of the control keys is pressed.

The return described above can be forced from the local control panel by first pressing the 'up' key and then holding it down while pressing the CLEAR key.

Note: It is important to press the 'up' key first and release it last in order to avoid unintentional deletion of stored data.

Even when the change-enabling function is activated, not all settings can be changed. For some settings it is also necessary to disable the protective function (menu tree: Par/Func/Glob/MAIN, 'Protection enabled'). Such settings include the configuration settings, by means of which the device interfaces can be adapted to the system.

6 Local Control Panel

(continued)

6.7.4 Changing Parameters

If all the conditions for a value change are satisfied (see above), the desired setting can be entered.

Control Step / Description	Control Action	Display
0 Example of a display. In this example, the change-enabling function is activated and the protective function is disabled, if necessary.		oper/CtrlTest/LOC Param. change enabl Yes
1 Select the desired setting by pressing the keys.	$\stackrel{\Delta}{\Delta}$	Par/Conf/LOC Autom. return time 50000 s
2 Press the ENTER key. The LED indicator labeled EDIT MODE will light up. The last digit of the value is highlighted by a cursor (underlined).	\ominus^{\prime}	Par/Conf/LOC Autom. return time 50000 s
3 Press the 'left' or 'right' keys to move the cursor to the left or right.	$\stackrel{\Delta}{\ominus}$	Par/Conf/LOC Autom. return time 50000 s
4 Change the value highlighted by the cursor by pressing the 'up' and 'down' keys. In the meantime the device will continue to operate with the old value.		Par/Conf/LOC Autom. return time 50010 s
5 Press the ENTER key. The LED indicator labeled EDIT MODE will go out and the device will now operate with the new value. Press the keys to select another setting for a value change.	\oplus	Par/Conf/LOC Autom. return time 50010 s
6 If you wish to reject the new setting while you are still entering it (LED indicator labeled EDIT MODE is on), press the CLEAR key. The LED indicator will go out and the device will continue to operate with the old value. A further setting can be selected for a value change by pressing the keys.	(c)	Par/Conf/LOC Autom. return time 50000 s

6 Local Control Panel
 (continued)

6.7.5 Setting a List Parameter

Using list settings, the user is able to select several elements from a list in order to perform tasks such as defining a trip command or defining the measurements that will be displayed on Measured Value Panels. As a rule, the selected elements are linked by an 'OR' operator. Other operators (NOT, OR, AND, NOT OR and NOT AND) are available in the LOGIC function group for linking the selected list items. In this way binary signals and binary input signals can be processed in a Boolean equation tailored to meet user requirements. For the DNP 3.0 communication protocol, the user defines the class of a setting instead of assigning operators. The definition of a trip command shall be used here as an illustration.

Control Step / Description	Control Action	Display
$\mathbf{0}$ Select a list setting (in this example, the		
parameter 'Fct.assign.trip cmd.' at		
Par/Func/Glob/ MAlI' in the menu tree). The		
down arrow (\downarrow) indicates that a list setting has		
been selected.		

6 Local Control Panel

(continued)

Deleting a list setting

Control Step / Description	Control Action	Display
6 Press the ENTER key. The LED indicator will go out. The assignment has been made. The unit will now operate with the new settings. If no operator has been selected, the 'OR' operator is always assigned automatically when the ENTER key is pressed. There is no automatic assignment of classes.	Θ	```Par/Func/Glob/MAIN Fct.assign.trip cmd. OR #02 DIST Trip zone 4```
7 Press the 'up' key to exit the list at any point in the list.	Nes	Par/Func/Glob/MAIN Fct.assign.trip cmd.
8 If you wish to reject the new setting while you are still entering it (LED indicator labeled EDIT MODE is on), press the CLEAR key. The LED indicator labeled EDIT MODE will be extinguished.	(c)	```Par/Func/Glob/MAIN Fct.assign.trip cmd. OR #02 DIST Trip zone 2```

If "MAIN: Without function" is assigned to a given item, then all the following items are deleted. If this occurs for item \#01, everything is deleted.

6.7.6 Memory Readout

Memories can be read out after going to the corresponding entry point. This does not necessitate activating the change-enabling function or even disabling the protective functions. Inadvertent clearing of a memory at the entry point is not possible.

The following memories are available:
ㅁ In the menu tree 'Oper/Rec/OP_RC': Operating data memory
\square In the menu tree 'Oper/Rec/MT_RC': Monitoring signal memory

- Event memories
- In the menu tree 'Events/Rec/FT_RC': Fault memories 1 to 8
- In the menu tree 'Events/Rec/OL_RC': Overload memories 1 to 8
- In the menu tree 'Events/Rec/GF_RC': Ground fault memories 1 to 8

Not all of these event memories are present in each unit.

6 Local Control Panel
 (continued)

Readout of the operating data memory

The operating data memory contains stored signals of actions that occur during operation, such as the enabling or disabling of a device function. A maximum of 100 entries is possible, after which the oldest entry is overwritten.

Control Step / Description	Control Action	Display
0 Select the entry point for the operating data memory.		Oper/Rec/OP_RC Operat. data record.
1 Press the 'down' key to enter the operating data memory. The latest entry is displayed.	$\stackrel{\Delta}{\Delta}$	Oper/Rec/OP_RC 01.01.97 11:33 ARC Enabled USER No
2 Press the 'left' key repeatedly to display the entries one after the other in chronological order. Once the end of the operating data memory has been reached, pressing the 'left' key again will have no effect.	$\stackrel{\Delta}{\Delta}$	Oper/Rec/OP_RC 01.01.97 10:01 PSIG Enabled USER Yes
3 Press the 'right' key to display the previous entry.	$\stackrel{\Delta}{\Delta}$	Oper/Rec/OP_RC 01.01.97 11:33 ARC Enabled USER No
4 Press the 'up' key at any point within the operating data memory to return to the entry point.	$\stackrel{\Delta}{\Delta}$	Oper/Rec/OP_RC Operat. data record.

6 Local Control Panel

(continued)

If the unit detects an internal fault in the course of internal self-monitoring routines or if it detects power system conditions that prevent flawless functioning of the unit, then an entry is made in the monitoring signal memory. A maximum of 30 entries is possible. After that an 'overflow' signal is issued.

Control Step / Description	Control Action	Display
0 Select the entry point for the monitoring signal memory.		Oper/Rec/MT_RC Mon. signal record.
1 Press the 'down' key to enter the monitoring signal memory. The oldest entry is displayed.	AS	Mon. signal record. 01.01.97 13:33 SFMON Checksum error param
2 Press the 'right' key repeatedly to display the entries one after the other in chronological order. If more than 30 monitoring signals have been entered since the last reset, the 'overflow' signal is displayed as the last entry.	$\cdots \stackrel{\Delta}{\Delta}$	Mon. signal record. 01.01.97 10:01 SFMON Exception oper. syst.
3 Press the 'left' key to display the previous entry.	$\cdots \stackrel{\Delta}{\Delta}$	Mon. signal record. 01.01.97 13:33 SFMON Checksum error param
4 If the 'down' key is held down while a monitoring signal is being displayed, the following additional information will be displayed:		Mon. signal record. 01.01 .97 13:33 SFMON Checksum error param
First: Time when the signal first occurred Currently: The fault is still being detected (Yes) or is no longer detected (No) by the selfmonitoring function.		First: 13:33:59.744 Active: Yes Reset: No Number: 5
$\left.\begin{array}{\|ll}\text { Reset: } & \begin{array}{l}\text { The fault was no longer detected by } \\ \text { the self-monitoring function and }\end{array} \\ \text { has been reset (Yes). }\end{array}\right\}$		
5 Press the 'up' key at any point within the monitoring signal memory to return to the entry point.	Nes	Oper/Rec/MT_RC Mon. signal record. \qquad

6 Local Control Panel
 (continued)

Readout of the event memories (records)

There are eight event memories for each type of event. The latest event is stored in event memory 1, the previous one in event memory 2, and so forth.

Readout of event memories is illustrated using the fault memory as an example.

Control Step / Description	Control Action	Display
O Select the entry point for the first fault memory, for example. If the memory contains entries, the third line of the display will show the date and time the fault began. If the third line is blank, then there are no entries in the fault memory.		Events/Rec/FT_RC Fault recoring 1 01.01.99 10:00:33 \downarrow
$\mathbf{1}$ Press the 'down' key to enter the fault		
memory. First, the fault number is shown. In		
this example it is the 22nd fault since the last		
reset.		

6 Local Control Panel

(continued)

6.7.7 Reset

All information memories - including the event memories and the monitoring signal memory - as well as the LED indicators can be reset manually. In addition, the LED indicators are automatically cleared and initialized at the onset of a new fault - provided that the appropriate operating mode has been selected - so that they always indicate the latest fault.

The LED indicators can also be reset manually by pressing the CLEAR key, which is always possible in the standard control mode. This action also triggers an LED indicator test and an LCD display test. The event memories are not affected by this action, so that inadvertent deletion of the records associated with the reset signal pattern is reliably prevented.

Because of the ring structure of the event memories, the data for eight consecutive events are updated automatically so that manual resetting should not be necessary, in principle.

Deleting the event memories completely (e.g. after a function test), can be accomplished by various resetting actions including the configuration of a group resetting for several memories. An overview of all resetting actions can be found in section "Resetting Actions" in Chapter 3.

Resetting a single memory from the local control panel is described in the following with the example of a fault memory. In this example the global change-enabling function has already been activated.

Control Step / Description	Control Action	Display
0 Select the reset setting. Line 3 of the display shows the number of faults since the last reset, 10 in this example.		oper/CtrlTest/FT_RC Reset recording 10
1 Press the ENTER key. The LED indicator labeled EDIT MODE will light up.	Θ	Oper/CtrlTest/FT_RC Reset recording Don't execute
2 Press the 'Up' or 'Down' keys to change the setting to 'Execute'.		Oper/CtrlTest/FT_RC Reset recording Execute 10
3 Press the ENTER key. The LED indicator labeled EDIT MODE will be extinguished. The value in line 3 is reset to ' 0 '.	Θ	Oper/CtrlTest/FT_RC Reset recording 0

6 Local Control Panel

(continued)

Control Step / Description	Control Action	Display
4 To cancel the intended clearing of the fault recordings after leaving the standard control mode (the LED indicator labeled EDIT MODE is on), press the CLEAR key. The LED indicator will be extinguished, and the fault recordings remain stored unchanged in the protection unit's memory. Any setting can be selected again for a value change by pressing the keys.	(c)	Oper/CtrlTest/FT_RC Reset recording 10

6 Local Control Panel

(continued)

6.7.8 Password-Protected Control Actions

Certain actions from the local control panel such as a manual trip command for testing purposes can only be carried out by entering a password so as to prevent unwanted output even though the global change-enabling function has been activated (see section "Change-Enabling Function").

This setup is designed to prevent accidental output and applies even when the global change-enabling function has been activated. The password consists of a pre-defined sequential key combination entered within a specific time interval. If the password has been changed by the user (see section "Changing the Password"), the following description will apply accordingly.

Control Step / Description	Control Action	Display
0 In the menu tree 'Oper/CtrITest/MAIN', select the parameter 'Man. trip cmd. USER'.		Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute
1 Press the ENTER key. Eight asterisks (*) appear in the fourth line of the display.	\odot	Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute
2 Press the following keys in sequence: 'Left' 'Right' 'Up'	(完) (Q) (A)	Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute
'Down' The display will change as shown in the column on the right.		oper/CtrlTest/MAIN Man. trip cmd USER Don't execute
Now press the ENTER key. The LED indicator labeled EDIT MODE will light up. This indicates that the setting can now be changed by pressing the 'up' or 'down' keys.	\odot^{*}	Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute
3 Change the setting to 'Execute'.	$\Delta \underset{\Delta}{\Delta}$	Oper/CtrlTest/MAIN Man. trip cmd. USER Execute

6 Local Control Panel

(continued)

Control Step / Description	Control Action	Display
4 Press the ENTER key again. The LED indicator labeled EDIT MODE will go out. The unit will execute the command.	Θ	Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute
5 As long as the LED indicator labeled EDIT MODE is on, the control action can be terminated by pressing the CLEAR key. The LED indicator labeled EDIT MODE will be extinguished.	(c)	Oper/CtrlTest/MAIN Man. trip cmd. USER Don't execute

6 Local Control Panel

6.7.9 Changing the Password

The password consists of a combination of keys that must be entered sequentially within a specific time interval. The 'left', 'right', 'up' and 'down' keys may be used to define the password and represent the numbers 1, 2, 3 and 4, respectively:

The password can be changed by the user at any time. The procedure for this change is described below. The starting point is the factory-set password.

Control Step / Description	Control Action	Display
0 In the menu tree 'Par/Conf/LOC', select the 'Password' setting.		Par/Conf/LOC Password ********
1 Press the ENTER key. Eight asterisks (*) appear in the fourth line of the display.	ω	Par/Conf/LOC Password ******** ********
2 Press the 'left', 'right', 'up' and 'down' keys to enter the valid password. The display will change as shown in the column on the right.		Par/Conf/LOC Password ******** * Par/Conf/LOC Password ******** * Par/Conf/LOC Password ******* Par/Conf/LOC Password ********
3 Now press the ENTER key. The LED indicator labeled EDIT MODE will light up. The third line shows an underscore character (_) as the prompt for entering a new password.	\hookleftarrow	Par/Conf/LOC Password

6 Local Control Panel

(continued)

Control Step / Description	Control action	Display
enter the new password, which in this example is done by pressing the UP key followed by the DOWN key.		
5 Press the ENTER key again. Asterisks		
appear in the third line, and a cursor		
(underscore) in the fourth line prompts the user		
to enter the new password again.		

6 Local Control Panel

Operation from the local control panel without password protection is also possible. To select this option, immediately press the ENTER key a second time in steps 4 and 6 without entering anything else. This will configure the local control panel without password protection, and no control actions involving changes will be possible until the global change-enabling function has been activated (see section "Change-Enabling Function").

If the configured password has been forgotten, it can be called up on the LCD display as described below. The procedure involves turning the device off and then on again.

Control Step / Description	Control Action	Display
$\mathbf{0}$ Turn off the device.		
$\mathbf{1}$ Turn the device on again. At the very		
beginning of device startup, press the four		
directional keys (left', 'right', 'up' and 'down') at		
the same time and hold them down.		

7 Settings

7 Settings

7.1 Parameter

The P132 must be adjusted to the system and to the protected equipment by appropriate settings. This chapter gives instructions for determining the settings, which are located in the folder titled 'Parameters' in the menu tree. The sequence in which the settings are listed and described in this chapter corresponds to their sequence in the menu tree.

The P132 devices are supplied with a factory-set standard configuration of settings that, in most cases, correspond to the default settings or become apparent after a "cold restart". The P132 is blocked in that case. All settings must be re-entered after a cold restart.

Note:

In the following tables (except for function group DVICE) an indication for the localization of the corresponding function description is shown in the right hand side column.
"Figure: $3-x x x$ " refers to a logic diagram which displays the address, "Figure*: 3-xxx" to a figure subtitle or accompanying text, "Page: $3-x x x$ " to a page.

7.1.1 Device Identification

The device identification settings are used to record the ordering information and the design version of the P132. They have no effect on the device functions. These settings should only be changed if the design version of the P132 is modified.

7 Settings

(continued)

DVICE: Order ext. No. 1	000003
DVICE: Order ext. No. 2	000004
DVICE: Order ext. No. 3	000005
DVICE: Order ext. No. 4	000006
DVICE: Order ext. No. 5	000007
DVICE: Order ext. No. 6	000008
DVICE: Order ext. No. 7	000009
DVICE: Order ext. No. 8	000010
DVICE: Order ext. No. 9	000011
DVICE: Order ext. No. 10	000012
DVICE: Order ext. No. 11	000013
DVICE: Order ext. No. 12	000014
DVICE: Order ext. No. 13	000015
DVICE: Order ext. No. 14	000016
DVICE: Order ext. No. 15	000017
DVICE: Order ext. No. 16	000018
DVICE: Order ext. No. 17	000019
DVICE: Order ext. No. 18	000020
DVICE: Order ext. No. 19	000021
DVICE: Order ext. No. 20	000022
DVICE: Order ext. No. 21	000023
DVICE: Order ext. No. 22	000024
DVICE: Order ext. No. 23	000025
DVICE: Order ext. No. 24	000026
DVICE: Order ext. No. 25	000027
DVICE: Order ext. No. 26	000028
DVICE: Order ext. No. 27	000029
Order extension numbers for the device.	
DVICE: Module var. slot 1	086050
DVICE: Module var. slot 2	086051
DVICE: Module var. slot 3	086052
DVICE: Module var. slot 4	086053
DVICE: Module var. slot 5	086054
DVICE: Module var. slot 6	086055
DVICE: Module var. slot 7	086056
DVICE: Module var. slot 8	086057
DVICE: Module var. slot 9	086058
DVICE: Module var. slot 10	086059
DVICE: Module var. slot 11	086060
DVICE: Module var. slot 12	086061
DVICE: Module var. slot 13	086062
DVICE: Module var. slot 14	086063
DVICE: Module var. slot 15	086064
DVICE: Module var. slot 16	086065
DVICE: Module var. slot 17	086066
DVICE: Module var. slot 18	086067
DVICE: Module var. slot 19	086068
DVICE: Module var. slot 20	086069
DVICE: Module var. slot 21	086070
Item number of the module inserted in the respective slot 1 to 21 . The display always shows the actual component configuration at any given time.	

7 Settings

(continued)

7 Settings

(continued)

Local control panel

7.1.2 Configuration Parameters

LOC: Language	003020
Language in which texts will be displayed on the local control panel.	
LOC: Decimal delimiter	003021
Character to be used as decimal separator on the local control panel.	
LOC: Password	003035
The password to be used for changing settings from the local control panel can be defined here. Further information on changing the password is given in Chapter 6.	
LOC: Password L/R	221040
The password used to change the setting from 'Remote' to 'Local' control can be defined here. (Switching from 'Local' to 'Remote' control occurs without checking the password.)	
LOC: Display L/R	221070
This setting defines whether the control site - 'Local' or 'Remote' - shall be displayed on the bay panel.	
LOC: Displ. interl. stat.	221071
This setting defines whether the 'Locked' or 'Unlocked' status shall be displayed on the bay panel.	
LOC: Fct. assign. L/R key	225208 Fig: 3-6
This setting defines whether the (electric) key-operated switch switches between remote / local control ($\mathrm{L} \leftrightarrow \mathrm{R}$) or between 'Remote' and 'Local' control / 'Local' control (R\&L↔L).	
LOC: Fct. reset key	005251 Fig: 3-83
Selection of specified counters or event logs that are reset by pressing the RESET key on the local control panel.	
LOC: Fct. read key	080110
Selection of the event log that will be displayed when the READ key is pressed.	
LOC: Fct. menu jmp list 1 LOC: Fct. menu jmp list 2	$\begin{aligned} & 030238 \\ & 030239 \end{aligned}$
Selection of specified functions which will be sequentially displayed by repeated reading of the menu jump list 1 (or 2).	
LOC: Fct. Operation Panel	053007 Fig: 3-2
Definition of the values to be displayed on the Measured Value Panel also referred to as the Operation Panel.	
LOC: Fct. Overload Panel	053005 Fig: 3-5
Definition of the values to be displayed on the Overload Panel.	
LOC: Fct. Grd.Fault Panel	053004 Fig: 3-4
Definition of the values to be displayed on the Ground Fault Panel.	
LOC: Fct. Fault Panel	053003 Fig: 3-3
Definition of the values to be displayed on the Fault Panel.	
LOC: Hold-time for Panels	031075 Fig: 3-2
Setting for the time period switches to the next panel. selected than can be show	unit are

7 Settings

(continued)

LOC: Autom. return time	003014 Fig: 3-2
If the user does not press a key on the local control panel during this set time period, the change-enabling function is deactivated.	
LOC: Return time select.	221030
If the user does not press a key on the local control panel during this set time period, then the selection of a switchgear unit is cancelled.	
LOC: Return time illumin.	003023
If the user does not press time period, then the back any switchgear selection	

PC link

PC: Name of manufacturer	
Setting the name of the manufacturer.	
Note: This setting can be changed to ensure compatibility.	
PC: Bay address PC: Device address	
Bay and device addresses communication via the PC in for both addresses.	

PC: Baud rate 003081 Fig: 3-7
Baud rate of the PC interface.
PC: Parity bit
003181 Fig: 3-7
Set the same parity that is set at the interface of the PC connected to the P132.
PC: Spontan. sig. enable
003187 Fig: 3-7
Enable for the transmission of spontaneous signals via the PC interface.
PC: Select. spontan.sig.
003189 Fig: 3-7
Selection of spontaneous signals for transmission via the PC interface.
PC: Transm.enab.cycl.dat 003084 Fig: 3-7

Enable for the cyclic transmission of measured values via the PC interface.
PC: Cycl. data ILS tel.
Selection of the measured values that are transmitted in a user-defined telegram via the PC interface.
PC: Delta V
003055 Fig: 3-7
A measured voltage value is transmitted via the PC interface if it differs by the set delta quantity from the last measured value transmitted.
PC: Deltal
003056 Fig: 3-7
A measured current value is transmitted via the PC interface if it differs by the set delta quantity from the last measured value transmitted.
PC: Delta P
003059 Fig: 3-7
The active power value is transmitted via the PC interface if it differs by the set delta quantity from the last measured value transmitted.
PC: Delta f
The measured frequency value is transmitted via the PC interface if it differs by the set delta from the last measured value transmitted.

7 Settings

(continued)

COMM1: Function group COMM1

Cancelling function group COMM1 or including it in the configuration.
If the function group is cancelled from the configuration, then all associated settings and signals are hidden.
COMM1: General enable USER
Disabling or enabling communication interface 1.
COMM1: Basic IEC870-5enable 003215 Fig: 3-8

Common settings for enabling all protocols based on IEC 870-5-xxx.
COMM1: Addit. -101 enable 003216 Fig: 3-8

Enabling additional settings that are relevant for the protocol based on IEC 870-5-101.

Enabling additional settings that are relevant for the ILS protocol.
COMM1: MODBUS enable 00322 Fig: 3-8

Enabling settings relevant for the MODBUS protocol.
COMM1: DNP3 enable 003231 Fig: 3-8

Enabling settings relevant for the DNP 3.0 protocol.
COMM1: COURIER enable 103040 Fig: 3-8
Enabling settings relevant for the COURIER protocol.
COMM1: Communicat. protocol
003167 Fig: 3-8
Select the communication protocol that shall be used for the communication interface.

7 Settings

(continued)

7 Settings

COMM1: Delta V	$\begin{aligned} & 003050 \text { Fig: 3-9, } \\ & 3-10,3-11 \end{aligned}$
A measured voltage value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.	
COMM1: Delta I	$003051 \text { Fig: 3-9 } \quad \begin{aligned} & 3-10,3-11 \end{aligned}$
A measured current value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted. Note: This setting is hidden unless an IEC 870-5 protocol is enabled.	
COMM1: Delta P	$\begin{aligned} & 003054 \text { Fig: 3-9, } \\ & 3-10,3-11 \end{aligned}$
The active power value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted. Note: \quad This setting is hidden unless an IEC 870-5 protocol is enabled.	
COMM1: Delta f	$003052 \text { Fig: 3-9, }=1$
The measured frequency value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted. Note: This setting is hidden unless an IEC 870-5 protocol is enabled.	
COMM1: Delta meas.v.ILS tel	$\begin{gathered} 003150 \text { Fig: 3-9 } \\ 3-10,3-11 \end{gathered}$
The telegram is transmitted if a measured value differs by the set delta quantity from the last measured value transmitted.	
Note: This setting is hidde	
COMM1: Delta t	$\begin{aligned} 003053 \text { Fig: 3-9, } \\ 3-10,3-11 \end{aligned}$
All measured values are transmitted again via the communication interface after this time period has elapsed - provided that transmission has not been triggered by the other delta conditions.	
Note: This setting is hidden unless an IEC 870-5 protocol is enabled.	
COMM1: Delta t (energy)	$003151 \text { Fig: 3-9, } \quad 3 \text { 3-10, 3-11 }$
The measured values for active energy and reactive energy are transmitted via the communication interface after this time has elapsed.	
Note: This setting is hidden unless an IEC 870-5 protocol is enabled.	
COMM1: Contin. general scan	$\begin{gathered} 003077 \text { Fig: :3-9, } \\ 3-10,3-11 \end{gathered}$
A continuous or background general scan means that the P132 transmits all settings, signals, and monitoring signals through the communication interface during slow periods when there is not much activity. This ensures that there will be data consistency with a connected control system. The time to be set defines the minimum time difference between two telegrams.	
Note: This setting is hidden unless an IEC 870-5 protocol is enabled.	
COMM1: Comm. address length	003201 Fig: 3-10
Setting the communication address length.	
Note: \quad This setting is hidde enabled.	

|COMM1: Octet 2 comm. addr. 003200 Fig: 3-10

Setting the length of the higher-order communication address.
Note: This setting is hidden unless the IEC 870-5-101 protocol is enabled.

Setting the length of the cause of transmission.
Note: This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Address length ASDU 003193 Fig: 3-10
Setting the length of the common address for identification of telegram structures.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled. "ASDU": Application Service Data Unit
COMM1: Octet 2 addr. ASDU 003194 Fig: 3-10
Setting for the length of the common higher-order address for identification of telegram structures.

Note:
This setting is hidden unless the IEC 870-5-101 protocol is enabled.
"ASDU": Application Service Data Unit
COMM1: Addr.length inf.obj.
Setting the length of the address for information objects.
Note: This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Oct. 3 addr. inf.obj.
Setting the length of the higher-order address for information objects.
Note: This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Inf.No.< \rightarrow funct.type
Setting specifying whether information numbers and function type shall be reversed in the object address.
Note: \quad This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Time tag length 003198 Fig: 3-10
Setting the time tag length.
Note: \quad This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: ASDU1 / ASDU20 conv.
Setting specifying whether telegram structure 1 or 20 shall be converted as a single signal or double signal.
Note:
This setting is hidden unless the IEC 870-5-101 protocol is enabled.
"ASDU": Application Service Data Unit

7 Settings

(continued)

COMM1: ASDU2 conversion
 003191 Fig: 3-10

Setting specifying whether telegram structure 2 shall be converted as a single signal or double signal.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.
"ASDU": Application Service Data Unit
COMM1: Initializ. signal
Setting specifying whether an initialization signal shall be issued.
Note: \quad This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Balanced operation 003226 Fig: $3-10$

Setting that determines whether communication takes place on a balanced basis (full duplex operation).

Note: \quad This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Direction bit
Setting for the transmission direction. Normally this value will be set to ' 1 ' at the control center and to ' 0 ' at the substation.

Note: \quad This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Time-out interval

Setting the maximum time that will elapse until the status signal for the acknowledgment command is issued.

Note: \quad This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Reg.asg. selec. cmds

MODBUS registers in the range 00301 to 00400 are assigned to the selected commands. Assignment is made in the order of selection. This means that the first command is given to the register no. 00301, the second to the register no. 00302, etc.

Note: \quad This setting is hidden unless the MODBUS protocol is enabled.
COMM1: Reg.asg. selec. sig.
MODBUS registers in the range 10301 to 10400 are assigned to the selected signals. Assignment is made in the order of selection. This means that the first signal is given to the register no. 10301, the second to the register no. 10302, etc.

Note: \quad This setting is hidden unless the MODBUS protocol is enabled.

MODBUS registers in the range 30301 to 30400 are assigned to the selected measured values. Assignment is made in the order of selection. Assignment is made in the order of selection. This means that the first measured value is given to the register no. 30301, the second to the register no. 30302, etc.

Note: \quad This setting is hidden unless the MODBUS protocol is enabled.

7 Settings

(continued)

COMM1: Reg.asg. sel. param.		3 Fig: 3-12
MODBUS registers in the range 40301 to 40400 are assigned to the selected parameters. Assignment is made in the order of selection. This means that the first parameter is given to the register no. 40301, the second to the register no. 40302, etc.		
Note: This setting is hidden unless the MODBUS protocol is enabled.		
COM	ta t (MODBUS)	003152 Fig: 3-12
All MODBUS registers are transmitted again via the communication interface after this time has elapsed.		
Note: This setting is hidden unless the MODBUS protocol is enabled.		
COMM	utom.event confirm.	003249 Fig: 3-12
Setting specifying whether an event must be confirmed by the master in order for an event to be deleted from the 'event queue'.		
Note: This setting is hidden unless the MODBUS protocol is enabled.		
COMM	ys. Charact. Delay	003241 Fig: 3-13
Number of bits that must pass between the receipt of the 'request' and the start of sending the 'response'.		
Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.		
COM	ys. Char. Timeout	003242 Fig: 3-13
Number of bits that may be missing from the telegram before receipt is terminated.		
Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.		
COMM	ink Confirm. Mode	003243 Fig: 3-13
Setting the acknowledgment mode of the link layer. Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.		
COMM	nk Confirm.Timeout	003244 Fig: 3-1
Setting the time period within which the master must acknowledge at the link layer. Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.		
COMM	nk Max. Retries	003245 Fig: 3-13
Number of repetitions that are carried out on the link layer if errors have occurred during transmission (such as failure to acknowledge). Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.		
COMM	Appl.Confirm.Timeout	003246 Fig: 3-13
Setting the time period within which the master must acknowledge at the application layer. Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.		
COMM	Appl. Need Time Del.	003247 Fig: 3-13
Time interval within which the slave cyclically requests time synchronization from the master.		
Note:	This setting is hidde	

7 Settings

COMM1: Ind./cl. bin. inputs

003232 Fig: 3-13
Selection of data points and data classes for object 1 - binary inputs.
Assignment of indexes is made in the order of selection, beginning with 0.
Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Ind./cl. bin.outputs

Selection of data points and data classes for object 10 - binary outputs.
Assignment of indexes is made in the order of selection, beginning with 0.
Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Ind./cl. bin. count. 003234 Fig: 3-13

Selection of data points and data classes for object 20 - binary counters.
Assignment of indexes is made in the order of selection, beginning with 0.
Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.

```
COMM1: Ind./cl. analog inp.
003235 Fig: 3-13
```

Selection of data points and data classes for object 30 - analog inputs.
Assignment of indices is made in the order of selection, beginning with 0.
Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Ind./cl. analog outp
 003236 Fig: 3-13

Selection of data points and data classes for object 40 - analog outputs. Assignment of indexes is made in the order of selection, beginning with 0.

Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Delta meas.v. (DNP3)

003250 Fig: 3-13
Initialization value of threshold values for transmission of measured values in object 30. The threshold values can be changed separately by the master for each measured value by writing to object 34, 'analog input reporting deadband'.

Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Delta t (DNP3)

003248 Fig: 3-13
Cycle time for updating DNP object 30 (analog inputs).
Note: \quad This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Command selection

103042 Fig: 3-14
Selection of commands to be issued via the Courier protocol.
Note: This setting is hidden unless the Courier protocol is enabled.
COMM1: Signal selection
103043 Fig: 3-14
Selection of signals to be transmitted via the Courier protocol.
Note: \quad This setting is hidden unless the Courier protocol is enabled.
COMM1: Meas. val. selection
103044 Fig: 3-14
Selection of measured values to be transmitted via the Courier protocol.
Note: This setting is hidden unless the Courier protocol is enabled.
COMM1: Parameter selection
103045 Fig: 3-14
Selection of settings to be altered via the Courier protocol.
Note: This setting is hidden unless the Courier protocol is enabled.

7 Settings

(continued)

Communication interface 2
COMM1: Delta t (COURIER)
Cycle time at the conclusion of which the selected measured values are
again transmitted.
Note: \quad This setting is hidden unless the Courier protocol is enabled.

Note. \quad This setting is hidden unless the Courier protocol is enabled.
COMM2: Function group COMM2
Cancelling function group COMM2 or including it in the configuration.
If the function group is cancelled from the configuration, then all associated
settings and signals are hidden.
COMM2: General enable USER $\quad 103170$ Fig: 3-16

Disabling or enabling communication interface 2.
COMM2: Line idle state
Setting for the line idle state indication.
COMM2: Baud rate 103071 Fig: 3-16

Baud rate of the communication interface.

Set the same parity that is set at the interface of the control system connected to the P132.
COMM2: Dead time monitoring
103176 Fig: 3-16
The P132 monitors telegram transmission to make sure that no excessive pause occurs within a telegram. This monitoring function can be disabled if it is not required.

Note: \quad This setting is only necessary for modem transmission.
COMM2: Mon. time polling
The time between two polling calls from the communication master must be less than the time set here.

COMM2: Positive ackn. fault 103203
It is possible to set whether or not faults can be acknowledged positively after transmission (and consequently deleted from the fault overview at the COMM2/PC interface).

COMM2: Octet comm. address 103072 Fig: 3-16

The communication address and the ASDU address are used to identify the device in communication via the interface. An identical setting must be selected for both addresses.
"ASDU": Application Service Data Unit
COMM2: Name of manufacturer
Setting the name of the manufacturer.
Note: This setting can be changed to ensure compatibility.
COMM2: Octet address ASDU
The communication address and the ASDU address are used to identify the device in communication via the interface. An identical setting must be selected for both addresses.
"ASDU": Application Service Data Unit
COMM2: Spontan. sig. enable
Enable for the transmission of spontaneous signals via the communication interface.

7 Settings
 (continued)

COMM2: Select. spontan.sig.	103179 Fig: 3-16
Selection of spontaneous signals for transmission via communication interface 2.	
COMM2: Transm.enab.cycl.dat	103074 Fig: 3-16
Enable for the cyclic transmission of measured values via the communication interface.	
COMM2: Cycl. data ILS tel.	103175 Fig: 3-16
Selection of the measured values that are transmitted in a user-defined telegram via the communication interface.	
COMM2: Delta V	103050 Fig: 3-16
A measured voltage value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.	
COMM2: Delta I	103051 Fig: 3-16
A measured current value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.	
COMM2: Delta P	103054 Fig: 3-16
The active power value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.	
COMM2: Delta f	103052 Fig: 3-16
The measured frequency value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.	
COMM2: Delta meas.v.lLS tel	103150 Fig: 3-16
The telegram is transmitted if a measured value differs by the set delta quantity from the last measured value transmitted.	
COMM2: Delta t	103053 Fig: 3-16
All measured values are transm after this time period has elaps triggered by the other delta con	ace been

COMM3: Function group COMM3

 056058Cancelling function group COMM3 or including it in the configuration.
This setting parameter is only visible if the relevant optional communication module is fitted.

If the function group is cancelled from the configuration, then all associated settings and signals are hidden.
COMM3: General enable USER
Disabling or enabling communication interface 3.
COMM3: Baud rate 120038 Page: 3-25

Adjustment of the baud rate for telegram transmission via the teleprotection interface (InterMiCOM interface) so as to meet the requirements of the transmission carrier.
COMM3: Source address
120031 Page: 3-25
Address for send signals.
COMM3: Receiving address 120032 Page: 3-25

Address for receive signals.

COMM3: Fct. assignm. send 1	121001 Page: 3-25
COMM3: Fct. assignm. send 2	121003
COMM3: Fct. assignm. send 3	121005
COMM3: Fct. assignm. send 4	121007
COMM3: Fct. assignm. send 5	121009
COMM3: Fct. assignm. send 6	121011
COMM3: Fct. assignm. send 7	121013
COMM3: Fct. assignm. send 8	121015
Assignment of functions for the 8 send signals.	
COMM3: Fct. assignm. rec. 1	120001 Page: 3-25
COMM3: Fct. assignm. rec. 2	120004
COMM3: Fct. assignm. rec. 3	120007
COMM3: Fct. assignm. rec. 4	120010
COMM3: Fct. assignm. rec. 5	120013
COMM3: Fct. assignm. rec. 6	120016
COMM3: Fct. assignm. rec. 7	120019
COMM3: Fct. assignm. rec. 8	120022
Configuration (assignment of functions) for the 8 receive signals	
COMM3: Oper. mode receive 1	120002 Page: 3-26
COMM3: Oper. mode receive 2	120005
COMM3: Oper. mode receive 3	120008
COMM3: Oper. mode receive 4	120011
Selection of Blocking or Direct intertrip for the operating mode of receive signals 1 to 4 (single-bit transmission).	
COMM3: Oper. mode receive 5	120014 Page: 3-26
COMM3: Oper. mode receive 6	120017
COMM3: Oper. mode receive 7	120020
COMM3: Oper. mode receive 8	120023
Selection of Permissive or Direct intertrip for the operating mode of receive signals 5 to 8 (bit-pair transmission).	
COMM3: Default value rec. 1	120060 Page: 3-27
COMM3: Default value rec. 2	120061
COMM3: Default value rec. 3	120062
COMM3: Default value rec. 4	120063
COMM3: Default value rec. 5	120064
COMM3: Default value rec. 6	120065
COMM3: Default value rec. 7	120066
COMM3: Default value rec. 8	120067
Definition of the default value for the 8 receive signals.	
COMM3: Time-out comm.fault	120033 Fig: 3-19
This timer triggers the alarm signals COMM3: Communications fault and SFMON: Communic.fault COMM3 and sets the received signals to their user-defined default values. Time-out occurs when the set time has elapsed since the most recent 100% valid telegram was received.	
COMM3: Sig.asg. comm.fault	120034 Page: 3-27
Using this setting, the alarm signal can be configured (assigned) to the corresponding PSIG input signal.	

7 Settings
 (continued)

IEC 61850 Communication

COMM3: Time-out link fail.

120035 Fig: 3-19
Time indicating a persistent failure of the transmission channel. After this timer stage has elapsed, alarm signals COMM3: Comm. link failure and SFMON: Comm.link fail.COMM3 are raised. These can be mapped to give the operator a warning LED or contact to indicate that maintenance attention is required.
COMM3: Limit telegr. errors 120036 Page: 3-29

Percentage of corrupted messages compared to total messages transmitted before an alarm is raised (COMM3: Lim.exceed.,tel.err. and SFMON: Lim.exceed.,tel.err.). When this threshold is exceeded, the receive signals are set to their user-defined default values.

IEC: Function group IEC 056059

Cancelling function group IEC or including it in the configuration.
If the function group is cancelled from the configuration, then all associated settings and signals are hidden.

Enabling and disabling function group IEC.
IEC: Enable configuration 104058
This parameter can only be sent individually. In order to maintain consistency of all parameters in function groups IEC, GSSE and GOOSE, they are only enabled mutually by this parameter. After this command is sent to the device, the actual state of the previously changed parameter setting of the three function groups is enabled in the communication data model of the connected device. This function is carried out automatically with the off-line/on-line switching of the device.

IEC: Ethernet media

Selecting the physical communication channel on the Ethernet module from either wired (RJ45) or optical fiber (ST/SC connector depending on ordering option) connection.

IEC: IED name

Name of the device (IED has server function). This device name serves as device identification in the IEC 61850 system, it is included in the Logical Device Name in the IEC data model and must therefore be unambiguous. All devices logged-on to the network should have non-recurring IED names.

IEC: TCP keep-alive timer 104062

This defines a "heart-beat" time interval used to actively monitor a communication link to a logged-on client.

```
IEC: IP address

IEC: IP address 1
IEC: IP address 2
104002

IEC: IP address 3
104004
IP address for the device (IED has server function).

\section*{Note:}

In the S\&R 103 operating program, the complete IP address is displayed at IEC: IP address. The device's front panel display only displays the IP address distributed to these four data model addresses.
\begin{tabular}{|l|r|}
\hline IEC: Subnet mask & 104005 \\
\hline IEC: Subnet mask 1 & 104006 \\
IEC: Subnet mask 2 & 104007 \\
IEC: Subnet mask 3 & 10408 \\
\hline The subnet mask defines which part of the IP address is addressed by the \\
sub-network and which part by the device that is logged-on to the network. \\
\hline Note: & \\
\hline In the S\&R 103 operating program, the complete IP address is displayed at \\
\hline IEC: Subnet mask. The device's front panel display only displays the IP \\
\hline address distributed to these four data model addresses.
\end{tabular}
IEC: Gateway address 100011
IEC: Gateway address 1 100012
IEC: Gateway address 2 100013
IEC: Gateway address 3 104014

This parameter defines the IPv4 address of the network gateway of a communication link to a client outside of the local network.

\section*{Note:}

In the S\&R 103 operating program, the complete IP address is displayed at IEC: Gateway address. The device's front panel display only displays the IP address distributed to these four data model addresses.

\section*{IEC: SNTP operating mode 104200}

Operating mode for the time synchronization telegram. When set to Broadcast synchronization occurs cyclically with the clock server transmitting a broadcast signal and, when set to Request from Server each device (IED has client function) individually requests a synchronization signal after its own cycle time.
IEC: SNTP poll cycle time

Device (IED) poll cycle time for time synchronization when operating mode is set to Request from Server.
\begin{tabular}{|c|c|}
\hline IEC: SNTP server 1 IP & 104222 \\
\hline IEC: SNTP server 1 IP 1 & 104203 \\
\hline IEC: SNTP server 1 IP 2 & 104224 \\
\hline C: SNTP server 1 IP 3 & 104205 \\
\hline
\end{tabular}

IEC: SNTP server 1 IP 3
IP address of the synchronizing clock server.

\section*{Note:}

In the S\&R 103 operating program, the complete IP address is displayed at IEC: SNTP server 1 IP. The device's front panel display only displays the IP address distributed to these four data model addresses.
IEC: SNTP server 2 IP
IEC: SNTP server 2 IP 1
104211
IEC: SNTP server 2 IP 2
104212
IEC: SNTP server 2 IP 3 104213
IP address of the synchronizing clock server.
Note:
In the S\&R 103 operating program, the complete IP address is displayed at IEC: SNTP server 2 IP. The device's front panel display only displays the IP address distributed to these four data model addresses.


\section*{IEC: Dead band VPP}

Setting to calculate the filter value for all VPP Report Control Blocks (RCB). Should a change occur in one of the VPP measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula: step size measured value • setting IEC: Dead band VPP

\section*{IEC: Dead band VPG}

Setting to calculate the filter value for all VPG Report Control Blocks (RCB). Should a change occur in one of the VPG measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula: step size measured value • setting IEC: Dead band VPG

Setting to calculate the filter value for all f Report Control Blocks (RCB).
Should a change occur in one of the \(f\) measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula:
step size measured value - setting IEC: Dead band f
IEC: Dead band P 104235
Setting to calculate the filter value for all P Report Control Blocks (RCB). Should a change occur in one of the \(P\) measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula:
step size measured value • setting IEC: Dead band \(P\)

Setting to calculate the filter value for all \(\varphi\) Report Control Blocks (RCB). Should a change occur in one of the \(\varphi\) measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula:
step size measured value - setting IEC: Dead band phi

\section*{IEC: Dead band Z}

Setting to calculate the filter value for all Z Report Control Blocks (RCB).
Should a change occur in one of the \(Z\) measured values, which is greater
than the filter value, the RCB is again sent to all clients. The filter value for
each measured value is calculated according to this formula:
step size measured value - setting IEC: Dead band Z

\section*{IEC: Dead band min/max}

Setting to calculate the filter value for all min/max Report Control Blocks (RCB). Should a change occur in one of the min/max measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula:
step size measured value • setting IEC: Dead band min/max
IEC: Dead band ASC
Setting to calculate the filter value for all ASC Report Control Blocks (RCB). Should a change occur in one of the ASC measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula:
step size measured value - setting IEC: Dead band ASC

\section*{7 Settings \\ (continued)}

Generic Object Oriented Substation Event

\section*{IEC: Dead band temp.}

Setting to calculate the filter value for all temperature Report Control Blocks (RCB). Should a change occur in one of the temperature measured values, which is greater than the filter value, the RCB is again sent to all clients.
The filter value for each measured value is calculated according to this formula:
step size measured value • setting IEC: Dead band temp.

Setting to calculate the filter value for all 20 mA Report Control Blocks (RCB). Should a change occur in one of the 20 mA measured values, which is greater than the filter value, the RCB is again sent to all clients. The filter value for each measured value is calculated according to this formula:
step size measured value • setting IEC: Dead band 20 mA
IEC: Update cycle energy

Cycle time to send energy value by Report Control Block (RCB). No RCB transmission with setting to blocked!
IEC: DEV control model

Setting of which control model is to be used to control all external devices. Suggested setting when performing switching operations at maximum safety is SBO enh. Security (SBO = Select-Before-Operate).

\section*{GOOSE: Function group GOOSE \\ 056068}

Cancelling function group GOOSE or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden. The parameters of this function group are only active if function group IEC has been configured and is activated, and if the parameters of this function group have been activated through the parameter IEC: Enable configuration or by switching the device off-line/on-line.
GOOSE: General enable USER
Enabling and disabling function group GOOSE.

\section*{GOOSE: Multic. MAC address}

Multicast MAC address to provide identification of GOOSE to the receiving clients (IED). The default MAC address entered is suggested as a standard according to IEC 61850. The multicast MAC address entered in GOOSE may be modified so as to increase transmission security or to reduce the number of "GOOSE Messages" to be read by receiving clients (IED).
GOOSE: Application ID
106004 Fig: 3-20
Application ID of GOOSE being sent by this device (IED).
GOOSE: Goose ID
106002 Fig: 3-20
Goose ID being sent by this device (IED). GOOSE includes a Dataset with 32 binary and configurable virtual outputs and 10 two-pole states to the maximum of 10 monitored external devices

\section*{GOOSE: VLAN Identifier}

106006 Fig: 3-20
VLAN identifier of GOOSE being sent by this device (IED). The VLAN identifier makes it possible to have switches in the network filter messages, if the switches support such a function. Because so-called multicast MAC addresses are applied, switches are unable to filter messages in the network if they do not include a VLAN identifier.

\author{
7 Settings \\ (continued)
}
\begin{tabular}{|c|c|}
\hline GOOSE: VLAN Priority & 106007 Fig: 3-20 \\
\hline \multicolumn{2}{|l|}{VLAN priority of GOOSE being sent by this device (IED).} \\
\hline GOOSE: DataSet Reference & 106008 Fig: 3-20 \\
\hline \multicolumn{2}{|l|}{DataSet Reference of GOOSE being sent by this device (IED).} \\
\hline GOOSE: DataSet Cfg.Revision & 106009 Fig: 3-20 \\
\hline \multicolumn{2}{|l|}{Display of the 'DataSet Configuration Revision' value of GOOSE, which is sent from this device (IED).} \\
\hline GOOSE: Output 1 fct.assig. & 106011 Fig: 3-20 \\
\hline GOOSE: Output 2 fct.assig. & 106013 \\
\hline GOOSE: Output 3 fct.assig. & 106015 \\
\hline GOOSE: Output 4 fct.assig. & 106017 \\
\hline GOOSE: Output 5 fct.assig. & 106019 \\
\hline GOOSE: Output 6 fct.assig. & 106021 \\
\hline GOOSE: Output \(7 \mathrm{fct.assig}\). & 106023 \\
\hline GOOSE: Output 8 fct.assig. & 106025 \\
\hline GOOSE: Output 9 fct.assig. & 106027 \\
\hline GOOSE: Output 10 fct.assig. & 106029 \\
\hline GOOSE: Output 11 fct.assig. & 106031 \\
\hline GOOSE: Output 12 fct.assig. & 106033 \\
\hline GOOSE: Output \(13 \mathrm{fct.assig}\). & 106035 \\
\hline GOOSE: Output 14 fct.assig. & 106037 \\
\hline GOOSE: Output 15 fct.assig. & 106039 \\
\hline GOOSE: Output 16 fct.assig. & 106041 \\
\hline GOOSE: Output 17 fct.assig. & 106043 \\
\hline GOOSE: Output 18 fct.assig. & 106045 \\
\hline GOOSE: Output 19 fct.assig. & 106047 \\
\hline GOOSE: Output 20 fct.assig. & 106049 \\
\hline GOOSE: Output 21 fct.assig. & 106051 \\
\hline GOOSE: Output 22 fct.assig. & 106053 \\
\hline GOOSE: Output 23 fct.assig. & 106055 \\
\hline GOOSE: Output 24 fct.assig. & 106057 \\
\hline GOOSE: Output 25 fct.assig. & 106059 \\
\hline GOOSE: Output 26 fct.assig. & 106061 \\
\hline GOOSE: Output 27 fct.assig. & 106063 \\
\hline GOOSE: Output 28 fct.assig. & 106065 \\
\hline GOOSE: Output 29 fct.assig. & 106067 \\
\hline GOOSE: Output 30 fct.assig. & 106069 \\
\hline GOOSE: Output 31 fct.assig. & 106071 \\
\hline GOOSE: Output 32 fct.assig. & 106073 \\
\hline \multicolumn{2}{|l|}{Function assignment of a binary logical state signal to the virtual GOOSE outputs. The signal configured here is sent with the permanently configured Dataset of GOOSE.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline GOOSE: Input 1 Applic. ID & 000 \\
\hline GOOSE: Input 2 Applic. ID & 107010 \\
\hline GOOSE: Input 3 Applic. ID & 10720 \\
\hline GOOSE: Input 4 Applic. ID & 107030 \\
\hline GOOSE: Input 5 Applic. ID & 10770 \\
\hline GOOSE: Input 6 Applic. ID & 10750 \\
\hline GOOSE: Input 7 Applic. ID & 10750 \\
\hline GOOSE: Input 8 Applic. ID & 107070 \\
\hline GOOSE: Input 9 Applic. ID & 107080 \\
\hline GOOSE: Input 10 Applic. ID & 107090 \\
\hline GOOSE: Input 11 Applic. ID & 107100 \\
\hline GOOSE: Input 12 Applic. ID & 107110 \\
\hline GOOSE: Input 13 Applic. ID & 107120 \\
\hline GOOSE: Input 14 Applic. ID & 107330 \\
\hline GOOSE: Input 15 Applic. ID & 107140 \\
\hline GOOSE: Input 16 Applic. ID & 107150 \\
\hline \multicolumn{2}{|l|}{Application ID for GOOSE, which is to be received by this device (IED) for the virtual binary GOOSE input.} \\
\hline GOOSE: Input 1 Goose ID & 107001 \\
\hline GOOSE: Input 2 Goose ID & 107011 \\
\hline GOOSE: Input 3 Goose ID & 107021 \\
\hline GOOSE: Input 4 Goose ID & 107031 \\
\hline GOOSE: Input 5 Goose ID & 107041 \\
\hline GOOSE: Input 6 Goose ID & 107051 \\
\hline GOOSE: Input 7 Goose ID & 107001 \\
\hline GOOSE: Input 8 Goose ID & 07071 \\
\hline GOOSE: Input 9 Goose ID & 107881 \\
\hline GOOSE: Input 10 Goose ID & 107 \\
\hline GOOSE: Input 11 Goose ID & 107101 \\
\hline GOOSE: Input 12 Goose ID & 107111 \\
\hline GOOSE: Input 13 Goose ID & 107121 \\
\hline GOOSE: Input 14 Goose ID & 107131 \\
\hline GOOSE: Input 15 Goose ID & 107141 \\
\hline GOOSE: Input 16 Goose ID & 107151 \\
\hline \multicolumn{2}{|l|}{Goose ID for GOOSE, which is to be received by this device (IED) for the virtual binary GOOSE input.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GOOSE: Input 1 DataSet Ref & 107002 \\
\hline GOOSE: Input 2 DataSet Ref & 107012 \\
\hline GOOSE: Input 3 DataSet Ref & 107022 \\
\hline GOOSE: Input 4 DataSet Ref & 107032 \\
\hline GOOSE: Input 5 DataSet Ref & 107042 \\
\hline GOOSE: Input 6 DataSet Ref & 107052 \\
\hline GOOSE: Input 7 DataSet Ref & 107062 \\
\hline GOOSE: Input 8 DataSet Ref & 107072 \\
\hline GOOSE: Input 9 DataSet Ref & 107082 \\
\hline GOOSE: Input 10 DataSet Ref & 107092 \\
\hline GOOSE: Input 11 DataSet Ref & 107102 \\
\hline GOOSE: Input 12 DataSet Ref & 112 \\
\hline GOOSE: Input 13 DataSet Ref & 107122 \\
\hline GOOSE: Input 14 DataSet Ref & 107132 \\
\hline GOOSE: Input 15 DataSet Ref & 107142 \\
\hline GOOSE: Input 16 DataSet Ref & 107152 \\
\hline \multicolumn{2}{|l|}{'Dataset Reference' for GOOSE, which is to be received by this device (IED) for the virtual binary GOOSE input. A 'Dataset Reference' consists of a chain of characters including the full path of the state value from the device (IED) situated on the opposite side with the logical device/logical node/data object/data attribute. If a path is made up of more than 20 characters, then only the first 20 characters are to be entered.} \\
\hline GOOSE: Input 1 DataObj Ind & 107003 \\
\hline GOOSE: Input 2 DataObj Ind & 107013 \\
\hline GOOSE: Input 3 DataObj Ind & 107023 \\
\hline GOOSE: Input 4 DataObj Ind & 107033 \\
\hline GOOSE: Input 5 DataObj Ind & 107043 \\
\hline GOOSE: Input 6 DataObj Ind & 107053 \\
\hline GOOSE: Input 7 DataObj Ind & 07063 \\
\hline GOOSE: Input 8 DataObj Ind & 107073 \\
\hline GOOSE: Input 9 DataObj Ind & 107083 \\
\hline GOOSE: Input 10 DataObj Ind & 107093 \\
\hline GOOSE: Input 11 DataObj Ind & 107103 \\
\hline GOOSE: Input 12 DataObj Ind & 107113 \\
\hline GOOSE: Input 13 DataObj Ind & 107123 \\
\hline GOOSE: Input 14 DataObj Ind & 107133 \\
\hline GOOSE: Input 15 DataObj Ind & 143 \\
\hline GOOSE: Input 16 DataObj Ind & 107153 \\
\hline \multicolumn{2}{|l|}{Data object index of a Dataset for GOOSE, which is to be received by this device (IED) for the virtual binary GOOSE input. A data object index indicates which data object element in the Dataset is to be evaluated.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline GOOSE: Input 1 DatAttr Ind & 107004 \\
\hline GOOSE: Input 2 DatAttr Ind & 107014 \\
\hline GOOSE: Input 3 DatAttr Ind & 107024 \\
\hline GOOSE: Input 4 DatAttr Ind & 107034 \\
\hline GOOSE: Input 5 DatAttr Ind & 107044 \\
\hline GOOSE: Input 6 DatAttr Ind & 107054 \\
\hline GOOSE: Input 7 DatAttr Ind & 107064 \\
\hline GOOSE: Input 8 DatAttr Ind & 107074 \\
\hline GOOSE: Input 9 DatAttr Ind & 107084 \\
\hline GOOSE: Input 10 DatAttr Ind & 107094 \\
\hline GOOSE: Input 11 DatAttr Ind & 107104 \\
\hline GOOSE: Input 12 DatAttr Ind & 107114 \\
\hline GOOSE: Input 13 DatAttr Ind & 107124 \\
\hline GOOSE: Input 14 DatAttr Ind & 107134 \\
\hline GOOSE: Input 15 DatAttr Ind & 107144 \\
\hline GOOSE: Input 16 DatAttr Ind & 107154 \\
\hline \multicolumn{2}{|l|}{Data attribute index of a Dataset for GOOSE, which is to be received by this device (IED) for the virtual binary GOOSE input. A data attribute index indicates which data attribute element in the data object is to be evaluated.} \\
\hline GOOSE: Input 1 default & 107005 \\
\hline GOOSE: Input 2 default & 107015 \\
\hline GOOSE: Input 3 default & 107025 \\
\hline GOOSE: Input 4 default & 107035 \\
\hline GOOSE: Input 5 default & 107045 \\
\hline GOOSE: Input 6 default & 107055 \\
\hline GOOSE: Input 7 default & 107065 \\
\hline GOOSE: Input 8 default & 107075 \\
\hline GOOSE: Input 9 default & 107085 \\
\hline GOOSE: Input 10 default & 107095 \\
\hline GOOSE: Input 11 default & 107105 \\
\hline GOOSE: Input 12 default & 107115 \\
\hline GOOSE: Input 13 default & 107125 \\
\hline GOOSE: Input 14 default & 107135 \\
\hline GOOSE: Input 15 default & 107145 \\
\hline GOOSE: Input 16 default & 107155 \\
\hline \multicolumn{2}{|l|}{Default for the virtual binary GOOSE input. The state of a virtual two-pole GOOSE input will revert to default as soon as the continuously monitored communication link to a GOOSE sending device (IED situated on the opposite side) is in fault or has disappeared altogether.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline GOOSE: Input 1 fct.assig. & 107006 \\
\hline GOOSE: Input 2 fct.assig. & 107016 \\
\hline GOOSE: Input 3 fct.assig. & 107026 \\
\hline GOOSE: Input 4 fct.assig. & 107036 \\
\hline GOOSE: Input 5 fct.assig. & 107046 \\
\hline GOOSE: Input 6 fct.assig. & 107056 \\
\hline GOOSE: Input 7 fct.assig. & 107066 \\
\hline GOOSE: Input 8 fct.assig. & 107076 \\
\hline GOOSE: Input 9 fct.assig. & 107086 \\
\hline GOOSE: Input 10 fct.assig. & 107096 \\
\hline GOOSE: Input 11 fct.assig. & 107106 \\
\hline GOOSE: Input 12 fct.assig. & 107116 \\
\hline GOOSE: Input 13 fct.assig. & 107126 \\
\hline GOOSE: Input 14 fct.assig. & 107136 \\
\hline GOOSE: Input 15 fct.assig. & 107146 \\
\hline GOOSE: Input 16 fct.assig. & 107156 \\
\hline \multicolumn{2}{|l|}{Function assignment of the virtual binary GOOSE input to a binary logical state signal on the device (IED) so that it can be processed further by the protection, control or logic functions. The signal configured at this point will receive the state of the data attribute, as configured above, and which was received with the Dataset of GOOSE} \\
\hline GOOSE: Ext.Dev01 Applic. ID & 108000 \\
\hline GOOSE: Ext.Dev02 Applic. ID & 108010 \\
\hline GOOSE: Ext.Dev03 Applic. ID & 108020 \\
\hline GOOSE: Ext.Dev04 Applic. ID & 108030 \\
\hline GOOSE: Ext.Dev05 Applic. ID & 108040 \\
\hline GOOSE: Ext.Dev06 Applic. ID & 108050 \\
\hline GOOSE: Ext.Dev07 Applic. ID & 108060 \\
\hline GOOSE: Ext.Dev08 Applic. ID & 108070 \\
\hline GOOSE: Ext.Dev09 Applic. ID & 108080 \\
\hline GOOSE: Ext.Dev10 Applic. ID & 108090 \\
\hline GOOSE: Ext.Dev11 Applic. ID & 108100 \\
\hline GOOSE: Ext.Dev12 Applic. ID & 108110 \\
\hline GOOSE: Ext.Dev13 Applic. ID & 108120 \\
\hline GOOSE: Ext.Dev14 Applic. ID & 108130 \\
\hline GOOSE: Ext.Dev15 Applic. ID & 108140 \\
\hline GOOSE: Ext.Dev16 Applic. ID & 108150 \\
\hline GOOSE: Ext.Dev17 Applic. ID & 110000 \\
\hline GOOSE: Ext.Dev18 Applic. ID & 110010 \\
\hline GOOSE: Ext.Dev19 Applic. ID & 110020 \\
\hline GOOSE: Ext.Dev20 Applic. ID & 110030 \\
\hline GOOSE: Ext.Dev21 Applic. ID & 110040 \\
\hline GOOSE: Ext.Dev22 Applic. ID & 110050 \\
\hline GOOSE: Ext.Dev23 Applic. ID & 110060 \\
\hline GOOSE: Ext.Dev24 Applic. ID & 110066 \\
\hline GOOSE: Ext.Dev25 Applic. ID & 110080 \\
\hline GOOSE: Ext.Dev26 Applic. ID & 0090 \\
\hline GOOSE: Ext.Dev27 Applic. ID & 110100 \\
\hline GOOSE: Ext.Dev28 Applic. ID & 110 \\
\hline GOOSE: Ext.Dev29 Applic. ID & 110120 \\
\hline GOOSE: Ext.Dev30 Applic. ID & 110130 \\
\hline GOOSE: Ext.Dev31 Applic. ID & 110140 \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline GOOSE: Ext.Dev32 Applic. ID & 110150 \\
\hline \multicolumn{2}{|l|}{Application ID for GOOSE, which is to be received by this device (IED) for the virtual two-pole GOOSE input, representing the state of an external device.} \\
\hline GOOSE: Ext.Dev01 Goose ID & 108001 \\
\hline GOOSE: Ext.Dev02 Goose ID & 108011 \\
\hline GOOSE: Ext.Dev03 Goose ID & 108021 \\
\hline GOOSE: Ext.Dev04 Goose ID & 108031 \\
\hline GOOSE: Ext.Dev05 Goose ID & 108041 \\
\hline GOOSE: Ext.Dev06 Goose ID & 108051 \\
\hline GOOSE: Ext.Dev07 Goose ID & 108061 \\
\hline GOOSE: Ext.Dev08 Goose ID & 108071 \\
\hline GOOSE: Ext.Dev09 Goose ID & 108081 \\
\hline GOOSE: Ext.Dev10 Goose ID & 108091 \\
\hline GOOSE: Ext.Dev11 Goose ID & 108101 \\
\hline GOOSE: Ext.Dev12 Goose ID & 108111 \\
\hline GOOSE: Ext.Dev13 Goose ID & 108121 \\
\hline GOOSE: Ext.Dev14 Goose ID & 108131 \\
\hline GOOSE: Ext.Dev15 Goose ID & 108141 \\
\hline GOOSE: Ext.Dev16 Goose ID & 108151 \\
\hline GOOSE: Ext.Dev17 Goose ID & 110001 \\
\hline GOOSE: Ext.Dev18 Goose ID & 110011 \\
\hline GOOSE: Ext.Dev19 Goose ID & 110021 \\
\hline GOOSE: Ext.Dev20 Goose ID & 110031 \\
\hline GOOSE: Ext.Dev21 Goose ID & 110041 \\
\hline GOOSE: Ext.Dev22 Goose ID & 110051 \\
\hline GOOSE: Ext.Dev23 Goose ID & 110061 \\
\hline GOOSE: Ext.Dev24 Goose ID & 110071 \\
\hline GOOSE: Ext.Dev25 Goose ID & 110081 \\
\hline GOOSE: Ext.Dev26 Goose ID & 110091 \\
\hline GOOSE: Ext.Dev27 Goose ID & 110101 \\
\hline GOOSE: Ext.Dev28 Goose ID & 110111 \\
\hline GOOSE: Ext.Dev29 Goose ID & 110121 \\
\hline GOOSE: Ext.Dev30 Goose ID & 110131 \\
\hline GOOSE: Ext.Dev31 Goose ID & 110141 \\
\hline GOOSE: Ext.Dev32 Goose ID & 110151 \\
\hline \multicolumn{2}{|l|}{Goose ID for GOOSE, which is to be received by this device (IED) for the virtual two-pole GOOSE input, representing the state of an external device. Virtual GOOSE inputs can be linked with interlocking equations of assigned external devices.} \\
\hline GOOSE: Ext.Dev01 DataSetRef & 108002 \\
\hline GOOSE: Ext.Dev02 DataSetRef & 108012 \\
\hline GOOSE: Ext.Dev03 DataSetRef & 108022 \\
\hline GOOSE: Ext.Dev04 DataSetRef & 108032 \\
\hline GOOSE: Ext.Dev05 DataSetRef & 108042 \\
\hline GOOSE: Ext.Dev06 DataSetRef & 108052 \\
\hline GOOSE: Ext.Dev07 DataSetRef & 108062 \\
\hline GOOSE: Ext.Dev08 DataSetRef & 108072 \\
\hline GOOSE: Ext.Dev09 DataSetRef & 108082 \\
\hline GOOSE: Ext.Dev10 DataSetRef & 108092 \\
\hline GOOSE: Ext.Dev11 DataSetRef & 108102 \\
\hline GOOSE: Ext.Dev12 DataSetRef & 108112 \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline GOOSE: Ext.Dev13 DataSetRef & 108122 \\
\hline GOOSE: Ext.Dev14 DataSetRef & 108132 \\
\hline GOOSE: Ext.Dev15 DataSetRef & 10814 \\
\hline GOOSE: Ext.Dev16 DataSetRef & 108152 \\
\hline GOOSE: Ext.Dev17 DataSetRef & 110002 \\
\hline GOOSE: Ext.Dev18 DataSetRef & 110012 \\
\hline GOOSE: Ext.Dev19 DataSetRef & 110022 \\
\hline GOOSE: Ext.Dev20 DataSetRef & 110032 \\
\hline GOOSE: Ext.Dev21 DataSetRef & 110 \\
\hline GOOSE: Ext.Dev22 DataSetRef & 110052 \\
\hline GOOSE: Ext.Dev23 DataSetRef & 110062 \\
\hline GOOSE: Ext.Dev24 DataSetRef & 11007 \\
\hline GOOSE: Ext.Dev25 DataSetRef & 110082 \\
\hline GOOSE: Ext.Dev26 DataSetRef & 11009 \\
\hline GOOSE: Ext.Dev27 DataSetRef & 110102 \\
\hline GOOSE: Ext.Dev28 DataSetRef & 11011 \\
\hline GOOSE: Ext.Dev29 DataSetRef & 110122 \\
\hline GOOSE: Ext.Dev30 DataSetRef & 110132 \\
\hline GOOSE: Ext.Dev31 DataSetRef & 110142 \\
\hline GOOSE: Ext.Dev32 DataSetRef & 110152 \\
\hline \multicolumn{2}{|l|}{'Dataset Reference' for GOOSE, which is to be received by this device (IED) for the virtual two-pole GOOSE input, representing the state of an external device. A 'Dataset Reference' consists of a chain of characters including the full path of the state value from the device (IED) situated on the opposite side with the logical device/logical node/data object/data attribute. If a path is made up of more than 20 characters, then only the first 20 characters are to be entered.} \\
\hline GOOSE: Ext.Dev01 DataObjlnd & 08003 \\
\hline GOOSE: Ext.Dev02 DataObjlnd & 108013 \\
\hline GOOSE: Ext.Dev03 DataObjlnd & 108023 \\
\hline GOOSE: Ext.Dev04 DataObjlnd & 108033 \\
\hline GOOSE: Ext.Dev05 DataObjlnd & 108043 \\
\hline GOOSE: Ext.Dev06 DataObjlnd & 108053 \\
\hline GOOSE: Ext.Dev07 DataObjlnd & 108063 \\
\hline GOOSE: Ext.Dev08 DataObjlnd & 108073 \\
\hline GOOSE: Ext.Dev09 DataObjlnd & 108083 \\
\hline GOOSE: Ext.Dev10 DataObjlnd & 108093 \\
\hline GOOSE: Ext.Dev11 DataObjInd & 108103 \\
\hline GOOSE: Ext.Dev12 DataObjlnd & 108113 \\
\hline GOOSE: Ext.Dev13 DataObjlnd & 108123 \\
\hline GOOSE: Ext.Dev14 DataObjlnd & 108133 \\
\hline GOOSE: Ext.Dev15 DataObjlnd & 108143 \\
\hline GOOSE: Ext.Dev16 DataObjInd & 108153 \\
\hline GOOSE: Ext.Dev17 DataObjInd & 003 \\
\hline GOOSE: Ext.Dev18 DataObjlnd & 0013 \\
\hline GOOSE: Ext.Dev19 DataObjlnd & 110023 \\
\hline GOOSE: Ext.Dev20 DataObjlnd & 10033 \\
\hline GOOSE: Ext.Dev21 DataObjlnd & 110043 \\
\hline GOOSE: Ext.Dev22 DataObjInd & 110053 \\
\hline GOOSE: Ext.Dev23 DataObjInd & 110063 \\
\hline GOOSE: Ext.Dev24 DataObjInd & 10073 \\
\hline GOOSE: Ext.Dev25 DataObjInd & 110083 \\
\hline GOOSE: Ext.Dev26 DataObjlnd & 110093 \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline GOOSE: Ext.Dev27 DataObjlnd & 110103 \\
\hline GOOSE: Ext.Dev28 DataObjlnd & 110113 \\
\hline GOOSE: Ext.Dev29 DataObjlnd & 110123 \\
\hline GOOSE: Ext.Dev30 DataObjlnd & 110133 \\
\hline GOOSE: Ext.Dev31 DataObjlnd & 110143 \\
\hline GOOSE: Ext.Dev32 DataObjlnd & 110153 \\
\hline \multicolumn{2}{|l|}{Data object index of a Dataset for GOOSE, which is to be received by this device (IED) for the virtual two-pole GOOSE input, representing the state of an external device. A data object index indicates which data object element in the Dataset is to be evaluated.} \\
\hline GOOSE: Ext.Dev01 DatAttrind & 108004 \\
\hline GOOSE: Ext.Dev02 DatAttrind & 108014 \\
\hline GOOSE: Ext.Dev03 DatAttrInd & 108024 \\
\hline GOOSE: Ext.Dev04 DatAttrInd & 108034 \\
\hline GOOSE: Ext.Dev05 DatAttrInd & 108044 \\
\hline GOOSE: Ext.Dev06 DatAttrind & 108054 \\
\hline GOOSE: Ext.Dev07 DatAttrInd & 108064 \\
\hline GOOSE: Ext.Dev08 DatAttrind & 108074 \\
\hline GOOSE: Ext.Dev09 DatAttrInd & 108084 \\
\hline GOOSE: Ext.Dev10 DatAttrInd & 108094 \\
\hline GOOSE: Ext.Dev11 DatAttrind & 108104 \\
\hline GOOSE: Ext.Dev12 DatAttrInd & 108114 \\
\hline GOOSE: Ext.Dev13 DatAttrInd & 108124 \\
\hline GOOSE: Ext.Dev14 DatAttrInd & 108134 \\
\hline GOOSE: Ext.Dev15 DatAttrInd & 108144 \\
\hline GOOSE: Ext.Dev16 DatAttrind & 108154 \\
\hline GOOSE: Ext.Dev17 DatAttrInd & 110004 \\
\hline GOOSE: Ext.Dev18 DatAttrInd & 110014 \\
\hline GOOSE: Ext.Dev19 DatAttrInd & 110024 \\
\hline GOOSE: Ext.Dev20 DatAttrInd & 110034 \\
\hline GOOSE: Ext.Dev21 DatAttrind & 110044 \\
\hline GOOSE: Ext.Dev22 DatAttrInd & 110054 \\
\hline GOOSE: Ext.Dev23 DatAttrind & 110064 \\
\hline GOOSE: Ext.Dev24 DatAttrind & 110074 \\
\hline GOOSE: Ext.Dev25 DatAttrInd & 110084 \\
\hline GOOSE: Ext.Dev26 DatAttrInd & 110094 \\
\hline GOOSE: Ext.Dev27 DatAttrind & 110104 \\
\hline GOOSE: Ext.Dev28 DatAttrInd & 110114 \\
\hline GOOSE: Ext.Dev29 DatAttrInd & 110124 \\
\hline GOOSE: Ext.Dev30 DatAttrInd & 110134 \\
\hline GOOSE: Ext.Dev31 DatAttrind & 110144 \\
\hline GOOSE: Ext.Dev32 DatAttrind & 110154 \\
\hline \multicolumn{2}{|l|}{Data attribute index of a Dataset for GOOSE, which is to be received by this device (IED) for the virtual two-pole GOOSE input, representing the state of an external device. A data object index indicates which data attribute element in the data object is to be evaluated.} \\
\hline
\end{tabular}

\section*{7 Settings \\ (continued)}
\begin{tabular}{|l|l}
\hline GOOSE: Ext.Dev01 default & 108005 \\
GOOSE: Ext.Dev02 default & 108015 \\
GOOSE: Ext.Dev03 default & 108025 \\
GOOSE: Ext.Dev04 default & 108035 \\
GOOSE: Ext.Dev05 default & 108045 \\
GOOSE: Ext.Dev06 default & 108055 \\
GOOSE: Ext.Dev07 default & 108065 \\
GOOSE: Ext.Dev08 default & 108075 \\
GOOSE: Ext.Dev09 default & 108085 \\
GOOSE: Ext.Dev10 default & 108095 \\
GOOSE: Ext.Dev11 default & 108105 \\
GOOSE: Ext.Dev12 default & 108115 \\
GOOSE: Ext.Dev13 default & 108125 \\
GOOSE: Ext.Dev14 default & 108135 \\
GOOSE: Ext.Dev15 default & 108145 \\
GOOSE: Ext.Dev16 default & 108155 \\
GOOSE: Ext.Dev17 default & 110005 \\
GOOSE: Ext.Dev18 default & 110015 \\
GOOSE: Ext.Dev19 default & 110025 \\
GOOSE: Ext.Dev20 default & 110035 \\
GOOSE: Ext.Dev21 default & 110045 \\
GOOSE: Ext.Dev22 default & 110055 \\
\hline GOOSE: Ext.Dev23 default & 110065 \\
GOOSE: Ext.Dev24 default & 110075 \\
GOOSE: Ext.Dev25 default & 110085 \\
GOOSE: Ext.Dev26 default & 110095 \\
GOOSE: Ext.Dev27 default & 110105 \\
GOOSE: Ext.Dev28 default & 110115 \\
GOOSE: Ext.Dev29 default & 110125 \\
GOOSE: Ext.Dev30 default & 110135 \\
GOOSE: Ext.Dev31 default & 110145 \\
GOOSE: Ext.Dev32 default & 110155 \\
\hline Geault \begin{tabular}{l} 
Gr
\end{tabular} & \\
\hline
\end{tabular}

Default for the virtual two-pole GOOSE input, representing the state of an external device. The state of a virtual two-pole GOOSE input will revert to default as soon as the continuously monitored communication link to a GOOSE sending device (IED situated on the opposite side) is in fault or has disappeared altogether.

\section*{7 Settings}
(continued)

IEC Generic Substation Status Events
GSSE: Function group GSSE 056000

Cancelling function group GSSC or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden. The parameters of this function group are only active if function group IEC has been configured and is activated, and if the parameters of this function group have been activated through the parameter IEC: Enable configuration or by switching the device off-line/on-line.
GSSE: General enable USER

Enabling and disabling function group GSSE.
GSSE: Min. cycle

Minimum value for the GSSE repetition cycle time in ms. The repetition cycle time for a GSSE message is calculated, according to a standard, with this formula:

Repetition cycle time \(=\) Min. cycle \(+(1+(\text { increment/1000 }))^{\mathrm{N}-1}[\mathrm{~ms}]\)
The repetitions counter N will be restarted at count 1 after each state change of a GSSE bit pair.

\section*{GSSE: Max. cycle} 104053
Maximum value for the GSSE repetition cycle time in s. For the formula to calculate the repetition cycle time see Min. cycle. Should the calculated value for the repetition cycle time be equal to or greater than the set max. value then the GSSE message will be sent repeatedly at the set max. value time.
```

GSSE: Increment

Increment for the GSSE repetition cycle. For the formula to calculate the repetition cycle time see Min. cycle.
GSSE: Operating mode 104055
In the operating mode Broadcast all GSSE, independent of their MAC address (network hardware characteristic), are always read and processed. In the operating mode Promiscuous and after all GSSE sending devices have logged-on, only messages with the MAC addresses of IEDs, that have logged-on successfully, are read and processed.

7 Settings

(continued)

GSSE: Output 1 bit pair	104101
GSSE: Output 2 bit pair	04104
GSSE: Output 3 bit pair	104107
GSSE: Output 4 bit pair	104110
GSSE: Output 5 bit pair	4113
GSSE: Output 6 bit pair	04116
GSSE: Output 7 bit pair	4119
GSSE: Output 8 bit pair	122
GSSE: Output 9 bit pair	125
GSSE: Output 10 bit pair	128
GSSE: Output 11 bit pair	104131
GSSE: Output 12 bit pair	134
GSSE: Output 13 bit pair	104137
GSSE: Output 14 bit pair	104140
GSSE: Output 15 bit pair	104143
GSSE: Output 16 bit pair	104146
GSSE: Output 17 bit pair	104149
GSSE: Output 18 bit pair	104152
GSSE: Output 19 bit pair	104155
GSSE: Output 20 bit pair	104158
GSSE: Output 21 bit pair	104161
GSSE: Output 22 bit pair	104164
GSSE: Output 23 bit pair	104167
GSSE: Output 24 bit pair	104170
GSSE: Output 25 bit pair	104173
GSSE: Output 26 bit pair	4176
GSSE: Output 27 bit pair	4179
GSSE: Output 28 bit pair	18482
GSSE: Output 29 bit pair	104185
GSSE: Output 30 bit pair	104188
GSSE: Output 31 bit pair	104191
GSSE: Output 32 bit pair	104194

Setting with which GSSE bit pair the configured binary signal of the virtual GSSE outputs is to be transmitted. A GSSE is always transmitted consisting of a fixed number of 96 bit pairs, of which a maximum of 32 are used by this device (IED) during a send operation.

7 Settings

(continued)

GSSE: Output 1 fct.assig.	104102
GSSE: Output $2 \mathrm{fct.assig}$.	104105
GSSE: Output 3 fct .assig.	104108
GSSE: Output 4 fct.assig.	4111
GSSE: Output 5 fct.assig.	104114
GSSE: Output 6 fct.assig.	104117
GSSE: Output 7 fct.assig.	104120
GSSE: Output 8 fct.assig.	104123
GSSE: Output 9 fct.assig.	104126
GSSE: Output 10 fct.assig.	104129
GSSE: Output 11 fct.assig.	104132
GSSE: Output 12 fct.assig.	104135
GSSE: Output 13 fct.assig.	104138
GSSE: Output 14 fct.assig.	104141
GSSE: Output 15 fct.assig.	104144
GSSE: Output 16 fct.assig.	104147
GSSE: Output 17 fct.assig.	104150
GSSE: Output 18 fct.assig.	104153
GSSE: Output 19 fct.assig.	104156
GSSE: Output 20 fct.assig.	104159
GSSE: Output 21 fct.assig.	104162
GSSE: Output 22 fct.assig.	104165
GSSE: Output 23 fct.assig.	104168
GSSE: Output 24 fct.assig.	104171
GSSE: Output 25 fct.assig.	104174
GSSE: Output 26 fct.assig.	104177
GSSE: Output 27 fct.assig.	104180
GSSE: Output 28 fct.assig.	104183
GSSE: Output 29 fct.assig.	104186
GSSE: Output 30 fct.assig.	104189
GSSE: Output 31 fct.assig.	104192
GSSE: Output 32 fct.assig.	104195

Function assignment of a binary logical state signal to the virtual GSSE outputs. The signal configured here is sent through the GSSE bit pair as configured above.

7 Settings

(continued)

GSSE: Input 1 bit pair	105001
GSSE: Input 2 bit pair	105006
GSSE: Input 3 bit pair	105011
GSSE: Input 4 bit pair	105016
GSSE: Input 5 bit pair	105021
GSSE: Input 6 bit pair	105026
GSSE: Input 7 bit pair	105031
GSSE: Input 8 bit pair	105036
GSSE: Input 9 bit pair	5041
GSSE: Input 10 bit pair	105046
GSSE: Input 11 bit pair	105051
GSSE: Input 12 bit pair	105056
GSSE: Input 13 bit pair	105061
GSSE: Input 14 bit pair	105066
GSSE: Input 15 bit pair	105071
GSSE: Input 16 bit pair	105076
GSSE: Input 17 bit pair	105081
GSSE: Input 18 bit pair	105086
GSSE: Input 19 bit pair	105091
GSSE: Input 20 bit pair	105096
GSSE: Input 21 bit pair	105101
GSSE: Input 22 bit pair	105106
GSSE: Input 23 bit pair	105111
GSSE: Input 24 bit pair	105116
GSSE: Input 25 bit pair	05121
GSSE: Input 26 bit pair	5126
GSSE: Input 27 bit pair	131
GSSE: Input 28 bit pair	105136
GSSE: Input 29 bit pair	105141
GSSE: Input 30 bit pair	05146
GSSE: Input 31 bit pair	105151
GSSE: Input 32 bit pair	105156

Setting which GSSE bit pair is assigned to which virtual GSSE input. A GSSE is always received consisting of a fixed number of 96 bit pairs, of which a maximum of 32 are processed by this device (IED).

7 Settings

(continued)

GSSE: Input 1 IED name	105002
GSSE: Input 2 IED name	105007
GSSE: Input 3 IED name	105012
GSSE: Input 4 IED name	105017
GSSE: Input 5 IED name	105022
GSSE: Input 6 IED name	105027
GSSE: Input 7 IED name	105032
GSSE: Input 8 IED name	105037
GSSE: Input 9 IED name	105042
GSSE: Input 10 IED name	105047
GSSE: Input 11 IED name	105052
GSSE: Input 12 IED name	105057
GSSE: Input 13 IED name	105062
GSSE: Input 14 IED name	105067
GSSE: Input 15 IED name	105072
GSSE: Input 16 IED name	105077
GSSE: Input 17 IED name	105082
GSSE: Input 18 IED name	105087
GSSE: Input 19 IED name	105092
GSSE: Input 20 IED name	105097
GSSE: Input 21 IED name	105102
GSSE: Input 22 IED name	105107
GSSE: Input 23 IED name	105112
GSSE: Input 24 IED name	105117
GSSE: Input 25 IED name	105122
GSSE: Input 26 IED name	105127
GSSE: Input 27 IED name	105132
GSSE: Input 28 IED name	105137
GSSE: Input 29 IED name	105142
GSSE: Input 30 IED name	5147
GSSE: Input 31 IED name	152
GSSE: Input 32 IED name	105157
IED name for the virtual GSSE input used to identify a GSSE received.	

7 Settings

(continued)

GSSE: Input 1 default	105003
GSSE: Input 2 default	105008
GSSE: Input 3 default	105013
GSSE: Input 4 default	105018
GSSE: Input 5 default	105023
GSSE: Input 6 default	105028
GSSE: Input 7 default	105033
GSSE: Input 8 default	105038
GSSE: Input 9 default	105043
GSSE: Input 10 default	105048
GSSE: Input 11 default	105053
GSSE: Input 12 default	105058
GSSE: Input 13 default	105063
GSSE: Input 14 default	105068
GSSE: Input 15 default	105073
GSSE: Input 16 default	105078
GSSE: Input 17 default	105083
GSSE: Input 18 default	105088
GSSE: Input 19 default	105093
GSSE: Input 20 default	105098
GSSE: Input 21 default	105103
GSSE: Input 22 default	105108
GSSE: Input 23 default	105113
GSSE: Input 24 default	105118
GSSE: Input 25 default	105123
GSSE: Input 26 default	105128
GSSE: Input 27 default	105133
GSSE: Input 28 default	105138
GSSE: Input 29 default	105143
GSSE: Input 30 default	105148
GSSE: Input 31 default	105153
GSSE: Input 32 default	105158
Default for the virtual bin GSSE input will revert to communication link to a side) is in fault or has di	

7 Settings

(continued)

GSSE: Input 1 fct.assig.	105004
GSSE: Input 2 fct.assig.	105009
GSSE: Input 3 fct.assig.	105014
GSSE: Input 4 fct.assig.	105009
GSSE: Input 5 fct.assig.	105024
GSSE: Input 6 fct.assig.	105029
GSSE: Input 7 fct.assig.	105034
GSSE: Input 8 fct.assig.	105039
GSSE: Input 9 fct.assig.	105044
GSSE: Input 10 fct.assig.	105049
GSSE: Input 11 fct.assig.	105054
GSSE: Input 12 fct.assig.	100559
GSSE: Input 13 fct.assig.	105064
GSSE: Input 14 fct.assig.	105069
GSSE: Input 15 fct.assig.	105074
GSSE: Input 16 fct.assig.	105079
GSSE: Input 17 fct.assig.	10504
GSSE: Input 18 fct.assig.	105089
GSSE: Input 19 fct.assig.	105094
GSSE: Input 20 fct.assig.	105099
GSSE: Input 21 fct.assig.	105104
GSSE: Input 22 fct.assig.	105109
GSSE: Input 23 fct.assig.	105114
GSSE: Input 24 fct.assig.	105
GSSE: Input 25 fct.assig.	105124
GSSE: Input 26 fct.assig.	105129
GSSE: Input 27 fct.assig.	105134
GSSE: Input 28 fct.assig.	105139
GSSE: Input 29 fct.assig.	105144
GSSE: Input 30 fct.assig.	105149
GSSE: Input 31 fct.assig.	105154
GSSE: Input 32 fct.assig.	105159
Function assignment of the virtual GSSE input to a binary logical state signal on the device (IED) so that it can be processed further by the protection or logic functions. The signal configured at this point will receive the state of the bit pair, as configured above, and which was received with GSSE	
IRIGB: Function group IRI	056072
Cancelling function group IRIGB or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden.	
IRIGB: General enable US	02320
Disabling or enabling the IRIG-B interface.	

7 Settings

(continued)

F_KEY: Password funct.key 1	003036
F_KEY: Password funct.key 2	030242
F_KEY: Password funct.key 3	030243
F_KEY: Password funct.key 4	030244
F_KEY: Password funct.key 5	030245
F_KEY: Password funct.key 6	030246
These passwords enable the corresponding function key. Further information on assigning passwords is given in Chapter 6.	
F_KEY: Fct. assignm. F1	080112 Fig: 3-22
F_KEY: Fct. assignm. F2	080113
F_KEY: Fct. assignm. F3	08011
F_KEY: Fct. assignm. F4	080115
F_KEY: Fct. assignm. F5	080116
F_KEY: Fct. assignm. F6	080117
Assignment of functions to the function keys. Either a single function or a menu jump list may be selected. Both menu jump lists are assembled at LOC: Fct. menu jmp list x (x : 1 or 2).	
F_KEY: Operating mode F1	080132 Fig: 3-22
F_KEY: Operating mode F2	080133
F_KEY: Operating mode F3	08013
F_KEY: Operating mode F4	08013
F_KEY: Operating mode F5	08013
F_KEY: Operating mode F6	080137
Setting operating mode of the function key to push-button or to switch.	
F_KEY: Return time fct.keys	003037
Once the password has been entered, the function keys remain active for no longer than this time period. When this time period has elapsed the password must again be entered.	

7 Settings

The P132 has optical coupler inputs for processing binary signals from the system. The number and connection schemes for the available binary inputs are shown in the terminal connection diagrams.

The P132 identifies the installed modules during startup. If a given binary I/O module is not installed or has fewer binary signal inputs than the maximum number possible at this slot, then the configuration addresses for the missing binary signal inputs are automatically hidden in the menu tree.

When configuring binary inputs, one should keep in mind that the same function can be assigned to several signal inputs. Thus one function can be activated from several control points having different signal voltages.

The configuration in slots A and B and the configuration for the binary inputs $U C 01$ to U C08 will be changed with the selection of a new bay type. (Whether automatic configuration occurs, is defined in the setting MAIN: Auto-assignment I/O.) Depending on the connection type chosen for the P132 - pin type or ring type cable socket terminals - the symbolic slots A, B and C refer to the following slots:

Symbolic slot	Pin type cable socket terminals	Ring type cable socket terminals
A	06	12
B	07	14
C	08	16

The configuration of binary inputs for each bay type - in the case of auto-assignment - is given in the List of Bay Types in the Appendix.

In the case of auto-assignment, the following notes apply:
Note: Before selecting a new bay type, make sure that the binary inputs at slots A and B as well as the binary inputs $U C 01$ to $U C 08$ are configured for functions from the DEVxx function groups only. Otherwise there will be an error message, and the new bay type will not be activated.

Note: Before selecting a new bay type, make sure that all binary inputs specified in the List of Bay types for the selected bay type are actually available in the device. Otherwise there will be an error message, and the new bay type will not be activated.

In order to ensure that the device will recognize the input signals, the triggering signals must persist for at least 30 ms .

The operating mode for each binary signal input can be defined. The user can specify whether the presence (active 'high' mode) or absence (active 'low' mode) of a voltage shall be interpreted as the logic ' 1 ' signal.

7 Settings

(continued)

INP: Filter	010220	Fig: 3-23
Input filter which is activated when either the mode "active 'high', filtered" or active 'low', filtered" has been selected. In order to suppress transient interference peaks at the logic signal inputs it is suggested to set this parameter to 6 [steps]. For further information see Chapter 3.		
INP: Fct. assignm. U 301		$\begin{aligned} & \text { Fig: : } 3-23 \\ & 3-250,3-253, \\ & 3-254 \end{aligned}$
INP: Fct. assignm. U 302	152220	
INP: Fct. assignm. U 303	152223	
INP: Fct. assignm. U 304	152226	
INP: Fct. assignm. U 501	152073	
INP: Fct. assignm. U 502	152076	
INP: Fct. assignm. U 503	152079	
INP: Fct. assignm. U 504	152082	
INP: Fct. assignm. U 601	152091	
INP: Fct. assignm. U 602	152094	
INP: Fct. assignm. U 603	152097	
INP: Fct. assignm. U 604	152100	
INP: Fct. assignm. U 605	152103	
INP: Fct. assignm. U 606	152106	
INP: Fct. assignm. U 701	152109	
INP: Fct. assignm. U 702	152112	
INP: Fct. assignm. U 703	152115	
INP: Fct. assignm. U 704	152118	
INP: Fct. assignm. U 705	152121	
INP: Fct. assignm. U 706	152124	
INP: Fct. assignm. U 801	184002	
INP: Fct. assignm. U 802	184006	
INP: Fct. assignm. U 803	184010	
INP: Fct. assignm. U 804	184014	
INP: Fct. assignm. U 805	184018	
INP: Fct. assignm. U 806	184022	
INP: Fct. assignm. U 807	184026	
INP: Fct. assignm. U 808	184030	
INP: Fct. assignm. U 809	184034	
INP: Fct. assignm. U 810	184038	
INP: Fct. assignm. U 811	184042	
INP: Fct. assignm. U 812	184046	
INP: Fct. assignm. U 813	184050	
INP: Fct. assignm. U 814	184054	
INP: Fct. assignm. U 815	184058	
INP: Fct. assignm. U 816	184062	
INP: Fct. assignm. U 817	184066	
INP: Fct. assignm. U 818	184070	
INP: Fct. assignm. U 819	1840	
INP: Fct. assignm. U 820	184078	
INP: Fct. assignm. U 821	184082	
INP: Fct. assignm. U 822	184086	
INP: Fct. assignm. U 823	184090	
INP: Fct. assignm. U 824	184094	
INP: Fct. assignm. U 901	152145	
INP: Fct. assignm. U 902	152148	

7 Settings

(continued)

INP: Fct. assignm. U 903	152151
INP: Fct. assignm. U 904	152154
INP: Fct. assignm. U 1001	152163
INP: Fct. assignm. U 1002	152166
INP: Fct. assignm. U 1003	152169
INP: Fct. assignm. U 1004	152172
INP: Fct. assignm. U 1005	152175
INP: Fct. assignm. U 1006	152178
INP: Fct. assignm. U 1201	152199
INP: Fct. assignm. U 1202	152202
INP: Fct. assignm. U 1203	152205
INP: Fct. assignm. U 1204	152208
INP: Fct. assignm. U 1205	152211
INP: Fct. assignm. U 1206	152214
INP: Fct. assignm. U 1401	190002
INP: Fct. assignm. U 1402	190006
INP: Fct. assignm. U 1403	190010
INP: Fct. assignm. U 1404	190014
INP: Fct. assignm. U 1405	190018
INP: Fct. assignm. U 1406	190022
INP: Fct. assignm. U 1601	192002
INP: Fct. assignm. U 1602	192006
INP: Fct. assignm. U 1603	192010
INP: Fct. assignm. U 1604	192014
INP: Fct. assignm. U 1605	192018
INP: Fct. assignm. U 1606	192022
INP: Fct. assignm. U 1607	192026
INP: Fct. assignm. U 1608	192030
INP: Fct. assignm. U 1609	192034
INP: Fct. assignm. U 1610	192038
INP: Fct. assignm. U 1611	192042
INP: Fct. assignm. U 1612	192046
INP: Fct. assignm. U 1613	192050
INP: Fct. assignm. U 1614	192054
INP: Fct. assignm. U 1615	192058
INP: Fct. assignm. U 1616	192062
INP: Fct. assignm. U 1617	192066
INP: Fct. assignm. U 1618	192070
INP: Fct. assignm. U 1619	192074
INP: Fct. assignm. U 1620	192078
INP: Fct. assignm. U 1621	192082
INP: Fct. assignm. U 1622	192086
INP: Fct. assignm. U 1623	192090
INP: Fct. assignm. U 1624	192094
INP: Fct. assignm. U 2001	153087
INP: Fct. assignm. U 2002	153090
INP: Fct. assignm. U 2003	153093
INP: Fct. assignm. U 2004	153096
Assignment of functions to bin	

7 Settings

(continued)

INP: Oper. mode U 301	152218 Fig: 3-23
INP: Oper. mode U 302	152221
INP: Oper. mode U 303	152224
INP: Oper. mode U 304	152227
INP: Oper. mode U 501	152074
INP: Oper. mode U 502	152077
INP: Oper. mode U 503	152080
INP: Oper. mode U 504	152083
INP: Oper. mode U 601	152092
INP: Oper. mode U 602	152095
INP: Oper. mode U 603	152098
INP: Oper. mode U 604	152101
INP: Oper. mode U 605	152104
INP: Oper. mode U 606	152107
INP: Oper. mode U 701	152
INP: Oper. mode U 702	1521
INP: Oper. mode U 703	1521
INP: Oper. mode U 704	152119
INP: Oper. mode U 705	152122
INP: Oper. mode U 706	152125
INP: Oper. mode U 801	184003
INP: Oper. mode U 802	184007
INP: Oper. mode U 803	184011
INP: Oper. mode U 804	184015
INP: Oper. mode U 805	184019
INP: Oper. mode U 806	184023
INP: Oper. mode U 807	184027
INP: Oper. mode U 808	184031
INP: Oper. mode U 809	184035
INP: Oper. mode U 810	184039
INP: Oper. mode U 811	184043
INP: Oper. mode U 812	184047
INP: Oper. mode U 813	184051
INP: Oper. mode U 814	184055
INP: Oper. mode U 815	184059
INP: Oper. mode U 816	184063
INP: Oper. mode U 817	184067
INP: Oper. mode U 818	184071
INP: Oper. mode U 819	184075
INP: Oper. mode U 820	184079
INP: Oper. mode U 821	18408
INP: Oper. mode U 822	1840
INP: Oper. mode U 823	184091
INP: Oper. mode U 824	184095
INP: Oper. mode U 901	152146
INP: Oper. mode U 902	152149
INP: Oper. mode U 903	152152
INP: Oper. mode U 904	152155
INP: Oper. mode U 1001	152164
INP: Oper. mode U 1002	152167
INP: Oper. mode U 1003	152170
INP: Oper. mode U 1004	152173
INP: Oper. mode U 1005	152176

7 Settings

(continued)

INP: Oper. mode U 1006	152179
INP: Oper. mode U 1201	152200
INP: Oper. mode U 1202	152203
INP: Oper. mode U 1203	152206
INP: Oper. mode U 1204	152209
INP: Oper. mode U 1205	152212
INP: Oper. mode U 1206	152215
INP: Oper. mode U 1401	190003
INP: Oper. mode U 1402	190007
INP: Oper. mode U 1403	190011
INP: Oper. mode U 1404	190015
INP: Oper. mode U 1405	190019
INP: Oper. mode U 1406	190023
INP: Oper. mode U 1601	192003
INP: Oper. mode U 1602	192007
INP: Oper. mode U 1603	192011
INP: Oper. mode U 1604	192015
INP: Oper. mode U 1605	192019
INP: Oper. mode U 1606	192023
INP: Oper. mode U 1607	192027
INP: Oper. mode U 1608	192031
INP: Oper. mode U 1609	192035
INP: Oper. mode U 1610	192039
INP: Oper. Mode U 1611	192043
INP: Oper. Mode U 1612	192047
INP: Oper. Mode U 1613	192051
INP: Oper. Mode U 1614	192055
INP: Oper. Mode U 1615	192059
INP: Oper. Mode U 1616	192063
INP: Oper. Mode U 1617	192067
INP: Oper. Mode U 1618	192071
INP: Oper. Mode U 1619	192075
INP: Oper. Mode U 1620	192079
INP: Oper. mode U 1621	192083
INP: Oper. mode U 1622	192087
INP: Oper. mode U 1623	192091
INP: Oper. mode U 1624	192095
INP: Oper. mode U 2001	153088
INP: Oper. mode U 2002	153091
INP: Oper. mode U 2003	153094
INP: Oper. mode U 2004	153097

Selection of operating mode for binary signal inputs.

7 Settings

(continued)

Measured data input

MEASI: Function group MEASI	05630
Cancelling function group MEASI or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden.	
MEASI: General enable USER	011100 Fig: 3-24
Disabling or enabling analog measured data input.	
MEASI: Enable IDC p.u.	037190 Fig: 3-27
Setting the minimum current that must flow in order for the P132 to display a measured value > 0 (zero suppression).	
MEASI: IDC < open circuit	037191 Fig: 3-27
If the input current falls below the set threshold, the P132 will issue an 'open circuit' signal.	
MEASI: IDC 1	037150 Fig: 3-27
MEASI: IDC 2	037152 Fig: 3-27
MEASI: IDC 3	037154 Fig: 3-27
MEASI: IDC 4	037156 Fig: 3-27
MEASI: IDC 5	037158 Fig: 3-27
MEASI: IDC 6	037160 Fig: 3-27
MEASI: IDC 7	037162 Fig: 3-27
MEASI: IDC 8	037164 Fig: 3-27
MEASI: IDC 9	037166 Fig: 3-27
MEASI: IDC 10	037168 Fig: 3-27
MEASI: IDC 11	037170 Fig: 3-27
MEASI: IDC 12	037172 Fig: 3-27
MEASI: IDC 13	037174 Fig: 3-27
MEASI: IDC 14	037176 Fig: 3-27
MEASI: IDC 15	037178 Fig: 3-27
MEASI: IDC 16	037180 Fig: 3-27
MEASI: IDC 17	037182 Fig: 3-27
MEASI: IDC 18	037184 Fig: 3-27
MEASI: IDC 19	037186 Fig: 3-27
MEASI: IDC 20	037188 Fig: 3-27
Setting for the input current that will correspond to a linearized value that has been set accordingly.	

7 Settings

(continued)

MEASI: IDC, lin 1	037151	Fig: 3-27
MEASI: IDC,lin 2	037153	Fig: 3-27
MEASI: IDC,lin 3	037155	Fig: 3-27
MEASI: IDC, in 4	037157	Fig: 3-27
MEASI: IDC,lin 5	037159	Fig: 3-27
MEASI: IDC, lin 6	037161	Fig: 3-27
MEASI: IDC,lin 7	037163	Fig: 3-27
MEASI: IDC,lin 8	037165	Fig: 3-27
MEASI: IDC,lin 9	037167	Fig: 3-27
MEASI: IDC,lin 10	037169	Fig: 3-27
MEASI: IDC,lin 11	037171	Fig: 3-27
MEASI: IDC,lin 12	037173	Fig: 3-27
MEASI: IDC,lin 13	037175	Fig: 3-27
MEASI: IDC,lin 14	037177	Fig: 3-27
MEASI: IDC, lin 15	037179	Fig: 3-27
MEASI: IDC,lin 16	037181	Fig: 3-27
MEASI: IDC, lin 17	037183	Fig: 3-27
MEASI: IDC, lin 18	037185	Fig: 3-27
MEASI: IDC,lin 19	037187	Fig: 3-27
MEASI: IDC,lin 20	037189	Fig: 3-27

Setting for the linearized current that will correspond to an input current that has been set accordingly.
MEASI: Scaled val. IDC, lin1
037192 Fig: 3-28
Setting for the scaled value of IDC, lin1.
MEASI: Scaled val.IDC,lin20 037193 Fig: 3-28
Setting for the scaled value of IDC, lin20.
MEASI: Type of TempSensors
Selection of the temperature sensor type (PT 100, NI 100 or NI 120).

7 Settings

(continued)

Binary outputs

The P132 has output relays for the output of binary signals. The number and connection schemes for the available output relays are shown in the terminal connection diagrams.

The P132 identifies the installed modules during startup. If a given binary I/O module is not installed or has fewer output relays than the maximum number possible at that slot, then the configuration addresses for the missing output relays are automatically hidden in the menu tree.

The contact data for the all-or-nothing relays permits them to be used either as command relays or as signal relays. It is important to note that the contact rating of the binary I/O modules (X) varies (see Chapter 'Technical Data'). One signal can also be assigned simultaneously to several output relays for the purpose of contact multiplication.

Selecting a new bay type can change the configuration for slots A and B! (Whether automatic configuration occurs, is defined in the setting MAIN: Auto-assignment I/O.) Depending on the connection type chosen for the P132 - pin type or ring type cable socket terminals - the symbolic slots A and B correspond to the following slots:

Symbolic slot	Pin type cable socket terminals	Ring type cable socket terminals
A	06	12
B	07	14

The configuration of output relays for each bay type - in the case of auto-assignment - is given in the List of Bay Types in the Appendix.

In the case of auto-assignment, the following notes apply:

Note: Before selecting a new bay type, make sure that the output relays at slots A and B are configured for functions from the DEVxx function groups only. Otherwise there will be an error message, and the new bay type will not be activated

Note: \quad Before selecting a new bay type, make sure that all output relays specified in the List of Bay types for the selected bay type are actually available in the device. Otherwise there will be an error message, and the new bay type will not be activated.

An operating mode can be defined for each output relay. Depending on the selected operating mode, the output relay will operate in either an energize-on-signal (ES) mode or a normally-energized (NE) mode and in either a latching or non-latching mode. For output relays operating in latching mode, the operating mode setting also determines when latching will be cancelled.

7 Settings

(continued)

OUTP: Fct. assignm. K 301	151045	Fig: 3-32
OUTP: Fct. assignm. K 302	151048	
OUTP: Fct. assignm. K 501	150097	
OUTP: Fct. assignm. K 502	150100	
OUTP: Fct. assignm. K 503	150103	
OUTP: Fct. assignm. K 504	150106	
OUTP: Fct. assignm. K 505	150109	
OUTP: Fct. assignm. K 506	150112	
OUTP: Fct. assignm. K 507	150115	
OUTP: Fct. assignm. K 508	150118	
OUTP: Fct. assignm. K 601	150121	
OUTP: Fct. assignm. K 602	150124	
OUTP: Fct. assignm. K 603	150127	
OUTP: Fct. assignm. K 604	150130	
OUTP: Fct. assignm. K 605	150133	
OUTP: Fct. assignm. K 606	150136	
OUTP: Fct. assignm. K 607	150139	
OUTP: Fct. assignm. K 608	150142	
OUTP: Fct. assignm. K 701	150145	
OUTP: Fct. assignm. K 702	150148	
OUTP: Fct. assignm. K 703	150151	
OUTP: Fct. assignm. K 704	150154	
OUTP: Fct. assignm. K 705	150157	
OUTP: Fct. assignm. K 706	150160	
OUTP: Fct. assignm. K 707	150163	
OUTP: Fct. assignm. K 708	150166	
OUTP: Fct. assignm. K 801	150169	
OUTP: Fct. assignm. K 802	150172	
OUTP: Fct. assignm. K 803	150175	
OUTP: Fct. assignm. K 804	150178	
OUTP: Fct. assignm. K 805	150181	
OUTP: Fct. assignm. K 806	150184	
OUTP: Fct. assignm. K 807	150187	
OUTP: Fct. assignm. K 808	150190	
OUTP: Fct. assignm. K 901	150193	
OUTP: Fct. assignm. K 902	150196	
OUTP: Fct. assignm. K 903	150199	
OUTP: Fct. assignm. K 904	150202	
OUTP: Fct. assignm. K 905	150205	
OUTP: Fct. assignm. K 906	150208	
OUTP: Fct. assignm. K 907	150211	
OUTP: Fct. assignm. K 908	150214	
OUTP: Fct. assignm. K 1001	150217	
OUTP: Fct. assignm. K 1002	150220	
OUTP: Fct. assignm. K 1003	150223	
OUTP: Fct. assignm. K 1004	150226	
OUTP: Fct. assignm. K 1005	150229	
OUTP: Fct. assignm. K 1006	150232	
OUTP: Fct. assignm. K 1007	150235	
OUTP: Fct. assignm. K 1008	150238	
OUTP: Fct. assignm. K 1201	151009	
OUTP: Fct. assignm. K 1202	151012	
OUTP: Fct. assignm. K 1203	151015	

7 Settings

(continued)

OUTP: Fct. assignm. K 1204	151018
OUTP: Fct. assignm. K 1205	151021
OUTP: Fct. assignm. K 1206	151024
OUTP: Fct. assignm. K 1207	151027
OUTP: Fct. assignm. K 1208	151030
OUTP: Fct. assignm. K 1401	169002
OUTP: Fct. assignm. K 1402	169006
OUTP: Fct. assignm. K 1403	169010
OUTP: Fct. assignm. K 1404	169014
OUTP: Fct. assignm. K 1405	169018
OUTP: Fct. assignm. K 1406	169022
OUTP: Fct. assignm. K 1407	169026
OUTP: Fct. assignm. K 1408	169030
OUTP: Fct. assignm. K 1601	171002
OUTP: Fct. assignm. K 1602	171006
OUTP: Fct. assignm. K 1801	173002
OUTP: Fct. assignm. K 1802	173006
OUTP: Fct. assignm. K 1803	173010
OUTP: Fct. assignm. K 1804	173014
OUTP: Fct. assignm. K 1805	173018
OUTP: Fct. assignm. K 1806	173022
OUTP: Fct. assignm. K 2001	151201
OUTP: Fct. assignm. K 2002	151204
OUTP: Fct. assignm. K 2003	151207
OUTP: Fct. assignm. K 2004	151210
OUTP: Fct. assignm. K 2005	151213
OUTP: Fct. assignm. K 2006	151216
OUTP: Fct. assignm. K 2007	151219
OUTP: Fct. assignm. K 2008	151222
Assignment of functions to output relays.	
OUTP: Oper. mode K 301	151046 Fig: 3-32
OUTP: Oper. mode K 302	151049
OUTP: Oper. mode K 501	150098
OUTP: Oper. mode K 502	150101
OUTP: Oper. mode K 503	150104
OUTP: Oper. mode K 504	150107
OUTP: Oper. mode K 505	150110
OUTP: Oper. mode K 506	150113
OUTP: Oper. mode K 507	150116
OUTP: Oper. mode K 508	150119
OUTP: Oper. mode K 601	150122
OUTP: Oper. mode K 602	150125
OUTP: Oper. mode K 603	150128
OUTP: Oper. mode K 604	150131
OUTP: Oper. mode K 605	150134
OUTP: Oper. mode K 606	150137
OUTP: Oper. mode K 607	150140
OUTP: Oper. mode K 608	150143
OUTP: Oper. mode K 701	150146
OUTP: Oper. mode K 702	150149
OUTP: Oper. mode K 703	150152
OUTP: Oper. mode K 704	150155

7 Settings

(continued)

OUTP: Oper. mode K 705	150158
OUTP: Oper. mode K 706	150161
OUTP: Oper. mode K 707	150164
OUTP: Oper. mode K 708	150167
OUTP: Oper. mode K 801	150170
OUTP: Oper. mode K 802	150173
OUTP: Oper. mode K 803	150176
OUTP: Oper. mode K 804	150179
OUTP: Oper. mode K 805	150182
OUTP: Oper. mode K 806	150185
OUTP: Oper. mode K 807	150188
OUTP: Oper. mode K 808	150191
OUTP: Oper. mode K 901	150194
OUTP: Oper. mode K 902	150197
OUTP: Oper. mode K 903	150200
OUTP: Oper. mode K 904	150203
OUTP: Oper. mode K 905	150206
OUTP: Oper. mode K 906	150209
OUTP: Oper. mode K 907	150212
OUTP: Oper. mode K 908	150215
OUTP: Oper. mode K 1001	150218
OUTP: Oper. mode K 1002	150221
OUTP: Oper. mode K 1003	150224
OUTP: Oper. mode K 1004	150227
OUTP: Oper. mode K 1005	150230
OUTP: Oper. mode K 1006	150233
OUTP: Oper. mode K 1007	150236
OUTP: Oper. mode K 1008	150239
OUTP: Oper. mode K 1201	151010
OUTP: Oper. mode K 1202	151013
OUTP: Oper. mode K 1203	151016
OUTP: Oper. mode K 1204	151019
OUTP: Oper. mode K 1205	151022
OUTP: Oper. mode K 1206	151025
OUTP: Oper. mode K 1207	151028
OUTP: Oper. mode K 1208	151031
OUTP: Oper. mode K 1401	169003
OUTP: Oper. mode K 1402	169007
OUTP: Oper. mode K 1403	169011
OUTP: Oper. mode K 1404	169015
OUTP: Oper. mode K 1405	169019
OUTP: Oper. mode K 1406	169023
OUTP: Oper. mode K 1407	169027
OUTP: Oper. mode K 1408	169031
OUTP: Oper. mode K 1601	171003
OUTP: Oper. mode K 1602	171007
OUTP: Oper. mode K 1801	173003
OUTP: Oper. mode K 1802	173007
OUTP: Oper. mode K 1803	173011
OUTP: Oper. mode K 1804	173015
OUTP: Oper. mode K 1805	173019
OUTP: Oper. mode K 1806	173023
OUTP: Oper. mode K 2001	151202

7 Settings

(continued)

OUTP: Oper. mode K 2002	151205
OUTP: Oper. mode K 2003	151208
OUTP: Oper. mode K 2004	151211
OUTP: Oper. mode K 2005	151214
OUTP: Oper. mode K 2006	151217
OUTP: Oper. mode K 2007	151220
OUTP: Oper. mode K 2008	151223
Selection of operating mode for output relays.	

Selection of operating mode for output relays.

7 Settings

(continued)

Setting the time period for output of the selected measured value.

7 Settings

(continued)

MEASO: Scaled min. val. A-1		037104 Fig: 3-40
MEASO: Scaled min. val. A-2		037110
MEASO: Scaled knee val. A-1		037105 Fig: 3-40
MEASO: Scaled knee val. A-2		037111
MEASO: Scaled max. val. A-1		037106 Fig: 3-40
MEASO: Scaled max. val. A-2		037112
After conversion via a characteristic the selected measured value $A x$ $(x=1,2)$ is to be issued as an output current. For this purpose a range		
"measured values to be issued" is defined. In this range the characteristic has two linear sections, which are separated by a knee point.		
Measured values Range		
Measured values for the variable Mx Mx,RL1 ... Mx,RL2		
Associated scaled measured values 0... 1		
Measured values to be issued	Range	
Measured values to be issued	Mx,min. ... Mx,max.	
Scaled measured values to be issued $M x$,scal,min. ... Mx,scal,max		
Designation of the set values in the data model	Scaled min. val. Ax" ... "Scaled max. val. Ax"	
with:		
$M x, s c a l, \min =(M x, \min -M x, R L 1) /(M x, R L 2-M x, R L 1$		
Mx,scal,max $=\left(\begin{array}{l}\text { M }\end{array}\right.$,max $\left.-M x, R L 1\right) /(M x, R L 2-M x, R L 1$		
Knee point for characteristic	Designation	
Value for knee point	Mx,knee	
Scaled knee point value	Mx,scaled,knee	
Designation of this set value in the data model	"Scaled knee val. Ax" ...	
with:		
Mx,scaled, knee $=(M x, \min -\mathrm{Mx}, \mathrm{RL1}) /(\mathrm{Mx}, \mathrm{RL2}-\mathrm{Mx}, \mathrm{RL1}$		

7 Settings

(continued)

MEASO: AnOut min. val. A-1		037107	Fig: 3-40
MEASO: AnOut min. val. A-2		037113	
MEASO: AnOut knee point A-1		037108	Fig: 3-40
MEASO: AnOut knee point A-2		037114	
MEASO: AnOut max. val. A-1		037109	Fig: 3-40
MEASO: AnOut max. val. A-2		037115	
Output values	Designation in the data		
Output current range for measured values in the range "measured values to be issued"	"An-Out min. val. Ax" "An-Out max. val. Ax"		
Output current to be set for measured values $=M x, \min$.	"An-Out min. val. Ax"		
Output current to be set for measured values $=M x$, max.	"An-Out max. val. Ax" ...		
Output current to be set for measured values $=M x$,knee	"AnOut knee point Ax"		
with:			
Mx,min. ... Mx,max. : measured values to be	sued		
MEASO: Output value 1		037120	Fig: 3-40
MEASO: Output value 2		037121	Fig: 3-40
MEASO: Output value 3		037122	Fig: 3-40
Measured values of external devices, which must be scaled to 0 to 100%, can be issued.			

7 Settings

(continued)

The P132 has a total of 23 LED indicators (for the case 40T and case $84 T$ devices) for parallel display of binary signals. The case 24 T device variant is fitted 10 LED indicators. LED indicator H 1 is not configurable. It is labeled "HEALTHY" and signals the operational readiness of the protection unit (supply voltage present). LED indicators H 2 and H 3 are not configurable either. H 2 is labeled "OUT OF SERVICE" and signals a blocking or malfunction; H 3 is labeled "ALARM" and signals a warning alarm. LED indicator H 17 indicates that the user is in the "EDIT MODE".

Section 6.1 describes the layout of the LED indicators and the factory setting for LED indicator H 4. At this point it is specifically emphasized that for the case 40T and case 84 T devices there is no permanent association between the freely configurable function keys and the LED indicators H 18 to H 23 situated directly next to these function keys.

An operating mode can be defined for each LED indicator. Depending on the set operating mode, the LED indicator will operate in either energize-on-signal (ES) mode ('open-circuit principle') or normally-energized (NE) mode ('closed-circuit principle') and in either latching or non-latching mode. For LED indicators operating in latching mode, the operating mode setting also determines when latching will be cancelled.

With the multi-color LED indicators (H $4-\mathrm{H} 16, \mathrm{H} 18-\mathrm{H} 23$ on the case 40T and case 84 T devices) the colors red and green can be independently assigned with functions. The third color amber results as a mixture of red and green, i.e. when both functions assigned to the LED indicator are simultaneously present.

LED: Fct.assig. H 1 green	085184
Display of the operational readiness of the protection device. The function MAIN: Healthy is permanently assigned.	
LED: Fct.assig. H 2 yell.	085001
Display of the function assigned to LED indicator H 2 . The function MAIN: Blocked/faulty is permanently assig	
LED: Fct.assig. H 3 yell.	085004
Display of the function assigned to LED indicator H 3 . The function SFMON: Warning (LED) is permanently	
LED: Fct.assig. H 17 red	085185
Display of the function assigned to LED indicator H 17. The function LOC: Edit mode is permanently assigned	

7 Settings

(continued)

LED: Fct.assig. H 4 red	085007
LED: Fct.assig. H 4 green	085057
LED: Fct.assig. H 5 red	085010
LED: Fct.assig. H 5 green	085060
LED: Fct.assig. H 6 red	085013
LED: Fct.assig. H 6 green	085063
LED: Fct.assig. H 7 red	085016
LED: Fct.assig. H 7 green	085066
LED: Fct.assig. H 8 red	085019
LED: Fct.assig. H 8 green	085069
LED: Fct.assig. H 9 red	085022
LED: Fct.assig. H 9 green	085072
LED: Fct.assig. H 10 red	085025 Fig: 3-41
LED: Fct.assig. H 10 green	085075 Fig: 3-41
LED: Fct.assig. H11 red	085028
LED: Fct.assig. H11 green	085078
LED: Fct.assig. H 12 red	085031
LED: Fct.assig. H12 green	085081
LED: Fct.assig. H 13 red	085034
LED: Fct.assig. H 13 green	085084
LED: Fct.assig. H 14 red	085037
LED: Fct.assig. H14 green	085087
LED: Fct.assig. H 15 red	085040
LED: Fct.assig. H15 green	085090
LED: Fct.assig. H16 red	085043
LED: Fct.assig. H16 green	085093
LED: Fct.assig. H 18 red	085131
LED: Fct.assig. H18 green	085161
LED: Fct.assig. H 19 red	085134
LED: Fct.assig. H19 green	085164
LED: Fct.assig. H 20 red	085137
LED: Fct.assig. H20 green	085167
LED: Fct.assig. H21 red	085140
LED: Fct.assig. H21 green	085170
LED: Fct.assig. H 22 red	085143
LED: Fct.assig. H 22 green	085173
LED: Fct.assig. H 23 red	085146
LED: Fct.assig. H 23 green	085177
Assignment of functions to LED indicators.	
LED: Operating mode H 1	085182 Fig: 3-41
The operating mode ES updating is permanently assigned.	
LED: Operating mode H 2	085002
The operating mode ES updating is permanently assigned.	
LED: Operating mode H3	085005
The operating mode ES updating is permanently assigned.	
LED: Operating mode H 17	085183
The operating mode ES updating is permanently assigned.	

7 Settings

(continued)

Main function

LED: Operating mode H 4	085008
LED: Operating mode H 5	085011
LED: Operating mode H 6	085014
LED: Operating mode H 7	085017
LED: Operating mode H 8	085020
LED: Operating mode H 9	085023
LED: Operating mode H 10	085026 Fig: 3-41
LED: Operating mode H 11	085029
LED: Operating mode H 12	085032
LED: Operating mode H 13	085035
LED: Operating mode H 14	085038
LED: Operating mode H 15	085041
LED: Operating mode H 16	085044
LED: Operating mode H 18	085132
LED: Operating mode H 19	085135
LED: Operating mode H 20	085138
LED: Operating mode H 21	085141
LED: Operating mode H 22	085144
LED: Operating mode H 23	085147
Selection of operating mode for LED indicators.	

MAIN: Chann.assign.COMM1/2	003169 Fig: 3-84
Assignment of communication interfaces to physical communication channels.	
MAIN: Type of bay	220001 Fig: 3-45
Configuration of a bay type.	
MAIN: Customized bay type	221062 Fig: 3-45
If a user-specific (customized) bay type has been loaded, its bay type No. will be displayed. If no customized bay type has been loaded, the number '0' will be displayed.	
MAIN: Prim.Source TimeSync	103210 Fig.*: 3-81
Selection of the primary source for date and time synchronization. Available are COMM1, COMM2/PC, IRIG-B or a binary input for minute signal pulses.	
MAIN: BackupSourceTimeSync	103211 Fig.*: 3-81
Selection of the backup source for date and time synchronization. Available are COMM1, COMM2/PC, IRIG-B or a binary input for minute signal pulses. The backup source is used when there is no synchronization generated by the primary source after MAIN: Time sync. time-out has elapsed.	
MAIN: Time sync. time-out	103212 Fig.*: 3-81
Time-out setting for the time synchronization generated by the prima source.	

7 Settings

(continued)

Fault recording

FT_RC: Rec. analog chann. 1	035160	Fig.*: 3-123
FT_RC: Rec. analog chann. 2	035161	
FT_RC: Rec. analog chann. 3	035162	
FT_RC: Rec. analog chann. 4	035163	
FT_RC: Rec. analog chann. 5	035164	
FT_RC: Rec. analog chann. 6	035165	
FT_RC: Rec. analog chann. 7	035166	
FT_RC: Rec. analog chann. 8	035167	
FT_RC: Rec. analog chann. 9	035168	

The user specifies the channel on which each physical variable is recorded.
The figure shown illustrates an overview of the assignment.

7 Settings
 (continued)

Cancelling a protection or control function

Definite-time overcurrent protection

Inverse-time overcurrent protection 1

Inverse-time overcurrent protection 2

Short-circuit direction determination

The user can adapt the device to the requirements of a particular high-voltage system by including the relevant protection or control functions in the device configuration and cancelling all others (removing them from the device configuration).

The following conditions must be met before cancelling a protection or control function:
\square The protection or control function in question must be disabled.
\square None of the functions of the protection or control function to be cancelled may be assigned to a binary input.
\square None of the signals of the protection or control function may be assigned to a binary output or an LED indicator.
\square No functions of the device function being cancelled can be selected in a list setting.

- None of the signals of the protection or control function may be linked to other signals by way of an ' m out of n ' parameter.

The protection or control function to which a parameter, a signal, or a measured value belongs is defined by the function group designation (example: 'LIMIT').

DTOC: Function group DTOC 056008

Cancelling function group DTOC or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden.

IDMT1: Function group IDMT1 056009

Cancelling function group IDMTx or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

IDMT2: Function group IDMT2 0_{05013}

Cancelling function group IDMT1 or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

$$
\begin{aligned}
& \text { SCDD: Function group SCDD } \\
& \text { Cancelling function group SCDD or including it in the configuration. } \\
& \text { If any function group is cancelled from the configuration, then all associated } \\
& \text { settings and signals are hidden. }
\end{aligned}
$$

SOTF: Function group SOTF
Cancelling function group SOTF or including it in the configuration.
If the function group is cancelled from the configuration, then all associated
settings and signals are hidden.
PSIG: Function group PSIG
Cancelling function group PSIG or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden.

7 Settings

(continued)

Auto-reclosing control

Automatic synchronism check

ASC: Function group ASC 056006
 Cancelling function group ASC or including it in the configuration. If any function group is cancelled from the configuration, then all associated settings and signals are hidden.

Ground fault direction determination using steady-state values
 Transient ground fault direction determination

Motor protection

Thermal overload protection

Unbalance protection

Time-voltage protection

Over-/underfrequency protection
GFDSS: Function group GFDSS 056012

Cancelling function group GFDSS or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden.

TGFD: Function group TGFD

Cancelling function group TGFD or including it in the configuration. If any function group is cancelled from the configuration, then all associated settings and signals are hidden.
MP: Function group MP
Cancelling function group MP or including it in the configuration.
If any function group is cancelled from the configuration, then all associated
settings and signals are hidden.
THERM: Function group THERM 056023

Cancelling function group THERM or including it in the configuration.
If the function group is cancelled from the configuration, then all associated settings and signals are hidden.
12>: Function group I2>
Cancelling function group I2> or including it in the configuration.
If any function group is cancelled from the configuration, then all associated
settings and signals are hidden.

$\mathrm{V}<>$: Function group $\mathrm{V}<>$
Cancelling function group $\mathrm{V}<>$ or including it in the configuration.
If the function group is cancelled from the configuration, then all associated
settings and signals are hidden.

$\mathrm{f}<>$: Function group $\mathrm{f}<\gg 056033$
Cancelling function group $\mathrm{f}<>$ or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden.

Power directional protection

Cancelling function group $\mathrm{P}<>$ or including it in the configuration. If any function group is cancelled from the configuration, then all associated settings and signals are hidden.

7 Settings

(continued)

Circuit breaker failure protection

Circuit Breaker Monitoring
CBF: Function group CBF
Cancelling function group CBF or including it in the configuration.
If the function group is cancelled from the configuration, then all associated
settings and signals are hidden.

CBM: Function group CBM 056062

Cancelling function group CBM or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden.

```
MCMON: Function group MCMON 056015
Cancelling function group MCMON or including it in the configuration.
If the function group is cancelled from the configuration, then all associated
settings and signals are hidden.
```

LIMIT: Function group LIMIT
Cancelling function group LIMIT or including it in the configuration.
If the function group is cancelled from the configuration, then all associated
settings and signals are hidden.

LOGIC: Function group LOGIC 056017
Cancelling function group LOGIC or including it in the configuration.
If the function group is cancelled from the configuration, then all associated settings and signals are hidden.

7 Settings
 (continued)

DEV01: Function group DEV01	210047
DEV02: Function group DEV02	210097
DEV03: Function group DEV03	210147

Cancelling function groups DEV01 to DEV03 or including them in the configuration. If any function group is cancelled from the configuration, then all associated settings and signals are hidden.

DEV01: Funct. type, signal	210034
DEV02: Funct. type, signal	210084
DEV03: Funct. type, signal	210134

Setting the function type of the signal.

Note:

If the IEC 870-5-101 communication protocol has been set, then the 'low address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN2.

DEV01: Inform. No., signal	210035
DEV02: Inform. No., signal	210085
DEV03: Inform. No., signal	210135

Setting the information number of the signal.

Note:

If the IEC 870-5-101 communication protocol has been set, then the 'high address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN3.

DEV01: Funct. type, command	210032
DEV02: Funct. type, command	210022

DEV03: Funct. type, command 210132
Setting the function type of the command.

Note:

If the IEC 870-5-101 communication protocol has been set, then the 'low address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN2.

DEV01: Inform. No., command	
DEV02: Inform. No., command	210033
DEV03: Inform. No., command	210133

DEV03: Inform. No., command 210133
Setting the information number of the command.

Note:

If the IEC 870-5-101 communication protocol has been set, then the 'high address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN3.

ILOCK: Function group ILOCK 250102
Cancelling function group ILOCK or including it in the configuration.
If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

7 Settings
 (continued)

Single-pole commands

Single-pole signals

CMD_1: Function group CMD_1	24925
Cancelling function group CMD_1 or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
CMD_1: Command C001 config.	20000 Fig: 3-301
CMD_1: Command C002 config.	20000
CMD_1: Command C003 config.	200014
CMD_1: Command C004 config.	200019
CMD_1: Command C005 config.	200024
CMD_1: Command C006 config.	200229
CMD_1: Command C007 config.	200034
CMD_1: Command C008 config.	200039
CMD_1: Command C009 config.	20004
CMD_1: Command C010 config.	200049
CMD_1: Command C011 config.	20054
CMD_1: Command C012 config.	200059
Cancelling commands C001 to C026 or including them in the configuration. If any command is cancelled, then all associated settings and signals are hidden, with the exception of this setting.	
SIG_1: Function group SIG_1	249
Cancelling function group SIG_1 or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
SIG_1: Signal S001 config.	226007 Fig: 3-302
SIG_1: Signal S002 config.	220015
SIG_1: Signal S003 config.	226023
SIG_1: Signal S004 config.	22631
SIG_1: Signal S005 config.	22603
SIG_1: Signal S006 config.	22647
SIG_1: Signal S007 config.	220055
SIG_1: Signal S008 config.	226038
SIG_1: Signal S009 config.	226071
SIG_1: Signal S010 config.	2260
SIG_1: Signal S011 config.	${ }^{226087}$
SIG_1: Signal S012 config.	22608
Cancelling signals S 001 to S 012 or including them in the configuration. If any signal is cancelled, then all associated settings and signals are hidden..	

7 Settings

(continued)

PC link

Binary outputs

Main function

Communication interface 1

Communication interface 2

7.1.3 Function Parameters

7.1.3.1 Global

> PC: Command blocking
> When command blocking is activated, commands are rejected from the PC interface.
> PC: Sig./meas.val.block.
> When signal and measured value blocking is activated, no signals or measured data are transmitted through the PC interface.

| COMM1: Command block. USER |
| :--- | :--- |
| When command blocking user is activated, commands are rejected from
 communication interface 1. |
| COMM1: Sig./meas.block.USER |
| When signal and measured value blocking user is activated, no signals or
 measured data are transmitted through communication interface COMM1. |

COMM2: Command block. USER

103172 Fig: 3-16
When command blocking user is activated, commands are rejected from communication interface 2.

COMM2: Sig./meas.block.USER

103076 Fig: 3-16
When signal and measured value blocking user is activated, no signals or measured data are transmitted through communication interface COMM2.

OUTP: Outp.rel.block USER	021014 Fig: 3-32
When this blocking is activated, all output relays are blocked.	

MAIN: Device on-line

003030 Fig: 3-59
Switching the device off-line or on-line. Some parameters can only be changed when protection is disabled.
MAIN: Test mode USER
When the test mode user is activated, signals or measured data for PC and communication interfaces are labeled 'test mode'.

MAIN: Nominal frequ. fnom
010030 Fig: 3-235
Setting for the nominal frequency of the protected system.
MAIN: Phase sequence \quad 010049 Fig: 3-132,

Setting the phase sequence A-B-C or A-C-B.(Alternative terminology:
Setting the rotary field direction, either clockwise or anticlockwise.)
MAIN: Time tag
For bay control function signals detected via binary signal inputs and conditioned with debouncing it is now possible to select whether the time tag for the signal is to be issued after debouncing or when the first pulse edge is detected. Furthermore it is defined whether entries in the operating data memory are made in chronological order or not.

MAIN: Inom C.T. prim.	$\begin{aligned} & 010001 \text { Fig: 3-47, } \\ & \text { 3-108, 3-265 } \end{aligned}$
Setting for the primary nominal current of the main current transformers for measurement of phase currents.	
MAIN: IN, nom C.T. prim.	010018 Fig: 3-48
Setting for the primary nominal current of the main current transformer for measurement of residual current.	
MAIN: Vnom V.T. prim.	$\begin{gathered} 010002 \text { Fig: } 3-51, \\ 3-108 \end{gathered}$
Setting for the primary nominal voltage of the system transformer for measurement of phase-to-ground and phase-to-phase voltages.	
MAIN: VNG, nom V.T. prim.	010027 Fig: 3-52
Setting for the primary nominal voltage of the system transformer for measurement of neutral-point displacement voltage.	
MAIN: Vref,nom V.T. prim.	010100 Fig: 3-53
Setting for the primary nominal voltage of the system transformer for measurement of reference voltage for automatic synchronism check.	
MAIN: Inom prim. NCIT	010037
Setting the primary nominal current of the non-conventional instrument transformer (NCIT) for measurement of phase currents.	
MAIN: IN, nom prim. NCIT	010039
Setting the primary nominal current of the NCIT for measurement of residual current.	
MAIN: Vnom prim. NCIT	010038
Setting the primary nominal voltage of the NCIT for measurement of phase-to-ground and phase-to-phase voltages.	
MAIN: Ph. err. VAG, 1 NCIT MAIN: Ph. err. VBG, 1 NCIT MAIN: Ph. err. VCG, 1 NCIT	010180 010181 010182
Setting the phase error of the system transformer for each phase-to-ground voltage in voltage measuring channel 1 of the NCIT.	
MAIN: Ph. err. VAG,2 NCIT MAIN: Ph.e.VBG/Vref,2 NCIT MAIN: Ph. err. VAG, 2 NCIT	$\begin{aligned} & \hline 010192 \\ & 010193 \\ & 010194 \end{aligned}$
Setting the phase error of the system transformer for each phase-to-ground voltage (or for the reference voltage Vref, with ASC activated) in voltage measuring channel 2 of the NCIT.	
MAIN: Channel select. NCIT	010187
Activating voltage measuring channel 1 or 2 of the NCIT. The setting 'Without' (voltage measuring channel) is also possible.	
MAIN: Inom device	010003 Fig: 3-46
Setting for the secondary nominal current of the system transformer for measurement of phase currents. This also corresponds to the nominal device current.	
MAIN: IN, nom device	010026 Fig: 3-46
Setting for the secondary nom measurement of residual curre device current.	

7 Settings

MAIN: Vnom V.T. sec.
010009 Fig: 3-46
Setting for the secondary nominal voltage of the system transformer for measurement of phase-to-ground and phase-to-phase voltages.

MAIN: VNG,nom V.T. sec. 010028 Fig: 3-46

Setting for the secondary nominal voltage of the system transformer for measurement of neutral-point displacement voltage.
MAIN: Vref,nom V.T. sec.
Setting for the secondary nominal voltage of the system transformer for measurement of reference voltage for automatic synchronism check.
MAIN: Conn. meas. circ. IP 010004 Fig: 3-46
Short-circuit direction determination depends on the connection of the measuring circuits. If the connection is as shown in Chapter 5 , then the setting must be 'Standard', if the P132's 'Forward' decision is to be in the direction of the outgoing feeder. If the connection direction is reversed or given a connection scheme according to Chapter 5 - if the 'Forward' decision is to be in the busbar direction, then the setting must be 'Opposite'.

MAIN: Conn. meas. circ. IN
 010019 Fig: 3-46

Direction determination of the ground fault measuring systems depends on the connection of the measuring circuits. If the connection is as shown in Chapter 5, then the setting must be 'Standard', if the P132's 'Forward' decision is to be in the direction of the outgoing feeder. If the connection direction is reversed or - given a connection scheme according to Chapter 5 - if the 'Forward' decision is to be in the busbar direction, then the setting must be 'Opposite'.
MAIN: Meas. direction P,Q 006096 Fig: $3-54$

This parameter allows inverting the sign for the following measured operating values:

MAIN: Active power P prim. (004 050)
MAIN: Reac. power Q prim. (004 052)
MAIN: Active power P p.u. (004 051)
MAIN: Reac. power Q p.u. (004 053)
MAIN: Meas. value rel. IP 011030 Fig: 3-47

Setting the minimum current that must be exceeded so that measured operating values of the phase currents and, if applicable, derived currents are displayed.

MAIN: Meas. value rel. IN

Setting the minimum current that must be exceeded so that the measured operating value of the residual current is displayed.
MAIN: Meas. value rel. V

Setting the minimum voltage that must be exceeded so that measured operating values of the phase-to-ground voltages, phase-to-phase voltages, and, if applicable, derived voltages are displayed.

MAIN: Meas. val. rel. VNG

Setting the minimum voltage that must be exceeded so that the measured operating value of the neutral-point displacement voltage is displayed.
MAIN: Meas. val. rel. Vref
011034 Fig: 3-53
Setting the minimum voltage that must be exceeded so that the measured operating value of the reference voltage for the automatic synchronism check is displayed.

MAIN: Op. mode energy cnt.	010138
Selection of the procedure to determine the active and reactive energy output. $1^{\text {st }}$ procedure: Data acquisition every 2 s (approximately). $2^{\text {nd }}$ procedure: Data acquisition every 100ms (approximately)	
MAIN: Settl. t. IP,max, del	010113 Fig: 3-47
Setting for the time after which the delayed maximum current display shall reach 95% of the maximum current $I_{P, \max }$.	
MAIN: Fct.assign. reset 1	005248 Fig: 3-83
Assigning specific memories and counters which are to be reset jointly if MAIN: Group reset 1 USER is enabled.	
MAIN: Fct.assign. reset 2	005249 Fig: 3-83
Assigning specific memories and counters which are to be reset jointly if MAIN: Group reset 2 USER is enabled.	
MAIN: Fct.assign. block. 1	021021 Fig: 3-64
Assignment of functions that will be blocked simultaneously when blocking input 1 (MAIN: Blocking 1 EXT) is activated.	
MAIN: Fct.assign. block. 2	021022 Fig: 3-64
Assignment of functions that will be blocked simultaneously when blocking input 2 (MAIN: Blocking 2 EXT) is activated.	
MAIN: Trip cmd.block. USER	021012 Fig: 3-74
Blocking the trip commands from the local control panel.	
MAIN: Fct.assig.trip cmd. 1	021001 Fig: 3-74
Assignment of signals that trigger trip command 1.	
MAIN: Fct.assig.trip cmd. 2	021002 Fig: 3-74
Assignment of signals that trigger trip command 2.	
MAIN: Min.dur. trip cmd. 1	021003 Fig: 3-74
Setting for the minimum duration of trip command 1.	
MAIN: Min.dur. trip cmd. 2	021004 Fig: 3-74
Setting for the minimum duration of trip command 2.	
MAIN: Latching trip cmd. 1	021023 Fig: 3-74
Specification as to whether trip command 1 should latch.	
MAIN: Latching trip cmd. 2	021024 Fig: 3-74
Specification as to whether trip command 2 should latch.	
MAIN: Close cmd.pulse time	015067 Fig: 3-67
Setting for the duration of the close command.	
MAIN: Sig. asg. CB open	021017 Fig: 3-263
Definition of the binary signal used by the P132 to evaluate the 'CB open' position signal.	
MAIN: Inp.asg. ctrl.enabl.	221057 Fig: 3-78
Definition of the binary signal used to issue a general command output enable.	
MAIN: Debounce time gr. 1 MAIN: Debounce time gr. 2 MAIN: Debounce time gr. 3	$\begin{aligned} & 221200 \text { Fig: } 3-42 \\ & 221203 \\ & 221206 \end{aligned}$
Setting the debouncing time.	

7 Settings

(continued)

7 Settings

(continued)

Parameter subset selection

PSS: Control via USER
If parameter subset selection is to be handled from the integrated local
control panel rather than via binary signal inputs, choose the setting 'Yes'.

PSS: Param.subs.sel. USER $\quad 003000$ Fig: 3-86
Selection of the parameter subset from the local control panel.
PSS: Keep time
003063 Fig: 3-86
The setting of this timer stage is relevant only if parameter subset selection is carried out via binary signal inputs. Any voltage-free pause that may occur during selection is bridged. If, after this time period has elapsed, no binary signal input has yet been set, then the parameter subset selected from the local control panel shall apply.

SFMON: Fct. assign. warning

Selection of the signals whose appearance shall result in the signals 'Warning (LED)' and 'Warning (relay)' and in the activation of the LED indicator labeled 'ALARM'. Signals caused by faulty hardware and leading to a blocking of the device are not configurable. They always result in the above signals and indication.

SFMON: Mon.sig. retention

021018 Page: 3-139
This setting determines how long monitoring signals remain in the monitoring signal memory before a reset occurs.

7 Settings

(continued)

FT_DA: Line length

This setting defines the distance in km that the fault locator interprets as 100 \% when calculating the line distance to a fault.

FT_DA: Line reactance

 010012 Fig: 3-109This setting defines the reactance X that the fault locator interprets as 100 \% when calculating the line distance to a fault.

FT_DA: Angle kG
Angle setting of the complex ground factor \underline{k}_{G}.
$\underline{k}_{G}=\frac{\underline{Z}_{0}-\underline{Z}_{L}}{3 \cdot \underline{Z}_{L}}$
\underline{Z}_{0} : zero-sequence impedance
\underline{Z}_{L} : positive-sequence impedance
angle $k_{G}=\arctan \frac{X_{0}-X_{L}}{R_{0}-R_{L}}-\arctan \frac{X_{L}}{R_{L}}$
R_{0} : resistance component of zero-sequence impedance
R_{L} : resistance component of positive-sequence impedance
X_{0} : reactance component of zero-sequence impedance
X_{L} : reactance component of positive-sequence impedance
If the calculated value cannot be set exactly, then a next smaller value should be set.
FT_DA: Abs. value kG
Setting the absolute value of the complex ground factor \underline{k}_{G}.
$\underline{k}_{G}=\frac{\underline{Z}_{0}-\underline{Z}_{L}}{3 \cdot \underline{Z}_{L}}$
\underline{Z}_{0} : zero-sequence impedance
\underline{Z}_{L} : positive-sequence impedance
$\left|\underline{k}_{G}\right|=\frac{\sqrt{\left(X_{0}-X_{L}\right)^{2}+\left(R_{0}-R_{L}\right)^{2}}}{3 \cdot \sqrt{R_{L}{ }^{2}+X_{L}{ }^{2}}}$
R_{0} : resistance component of zero-sequence impedance
R_{L} : resistance component of positive-sequence impedance
X_{0} : reactance component of zero-sequence impedance
X_{L} : reactance component of positive-sequence impedance
If the calculated value cannot be set exactly, then a next smaller value should be set.
FT_DA: Start data acquisit.
This setting determines at what point during a fault the acquisition of fault data should take place.

7 Settings

(continued)

| FT_DA: Output fault locat. |
| :--- | :--- |
| Setting for the conditions under which a fault location output occurs. |

Fault recording

: Fct. assig. trigger	Oasces Fig: 3-111
This setting defines the signals that will trigger fault recording and fault data acquisition.	
FT_RC: $1>$	0170055 Fig: 3-111
This setting defines the threshold value of the phase currents that will trigger fault recording and fault data acquisition.	
F_RC: Prefault time	008078 Fig: 3-113
Setting for the time during which data will be recorded before a fault occurs (pre-fault recording time).	
FT_RC: Post-fault time	00309 Fig: 3-113
Setting for the time during which data will be recorded after the end of a fault (post-fault recording time).	
FT_RC: Max. recording time	003075 Fig: 3-113
Setting for the maximum reco and post-fault recording tim	

7 Settings

(continued)

Main function

Definite-time overcurrent protection

Inverse-time overcurrent protection

Short-circuit direction determination

Switch on to fault protection

Auto-reclosing control
PSIG: General enable USER 015004 Fig: 3-148

Enable/disable the protective signaling.

Automatic synchronism check

ASC: General enable USER

Enable/disable the automatic synchronism check.
ASC: Transm.cycle,meas.v.
101212 Fig: 3-181
Cycle period for transmission of ASC measured values.

7 Settings

(continued)

Ground fault direction determination using steady-state values

Transient ground fault direction determination

Motor protection

Thermal overload protection

Unbalance protection

Time-voltage protection

Over-/underfrequency protection

GFDSS: General enable USER	016060 Fig: 3-183
Enable/disable the ground fault direction determination by steady-state values.	
GFDSS: Operating mode	016000 Fig: 3-183
This setting specifies whether current evaluation will be perfo	

TGFD: General enable USER	016040 Fig: 3-197
Enable/disable the transient ground fault direction determination.	

MS: General enable USER	017059 Fig: 3-204
Enable/disable the motor protection function.	
MS: Hours_Run >	025156
Setting the maximum hours for running time.	

THERM: General enable USER	022050 Fig: 3-214
Enable/disable the thermal overload protection function.	
THERM: Operating mode	022063 Fig: 3-218
Setting the operating mode of thermal overload protection.	

I2>: General enable USER	018090 Fig: 3-220
Enable/disable the unbalance protection function.	

V<>: General enable USER	023030 Fig: 3-222
Enable/disable the time-voltage protection function.	

Power directional protection

P<>: General enable USER	014220 Fig: 3-236
Enable/disable the power directional protection function.	

7 Settings

(continued)

Circuit breaker failure protection

CBF: General enable USER	022080 Fig: 3-250
Enable/disable the circuit breaker failure protection function.	
CBF: Start bei manu. Aus	022154 Fig: 3-254
Setting that a manual trip signal will also be used as a start criterion.	
CBF: Fct.assignm. CBAux.	022159 Fig: 3-254
Selection of trip signals - ass addition to current flow monit are evaluated.	

CBF: 1>	022160	$\begin{aligned} & \text { Fig: } 3-252, \\ & 3-254,3-258, \end{aligned}$

Setting the threshold to detect a break in current flow.

CBF: t1 3p

Setting 1st CBF timer stage to 3-pole operating mode.
CBF: t2
022166 Fig: 3-255
Setting 2nd CBF timer stage.
CBF: Min.dur. trip cmd.t1 022167 Fig: 3-256

Setting 1st timer stage for minimum duration of trip command.
CBF: Min.dur. trip cmd.t2
Setting 2nd timer stage for minimum duration of trip command.

CBF: Latching trip cmd.t1

022169 Fig: 3-256
The 1st timer stage trip command, set to latch mode, will remain active until reset by operating parameters or through an appropriately configured binary signal input.

```
CBF: Latching trip cmd.t2

The 2nd timer stage trip command, set to latch mode, will remain active until reset by operating parameters or through an appropriately configured binary signal input.

\section*{CBF: Delay/starting trig.}

The signal CBF: Trip signal is issued when this timer stage's time duration has elapsed.
CBF: Delay/fault beh. CB
022171 Fig: 3-258
If during this delay time period the circuit breaker does not provide a signal from its auxiliary contacts that it is closed, then faults behind the CB are recognized through the current criterion (see section "Fault behind CB protection").
CBF: Delay/CB sync.superv 022172 Fig: 3-259
Setting the delay time period to bridge circuit breaker operate times during CB synchronization supervision.

\section*{7 Settings \\ (continued)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CBM: General enable USER \\
Enable/disable circuit breaker monitoring.
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CBM: Blocking USER \\
Setting a temporary blocking of circuit breaker monitoring during protection injection testing.
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CBM: Sig. asg. trip cmd. \\
Using the setting for external devices the trip command issued by the control function may be linked to the trip command 1 issued by the protection by assigning the trip command issued by the control function by this parameter.
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CBM: Operating mode \\
This setting defines starting criteria for circuit breaker monitoring. To evaluate all trip commands issued by the protection device "with Trip cmd. only" must be selected. For further evaluation of operational trip commands the additional CB auxiliary contact "CB sig.EXT or trip" is used.
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CBM: Inom,CB \\
Setting the CB nominal current.
\end{tabular}}} \\
\hline & \\
\hline CBM: Perm. CB op. Inom, CB & 022013 Fig: 3-265 \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CBM: Med. curr. Itrip,CB \\
Setting the average CB disconnection current.
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Note: In general valid only for pneumatically operated CBs.} \\
\hline CBM: Perm. CB op. Imed,C & 265 \\
\hline
\end{tabular}

Setting the maximum number of CB operations at average disconnection current.

Note: In general valid only for pneumatically operated CBs.
CBM: Max. curr. Itrip,CB

Setting the maximum CB disconnection current.
CBM: Perm. CB op. Imax, CB 022017 Fig: 3-265

Setting the maximum number of CB operations permitted at maximum CB disconnection current.

CBM: No. CB operations > 022019 Fig: 3-267
Setting the maximum number of mechanical CB switching operations.
CBM: Remain No. CB op. <
022020 Fig: 3-266
Setting the warning stage with the number of remaining CB operations at CB nominal current.

CBM: \(\Sigma\) ltrip>
022022
Setting the warning stage with the accumulated CB disconnection current values.
CBM: \(\Sigma\) Itrip**.................
022081
Setting the warning stage with the accumulated CB disconnection current values to the second power.

\section*{7 Settings}
(continued)

\begin{tabular}{|c|c|}
\hline LIMIT: \(<\) & 014021 Fig: 3-273 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of the first undercurrent stage for limit value monitoring.} \\
\hline LIMIT: \(\ll\) & 014022 Fig: 3-273 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of the second undercurrent stage for limit value monitoring.} \\
\hline LIMIT: tI< & 014033 Fig: 3-273 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of the first undercurrent stage for limit value monitoring.} \\
\hline LIMIT: tl<< & 014034 Fig: 3-273 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of the second undercurrent stage for limit value monitoring.} \\
\hline LIMIT: VPG> & 014023 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of overvoltage stage VPG> for limit value monitoring.} \\
\hline LIMIT: VPG>> & 014024 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of overvoltage stage VPG>> for limit value monitoring.} \\
\hline LIMIT: tVPG> & 014035 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overvoltage stage VPG> for limit value monitoring.} \\
\hline LIMIT: tVPG>> & 014036 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overvoltage stage VPG>> for limit value monitoring.} \\
\hline LIMIT: VPG< & 014025 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of undervoltage stage VPG<for limit value monitoring.} \\
\hline LIMIT: VPG<< & 014026 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of undervoltage stage VPG<< for limit value monitoring.} \\
\hline LIMIT: tVPG< & 014037 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of undervoltage stage VPG<for limit value monitoring.} \\
\hline LIMIT: tVPG<< & 014038 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of undervoltage stage VPG<< for limit value monitoring.} \\
\hline LIMIT: VPP> & 014027 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of overvoltage stage VPP> for limit value monitoring.} \\
\hline LIMIT: VPP>> & 014028 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of overvoltage stage VPP>> for limit value monitoring.} \\
\hline LIMIT: tVPP> & 014039 Fig: 3-274 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overvoltage stage VPP> for limit value monitoring.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
LIMIT: tVPP>> 014040 Fig: 3-274

Setting for the operate delay of overvoltage stage VPP>> for limit value monitoring.
LIMIT: VPP<

Setting for the operate value of undervoltage stage VPP< for limit value monitoring.
LIMIT: VPP<<
Setting for the operate value of undervoltage stage VPP<< for limit value monitoring.
LIMIT: tVPP< 014041 Fig: 3-274

Setting for the operate delay of undervoltage stage VPP< for limit value monitoring.


Setting for the operate delay of undervoltage stage VPP<< for limit value monitoring.
LIMIT: VNG>

Setting for the operate value of overvoltage stage VNG> for limit value monitoring.

\section*{LIMIT: VNG>>}

014044 Fig: 3-275
Setting for the operate value of overvoltage stage VNG>> for limit value monitoring.
LIMIT: tVNG> \(\quad 014045\) Fig: 3-275

Setting for the operate delay of overvoltage stage VNG> for limit value monitoring.
LIMIT: tVNG>>
014046 Fig: 3-275
Setting for the operate delay of overvoltage stage VNG>> for limit value monitoring.
LIMIT: Vref> 042144 Fig: 3-277

Setting the operate value of overvoltage stage Vref> for limit value monitoring. (Relevant only with circuit board 5V, i.e. ordering option Vnom \(=50\) to 130 V \(\{5\) poles \(\}\) for ASC).
LIMIT: Vref>> 042 145 Fig: 3-277

Setting the operate value of overvoltage stage Vref>> for limit value monitoring. (Relevant only with circuit board 5V).
LIMIT: tVref> 042148 Fig: 3-277

Setting the operate delay of overvoltage stage Vref> for limit value monitoring. (Relevant only with circuit board 5V).
LIMIT: tVref>> 042149 Fig: 3-277

Setting the operate delay of overvoltage stage Vref>> for limit value monitoring. (Relevant only with circuit board 5 V ).
LIMIT: Vref<
042146 Fig: 3-277
Setting the operate value of undervoltage stage Vref< for limit value monitoring. (Relevant only with circuit board 5V).
LIMIT: Vref<< 042147 Fig: 3-277

Setting the operate value of undervoltage stage Vref<< for limit value monitoring. (Relevant only with circuit board 5 V ).
LIMIT: tVref<
Setting the operate delay of undervoltage stage Vref< for limit value monitoring. (Relevant only with circuit board 5V).
\begin{tabular}{|c|c|}
\hline LIMIT: tVref<< & 042151 Fig: 3-277 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of undervoltage stage Vref \(\ll\) for limit value monitoring. (Relevant only with circuit board 5 V ).} \\
\hline LIMIT: IDC,lin> & 014110 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value IDC, lin> for monitoring the linearized direct current.} \\
\hline LIMIT: IDC, lin>> & 014111 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value IDC,lin>> for monitoring the linearized direct current.} \\
\hline LIMIT: tIDC,lin> & 014112 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overcurrent stage IDC, lin>.} \\
\hline LIMIT: tIDC,lin>> & 014113 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overcurrent stage IDC, lin>>.} \\
\hline LIMIT: IDC, lin< & 014114 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value IDC, lin< for monitoring the linearized direct current.} \\
\hline LIMIT: IDC, Iin<< & 014115 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value IDC, lin<< for monitoring the linearized direct current.} \\
\hline LIMIT: tIDC,lin< & 014116 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of undercurrent stage IDC, lin<.} \\
\hline LIMIT: tIDC,lin<< & 014117 Fig: 3-276 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of undercurrent stage IDC, lin<<.} \\
\hline LIMIT: T> & 014100 Fig: 3-278 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of temperature monitoring \(T>\).} \\
\hline LIMIT: T>> & 014101 Fig: 3-278 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of temperature monitoring T >>.} \\
\hline LIMIT: tT> & 014103 Fig: 3-278 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of temperature monitoring \(\mathrm{T}>\).} \\
\hline LIMIT: \(\mathrm{tT} \gg\) & 014104 Fig: 3-278 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of temperature monitoring \(\mathrm{T} \gg\).} \\
\hline LIMIT: T< & 014105 Fig: 3-278 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of temperature monitoring \(\mathrm{T}<\).} \\
\hline LIMIT: T<< & 014106 Fig: 3-278 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of temperature monitoring \(\mathrm{T} \ll\).} \\
\hline LIMIT: tT < & 014107 Fig: 3-278 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of temperature monitoring \(\mathrm{T}<\).} \\
\hline LIMIT: \(\mathrm{tT} \ll\) & 014108 Fig: 3-278 \\
\hline Setting for the operate delay of temperature monitoring \(\mathrm{T} \ll\). & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline LIMIT: T1> & 014120 Fig: 3-279 \\
\hline LIMIT: T2> & 014130 \\
\hline LIMIT: T3> & 014140 \\
\hline LIMIT: T4> & 014150 \\
\hline LIMIT: T5> & 014160 \\
\hline LIMIT: T6> & 014170 \\
\hline LIMIT: T7> & 014180 \\
\hline LIMIT: T8> & 014190 \\
\hline LIMIT: T9> & 015130 \\
\hline \multicolumn{2}{|l|}{Setting the operate value of temperature monitoring Tn>for temperature sensor Tn.} \\
\hline LIMIT: T1>> & 014121 Fig: 3-279 \\
\hline LIMIT: T2>> & 014131 \\
\hline LIMIT: T3>> & 014141 \\
\hline LIMIT: T4>> & 014151 \\
\hline LIMIT: T5>> & 014161 \\
\hline LIMIT: T6>> & 014171 \\
\hline LIMIT: T7>> & 014181 \\
\hline LIMIT: T8>> & 014191 \\
\hline LIMIT: T9>> & 015131 \\
\hline \multicolumn{2}{|l|}{Setting the operate value of temperature monitoring Tn>> for temperature sensor Tn.} \\
\hline LIMIT: tT1> & 014122 Fig: 3-279 \\
\hline LIMIT: tT2> & 014132 \\
\hline LIMIT: tT3> & 014142 \\
\hline LIMIT: tT4> & 014152 \\
\hline LIMIT: tT5> & 014162 \\
\hline LIMIT: tT6> & 014172 \\
\hline LIMIT: tT7> & 014182 \\
\hline LIMIT: tT8> & 014192 \\
\hline LIMIT: tT9> & 015132 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of temperature monitoring \(\mathrm{Tn}>\) for temperature sensor Tn.} \\
\hline LIMIT: tT1>> & 014123 Fig: 3-279 \\
\hline LIMIT: tT2>> & 014133 \\
\hline LIMIT: tT3>> & 014143 \\
\hline LIMIT: tT4>> & 014153 \\
\hline LIMIT: tT5>> & 014163 \\
\hline LIMIT: tT6>> & 014173 \\
\hline LIMIT: tT7>> & 014183 \\
\hline LIMIT: tT8>> & 014193 \\
\hline LIMIT: tT9>> & 015133 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of temperature monitoring Tn>> for temperature sensor Tn.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline LIMIT: T1< & 014124 Fig: 3-279 \\
\hline LIMIT: T2< & 014134 \\
\hline LIMIT: T3< & 014144 \\
\hline LIMIT: T4< & 014154 \\
\hline LIMIT: T5< & 014164 \\
\hline LIMIT: T6< & 014174 \\
\hline LIMIT: T7< & 014184 \\
\hline LIMIT: T8< & 014194 \\
\hline LIMIT: T9< & 015134 \\
\hline \multicolumn{2}{|l|}{Setting the operate value of temperature monitoring \(\mathrm{Tn}<\) for temperature sensor Tn.} \\
\hline LIMIT: T1<< & 014125 Fig: 3-279 \\
\hline LIMIT: T2<< & 014135 \\
\hline LIMIT: T3<< & 014145 \\
\hline LIMIT: T4<< & 014155 \\
\hline LIMIT: T5<< & 014165 \\
\hline LIMIT: T6<< & 014175 \\
\hline LIMIT: T7<< & 014185 \\
\hline LIMIT: T8<< & 014195 \\
\hline LIMIT: T9<< & 015135 \\
\hline \multicolumn{2}{|l|}{Setting the operate value of temperature monitoring \(\mathrm{Tn} \ll\) for temperature sensor Tn.} \\
\hline LIMIT: tT1< & 014126 Fig: 3-279 \\
\hline LIMIT: tT2< & 014136 \\
\hline LIMIT: tT3< & 014146 \\
\hline LIMIT: tT4< & 014156 \\
\hline LIMIT: tT5< & 014166 \\
\hline LIMIT: tT6< & 014176 \\
\hline LIMIT: tT7< & 014186 \\
\hline LIMIT: tT8< & 014196 \\
\hline LIMIT: tT9< & 015136 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of temperature monitoring \(\mathrm{Tn}<\) for temperature sensor Tn.} \\
\hline LIMIT: tT1<< & 014127 Fig: 3-279 \\
\hline LIMIT: tT2<< & 014137 \\
\hline LIMIT: tT3<< & 014147 \\
\hline LIMIT: tT4<< & 014157 \\
\hline LIMIT: tT5<< & 014167 \\
\hline LIMIT: tT6<< & 014177 \\
\hline LIMIT: tT7<< & 014187 \\
\hline LIMIT: tT8<< & 014197 \\
\hline LIMIT: tT9<< & 015137 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of temperature monitoring \(\mathrm{Tn} \ll\) for temperature sensor Tn.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline LOGIC: General enable USER & 031099 Fig: 3-284 \\
\hline \multicolumn{2}{|l|}{Enable/disable the logic function.} \\
\hline LOGIC: Set 1 USER & \[
\begin{aligned}
& 034030 \text { Fig: 3-283, } \\
& 3-290
\end{aligned}
\] \\
\hline LOGIC: Set 2 USER & 034031 \\
\hline LOGIC: Set 3 USER & 034032 \\
\hline LOGIC: Set 4 USER & 034033 \\
\hline LOGIC: Set 5 USER & 034034 \\
\hline LOGIC: Set 6 USER & 034035 \\
\hline LOGIC: Set 7 USER & 034036 \\
\hline LOGIC: Set 8 USER & 034037 Fig: 3-290 \\
\hline \multicolumn{2}{|l|}{These settings define the static input conditions for the logic function.} \\
\hline LOGIC: Fct.assignm. outp. 1 & \[
\begin{aligned}
& 030000 \text { Fig: 3-164, } \\
& 3-284
\end{aligned}
\] \\
\hline LOGIC: Fct.assignm. outp. 2 & 030004 Fig: 3-164 \\
\hline LOGIC: Fct.assignm. outp. 3 & 030008 \\
\hline LOGIC: Fct.assignm. outp. 4 & 030012 \\
\hline LOGIC: Fct.assignm. outp. 5 & 030016 \\
\hline LOGIC: Fct.assignm. outp. 6 & 030020 \\
\hline LOGIC: Fct.assignm. outp. 7 & 030024 \\
\hline LOGIC: Fct.assignm. outp. 8 & 030028 \\
\hline LOGIC: Fct.assignm. outp. 9 & 030032 \\
\hline LOGIC: Fct.assignm. outp. 10 & 030036 \\
\hline LOGIC: Fct.assignm. outp. 11 & 030040 \\
\hline LOGIC: Fct.assignm. outp. 12 & 030044 \\
\hline LOGIC: Fct.assignm. outp. 13 & 030048 \\
\hline LOGIC: Fct.assignm. outp. 14 & 030052 \\
\hline LOGIC: Fct.assignm. outp. 15 & 030056 \\
\hline LOGIC: Fct.assignm. outp. 16 & 030060 \\
\hline LOGIC: Fct.assignm. outp. 17 & 030064 \\
\hline LOGIC: Fct.assignm. outp. 18 & 030068 \\
\hline LOGIC: Fct.assignm. outp. 19 & 030072 \\
\hline LOGIC: Fct.assignm. outp. 20 & 030076 \\
\hline LOGIC: Fct.assignm. outp. 21 & 030080 \\
\hline LOGIC: Fct.assignm. outp. 22 & 03008 \\
\hline LOGIC: Fct.assignm. outp. 23 & 030088 \\
\hline LOGIC: Fct.assignm. outp. 24 & 030092 \\
\hline LOGIC: Fct.assignm. outp. 25 & 030096 \\
\hline LOGIC: Fct.assignm. outp. 26 & 031000 \\
\hline LOGIC: Fct.assignm. outp. 27 & 031004 \\
\hline LOGIC: Fct.assignm. outp. 28 & 031008 \\
\hline LOGIC: Fct.assignm. outp. 29 & 031012 \\
\hline LOGIC: Fct.assignm. outp. 30 & 031016 \\
\hline LOGIC: Fct.assignm. outp. 31 & 031020 \\
\hline LOGIC: Fct.assignm. outp. 32 & 031024 \\
\hline
\end{tabular}

These settings assign functions to the outputs.

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|}
\hline LOGIC: Op. mode t output 1 & 030001 & \[
\begin{aligned}
& \text { Fig: 3-164, } \\
& 3-284
\end{aligned}
\] \\
\hline LOGIC: Op. mode t output 2 & 030005 & Fig: 3-164 \\
\hline LOGIC: Op. mode t output 3 & 030009 & \\
\hline LOGIC: Op. mode t output 4 & 030013 & \\
\hline LOGIC: Op. mode t output 5 & 030017 & \\
\hline LOGIC: Op. mode t output 6 & 030021 & \\
\hline LOGIC: Op. mode t output 7 & 03025 & \\
\hline LOGIC: Op. mode t output 8 & 030029 & \\
\hline LOGIC: Op. mode t output 9 & 030033 & \\
\hline LOGIC: Op. mode t output 10 & 030037 & \\
\hline LOGIC: Op. mode t output 11 & 030041 & \\
\hline LOGIC: Op. mode t output 12 & 03045 & \\
\hline LOGIC: Op. mode t output 13 & 030049 & \\
\hline LOGIC: Op. mode t output 14 & 030053 & \\
\hline LOGIC: Op. mode t output 15 & 030057 & \\
\hline LOGIC: Op. mode t output 16 & 030061 & \\
\hline LOGIC: Op. mode t output 17 & 030065 & \\
\hline LOGIC: Op. mode t output 18 & 030069 & \\
\hline LOGIC: Op. mode t output 19 & 030073 & \\
\hline LOGIC: Op. mode t output 20 & 030071 & \\
\hline LOGIC: Op. mode t output 21 & 030081 & \\
\hline LOGIC: Op. mode t output 22 & 030085 & \\
\hline LOGIC: Op. mode t output 23 & 030089 & \\
\hline LOGIC: Op. mode t output 24 & 030093 & \\
\hline LOGIC: Op. mode t output 25 & 030097 & \\
\hline LOGIC: Op. mode t output 26 & 031001 & \\
\hline LOGIC: Op. mode t output 27 & 031005 & \\
\hline LOGIC: Op. mode t output 28 & 031009 & \\
\hline LOGIC: Op. mode t output 29 & 031013 & \\
\hline LOGIC: Op. mode t output 30 & 031017 & \\
\hline LOGIC: Op. mode t output 31 & 031021 & \\
\hline LOGIC: Op. mode t output 32 & 031025 & \\
\hline LOGIC: Op. mode t output 32 & 031025 & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline LOGIC: Time 11 output 1 & 030002 Fig: 3-284 \\
\hline LOGIC: Time t1 output 2 & 030006 \\
\hline LOGIC: Time t1 output 3 & 030010 \\
\hline LOGIC: Time t1 output 4 & 030014 \\
\hline LOGIC: Time t1 output 5 & 030018 \\
\hline LOGIC: Time t1 output 6 & 030022 \\
\hline LOGIC: Timet1 output 7 & 030226 \\
\hline LOGIC: Time t1 output 8 & 030030 \\
\hline LOGIC: Time t1 output 9 & 030034 \\
\hline LOGIC: Time t1 output 10 & 030038 \\
\hline LOGIC: Time t1 output 11 & 030042 \\
\hline LOGIC: Time t1 output 12 & 030046 \\
\hline LOGIC: Time t1 output 13 & 030050 \\
\hline LOGIC: Time t1 output 14 & 0300 \\
\hline LOGIC: Time t1 output 15 & 030058 \\
\hline LOGIC: Time t1 output 16 & 030062 \\
\hline LOGIC: Time t1 output 17 & 030066 \\
\hline LOGIC: Time t1 output 18 & 030070 \\
\hline LOGIC: Time t1 output 19 & 030074 \\
\hline LOGIC: Time t1 output 20 & 030078 \\
\hline LOGIC: Time t1 output 21 & 030082 \\
\hline LOGIC: Time t1 output 22 & 030086 \\
\hline LOGIC: Time t1 output 23 & 030090 \\
\hline LOGIC: Time t1 output 24 & 030094 \\
\hline LOGIC: Time t1 output 25 & 030098 \\
\hline LOGIC: Time t1 output 26 & 031002 \\
\hline LOGIC: Time t1 output 27 & 31006 \\
\hline LOGIC: Time t1 output 28 & 1010 \\
\hline LOGIC: Time t1 output 29 & 1014 \\
\hline LOGIC: Time t1 output 30 & 031018 \\
\hline LOGIC: Time t1 output 31 & 031022 \\
\hline LOGIC: Time t1 output 32 & 031026 \\
\hline
\end{tabular}

Settings of timer stage t 1 for the respective outputs.

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline LOGIC: Time t2 output 1 & 030003 Fig: 3-284 \\
\hline LOGIC: Time t2 output 2 & 030007 \\
\hline LOGIC: Time t2 output 3 & 030011 \\
\hline LOGIC: Time t2 output 4 & 030015 \\
\hline LOGIC: Time t2 output 5 & 030019 \\
\hline LOGIC: Time t2 output 6 & \({ }^{030} 023\) \\
\hline LOGIC: Time t2 output 7 & 030027 \\
\hline LOGIC: Time t2 output 8 & 030031 \\
\hline LOGIC: Time t2 output 9 & 030035 \\
\hline LOGIC: Time t2 output 10 & 030039 \\
\hline LOGIC: Time t2 output 11 & 030043 \\
\hline LOGIC: Time t2 output 12 & 030047 \\
\hline LOGIC: Time t2 output 13 & 030051 \\
\hline LOGIC: Time t2 output 14 & 030055 \\
\hline LOGIC: Time t2 output 15 & 030059 \\
\hline LOGIC: Time t2 output 16 & 030063 \\
\hline LOGIC: Time t2 output 17 & 030067 \\
\hline LOGIC: Time t2 output 18 & 030071 \\
\hline LOGIC: Time t2 output 19 & 030075 \\
\hline LOGIC: Time t2 output 20 & 030079 \\
\hline LOGIC: Time t2 output 21 & 030083 \\
\hline LOGIC: Time t2 output 22 & 030087 \\
\hline LOGIC: Time t2 output 23 & 030091 \\
\hline LOGIC: Time t2 output 24 & 030095 \\
\hline LOGIC: Time t2 output 25 & 030099 \\
\hline LOGIC: Time t2 output 26 & 031003 \\
\hline LOGIC: Time t2 output 27 & 031007 \\
\hline LOGIC: Time t2 output 28 & 031011 \\
\hline LOGIC: Time t2 output 29 & 031015 \\
\hline LOGIC: Time t2 output 30 & 031019 \\
\hline LOGIC: Time t2 output 31 & 031023 \\
\hline LOGIC: Time t2 output 32 & 031027 \\
\hline \multicolumn{2}{|l|}{Settings for timer stage t2 for the respective outputs.} \\
\hline Note: This setting has no effect in the 'minimum & ode. \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline LOGIC: Sig.assig. outp. 1 & 044000 Fig: 3-290 \\
\hline LOGIC: Sig.assig. outp. 2 & 044002 \\
\hline LOGIC: Sig.assig. outp. 3 & 044004 \\
\hline LOGIC: Sig.assig. outp. 4 & 044006 \\
\hline LOGIC: Sig.assig. outp. 5 & 044008 \\
\hline LOGIC: Sig.assig. outp. 6 & 044010 \\
\hline LOGIC: Sig.assig. outp. 7 & 044012 \\
\hline LOGIC: Sig.assig. outp. 8 & 044014 \\
\hline LOGIC: Sig.assig. outp. 9 & 044016 \\
\hline LOGIC: Sig.assig. outp. 10 & 044018 \\
\hline LOGIC: Sig.assig. outp. 11 & 044020 \\
\hline LOGIC: Sig.assig. outp. 12 & 044022 \\
\hline LOGIC: Sig.assig. outp. 13 & 044024 \\
\hline LOGIC: Sig.assig. outp. 14 & 044026 \\
\hline LOGIC: Sig.assig. outp. 15 & 044028 \\
\hline LOGIC: Sig.assig. outp. 16 & 044030 \\
\hline LOGIC: Sig.assig. outp. 17 & 044032 \\
\hline LOGIC: Sig.assig. outp. 18 & 044034 \\
\hline LOGIC: Sig.assig. outp. 19 & 044036 \\
\hline LOGIC: Sig.assig. outp. 20 & 044038 \\
\hline LOGIC: Sig.assig. outp. 21 & 044040 \\
\hline LOGIC: Sig.assig. outp. 22 & 044042 \\
\hline LOGIC: Sig.assig. outp. 23 & 044044 \\
\hline LOGIC: Sig.assig. outp. 24 & 044046 \\
\hline LOGIC: Sig.assig. outp. 25 & 044048 \\
\hline LOGIC: Sig.assig. outp. 26 & 044050 \\
\hline LOGIC: Sig.assig. outp. 27 & 044052 \\
\hline LOGIC: Sig.assig. outp. 28 & 044054 \\
\hline LOGIC: Sig.assig. outp. 29 & 044056 \\
\hline LOGIC: Sig.assig. outp. 30 & 044058 \\
\hline LOGIC: Sig.assig. outp. 31 & 044060 \\
\hline LOGIC: Sig.assig. outp. 32 & 044062 \\
\hline \multicolumn{2}{|l|}{These settings assign the function of a binary input signal to the output of the logic equation.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|}
\hline LOGIC: Sig.assig.outp. 1(t) & 044001 & Fig: 3-290 \\
\hline LOGIC: Sig.assig.outp. 2(t) & 044003 & \\
\hline LOGIC: Sig.assig.outp. 3(t) & 044005 & \\
\hline LOGIC: Sig.assig.outp. 4(t) & 044007 & \\
\hline LOGIC: Sig.assig.outp. 5(t) & 044009 & \\
\hline LOGIC: Sig.assig.outp. 6(t) & 044011 & \\
\hline LOGIC: Sig.assig.outp. 7(t) & 044013 & \\
\hline LOGIC: Sig.assig.outp. 8(t) & 044015 & \\
\hline LOGIC: Sig.assig.outp. 9(t) & 044017 & \\
\hline LOGIC: Sig.assig.outp.10(t) & 044019 & \\
\hline LOGIC: Sig.assig.outp.11(t) & 044021 & \\
\hline LOGIC: Sig.assig.outp.12(t) & 044023 & \\
\hline LOGIC: Sig.assig.outp.13(t) & 044025 & \\
\hline LOGIC: Sig.assig.outp.14(t) & 044027 & \\
\hline LOGIC: Sig.assig.outp.15(t) & 044029 & \\
\hline LOGIC: Sig.assig.outp.16(t) & 044031 & \\
\hline LOGIC: Sig.assig.outp.17(t) & 044033 & \\
\hline LOGIC: Sig.assig.outp.18(t) & 044035 & \\
\hline LOGIC: Sig.assig.outp.19(t) & 044037 & \\
\hline LOGIC: Sig.assig.outp.20(t) & 044039 & \\
\hline LOGIC: Sig.assig.outp.21(t) & 4041 & \\
\hline LOGIC: Sig.assig.outp.22(t) & 044043 & \\
\hline LOGIC: Sig.assig.outp.23(t) & 044045 & \\
\hline LOGIC: Sig.assig.outp.24(t) & 044047 & \\
\hline LOGIC: Sig.assig.outp.25(t) & 044049 & \\
\hline LOGIC: Sig.assig.outp.26(t) & 044051 & \\
\hline LOGIC: Sig.assig.outp.27(t) & 044053 & \\
\hline LOGIC: Sig.assig.outp.28(t) & 044055 & \\
\hline LOGIC: Sig.assig.outp.29(t) & 044057 & \\
\hline LOGIC: Sig.assig.outp.30(t) & 044059 & \\
\hline LOGIC: Sig.assig.outp.31(t) & 044061 & \\
\hline LOGIC: Sig.assig.outp.32(t) & 044063 & \\
\hline These settings assign the fu the logic equation. & & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Single-pole commands


\section*{7 Settings}
(continued)

Single-pole signals
\begin{tabular}{|c|c|}
\hline SIG_1: Designat. sig. S001 & 226000 \\
\hline SIG_1: Designat. sig. S002 & 226008 \\
\hline SIG_1: Designat. sig. S003 & 226016 \\
\hline SIG_1: Designat. sig. S004 & 226024 \\
\hline SIG_1: Designat. sig. S005 & 226032 \\
\hline SIG_1: Designat. sig. S006 & 226040 \\
\hline SIG_1: Designat. sig. S007 & 226048 \\
\hline SIG_1: Designat. sig. S008 & 226056 \\
\hline SIG_1: Designat. sig. S009 & 226064 \\
\hline SIG_1: Designat. sig. S010 & 226072 \\
\hline SIG_1: Designat. sig. S011 & 226080 \\
\hline SIG_1: Designat. sig. S012 & 226088 \\
\hline \multicolumn{2}{|l|}{Selection of the signal designation.} \\
\hline SIG_1: Oper. mode sig. S001 & 226001 Fig: 3-302 \\
\hline SIG_1: Oper. mode sig. S002 & 226009 \\
\hline SIG_1: Oper. mode sig. S003 & 226017 \\
\hline SIG_1: Oper. mode sig. S004 & 226025 \\
\hline SIG_1: Oper. mode sig. S005 & 226033 \\
\hline SIG_1: Oper. mode sig. S006 & 226041 \\
\hline SIG_1: Oper. mode sig. S007 & 226049 \\
\hline SIG_1: Oper. mode sig. S008 & 226057 \\
\hline SIG_1: Oper. mode sig. S009 & 226065 \\
\hline SIG_1: Oper. mode sig. S010 & 226073 \\
\hline SIG_1: Oper. mode sig. S011 & 226081 \\
\hline SIG_1: Oper. mode sig. S012 & 226089 \\
\hline \multicolumn{2}{|l|}{Selection of the signal operating mode.} \\
\hline SIG_1: Gr.asg. debounc.S001 & 226003 Fig: 3-302 \\
\hline SIG_1: Gr.asg. debounc.S002 & 226011 \\
\hline SIG_1: Gr.asg. debounc.S003 & 226019 \\
\hline SIG_1: Gr.asg. debounc.S004 & 226027 \\
\hline SIG_1: Gr.asg. debounc.S005 & 226035 \\
\hline SIG_1: Gr.asg. debounc.S006 & 226043 \\
\hline SIG_1: Gr.asg. debounc.S007 & 226051 \\
\hline SIG_1: Gr.asg. debounc.S008 & 226059 \\
\hline SIG_1: Gr.asg. debounc.S009 & 226067 \\
\hline SIG_1: Gr.asg. debounc.S010 & 226075 \\
\hline SIG_1: Gr.asg. debounc.S011 & 226083 \\
\hline SIG_1: Gr.asg. debounc.S012 & 226091 \\
\hline Group assignment for the deb & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|}
\hline SIG_1: Min. sig. dur. S001 & 22602 & Fig: 3-302 \\
\hline SIG_1: Min. sig. dur. S002 & 226010 & \\
\hline SIG_1: Min. sig. dur. S003 & 226018 & \\
\hline SIG_1: Min. sig. dur. S004 & 226026 & \\
\hline SIG_1: Min. sig. dur. S005 & 226034 & \\
\hline SIG_1: Min. sig. dur. S006 & 226042 & \\
\hline SIG_1: Min. sig. dur. S007 & 226050 & \\
\hline SIG_1: Min. sig. dur. S008 & 226058 & \\
\hline SIG_1: Min. sig. dur. S009 & 226066 & \\
\hline SIG_1: Min. sig. dur. S010 & 226074 & \\
\hline SIG_1: Min. sig. dur. S011 & 226082 & \\
\hline SIG_1: Min. sig. dur. S012 & 226090 & \\
\hline
\end{tabular}

The logic '1' signal must be available for this minimum time setting so that a telegram can be sent in the "Start/end signal" mode.

\section*{7 Settings}
(continued)

Measured data input

Main function

Definite-time overcurrent protection

\subsection*{7.1.3.3 Parameter Subsets}
\begin{tabular}{|lcc|}
\hline MEASI: BackupTempSensor PSx & 004243004244004245004246 & Fig: 3-280 \\
\hline Selection of backup temperature sensor groups for parameter subset PSx. & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline DTOC: Enable & PSx & 072098073098074098075098 & Fig: 3-114 \\
\hline \multicolumn{4}{|l|}{This setting defines the parameter subset in which definite-time overcurrent protection is enabled.} \\
\hline DTOC: I> & PSx & 017000073007074007075007 & Fig: 3-115 \\
\hline \multicolumn{4}{|l|}{Setting the operate value of the first overcurrent stage (phase current stage).} \\
\hline \multicolumn{4}{|l|}{Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|c|}
\hline DTOC: \(1>\) dynamic & PSx & 017080073032074032075032 & Fig: 3-115 \\
\hline
\end{tabular}

Setting the operate value of the first overcurrent stage in dynamic mode (phase current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.
Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').


Setting the operate value of the second overcurrent stage (phase current stage).

Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').


Setting for the operate value of the second overcurrent stage in dynamic mode (phase current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
\begin{tabular}{|c|c|c|c|}
\hline DTOC: 1>> & PSx & 017002073009074009075009 & Fig: 3-115 \\
\hline
\end{tabular}

Setting the operate value of the third overcurrent stage (phase current stage).
Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
\begin{tabular}{|c|c|c|c|}
\hline DTOC: \(1 \ggg\) dynamic & PSx & 017085073034074034075034 & Fig: 3-115 \\
\hline
\end{tabular}

Setting the operate value of the third overcurrent stage in dynamic mode (phase current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.
Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
\begin{tabular}{|c|c|}
\hline DTOC: tl> PSx 017004073019074019075019 & Fig: 3-115 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of the first overcurrent stage.} \\
\hline DTOC: \(\mathrm{tl} \gg\) PSx 017006073020074020075020 & Fig: 3-115 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of the second overcurrent stage.} \\
\hline  & Fig: 3-115 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of the third overcurrent stage.} \\
\hline DTOC: Ineg> PSx 072011073011074011075011 & Fig: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value Ineg> ( \(I_{\text {neg }}=\) negative-sequence current).} \\
\hline DTOC: Ineg> dynamic PSx & Fig: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting the operate value Ineg> dynamic (Ineg = negative-sequence current).} \\
\hline \multicolumn{2}{|l|}{This operate value is effective only while the timer stage MAIN: Holdtime dyn. param. is elapsing.} \\
\hline  & Fig: 3-117 \\
\hline Setting for the operate value Ineg>> ( \(I_{\text {neg }}=\) negative-sequence current). & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DTOC: Ineg>> dynamic PSx 076201077201078201079201 & Fig: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting the operate value Ineg>> dynamic (Ineg = negative-sequence current).} \\
\hline \multicolumn{2}{|l|}{This operate value is effective only while the timer stage MAIN: Holdtime dyn. param. is elapsing.} \\
\hline  & g: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value Ineg>>> (Ineg = negative-sequence current).} \\
\hline DTOC: Ineg>>> dynamic PSx 0 & Fig: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting the operate value Ineg>>> dynamic (Ineg = negative-sequence current).} \\
\hline \multicolumn{2}{|l|}{This operate value is effective only while the timer stage MAIN: Holdtime dyn. param. is elapsing.} \\
\hline DTOC: tlneg> PSx \({ }^{\text {P }}\) & Fig: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overcurrent stage Ineg> (Ineg \(=\) negativesequence current).} \\
\hline  & Fig: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overcurrent stage Ineg>> ( \(I_{\text {neg }}=\) negative-sequence current).} \\
\hline  & Fig: 3-117 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overcurrent stage Ineg>>> ( \(I_{\text {neg }}=\) negative-sequence current).} \\
\hline DTOC: Eval. IN>,>>,>>> PSx & Fig: 3-119 \\
\hline As of software version -602. (SW -601: see next entry.) This setting determines which current will be monitored: The current calculated by the P132 or the residual current IN>, IN>>, IN>>> measured at the T 4 current transformer. IN>>>> operates only with the calculated measured variables. & \\
\hline DTOC: IN> \({ }^{\text {P }}\) PSx & Fig: 3-120 \\
\hline \multicolumn{2}{|l|}{Setting the operate value of the first overcurrent stage (residual current stage).} \\
\hline \multicolumn{2}{|l|}{Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').} \\
\hline DTOC: IN> dynamic PSX 017081073035074035070 & Fig: 3-120 \\
\hline Setting the operate value of the dynamic first overcurrent stage (residual current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing. & \\
\hline Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data'). & \\
\hline DTOC: IN>> PSx 017009073016074016075016 & Fig: 3-120 \\
\hline Setting the operate value of the second overcurrent stage (residual current stage). & \\
\hline Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data'). & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|c|}
\hline DTOC: IN>> dynamic & PSx & 017086073036074036075036 & \\
\hline
\end{tabular}

Setting the operate value of the second overcurrent stage in dynamic mode (residual current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.
Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
\begin{tabular}{|c|c|c|c|}
\hline DTOC: IN>>> & PSx & 017018073017074017075017 & Fig: 3-120 \\
\hline
\end{tabular}

Setting the operate value of the third overcurrent stage (residual current stage).

Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
DTOC: IN>> dynamic PSX \(\quad 017087073037074037075037 \quad\) Fig: 3-120

Setting the operate value of the dynamic third overcurrent stage (residual current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
\begin{tabular}{|c|c|c|c|}
\hline C: IN>>>> & PSx & 072018073018074018075018 & \\
\hline
\end{tabular}

Setting the operate value of the fourth overcurrent stage (residual current stage).

Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
\begin{tabular}{|c|c|c|c|}
\hline DTOC: IN>>>> dyn. & PSx & 072036072105072202072219 & -120 \\
\hline
\end{tabular}

Setting the operate value of the dynamic fourth overcurrent stage (residual current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.
Caution! The range of setting values includes operate values that are not permitted as continuous current values (see Chapter 'Technical Data').
\begin{tabular}{|c|c|c|c|}
\hline DTOC: tIN> & PSx & 017008073027074027075027 & Fig: 3-120 \\
\hline \multicolumn{4}{|l|}{Setting the operate delay of the first overcurrent stage (residual current stage).} \\
\hline DTOC: tIN>> & PSx &  & Fig: 3-120 \\
\hline
\end{tabular}

Setting the operate delay of the second overcurrent stage (residual current stage).
\begin{tabular}{|c|c|c|c|}
\hline DTOC: \(t \mid N \ggg\) & PSX & 017019073029074029075029 & Fig: 3-120 \\
\hline
\end{tabular}


Setting the operate delay of the fourth overcurrent stage (residual current stage).

Setting the pulse prolongation time of the hold-time logic for intermittent ground faults.


Setting the tripping time of the hold-time logic for intermittent ground faults.

\section*{7 Settings}
(continued)

Inverse-time overcurrent protection
\begin{tabular}{|c|c|c|}
\hline DTOC: Hold-t. tIN>,intmPSx & 017057073039074039075039 & Fig: 3-122 \\
\hline Setting the hold-time for inte & & \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline IDMT1: Enable & PSx & 072070073070074070075070 & Fig: 3-125 \\
IDMT2: Enable & PSx & 076042076043076044076045 & \\
\hline This setting defines the parameter subset in which IDMTx protection is & \\
enabled. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline IDMT1: Iref,P & PSx & 072050073050074050075050 & \multirow[t]{2}{*}{Fig: 3-130a} \\
\hline IDMT2: Iref,P & PSx & 076236076237076238076239 & \\
\hline \multicolumn{4}{|l|}{Setting for the reference current (phase current system).} \\
\hline IDMT1: Iref,P IDMT2: Iref,P & mic \(P S x\) mic PSx & 072003073003074003075003 076030076031076032076033 & Fig: 3-130a \\
\hline
\end{tabular}

Setting the reference current in dynamic mode (phase current system). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.
\begin{tabular}{|c|c|c|c|}
\hline IDMT1: Characteris IDMT2: Characteris & P PSx & 072056073056074056075056 071004071005071006071007 & Fig: 3-130a \\
\hline \multicolumn{4}{|l|}{Setting for the tripping characteristic (phase current system).} \\
\hline IDMT1: Factor kt,P & PSx & 072053073053074053075053 & Fig: 3-130a \\
\hline IDMT2: Factor kt,P & PSx & 078250078251078252078253 & \\
\hline
\end{tabular}

Setting for the factor kt, \(P\) of the starting characteristic (phase current system).
\begin{tabular}{|c|c|c|}
\hline IDMT1: Min. trip time P PSx & 072077073077074077075077 & Fig: 3-130a \\
\hline IDMT2: Min. trip time P PSx & 071044071045071046071047 & \\
\hline
\end{tabular}

Setting for the minimum trip time (phase current system). As a rule, this value should be set as for the first DTOC stage (l>).
\begin{tabular}{llll} 
IDMT1: Hold time P & PSx & 072071073071074071075071 & Fig: 3-130a \\
IDMT2: Hold time P & PSX & 071028071029071030071031 &
\end{tabular}

Setting the holding time for intermittent short circuits (phase current system).
\begin{tabular}{lll} 
IDMT1: Release P & PSx & 072059073059074059075059 \\
IDMT2: Release P & PSx & 071016071017071018071019
\end{tabular}

Setting for the release or reset characteristic (phase current system).
\begin{tabular}{lll} 
IDMT1: Iref,neg & PSx & 072051073051074051075051 \\
IDMT2: Iref,neg & PSx & 076250076251076252076253
\end{tabular}

Setting for the reference current (negative-sequence current system).
\begin{tabular}{|c|c|c|}
\hline IDMT1: Iref,neg dynamic PSx & 072004073004074004075004 & Fig: 3-132 \\
\hline IDMT2: Iref,neg dynamic PSx & 076034076035076036076037 & \\
\hline
\end{tabular}

Setting the reference current in dynamic mode (negative-sequence current system). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.
\begin{tabular}{ll} 
IDMT1: Character. neg. PSx & 072057073057074057070 \\
IDMT2: Character. neg. PSx & 071008071009071010071011
\end{tabular}

Setting for the tripping characteristic (negative-sequence current system).

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|}
\hline IDMT1: Factor kt,neg PSx IDMT2: Factor kt,neg PSx & 072054073054074054075054 079250079251079252079253 & Fig: 3-132 \\
\hline \multicolumn{3}{|l|}{Setting for the factor kt,neg of the starting characteristic (negative-sequence current system).} \\
\hline IDMT1: Min.trip time negPSx IDMT2: Min.trip time negPSx & 072078073078074078075078 071048071099071050071051 & Fig: 3-132 \\
\hline \multicolumn{3}{|l|}{Setting the minimum trip time (negative-sequence current system). As a rule, this value should be set as for the first DTOC stage (l>).} \\
\hline IDMT1: Hold time neg PSX IDMT2: Hold time neg PSx & 0720720730720740072075072 0711032071038071034071035 & Fig: 3-132 \\
\hline \multicolumn{3}{|l|}{Setting the holding time for intermittent short circuits (negative-sequence current system).} \\
\hline IDMT1: Release neg. PSX IDMT2: Release neg. PSx & 072000073000074000075060 071102071021071022071023 & Fig: 3-132 \\
\hline \multicolumn{3}{|l|}{Setting for the release or reset characteristic (negative-sequence current system).} \\
\hline IDMT1: Evaluation IN PSx IDMT2: Evaluation IN PSx & 072075073075074075075 071040 o71041 071042071043 & Fig: 3-133 \\
\hline \multicolumn{3}{|l|}{This setting determines which current will be monitored: The current calculated by the P132 or the residual current measured at the T 4 current transformer.} \\
\hline \begin{tabular}{ll} 
IDMT1: Iref,N & PSx \\
IDMT2: Iref,N & PSx
\end{tabular} & 072052073052074052075052 077250077251077252077253 & Fig: 3-134 \\
\hline \multicolumn{3}{|l|}{Setting for the reference current (residual current system).} \\
\hline IDMT1: Iref,N dynamic PSx IDMT2: Iref,N dynamic PSx & \begin{tabular}{l}
072005073005074005075005 \\
076038076039076040076041
\end{tabular} & Fig: 3-134 \\
\hline \multicolumn{3}{|l|}{Setting the reference current in dynamic mode (residual current system). This operate value is effective only while the timer stage MAIN: Holdtime dyn. param. is elapsing.} \\
\hline IDMT1: Characteristic N PSx IDMT2: Characteristic N PSx & 0720580 0710120710130710140711015 & Fig: 3-134 \\
\hline \multicolumn{3}{|l|}{Setting for the tripping characteristic (residual current system).} \\
\hline \begin{tabular}{ll} 
IDMT1: Factor kt,N & PSx \\
IDMT2: Factor kt,N & PSx
\end{tabular} & 072055073055074055075055 071000071001071002071003 & Fig: 3-134 \\
\hline \multicolumn{3}{|l|}{Setting for the factor kt, N of the starting characteristic (residual current system).} \\
\hline IDMT1: Min. trip time N PSx IDMT2: Min. trip time N PSx & 072079073079074079075079 071052071053 071054 0711055 & Fig: 3-134 \\
\hline \multicolumn{3}{|l|}{Setting the minimum trip time (residual current system). As a rule, this value should be set as for the first DTOC stage ( \(1 \mathrm{~N}>\) ).} \\
\hline IDMT1: Hold time N PSx IDMT2: Hold time \(N\) PSx & 072073073073074073075073 0711036071037071038071099 & Fig: 3-134 \\
\hline \multicolumn{3}{|l|}{Setting the holding time for intermittent short circuits (residual current system).} \\
\hline \begin{tabular}{ll} 
IDMT1: Release N & PSX \\
IDMT2: Release N & PSx
\end{tabular} & 072061073061074061075061 071024071025071026071027 & Fig: 3-134 \\
\hline \multicolumn{3}{|l|}{Setting for the release characteristic (residual current system).} \\
\hline
\end{tabular}

\section*{7 Settings \\ (continued)}

Short-circuit direction determination
\begin{tabular}{|c|c|c|c|}
\hline SCDD: Enable & PSx & 076235077235078235079235 & Fig: 3-137 \\
\hline \multicolumn{4}{|l|}{This setting defines the parameter subset in which short-circuit direction determination is enabled.} \\
\hline SCDD: Trip bias & PSx & 01707407233678236079 & Fig: 3-141 \\
\hline This setting dete forward direction phase current an &  & ction determination determination of th & \\
\hline
\end{tabular}


This setting for the measuring direction determines whether a tl> trip signal in the DTOC phase current stage will be issued for forward, backward or non-directional fault decisions. If the ARC is enabled and has been set accordingly then a starting will trigger the associated ARC tripping time.
SCDD: Direction tl>> PSx \(\quad 017072072238078238079\) Fig: 3-141

This setting for the measuring direction determines whether a tl>> trip signal in the DTOC phase current stage will be issued for forward, backward or non-directional fault decisions. If the ARC is enabled and has been set accordingly then a starting will trigger the associated ARC tripping time.
SCDD: Direct. tlref,P> PSX \(\quad 01706607239078239079239\)

This setting for the measuring direction determines whether a tlref, \(\mathrm{P}>\) trip signal in the IDMT1 phase current stage will be issued for forward, backward or non-directional fault decisions. If the ARC is enabled and has been set accordingly then a starting will trigger the associated ARC tripping time.


This setting for the measuring direction determines whether a tIN> trip signal in the DTOC residual current stage will be issued for forward, backward or non-directional fault decisions. If the ARC is enabled and has been set accordingly then a starting will trigger the associated ARC tripping time.
SCDD: Direction tIN>> PSx \(017075077241078241079241 \quad\) Fig: 3-145

This setting for the measuring direction determines whether a tIN>> trip signal in the DTOC residual current stage will be issued for forward, backward or non-directional fault decisions. If the ARC is enabled and has been set accordingly then a starting will trigger the associated ARC tripping time.

This setting for the measuring direction determines whether a tlref, \(\mathrm{N}>\) trip signal in the IDMT1 residual current stage will be issued for forward, backward or non-directional fault decisions. If the ARC is enabled and has been set accordingly then a starting will trigger the associated ARC tripping time.

\section*{7 Settings}
(continued)

Protective signaling
\begin{tabular}{|c|c|}
\hline SCDD: Charact. angle G PSx 01707607243078243079243 & Fig: 3-144 \\
\hline Setting the characteristic angle for the residual current stage in correspondence to the measuring relation. Using this setting, a wide range of conditions in dependence of the system neutral grounding impedance can be accommodated, including the following examples:
System neutral with relatively high resistance \(\alpha_{G}=0^{\circ}\)
System neutral with relatively low resistance \(\alpha_{G}-45^{\circ}\)
System neutral effectively grounded \(\alpha_{G}=-75^{\circ}\)
System neutral reactance-grounded \(\alpha_{G}=-90^{\circ}\)
System with isolated neutral \(\alpha_{G}=+90^{\circ}\) & \\
\hline  & Fig: 3 -143a \\
\hline \begin{tabular}{l}
Setting the operate value VNG>. This setting value is an enabling criterion of the base point release of short-circuit direction determination. \\
In choosing this setting, the set nominal voltage MAIN: VNG, nom V.T. sec. should be taken into account.
\end{tabular} & \\
\hline SCDD: Evaluation VNG PSx & Fig: 3-143b \\
\hline User may select between "measured" and "calculated" (standard default). & \\
\hline SCDD: Block. bias G PSx 017078077245078245079245 & Fig: 3-145 \\
\hline
\end{tabular}

This setting defines whether the trip bias of the residual current stage should be blocked in the event of a phase current starting.

\section*{SCDD: Oper.val.Vmemory PSx 010109010116010117010118}

In the event of a three-phase fault in the phase current stage, the measured voltage VABmeas is compared with the selected operate value, Vop.Val., of the voltage memory. If VABmeas < Vop.Val. then the SCDD function will not use VABmeas but will revert to the voltage memory, if it has been enabled.
\begin{tabular}{|llll|}
\hline PSIG: Enable PSx & 015014015015015016015017 & Fig: 3-148 \\
\hline
\end{tabular}

This setting defines the parameter subset in which protective signaling is enabled.
\begin{tabular}{|c|c|c|}
\hline PSIG: Tripping time PSx & 015011024003024063025023 & Fig: 3-150 \\
\hline \multicolumn{3}{|l|}{Setting the time delay of protective signaling.} \\
\hline PSIG: Release t. send PSx & 015002024001024061025021 & Fig: 3-150 \\
\hline \multicolumn{3}{|l|}{This setting determines the duration of the send signal.} \\
\hline PSIG: DC loop op. mode PSx & 015012024051025011025071 & Fig: 3-150 \\
\hline
\end{tabular}

This setting defines whether the transmitting relay will be operated in energize-on-signal (ES) mode ('open-circuit principle') or normally-energized (NE) mode ('closed-circuit principle'), i.e., Transm. rel. make con. or Transm. rel. break con., respectively.
PSIG: Direc.dependence PSx
015001015115015116015117
This setting governs the evaluation for the directional dependence of protective signaling. The following settings are possible:

\section*{Without}

Phase curr. system
Residual curr. system
Phase/resid.c.system
\begin{tabular}{|c|c|}
\hline ARC: Enable PSx 015046015047015048015049 & Fig: 3-154 \\
\hline \multicolumn{2}{|l|}{This setting defines the parameter subset in which ARC is enabled.} \\
\hline ARC: CB clos.pos.sig. PSx & Fig: 3-156 \\
\hline \multicolumn{2}{|l|}{This setting defines whether the CB closed position will be scanned or not. If the setting is 'With', a binary signal input must be configured accordingly.} \\
\hline ARC: Operating mode PSx 015051024025024085025045 & \[
\begin{aligned}
& \text { Fig: 3-153, } \\
& 3-163
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
The operating mode setting defines which of the following reclosure types is permitted. \\
\(\square\) TDR only permitted \\
- HSR/TDR permitted \\
\(\square\) Test HSR only permit
\end{tabular}} \\
\hline ARC: Operative time PSx \(\quad 015066024035024095025055\) & \[
\begin{aligned}
& \text { Fig: 3-165, } \\
& 3-167
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting for the operative time 1.} \\
\hline  & Fig: 3-161 \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a general starting condition.} \\
\hline ARC: HSR trip.time I>PSx \(\quad 01507202404002500002000\) & \[
\begin{aligned}
& \text { Fig: 3-157, } \\
& 3-167
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a phase current starting in the first DTOC overcurrent stage.} \\
\hline ARC: HSR trip.time I>>PSx & Fig: 3-157 \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a phase current starting in the second DTOC overcurrent stage.} \\
\hline ARC: HSRtrip.time \(\ggg>\) PSx & Fig: 3-157 \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a phase current starting in the third DTOC overcurrent stage.} \\
\hline ARC: HSR trip.time IN>PSx 015076024103024153025 & Fig: 3-157 \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a residual current starting in the first DTOC overcurrent stage.} \\
\hline ARC: HSRtrip.time IN \(\gg P S x\) & Fig: \(3-157\) \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a residual current starting in the second DTOC overcurrent stage.} \\
\hline ARC: HSRtrip.t. IN>>> PSx 014008024105024155025105 & Fig: 3-157 \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a residual current starting in the third DTOC overcurrent stage.} \\
\hline ARC: HSRtrip.t.Iref,P PSx 01509024106024156025106 & 9 \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a starting in the IDMT1 phase current system.} \\
\hline ARC: HSRtrip.t.Iref,N PSx & Fig: \(3-159\) \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via a starting in the IDMT1 residual current system.} \\
\hline ARC: HSRtr.t.lref,neg PSx 01503402408024158025108 & Fig: 3-159 \\
\hline Setting the HSR tripping time and start via a starting in the IDMT1 negativesequence current system. & \\
\hline ARC: HSR trip t.GFDSS PSx & Fig: 3-160 \\
\hline Setting the HSR tripping time and start via 'ground fault direction determination using steady-state values'. & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline ARC: HSRtrip.t. LOGIC PSx 015098024110024160025110 & Fig: 3-162 \\
\hline \multicolumn{2}{|l|}{Setting the HSR tripping time and start via programmable logic.} \\
\hline ARC: HSR block.f. l>>PSx 015080024111024161025111 & Fig: 3-163 \\
\hline \multicolumn{2}{|l|}{The selection of the HSR blocking by l>>> defines whether an HSR is blocked during an l>>> starting.} \\
\hline ARC: HSR dead time PSx 01. & \[
\begin{aligned}
& \text { Fig: 3-165, } \\
& 3-167
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Dead time setting for a three-pole HSR.} \\
\hline ARC: No. permit. TDR PSx \(\quad 015068024037024097025057\) & Fig: 3-165 \\
\hline \multicolumn{2}{|l|}{Setting for the number of time-delayed reclosures permitted. With the ' 0 ' setting, only one HSR is carried out.} \\
\hline ARC: TDR trip.time GS PSx 01. & 3-161 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a general starting condition.} \\
\hline  & Fig: 3-158 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a phase current starting in the first DTOC overcurrent stage.} \\
\hline ARC: TDR trip.time I>>PSx 010 & Fig: 3-158 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a phase current starting in the second DTOC overcurrent stage.} \\
\hline ARC: TDRtrip.time l>>>PSx \(\quad 014097024114024164025114\) & Fig: 3-158 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a phase current starting in the third DTOC overcurrent stage.} \\
\hline ARC: TDR trip.time IN>PSx & Fig: 3-158 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a residual current starting in the first DTOC overcurrent stage.} \\
\hline ARC: TDRtrip.time IN>>PSx & Fig: 3-158 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a residual current starting in the second DTOC overcurrent stage.} \\
\hline ARC: TDRtrip.t. IN>>> PSx 014099024117024167025117 & Fig: 3-158 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a residual current starting in the third DTOC overcurrent stage.} \\
\hline ARC: TDRtrip.t.Iref,P PSx & Fig: 3-159 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a starting in the IDMT1 phase current system.} \\
\hline ARC: TDRtrip.t.Iref,N PSx 015097024119024169025119 & Fig: 3-159 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a starting in the IDMT1 residual current system.} \\
\hline ARC: TDRtr.tIref,neg PSx 01503024120024170025120 & 3-15 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via a starting in the IDMT1 negativesequence current system.} \\
\hline  & Fig: 3-160 \\
\hline \multicolumn{2}{|l|}{Setting the TDR tripping time and start via 'ground fault direction determination using steady-state values'.} \\
\hline ARC: TDRtrip.t. LOGIC PSx & 162 \\
\hline Setting the TDR tripping time and start via programmable logic. & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Automatic synchronism check \begin{tabular}{llllll} 
& ASC: Enable PSx & 018020 & 018021018022018023 & Fig: 3-172
\end{tabular}

This setting defines the parameter subset in which automatic synchronism check (ASC) is enabled.
ASC: CB assignment PSX
This setting defines the function group DEVxx that will control the circuit breaker.
ASC: System integrat. PSx \(\quad 037135037136037137037138 \quad\) Fig: 3-180

This setting defines whether ASC will operate in 'Autom. synchron. check' or 'Autom. synchr. control' mode.
ASC: Active for HSR PSx
018001077030078030079030
Fig: 3-173
This setting defines whether reclosing after a three-pole HSR will occur only after being enabled by ASC.
ASC: Active for TDR PSx \(01800207031078031079031 \quad\) Fig: 3-173

This setting defines whether reclosing after a three-pole TDR will occur only after being enabled by ASC.
ASC: Clos.rej.w.block PSx 01800307032078032079032
This setting defines whether reclosing is rejected after being blocked by ASC.
ASC: Operative time PSx \(\quad 018010\) 077034 078034 079034 \(\quad\)\begin{tabular}{l} 
Fig: \\
\(3-178\)
\end{tabular}

Setting for the operative time for ASC.
ASC: Operating mode PSX 018025018026018027018
Fig: 3-177
Criteria for a close enable are defined by setting for the operating mode.
ASC: Op.mode volt.chk...........................................................
018029018030018031018032
Fig: 3-176
This setting defines the logic linking of trigger decisions for a voltage controlled close enable.


Setting the voltage threshold that the phase-to-ground voltages and the reference voltage must exceed so that they are recognized as "Voltage showing".

Note: \(\quad\) The logic linking of trigger decisions is defined by setting ASC: Op.mode volt.chk. PSx.

\section*{7 Settings}
(continued)
\begin{tabular}{l} 
ASC: V< volt. check PSX \\
Setting the voltage threshold that the phase-to-ground voltages and the \\
reference voltage must fall below so that they are recognized as "Voltage \\
showing". \\
Note: The logic linking of trigger decisions is defined by setting \\
ASC: Op. mode volt.chk. PSx. \\
ASC: tmin volt. check PSx \\
\begin{tabular}{l} 
Setting for the operate delay value to define the minimum time period during \\
which voltage conditions must be met so that the close enable of the ASC is \\
effected. \\
ASC: Measurement loop PSx
\end{tabular} \\
\hline
\end{tabular}

The voltage measurement loop, corresponding to the reference voltage, must be selected so that determination of differential values is correct.

Example: Connect transformer T 15 to measure the reference voltage to phases A \& B The measurement loop should be set to 'Loop A-B'.
ASC: \(V>\) sync. check PSX \(\quad 018011070030780050\)

Setting for the threshold of the minimum voltage to obtain a synchronism checked close enable.
ASC: Delta Vmax PSx \(\quad 018012\) 070.036 078036

Setting the maximum differential voltage between measured and reference voltages to obtain a synchronism checked close enable.
ASC: Delta f max PSX \(\quad 01801407001\).

Setting the maximum differential frequency between measured and reference voltages to obtain a synchronism checked close enable.


Setting the maximum differential angle between measured and reference voltages to obtain a synchronism checked close enable.


Setting a Phi offset that may be necessary so that determination of the differential angle is correct.
ASC: tmin sync. check PSx \(\quad 01801507009078030700009\)
Setting for the operate delay value to define the minimum time period during which synchronism conditions must be met so that the close enable of the ASC is effected.

\section*{7 Settings \\ (continued)}

Ground fault direction determination using steady-state values
\begin{tabular}{|c|c|c|c|}
\hline GFDSS: Enable & PSx & 001050001051001052001053 & Fig: 3-183 \\
\hline \multicolumn{4}{|l|}{This setting defines the parameter subset in which the GFDSS function is enabled.} \\
\hline GFDSS: Op.m & ./adm PSx & 016063000236000237000238 & \[
\begin{aligned}
& \text { Fig: 3-185, } \\
& 3-191
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Setting the operating mode of the ground fault direction determination by steady-state values. The following settings are possible: The following settings are possible: \\
\(\square\) " \(\operatorname{Cos} \varphi\) circuit" for resonant-grounded systems. \\
\(\square \quad\) "Sin \(\varphi\) circuit" for isolated neutral-point systems.
\end{tabular}} \\
\hline GFDSS: Evaluation & NG PSx & 016083001011001012001013 & Fig: 3-184 \\
\hline \multicolumn{4}{|l|}{This setting specifies which neutral-point displacement voltage will be used for direction determination: The displacement voltage calculated from the phase-to-ground voltages or the displacement voltage measured at the T 90 transformer of the P132.} \\
\hline GFDSS: Meas. & ion PSx & 016070001002001003001004 & \[
\begin{aligned}
& \text { Fig: 3-185, } \\
& 3-191
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{This setting defines the measuring direction for the 'forward' or 'backward' decision.} \\
\hline GFDSS: VNG> & PSx &  & \[
\begin{aligned}
& \text { Fig: 3-185, } \\
& 3-191
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Setting for the operate value of the neutral-point displacement voltage.} \\
\hline GFDSS: tVNG> & PSx & 016001000230000231000232 & \[
\begin{aligned}
& \text { Fig: 3-185, } \\
& 3-191
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Setting the operate delay of the VNG> trigger.} \\
\hline GFDSS: \(f\) fnom & as.) PSx & 016091001044001045001046 & \[
\begin{aligned}
& \text { Fig: 3-185, } \\
& 3-191
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Setting the frequency of the measured variables evaluated in steady-state power evaluation.} \\
\hline GFDSS: f/fnom & .) PSx & 6092001047001048001049 & Fig: 3-189 \\
\hline \multicolumn{4}{|l|}{Setting the frequency of the measured variables evaluated in steady-state current evaluation.} \\
\hline GFDSS: IN,act & LS PSx & 016064000239000240000241 & Fig: 3-188 \\
\hline \multicolumn{4}{|l|}{Setting the threshold of the active or reactive power component of residual current that must be exceeded so that the 'LS' (line side) directional decision is enabled.} \\
\hline GFDSS: Sector & LS PSx & 6065000242000243000244 & \% 3-188 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Setting of the sector angle for measurement in the line side direction. \\
Note: This setting is only effective in the "cos \(\varphi\) circuit" operating mode.
\end{tabular}} \\
\hline GFDSS: Opera & y LS PSx & 016066000245000246000247 & \[
\begin{aligned}
& \text { Fig: 3-188, } \\
& 3-194
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Setting the operate delay of the direction decision in the forward direction.} \\
\hline GFDSS: Releas & y LS PSx &  & \[
\begin{aligned}
& \text { Fig: 3-188, } \\
& 3-194
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Setting the release delay of the direction decision in the forward direction.} \\
\hline GFDSS: IN,act>/ & BS PSx & 016007000251000252000253 & Fig: \(3-188\) \\
\hline Setting the thre current that mus decision is enab & of the active exceeded so & component of resid bar side) directional & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline GFDSS: Sector angle BS PSx 01600800024800249000250 & Fig: 3-188 \\
\hline \begin{tabular}{l}
Setting the sector angle for measurement in the direction of the busbar side. \\
Note: \(\quad\) This setting is only effective in the \(" \cos \varphi\) circuit" operating mode.
\end{tabular} & \\
\hline GFDSS: Operate delay BS PSX & \[
\begin{aligned}
& \text { Fig: } 3-188, ~
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of the direction decision in the backward direction.} \\
\hline GFDSS: Release delay BS PSx 01607300100800100900010 & \[
\begin{aligned}
& \text { Fig: 3-188, } \\
& 3-194
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting the release delay of the direction decision in the backward direction.} \\
\hline GFDSS: IN> PSX 016093001017001018001019 & Fig: 3-189 \\
\hline \multicolumn{2}{|l|}{Setting the operate value of the steady-state current evaluation.} \\
\hline GFDSS: Operate delay IN PSX & 99 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of steady-state current evaluation.} \\
\hline GFDSS: Release delay IN PSX \({ }^{\text {a }}\) & Fig: 3-189 \\
\hline \multicolumn{2}{|l|}{Setting the release delay of steady-state current evaluation.} \\
\hline GFDSS: \(\mathrm{G}(\mathrm{N})>/ \mathrm{B}(\mathrm{N})>\) LSPSx & Fig: 3 -194 \\
\hline \multicolumn{2}{|l|}{Setting the threshold of the active or reactive susceptance component of residual current that must be exceeded so that the 'LS' (line side) directional decision is enabled.} \\
\hline GFDSS: G(N)>/B(N)> BS PSx & Fig: 3-194 \\
\hline \multicolumn{2}{|l|}{Setting the threshold of the active or reactive susceptance component of residual current that must be exceeded so that the ' BS ' (busbar side) directional decision is enabled.} \\
\hline GFDSS: Y(N)> PSX & Fig \\
\hline \multicolumn{2}{|l|}{Setting the operate value of the admittance for the non-directional ground fault determination (in the operating mode "admittance evaluation").} \\
\hline GFDSS: Correction angle PSx 01611000102600020001028 & 1 \\
\hline \multicolumn{2}{|l|}{This setting is provided to compensate for phase-angle errors of the system transformers (in the operating mode "admittance evaluation").} \\
\hline GFDSS: Oper.delay Y(N)> PSX \({ }^{\text {a }}\) & 3-195 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay value of the admittance for the non-directional ground fault determination (in the operating mode "admittance evaluation").} \\
\hline GFDSS: Rel. delay Y(N)>PSx & Fig: 3-195 \\
\hline \multicolumn{2}{|l|}{Setting the release delay value of the admittance for the non-directional ground fault determination (in the operating mode "admittance evaluation").} \\
\hline TGFD: Enable PSx \({ }^{\text {a }}\) & Fig: 3 -197 \\
\hline \multicolumn{2}{|l|}{This setting defines the parameter subset in which the TGFD function is enabled.} \\
\hline TGFD: Evaluation VNG PSx & Fig: 3-198 \\
\hline This setting specifies which neutral-point displacement voltage will be used for evaluation: The displacement voltage from the open delta winding of a voltage transformer assembly or the displacement voltage calculated from the three phase-to-ground voltages. & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

TGFD: Measurem. direc. PSx
016045001073001074001075
Fig: 3-199
The direction measurement of the transient ground fault direction determination function depends on the connection of the measuring circuits. If the connection is as shown in Chapter 5 , then the setting must be 'Standard', if the P132's 'Forward' decision is to be in the direction of the outgoing feeder. If the connection direction is reversed or - given a connection scheme according to Chapter 5 - if the 'forward' decision is to be in the busbar direction, then the setting must be 'Opposite'.

Note: The global setting MAIN: Conn. meas. circ. IN does not affect the direction determination feature of the transient ground fault direction determination function.
\begin{tabular}{|c|c|c|}
\hline TGFD: VNG> PSx & 016041001061001062001063 & Fig: 3-199 \\
\hline \multicolumn{3}{|l|}{Setting the neutral-point displacement voltage threshold.} \\
\hline TGFD: Operate delay PSx & 016044001067001068001069 & Fig: 3-199 \\
\hline \multicolumn{3}{|l|}{Setting for the operate delay.} \\
\hline TGFD: IN, p > PSx & 0160420010640001065001066 & Fig: 3-199 \\
\hline \multicolumn{3}{|l|}{Setting the residual current threshold. A peak value is evaluated.} \\
\hline TGFD: Buffer time PSx & 016043001070001071001072 & Fig: 3-200 \\
\hline Setting the signal buffer time determination. & ult direction & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Motor protection


For the determination of the reference current, the nominal motor current needs to be calculated first from the motor data.
\(I_{\text {nom }, \text { motor }}=\frac{P_{\text {nom }}}{\sqrt{3} \cdot V_{\text {nom }} \cdot \eta \cdot \cos \varphi}\)
The reference current is the nominal motor current as projected onto the transformer secondary side and is thus calculated as follows:
\(\frac{I_{\text {ref }}}{I_{\text {nom,(relay })}}=\frac{I_{\text {nom,motor }} / T_{\text {nom }}}{I_{\text {nom,(relay })}}\)
Example:
Motor and System Data:
Nominal motor voltage \(\mathrm{V}_{\text {nom }}\) : \(\quad 10 \mathrm{kV}\)
Nominal motor power \(\mathrm{P}_{\text {nom }}\) : 1500 kW
Efficiency \(\eta\) : 96.6 \%
Active power factor \(\cos \varphi: \quad 0.86\)
Nominal transformation ratio \(\mathrm{T}_{\text {nom }}\) of the main current transformer: 100 A

Determination of the Nominal Motor Current
\(I_{\text {nom,motor }}=\frac{1500 \mathrm{~kW}}{\sqrt{3} \cdot 10 \mathrm{kV} \cdot 0.966 \cdot 0.86}\)
\(=104 \mathrm{~A}\)
Determination of the reference current:
\(\frac{I_{\text {ref }}}{I_{\text {nom,(relay })}}=\frac{104 \mathrm{~A} / 100}{1 \mathrm{~A}}=1.04\)

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline  & Fig: 3-205 \\
\hline \begin{tabular}{l}
The starting factor k should be set according to the maximum permissible thermal continuous current:
\[
k=\frac{I_{\text {therm, motor }}}{I_{\text {nom }, \text { motor }}}
\] \\
Example: \\
Motor Data:
\end{tabular} & \\
\hline \begin{tabular}{l}
Maximum permissible continuous thermal motor current \(I_{\text {therm,motor }}\) : \(1.1 \mathrm{I}_{\text {nom, motor }}\) \\
Determination of the Starting Factor:
\end{tabular} & \\
\hline \[
k=\frac{1.1 I_{\text {nom }, \text { motor }}}{I_{\text {nom }, \text { motor }}}=1.1
\] & \\
\hline MP: IStUp> PSx 017053024133024183025133 & Fig: 3-210 \\
\hline Setting the current threshold for the operational status determination 'machine starting up'. & \\
\hline  & Fig: 3-210 \\
\hline Setting the operate delay for the operational status determination 'machine starting up'. Usually, the default setting can be retained. & \\
\hline MP: Character.type P PSx 017029024135024185025135 & Fig: 3-210 \\
\hline The selection of the tripping characteristic defines the restrictiveness of the motor protection function. For low overcurrents, the logarithmic characteristic provides significantly higher tripping times than the reciprocally squared characteristic, since the latter neglects any heat transfer to the cooling medium in the overload range. & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

MP: t6lref PS
This Setting the overload tripping time \(\mathrm{t}_{6 \text { lref }}\) is determined from the cold machine data, using \(I_{\text {ref }}=I_{\text {nom, motor }}\).
\(I_{\text {ref }}=I_{\text {nom,motor }}\)

For the reciprocally squared characteristic we set:
\(t_{61_{\text {ret }}}=t_{\text {block }, \text { cold }} \cdot \frac{\left(\frac{\left(\frac{I_{\text {startup }}}{I_{\text {nom }, \text { motor }}}\right)^{2}}{36}\right.}{}\)

For the logarithmic characteristic we set:


Based on the setting value thus determined, the tripping time for a warm machine is now defined as follows.
For the reciprocally squared characteristic we set:
\(t=(1-0.2) \cdot t_{6 I_{\text {lef }}} \cdot \frac{36}{\left(\frac{I_{\text {startup }}}{I_{\text {nom,motor }}}\right)^{2}}\)

For the logarithmic characteristic we set:

Example:
Motor Data:
Motor startup current \(\mathrm{I}_{\text {startup }}\) :
\(5.7 I_{\text {nom,motor }}\) at \(\mathrm{V}_{\text {nom }}\)
Max. permissible locked-rotor time with cold machine \(t_{\text {block,cold }}\) :
18 s at \(\mathrm{V}_{\text {nom }}\)
Max. permissible locked-rotor time with warm machine \(t_{\text {block,warm: }}\) :
\[
16 \mathrm{~s} \text { at } \mathrm{V}_{\text {nom }}
\]
\begin{tabular}{|c|c|}
\hline Sx & Fig: 3-210 \\
\hline \multicolumn{2}{|l|}{Setting the heat dispersion time constant after startup. Usually, the default setting can be retained.} \\
\hline  & \[
\begin{aligned}
& \text { Fig: } 3-210 \\
& \text { Fig: } 3-210
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{If the thermal time constants of the motor are unknown, the cooling time constant with machine running is best set to the highest setting value and the cooling time with machine stopped to the five-fold value of that with machine running.} \\
\hline MP: Perm. No.st.ups PSx & Fig: 3-210 \\
\hline \multicolumn{2}{|l|}{Setting the startup sequence of the motor as permitted by thermal considerations.} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Note: \\
The heavy starting logic (addresses 017043 and 017 044) can only be activated if the permissible startup sequence is set to two startups from cold and one startup from warm.
\end{tabular}} \\
\hline MP: RC permitted, \(\theta<\) PSx & Fig: 3-210 \\
\hline \multicolumn{2}{|l|}{Setting the threshold value of the overload memory for reclosure permission. Usually, the default setting can be retained.} \\
\hline MP: Operating mode PSx \({ }^{\text {and }}\) & 3-205 \\
\hline \multicolumn{2}{|l|}{This setting defines whether motor protection will be operated together with thermal overload protection (THERM).} \\
\hline \begin{tabular}{lll} 
MP: & St.-up time tStUpPSX & 0170030241330241133025143 \\
MP: Blocking time tE PSX & 0170440241402419402514
\end{tabular} & \[
\begin{aligned}
& \text { Fig: } 3-210 \\
& \text { Fig: } 3-210
\end{aligned}
\] \\
\hline Using an overspeed monitor, the heavy starting logic can be activated if necessary. For this purpose, the load-torque-dependent operational startup time needs to be set for tStUp and the maximum permissible locked-rotor time (the 'tE time') with a machine at operating temperature needs to be set for t . & \\
\hline If the heavy starting logic is not used then the set startup time tStUp and the tE-time should be set to the same value; the default values can be retained. & \\
\hline \begin{tabular}{l}
Note: \\
The heavy starting logic (address 017 047) can only be activated if the permissible startup sequence is set to two startups from cold and one startup from warm.
\end{tabular} & \\
\hline MP: K PSx & Fig: 3-213 \\
\hline \multicolumn{2}{|l|}{Setting the operate value of the minimum current stage of the underload protection function of motor protection.} \\
\hline MP: H (1) PSX & Fig: 3-213 \\
\hline Setting the operate delay of the minimum current stage of the underload protection function of motor protection. & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Thermal overload protection
\begin{tabular}{|c|c|}
\hline THERM: Enable PSx 072175073175074175075175 & Fig: 3-214 \\
\hline \multicolumn{2}{|l|}{This setting defines the parameter subset in which thermal overload protection is enabled.} \\
\hline THERM: Sel. backup th. PSx 072080073080074080075080 & \\
\hline \multicolumn{2}{|l|}{Selecting the backup temperature sensor for the parameter subset PSx.} \\
\hline  & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting the reference current.} \\
\hline THERM: Start.fact.OL_RC PSX 072180073180074180075180 & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting for the starting characteristic factor kP.} \\
\hline THERM: Tim.const.1,>lbl PSx & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting for the thermal time constants of the protected object with current flow (Ibl: base line current).} \\
\hline THERM: Tim.const.2,<lbl PSx & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Setting for the thermal time constants of the protected object without current flow (Ibl: base line current). \\
Note: \\
This setting option is only relevant when machines are running. In all other cases, time constant 2 must be set equal to time constant 1.
\end{tabular}} \\
\hline THERM: Max.perm.obj.tmp.PSx \(\quad 072182073182074182075182\) & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting the maximum permissible temperature of the protected object.} \\
\hline THERM: Max.perm.cool.tmpPSx & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting the maximum permissible coolant temperature.} \\
\hline THERM: Select meas.inputPSx 072177073177074177075177 & \[
\begin{aligned}
& \text { Fig: 3-216, } \\
& 3-217
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Selecting if and how the coolant temperature is measured: Via the PT100, the 20 mA input or Tx ( \(x=1\) to 9 ).} \\
\hline THERM: Default CTA PSx & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting the coolant temperature to be used for calculation of the trip time if coolant temperature is not measured.} \\
\hline THERM: BI. f. CTA fault PSx \({ }^{\text {a }}\) & \[
\begin{aligned}
& \text { Fig: 3-216, } \\
& 3-217
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{This setting specifies whether the thermal overload protection function will be blocked in the event of faulty coolant temperature acquisition.} \\
\hline THERM: Rel. O/T warning PSx & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value of the warning stage.} \\
\hline THERM: Rel. O/T trip PSx \(\quad 072181073181074181075181\) & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Setting for the operate value of the trip stage. \\
Note: \\
If the operating mode has been set to 'Absolute replica', the value here will be automatically set to \(100 \%\) and this parameter is hidden as far as the local control panel is concerned.
\end{tabular}} \\
\hline THERM: Hysteresis trip PSx & Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Setting for the hysteresis of the trip stage.} \\
\hline THERM: Warning pre-trip PSx \(\quad 07219107\). & Fig: 3-218 \\
\hline A warning will be given in advance of the trip. The time difference between the warning time and the trip time is set here. & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Unbalance protection

Time-voltage protection
\begin{tabular}{|c|c|c|c|}
\hline 12>: Enable & PSx & 018220018221018222018223 & Fig: 3-220 \\
\hline \multicolumn{4}{|l|}{This setting defines the parameter subset in which unbalance protection is enabled.} \\
\hline 12>: Ineg> & PSx & 018091018224018225018226 & Fig: 3-221 \\
\hline \multicolumn{4}{|l|}{Setting the operate value of the first overcurrent stage.} \\
\hline I2>: Ineg>> & PSx & 018092018227018228018229 & Fig: 3-221 \\
\hline \multicolumn{4}{|l|}{Setting the operate value of the second overcurrent stage.} \\
\hline 12>: tineg> & PSx & 018093018230018231018232 & Fig: 3-221 \\
\hline \multicolumn{4}{|l|}{Setting the operate delay of the first overcurrent stage.} \\
\hline 12>: tineg>> & PSx & 018094018233018234018235 & Fig: 3-221 \\
\hline Setting the op & ate delay & stage. & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline V<>: Enable PSx & 076246077246078246079246 & Fig: 3-222
\end{tabular}

This setting defines the parameter subset in which time-voltage protection is enabled.
\(\mathrm{V}<>\) : Operating mode PSx 076001077001078001079001

Fig: 3-223
This setting specifies whether the phase-to-ground voltages (operating mode "Star") or the phase-to-phase voltages (operating mode "Delta") will be monitored.

\section*{Note:}

In the settings for the operate values of the time-voltage protection function, the reference quantity is \(\mathrm{V}_{\text {nom }}\) in the Delta operating mode, but \(\mathrm{V}_{\text {nom }} / \sqrt{ } 3\) in the Star operating mode.

To work out the settings for the over/undervoltage stages, consider the following example for \(\mathrm{V}_{\text {nom }}=100 \mathrm{~V}\) :
Setting in the Delta operating mode for an operate value of 80 V (phase-to-phase):

Setting value \(=\frac{\text { operate value }}{V_{\text {nom }}}=\frac{80 \mathrm{~V}}{100 \mathrm{~V}}=0.80\)
Setting in the Star operating mode for an operate value of 46.2 V (phase-to-phase):


V<>: I enable V< PSX
This setting defines the threshold value of the minimum current monitoring for undervoltage stage \(\mathrm{V}<\).


Activation of the minimum current monitoring mode for undervoltage stage \(\mathrm{V}<\).
V<>: Evaluation VNG PSx
076002077002078002079002
Fig: 3-229
This setting determines which neutral-point displacement voltage will be monitored: The displacement voltage calculated by the P132 or the displacement voltage measured at the T 90 voltage transformer.

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|c|}
\hline V<>: V> & PSx & 076003077003078003079003 & Fig: 3-224 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value \(\mathrm{V}>\).} \\
\hline V<>: V>> & PSx & 076004077004078004079004 & Fig: 3-224 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value \(\mathrm{V} \gg\).} \\
\hline V <>: tV> & PSx & 076005077005078005079005 & Fig: 3-224 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of overvoltage stage \(\mathrm{V}>\).} \\
\hline V<>: tV> 3-pole & PSx & 076027077027078027079027 & Fig: 3-224 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of overvoltage stage \(\mathrm{V}>\) when all three trigger stages are activated.} \\
\hline V<>: tV>> & PSx & 076006077006078006079006 & Fig: 3-224 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of overvoltage stage \(\mathrm{V} \gg\).} \\
\hline \(\mathrm{V}<>\) : \(\mathrm{V}<\) & PSx & 076007077007078007079007 & Fig: 3-225 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value \(\mathrm{V}<\).} \\
\hline \(\mathrm{V}<\) : \(\mathrm{V} \ll\) & PSx & 076008077008078008079008 & Fig: 3-225 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value \(\mathrm{V} \ll\).} \\
\hline V<> \({ }^{\text {a } V}\) < & PSx & 076009077009078009079009 & Fig: 3-225 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of undervoltage stage \(\mathrm{V}<\).} \\
\hline V<>: tV<3-pole & PSx & 076028077028078028079028 & Fig: 3-225 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of undervoltage stage \(\mathrm{V}<\) when all three trigger stages are activated.} \\
\hline V<> \({ }^{\text {tV}}\) << & PSx & 076010077010078010079010 & Fig: 3-225 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of undervoltage stage \(\mathrm{V} \ll\).} \\
\hline V<>: Vpos> & PSx & 076015077015078015079015 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value Vpos>.} \\
\hline V<>: Vpos>> & PSx & 076016077016078016079016 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value Vpos>>.} \\
\hline V<>: tVpos> & PSx & 076017077017078017079017 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of overvoltage stage Vpos>.} \\
\hline V<> tVpos>> & PSx & 076018077018078018079018 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of overvoltage stage Vpos>>.} \\
\hline V<>: Vpos< & PSx & 076019077019078019079019 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value Vpos<.} \\
\hline V<>: Vpos<< & PSx & 076020077020078020079020 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value Vpos<<.} \\
\hline V<>: tVpos< & PSx & 076021077021078021079021 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of undervoltage stage Vpos<.} \\
\hline V<>: tVpos<< & PSx & 076022077022078022079022 & Fig: 3-227 \\
\hline \multicolumn{4}{|l|}{Setting for the operate delay of undervoltage stage Vpos<<.} \\
\hline V<> : Vneg> & PSx & 076023077023078023079023 & Fig: \(3-228\) \\
\hline \multicolumn{4}{|l|}{Setting for the operate value Vneg>.} \\
\hline V<>: Vneg>> & PSx & 076024077024078024079024 & Fig: 3-228 \\
\hline \multicolumn{4}{|l|}{Setting for the operate value Vneg>>.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|}
\hline V<>: tVneg> PSx 076025077025078025079025 & Fig: 3-228 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overvoltage stage Vneg>.} \\
\hline V<>: tVneg>> PSx 076026077026078026079026 & Fig: 3-228 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overvoltage stage Vneg>>.} \\
\hline V<>: VNG> PSx 076011077011078011079011 & Fig: 3-230 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value VNG>.} \\
\hline V<>: VNG>> PSx 076012077012078012079012 & Fig: 3-230 \\
\hline \multicolumn{2}{|l|}{Setting for the operate value VNG>>.} \\
\hline V<>: tVNG> PSx 076013077013078013079013 & Fig: 3-230 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overvoltage stage VNG>.} \\
\hline V<>: tVNG>> PSx 076014077014078014079014 & Fig: 3-230 \\
\hline \multicolumn{2}{|l|}{Setting for the operate delay of overvoltage stage VNG>>.} \\
\hline \(\mathrm{V}<>\) : tTransient PSx 076029077029078029079029 & Fig: 3-225 \\
\hline \multicolumn{2}{|l|}{Setting for the time limit of the signals generated by the undervoltage stages.} \\
\hline V<>: Hyst. V<> meas. PSx 076048077048078048079048 & Fig: 3-224 \\
\hline \multicolumn{2}{|l|}{Setting for the hysteresis of the trigger stages for monitoring measured voltages.} \\
\hline V<>: Hyst. V<> deduc. PSx 07604907704907804907949 & Fig: 3-227 \\
\hline Setting for the hysteresis of the trigger stages for monitoring derived voltages such as Vneg and VNG. & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Over-/underfrequency protection
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{PSx} & 018196018197018198018199 & Fig: 3-231 \\
\hline \multicolumn{4}{|l|}{This setting defines the parameter subset in which over-/underfrequency protection is enabled.} \\
\hline \(\mathrm{f}<\) : Oper. mode f1 & PSx & 018120018121018122018123 & Fig: 3-235 \\
\hline \(\mathrm{f}<>\) : Oper. mode f2 & PSx & 018144018145018146018147 & \\
\hline \(\mathrm{f}<>\) : Oper. mode f3 & PSx & 018168018169018170018171 & \\
\hline \(\mathrm{f}<>\) : Oper. mode f4 & PSx & 018192018193018194018195 & \\
\hline
\end{tabular}

Setting for the operating mode of the timer stages of over-/underfrequency protection.
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{f}<\) : \(\mathrm{f1}\) & PSx & 018100018101018102018103 \\
\hline \(\mathrm{f}<>\) : f2 & PSx & 018124018125018126018127 \\
\hline f<>: f3 & PSx & 018148018149018150018151 \\
\hline \(\mathrm{f}<\) : f4 & PSx & 018172018173018174018175 \\
\hline
\end{tabular}

Setting the frequency threshold. The over-/underfrequency protection function will operate if one of the following two conditions applies: The threshold is higher than the set nominal frequency and the frequency exceeds this threshold. The threshold is lower than the set nominal frequency and the frequency falls below this threshold. Depending on the selected operating mode, a signal will be issued without further monitoring or, alternatively, further monitoring mechanisms will be triggered.
\begin{tabular}{|c|c|c|c|}
\hline f << tf 1 & PSx & 018104018105018106018107 & Fig: 3-235 \\
\hline f<>: tf2 & PSx & 018128018129018130018131 & \\
\hline f<>: tf3 & PSx & 018152018153018154018155 & \\
\hline f<>: tf4 & PSx & 018176018177018178018179 & \\
\hline
\end{tabular}

Setting for the operate delay of over-/underfrequency protection.
\begin{tabular}{|c|c|c|c|}
\hline f < \({ }_{\text {: }}\) df1/dt & PSx & 018108018109018110018111 & Fig: 3 -235 \\
\hline \(\mathrm{f}<>\) : df2/dt & PSx & 018132018133018134018135 & \\
\hline \(\mathrm{f}<>\) : df3/dt & PSx & 018156018157018158018159 & \\
\hline \(\mathrm{f}<\) : \(\mathrm{df} 4 / \mathrm{dt}\) & PSx & 018180018181018182018183 & \\
\hline
\end{tabular}

Setting for the frequency gradient to be monitored
Note: This setting is ineffective unless operating mode " \(f\) with \(d f / d t\) " has been selected.
\begin{tabular}{|c|c|c|c|}
\hline f<>: Delta f1 & PSx & 0181120181130181140.18 .18115 & Fig: 3-235 \\
\hline \(\mathrm{f}<>\) : Delta f 2 & PSx & 018136018137018138018139 & \\
\hline \(\mathrm{f}<\) >: Delta f & PSx & 018160018161018162018163 & \\
\hline f < \({ }_{\text {\% }}\) D Delta f & PSx & 018184018185018186018187 & \\
\hline
\end{tabular}

\section*{Setting for Delta f.}

Note: This setting is ineffective unless operating mode " \(f\) w. Delta \(f / D e l t a t "\) has been selected.
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{f}<\) : Delta 1 & PSx & 018116018117018118018119 & Fig: 3-235 \\
\hline \(\mathrm{f}<>\) : Delta \(\mathrm{t}^{2}\) & PSx & 018140018141018142018143 & \\
\hline f<>: Delta \({ }^{\text {3 }}\) & PSx & 018164018165018166018167 & \\
\hline \(\mathrm{f}<\) >: Delta t 4 & PSx & 018188018189018190018191 & \\
\hline \multicolumn{4}{|l|}{Setting for Delta t.} \\
\hline Note:
" \(f\) w. Delta \(/ \mathrm{f} / \mathrm{D}\) & etting
t" h & g mode & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Power directional protection
\begin{tabular}{|c|c|c|}
\hline P<>: Enabled PSx & 014252014253014254014255 & Fig: 3-236 \\
\hline \multicolumn{3}{|l|}{This setting defines the parameter subset in which power directional protection is enabled.} \\
\hline \(\mathrm{P}\langle>\) : P> PSx & 017120017200017201017202 & Fig: 3-238 \\
\hline \multicolumn{3}{|l|}{Setting the operate value \(P>\) for the active power.} \\
\hline \(\mathrm{P}<>\) : Operate delay P>PSx & 017128017129017130017131 & Fig: \(3-238\) \\
\hline \multicolumn{3}{|l|}{Setting the operate delay of stage \(\mathrm{P}>\).} \\
\hline \(\mathrm{P}<\) : Release delay P>PSx & 017132017133017134017135 & Fig: 3-238 \\
\hline \multicolumn{3}{|l|}{Setting the release delay of stage \(P>\).} \\
\hline \(\mathrm{P}>\) : Direction P> PSx & 017136017137017138017139 & Fig: 3-239 \\
\hline \multicolumn{3}{|l|}{This setting of the measuring direction determines whether a \(P>\) trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.} \\
\hline \(\mathrm{P}<>\) : Diseng. ratio P>PSx & 017124017125017126017127 & Fig: 3-238 \\
\hline \multicolumn{3}{|l|}{Setting the disengaging ratio of the operate value \(\mathrm{P}>\) for the active power.} \\
\hline P<>: P>> PSx & 017140017141017142017143 & Fig: 3-238 \\
\hline \multicolumn{3}{|l|}{Setting the operate value \(\mathrm{P} \gg\) for the active power.} \\
\hline \(\mathrm{P}<>\) : Operate delay P>>PSx & 017148017149017150017151 & Fig: 3-238 \\
\hline \multicolumn{3}{|l|}{Setting the operate delay of stage \(\mathrm{P} \gg\).} \\
\hline \(\mathrm{P}<\) : Release delay P>>PSx & 017152017153017154017155 & Fig: 3-238 \\
\hline \multicolumn{3}{|l|}{Setting the release delay of stage \(P \gg\).} \\
\hline \(\mathrm{P}<>\) : Direction P>> PSx & 017156017157017158017159 & Fig: 3-239 \\
\hline \multicolumn{3}{|l|}{This setting of the measuring direction determines whether a P>> trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.} \\
\hline \(P<>\) : Diseng. ratio \(P \gg P S x\) & 017144017145017146017147 & Fig: 3-238 \\
\hline \multicolumn{3}{|l|}{Setting the disengaging ratio of the operate value \(\mathrm{P} \gg\) for the active power.} \\
\hline \(\mathrm{P}<\) : Q> PSx & 017160017161017162017163 & Fig: 3-240 \\
\hline \multicolumn{3}{|l|}{Setting the operate value \(Q>\) of the reactive power.} \\
\hline \(\mathrm{P}<\) : Operate delay Q> PSx & 017168017169017170017171 & Fig: 3-240 \\
\hline \multicolumn{3}{|l|}{Setting the operate delay of stage Q>.} \\
\hline P<>: Release delay Q> PSx & 017172017173017174017175 & Fig: \(3-240\) \\
\hline \multicolumn{3}{|l|}{Setting the release delay of stage Q>.} \\
\hline \(\mathrm{P}<>\) : Direction Q> PSx & 017176017170017178017179 & Fig: 3-241 \\
\hline \multicolumn{3}{|l|}{This setting of the measuring direction determines whether a Q> trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.} \\
\hline \(\mathrm{P}<\) >: Diseng. ratio Q> PSx & 017164017165017166017167 & Fig: 3-240 \\
\hline \multicolumn{3}{|l|}{Setting the disengaging ratio of the operate value \(\mathrm{Q}>\) of the reactive power.} \\
\hline \(P<>\) Q \(\gg\) PSx & 017180017181017182017183 & Fig: 3-240 \\
\hline \multicolumn{3}{|l|}{Setting the operate value Q>> of the reactive power.} \\
\hline P<>: Operate delay Q>>PSx & 017188017189017190017191 & Fig: 3-240 \\
\hline \multicolumn{3}{|l|}{Setting the operate delay of stage Q>>.} \\
\hline P<>: Release delay Q>>PSx & 017192017193017194017195 & Fig: \(3-240\) \\
\hline \multicolumn{3}{|l|}{Setting the release delay of stage \(\mathrm{Q} \gg\).} \\
\hline \(\mathrm{P}<>\) : Direction Q>> PSx & 017196017197017198017199 & Fig: 3-241 \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

This setting of the measuring direction determines whether a Q>> trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{P}<>\) : Diseng. ratio \(\mathrm{Q} \gg \mathrm{PSx}\) & 017184017185017186017187 & Fig: 3-240 \\
\hline \multicolumn{3}{|l|}{Setting the disengaging ratio of the operate value \(\mathrm{Q} \gg\) of the reactive power.} \\
\hline \(\mathrm{P}<>\) : P< PSx & 017030017031017032017033 & Fig: 3-242 \\
\hline \multicolumn{3}{|l|}{Setting the operate value \(\mathrm{P}<\) for the active power.} \\
\hline \(\mathrm{P}<>\) : Operate delay \(\mathrm{P}<\mathrm{PSx}\) & 017060017061017062017063 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-244
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Setting the operate delay of stage \(\mathrm{P}<\).} \\
\hline \(\mathrm{P}<>\) : Release delay P<PSx & 017226017227017228017229 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-244
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Setting the release delay of stage \(\mathrm{P}<\).} \\
\hline P<>: Direction P< PSx & 017230017231017232017233 & Fig: 3-243 \\
\hline
\end{tabular}

This setting of the measuring direction determines whether a \(P<\) trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.
\begin{tabular}{|c|c|c|}
\hline \(\geqslant\) : Diseng. ratio P<PSx & 017034017035017036017037 & Fig: 3-242 \\
\hline
\end{tabular}

Setting the disengaging ratio of the operate value \(P<\) for the active power.
\begin{tabular}{|c|c|}
\hline  & Fig: 3-242 \\
\hline \multicolumn{2}{|l|}{Setting the operate value \(\mathrm{P} \ll\) for the active power.} \\
\hline P<>: Operate delay P<<PSx \(\quad 017242017243017{ }^{\text {a }}\) & Fig: 3-242 \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of stage \(\mathrm{P} \ll\).} \\
\hline \(\mathrm{P}<>\) : Release delay P<<PSx & Fig: 3-242 \\
\hline \multicolumn{2}{|l|}{Setting the release delay of stage \(\mathrm{P} \ll\).} \\
\hline P<>: Direction P<< PSx 010 & Fig: 3-243 \\
\hline \multicolumn{2}{|l|}{This setting of the measuring direction determines whether a \(P<\) trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.} \\
\hline P<>: Diseng.ratio P<<PSx & Fig: 3-242 \\
\hline \multicolumn{2}{|l|}{Setting the disengaging ratio of the operate value \(P \ll\) for the active power.} \\
\hline  & Fig: 3-245 \\
\hline \multicolumn{2}{|l|}{Setting the operate value \(\mathrm{Q}<\) of the reactive power.} \\
\hline \(\mathrm{P}<>\) : Operate delay Q P PSx & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-247
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting the operate delay of stage \(\mathrm{Q}<\).} \\
\hline P<>: Release delay Q PSx 018056018057018058018059 & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-247
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting the release delay of stage \(\mathrm{Q}<\).} \\
\hline P<>: Direction Q< PSx 018081018082018083018084 & Fig: 3-246 \\
\hline \multicolumn{2}{|l|}{This setting of the measuring direction determines whether a \(\mathrm{Q}<\) trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.} \\
\hline \(\mathrm{P}<>\) : Diseng. ratio Q<PSx & Fig: 3-245 \\
\hline \multicolumn{2}{|l|}{Setting the disengaging ratio of the operate value \(\mathrm{Q}<\) of the reactive power.} \\
\hline \(\mathrm{P}<>\) : Q<< PSx \(\quad 018085018086018087018088\) & Fig: 3-245 \\
\hline \multicolumn{2}{|l|}{Setting the operate value \(\mathrm{Q} \ll\) of the reactive power.} \\
\hline \(\mathrm{P}<>\) : Operate delay Q < \(<\) PSx & Fig: 3-245 \\
\hline Setting the operate delay of stage \(\mathrm{Q} \ll\). & \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{P}<>\) : Release delay \(\mathrm{Q} \ll \mathrm{PSx}\) & 018236018237018238018239 & Fig: 3-245 \\
\hline \multicolumn{3}{|l|}{Setting the release delay of stage \(\mathrm{Q} \ll\).} \\
\hline \(\mathrm{P}<>\) : Direction \(\mathrm{Q} \ll \mathrm{PSx}\) & 018242018243018244018245 & Fig: 3-246 \\
\hline \multicolumn{3}{|l|}{This setting of the measuring direction determines whether a \(\mathrm{Q} \ll\) trip signal will be issued for 'forward', 'backward' or 'non-directional' fault decisions.} \\
\hline \(\mathrm{P}<\) : Diseng.ratio \(\mathrm{Q} \ll \mathrm{PSx}\) & 018095018096018097018098 & Fig: 3-245 \\
\hline \multicolumn{3}{|l|}{Setting the disengaging ratio of the operate value \(\mathrm{Q} \ll\) of the reactive power.} \\
\hline \(\mathrm{P}<>\) : tTransient pulse PSx & 018246018247018248018249 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-244,3-245, \\
& 3-247
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Setting the time limit of the signals generated by the stages \(\mathrm{P}<, \mathrm{P} \ll, \mathrm{Q}<\) and \(\mathrm{Q} \ll\) after the respective operate delay has elapsed.} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Main function

External devices 01 to 03

\subsection*{7.1.3.4 Control}

\begin{tabular}{|c|c|}
\hline DEV01: Designat. ext. dev. DEV02: Designat. ext. dev. DEV03: Designat. ext. dev. & \[
\begin{aligned}
& \hline 210000 \\
& 210050 \\
& 210100
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting the designation of the respective external device.} \\
\hline \begin{tabular}{l}
DEV01: Op.time switch. dev. \\
DEV02: Op.time switch. dev. DEV03: Op.time switch. dev.
\end{tabular} & 210004 Fig: 3-291,
3-297, 3-298
210054
210104 \\
\hline \multicolumn{2}{|l|}{Setting the operating time for switchgear (switching device).} \\
\hline DEV01: Latching time DEV02: Latching time DEV03: Latching time & 210005 Fig: 3-292,
3-298, 3-299
210055
210105 \\
\hline \multicolumn{2}{|l|}{Setting the time that a control command is sustained after a switchgear position signal - "Open" or "Closed" - has been received.} \\
\hline \begin{tabular}{l}
DEV01: Gr. assign. debounc. \\
DEV02: Gr. assign. debounc. DEV03: Gr. assign. debounc.
\end{tabular} & \[
\begin{aligned}
& 210011 \text { Fig: 3-291, } \\
& 3 \text { 3-297 } \\
& 210061 \\
& 21011
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Assigning the external device to one of eight groups for debouncing and chatter suppression.} \\
\hline \begin{tabular}{l}
DEV01: Interm. pos. suppr. \\
DEV02: Interm. pos. suppr. \\
DEV03: Interm. pos. suppr.
\end{tabular} & \[
\begin{aligned}
& 210012 \text { Fig: 3-291, } \\
& 3-297 \\
& 210062 \\
& 210112
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{This setting determines whether the 'intermediate position' signal will be suppressed or not, while the switchgear is operating.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& 210027 \text { Fig: 3-291, } \\
& 3-297
\end{aligned}
\] \\
\hline DEV02: Stat.ind.interm.pos. & 210077 \\
\hline DEV03: Stat.ind.interm.pos. & 21012 \\
\hline \multicolumn{2}{|l|}{This setting determines whether the actual status will be signaled with a 5 s delay after the 'Faulty position' signal is issued.} \\
\hline DEV01: Oper. mode cmd. & 210024 \\
\hline DEV02: Oper. mode cmd. & 210074 \\
\hline DEV03: Oper. mode cmd. & 210124 \\
\hline \multicolumn{2}{|l|}{Select the operating mode of the command from long command, short command or time control.} \\
\hline DEV01: Inp.asg. sw.tr. plug & \[
\begin{aligned}
& 210014 \text { Fig: 3-291, } \\
& 3-297
\end{aligned}
\] \\
\hline DEV02: Inp.asg. sw.tr. plug & 210064 \\
\hline DEV03: Inp.asg. sw.tr. plug & 2101 \\
\hline \multicolumn{2}{|l|}{Definition of the binary signal used to signal the position (plugged-in / unplugged) of the switch truck plug.} \\
\hline DEV01: With gen. trip cmd. 1 & 210021 Fig: 3-295 \\
\hline DEV02: With gen. trip cmd. 1 & 210071 \\
\hline DEV03: With gen. trip cmd. 1 & 210121 \\
\hline \multicolumn{2}{|l|}{This setting specifies whether the circuit breaker will be opened by "general trip command 1" of the protection function.} \\
\hline \multicolumn{2}{|l|}{Note: This setting is only visible (active) for external devices that are defined as 'circuit breakers'. This definition is included in the bay type definitions.} \\
\hline DEV01: With gen. trip cmd. 2 & 210022 Fig: 3-295 \\
\hline DEV02: With gen. trip emd. 2 & 210072 \\
\hline DEV03: With gen. trip cmd. 2 & 210122 \\
\hline \multicolumn{2}{|l|}{This setting specifies whether the circuit breaker will be opened by "general trip command 2" of the protection function.} \\
\hline \multicolumn{2}{|l|}{Note: This setting is only visible (active) for external devices that are defined as 'circuit breakers'. This definition is included in the bay type definitions.} \\
\hline DEV01: With close cmd./prot DEV02: With close cmd./prot DEV03: With close cmd./prot & \[
\begin{aligned}
& 210023 \text { Fig: 3-295 } \\
& 210073 \\
& 210123
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{This setting specifies whether the circuit breaker will be closed by the "close command" of the protection function.} \\
\hline \multicolumn{2}{|l|}{Note: This setting is only visible (active) for external devices that are defined as 'circuit breakers'. This definition is included in the bay type definitions.} \\
\hline DEV01: Inp.asg.el.ctrl.open DEV02: Inp.asg.el.ctrl.open DEV03: Inp.asg.el.ctrl.open & \[
\begin{aligned}
& 210019 \text { Fig: 3-292 } \\
& 210069 \\
& 210119
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{This setting defines the binary signal that will be used as the control signal to move the switchgear unit to the open position.} \\
\hline \multicolumn{2}{|l|}{Note: Only signals that are defined in the DEVxx function groups can be selected.} \\
\hline
\end{tabular}

\section*{7 Settings \\ (continued)}
\begin{tabular}{|c|c|}
\hline DEV01: Inp.asg.el.ctr.close & 21020 Fig: 3-292 \\
\hline DEV02: Inp.asg.el.ctr.close & 0070 \\
\hline DEV03: Inp.asg.el.ctr.close & 10120 \\
\hline
\end{tabular}

This setting defines the binary signal that will be used as the control signal to move the switchgear unit to the 'Closed' position.

Note: Only signals that are defined in the DEVxx function groups can be selected.
DEV01: Inp. asg. end Open
DEV02: Inp. asg. end Open
DEV03: Inp. asg. end Open 210115

This setting defines the binary signal that will be used to terminate the 'Open' command.
DEV01: Inp. asg. end Close
DEV02: Inp. asg. end Close 21006
DEV03: Inp. asg. end Close 20116
This setting defines the binary signal that will be used to terminate the 'Close' command.
\begin{tabular}{|ll|}
\hline DEV01: Open w/o stat.interl & 210025 Fig: 3-294 \\
DEVO2: Open w/o stat.interl & 210075 \\
DEV03: Open w/o stat.interl & 2125 \\
\hline
\end{tabular}

This setting specifies whether switching to 'Open' position is permitted without a check by the station interlock function.
\begin{tabular}{|c|c|}
\hline DEV01: Close w/o stat. int. & 210026 Fig: 3-294 \\
\hline DEV02: Close w/o stat. int. & 210076 \\
\hline DEV03: Close w/o stat. int. & 210126 \\
\hline
\end{tabular}

This setting specifies whether switching to 'Closed' position is permitted without a check by the station interlock function.
\begin{tabular}{|c|c|}
\hline DEV01: Fct.assig.BlwSI open & 210039 Fig: 3-293 \\
\hline DEV02: Fct.assig.BlwSI open & 210089 \\
\hline DEV03: Fct.assig.BlwSI open & 210139 \\
\hline
\end{tabular}

This setting defines which output will issue the 'Open' enable to the interlocking logic when there is 'bay interlock with substation interlock'.

\section*{Note:}

The interlock conditions for bay interlock with station interlock are included in the bay type definitions (see List of Bay Types in the Appendix). If the interlock condition is to be modified, this is possible by modifying the corresponding Boolean equation in the interlocking logic or by defining a new interlocking logic equation. Only in the latter case is it necessary to change the function assignment.
\begin{tabular}{|c|c|}
\hline DEV01: Fct.assig.BlwSI clos DEV02: Fct.assig.BlwSI clos DEV03: Fct.assig.BlwSI clos & 210040
210090
210140 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
This setting defines which output will issue the 'Close' enable to the interlocking logic when there is 'bay interlock with substation interlock'. \\
Note: \\
The interlock conditions for bay interlock with station interlock are included in the bay type definitions (see List of Bay Types in the Appendix). If the interlock condition is to be modified, this is possible by modifying the corresponding Boolean equation in the interlocking logic or by defining a new interlocking logic equation. Only in the latter case is it necessary to change the function assignment.
\end{tabular}} \\
\hline DEV01: Fct.asg.BI w/o SI op DEV02: Fct.asg.BI w/o SI op DEV03: Fct.asg.BI w/o SI op & 210041 Fig: 3-293
210091
210141 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
This setting defines which output will issue the 'Open' enable to the interlocking logic when there is 'bay interlock without substation interlock'. \\
Note: \\
The interlock conditions for bay interlock without station interlock are included in the bay type definitions (see List of Bay Types in the Appendix). If the interlock condition is to be modified, this is possible by modifying the corresponding Boolean equation in the interlocking logic or by defining a new interlocking logic equation. Only in the latter case is it necessary to change the function assignment.
\end{tabular}} \\
\hline DEV01: Fct.asg.BI w/o SI cl DEV02: Fct.asg.BI w/o SI cl DEV03: Fct.asg.Bl w/o SI cl & 210042 Fig: 3-293
210092
210142 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
This setting defines which output will issue the 'Close' enable to the interlocking logic when there is 'bay interlock without substation interlock'. \\
Note: \\
The interlock conditions for bay interlock without station interlock are included in the bay type definitions (see List of Bay Types in the Appendix). If the interlock condition is to be modified, this is possible by modifying the corresponding Boolean equation in the interlocking logic or by defining a new interlocking logic equation. Only in the latter case is it necessary to change the function assignment.
\end{tabular}} \\
\hline
\end{tabular}

\section*{7 Settings}
(continued)

Interlocking logic
\begin{tabular}{|c|c|c|}
\hline ILOCK: Fct.assignm. outp. 1 & 250000 & Fig: 3-300 \\
\hline ILOCK: Fct.assignm. outp. 2 & 250001 & \\
\hline ILOCK: Fct.assignm. outp. 3 & 250002 & \\
\hline ILOCK: Fct.assignm. outp. 4 & 250003 & \\
\hline ILOCK: Fct.assignm. outp. 5 & 250004 & \\
\hline ILOCK: Fct.assignm. outp. 6 & 250005 & \\
\hline ILOCK: Fct.assignm. outp. 7 & 250006 & \\
\hline ILOCK: Fct.assignm. outp. 8 & 250007 & \\
\hline ILOCK: Fct.assignm. outp. 9 & 250008 & \\
\hline ILOCK: Fct.assignm. outp. 10 & 250009 & \\
\hline ILOCK: Fct.assignm. outp. 11 & 250010 & \\
\hline ILOCK: Fct.assignm. outp. 12 & 5011 & \\
\hline ILOCK: Fct.assignm. outp. 13 & 250012 & \\
\hline ILOCK: Fct.assignm. outp. 14 & 250013 & \\
\hline ILOCK: Fct.assignm. outp. 15 & 250014 & \\
\hline ILOCK: Fct.assignm. outp. 16 & 250015 & \\
\hline ILOCK: Fct.assignm. outp. 17 & 250016 & \\
\hline ILOCK: Fct.assignm. outp. 18 & 250017 & \\
\hline ILOCK: Fct.assignm. outp. 19 & 250018 & \\
\hline ILOCK: Fct.assignm. outp. 20 & 250019 & \\
\hline ILOCK: Fct.assignm. outp. 21 & 250020 & \\
\hline ILOCK: Fct.assignm. outp. 22 & 250021 & \\
\hline ILOCK: Fct.assignm. outp. 23 & 250022 & \\
\hline ILOCK: Fct.assignm. outp. 24 & 250023 & \\
\hline ILOCK: Fct.assignm. outp. 25 & 250024 & \\
\hline ILOCK: Fct.assignm. outp. 26 & 250025 & \\
\hline ILOCK: Fct.assignm. outp. 27 & 250026 & \\
\hline ILOCK: Fct.assignm. outp. 28 & 250027 & \\
\hline ILOCK: Fct.assignm. outp. 29 & 250028 & \\
\hline ILOCK: Fct.assignm. outp. 30 & 250029 & \\
\hline ILOCK: Fct.assignm. outp. 31 & 250030 & \\
\hline ILOCK: Fct.assignm. outp. 32 & 250031 & \\
\hline Definition of the interlock cond & & \\
\hline
\end{tabular}

\subsection*{7.2 Protection of Increased-Safety Machines}

\subsection*{7.2.1 General}

The P132 was subjected to risk analysis based on the DIN V 19250 standard of May 1994 (on basic safety considerations for measuring and protection relays) as well as DIN V 19251 of February 1995 (on measuring and protection relays, specifications and measures for their fail-safe functioning) and owing to a lack of more specific standards also based on DIN V VDE 0801 (on computers in safety systems).
Based on this risk analysis involving the examination of extensive measures for prevention and management of malfunction, the P132 has been classified in specifications class 3 . According to NAMUR NE 31 (NAMUR: German committee on standards for measuring and control engineering), specifications class 3 corresponds to risk area 1. For this risk area, a protection device of single-channel design with alarm signal and/or normally-energized arrangement ('closed-circuit principle') will normally suffice. In special cases, a requirement for a higher specifications class can be met by a customized ' 1 out of 2' or '2 out of 3 ' circuit.

By connection and configuration of the output relay MAIN: Blocked/faulty, the increased-safety machine can be switched off immediately or, alternatively, an alarm signal can be given for delayed switch-off based on an assessment of the operational conditions by trained staff.

\subsection*{7.2.2 Restrictive Safety-Oriented Configuration}

For the P132 to operate in a restrictive safety-oriented mode under all operational conditions, the output relays must be operated in a normally-energized arrangement ('closed-circuit principle'). In this arrangement, the relevant output relay is energized during normal operation and drops out in the event of an activation of the associated function or in the event of a malfunction.

On the configuration of functions, please see the Chapter 'Local Control'.
Essential General Configuration
\begin{tabular}{lllll}
\hline Function & Address & Folder \(^{1}\) & Setting \\
\hline MAIN: Device on-line & 003030 & Par/Func/Glob/' & Yes = on (1) \\
\hline MAIN: Trip cmd.block. USER & 021012 & Par/Func/Glob/' & No (0) \\
\hline OUTP: Outp.rel.block USER & 021014 & Par/Func/Glob/' & No (0) \\
\hline DTOC: Function group DTOC & 056008 & Par/Conf/ & With (1) \\
\hline MP: Function group MP & 056022 & Par/Conf/ & With (1) \\
\hline I2>: Function group I2> & 056024 & Par/Conf/ & With (1) \\
\hline DTOC: General enable USER & 022075 & Par/Func/Gen/ & Yes (1) \\
\hline MP: General enable USER & 017059 & Par/Func/Gen/ & Yes (1) \\
\hline I2>: General enable USER & 018090 & Par/Func/Gen/ & Yes (1) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) siehe Kapitel "Bedienung" dieser Betriebsanleitung.
}

\section*{7 Settings}
(continued)

In order to implement a restrictive safety-oriented configuration for the protection of electrical increased-safety machines, the configuration should be equivalent to the example shown in the table below:
\begin{tabular}{lllll}
\hline Relay & Function & Address Folder & \begin{tabular}{l} 
Associated \\
function
\end{tabular} \\
\hline K 902 & OUTP: Fct. assignm. K 902 & 150196 & Par/Conf/ & \begin{tabular}{l} 
MAIN: Gen. \\
trip \\
command 1
\end{tabular} \\
\cline { 2 - 5 } & OUTP: Oper. mode K 902 & 150197 & Par/Conf/ & NE updating \\
\cline { 2 - 5 } & MAIN: Gen. trip command 1 & 021001 & Par/Func/Glob/' & \begin{tabular}{l} 
MP: Trip signal \\
\hline DTOC: Trip \\
signal
\end{tabular} \\
\hline
\end{tabular}

During device startup and during P132 operation, cyclic self-monitoring tests are run. In the event of a positive test result, a specified monitoring signal will be issued and stored in a non-volatile (NV) memory - the monitoring signal memory (see chapter 'Troubleshooting'). Monitoring signals prompted by a serious hardware or software fault in the unit are always entered in the monitoring signal memory. The entry of monitoring signals of lesser significance into the monitoring signal memory is optional. The user can select this option by setting a 'm out of \(n\) ' parameter.

The blocking of the protection device is governed by similar principles, that is, signals prompted by a serious hardware or software fault in the unit always lead to a blocking of the unit. The assignment of signals of lesser significance to the signal
MAIN: Blocked/faulty by an 'm out of n' parameter (MAIN: Fct. assignm. Fault) is optional.
\begin{tabular}{|c|c|c|c|c|}
\hline Relay & Function & Address & Folder & Associated function \\
\hline \multirow[t]{6}{*}{K 908} & OUTP: Fct. assignm. K 908 & 150214 & Par/Conf/ & MAIN: Fct. assign. fault \\
\hline & OUTP: Oper. mode K 908 & 150215 & Par/Conf/ & NE updating \\
\hline & MAIN: Fct. assign. fault & 021031 & Par/Func/Glob/' & SFMON: Error K 902 \\
\hline & & & & \begin{tabular}{l}
SFMON: \\
Defect.module slot 1
\end{tabular} \\
\hline & & & & \begin{tabular}{l}
SFMON: \\
Defect.module slot 4
\end{tabular} \\
\hline & & & & \begin{tabular}{l}
SFMON: \\
Defect.module slot 9
\end{tabular} \\
\hline
\end{tabular}

For safety-oriented operation, the 'Warning' can be configured onto an output relay as in the following example.
\begin{tabular}{lllll}
\hline Relay & Function & Address & Folder & \begin{tabular}{l} 
Associated \\
function
\end{tabular} \\
\hline E.g. & OUTP: Fct. assignm. K 901 & 150193 & Par/Conf/ & \begin{tabular}{l} 
SFMON: \\
K 901 \\
\end{tabular} \\
& & & & Warning (relay)
\end{tabular}

\section*{8 Information and Control Functions}

\section*{8 Information and Control Functions}

The P132 generates a large number of signals, processes binary input signals, and acquires measured data during fault-free operation of the protected object as well as fault-related data. A number of counters are available for statistical purposes. This information can be read out from the integrated local control panel. All this information can be found in the 'Operation' and 'Events' folders in the menu tree.

\section*{Note:}

In the following tables the localization of the corresponding function description is indicated in the right hand side column. "Figure: 3-xxx" refers to a logic diagram which displays the address, "Figure*: \(3-x x x\) " to a figure subtitle or figure report sheet, "Page: \(3-x x x\) " to a page.

\subsection*{8.1 Healthy}

\subsection*{8.1.1 Cyclic Values}

\subsection*{8.1.1.1 Measured Operating Data}
\begin{tabular}{|c|c|}
\hline COMM3: No. tel. errors p.u. & 120040 Page: 3-29 \\
\hline \multicolumn{2}{|l|}{Display of the updated measured operating value for the number of corrupted messages within the last 1000 received messages.} \\
\hline COMM3: No.t.err.,max,stored & 041 Page: 3-29 \\
\hline \multicolumn{2}{|l|}{Display of the maximum value for the proportion of corrupted messages within the last 1000 received messages.} \\
\hline COMM3: Loop back result COMM3: Loop back receive & \[
\begin{aligned}
& 120057 \text { Page: } 3-29 \\
& 120056 \text { Page: } 3-29
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{While the hold time is running, the loop back test results can be checked by reading out these values.} \\
\hline
\end{tabular}

Measured data input
\begin{tabular}{|c|c|}
\hline MEASI: Temperature T1 & \[
\begin{gathered}
004224 \text { Fig: 3-30, } \\
3-279
\end{gathered}
\] \\
\hline MEASI: Temperature T2 & 004225 \\
\hline MEASI: Temperature T3 & 004226 \\
\hline MEASI: Temperature T4 & 004227 \\
\hline MEASI: Temperature T5 & 004228 \\
\hline MEASI: Temperature T6 & 004229 \\
\hline MEASI: Temperature T7 & 004230 \\
\hline MEASI: Temperature T8 & 004231 \\
\hline MEASI: Temperature T9 & 004232 \\
\hline Display of temperatures & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)


\section*{8 Information and Control Functions \\ (continued)}

\section*{Main function}

\section*{MAIN: Date}

003090 Fig: 3-81
Date display.
Note: The date can also be set here.
MAIN: Time of day 003091 Fig: \(3-81\)

Display of the time of day.
Note: The time can also be set here.
MAIN: Time switching 003005 Fig: 3-81

Setting for standard time or daylight saving time.
This setting is necessary in order to avoid misinterpretation of the times assigned to signals and event data that can be read out through the PC or communication interfaces.

\section*{Note:}

The time can be set here for standard time or daylight saving time.
In the case of clock synchronization via the clock synchronization telegram from a central control system or a central device, this setting will be overwritten each time a new clock synchronization telegram is received. With a free-running clock or synchronization by minute pulse through a binary input, the time of day setting and the time switching setting in the device must be plausible. The two settings do not affect each other.


\section*{8 Information and Control Functions \\ (continued)}
\begin{tabular}{|c|c|}
\hline MAIN: Voltage A-G prim. & 005042 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-ground voltage A-G as a primary quantity.} \\
\hline MAIN: Voltage B-G prim. & 006042 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-ground voltage B-G as a primary quantity.} \\
\hline MAIN: Voltage C-G prim. & 007042 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-ground voltage C-G as a primary quantity.} \\
\hline MAIN: Volt. \(\Sigma(\) VPG) \(/ 3\) prim. & 005012 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the calculated neutral-point displacement voltage as a primary quantity.} \\
\hline MAIN: Voltage VNG prim. & 004041 Fig: 3-52 \\
\hline \multicolumn{2}{|l|}{Display of the neutral-point displacement voltage measured at transformer T 90 as a primary quantity.} \\
\hline MAIN: Voltage Vref prim. & 005046 Fig: 3-53 \\
\hline \multicolumn{2}{|l|}{Display of the reference voltage measured at transformer T 15 as a primary quantity.} \\
\hline MAIN: Volt. VPP,max prim. & 008044 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the maximum phase-to-phase voltage as a primary quantity.} \\
\hline MAIN: Voltage VPP,min prim & 009044 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the minimum phase-to-phase voltage as a primary quantity.} \\
\hline MAIN: Voltage A-B prim. & 005044 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-phase voltage A-B as a primary quantity.} \\
\hline MAIN: Voltage B-C prim. & 006044 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-phase voltage B-C as a primary quantity.} \\
\hline MAIN: Voltage C-A prim. & 007044 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-phase voltage C-A as a primary quantity.} \\
\hline MAIN: Volt. VPG,min prim. & 009042 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the minimum phase-to-ground voltage as a primary quantity.} \\
\hline MAIN: Appar. power S prim. & 005025 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated apparent power value as a primary quantity.} \\
\hline MAIN: Active power P prim. & 004050 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated active power value as a primary quantity.} \\
\hline MAIN: Reac. power Q prim. & 004052 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated reactive power value as a primary quantity.} \\
\hline MAIN: Act.energy outp.prim & 005061 Fig: 3-57 \\
\hline \multicolumn{2}{|l|}{Display of the updated active energy output as a primary quantity.} \\
\hline MAIN: Act.energy inp. prim & 005062 Fig: 3-57 \\
\hline \multicolumn{2}{|l|}{Display of the updated active energy input as a primary quantity.} \\
\hline MAIN: React.en. outp. prim & 005063 Fig: 3-57 \\
\hline \multicolumn{2}{|l|}{Display of the updated reactive energy output as a primary quantity.} \\
\hline MAIN: React. en. inp. prim & 005064 Fig: 3-57 \\
\hline \multicolumn{2}{|l|}{Display of the updated reactive energy input as a primary quantity.} \\
\hline MAIN: Frequencyfp.u. & 004070 Fig: 3-56 \\
\hline \multicolumn{2}{|l|}{Display of system frequency referred to \(\mathrm{f}_{\text {nom }}\).} \\
\hline MAIN: Current IP,max p.u. & 005051 Fig: 3-47 \\
\hline Display of the maximum phase current referred to \(\mathrm{I}_{\text {nom }}\). & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions \\ (continued)}


\section*{8 Information and Control Functions \\ (continued)}
\begin{tabular}{|c|c|}
\hline MAIN: Voltage VPP,min p.u. & 009045 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the minimum phase-to-phase voltage referred to \(\mathrm{V}_{\text {nom }}\).} \\
\hline MAIN: Voltage A-B p.u. & 005045 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-phase voltage \(A-B\) referred to \(V_{\text {nom }}\).} \\
\hline MAIN: Voltage B-C p.u. & 006045 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-phase voltage B-C referred to \(\mathrm{V}_{\text {nom }}\).} \\
\hline MAIN: Voltage C-A p.u. & 007045 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for phase-to-phase voltage C-A referred to \(\mathrm{V}_{\text {nom }}\).} \\
\hline MAIN: Voltage Vpos p.u. & 009018 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the positive-sequence voltage referred to \(\mathrm{V}_{\text {nom }}\).} \\
\hline MAIN: Voltage Vneg p.u. & 009017 Fig: 3-51 \\
\hline \multicolumn{2}{|l|}{Display of the negative-sequence voltage referred to \(\mathrm{V}_{\text {nom }}\).} \\
\hline MAIN: Appar. powerS p.u. & 005026 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated apparent power value referred to nominal apparent power Snom.} \\
\hline MAIN: Active power P p.u. & 004051 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated active power value referred to nominal apparent power \(\mathrm{S}_{\text {nom }}\).} \\
\hline MAIN: Reac. power Q p.u. & 004053 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated value for reactive power referred to nominal apparent power \(\mathrm{S}_{\text {nom }}\).} \\
\hline MAIN: Active power factor & 004054 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated active power factor.} \\
\hline MAIN: Load angle phi A & 004055 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated load angle value in phase A.} \\
\hline MAIN: Load angle phi B & 004056 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated load angle value in phase B.} \\
\hline MAIN: Load angle phi C & 004057 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated load angle value in phase C.} \\
\hline MAIN: Angle phi N & 004072 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the angle between the measured residual current system quantities IN and VNG.} \\
\hline MAIN: Load angle phi A p.u & 005073 Fig: 3-54 \\
\hline \multicolumn{2}{|l|}{Display of the updated load angle value in phase A (referred to \(100^{\circ} \mathrm{C}\) ).} \\
\hline MAIN: Load angle phi B p.u & 005074 Fig: \(3-54\) \\
\hline \multicolumn{2}{|l|}{Display of the updated load angle value in phase B (referred to \(100^{\circ} \mathrm{C}\) ).} \\
\hline MAIN: Load angle phi C p.u & 005075 Fig: \(3-54\) \\
\hline \multicolumn{2}{|l|}{Display of the updated load angle value in phase C (referred to \(100^{\circ} \mathrm{C}\) ).} \\
\hline MAIN: Angle phi N p.u. & 005076 Fig: 3-54 \\
\hline Display of the angle between the measured residual current system quantities IN and VNG (referred to \(100^{\circ}\) ). & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions \\ (continued)}

Ground fault direction determination using steady-state values

\section*{MAIN: Angle IVPG vs. IN}

005009 Fig: 3-54
Display of the angle between the calculated neutral-point displacement voltage and the measured residual current system quantities IN.

\section*{MAIN: Angle \(\Sigma\) VPG/IN p.u.}

005072 Fig: 3-54
Display of the angle between the calculated neutral-point displacement voltage and the measured residual current system quantities IN (referred to \(100^{\circ}\) ).

\section*{MAIN: Phase rel.,IN vs \(\Sigma I P\)}

004073 Fig: 3-55
The phase relations of measured and calculated residual current are compared.
MAIN: Current \(\Sigma\) I unfilt. 004074

Display of calculated unfiltered resultant current.

\section*{GFDSS: Current IN,act p.u.}

004045 Fig: 3-188
Display of the updated value for the active component of residual current referred to \(I_{N, n o m}\).
GFDSS: Curr. IN,reac p.u. 004046 Fig: 3-188
Display of the updated value for the reactive component of residual current referred to \(I_{\mathrm{N}, \text { nom }}\).
GFDSS: Curr. IN filt. p.u. 004047 Fig: 3-189

Display of the updated value for the harmonic content of residual current referred to \(I_{N, n o m}\). This display is only active when the steady-state current evaluation mode of the ground fault direction determination function (GFDSS) is enabled.
GFDSS: Admitt. Y(N) p.u.
Display of the updated admittance value referred to \(\mathrm{Y}_{\mathrm{N}, \text { nom }}\). With setting:
GFDSS: Evaluation VNG is set to "Measured":
\(Y_{N, \text { nom }}=I_{N, \text { nom }} / V_{N G n o m}\)
With setting: GFDSS: Evaluation VNG is set to "Calculated":
\(Y_{N, \text { nom }}=I_{N, \text { nom }} / V_{\text {nom }}\)
GFDSS: Conduct. G(N) p.u.
Display of the updated conductance value referred to \(Y_{N, n o m}\). With setting: GFDSS: Evaluation VNG is set to "Measured":
\(\mathrm{Y}_{\mathrm{N}, \text { nom }}=I_{\mathrm{N}, \text { nom }} / V_{\mathrm{NG} \text { nom }}\)
With setting: GFDSS: Evaluation VNG is set to "Calculated":
\(Y_{N, \text { nom }}=I_{N, \text { nom }} / V_{\text {nom }}\)
GFDSS: Suscept. B(N) p.u. 004193 Fig: 3-194

Display of the updated susceptance value referred to \(Y_{N, n o m}\).
With setting: GFDSS: Evaluation VNG is set to "Measured":
\(\mathrm{Y}_{\mathrm{N}, \text { nom }}=\mathrm{I}_{\mathrm{N}, \text { nom }} / \mathrm{V}_{\mathrm{NGnom}}\)
With setting: GFDSS: Evaluation VNG is set to "Calculated":
\(Y_{N, \text { nom }}=I_{N, \text { nom }} / V_{\text {nom }}\)
\begin{tabular}{|c|c|}
\hline MP: Therm.repl.buffer MP & 004018 Fig: 3-210 \\
\hline \multicolumn{2}{|l|}{Display of the buffer content of the motor protection function.} \\
\hline MP: St-ups still permitt & 004012 Fig: 3-210 \\
\hline Display of the current numb blocking. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline MP: Therm. repl. MP p.u. & 005071 Fig: 3-210 \\
\hline \multicolumn{2}{|l|}{Display of the buffer content of the motor protection (referred to 100\%).} \\
\hline MP: St-ups st. perm.p.u. & 005086 Fig: 3-210 \\
\hline Display of the current numb blocking (referred to the fac & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline THERM: Status THERM replica & 004016 Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Display of the buffer content of the thermal overload protection function.} \\
\hline THERM: Object temperature & 004137 Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Display of the temperature of the protected object.} \\
\hline THERM: Coolant temperature & 004149 Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Display of the coolant temperature depending on the setting at THERM: Select CTA. \\
When set to "Default temp. value" the set temperature value will be displayed. When set to "From PT 100" the temperature measured by the resistance thermometer will be displayed. When set to "From 20 mA input" the temperature measured via a 20 mA transducer will be displayed.
\end{tabular}} \\
\hline THERM: Pre-trip time left & 004139 Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{Display of the time remaining before the thermal overload protection function will reach the tripping threshold.} \\
\hline THERM: Therm. replica p.u. & 004017 \\
\hline \multicolumn{2}{|l|}{Display of the buffer content of the thermal overload protection function referred to a buffer content of \(100 \%\).} \\
\hline THERM: Object temp. p.u. & 004179 \\
\hline \multicolumn{2}{|l|}{Display of the temperature of the protected object referred to \(100^{\circ} \mathrm{C}\).} \\
\hline THERM: Coolant temp. p.u. & 004178 \\
\hline \multicolumn{2}{|l|}{Display of the coolant temperature referred to \(100^{\circ} \mathrm{C}\).} \\
\hline THERM: Temp. offset replica & 004109 Fig: 3-218 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Display of the additional reserve if coolant temperature is taken into account and if the coolant temperature has been set to a value below the maximum permissible coolant temperature. (In this case, the thermal model has been shifted downwards.) \\
If, on the other hand, the coolant temperature and the maximum permissible coolant temperature have been set to the same value, then the coolant temperature is not taken into account and the characteristic is a function of the current only. The additional reserve amounts to zero in this case.
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

\subsection*{8.1.1.2 Physical State Signals}

Communication interface 3
\begin{tabular}{|c|c|}
\hline COMM3: State receive 1 & 120000 Page: 3-29 \\
\hline COMM3: State receive 2 & 120003 \\
\hline COMM3: State receive 3 & 120006 \\
\hline COMM3: State receive 4 & 120009 \\
\hline COMM3: State receive 5 & 120012 \\
\hline COMM3: State receive 6 & 120015 \\
\hline COMM3: State receive 7 & 120018 \\
\hline COMM3: State receive 8 & 120021 \\
\hline \multicolumn{2}{|l|}{Display of the relevant receive signal.} \\
\hline COMM3: State send 1 & 121000 Page: 3-29 \\
\hline COMM3: State send 2 & 121002 \\
\hline COMM3: State send 3 & 121004 \\
\hline COMM3: State send 4 & 121006 \\
\hline COMM3: State send 5 & 121008 \\
\hline COMM3: State send 6 & 121010 \\
\hline COMM3: State send 7 & 121012 \\
\hline COMM3: State send 8 & 121014 \\
\hline
\end{tabular}

Display of the updated value for the relevant send signal.

\section*{8 Information and Control Functions}
(continued)

Generic Object Orientated Substation Events
\begin{tabular}{|c|c|}
\hline GOOSE: Output 1 state & 106010 \\
\hline GOOSE: Output 2 state & 106012 \\
\hline GOOSE: Output 3 state & 106014 \\
\hline GOOSE: Output 4 state & 106016 \\
\hline GOOSE: Output 5 state & 106018 \\
\hline GOOSE: Output 6 state & 106020 \\
\hline GOOSE: Output 7 state & 106022 \\
\hline GOOSE: Output 8 state & 106024 \\
\hline GOOSE: Output 9 state & 106026 \\
\hline GOOSE: Output 10 state & 106028 \\
\hline GOOSE: Output 11 state & 106030 \\
\hline GOOSE: Output 12 state & 106032 \\
\hline GOOSE: Output 13 state & 106034 \\
\hline GOOSE: Output 14 state & 106036 \\
\hline GOOSE: Output 15 state & 106038 \\
\hline GOOSE: Output 16 state & 106040 \\
\hline GOOSE: Output 17 state & 106042 \\
\hline GOOSE: Output 18 state & 106044 \\
\hline GOOSE: Output 19 state & 106046 \\
\hline GOOSE: Output 20 state & 106048 \\
\hline GOOSE: Output 21 state & 106050 \\
\hline GOOSE: Output 22 state & 106052 \\
\hline GOOSE: Output 23 state & 106054 \\
\hline GOOSE: Output 24 state & 106056 \\
\hline GOOSE: Output 25 state & 106058 \\
\hline GOOSE: Output 26 state & 106060 \\
\hline GOOSE: Output 27 state & 106062 \\
\hline GOOSE: Output 28 state & 106064 \\
\hline GOOSE: Output 29 state & 106066 \\
\hline GOOSE: Output 30 state & 106068 \\
\hline GOOSE: Output 31 state & 106070 \\
\hline GOOSE: Output 32 state & 106072 \\
\hline \multicolumn{2}{|l|}{Display of the virtual binary GOOSE output state.} \\
\hline GOOSE: Input 1 state & 106200 \\
\hline GOOSE: Input 2 state & 106201 \\
\hline GOOSE: Input 3 state & 106202 \\
\hline GOOSE: Input 4 state & 106203 \\
\hline GOOSE: Input 5 state & 106204 \\
\hline GOOSE: Input 6 state & 106205 \\
\hline GOOSE: Input 7 state & 106206 \\
\hline GOOSE: Input 8 state & 106207 \\
\hline GOOSE: Input 9 state & 106208 \\
\hline GOOSE: Input 10 state & 106209 \\
\hline GOOSE: Input 11 state & 106210 \\
\hline GOOSE: Input 12 state & 106211 \\
\hline GOOSE: Input 13 state & 106212 \\
\hline GOOSE: Input 14 state & 106213 \\
\hline GOOSE: Input 15 state & 106214 \\
\hline GOOSE: Input 16 state & 106215 \\
\hline Display of the virtual binary GOOSE input state. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

IEC Generic Substation
Status Events
\begin{tabular}{|c|c|}
\hline GSSE: Output 1 state & 104100 \\
\hline GSSE: Output 2 state & 104103 \\
\hline GSSE: Output 3 state & 104106 \\
\hline GSSE: Output 4 state & 104109 \\
\hline GSSE: Output 5 state & 104112 \\
\hline GSSE: Output 6 state & 104115 \\
\hline GSSE: Output 7 state & 104118 \\
\hline GSSE: Output 8 state & 104121 \\
\hline GSSE: Output 9 state & 104124 \\
\hline GSSE: Output 10 state & 104127 \\
\hline GSSE: Output 11 state & 104130 \\
\hline GSSE: Output 12 state & 104133 \\
\hline GSSE: Output 13 state & 104136 \\
\hline GSSE: Output 14 state & 104139 \\
\hline GSSE: Output 15 state & 104142 \\
\hline GSSE: Output 16 state & 104145 \\
\hline GSSE: Output 17 state & 104148 \\
\hline GSSE: Output 18 state & 104151 \\
\hline GSSE: Output 19 state & 104154 \\
\hline GSSE: Output 20 state & 104157 \\
\hline GSSE: Output 21 state & 104160 \\
\hline GSSE: Output 22 state & 104163 \\
\hline GSSE: Output 23 state & 104166 \\
\hline GSSE: Output 24 state & 104169 \\
\hline GSSE: Output 25 state & 104172 \\
\hline GSSE: Output 26 state & 104175 \\
\hline GSSE: Output 27 state & 104178 \\
\hline GSSE: Output 28 state & 104181 \\
\hline GSSE: Output 29 state & 104184 \\
\hline GSSE: Output 30 state & 104187 \\
\hline GSSE: Output 31 state & 104190 \\
\hline GSSE: Output 32 state & 104193 \\
\hline \multicolumn{2}{|l|}{Display of the virtual binary GSSE output state.} \\
\hline GSSE: Input 1 state & 105000 \\
\hline GSSE: Input 2 state & 105005 \\
\hline GSSE: Input 3 state & 105010 \\
\hline GSSE: Input 4 state & 105015 \\
\hline GSSE: Input 5 state & 105020 \\
\hline GSSE: Input 6 state & 105025 \\
\hline GSSE: Input 7 state & 105030 \\
\hline GSSE: Input 8 state & 105035 \\
\hline GSSE: Input 9 state & 105040 \\
\hline GSSE: Input 10 state & 105045 \\
\hline GSSE: Input 11 state & 105050 \\
\hline GSSE: Input 12 state & 105055 \\
\hline GSSE: Input 13 state & 105060 \\
\hline GSSE: Input 14 state & 105065 \\
\hline GSSE: Input 15 state & 105070 \\
\hline GSSE: Input 16 state & 105075 \\
\hline GSSE: Input 17 state & 105080 \\
\hline GSSE: Input 18 state & 105085 \\
\hline GSSE: Input 19 state & 105090 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Function keys
\begin{tabular}{|l|l|}
\hline GSSE: Input 20 state & 105095 \\
\hline GSSE: Input 21 state & 105100 \\
\hline GSSE: Input 22 state & 105105 \\
\hline GSSE: Input 23 state & 105110 \\
GSSE: Input 24 state & 105115 \\
GSSE: Input 25 state & 105120 \\
GSSE: Input 26 state & 105125 \\
GSSE: Input 27 state & 105130 \\
GSSE: Input 28 state & 105135 \\
GSSE: Input 29 state & 105140 \\
GSSE: Input 30 state & 105145 \\
GSSE: Input 31 state & 105150 \\
GSSE: Input 32 state & 105155 \\
\hline
\end{tabular}

Display of the virtual binary GSSE input state.
\begin{tabular}{|c|c|c|}
\hline F_KEY: State F1 & & 080122 Fig: 3-22 \\
\hline F_KEY: State F2 & & 080123 \\
\hline F_KEY: State F3 & & 080124 \\
\hline F_KEY: State F4 & & 080125 \\
\hline F_KEY: State F5 & & 080126 \\
\hline F_KEY: State F6 & & 080127 \\
\hline \multicolumn{3}{|l|}{The state of the function keys is displayed as follows:} \\
\hline \(\square\) "Without function": & No functions are assigned to the function key. & \\
\hline \(\square\) "Off": & The function key is in the "Off" position. & \\
\hline \(\square\) "On": & The function key is in the "On" position. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Binary input
\begin{tabular}{|c|c|}
\hline INP: State U301 & 152216 Fig: 3-23 \\
\hline INP: State U 302 & 152219 \\
\hline INP: State U 303 & 15222 \\
\hline INP: State U 304 & 152225 \\
\hline INP: State U 501 & 152072 \\
\hline INP: State U 502 & 152075 \\
\hline INP: State U 503 & 152078 \\
\hline INP: State U 504 & 152081 \\
\hline INP: State U 601 & 152000 \\
\hline INP: State U602 & 152093 \\
\hline INP: State U603 & 152096 \\
\hline INP: State U604 & 152099 \\
\hline INP: State U605 & 152102 \\
\hline INP: State U606 & 152105 \\
\hline INP: State U 701 & 152108 \\
\hline INP: State U 702 & 152111 \\
\hline INP: State U 703 & 152114 \\
\hline INP: State U 704 & 152117 \\
\hline INP: State U 705 & 152120 \\
\hline INP: State U 706 & \({ }^{152123}\) \\
\hline INP: State U 801 & 001 \\
\hline INP: State U802 & 18405 \\
\hline INP: State U 803 & 184009 \\
\hline INP: State U 804 & 184013 \\
\hline INP: State U 805 & 184017 \\
\hline INP: State U 806 & 021 \\
\hline INP: State U 807 & 18423 \\
\hline INP: State U 808 & 184020 \\
\hline INP: State U809 & 184038 \\
\hline INP: State U 810 & 184037 \\
\hline INP: State U811 & 184041 \\
\hline INP: State U812 & 184045 \\
\hline INP: State U813 & 84499 \\
\hline INP: State U814 & 184053 \\
\hline INP: State U815 & 184057 \\
\hline INP: State U816 & 184061 \\
\hline INP: State U817 & 184065 \\
\hline INP: State U818 & 184099 \\
\hline INP: State U819 & 184073 \\
\hline INP: State U820 & 18407 \\
\hline INP: State U 821 & 184891 \\
\hline INP: State U822 & 184085 \\
\hline INP: State U823 & 184089 \\
\hline INP: State U824 & 184093 \\
\hline INP: State U 901 & 15214 \\
\hline INP: State U 902 & 152147 \\
\hline INP: State U 903 & 152150 \\
\hline INP: State U 904 & 152153 \\
\hline INP: State U 1001 & 152162 \\
\hline INP: State U 1002 & 152165 \\
\hline INP: State U 1003 & 152188 \\
\hline INP: State U 1004 & 15271 \\
\hline INP: State U 1005 & 152174 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)


\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline OUTP: State K 301 & 151044 \\
\hline OUTP: State K 302 & 151047 Fig: 3-32 \\
\hline OUTP: State K 501 & 150096 \\
\hline OUTP: State K 502 & 150099 \\
\hline OUTP: State K 503 & 150102 \\
\hline OUTP: State K 504 & 150105 \\
\hline OUTP: State K 505 & 150108 \\
\hline OUTP: State K 506 & 150111 \\
\hline OUTP: State K 507 & 150114 \\
\hline OUTP: State K 508 & 150117 \\
\hline OUTP: State K 601 & 150120 \\
\hline OUTP: State K 602 & 150123 \\
\hline OUTP: State K 603 & 150126 \\
\hline OUTP: State K 604 & 150129 \\
\hline OUTP: State K 605 & 150132 \\
\hline OUTP: State K 606 & 150135 \\
\hline OUTP: State K 607 & 150138 \\
\hline OUTP: State K 608 & 150141 \\
\hline OUTP: State K 701 & 150144 \\
\hline OUTP: State K 702 & 150147 \\
\hline OUTP: State K 703 & 150150 \\
\hline OUTP: State K 704 & 150153 \\
\hline OUTP: State K 705 & 150156 \\
\hline OUTP: State K 706 & 150159 \\
\hline OUTP: State K 707 & 150162 \\
\hline OUTP: State K 708 & 150165 \\
\hline OUTP: State K 801 & 150168 \\
\hline OUTP: State K 802 & 150171 \\
\hline OUTP: State K 803 & 150174 \\
\hline OUTP: State K 804 & 150177 \\
\hline OUTP: State K 805 & 150180 \\
\hline OUTP: State K 806 & 150183 \\
\hline OUTP: State K 807 & 150186 \\
\hline OUTP: State K 808 & 150189 \\
\hline OUTP: State K 901 & 150192 \\
\hline OUTP: State K 902 & 150195 \\
\hline OUTP: State K 903 & 150198 \\
\hline OUTP: State K 904 & 150201 \\
\hline OUTP: State K 905 & 150204 \\
\hline OUTP: State K 906 & 150207 \\
\hline OUTP: State K 907 & 150210 \\
\hline OUTP: State K 908 & 150213 \\
\hline OUTP: State K 1001 & 150216 \\
\hline OUTP: State K 1002 & 150219 \\
\hline OUTP: State K 1003 & 150222 \\
\hline OUTP: State K 1004 & 150225 \\
\hline OUTP: State K 1005 & 150228 \\
\hline OUTP: State K 1006 & 150231 \\
\hline OUTP: State K 1007 & 150234 \\
\hline OUTP: State K 1008 & 150237 \\
\hline OUTP: State K 1201 & 151008 \\
\hline OUTP: State K 1202 & 151011 \\
\hline OUTP: State K 1203 & 151014 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)


\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline LED: State H 1 green & 085180 \\
\hline LED: State H 2 yell. & 085000 \\
\hline LED: State H 3 yell. & 085003 \\
\hline LED: State H 4 red & 085006 \\
\hline LED: State H 5 red & 085009 \\
\hline LED: State H 6 red & 085012 \\
\hline LED: State H 7 red & 085015 \\
\hline LED: State H 8 red & 085018 \\
\hline LED: State H 9 red & 085021 \\
\hline LED: State H 10 red & 085024 Fig: 3-41 \\
\hline LED: State H11 red & 085027 \\
\hline LED: State H 12 red & 085030 \\
\hline LED: State H 13 red & 085033 \\
\hline LED: State H 14 red & 085036 \\
\hline LED: State H 15 red & 085039 \\
\hline LED: State H 16 red & 085042 \\
\hline LED: State H 17 red. & 085181 \\
\hline LED: State H 18 red & 085130 \\
\hline LED: State H19 red & 085133 \\
\hline LED: State H20 red & 085136 \\
\hline LED: State H21 red & 085139 \\
\hline LED: State H22 red & 085142 \\
\hline LED: State H23 red & 085145 \\
\hline LED: State H 4 green & 085056 \\
\hline LED: State H 5 green & 085059 \\
\hline LED: State H 6 green & 085062 \\
\hline LED: State H 7 green & 085065 \\
\hline LED: State H 8 green & 085068 \\
\hline LED: State H 9 green & 085071 \\
\hline LED: State H 10 green & 085074 Fig: 3-41 \\
\hline LED: State H 11 green & 085077 \\
\hline LED: State H 12 green & 085080 \\
\hline LED: State H 13 green & 085083 \\
\hline LED: State H 14 green & 085086 \\
\hline LED: State H15 green & 085089 \\
\hline LED: State H 16 green & 085092 \\
\hline LED: State H 18 green & 085160 \\
\hline LED: State H 19 green & 085163 \\
\hline LED: State H20 green & 085166 \\
\hline LED: State H21 green & 085169 \\
\hline LED: State H22 green & 085172 \\
\hline LED: State H23 green & 085176 \\
\hline \multicolumn{2}{|l|}{The state of the LED indicators is displayed as follows:} \\
\hline \(\square\) "Inactive": & \\
\hline \(\square\) "Active": & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Local control panel

Communication interface 1
\begin{tabular}{|l|l|}
\hline COMM1: Command block. EXT & 003173 Fig: 3-8 \\
COMM1: Sig./meas. block EXT & 037074 Fig: \(3-9\), \\
COMM1: Command blocking & \(3-10,3-11\) \\
COMM1: Buffer overrun & 003174 Fig: \(3-8\) \\
COMM1: Sig./meas.val.block. & 221100 \\
COMM1: IEC 870-5-103 & 037075 Fig: 3-9, \\
COMM1: IEC 870-5-101 & 003219 Fig: 3-11 \\
COMM1: IEC 870-5,ILS & 003218 Fig: 3-10 \\
COMM1: MODBUS & 00322 Fig: 3-11 \\
COMM1: DNP3 & 003223 Fig: 3-12 \\
COMM1: COURIER & 003230 Fig: 3-13 \\
\hline
\end{tabular}

Communication interface 3

IEC 61850 Communication

\subsection*{8.1.1.3 Logic State Signals}
\begin{tabular}{|l|l|}
\hline LOC: Edit mode & 030111 \\
\hline LOC: Trig. menu jmp 1 EXT & 030230 \\
LOC: Trig. menu jmp 2 EXT & 030231 \\
\hline LOC: Illumination on EXT & 037101 \\
\hline LOC: Loc.acc.block.active & 221005 Fig: 3-6 \\
LOC: Rem.acc.block.active & 221004 Fig: 3-6 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline COMM3: Reset No.tlg.err.EXT & 006054 Page: 3-29, \\
Bild & 3-83 \\
COMM3: Communications fault & 120043 Fig: 3-19 \\
COMM3: Comm. link failure & 120044 Fig: 3-19 \\
COMM3: Lim.exceed.,tel.err. & 120045 Page: 3-29 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|}
\hline IEC: Comm. link faulty & 105180 \\
\hline Display when an Ethernet module has not initiated properly, i.e. if the MAC \\
address is missing or there is a non-plausible parameter setting! & \\
\hline IEC: Control reservation & 221082 \\
\hline
\end{tabular}

Display if a client has made a reservation to control an external device ("select" for control by control mode "select before operate").

\section*{8 Information and Control Functions}
(continued)

Generic Object Orientated
Substation Events
\begin{tabular}{|c|c|}
\hline GOOSE: Ext.Dev01 position & 109000 \\
\hline GOOSE: Ext.Dev02 position & 109005 \\
\hline GOOSE: Ext.Dev03 position & 109010 \\
\hline GOOSE: Ext.Dev04 position & 109015 \\
\hline GOOSE: Ext.Dev05 position & 109020 \\
\hline GOOSE: Ext.Dev06 position & 109025 \\
\hline GOOSE: Ext.Dev07 position & 109030 \\
\hline GOOSE: Ext.Dev08 position & 109035 \\
\hline GOOSE: Ext.Dev09 position & 109040 \\
\hline GOOSE: Ext.Dev10 position & 109045 \\
\hline GOOSE: Ext.Dev11 position & 109050 \\
\hline GOOSE: Ext.Dev12 position & 109055 \\
\hline GOOSE: Ext.Dev13 position & 109060 \\
\hline GOOSE: Ext.Dev14 position & 109065 \\
\hline GOOSE: Ext.Dev15 position & 109070 \\
\hline GOOSE: Ext.Dev16 position & 109075 \\
\hline GOOSE: Ext.Dev17 position & 109100 \\
\hline GOOSE: Ext.Dev18 position & 109105 \\
\hline GOOSE: Ext.Dev19 position & 109110 \\
\hline GOOSE: Ext.Dev20 position & 109115 \\
\hline GOOSE: Ext.Dev21 position & 109120 \\
\hline GOOSE: Ext.Dev22 position & 109125 \\
\hline GOOSE: Ext.Dev23 position & 9130 \\
\hline GOOSE: Ext.Dev24 position & 109 \\
\hline GOOSE: Ext.Dev25 position & 109140 \\
\hline GOOSE: Ext.Dev26 position & 109145 \\
\hline GOOSE: Ext.Dev27 position & 109150 \\
\hline GOOSE: Ext.Dev28 position & 109155 \\
\hline GOOSE: Ext.Dev29 position & 109160 \\
\hline GOOSE: Ext.Dev30 position & 109165 \\
\hline GOOSE: Ext.Dev31 position & 109170 \\
\hline GOOSE: Ext.Dev32 position & 109175 \\
\hline \multicolumn{2}{|l|}{State of the virtual two-pole GOOSE input, representing the state of an external device.} \\
\hline GOOSE: Ext.Dev01 open & 109001 \\
\hline GOOSE: Ext.Dev02 open & 109006 \\
\hline GOOSE: Ext.Dev03 open & 109011 \\
\hline GOOSE: Ext.Dev04 open & 109016 \\
\hline GOOSE: Ext.Dev05 open & 109021 \\
\hline GOOSE: Ext.Dev06 open & 109026 \\
\hline GOOSE: Ext.Dev07 open & 109031 \\
\hline GOOSE: Ext.Dev08 open & 109036 \\
\hline GOOSE: Ext.Dev09 open & 109041 \\
\hline GOOSE: Ext.Dev10 open & 109046 \\
\hline GOOSE: Ext.Dev11 open & 109051 \\
\hline GOOSE: Ext.Dev12 open & 109056 \\
\hline GOOSE: Ext.Dev13 open & 109061 \\
\hline GOOSE: Ext.Dev14 open & 109066 \\
\hline GOOSE: Ext.Dev15 open & 109071 \\
\hline GOOSE: Ext.Dev16 open & 109076 \\
\hline GOOSE: Ext.Dev17 open & 109101 \\
\hline GOOSE: Ext.Dev18 open & 109106 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)


\section*{8 Information and Control Functions}
(continued)

IEC Generic Substation Status Events
\begin{tabular}{|c|c|}
\hline GOOSE: Ext.Dev03 interm.pos & 109013 \\
\hline GOOSE: Ext.Dev04 interm.pos & 109018 \\
\hline GOOSE: Ext.Dev05 interm.pos & 109023 \\
\hline GOOSE: Ext.Dev06 interm.pos & 109028 \\
\hline GOOSE: Ext.Dev07 interm.pos & 109033 \\
\hline GOOSE: Ext.Dev08 interm.pos & 109038 \\
\hline GOOSE: Ext.Dev09 interm.pos & 09043 \\
\hline GOOSE: Ext.Dev10 interm.pos & 109048 \\
\hline GOOSE: Ext.Dev11 interm.pos & 09053 \\
\hline GOOSE: Ext.Dev12 interm.pos & 09058 \\
\hline GOOSE: Ext.Dev13 interm.pos & 0063 \\
\hline GOOSE: Ext.Dev14 interm.pos & 109068 \\
\hline GOOSE: Ext.Dev15 interm.pos & 109073 \\
\hline GOOSE: Ext.Dev16 interm.pos & 109078 \\
\hline GOOSE: Ext.Dev17 interm.pos & 109103 \\
\hline GOOSE: Ext.Dev18 interm.pos & 109108 \\
\hline GOOSE: Ext.Dev19 interm.pos & 109113 \\
\hline GOOSE: Ext.Dev20 interm.pos & 109118 \\
\hline GOOSE: Ext.Dev21 interm.pos & 109123 \\
\hline GOOSE: Ext.Dev22 interm.pos & 109128 \\
\hline GOOSE: Ext.Dev23 interm.pos & 109133 \\
\hline GOOSE: Ext.Dev24 interm.pos & 109138 \\
\hline GOOSE: Ext.Dev25 interm.pos & 109143 \\
\hline GOOSE: Ext.Dev26 interm.pos & 109148 \\
\hline GOOSE: Ext.Dev27 interm.pos & 109153 \\
\hline GOOSE: Ext.Dev28 interm.pos & 109158 \\
\hline GOOSE: Ext.Dev29 interm.pos & 109163 \\
\hline GOOSE: Ext.Dev30 interm.pos & 09168 \\
\hline GOOSE: Ext.Dev31 interm.pos & 9173 \\
\hline GOOSE: Ext.Dev32 interm.pos & 09178 \\
\hline GOOSE: IED link faulty & 107250 \\
\hline
\end{tabular}

Binary intermediate position state of the virtual two-pole GOOSE input, representing the state of an external device.
\begin{tabular}{|l}
\hline GSSE: IED link faulty \\
\hline Display if the continuously monitored communication link to a GSSE \\
sending device (IED situated on the opposite side) is in fault or has \\
disappeared altogether. To each GSSE the GSSE sending device will \\
attach a validity stamp, up to which a repetition of GSSE will be carried out \\
independent of a change of state. Thus the device monitors the time period \\
at which the next state signal must be received.
\end{tabular}
\begin{tabular}{|ll|}
\hline IRIGB: Enabled & 023201 Fig: 3-21 \\
IRIGB: Synchron. ready & 023202 Fig: 3-21 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Measured data input

Binary outputs

Measured data output
\begin{tabular}{|l|l|}
\hline MEASI: Reset Tmax EXT & 006076 Fig.*: 3-83 \\
MEASI: Enabled & 035008 Fig: \(3-24\) \\
MEASI: Open circ. PT100 & 000190 Fig: \(3-29\) \\
MEASI: Open circ. T1 & 040193 Fig: 3-30, \\
MEASI: Open circ. T2 & 3-280 \\
MEASI: Open circ. T3 & 040194 Fig: 3-217, \\
3-280 \\
MEASI: Open circ. T4 & 040195 Fig: 3-280 \\
MEASI: Open circ. T5 & 040208 Fig: 3-280, 3- \\
MEASI: Open circ. T6 & 040209 Fig: 3-280, \\
MEASI: Open circ. T7 & 3-281 \\
MEASI: Open circ. T8 & 040218 Fig: 3-280, \\
3-281 \\
MEASI: Open circ. T9 & 040219 Fig: 3-280, \\
MEASI: Overload 20mA input & 040252 Fig: 3-217, \\
ME-280, 3-281 \\
MEASI: Open circ. 20mA inp. & 040253 Fig: 3-280, \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline OUTP: Block outp.rel. EXT & 040014 Fig: \(3-32\) \\
OUTP: Reset latch. EXT & 040015 Fig: \(3-32\) \\
OUTP: Outp. relays blocked & 021015 Fig: \(3-32\) \\
OUTP: Latching reset & 040088 Fig: \(3-32\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline MEASO: Enabled & 037102 Fig: 3-34 \\
\hline MEASO: Outp. enabled EXT & 036085 Fig: 3-35 \\
\hline MEASO: Reset output EXT & 036087 Fig: 3-36 \\
\hline MEASO: Output reset & 037117 Fig: 3-36 \\
\hline MEASO: Valid BCD value & \[
\begin{aligned}
& 037050 \text { Fig: 3-37, } \\
& 3-38
\end{aligned}
\] \\
\hline MEASO: 1-digit bit 0 (BCD) & 037051 Fig: 3-38 \\
\hline MEASO: 1-digit bit 1 (BCD) & 037052 Fig: 3-38 \\
\hline MEASO: 1-digit bit 2 (BCD) & 037053 Fig: 3-38 \\
\hline MEASO: 1-digit bit 3 (BCD) & 037054 Fig: 3-38 \\
\hline MEASO: 10-digit bit 0 (BCD) & 037055 Fig: 3-38 \\
\hline MEASO: 10-digit bit 1 (BCD) & 037056 Fig: 3-38 \\
\hline MEASO: 10-digit bit 2 (BCD) & 037057 Fig: 3-38 \\
\hline MEASO: 10-digit bit 3 (BCD) & 037058 Fig: 3-38 \\
\hline MEASO: 100-dig. bit 0 (BCD) & 037059 Fig: 3-38 \\
\hline MEASO: 100-dig. bit 1 (BCD) & 037060 Fig: 3-38 \\
\hline MEASO: Value A-1 valid & 069014 Fig: 3-40 \\
\hline MEASO: Value A-1 output & 037118 Fig: 3-40 \\
\hline MEASO: Value A-2 valid & 069015 \\
\hline MEASO: Value A-2 output & 037119 \\
\hline
\end{tabular}

Main function

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|c|}
\hline MAIN: Reset meas.v.en. EXT & 005212 & Fig.*: 3-83 \\
\hline MAIN: Group reset 2 EXT & 005252 & Fig: 3-83 \\
\hline MAIN: General reset EXT & 005255 & Fig: 3-2 \\
\hline MAIN: Parallel trip EXT & 037019 & Fig: 3-67 \\
\hline MAIN: Disable protect. EXT & 003026 & Fig: 3-59 \\
\hline MAIN: Time switching EXT & 003096 & \\
\hline MAIN: System IN enable EXT & 040130 & Fig: 3-60 \\
\hline MAIN: CB1 faulty EXT & 221086 & Page: 3-421 \\
\hline MAIN: Syst. IN disable EXT & 040131 & Fig: 3-60 \\
\hline MAIN: Test mode EXT & 037070 & Fig: 3-85 \\
\hline MAIN: Blocking 1 EXT & 040060 & Fig: 3-64 \\
\hline MAIN: Blocking 2 EXT & 040061 & Fig: 3-64 \\
\hline MAIN: Reset latch.trip EXT & 040138 & Fig: 3-74 \\
\hline MAIN: Trip cmd. block. EXT & 036045 & Fig: 3-74 \\
\hline MAIN: M.c.b. trip V EXT & 004061 & Fig: 3-173 \\
\hline MAIN: M.c.b. trip Vref EXT & 036086 & Fig: 3-173 \\
\hline MAIN: Switch dyn.param.EXT & 036033 & Fig: 3-61 \\
\hline MAIN: CB closed sig. EXT & 036051 & \[
\begin{aligned}
& \text { Fig: 3-66, } \\
& 3-67,3-156, \\
& 3-271,3-272
\end{aligned}
\] \\
\hline MAIN: Manual close EXT & 036047 & Fig: 3-147 \\
\hline MAIN: Man. trip cmd. EXT & 037018 & Fig: 3-75 \\
\hline MAIN: Man.cl.cmd.enabl.EXT & 041023 & Fig: 3-67 \\
\hline MAIN: Man. close cmd. EXT & 041022 & Fig: 3-67 \\
\hline MAIN: CB open 3p EXT & 031028 & \[
\begin{aligned}
& \text { Fig: 3-253, } \\
& 3-254,3-258, \\
& 3-259,3-263
\end{aligned}
\] \\
\hline MAIN: Reset indicat. EXT & 065001 & Fig: 3-82 \\
\hline MAIN: Min-pulse clock EXT & 060060 & Fig: 3-81 \\
\hline MAIN: Ch. 1 an. NCIT on EXT & 010188 & \\
\hline MAIN: Ch. 2 an. NCIT on EXT & 010190 & \\
\hline MAIN: Prot. ext. enabled & 003028 & Fig: 3-59 \\
\hline MAIN: Prot. ext. disabled & 038046 & Fig: 3-59 \\
\hline MAIN: Syst.IN ext/user en. & 040132 & Fig: 3-60 \\
\hline MAIN: System IN enabled & 040133 & Fig: 3-60 \\
\hline MAIN: System IN disabled & 040134 & Fig: 3-60 \\
\hline MAIN: Device not ready & 004060 & Fig: 3-65 \\
\hline MAIN: Enable control & 221058 & Fig: 3-78 \\
\hline MAIN: Test mode & 037071 & Fig: 3-85 \\
\hline MAIN: Blocked/faulty & 004065 & Fig: 3-65 \\
\hline MAIN: Trip cmd. blocked & 02013 & Fig: 3-74 \\
\hline MAIN: Latch. trip c. reset & 040139 & Fig: 3-74 \\
\hline MAIN: Manual trip signal & 034017 & Fig: 3-75 \\
\hline MAIN: Man. close command & 037068 & Fig: 3-67 \\
\hline MAIN: Gen. trip signal & 036251 & Fig: 3-74 \\
\hline MAIN: Gen. trip signal 1 & 036005 & Fig: 3-74 \\
\hline MAIN: Gen. trip signal 2 & \({ }^{036023}\) & Fig: 3-74 \\
\hline MAIN: Gen. trip command & 035071 & Fig: 3-74 \\
\hline MAIN: Gen. trip command 1 & 036071 & Fig: 3-74 \\
\hline MAIN: Gen. trip command 2 & 036022 & Fig: 3-74 \\
\hline MAIN: Close command & 037009 & \[
\begin{aligned}
& \text { Fig: 3-175, } \\
& 3-182
\end{aligned}
\] \\
\hline MAIN: Close aft.man.cl.rqu & 037012 & Fig: 3-67 \\
\hline MAIN: Dynam. param. active & 040090 & Fig: 3-61 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline MAIN: CB open 3p & 031040 \\
\hline MAIN: CB closed 3p & 031042 \\
\hline MAIN: CB pos.sig. implaus. & 031041 \\
\hline MAIN: General starting & 040000 Fig: 3-72 \\
\hline MAIN: tGS elapsed & 040009 Fig: 3-72 \\
\hline MAIN: Starting A & 040005 Fig: 3-71 \\
\hline MAIN: Starting B & 040006 Fig: 3-71 \\
\hline MAIN: Starting C & 040007 Fig: 3-71 \\
\hline MAIN: Starting GF & 040008 Fig: 3-71 \\
\hline MAIN: Starting Ineg & 040105 Fig: 3-71 \\
\hline MAIN: Rush restr. A trig. & 041027 Fig: 3-62 \\
\hline MAIN: Rush restr. B trig. & 041028 Fig: 3-62 \\
\hline MAIN: Rush restr. C trig. & 041029 Fig: 3-62 \\
\hline MAIN: Timer stage \(P\) elaps. & 040031 Fig: 3-73 \\
\hline MAIN: Timer st. Ineg elaps & 040050 Fig: 3-73 \\
\hline MAIN: Timer stage N elaps. & 040032 Fig: 3-73 \\
\hline MAIN: TripSig. \(\mathrm{tl}>/ \mathrm{tlrefP>}\) & 040042 Fig: 3-73 \\
\hline MAIN: TrSg.tIneg>/Iref,neg & 040051 Fig: 3-73 \\
\hline MAIN: TripSig tIN>/tIrefN> & 040043 Fig: 3-73 \\
\hline MAIN: Ground fault & 041087 Fig: 3-70 \\
\hline MAIN: Ground fault A & 041054 Fig: 3-69 \\
\hline MAIN: Ground fault B & 041055 Fig: 3-69 \\
\hline MAIN: Ground fault C & 041056 Fig: 3-69 \\
\hline MAIN: Gnd. fault forw./LS & 041088 Fig: 3-70 \\
\hline MAIN: Gnd. fault backw./BS & 041089 Fig: 3-70 \\
\hline MAIN: Bay interlock. act. & 221001 Fig: 3-78 \\
\hline MAIN: Subst. interl. act. & 221000 Fig: 3-78 \\
\hline MAIN: Fct. block. 1 active & 22015 Fig: 3-63 \\
\hline MAIN: Fct. block. 2 active & 221023 Fig: 3-63 \\
\hline MAIN: Interlock equ. viol. & 221018 Fig: 3-79 \\
\hline MAIN: CB trip internal & 221006 Fig: 3-77 \\
\hline MAIN: CB tripped & 221016 Fig: 3-77 \\
\hline MAIN: Mult. sig. 1 active & 221017 Fig: 3-68 \\
\hline MAIN: Mult. sig. 1 stored & 221054 Fig: 3-68 \\
\hline MAIN: Mult. sig. 2 active & 221053 Fig: 3-68 \\
\hline MAIN: Mult. sig. 2 stored & 221055 Fig: 3-68 \\
\hline MAIN: Communication error & 221019 Fig: 3-80 \\
\hline MAIN: Auxiliary address & 038005 \\
\hline MAIN: Dummy entry & 004129 \\
\hline MAIN: Without function & 060000 \\
\hline MAIN: Without function & 061000 \\
\hline MAIN: Ch. 1 analog NCIT on & 010189 \\
\hline MAIN: Ch. 2 analog NCIT on & 010191 \\
\hline MAIN: Device selection key & 006001 \\
\hline MAIN: Device OPEN key & 006002 \\
\hline MAIN: Cmd. fr. comm.interf & 221101 Fig: 3-292 \\
\hline MAIN: Device CLOSE key & 006003 \\
\hline MAIN: Command from HMI & 221102 \\
\hline MAIN: Local/Remote key & 006004 Fig: 3-6 \\
\hline MAIN: Cmd. fr. electr.ctrl & 221103 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Parameter subset selection
\begin{tabular}{|c|c|}
\hline PSS: Control via user EXT & 036101 Fig: 3-86 \\
\hline PSS: Activate PS 1 EXT & 065002 Fig: 3-86 \\
\hline PSS: Activate PS 2 EXT & 065003 Fig: 3-86 \\
\hline PSS: Activate PS 3 EXT & 065004 Fig: 3-86 \\
\hline PSS: Activate PS 4 EXT & 065005 Fig: 3-86 \\
\hline PSS: Control via user & 036102 Fig: 3-86 \\
\hline PSS: Ext.sel.param.subset & 003061 Fig: 3-86 \\
\hline PSS: PS 1 activated ext. & 036094 Fig: 3-86 \\
\hline PSS: PS 2 activated ext. & 036095 Fig: 3-86 \\
\hline PSS: PS 3 activated ext. & 036096 Fig: 3-86 \\
\hline PSS: PS 4 activated ext. & 036097 Fig: 3-86 \\
\hline PSS: Actual param. subset & 003062 Fig: 3-86 \\
\hline PSS: PS 1 active & 036090 Fig: 3-86 \\
\hline PSS: PS 2 active & 036091 Fig: 3-86 \\
\hline PSS: PS 3 active & 036092 Fig: 3-86 \\
\hline PSS: PS 4 active & 036093 Fig: 3-86 \\
\hline
\end{tabular}

Self-monitoring
\begin{tabular}{|c|c|}
\hline SFMON: faulty DSP & 093127 \\
\hline SFMON: Invalid SW vers. DSP & 093128 \\
\hline SFMON: CB faulty EXT & 098072 \\
\hline SFMON: Warning (LED) & 036070 Fig: 3-87 \\
\hline SFMON: Warning (relay) & 036100 Fig: 3-87 \\
\hline SFMON: Warm restart exec. & 041202 \\
\hline SFMON: Cold restart exec. & 041201 \\
\hline SFMON: Cold restart & 093024 \\
\hline SFMON: Cold rest./SW update & 093025 \\
\hline SFMON: Blocking/ HW failure & 090019 \\
\hline SFMON: Relay Kxx faulty & 041200 \\
\hline SFMON: Hardware clock fail. & 093040 \\
\hline SFMON: Battery failure & 090010 \\
\hline SFMON: Invalid SW d.loaded & 096121 \\
\hline SFMON: Invalid type of bay & 096122 \\
\hline SFMON: +15V supply faulty & 093081 \\
\hline SFMON: +24V supply faulty & 093082 \\
\hline SFMON: -15V supply faulty & 093080 \\
\hline SFMON: Wrong module slot 1 & 096100 \\
\hline SFMON: Wrong module slot 2 & 096101 \\
\hline SFMON: Wrong module slot 3 & 096102 \\
\hline SFMON: Wrong module slot 4 & 096103 \\
\hline SFMON: Wrong module slot 5 & 096104 \\
\hline SFMON: Wrong module slot 6 & 096105 \\
\hline SFMON: Wrong module slot 7 & 096106 \\
\hline SFMON: Wrong module slot 8 & 096107 \\
\hline SFMON: Wrong module slot 9 & 096108 \\
\hline SFMON: Wrong module slot 10 & 096109 \\
\hline SFMON: Wrong module slot 11 & 096110 \\
\hline SFMON: Wrong module slot 12 & 096111 \\
\hline SFMON: Wrong module slot 13 & 096112 \\
\hline SFMON: Wrong module slot 14 & 096113 \\
\hline SFMON: Wrong module slot 15 & 096114 \\
\hline SFMON: Wrong module slot 16 & 096115 \\
\hline SFMON: Wrong module slot 17 & 096116 \\
\hline SFMON: Wrong module slot 18 & 096117 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline SFMON: Wrong module slot 19 & 096118 \\
\hline SFMON: Wrong module slot 20 & 096119 \\
\hline SFMON: Wrong module slot 21 & 096120 \\
\hline SFMON: Defect.module slot 1 & 097000 \\
\hline SFMON: Defect.module slot 2 & 097001 \\
\hline SFMON: Defect.module slot 3 & 097002 \\
\hline SFMON: Defect.module slot 4 & 097003 \\
\hline SFMON: Defect.module slot 5 & 097004 \\
\hline SFMON: Defect.module slot 6 & 097005 \\
\hline SFMON: Defect.module slot 7 & 097006 \\
\hline SFMON: Defect.module slot 8 & 097007 \\
\hline SFMON: Defect.module slot 9 & 097008 \\
\hline SFMON: Defect.module slot10 & 097009 \\
\hline SFMON: Defect.module slot11 & 097010 \\
\hline SFMON: Defect.module slot12 & 097011 \\
\hline SFMON: Defect.module slot13 & 097012 \\
\hline SFMON: Defect.module slot14 & 097013 \\
\hline SFMON: Defect.module slot15 & 097014 \\
\hline SFMON: Defect.module slot16 & 097015 \\
\hline SFMON: Defect.module slot17 & 097016 \\
\hline SFMON: Defect.module slot18 & 097017 \\
\hline SFMON: Defect.module slot19 & 097018 \\
\hline SFMON: Defect.module slot20 & 097019 \\
\hline SFMON: Defect.module slot21 & 097020 \\
\hline SFMON: +15V faulty mod. N & 093096 \\
\hline SFMON: -15V faulty mod. N & 093097 \\
\hline SFMON: DAC faulty module N & 093095 \\
\hline SFMON: Module N DPR faulty & 093090 \\
\hline SFMON: Module N RAM faulty & 093091 \\
\hline SFMON: Module Y DPR faulty & 093110 \\
\hline SFMON: Module Y RAM faulty & 093111 \\
\hline SFMON: Mod.Y RTD DPR faulty & 093108 \\
\hline SFMON: Mod.Y RTD RAM faulty & 093109 \\
\hline SFMON: Error K 501 & 097062 \\
\hline SFMON: Error K 502 & 097063 \\
\hline SFMON: Error K 503 & 097064 \\
\hline SFMON: Error K 504 & 097065 \\
\hline SFMON: Error K 505 & 097066 \\
\hline SFMON: Error K 506 & 097067 \\
\hline SFMON: Error K 507 & 097068 \\
\hline SFMON: Error K 508 & 097069 \\
\hline SFMON: Error K 301 & 097021 \\
\hline SFMON: Error K 302 & 097022 \\
\hline SFMON: Error K 601 & 097070 \\
\hline SFMON: Error K 602 & 097071 \\
\hline SFMON: Error K 603 & 097072 \\
\hline SFMON: Error K 604 & 097073 \\
\hline SFMON: Error K 605 & 097074 \\
\hline SFMON: Error K 606 & 097075 \\
\hline SFMON: Error K 607 & 097076 \\
\hline SFMON: Error K 608 & 097077 \\
\hline SFMON: Error K 701 & 097078 \\
\hline SFMON: Error K 702 & 097079 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline SFMON: Error K 703 & 097080 \\
\hline SFMON: Error K 704 & 097081 \\
\hline SFMON: Error K 705 & 097082 \\
\hline SFMON: Error K 706 & 097083 \\
\hline SFMON: Error K 707 & 097084 \\
\hline SFMON: Error K 708 & 097085 \\
\hline SFMON: Error K 801 & 097086 \\
\hline SFMON: Error K 802 & 097087 \\
\hline SFMON: Error K 803 & 097088 \\
\hline SFMON: Error K 804 & 097089 \\
\hline SFMON: Error K 805 & 097090 \\
\hline SFMON: Error K 806 & 097091 \\
\hline SFMON: Error K 807 & 097092 \\
\hline SFMON: Error K 808 & 097093 \\
\hline SFMON: Error K 901 & 097094 \\
\hline SFMON: Error K 902 & 097095 \\
\hline SFMON: Error K 903 & 097096 \\
\hline SFMON: Error K 904 & 097097 \\
\hline SFMON: Error K 905 & 097098 \\
\hline SFMON: Error K 906 & 097099 \\
\hline SFMON: Error K 907 & 097100 \\
\hline SFMON: Error K 908 & 097101 \\
\hline SFMON: Error K 1001 & 097102 \\
\hline SFMON: Error K 1002 & 097103 \\
\hline SFMON: Error K 1003 & 097104 \\
\hline SFMON: Error K 1004 & 097105 \\
\hline SFMON: Error K 1005 & 097106 \\
\hline SFMON: Error K 1006 & 097107 \\
\hline SFMON: Error K 1007 & 097108 \\
\hline SFMON: Error K 1008 & 097109 \\
\hline SFMON: Error K 1201 & 097118 \\
\hline SFMON: Error K 1202 & 097119 \\
\hline SFMON: Error K 1203 & 097120 \\
\hline SFMON: Error K 1204 & 097121 \\
\hline SFMON: Error K 1205 & 097122 \\
\hline SFMON: Error K 1206 & 097123 \\
\hline SFMON: Error K 1207 & 097124 \\
\hline SFMON: Error K 1208 & 997125 \\
\hline SFMON: Error K 1401 & 097134 \\
\hline SFMON: Error K 1402 & 097135 \\
\hline SFMON: Error K 1403 & 097136 \\
\hline SFMON: Error K 1404 & 097137 \\
\hline SFMON: Error K 1405 & 097138 \\
\hline SFMON: Error K 1406 & 097139 \\
\hline SFMON: Error K 1407 & 097140 \\
\hline SFMON: Error K 1408 & 097141 \\
\hline SFMON: Error K 1601 & 097150 \\
\hline SFMON: Error K 1602 & 097151 \\
\hline SFMON: Error K 1801 & 097166 \\
\hline SFMON: Error K 1802 & 097167 \\
\hline SFMON: Error K 1803 & 097168 \\
\hline SFMON: Error K 1804 & 097169 \\
\hline SFMON: Error K 1805 & 097170 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline SFMON: Error K 1806 & 097171 \\
\hline SFMON: Error K 2001 & 097182 \\
\hline SFMON: Error K 2002 & 097183 \\
\hline SFMON: Error K 2003 & 097184 \\
\hline SFMON: Error K 2004 & 097185 \\
\hline SFMON: Error K 2005 & 097186 \\
\hline SFMON: Error K 2006 & 097187 \\
\hline SFMON: Error K 2007 & 097188 \\
\hline SFMON: Error K 2008 & 097189 \\
\hline SFMON: Undef. operat. code & 093010 \\
\hline SFMON: Invalid arithm. op. & 093011 \\
\hline SFMON: Undefined interrupt & 093012 \\
\hline SFMON: Exception oper.syst. & 093013 \\
\hline SFMON: Protection failure & 09021 \\
\hline SFMON: Checksum error param & 090003 \\
\hline SFMON: Clock sync. error & 093041 \\
\hline SFMON: Interm.volt.fail.RAM & 093026 \\
\hline SFMON: Overflow MT_RC & 090012 Fig: 3-89 \\
\hline SFMON: Semaph. MT_RC block. & 093015 \\
\hline SFMON: Inval. SW COMM1/IEC & 093075 \\
\hline SFMON: Invalid SW vers. N & 093093 \\
\hline SFMON: Time-out module N & 093092 \\
\hline SFMON: Invalid SW vers. Y & 093113 \\
\hline SFMON: Invalid SW vers YRTD & 093123 \\
\hline SFMON: Time-out module Y & 093112 \\
\hline SFMON: Time-out module YRTD & 093119 \\
\hline SFMON: IRIGB faulty & 093117 \\
\hline SFMON: M.c.b. trip V & 098000 Fig: 3-269 \\
\hline SFMON: M.c.b. trip Vref & 098011 \\
\hline SFMON: Phase sequ. V faulty & 098001 Fig: 3-271 \\
\hline SFMON: Undervoltage & 098009 Fig: 3-271 \\
\hline SFMON: FF, Vref triggered & 098022 Fig: 3-272 \\
\hline SFMON: M.circ. V,Vref flty. & 098023 \\
\hline SFMON: Meas. circ. V faulty & 098017 Fig: 3-269 \\
\hline SFMON: Meas. circ. I faulty & 098005 Fig: 3-270 \\
\hline SFMON: Meas.circ.V,I faulty & 098016 Fig: 3-269 \\
\hline SFMON: Communic.fault COMM3 & 093140 \\
\hline SFMON: Hardware error COMM3 & 093143 \\
\hline SFMON: Invalid SW vers DHMI & 093145 \\
\hline SFMON: Comm.link fail.COMM3 & 093142 \\
\hline SFMON: Lim.exceed.,tel.err. & 093141 \\
\hline SFMON: Telecom. faulty & 098006 Fig: 3-151 \\
\hline SFMON: Setting error THERM & 098035 Fig: 3-218 \\
\hline SFMON: Setting error CBM & 098020 \\
\hline SFMON: CTA error & \[
\begin{aligned}
& 098034 \text { Fig: 3-216, } \\
& 3-217
\end{aligned}
\] \\
\hline SFMON: TGFD mon. triggered & 093094 Fig: 3-202 \\
\hline SFMON: CB No. CB op. > & 098066 \\
\hline SFMON: Fcts.not perm.f. 60 Hz & 093098 Fig: 3-197 \\
\hline SFMON: CB rem. No. CB op. < & 098067 \\
\hline SFMON: CB \(\Sigma\) ltrip > & 098068 \\
\hline SFMON: CB \(\Sigma\) ltrip**2 > & 09806 \\
\hline SFMON: Invalid scaling BCD & 093124 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)


\section*{8 Information and Control Functions}
(continued)

Definite-time overcurrent protection
\begin{tabular}{|c|c|c|}
\hline DTOC: Blocking tl> EXT & 041060 & Fig: 3-115 \\
\hline DTOC: Blocking tl>> EXT & 041061 & Fig: 3-115 \\
\hline DTOC: Blocking tl>>> EXT & 41062 & Fig: 3-115 \\
\hline DTOC: Block. tlneg> EXT & 036141 & Fig: 3-117 \\
\hline DTOC: Block. tlneg>> EXT & 036142 & Fig: 3-117 \\
\hline DTOC: Block. tlneg>>> EXT & 036143 & Fig: 3-117 \\
\hline DTOC: Blocking tIN> EXT & 041063 & Fig: 3-120 \\
\hline DTOC: Blocking tIN>> EXT & 041064 & Fig: 3-120 \\
\hline DTOC: Blocking tIN>>> EXT & 041065 & Fig: 3-120 \\
\hline DTOC: Blocking tIN>>>> EXT & 04101 & Fig: 3-120 \\
\hline DTOC: Enabled & 040120 & Fig: 3-114 \\
\hline DTOC: Starting l> & 040036 & Fig: 3-115 \\
\hline DTOC: Starting |>> & 040029 & Fig: 3-115 \\
\hline DTOC: Starting l>>> & 039075 & Fig: 3-115 \\
\hline DTOC: Starting Ineg> & 036145 & \[
\begin{aligned}
& \text { Fig: 3-71, } \\
& \text { 3-72, 3_117 }
\end{aligned}
\] \\
\hline DTOC: Starting Ineg>> & 036146 & \[
\begin{aligned}
& \text { Fig: 3-71, } \\
& 3-72,3-117
\end{aligned}
\] \\
\hline DTOC: Starting Ineg>>> & 036147 & \[
\begin{aligned}
& \text { Fig: 3-71, } \\
& 3-72,3-117
\end{aligned}
\] \\
\hline DTOC: Starting IN> & 040077 & Fig: 3-120 \\
\hline DTOC: Starting IN>> & 040041 & Fig: 3-120 \\
\hline DTOC: Starting IN>>> & 039078 & Fig: 3-120 \\
\hline DTOC: Starting IN>>>> & 035031 & Fig: 3-120 \\
\hline DTOC: tl> elapsed & 040010 & Fig: 3-115 \\
\hline DTOC: tl>> elapsed & 040033 & Fig: 3-115 \\
\hline DTOC: tl>>> elapsed & 012 & Fig: 3-115 \\
\hline DTOC: Trip signal tl> & 020 & Fig: 3-116 \\
\hline DTOC: Trip signal tl>> & 011 & Fig: 3-116 \\
\hline DTOC: Trip signal tl>>> & 40076 & Fig: 3-116 \\
\hline DTOC: tlneg> elapsed & 036148 & \[
\begin{aligned}
& \text { Fig: 3-73, } \\
& \text { 3-91, 3-117 }
\end{aligned}
\] \\
\hline DTOC: tlneg>> elapsed & 036149 & \[
\begin{aligned}
& \text { Fig: 3-73, } \\
& 3-91,3-117
\end{aligned}
\] \\
\hline DTOC: tlneg>>> elapsed & 036150 & \[
\begin{aligned}
& \text { Fig: 3-73, } \\
& 3-91,3-117
\end{aligned}
\] \\
\hline DTOC: Trip signal tlneg> & 036151 & \[
\begin{aligned}
& \text { Fig: } 3-73, \\
& 3-91,3-117
\end{aligned}
\] \\
\hline DTOC: Trip signal tlneg>> & 036152 & \[
\begin{aligned}
& \text { Fig: 3-91, } \\
& 3-117
\end{aligned}
\] \\
\hline DTOC: Trip signal tineg>>> & 036153 & \[
\begin{aligned}
& \text { Fig: 3-91, } \\
& 3-117
\end{aligned}
\] \\
\hline DTOC: tIN> elapsed & 0001 & Fig: 3-120 \\
\hline DTOC: tIN>> elapsed & 040121 & Fig: 3-120 \\
\hline DTOC: tIN>>> elapsed & 039079 & Fig: 3-120 \\
\hline DTOC: tIN>>>> elapsed & 035040 & Fig: 3-120 \\
\hline DTOC: Trip signal tIN> & 041021 & Fig: 3-121 \\
\hline DTOC: Trip signal tIN>> & 40028 & Fig: 3-121 \\
\hline DTOC: Trip signal tlN>>> & 040079 & Fig: 3-121 \\
\hline DTOC: Trip sign. tIN>>>> & 35046 & Fig: 3-121 \\
\hline DTOC: H.-time tIN >,i. runn & 040086 & Fig: 3-122 \\
\hline DTOC: tIN >, interm. elapsed & 040099 & Fig: 3-122 \\
\hline DTOC: Trip sig. tIN >,intm. & 039073 & Fig: 3-122 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Inverse-time overcurrent protection
\begin{tabular}{|c|c|}
\hline IDMT1: Block. tleef,P> EXT & 040101 Fig: 3-130a \\
\hline IDMT1: Block. tlref,neg>EXT & 400102 Fig: 3-132 \\
\hline IDMT1: Block. tlref,N> EXT & 040103 Fig: 3-134 \\
\hline IDMT1: Enabled & 040100 Fig: 3-125 \\
\hline IDMT1: Starting Iref,P> & 040080 Fig: 3-130a \\
\hline IDMT1: tref,P> elapsed & 400082 Fig: 3-130a \\
\hline IDMT1: Trip signal tiref,P> & 040084 Fig: 3-131a \\
\hline IDMT1: Hold time P running & 040053 Fig: 3-130a \\
\hline IDMT1: Memory P clear & 040110 Fig: 3-130a \\
\hline IDMT1: Starting Iref,neg> & 400107 Fig: 3-132 \\
\hline IDMT1: tlref,neg> elapsed & 000109 Fig: 3-132 \\
\hline IDMT1: Trip sig. tlref,neg> & 10108 Fig: 3-132 \\
\hline IDMT1: Hold time neg runn. & 000113 Fig: 3-132 \\
\hline IDMT1: Memory neg clear & 200111 Fig: 3-132 \\
\hline IDMT1: Starting Iref,N> & 040081 Fig: 3-134 \\
\hline IDMT1: tlref, \(\mathrm{N}>\) elapsed & 040083 Fig: 3-134 \\
\hline IDMT1: Trip signal tiref,N> & 040055 Fig: 3-135a \\
\hline IDMT1: Hold time N running & 000054 Fig: 3-134 \\
\hline IDMT1: Memory N clear & 04012 Fig: 3-134 \\
\hline IDMT2: Block. tlref,P> EXT & 136 \\
\hline IDMT2: Block. tlref,neg>EXT & 40019 \\
\hline IDMT2: Block. tlref,N> EXT & 240150 \\
\hline IDMT2: Enabled & 040135 \\
\hline IDMT2: Starting Iref,P> & 200 \\
\hline IDMT2: tref,P> elapsed & 04002 Fig: 3-131b \\
\hline IDMT2: Trip signal tiref,P> & 040023 Fig: 3-131b \\
\hline IDMT2: Hold time P running & 040016 \\
\hline IDMT2: Memory P clear & 178 \\
\hline IDMT2: Starting Iref,neg> & 040156 \\
\hline IDMT2: tlref,neg> elapsed & 159 \\
\hline IDMT2: Trip sig. tlref,neg> & 040158 \\
\hline IDMT2: Hold time neg runn. & 400189 \\
\hline IDMT2: Memory neg clear & 000179 \\
\hline IDMT2: Starting Iref,N> & 019 \\
\hline IDMT2: tlref,N> elapsed & 040022 Fig: 3-135b \\
\hline IDMT2: Trip signal tiref,N> & 24 Fig: 3-135b \\
\hline IDMT2: Hold time N running & 040017 \\
\hline IDMT2: Memory N clear & 401 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Short-circuit direction determination
\begin{tabular}{|l|l|}
\hline SCDD: Enabled & 040098 Fig: \(3-137\) \\
\hline SCDD: Blocked & 040062 Fig: \(3-139\) \\
\hline SCDD: Fault P forward & 036018 Fig: \(3-140\) \\
SCDD: Fault P backward & 036019 Fig: \(3-140\) \\
SCDD: Ground fault forward & 040037 Fig: \(3-144\) \\
SCDD: Ground fault backw. & 040038 Fig: \(3-144\) \\
SCDD: Fault P or G forwd. & 040039 Fig: \(3-146\) \\
SCDD: Fault P or G backw. & 040040 Fig: \(3-146\) \\
SCDD: Forw. w/o measurem. & 038044 \\
SCDD: Direct. using Vmeas & 038045 \\
SCDD: Direct. using memory & 038047 \\
\hline SCDD: tVmemory running & 040034 \\
\hline
\end{tabular}

Switch on to fault protection
\begin{tabular}{|ll|}
\hline SOTF: Par. ARC running EXT & 039063 Fig: \(3-147\) \\
SOTF: Enabled & 040069 Fig: \(3-147\) \\
SOTF: tManual-close runn. & 036063 Fig: \(3-147\) \\
SOTF: Trip signal & 036064 Fig: \(3-147\) \\
\hline
\end{tabular}

Protective signaling
\begin{tabular}{|c|c|}
\hline PSIG: Enable EXT & 037025 Fig: 3-148 \\
\hline PSIG: Disable EXT & 037026 Fig: 3-148 \\
\hline PSIG: Test telecom. EXT & 036038 Fig: 3-150 \\
\hline PSIG: Blocking EXT & 036049 Fig: 3-148 \\
\hline PSIG: Receive EXT & \[
\begin{gathered}
036048 \text { Fig: 3-150, } \\
\text { 3-151 }
\end{gathered}
\] \\
\hline PSIG: Ext./user enabled & 037023 Fig: 3-148 \\
\hline PSIG: Enabled & 015008 Fig: 3-148 \\
\hline PSIG: Ready & 037027 Fig: 3-148 \\
\hline PSIG: Not ready & 037028 Fig: 3-148 \\
\hline PSIG: Test telecom. chann. & 034016 Fig: 3-150 \\
\hline PSIG: Telecom. faulty & 036060 Fig: 3-151 \\
\hline PSIG: Send (signal) & 036035 Fig: 3-150 \\
\hline PSIG: Send (transm.relay) & 037024 Fig: 3-150 \\
\hline PSIG: Receive (signal) & 037029 Fig: 3-150 \\
\hline PSIG: Trip signal & 038007 Fig: 3-150 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Auto-reclosing control
\begin{tabular}{|c|c|c|}
\hline ARC: Reset counters EXT & 005244 & Fig: 3-170 \\
\hline ARC: Enable EXT & 037010 & Fig: 3-154 \\
\hline ARC: Disable EXT & 037011 & Fig: 3-154 \\
\hline ARC: Test HSR A-B-C EXT & 037017 & Fig: 3-168 \\
\hline ARC: Blocking EXT & 036050 & Fig: 3-155 \\
\hline ARC: CB drive ready EXT & 004066 & Fig: 3-156 \\
\hline ARC: Ext./user enabled & 037013 & Fig: 3-154 \\
\hline ARC: Enabled & 015064 & Fig: 3-154 \\
\hline ARC: Test HSR A-B-C & 034023 & Fig: 3-168 \\
\hline ARC: Blocked & 004069 & Fig: 3-155 \\
\hline ARC: Blocking trip & 042000 & Fig: 3-165 \\
\hline ARC: Ready & 004068 & Fig: 3-156 \\
\hline ARC: Not ready & 037008 & Fig: 3-156 \\
\hline ARC: Reject test HSR & 036055 & Fig: 3-168 \\
\hline ARC: Block. time running & 037004 & Fig: 3-155 \\
\hline ARC: Cycle running & 037000 & Fig: 3-165 \\
\hline ARC: Oper. time running & 037005 & Fig: 3-165 \\
\hline ARC: Start by LOGIC & 037078 & Fig: 3-164 \\
\hline ARC: Dead time HSR runn. & 037002 & Fig: 3-165 \\
\hline ARC: Dead time TDR runn. & 037003 & Fig: 3-165 \\
\hline ARC: Reclaim time running & 036042 & Fig: 3-165 \\
\hline ARC: Trip signal & 039099 & Fig: 3-165 \\
\hline ARC: (Re)close request & 037077 & \[
\begin{aligned}
& \text { Fig: 3-67, } \\
& 3-165,3-174
\end{aligned}
\] \\
\hline ARC: (Re)close signal HSR & 037007 & Fig: 3-165 \\
\hline ARC: (Re)close signal TDR & 037006 & Fig: 3-165 \\
\hline ARC: Reclosure successful & 036062 & Fig: 3-165 \\
\hline ARC: Sig.interr. CB trip & 036040 & Fig: 3-165 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Automatic synchronism check ASC: Ext./user enabled
ASC: Reset counters EXT
ASC: Enable EXT
ASC: Disable EXT
ASC: Blocking EXT
ASC: Test close requ. EXT
ASC: Enabl.close requ.EXT
ASC: Close request EXT
ASC: Enabled
ASC: Blocked
ASC: Ready
ASC: Not ready
ASC: Test close request
ASC: Close request
ASC: Cycle running
ASC: Operat.time running
ASC: Close enable
ASC: Close enable,volt.ch
ASC: Close enable,sync.ch
ASC: Close rejection

037092 Fig: 3-172
006074 Fig.*: 3-83
037049 Fig: 3-172
037061 Fig: 3-172
037048 Fig: 3-173
037064 Fig: 3-174
037063 Fig: 3-174
037062 Fig: 3-174
018024 Fig: 3-172
038018 Fig: 3-173
037079 Fig: 3-173
037082 Fig: 3-173
034019 Fig: 3-174
034018 Fig: 3-174
038019 Fig: 3-178
037093 Fig: 3-178
037083 Fig: 3-67,
3-176
037085 Fig: 3-176
037084 Fig: 3-177
037086 Fig: 3-178

Ground fault direction determination using steady-state values
\begin{tabular}{|c|c|}
\hline GFDSS: Reset counters EXT & 005245 Fig.*: 3-83 \\
\hline GFDSS: GF (curr.) eval. EXT & 038020 Fig: 3-183 \\
\hline GFDSS: Enabled & 042096 Fig: 3-183 \\
\hline GFDSS: GF (pow.) ready & 038026 Fig: 3-183 \\
\hline GFDSS: GF (pow.) not ready & 038027 Fig: 3-183 \\
\hline GFDSS: GF (curr.) evaluat. & 039071 Fig: 3-183 \\
\hline GFDSS: GF (curr.) ready & 038028 Fig: 3-183 \\
\hline GFDSS: GF (curr.) not ready & 038029 Fig: 3-183 \\
\hline GFDSS: Admittance ready & 038167 Fig: 3-183 \\
\hline GFDSS: Admittance not ready & 038168 Fig: 3-183 \\
\hline GFDSS: Grd. fault pow./adm. & \[
\begin{gathered}
009037 \text { Fig: 3-185, } \\
\text { 3-191 }
\end{gathered}
\] \\
\hline GFDSS: Direct. forward/LS & \[
\begin{gathered}
009035 \text { Fig: 3-188, } \\
\text { 3-194 }
\end{gathered}
\] \\
\hline GFDSS: Direct. backward/BS & \[
\begin{gathered}
009036 \text { Fig: 3-188, } \\
3-194
\end{gathered}
\] \\
\hline GFDSS: Starting forward/LS & \[
\begin{aligned}
& 009040 \text { Fig: 3-188, } \\
& 3-194
\end{aligned}
\] \\
\hline GFDSS: Starting backw. /BS & 009041 Fig: 3-188, 3-194 \\
\hline GFDSS: Trip signal forw./LS & \begin{tabular}{l}
009031 Fig: 3-188, \\
3-194
\end{tabular} \\
\hline G F DSS: Ground fault (curr.) & 009038 Fig: 3-189 \\
\hline GFDSS: Starting Y(N)> & 009074 Fig: 3-195 \\
\hline GFDSS: Trip Y(N)> & 009075 Fig: 3-195 \\
\hline GFDSS: Trip signal \(Y(N)>\) & 009072 Fig: 3-195 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Transient ground fault direction determination
\begin{tabular}{|l|l|}
\hline TGFD: Blocking EXT & 004034 Fig: \(3-197\) \\
TGFD: Reset counters EXT & 005246 Fig: \(3-203\) \\
TGFD: Reset signal EXT & 004140 Fig: \(3-201\) \\
\hline TGFD: Enabled & 037100 Fig: \(3-197\) \\
TGFD: Ready & 037080 Fig: \(3-197\) \\
TGFD: Not ready & 037081 Fig: \(3-197\) \\
TGFD: Ground fault & 004033 Fig: \(3-199\) \\
TGFD: Direct. determined & 004030 Fig: \(3-200\) \\
\hline TGFD: Forward / LS & 004031 Fig: \(3-200\) \\
TGFD: Backward / BS & 004032 Fig: \(3-200\) \\
\hline TGFD: Signals reset & 004141 Fig: \(3-201\) \\
\hline
\end{tabular}

Motor protection

Thermal overload protection
\begin{tabular}{|c|c|}
\hline THERM: Therm.repl.block EXT & 041074 Fig: 3-218 \\
\hline THERM: Reset replica EXT & 038061 Fig: 3-219 \\
\hline THERM: Enabled & 040068 Fig: 3-214 \\
\hline THERM: Reset replica & 039061 Fig: 3-219 \\
\hline THERM: Starting k*Iref> & 041108 Fig: 3-218 \\
\hline THERM: CTA error EXT & \[
\begin{aligned}
& 038062 \text { Fig: 3-216, } \\
& 3-217
\end{aligned}
\] \\
\hline THERM: Warning & 039025 Fig: 3-218 \\
\hline THERM: Trip signal & 039020 Fig: 3-218 \\
\hline THERM: Buffer empty & 039112 Fig: 3-218 \\
\hline THERM: CTA error & \[
\begin{gathered}
039111 \text { Fig: 3-216, } \\
3-217
\end{gathered}
\] \\
\hline THERM: Within pre-trip time & 041109 Fig: 3-218 \\
\hline THERM: Setting error,block. & 039110 Fig: 3-218 \\
\hline
\end{tabular}

Unbalance protection
\begin{tabular}{|ll|}
\hline 12>: & Blocking EXT \\
12>: & Blocking tlneg> EXT \\
12>: & Blocking tlneg>> EXT
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{V}<>\) : Blocking tV> EXT & 041068 & Fig: 3-224 \\
\hline V<>: Blocking tV>> EXT & 041069 & Fig: 3-224 \\
\hline V <>: Blocking tV<EXT & 041070 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : Blocking tV<< EXT & 41071 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : Blocking tVpos> EXT & 1090 & Fig: 3-227 \\
\hline V<>: Blocking tVpos>> EXT & 041091 & Fig: 3-227 \\
\hline \(V<>\) : Blocking tVpos< EXT & 041092 & Fig: 3-227 \\
\hline \(\mathrm{V}<>\) : Blocking tVpos<< EXT & 041093 & Fig: 3-227 \\
\hline V<>: Blocking tVneg> EXT & 041094 & Fig: 3-228 \\
\hline V <>: Blocking tVneg>> EXT & 041095 & Fig: 3-228 \\
\hline V<>: Blocking tVNG> EXT & 041072 & Fig: 3-230 \\
\hline \(\mathrm{V}<>\) : Blocking tVNG>> EXT & 041073 & Fig: 3-230 \\
\hline \(\mathrm{V}<\) : Enabled & 040066 & Fig: 3-222 \\
\hline \(\mathrm{V}<>\) : Ready & 042003 & Fig: 3-222 \\
\hline \(\mathrm{V}<\) : Not ready & 042004 & Fig: 3-222 \\
\hline \(\mathrm{V}<\) : Starting \(\mathrm{V}>/ \gg \mathrm{A}(-\mathrm{B})\) & 041031 & Fig: 3-224 \\
\hline \(V<>\) : Starting \(V>/ \gg B(-C)\) & 041032 & Fig: 3-224 \\
\hline \(\mathrm{V}<>\) : Starting \(\mathrm{V}>/ \gg \mathrm{C}(-\mathrm{A})\) & 041033 & Fig: 3-224 \\
\hline \(\mathrm{V}<>\) : Starting \(\mathrm{V}>\) & 041030 & Fig: 3-224 \\
\hline \(\mathrm{V}<>\) : Starting \(\mathrm{V}>\) 3-pole & 041097 & Fig: 3-224 \\
\hline \(\mathrm{V}<>\) : Starting \(\mathrm{V} \gg\) & 041096 & Fig: 3-224 \\
\hline \(V<>\) : tV> elapsed & 041034 & Fig: 3-224 \\
\hline \(\mathrm{V}<>\) : tV> 3-pole elapsed & 041098 & Fig: 3-224 \\
\hline \(V<>\) : tV>> elapsed & 041035 & Fig: 3-224 \\
\hline \(\mathrm{V}<>\) : Starting \(\mathrm{V}</ \ll \mathrm{A}(-\mathrm{B})\) & 041038 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : Starting \(\mathrm{V}</ \ll \mathrm{B}(-\mathrm{C})\) & 041039 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : Starting \(\mathrm{V}</ \ll \mathrm{C}(-\mathrm{A})\) & 041040 & Fig: 3-225 \\
\hline \(\mathrm{V}<\) > : Starting \(\mathrm{V}<\) & 41037 & Fig: 3-225 \\
\hline \(\mathrm{V}<\) : Starting \(\mathrm{V}<3\)-pole & 2005 & Fig: 3-225 \\
\hline \(\mathrm{V}<\) : Starting V<< & 41099 & Fig: 3-225 \\
\hline \(V<\) : tV< elapsed & 041041 & Fig: 3-225 \\
\hline \(\mathrm{V}<\) : tV < elaps. transient & 042023 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : Fault V< & 041110 & Fig: 3-225 \\
\hline \(\mathrm{V}<\) >: tV<3-pole elapsed & 042006 & Fig: 3-225 \\
\hline \(\mathrm{V}<\) : tV < 3p elaps. trans. & 042024 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : Fault \(\mathrm{V}<3\)-pole & 041111 & Fig: 3-225 \\
\hline \(V<>\) : tV<< elapsed & 041042 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : \(\mathrm{tV} \ll\) elapsed trans. & 042025 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : t </<<< elaps. trans. & 042007 & Fig: 3-225 \\
\hline \(\mathrm{V}<>\) : Fault \(\mathrm{V} \ll\) & 041112 & Fig: 3-225 \\
\hline \(\mathrm{V}<\) : Starting Vpos> & 042010 & Fig: 3-227 \\
\hline V<>: Starting Vpos>> & 042011 & Fig: 3-227 \\
\hline \(V<>\) : tVpos> elapsed & 042012 & Fig: 3-227 \\
\hline V<>: tVpos>> elapsed & 042013 & Fig: 3-227 \\
\hline \(\mathrm{V}<\) : Starting Vpos< & 042014 & Fig: 3-227 \\
\hline \(\mathrm{V}<\) >: Starting Vpos<< & 042015 & Fig: 3-227 \\
\hline \(V<>\) : tVpos< elapsed & 042016 & Fig: 3-227 \\
\hline \(\mathrm{V}<>\) : tVpos< elaps. trans. & 042026 & Fig: 3-227 \\
\hline \(\mathrm{V}<>\) : Fault Vpos< & 041113 & Fig: 3-227 \\
\hline \(V<>\) : tVpos<< elapsed & 2017 & Fig: 3-227 \\
\hline V<>: tVpos<< elaps.trans. & 042027 & Fig: 3-227 \\
\hline V<>: Fault Vpos<< & 041114 & Fig: 3-227 \\
\hline V<>: tVpos</<< elap.trans & 042018 & Fig: 3-227 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Over-/underfrequency protection

\section*{8 Information and Control Functions}
(continued)

Power directional protection
\begin{tabular}{|c|c|c|}
\hline P<>: Blocking tP> EXT & 035082 & Fig: 3-238 \\
\hline P<>: Blocking tP>> EXT & 035083 & Fig: 3-238 \\
\hline P<>: Blocking tQ> EXT & 035084 & Fig: 3-240 \\
\hline P<>: Blocking tQ>> EXT & 035085 & Fig: 3-240 \\
\hline \(\mathrm{P}<>\) : Blocking tP< EXT & 035050 & Fig: 3-242 \\
\hline \(\mathrm{P}<>\) : Blocking tP<< EXT & 035051 & Fig: 3-242 \\
\hline \(\mathrm{P}<>\) : Blocking tQ< EXT & 035052 & Fig: 3-245 \\
\hline P<>: Blocking tQ<< EXT & 035053 & Fig: 3-245 \\
\hline \(\mathrm{P}<>\) : Enabled & 036250 & Fig: 3-236 \\
\hline \(\mathrm{P}<>\) : Starting P> & 035086 & \[
\begin{aligned}
& \text { Fig: 3-238, } \\
& 3-248
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : Starting P>> & 035089 & \[
\begin{aligned}
& \text { Fig: 3-238, } \\
& 3-248
\end{aligned}
\] \\
\hline : Signal \(P>\) delayed & 035087 & Fig: 3-238 \\
\hline P<>: Signal P>> delayed & 035090 & Fig: 3-238 \\
\hline \(\mathrm{P}<>\) : Trip signal \(\mathrm{P}>\) & 035088 & Fig: 3-239 \\
\hline \(\mathrm{P}<>\) : Trip signal \(\mathrm{P} \gg\) & 035091 & Fig: 3-239 \\
\hline \(\mathrm{P}<\) : Starting Q> & 035092 & \[
\begin{aligned}
& \text { Fig: 3-240, 3- } \\
& 249
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : Starting Q>> & 035095 & \[
\begin{aligned}
& \text { Fig: 3-240, } \\
& 3-249
\end{aligned}
\] \\
\hline >: Signal Q> delayed & 035093 & Fig: 3-240 \\
\hline \(\mathrm{P}<>\) : Signal Q>> delayed & 035096 & Fig: 3-240 \\
\hline \(\mathrm{P}<>\) : Trip signal Q> & 035094 & Fig: 3-241 \\
\hline \(\mathrm{P}<>\) : Trip signal Q>> & 035097 & Fig: 3-241 \\
\hline \(\mathrm{P}<\) : Starting \(\mathrm{P}<\) & 035054 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-243,3-248
\end{aligned}
\] \\
\hline >: Starting \(\mathrm{P} \ll\) & 035060 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-243,3-248
\end{aligned}
\] \\
\hline \(\mathrm{P}<\) : Signal \(\mathrm{P}<\) delayed & 035055 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-243
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : Signal \(\mathrm{P} \ll\) delayed & 035061 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-243
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : tP< elapsed trans. & 035056 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-243
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : \(\mathrm{tP} \ll\) elapsed trans. & 035062 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-243
\end{aligned}
\] \\
\hline < l : \(\mathrm{P} / \mathrm{tP} \ll\) elaps.trans & 035178 & Fig: 3-242 \\
\hline \(\mathrm{P}<>\) : Fault \(\mathrm{P}<\) & 035057 & \[
\begin{aligned}
& \text { Fig: 3-242, } \\
& 3-244
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : Fault \(\mathrm{P} \ll\) & 035063 & Fig: 3-242 \\
\hline \(\mathrm{P}<>\) : Trip signal \(\mathrm{P}<\) & 035058 & Fig: 3-243 \\
\hline \(\mathrm{P}<>\) : Trip signal \(\mathrm{P} \ll\) & 035064 & Fig: 3-243 \\
\hline \(\mathrm{P}<>\) : Trip signal \(\mathrm{P}<\) trans & 035059 & Fig: 3-243 \\
\hline \(\mathrm{P}<>\) : Trip sig. \(\mathrm{P} \ll\) trans. & 035065 & Fig: 3-243 \\
\hline \(\mathrm{P}<>\) : Starting \(\mathrm{Q}<\) & 035066 & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-246,3-249
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : Starting \(\mathrm{Q} \ll\) & 035010 & \[
\begin{aligned}
& \text { Fig: } 3-245, \\
& 3-246,3-249
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : Signal \(\mathrm{Q}<\) delayed & 035067 & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-246
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : Signal \(\mathrm{Q} \ll\) delayed & 035011 & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-246
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : tQ< elapsed trans. & 035068 & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-246
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : tQ<< elapsed trans. & 035016 & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-246
\end{aligned}
\] \\
\hline \(\mathrm{P}<>\) : tQ</tQ<< elaps.trans & 035179 & Fig: 3-245 \\
\hline \(\mathrm{P}<>\) : Fault \(\mathrm{Q}<\) & 035069 & \[
\begin{aligned}
& \text { Fig: 3-245, } \\
& 3-247
\end{aligned}
\] \\
\hline P<>: Fault \(\mathrm{Q} \ll\) & 035049 & Fig: 3-245 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Circuit Breaker Failure
Protection
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{P}<>\) : Trip signal \(\mathrm{Q}<\) & 035155 & Fig: 3-246 \\
\hline \(\mathrm{P}<>\) : Trip signal \(\mathrm{Q} \ll\) & 035176 & Fig: 3-246 \\
\hline \(\mathrm{P}<>\) : Trip sig. \(\mathrm{Q}<\) trans. & 035156 & Fig: 3-246 \\
\hline \(\mathrm{P}<>\) : Trip sig. \(\mathrm{Q} \ll\) trans. & 03517 & Fig: 3-246 \\
\hline \(\mathrm{P}<>\) : Direction P forw. & 035181 & Fig: 3-248 \\
\hline \(\mathrm{P}<>\) : Direction P backw. & 035191 & Fig: 3-248 \\
\hline \(\mathrm{P}<>\) : Direction Q forw. & 035193 & Fig: 3-249 \\
\hline \(\mathrm{P}<>\) : Direction Q backw. & 035194 & Fig: 3-249 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CBF & Ready & 038009 & \\
\hline CBF & Startup 3p & 038211 & Fig: 3-254 \\
\hline CBF & Starting trig. EXT & 038016 & Fig: 3-250 \\
\hline CBF & Blocking EXT & 038058 & \\
\hline CBF & Enable EXT & 038041 & \\
\hline CBF & Disable EXT & 038042 & \\
\hline CBF & Enabled & 040055 & Fig: 3-250 \\
\hline CBF & Not ready & 040025 & Fig: 3-251 \\
\hline CBF & Trip signal & 040026 & Fig: 3-257 \\
\hline CBF & Starting & 038021 & Fig: 3-257 \\
\hline CBF & Ext./user enabled & 038040 & Fig: 3-250 \\
\hline CBF & CB failure & 036017 & \\
\hline CBF & Start 3p EXT & 038205 & Fig: 3-254 \\
\hline CBF & Start enable EXT & 038209 & Fig: 3-254 \\
\hline CBF & CB pos. implausible & 038210 & Fig: 3-253 \\
\hline CBF & Trip signal t1 & 038215 & Fig: 3-255 \\
\hline CBF & Trip signal t2 & 038219 & Fig: 3-255 \\
\hline CBF & Trip command t1 & 038220 & Fig: 3-256 \\
\hline CBF & Trip command t2 & 038224 & Fig: \(3-256\) \\
\hline CBF & Fault behind CB & 038225 & Fig: 3-258 \\
\hline CBF & TripSig CBsync.super & 038226 & Fig: 3-259 \\
\hline CBF & CBsync.superv A open & 038227 & Fig: 3-259 \\
\hline CBF & CBsync.superv B open & 038228 & Fig: 3-259 \\
\hline CBF & CBsync.superv C open & 038229 & Fig: 3-259 \\
\hline CBF & Current flow A & 038230 & Fig: 3-252 \\
\hline CBF & Current flow B & 038231 & Fig: 3-252 \\
\hline CBF & Current flow C & 038232 & Fig: 3-252 \\
\hline CBF & Current flow Phx & 038233 & Fig: 3-252 \\
\hline CBF & CB faulty EXT & 03823 & Fig: 3-255 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline CBM: Reset meas.val. EXT & 005247 Fig.*: 3-83 \\
\hline CBM: Blocking EXT & 044128 Fig: 3-268 \\
\hline CBM: Enabled & 044130 Fig: 3-260 \\
\hline CBM: Cycle running A & 044205 \\
\hline CBM: Cycle running B & 044206 \\
\hline CBM: Cycle running C & 044207 \\
\hline CBM: Blocked & 044199 Fig: 3-268 \\
\hline CBM: Sig. No. CB op. > & 044135 Fig: 3-267 \\
\hline CBM: Sig. Rem. No.CB op.< & 044136 Fig: 3-266 \\
\hline CBM: Signal \(\Sigma\) ltrip> & 044137 \\
\hline CBM: Signal \(\Sigma /\) trip**2> & 044138 \\
\hline CBM: Signal \(\Sigma \|^{*}\) t> & 044139 \\
\hline CBM: tmax \({ }^{\text {A }}\) & 04417 \\
\hline CBM: tmax> B & 044178 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|l|l|}
\hline CBM: tmax> C & 04179 \\
CBM: Curr. flow ended A & 044201 \\
CBM: Curr. flow ended B & 04422 \\
CBM: Curr. flow ended C & 042203 \\
\hline CBM: Setting error CBM & 04204 \\
\hline
\end{tabular}

Measuring-circuit monitoring
\begin{tabular}{|l|l|}
\hline MCMON: Enabled & 040094 Fig: 3-270 \\
\hline MCMON: Meas. circ. I faulty & 040087 Fig: 3-270 \\
MCMON: Undervoltage & 038038 Fig: 3-271 \\
MCMON: Phase sequ. V faulty & 038049 Fig: 3-271 \\
MCMON: Meas. circ. V faulty & 038023 Fig: 3-269 \\
MCMON: Meas.circ.V,I faulty & 037020 Fig: 3-269 \\
MCMON: FF, Vref triggered & 038100 Fig: 3-272 \\
MCMON: Meas. voltage o.k. & 038048 Fig: 3-271 \\
MCMON: M.circ. V,Vref flty. & 040078 \\
\hline
\end{tabular}

Limit value monitoring
\begin{tabular}{|c|c|c|}
\hline LIMIT: Enabled & 040074 & \[
\begin{aligned}
& \text { Fig: 3-273, } \\
& 3-277
\end{aligned}
\] \\
\hline LIMIT: tl> elapsed & 040220 & Fig: 3-273 \\
\hline LIMIT: tl>> elapsed & 040221 & Fig: 3-273 \\
\hline LIMIT: tl< elapsed & 040222 & Fig: 3-273 \\
\hline LIMIT: t << elapsed & 040223 & Fig: 3-273 \\
\hline LIMIT: tVPG> elapsed & 040224 & Fig: 3-274 \\
\hline LIMIT: tVPG>> elapsed & 040225 & Fig: 3-274 \\
\hline LIMIT: tVPG< elapsed & 040226 & Fig: 3-274 \\
\hline LIMIT: tVPG<< elapsed & 040227 & Fig: 3-274 \\
\hline LIMIT: tVPP> elapsed & 040228 & Fig: 3-274 \\
\hline LIMIT: tVPP>> elapsed & 040229 & Fig: 3-274 \\
\hline LIMIT: tVPP< elapsed & 040230 & Fig: 3-274 \\
\hline LIMIT: tVPP<< elapsed & 040231 & Fig: 3-274 \\
\hline LIMIT: tVNG> elapsed & 040168 & Fig: 3-275 \\
\hline LIMIT: tVNG>> elapsed & 040169 & Fig: 3-275 \\
\hline LIMIT: tVref> elapsed & 042152 & Fig: 3-277 \\
\hline LIMIT: tVref>> elapsed & 153 & Fig: 3-277 \\
\hline LIMIT: tVref< elapsed & 42154 & Fig: 3-277 \\
\hline LIMIT: tVref<< elapsed & 042155 & Fig: 3-277 \\
\hline LIMIT: Starting IDC,lin> & 040180 & Fig: 3-276 \\
\hline LIMIT: Starting IDC,lin>> & 040181 & Fig: 3-276 \\
\hline LIMIT: tIDC,lin> elapsed & 040182 & Fig: 3-276 \\
\hline LIMIT: tIDC,lin>> elapsed & 040183 & Fig: 3-276 \\
\hline LIMIT: Starting IDC,lin< & 040184 & Fig: 3-276 \\
\hline LIMIT: Starting IDC,lin<< & 040185 & Fig: 3-276 \\
\hline LIMIT: tIDC, lin< elapsed & 040186 & Fig: 3-276 \\
\hline LIMIT: tIDC,lin<< elapsed & 040187 & Fig: 3-276 \\
\hline LIMIT: Starting T> & 040170 & Fig: 3-278 \\
\hline LIMIT: Starting T>> & 040171 & Fig: 3-278 \\
\hline LIMIT: tT> elapsed & 040172 & Fig: 3-278 \\
\hline LIMIT: tT>> elapsed & 040173 & Fig: 3-278 \\
\hline LIMIT: Starting T< & 040174 & Fig: 3-278 \\
\hline LIMIT: Starting T<< & 040175 & Fig: 3-278 \\
\hline LIMIT: tT< elapsed & 040176 & Fig: 3-278 \\
\hline LIMIT: tT<< elapsed & 040177 & Fig: 3-278 \\
\hline LIMIT: Starting T1> & 040200 & Fig: 3-279 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|c|}
\hline LIMIT: Starting T1>> & 040201 & Fig: 3-279 \\
\hline LIMIT: tT1> elapsed & 040202 & Fig: 3-279 \\
\hline LIMIT: tT1>> elapsed & 040203 & \[
\begin{aligned}
& \text { Fig: 3-279, } \\
& 3-280
\end{aligned}
\] \\
\hline LIMIT: Starting T1< & 040204 & Fig: 3-279 \\
\hline LIMIT: Starting T1<< & 040205 & Fig: 3-279 \\
\hline LIMIT: tT1< elapsed & 040206 & Fig: 3-279 \\
\hline LIMIT: tT1<< elapsed & 040207 & Fig: 3-279 \\
\hline LIMIT: Starting T2> & 040210 & \\
\hline LIMIT: Starting T2>> & 040211 & \\
\hline LIMIT: tT2> elapsed & 040212 & \\
\hline LIMIT: tT2>> elapsed & 040213 & Fig: 3-280 \\
\hline LIMIT: Starting T2< & 040214 & \\
\hline LIMIT: Starting T2<< & 040215 & \\
\hline LIMIT: tT2< elapsed & 040216 & \\
\hline LIMIT: tT2<< elapsed & 040217 & \\
\hline LIMIT: Starting T3> & 040160 & \\
\hline LIMIT: Starting T3>> & 040161 & \\
\hline LIMIT: tT3> elapsed & 040162 & \\
\hline LIMIT: tT3>> elapsed & 040163 & Fig: 3-280 \\
\hline LIMIT: Starting T3< & 040164 & \\
\hline LIMIT: Starting T3<< & 040165 & \\
\hline LIMIT: tT3< elapsed & 040166 & \\
\hline LIMIT: tT3<< elapsed & 040167 & \\
\hline LIMIT: Starting T4> & 041150 & \\
\hline LIMIT: Starting T4>> & 041151 & \\
\hline LIMIT: tT4> elapsed & 04152 & \\
\hline LIMIT: tT4>> elapsed & 041153 & \[
\begin{aligned}
& \text { Fig: 3-280, } \\
& 3-281
\end{aligned}
\] \\
\hline LIMIT: Starting T4< & 04154 & \\
\hline LIMIT: Starting T4<< & 1155 & \\
\hline LIMIT: tT4< elapsed & 0415 & \\
\hline LIMIT: tT4<< elapsed & 04115 & \\
\hline LIMIT: Starting T5> & 041160 & \\
\hline LIMIT: Starting T5>> & 04116 & \\
\hline LIMIT: tT5> elapsed & 041162 & \\
\hline LIMIT: tT5>> elapsed & 041163 & \[
\begin{aligned}
& \text { Fig: 3-280, } \\
& 3-281
\end{aligned}
\] \\
\hline LIMIT: Starting T5< & 041164 & \\
\hline LIMIT: Starting T5<< & 04116 & \\
\hline LIMIT: tT5< elapsed & 041166 & \\
\hline LIMIT: tT5<< elapsed & 04116 & \\
\hline LIMIT: Starting T6> & 041170 & \\
\hline LIMIT: Starting T6>> & 041771 & \\
\hline LIMIT: tT6> elapsed & 041172 & \\
\hline LIMIT: tT6>> elapsed & 041173 & \[
\begin{aligned}
& \text { Fig: 3-280, } \\
& 3-281
\end{aligned}
\] \\
\hline LIMIT: Starting T6< & 041174 & \\
\hline LIMIT: Starting T6<< & 041175 & \\
\hline LIMIT: tT6< elapsed & 041176 & \\
\hline LIMIT: tT6<< elapsed & 04117 & \\
\hline LIMIT: Starting T7> & 041180 & \\
\hline LIMIT: Starting T7>> & 041181 & \\
\hline LIMIT: tT7> elapsed & 041182 & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|c|}
\hline LLIMIT: tT7>> elapsed & 041183 & \[
\begin{aligned}
& \text { Fig: 3-280, } \\
& 3-281
\end{aligned}
\] \\
\hline LIMIT: Starting T7< & 04184 & \\
\hline LIMIT: Starting T7<< & 04118 & \\
\hline LIMIT: tT7< elapsed & 041186 & \\
\hline LIMIT: tT7<< elapsed & 041187 & \\
\hline LIMIT: Starting T8> & 041190 & \\
\hline LIMIT: Starting T8>> & 04191 & \\
\hline LIMIT: tT8> elapsed & 04192 & \\
\hline LIMIT: tT8>> elapsed & 041193 & \[
\begin{aligned}
& \text { Fig: 3-280, } \\
& 3-281
\end{aligned}
\] \\
\hline LIMIT: Starting T8< & 04194 & \\
\hline LIMIT: Starting T8<< & 04195 & \\
\hline LIMIT: tT8< elapsed & 04196 & \\
\hline LIMIT: tT8<< elapsed & 04119 & \\
\hline LIMIT: Starting T9> & 041240 & \\
\hline LIMIT: Starting T9>> & 041241 & \\
\hline LIMIT: tT9> elapsed & 041242 & \\
\hline LIMIT: tT9>> elapsed & 041243 & \[
\begin{aligned}
& \text { Fig: 3-280, } \\
& 3-281
\end{aligned}
\] \\
\hline LIMIT: Starting T9< & 041244 & \\
\hline LIMIT: Starting T9<< & 041245 & \\
\hline LIMIT: tT9< elapsed & 04246 & \\
\hline LIMIT: tT9<< elapsed & 41247 & \\
\hline LIMIT: 2out of3 with T1,2,3 & 041248 & Fig: 3-280 \\
\hline LIMIT: 2out of3 with T4,5,6 & 041249 & Fig: 3-281 \\
\hline LIMIT: 2out of3 with T7,8,9 & 041250 & Fig: 3-281 \\
\hline LIMIT: tIPxx triggered & 221232 & \\
\hline LIMIT: tVPGxx triggered & 221233 & \\
\hline LIMIT: tVPPxx triggered & 221234 & \\
\hline LIMIT: tVNGxx triggered & 221235 & \\
\hline LIMIT: tVrefxx triggered & 221237 & \\
\hline
\end{tabular}

Logic
\begin{tabular}{|c|c|}
\hline LOGIC: Input 1 EXT & 034000 Fig: 3-284 \\
\hline LOGIC: Input 2 EXT & 034001 \\
\hline LOGIC: Input 3 EXT & 034002 \\
\hline LOGIC: Input 4 EXT & 034003 \\
\hline LOGIC: Input 5 EXT & 034004 \\
\hline LOGIC: Input 6 EXT & 034005 \\
\hline LOGIC: Input 7 EXT & 034006 \\
\hline LOGIC: Input 8 EXT & 034007 \\
\hline LOGIC: Input 9 EXT & 034008 \\
\hline LOGIC: Input 10 EXT & 034009 \\
\hline LOGIC: Input 11 EXT & 034010 \\
\hline LOGIC: Input 12 EXT & 034011 \\
\hline LOGIC: Input 13 EXT & 034012 \\
\hline LOGIC: Input 14 EXT & 034013 \\
\hline LOGIC: Input 15 EXT & 034014 \\
\hline LOGIC: Input 16 EXT & 034015 Fig: 3-284 \\
\hline LOGIC: Set 1 EXT & 034051 Fig: 3-283 \\
\hline LOGIC: Set 2 EXT & 034052 \\
\hline LOGIC: Set 3 EXT & 034053 \\
\hline LOGIC: Set 4 EXT & 034054 \\
\hline LOGIC: Set 5 EXT & 034055 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|c|}
\hline LOGIC: Set 6 EXT & 034056 & \\
\hline LOGIC: Set 7 EXT & 034057 & \\
\hline LOGIC: Set 8 EXT & 034058 & \\
\hline LOGIC: Reset 1 EXT & 034059 & Fig: 3-283 \\
\hline LOGIC: Reset 2 EXT & 034060 & \\
\hline LOGIC: Reset 3 EXT & 034061 & \\
\hline LOGIC: Reset 4 EXT & 034062 & \\
\hline LOGIC: Reset 5 EXT & 034063 & \\
\hline LOGIC: Reset 6 EXT & 034064 & \\
\hline LOGIC: Reset 7 EXT & 034065 & \\
\hline LOGIC: Reset 8 EXT & 034066 & \\
\hline LOGIC: 1 has been set & 034067 & Fig: 3-283 \\
\hline LOGIC: 2 has been set & 034068 & \\
\hline LOGIC: 3 has been set & 034069 & \\
\hline LOGIC: 4 has been set & 034070 & \\
\hline LOGIC: 5 has been set & 034071 & \\
\hline LOGIC: 6 has been set & 034072 & \\
\hline LOGIC: 7 has been set & 034073 & \\
\hline LOGIC: 8 has been set & 034074 & \\
\hline LOGIC: 1 set externally & 034075 & Fig: 3-283 \\
\hline LOGIC: 2 set externally & 034076 & \\
\hline LOGIC: 3 set externally & 034077 & \\
\hline LOGIC: 4 set externally & 034078 & \\
\hline LOGIC: 5 set externally & 034079 & \\
\hline LOGIC: 6 set externally & 034080 & \\
\hline LOGIC: 7 set externally & 034081 & \\
\hline LOGIC: 8 set externally & 034082 & \\
\hline LOGIC: Enabled & 034046 & Fig: 3-284 \\
\hline LOGIC: Output 1 & 042032 & Fig: 3-284 \\
\hline LOGIC: Output 1 (t) & 042033 & Fig: 3-284 \\
\hline LOGIC: Output 2 & 042034 & \\
\hline LOGIC: Output 2 (t) & 042035 & Fig: 3-164 \\
\hline LOGIC: Output 3 & 042036 & \\
\hline LOGIC: Output 3 (t) & 042037 & \\
\hline LOGIC: Output 4 & 042038 & \\
\hline LOGIC: Output 4 (t) & 042039 & \\
\hline LOGIC: Output 5 & 042040 & \\
\hline LOGIC: Output 5 (t) & 042041 & \\
\hline LOGIC: Output 6 & 042042 & \\
\hline LOGIC: Output 6 (t) & 042043 & \\
\hline LOGIC: Output 7 & 042044 & \\
\hline LOGIC: Output 7 (t) & 042045 & \\
\hline LOGIC: Output 8 & 042046 & \\
\hline LOGIC: Output 8 (t) & 042047 & \\
\hline LOGIC: Output 9 & 042048 & \\
\hline LOGIC: Output 9 (t) & 042049 & \\
\hline LOGIC: Output 10 & 042050 & \\
\hline LOGIC: Output 10 (t) & 042051 & \\
\hline LOGIC: Output 11 & 042052 & \\
\hline LOGIC: Output 11 (t) & 042053 & \\
\hline LOGIC: Output 12 & 042054 & \\
\hline LOGIC: Output 12 (t) & 042055 & \\
\hline LOGIC: Output 13 & 042056 & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|}
\hline LOGIC: Output 13 (t) & 042057 \\
\hline LOGIC: Output 14 & 042058 \\
\hline LOGIC: Output 14 (t) & 042059 \\
\hline LOGIC: Output 15 & 042060 \\
\hline LOGIC: Output 15 (t) & 042061 \\
\hline LOGIC: Output 16 & 042062 \\
\hline LOGIC: Output 16 (t) & 042063 \\
\hline LOGIC: Output 17 & 042064 \\
\hline LOGIC: Output 17 (t) & 042065 \\
\hline LOGIC: Output 18 & 042066 \\
\hline LOGIC: Output 18 (t) & 042067 \\
\hline LOGIC: Output 19 & 042068 \\
\hline LOGIC: Output 19 (t) & 042069 \\
\hline LOGIC: Output 20 & 042070 \\
\hline LOGIC: Output 20 (t) & 042071 \\
\hline LOGIC: Output 21 & 042072 \\
\hline LOGIC: Output 21 (t) & 042073 \\
\hline LOGIC: Output 22 & 042074 \\
\hline LOGIC: Output 22 (t) & 042075 \\
\hline LOGIC: Output 23 & 042076 \\
\hline LOGIC: Output 23 (t) & 042077 \\
\hline LOGIC: Output 24 & 042078 \\
\hline LOGIC: Output 24 (t) & 042079 \\
\hline LOGIC: Output 25 & 042080 \\
\hline LOGIC: Output 25 (t) & 042081 \\
\hline LOGIC: Output 26 & 042082 \\
\hline LOGIC: Output 26 (t) & 042083 \\
\hline LOGIC: Output 27 & 042084 \\
\hline LOGIC: Output 27 (t) & 042085 \\
\hline LOGIC: Output 28 & 042086 \\
\hline LOGIC: Output 28 (t) & 042087 \\
\hline LOGIC: Output 29 & 042088 \\
\hline LOGIC: Output 29 (t) & 042089 \\
\hline LOGIC: Output 30 & 042090 \\
\hline LOGIC: Output 30 (t) & 042091 \\
\hline LOGIC: Output 31 & 042092 \\
\hline LOGIC: Output 31 (t) & 042093 \\
\hline LOGIC: Output 32 & 042094 Fig: 3-300 \\
\hline LOGIC: Output 32 (t) & 042095 Fig: 3-300 \\
\hline
\end{tabular}

External devices 01 to 03
\begin{tabular}{|l|c|}
\hline DEV01: Open signal EXT & 210030 Fig: 3-291, \\
DEV01: Closed signal EXT & 3-297 \\
DEV01: Control state & 210031 Fig: 3-291, \\
3-297 \\
DEV01: Switch. device open & 210018 Fig: 3-20, \\
& \(3-291,3-297\) \\
& 210036 Fig: 3-291, \\
& \(3-297,3-298\), \\
DEV01: Switch.device closed & \(3-299\) \\
& 210037 Fig: 3-291, \\
& \(3-297,3-298\), \\
DEV01: Dev. interm./flt.pos & \(3-299\) \\
DEV01: Open command & 210038 Fig: 3-291, \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|c|c|c|}
\hline DEV01: Close command & 210029 & \[
\begin{aligned}
& \text { Fig: 3-298, } \\
& 3-299
\end{aligned}
\] \\
\hline DEV01: Open cmd. received & 218000 & Fig: 3-292 \\
\hline DEV01: Close cmd. received & 218001 & Fig: 3-292 \\
\hline DEV02: Open signal EXT & 210080 & \\
\hline DEV02: Closed signal EXT & 210081 & Fig: 3-66 \\
\hline DEV02: Control state & 210068 & \\
\hline DEV02: Switch. device open & 210086 & \\
\hline DEV02: Switch.device closed & 210087 & \\
\hline DEV02: Dev. interm./flt.pos & 210088 & \\
\hline DEV02: Open command & 210078 & \\
\hline DEV02: Close command & 210079 & \\
\hline DEV02: Open cmd. received & 218002 & \\
\hline DEV02: Close cmd. received & 218003 & \\
\hline DEV03: Open signal EXT & 210130 & \\
\hline DEV03: Closed signal EXT & 210131 & \\
\hline DEV03: Control state & 210118 & \\
\hline DEV03: Switch. device open & 210136 & \\
\hline DEV03: Switch.device closed & 210137 & \\
\hline DEV03: Dev. interm./flt.pos & 210138 & \\
\hline DEV03: Open command & 210128 & \\
\hline DEV03: Close command & 210129 & \\
\hline DEV03: Open cmd. received & 218004 & \\
\hline DEV03: Close cmd. received & 218005 & \\
\hline
\end{tabular}

Interlocking logic
\begin{tabular}{|l|l|}
\hline ILOCK: Output 1 & 250032 Fig: \(3-300\) \\
\hline ILOCK: Output 2 & 250033 \\
\hline ILOCK: Output 3 & 250034 \\
\hline ILOCK: Output 4 & 250035 \\
\hline ILOCK: Output 5 & 250036 \\
\hline ILOCK: Output 6 & 250037 \\
\hline ILOCK: Output 7 & 250038 \\
\hline ILOCK: Output 8 & 250039 \\
\hline ILOCK: Output 9 & 250040 \\
\hline ILOCK: Output 10 & 250041 \\
\hline ILOCK: Output 11 & 250042 \\
\hline ILOCK: Output 12 & 250043 \\
\hline ILOCK: Output 13 & 250044 \\
\hline ILOCK: Output 14 & 250045 \\
\hline ILOCK: Output 15 & 250046 \\
\hline ILOCK: Output 16 & 250047 \\
\hline ILOCK: Output 17 & 250048 \\
\hline ILOCK: Output 18 & 250049 \\
\hline ILOCK: Output 19 & 250050 \\
\hline ILOCK: Output 20 & 250051 \\
\hline ILOCK: Output 21 & 250052 \\
\hline ILOCK: Output 22 & 250053 \\
\hline ILOCK: Output 23 & 250054 \\
\hline ILOCK: Output 24 & 250055 \\
\hline ILOCK: Output 25 & 250056 \\
\hline ILOCK: Output 26 & 250057 \\
\hline ILOCK: Output 27 & 25058 \\
ILOCK: Output 28 & 25059 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)
\begin{tabular}{|l|l|}
\hline ILOCK: Output 29 & 250060 \\
ILOCK: Output 30 & 250061 \\
\hline ILOCK: Output 31 & 250062 \\
\hline ILOCK: Output 32 & 250063 Fig: 3-293 \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Single-pole commands
\begin{tabular}{|ll|}
\hline CMD_1: Command C001 & 200001 Fig: \(3-301\) \\
\hline CMD_1: Command C002 & 200006 \\
CMD_1: Command C003 & 200011 \\
\hline CMD_1: Command C004 & 200016 \\
CMD_1: Command C005 & 200021 \\
CMD_1: Command C006 & 200026 \\
CMD_1: Command C007 & 200031 \\
CMD_1: Command C008 & 200036 \\
CMD_1: Command C009 & 200041 \\
CMD_1: Command C010 & 20046 \\
CMD_1: Command C011 & 200051 \\
CMD_1: Command C012 & 20056 \\
\hline
\end{tabular}

Single-pole signals
\begin{tabular}{|c|c|c|}
\hline SIG_1: Signal S001 EXT & 226004 & Fig: 3-302 \\
\hline SIG_1: Logic signal S001 & 226005 & Fig: 3-302 \\
\hline SIG_1: Signal S002 EXT & 226012 & \\
\hline SIG_1: Logic signal S002 & 226013 & \\
\hline SIG_1: Signal S003 EXT & 226020 & \\
\hline SIG_1: Logic signal S003 & 226021 & \\
\hline SIG_1: Signal S004 EXT & 226028 & \\
\hline SIG_1: Logic signal S004 & 226029 & \\
\hline SIG_1: Signal S005 EXT & 226036 & \\
\hline SIG_1: Logic signal S005 & 226037 & \\
\hline SIG_1: Signal S006 EXT & 226044 & \\
\hline SIG_1: Logic signal S006 & 226045 & \\
\hline SIG_1: Signal S007 EXT & 226052 & \\
\hline SIG_1: Logic signal S007 & 226053 & \\
\hline SIG_1: Signal S008 EXT & 226060 & \\
\hline SIG_1: Logic signal S008 & 226061 & \\
\hline SIG_1: Signal S009 EXT & 226068 & \\
\hline SIG_1: Logic signal S009 & 226069 & \\
\hline SIG_1: Signal S010 EXT & 226076 & \\
\hline SIG_1: Logic signal S010 & 226077 & \\
\hline SIG_1: Signal S011 EXT & 226084 & \\
\hline SIG_1: Logic signal S011 & 226085 & \\
\hline SIG_1: Signal S012 EXT & 226092 & \\
\hline SIG_1: Logic signal S012 & 226093 & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Device

Local control panel

Communication interface 1

Communication interface 2

Communication interface 3

IEC Generic Substation Status Events

\subsection*{8.1.2 Control and Testing}
\begin{tabular}{|l|l|}
\hline DVICE: Service info 031080 & 031080 \\
\hline
\end{tabular}
LOC: Param. change enabl. 003010

Setting the enable for changing values from the local control panel.
\begin{tabular}{|c|c|}
\hline COMM1: Sel.spontan.sig.test & 003180 Fig: 3-15 \\
\hline \multicolumn{2}{|l|}{Signal selection for testing purposes.} \\
\hline COMM1: Test spont.sig.start & 003184 Fig: 3-15 \\
\hline \multicolumn{2}{|l|}{Triggering of transmission of a selected signal as "starting".} \\
\hline COMM1: Test spont.sig. end & 003186 Fig: 3-15 \\
\hline Triggering of transmission of a selected signal as "ending". & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline COMM2: Sel.spontan.sig.test & 103180 Fig: 3-17 \\
\hline \multicolumn{2}{|l|}{Signal selection for testing purposes.} \\
\hline COMM2: Test spont.sig.start & 103184 Fig: 3-17 \\
\hline \multicolumn{2}{|l|}{Triggering of transmission of a selected signal as "starting".} \\
\hline COMM2: Test spont.sig. end & 103186 Fig: 3-17 \\
\hline Triggering of transmission of a selected signal as "ending". & \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline COMM3: Rset.No.tlg.err.USER & 120037 Page: \(3-29\) \\
COMM3: Send signal for test & 120050 Page: \(3-29\) \\
COMM3: Log. state for test & 120051 Page: \(3-29\) \\
COMM3: Send signal, test & 120053 Page: \(3-29\) \\
COMM3: Loop back send & 120055 Page: \(3-29\) \\
COMM3: Loop back test & 120054 Page: \(3-29\) \\
COMM3: Hold time for test & 120052 Page: \(3-29\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GSSE: Reset statistics & 105171 \\
\hline \multicolumn{2}{|l|}{Command to reset monitoring counters as listed below.} \\
\hline GSSE: Enroll. IEDs flags L & 105160 \\
\hline \multicolumn{2}{|l|}{Bar with state bits for all GSSE inputs, showing if the respective GSSE sending device has logged-on and is transmitting free of fault (input 1 to 16).} \\
\hline GSSE: Enroll. IEDs flags H & 105161 \\
\hline \multicolumn{2}{|l|}{Bar with state bits for all GSSE inputs, showing if the respective GSSE sending device has logged-on and is transmitting free of fault (input 17 to 32).} \\
\hline GSSE: Tx message counter & 105162 \\
\hline \multicolumn{2}{|l|}{Shows the number of GSSE messages sent. This counter is reset by GSSE: Reset counters.} \\
\hline GSSE: Rx message counter & 105163 \\
\hline Shows the number of GSSE GSSE: Reset counters. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions \\ (continued)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
GSSE: No. bin.state chang. \\
Number of state changes included in a GSSE sent. This counter is reset by GSSE: Reset counters.
\end{tabular}}} \\
\hline & \\
\hline & GSSE: Tx last sequence \\
\hline \multicolumn{2}{|l|}{State of the continuous counter sequence for the message counter sent with each GSSE.} \\
\hline & GSSE: Tx last message \\
\hline \multicolumn{2}{|l|}{State of the continuous counter sequence for state changes sent with each GSSE.} \\
\hline & GSSE: No. reject. messages \\
\hline \multicolumn{2}{|l|}{Number of telegram rejections having occurred because of non-plausible message content. This counter is reset by GSSE: Reset counters.} \\
\hline & GSSE: IED view selection 105170 \\
\hline \multicolumn{2}{|l|}{Setting for which GSSE sending device the following statistics information is to be displayed.} \\
\hline & GSSE: IED receiv. messages \\
\hline \multicolumn{2}{|l|}{Counter of the received GSSE telegrams.} \\
\hline & GSSE: IED Rx last sequence \({ }^{\text {a }}\) \\
\hline \multicolumn{2}{|l|}{State of the continuous counter sequence for the message counter received with each GSSE.} \\
\hline & GSSE: IED Rx last message \\
\hline \multicolumn{2}{|l|}{State of the continuous counter sequence for state changes received with each GSSE.} \\
\hline & GSSE: IED missed messages \\
\hline & Number of missing GSSE messages (gaps in the continuous sequence numbering). This counter is reset by GSSE: Reset counters. \\
\hline & GSSE: IED missed changes \\
\hline & Number of missing state changes (gaps in the continuous sequence numbering). This counter is reset by GSSE: Reset counters. \\
\hline & GSSE: IED timeouts \(\longrightarrow\) \\
\hline & Number of GSSE received after the validity time period has elapsed. This counter is reset by GSSE: Reset counters. \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Binary outputs

Measured data output

Main function

\begin{tabular}{|l|l|}
\hline MEASO: Reset output USER \\
Resetting the measured data output function. & 037116 Fig: 3-36 \\
\hline
\end{tabular}


\section*{8 Information and Control Functions}
(continued)

Operating data recording

Monitoring signal recording

Overload recording

Ground fault recording
\begin{tabular}{|c|c|}
\hline MAIN: Reset meas.v.en.USER & 003032 Fig: 3-57 \\
\hline \multicolumn{2}{|l|}{The display of active and reactive energy output and input is reset.} \\
\hline MAIN: Group reset 1 USER & 005253 Fig: 3-83 \\
\hline MAIN: Group reset 2 USER & 005254 Fig: 3-83 \\
\hline \multicolumn{2}{|l|}{Group of resetting commands.} \\
\hline MAIN: Man. trip cmd. USER & 003040 Fig: 3-75 \\
\hline \multicolumn{2}{|l|}{A 100 ms trip command is issued from the local control panel. This setting is password-protected (see section entitled 'Password-Protected Control Operations' in Chapter 6).} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Note: \\
The command is only executed if the manual trip command has been configured as trip command 1 or 2.
\end{tabular}} \\
\hline MAIN: Man. close cmd. USER & 8033 Fig: 3-67 \\
\hline \multicolumn{2}{|l|}{A close command is issued from the local control panel for the set reclose command time. This setting is password-protected (see section entitled 'Password-Protected Control Operations' in Chapter 6).} \\
\hline MAIN: Warm restart & 003039 \\
\hline \multicolumn{2}{|l|}{A warm restart is carried out. The device functions as it does when the power supply is turned on.} \\
\hline MAIN: Cold restart & 00085 \\
\hline \multicolumn{2}{|l|}{A cold restart is carried out. This setting is password-protected (see section entitled 'Password-Protected Control Operations' in Chapter 6). A cold restart means that all settings and recordings are cleared. The values with which the device operates after a cold restart are selected so as to block the device after a cold restart.} \\
\hline
\end{tabular}
OP_RC: Reset record. USER ..... 100001 Fig: 3-88
The operating data memory and the counter for operation signals are reset.
MT_RC: Reset record. USER ..... 003008 Fig: 3-89
Reset of the monitoring signal memory.
OL_RC: Reset record. USER ..... 100003 Fig: 3-94
Reset of the overload memory.
\begin{tabular}{|lc|}
\hline GF_RC: Reset record. USER & 100000 Fig: 3-103 \\
Reset of the ground fault memory. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Fault recording


Protective signaling

Auto-reclosing control
\begin{tabular}{|c|c|}
\hline PSIG: Enable USER & 003132 Fig: 3-148 \\
\hline \multicolumn{2}{|l|}{Protective signaling is enabled from the local control panel.} \\
\hline PSIG: Disable USER & 003131 Fig: 3-148 \\
\hline \multicolumn{2}{|l|}{Protective signaling is disabled from the local control panel.} \\
\hline PSIG: Test telecom. USER & 015009 Fig: 3-150 \\
\hline A send signal is issued for 500 ms . & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ARC: Enable USER & 003134 Fig: 3-154 \\
\hline \multicolumn{2}{|l|}{The auto-reclosing control function is enabled from the local control panel.} \\
\hline ARC: Disable USER & 003133 Fig: 3-154 \\
\hline \multicolumn{2}{|l|}{The auto-reclosing control function is disabled from the local control panel.} \\
\hline ARC: Test HSR A-B-C USER & 011066 Fig: 3-168 \\
\hline \multicolumn{2}{|l|}{A three-pole test HSR is triggered.} \\
\hline ARC: Reset counters USER & 003005 Fig: 3-170 \\
\hline The ARC counters are reset. & \\
\hline
\end{tabular}
Automatic synchronism check ASC: Enable USER \(\quad\) 003136 Fig: 3-172

Automatic synchronism check is enabled from the local control panel.
ASC: Disable USER
Automatic synchronism check is disabled from the local control panel.
ASC: Reset counters USER
003089 Fig: 3-182
The ASC counters are reset.
ASC: Test close requ.USER
018005 Fig: 3-174
A close request is issued from the integrated local control panel. This will trigger the ASC functional operation. No close command is transmitted to the CB if the check of the ASC is positive. Only a signal is issued.

\section*{ASC: Close request USER}

018004 Fig: 3-174
A close request is issued from the integrated local control panel. This will trigger the ASC functional operation. A close command is transmitted to the CB if the ASC check is positive.
This control action is password-protected (see section entitled 'PasswordProtected Control Operations' in Chapter 6).

\section*{8 Information and Control Functions \\ (continued)}

Ground fault direction determination using steady-state values

Transient ground fault direction determination

Motor protection
GFDSS: Reset counters USER \(\quad\) 003004 Fig: 3-190,

The counters for the ground fault direction determination function using steady-state values are reset.
\begin{tabular}{|c|c|}
\hline TGFD: Reset signal USER & 003009 Fig: 3-201 \\
\hline \multicolumn{2}{|l|}{The direction decisions can be reset while the buffer time is elapsing.} \\
\hline TGFD: Reset counters USER & 003022 Fig: 3-203 \\
\hline The counters for the transient are reset. & \\
\hline
\end{tabular}


THERM: Reset replica USER
022061 Fig: 3-219
Resetting the thermal replica of the thermal overload protection function.
```

f<>: Reset meas.val. USER
0 0 3 0 8 0
Resetting the measured event values $\mathrm{f}<>$: max. frequ. for $\mathrm{f}>$ and $\mathrm{f}<>$: min. frequ. for $\mathrm{f}<$.

```
\begin{tabular}{|c|c|}
\hline CBF: Enable USER & 003016 \\
\hline \multicolumn{2}{|l|}{Circuit breaker failure protection is enabled from the local control panel.} \\
\hline CBF: Disable USER & 003015 Fig: 3-250 \\
\hline Circuit breaker failure & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Circuit Breaker Monitoring
\begin{tabular}{|c|c|}
\hline CBM: Initialize values & 003011 Fig: 3-265 \\
\hline \multicolumn{2}{|l|}{Setting default values.} \\
\hline CBM: Reset meas.val. USER & 003013 Fig: 3-265 \\
\hline \multicolumn{2}{|l|}{Resetting the measured value memories.} \\
\hline CBM: Set No. CB oper. A CBM: Set No. CB oper. B CBM: Set No. CB oper. C & \[
\begin{aligned}
& 022131 \text { Fig: } 3-265 \\
& 022132 \\
& 022133
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Set the number of CB operations.} \\
\hline \begin{tabular}{ll} 
CBM: & Set remain. CB op. A \\
CBM: & Set remain. CB op. B \\
CBM: & Set remain. CB op. C
\end{tabular} & \[
\begin{aligned}
& 022134 \text { Fig: } 3-265 \\
& 022135 \\
& 022136
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Set the remaining CB operations.} \\
\hline  & \begin{tabular}{l}
022137 Fig: 3-265 \\
022138 \\
022139 \\
022140 Fig: 3-265 \\
022141 \\
022142 \\
022143 Fig: 3-265 \\
022144 \\
022145
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Set the limit values for the ruptured currents and their squares. (An alarm is displayed if these limit values are exceeded.)} \\
\hline
\end{tabular}

Logic
\begin{tabular}{|ll|}
\hline LOGIC: Trigger 1 & 034038 Fig: 3-284 \\
\hline LOGIC: Trigger 2 & 034039 \\
LOGIC: Trigger 3 & 034040 \\
LOGIC: Trigger 4 & 034041 \\
LOGIC: Trigger 5 & 034042 \\
LOGIC: Trigger 6 & 034043 \\
LOGIC: Trigger 7 & 034044 \\
LOGIC: Trigger 8 & 034045 Fig: 3-284 \\
\hline Intervention in the logic at the appropriate point of a 100 ms pulse. \\
\hline
\end{tabular}

\subsection*{8.1.3 Operating data recording}

Operating data recording
\begin{tabular}{|lr}
\hline OP_RC: Operat. data record. & 003024 Fig: 3-88 \\
Point of entry into the operating data log. & \\
\hline
\end{tabular}

Monitoring signal recording
MT_RC: Mon. signal record.
003001 Fig: 3-89
Point of entry into the monitoring signal log.

\section*{8 Information and Control Functions \\ (continued)}


\section*{8 Information and Control Functions}
(continued)

Fault recording

Auto-reclosing control
\begin{tabular}{|c|c|}
\hline FT_RC: No. of faults & 004020 Fig: 3-111 \\
\hline \multicolumn{2}{|l|}{Number of faults.} \\
\hline FT_RC: No. system disturb. & 004010 Fig: 3-111 \\
\hline Number of system disturbances. & \\
\hline
\end{tabular}

Automatic synchronism check
\begin{tabular}{|l|l|}
\hline ARC: Number HSR A-B-C & 004007 Fig: 3-170 \\
Number of high-speed reclosures. & \\
\hline ARC: Number TDR & \\
Number of time-delay reclosures. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ASC: No. RC aft. man.clos & 004009 Fig: 3-182 \\
\hline \multicolumn{2}{|l|}{Number of reclosures after a manual close request.} \\
\hline ASC: No. close requests & 009033 Fig: 3-182 \\
\hline \multicolumn{2}{|l|}{Number of close requests.} \\
\hline ASC: No. close rejections & 009034 Fig: 3-182 \\
\hline Number of close rejections. & \\
\hline
\end{tabular}

Ground fault direction determination using steady-state values

Transient ground fault direction determination
\begin{tabular}{|c|c|}
\hline GFDSS: No. GF power/admitt. & 009002 Fig: 3-196 \\
\hline \multicolumn{2}{|l|}{Number of ground faults detected by steady-state power evaluation.} \\
\hline GFDSS: No. GF (curr. meas) & 009003 Fig: 3-190 \\
\hline \multicolumn{2}{|l|}{Number of ground faults detected by steady-state current evaluation.} \\
\hline GFDSS: No. GF admitt. Y(N) & 009060 Fig: 3-196 \\
\hline \multicolumn{2}{|l|}{Number of ground faults (non-directional) detected by the admittance evaluation method.} \\
\hline GFDSS: No. GF forward/LS & 009000 Fig: 3-196 \\
\hline \multicolumn{2}{|l|}{Number of ground faults in the forward direction.} \\
\hline GFDSS: No. GF backward/BS & 009001 Fig: 3-196 \\
\hline Number of ground faults in the backward direction. & \\
\hline
\end{tabular}


Motor protection
\begin{tabular}{|lc|}
\hline MP: No. of start-ups & 004011 Fig: 3-211 \\
Number of motor startups since the last reset. & \\
\hline MP: No. of hours run & \\
\hline Number of operating hours since the last reset. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Circuit Breaker Monitoring
\begin{tabular}{|c|c|}
\hline CBM: No. of CB oper. A & 008011 Fig: 3-265 \\
\hline CBM: No. of CB oper. B & 008012 Fig: 3-267 \\
\hline CBM: No. of CB oper. C & 008013 Fig: 3-267 \\
\hline \multicolumn{2}{|l|}{Number of mechanical switching operations made.} \\
\hline CBM: Remain. No. CB op. A & 008014 Fig: 3-265 \\
\hline CBM: Remain. No. CB op. B & 008015 Fig: 3-266 \\
\hline CBM: Remain. No. CB op. C & 008016 Fig: 3-266 \\
\hline \multicolumn{2}{|l|}{Number of remaining switching operations (as shown by evaluating wear with reference to the CB wear characteristic).} \\
\hline
\end{tabular}

\section*{8 Information and Control Functions \\ (continued)}

\subsection*{8.2.2 Measured event data}
\begin{tabular}{|c|c|}
\hline OL_DA: Overload duration & 004102 Fig: 3-90 \\
\hline \multicolumn{2}{|l|}{Duration of the overload event.} \\
\hline OL_DA: T.taken f.startup,MP & 005096 Fig: 3-91 \\
\hline \multicolumn{2}{|l|}{Display of the motor startup time.} \\
\hline OL_DA: Start-up current, MP & 005098 Fig: 3-91 \\
\hline \multicolumn{2}{|l|}{Display of the motor startup current.} \\
\hline OL_DA: Heat.dur.start-up,MP & 005097 Fig: 3-91 \\
\hline \multicolumn{2}{|l|}{Display of startup heating in motor protection.} \\
\hline OL_DA: Status THERM replica & 004147 Fig: 3-92 \\
\hline \multicolumn{2}{|l|}{Display of the buffer content of the thermal overload protection function.} \\
\hline OL_DA: Load current THERM & 004058 Fig: 3-92 \\
\hline \multicolumn{2}{|l|}{Display of the load current used by the thermal overload protection function to calculate the tripping time.} \\
\hline OL_DA: Object temp. THERM & 004035 Fig: 3-92 \\
\hline \multicolumn{2}{|l|}{Display of the temperature of the protected object.} \\
\hline OL_DA: Coolant temp. THERM & 004036 Fig: 3-92 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Display of the coolant temperature depending on the setting at THERM: Select CTA. \\
When set to "Default temp. value" the set temperature value will be displayed. When set to "From PT 100" the temperature measured by the resistance thermometer will be displayed. When set to "From 20 mA input" the temperature measured via a 20 mA transducer will be displayed.
\end{tabular}} \\
\hline OL_DA: Pretrip t.leftTHERM & 004148 Fig: 3-92 \\
\hline \multicolumn{2}{|l|}{Display of the time remaining before the thermal overload protection function will reach the tripping threshold.} \\
\hline OL_DA: Offset THERM replica & 004 454 Fig: 3-92 \\
\hline \begin{tabular}{l}
Display of the additional reserve account. This display is relevant a value below the maximum per words, if the thermal model has \\
If the coolant temperature and the temperature have been set to the is not taken into account and the only. The additional reserve am
\end{tabular} & \begin{tabular}{l}
to r \\
ature \\
nt
\end{tabular} \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}

\author{
(continued)
}
\begin{tabular}{|c|c|}
\hline GF_DA: Ground flt. duration & 009100 Fig: 3-95 \\
\hline \multicolumn{2}{|l|}{Display of the ground fault duration of the most recent ground fault.} \\
\hline GF_DA: GF duration pow.meas & 009024 Fig: 3-96 \\
\hline \multicolumn{2}{|l|}{Display of the ground fault duration of the most recent ground fault as determined by the steady-state power evaluation feature of the ground fault direction determination function.} \\
\hline GF_DA: Voltage VNG p.u. & \[
\begin{gathered}
009020 \text { Fig: 3-97, } \\
\text { 3-101 }
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Display of the neutral-point displacement voltage of the most recent ground fault referred to \(\mathrm{V}_{\text {nom }}\). \\
Note: \\
This display is only active when the steady-state power evaluation mode of the GFDSS ground fault direction determination function is enabled.
\end{tabular}} \\
\hline GF_DA: Current IN p.u. & \[
\begin{aligned}
& 009021 \text { Fig: 3-97, } \\
& 3-99,3-101
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Display of the residual current of the most recent ground fault referred to \(\mathrm{I}_{\mathrm{N}, \text { nom }}\). \\
Note: \\
This display is only active when the ground fault direction determination function using steady state values (GFDSS) is enabled.
\end{tabular}} \\
\hline GF_DA: Curr. IN,act p.u. & 009022 Fig: 3-97 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Display of the active component of the residual current of the most recent ground fault referred to \(I_{N, n o m}\). \\
Note: \\
This display is only active when the steady-state power evaluation mode of the GFDSS ground fault direction determination function is enabled.
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

GF_DA: Curr. IN,reac p.u.
009023 Fig: 3-97
Display of the reactive component of the residual current of the most recent ground fault referred to \(I_{N, n o m}\).

\section*{Note:}

This display is only active when the steady-state power evaluation mode of the GFDSS ground fault direction determination function is enabled.
GF_DA: GF durat. curr.meas.
009026 Fig: 3-98
Display of the ground fault duration of the most recent ground fault as determined by the steady-state current evaluation feature of the ground fault direction determination function.
GF_DA: Curr. IN filt. p.u.
009025 Fig: 3-99
Display of the residual current component having the set filter frequency for the most recent ground fault (referred to \(\mathrm{I}_{\mathrm{N}, \text { nom }}\) ).
GF_DA: GF duration admitt.
Display of the ground fault duration of the most recent ground fault as determined by the admittance evaluation mode of the ground fault direction determination function.
GF_DA: Admittance Y(N) p.u. 000065 Fig: 3-101
Display of the admittance value referred to \(Y_{N, \text { nom }}\).
With setting: GFDSS: Evaluation VNG is set to "Measured":
\(\mathrm{Y}_{\mathrm{N}, \text { nom }}=I_{\mathrm{N}, \text { nom }} / \mathrm{V}_{\mathrm{NGnom}}\)
With setting: GFDSS: Evaluation VNG is set to "Calculated":
\(\mathrm{Y}_{\mathrm{N}, \text { nom }}=\mathrm{I}_{\mathrm{N}, \text { nom }} / \mathrm{V}_{\text {nom }}\)

\section*{8 Information and Control Functions}
(continued)

Fault data acquisition
\begin{tabular}{|c|c|}
\hline GF_DA: Conduct. G(N) p.u. & 009066 Fig: 3-101 \\
\hline \begin{tabular}{l}
Display of the conductance value referred to \(\mathrm{Y}_{\mathrm{N}, \text { nom }}\). \\
With setting: GFDSS: Evaluation VNG is set to "Measured": \\
\(\mathrm{Y}_{\mathrm{N}, \text { nom }}=I_{\mathrm{N}, \text { nom }} / \mathrm{V}_{\mathrm{NGnom}}\) \\
With setting: GFDSS: Evaluation VNG is set to "Calculated":
\[
Y_{N, \text { nom }}=I_{N, \text { nom }} / V_{\text {nom }}
\]
\end{tabular} & \\
\hline GF_DA: Suscept. B(N) p.u. & 000067 Fig: 3-101 \\
\hline \begin{tabular}{l}
Display of the susceptance value referred to \(Y_{N, n o m}\). \\
With setting: GFDSS: Evaluation VNG is set to "Measured": \\
\(Y_{N, \text { nom }}=I_{N, \text { nom }} / V_{N G n o m}\) \\
With setting: GFDSS: Evaluation VNG is set to "Calculated":
\[
\mathrm{Y}_{\mathrm{N}, \text { nom }}=\mathrm{I}_{\mathrm{N}, \text { nom }} / \mathrm{V}_{\text {nom }}
\]
\end{tabular} & \\
\hline FT_DA: Fault duration & 008010 Fig: 3-104 \\
\hline Display of the fault duration. & \\
\hline FT_DA: Running time & 004021 Fig: 3-104 \\
\hline Display of the running time. & \\
\hline FT_DA: Fault current P p.u. & 004025 Fig: 3-108 \\
\hline Display of phase current A referred to \(\mathrm{I}_{\text {nom }}\). & \\
\hline FT_DA: Flt.volt. PG/PP p.u. & 004026 Fig: 3-108 \\
\hline Display of the calculated neutral-point displacement voltage referred to \(V_{\text {nom }}\). & \\
\hline FT_DA: Fault loop angle P & 004024 Fig: 3-108 \\
\hline Display of the fault angle. & \\
\hline FT_DA: Fault curr. N p.u. & 004049 Fig: 3-108 \\
\hline Display of the ground fault current referred to \(\mathrm{I}_{\mathrm{N}, \text { nom }}\). & \\
\hline FT_DA: Fault loop angle N & 004048 Fig: 3-108 \\
\hline Display of the ground fault angle. & \\
\hline FT_DA: Meas. loop selected & 004079 Fig: 3-108 \\
\hline Display of the measuring loop selected for determination of fault data. & \\
\hline FT_DA: Fault react., prim. & 004029 Fig: 3-108 \\
\hline Display of the fault reactance as a primary quantity. & \\
\hline FT_DA: Fault reactance,sec. & 004028 Fig: 3-108 \\
\hline Display of the fault reactance as a secondary quantity. & \\
\hline FT_DA: Fault impedance, sec & 004023 Fig: 3-108 \\
\hline Display of the fault impedance as a secondary quantity. & \\
\hline FT_DA: Fault locat. percent & \[
\begin{gathered}
004027 \text { Fig: 3-37, } \\
3-109
\end{gathered}
\] \\
\hline Display of the fault location of the last fault (in \%) referred to the setting FT_DA: Line reactance PSx. & \\
\hline FT_DA: Fault location & 004022 Fig: 3-109 \\
\hline Display of the fault location of the last fault in km. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}

\section*{(continued)}

FT_DA: Load imped.post-flt.
Display of the load impedance (in \(\Omega\) ) after the general starting condition of time-overcurrent protection has ended.
The display only appears if the fault has been detected by the fault data acquisition function of the P132.

\section*{FT_DA: Load angle post-flt.}

Display of the load angle (in degrees) after the general starting condition of time-overcurrent protection has ended.
The display only appears if the fault has been detected by the fault data acquisition function of the P132.

FT_DA: Resid.curr. post-flt 004039 Fig: 3-110

Display of the residual current referred to \(I_{\text {nom }}\) after the general starting condition of time-overcurrent protection has ended.
The display only appears if the fault has been detected by the fault data acquisition function of the P132.


Over-/underfrequency protection
\begin{tabular}{|c|c|}
\hline f<>: Max. frequ. for f> & 005002 \\
\hline \multicolumn{2}{|l|}{Maximum frequency during an overfrequency condition.} \\
\hline f <>: Min. frequ. for f < & 005001 \\
\hline Minimum frequency during an underfrequency condition. & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Circuit Breaker Monitoring
\begin{tabular}{|c|c|}
\hline CBM: Itrip,prim A & 009212 Fig: 3-265 \\
\hline CBM: Itrip,prim B & 009213 \\
\hline CBM: Itrip,prim C & 009214 \\
\hline CBM: Itrip A & 009047 Fig: 3-265 \\
\hline CBM: Itrip B & 009048 \\
\hline CBM: Itrip C & 009049 \\
\hline CBM: Itrip**2 A & 009051 Fig: 3-265 \\
\hline CBM: Itrip**2 B & 009052 \\
\hline CBM: Itrip**2 C & 009053 \\
\hline \multicolumn{2}{|l|}{Ruptured currents and their squared values.} \\
\hline CBM: \(\Sigma\) ltrip A & 009071 Fig: 3-265 \\
\hline CBM: \(\Sigma\) ltrip B & 009073 \\
\hline CBM: \(\Sigma\) Itrip C & 009076 \\
\hline CBM: \(\Sigma\) Itrip**2 A & 009077 Fig: 3-265 \\
\hline CBM: \(\Sigma\) Itrip**2 B & 009078 \\
\hline CBM: Eltrip**2 C & 009079 \\
\hline CBM: I*t A & 009061 Fig: 3-265 \\
\hline CBM: I*t B & 009062 \\
\hline CBM: I*t C & 009063 \\
\hline CBM: \(\Sigma I^{*} \mathrm{t}\) A & 009087 Fig: 3-265 \\
\hline CBM: \(\Sigma \Sigma \|^{*} \mathrm{t}\) B & 0090 \\
\hline CBM: \(\Sigma I^{*} \mathrm{t}\) C & 009089 \\
\hline Sum of the ruptured & \\
\hline
\end{tabular}

\section*{8 Information and Control Functions}
(continued)

Overload recording

Ground fault recording

\subsection*{8.2.3 Event recording}
\begin{tabular}{|c|c|}
\hline OL_RC: Overload recording 1 & \({ }^{033020}\) Fig: 3-94 \\
\hline OL_RC: Overload recording 2 & 3021 Fig: 3-94 \\
\hline OL_RC: Overload recording 3 & 033022 Fig: 3-94 \\
\hline OL_RC: Overload recording 4 & 033023 Fig: 3-94 \\
\hline OL_RC: Overload recording 5 & 033024 Fig: 3-94 \\
\hline OL_RC: Overload recording 6 & 033025 Fig: 3-94 \\
\hline OL_RC: Overload recording 7 & 033026 Fig: 3-94 \\
\hline OL_RC: Overload recording 8 & 23027 \\
\hline
\end{tabular}

Point of entry into the overload log.
GF_RC: Ground flt.record. 1
GF_RC: Ground flt.record. 2
GF_RC: Ground flt.record. 3
GF_RC: Ground flt.record. 4
GF_RC: Ground flt.record. 5
GF_RC: Ground flt.record. 6
GF_RC: Ground flt.record. 7
GF_RC: Ground flt.record. 8

033010 Fig: 3-103
033011 Fig: 3-103
033012 Fig: 3-103
033013 Fig: 3-103
033014 Fig: 3-103
033015 Fig: 3-103
033016 Fig: 3-103
033017 Fig: 3-103
Point of entry into the ground fault log.
\begin{tabular}{|c|c|}
\hline FT_RC: Fault recording 1 & 003000 Fig: 3-112 \\
\hline FT_RC: Fault recording 2 & 38001 Fig: 3-112 \\
\hline FT_RC: Fault recording 3 & 03302 Fig: 3-112 \\
\hline FT_RC: Fault recording 4 & \({ }^{\text {033003 Fig: }}\)-1112 \\
\hline FT_RC: Fault recording 5 & \(0^{033004}\) Fig: 3-112 \\
\hline FT_RC: Fault recording 6 & 03305 Fig: 3-112 \\
\hline FT_RC: Fault recording 7 & 033006 Fig: 3-112 \\
\hline FT_RC: Fault recording 8 & \({ }^{033007}\) Fig: 3-11 \\
\hline
\end{tabular}

Point of entry into the fault log.

\section*{9 Commissioning}

\section*{9 Commissioning}

\subsection*{9.1 Safety Instructions}

Only qualified personnel, familiar with the "Warning" page at the beginning of this manual, may work on or operate this device.

The device must be reliably grounded before auxiliary voltage is turned on.
The surface-mounted case is grounded using the bolt and nut, appropriately marked, as the ground connection. The flush-mounted case must be grounded in the area of the rear sidepieces at the location provided. The cross-section of the ground conductor must conform to applicable national standards. A minimum cross section of \(2.5 \mathrm{~mm}^{2}\) is required.

In addition, a protective ground connection at the terminal contact on the power supply module (identified by the letters "PE" on the terminal connection diagram) is also required for proper operation of the device. The cross-section of this ground conductor must also conform to applicable national standards. A minimum cross section of \(1.5 \mathrm{~mm}^{2}\) is required.

Before working on the device itself or in the space where the device is connected, always disconnect the device from the supply.

The secondary circuit of live system current transformers must not be opened! If the secondary circuit of a live CT is opened, there is the danger that the resulting voltages will endanger personnel and damage the insulation.

The threaded terminal block for connection to the current transformers is not a shorting block. Therefore always short-circuit current transformers before loosening the threaded terminals.

The power supply must be turned off for at least 5 s before power supply module V is removed. Otherwise there is the danger of an electric shock.


When increased-safety machinery is located in a hazardous area the P132 must always be installed outside of this hazardous area.

\section*{9 Commissioning \\ (continued)}

The fiber-optic interface may only be connected or disconnected when the supply voltage for the device is shut off.

The PC interface is not designed for permanent connection. Consequently, the female connector does not have the extra insulation from circuits connected to the system that is required per VDE 0106 Part 101. Therefore, when connecting the prescribed connecting cable be careful not to touch the socket contacts.

Application of analog signals to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see chapter entitled 'Technical Data')

When using the programmable logic (function group LOGIC), the user must carry out a functional type test to conform to the requirements of the relevant protection/control application. In particular, it is necessary to verify that the requirements for the implementation of logic linking (by setting) as well as the time performance during device startup, during operation and when there is a fault (device blocking) are fulfilled.

\subsection*{9.2 Commissioning Tests}

Preparation
After the P132 has been installed and connected as described in Chapter 5, the commissioning procedure can begin.

Before turning on the power supply voltage, the following items must be checked again:
\(\square\) Is the device connected to the protective ground at the specified location?
\(\square\) Does the nominal voltage of the battery agree with the nominal auxiliary voltage of the device?
\(\square\) Are the current and voltage transformer connections, grounding, and phase sequences correct?

After the wiring work is completed, check the system to make sure it is properly isolated. The conditions given in VDE 0100 must be satisfied.

Once all checks have been made, the power supply voltage may be turned on. After voltage has been applied, the device starts up. During startup, various startup tests are carried out (see Chapter 3, 'Self-Monitoring'). The LED indicators for 'Operation' (H1) and 'Blocked/Faulty' (H2) will light up. After approximately 15 s , the P132 is ready for operation. By default (factory setting) or after a cold restart, the device type "P132" and the time are displayed on the first line of the LCD after the device has started up.

Once the change enabling command has been issued (see Chapter 6, 'Enabling parameter changes'), all settings can be entered. The procedure for entering settings from the integrated local control panel is described in Chapter 6.

\section*{Note: For devices with control functions (Order option):}

First the type of bay wanted is to be set at MAIN: Type of bay, 'Par/Conf/' folder. When the automatic assignment has been enabled at MAIN: Auto-assignment I/O then selecting the type of bay will automatically configure binary signal inputs and output relays according to the definitions corresponding to the bay type (see 'List of Bay Types' in the Appendix).

After pressing the ENTER key to confirm the setting parameter 'Type of bay' the signal 'Bay initialization' is displayed on the LCD for a time duration of 20 s . The LED indicator labeled EDIT MODE will light up. A control action is not possible during this time period.

\section*{9 Commissioning \\ (continued)}

If either the PC interface or the communication interface will be used for setting the P132 and reading out event records, then the following settings must first be made from the integrated local control panel.

■ 'Par/DvID/' folder:
- DVICE: Device password 1
- DVICE: Device password 2
- 'Par/Conf/' folder:
- PC: Name of manufacturer
- PC: Bay address
- PC: Device address
- PC: Baud rate
- PC: Parity bit
- COMM1: Function group COMM1
- COMM1: General enable USER
- COMM1: Name of manufacturer

■ COMM1: Line idle state
- COMM1: Baud rate
- COMM1: Parity bit
- COMM1: Communicat. protocol
- COMM1: Octet comm. address
- COMM1: Octet address ASDU
- COMM2: Function group COMM2
- COMM2: General enable USER
- COMM2: Name of manufacturer

■ COMM2: Line idle state
- COMM2: Baud rate
- COMM2: Parity bit

■ COMM2: Octet comm. address
- COMM2: Octet address ASDU
- COMM3: Function group COMM3
- COMM3: General enable USER
- COMM3: Baud rate

\section*{9 Commissioning \\ (continued)}
- 'Par/Func/Glob/' folder:
- PC: Command blocking
- PC: Sig./meas.val.block.
- COMM1: Command block. USER
- COMM1: Sig./meas.block.USER
- COMM2: Command block. USER
- COMM2: Sig./meas.block.USER

Instructions on these settings are given in Chapters 7 and 8.
Note: The settings given above apply to the IEC 60870-5-103 communication protocol. If another protocol is being used for the communication interface, additional settings may be necessary. See Chapter 7 for further details.

\section*{9 Commissioning \\ (continued)}

After the settings have been made, the following checks should be carried out again before the blocking is cancelled:
\(\square\) For devices with control functions (Order option): Is the correct type of bay type configured?
\(\square\) Does the function assignment of the binary signal inputs agree with the terminal connection diagram?
\(\square\) Has the correct operating mode been selected for the binary signal inputs?
\(\square\) Does the function assignment of the output relays agree with the terminal connection diagram?
\(\square\) Has the correct operating mode been selected for the output relays?
ㅁ For devices with control functions (Order option):
Are the interlocking conditions and the external interlock inputs correctly configured?
\(\square\) Have all settings been made correctly?
Now blocking can be cleared as follows ('Par/Func/Glob/' folder):
\(\square\) MAIN: Device on-line 'Yes'(on)'
Tests
By using the signals and displays generated by the P132, it is possible to determine whether the P132 is correctly set and properly interconnected with the station. Signals are signaled by output relays and LED indicators and entered into the event memory. In addition, the signals can be checked by selecting the appropriate signal in the menu tree.

If the user does not wish the circuit breaker to operate during protection testing, the trip commands can be blocked through MAIN: Trip cmd. block. USER ('Par/Func/Glob' folder) or an appropriately configured binary signal input. If circuit breaker testing is desired, it is possible to issue a trip command for 100 ms through MAIN: Man. Trip cmd. USER ('Oper/CtrlTest' folder) or an appropriately configured binary signal input. Selection of the trip command from the integrated local control panel is password-protected (see Chapter 6, "Password-Protected Control Operations").

Note: \(\quad\) The manual trip command is only executed if it has been configured for trip command 1 or trip command 2.

If the P132 is connected at substation control level, the user is advised to activate the test mode via MAIN: Test mode USER (folder 'Par/Func/Glob') or an appropriately configured binary signal input. The telegrams are then identified accordingly (reason for transmission: test mode).

\section*{9 Commissioning \\ (continued)}

\section*{Checking the binary signal inputs}

By selecting the corresponding state signal ('Oper/Cycl/Phys' folder), it is possible to determine whether the input signal that is present is recognized correctly by the device. The values displayed have the following meanings:
- "Low": Not energized.

ㅁ "High": Energized."Without function": No functions are assigned to the binary signal input.
This display appears regardless of the binary signal input mode selected.
Checking the output relays
It is possible to trigger the output relays for a settable time period for test purposes (time setting at OUTP: Hold-time for test in 'Oper/CtrlTest/' folder). First select the output relay to be tested (OUTP: Relay assign. f. test, 'Oper/CtrlTest/' folder). Test triggering then occurs via OUTP: Relay test ('Oper/CtrlTest/’ folder). It is password-protected (see Chapter 6, 'Password-Protected Control Operations').

Before starting the test, open any triggering circuits for external devices so that no inadvertent switching operations will take place.

Checking the currentmeasuring inputs

By injecting appropriate analog test values at the measuring inputs it is possible to check, by taking a readout from the operating data display (see Chapter 8 "Information and Control Functions"), whether the Time-Overcurrent Protection and Control Unit will detect such analog signals within the required class accuracy ('Oper/Cycl/Meas' folder).
\(\square\) MAIN: Current A p.u.: Display of the updated phase A current in reference to the nominal device current \(I_{\text {nom }}\)
- MAIN: Current B p.u.: Display of the updated phase B current in reference to the nominal device current \(I_{\text {nom }}\)
\(\square\) MAIN: Current C p.u.: Display of the updated phase C current in reference to the nominal device current \(I_{\text {nom }}\)
\(\square\) MAIN: Current IN p.u.: Display of the updated residual current \(I_{N}\) in reference to the nominal device current \(\mathrm{I}_{\text {nom }}\)

Application of analog test values to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see Chapter 'Technical Data').

\section*{9 Commissioning \\ (continued)}

Checking the protection
function

Checking the correct phase connection of current and voltage transformers with load current

Four parameter subsets are stored in the P132, one of which is activated. Before checking the protective function, the user should determine which parameter subset is activated. The active parameter subset is displayed at PSS: Actual param. subset ('Oper/Cycl/Log/' folder).
When checking the time-overcurrent protection function with a testing device the measuring-circuit monitoring function must be disabled at
(MCMON: General enable USER, ‘Par/Func/Main’ folder), as this protection will always be triggered - depending on the setting - and error messages will be issued.

The user can check that the connection to the system's current and voltage transformers involves the correct phase by consulting the operating data displays for load angle (MAIN: Load angle phi A, MAIN: Load angle phi B, and MAIN: Load angle phi C in the 'Oper/Cycl/Meas/' folder). In this test it is required that the connection 'Standard' has been made according to the standard schematic connection diagram shown in Chapter 'Installation and Connection' and that the parameter at MAIN: Conn. meas. circ. IP ('Par/Funk/Glob' folder) is set to 'Standard'. If there is only an ohmic (resistive) load then the load angles for all three phases toward the line must come to approximately \(0^{\circ}\). The load angles are only determined if at least \(5 \%\) of the nominal device current is flowing.

\section*{9 Commissioning \\ (continued)}

Checking the correct phase connection of the residual current transformer with load current

Simple check of the correct phase connection of the residual current transformer with load current

The user can check that the P132 connection to the system's residual current transformer involves the correct phase by consulting the operating data display at MAIN: Load angle phi N ('Oper/Cycl/Meas/' folder). For this the required measured variables \(\mathrm{V}_{\mathrm{N}-\mathrm{G}}\) and \(\mathrm{I}_{\mathrm{N}}\) must be generated. When the connection 'Standard' has been made according to the standard schematic connection diagram shown in Chapter 'Installation and Connection' and the parameter at MAIN: Conn. meas. circ. IN ('Par/Func/Glob' folder) is set to 'Standard', then one phase-to-ground voltage must be opened and the phase currents of the other two phases must be shorted at the same time (see figure 9-1).

The selected phase sequence (alternative terminology: Rotary field) must match the actual phase sequence. If there is only an ohmic (resistive) load then angle \(\varphi_{N}\) must take on the following values (depending whether the energy flow is towards the line or towards the busbar):
\begin{tabular}{ccc}
\hline Display & \begin{tabular}{c} 
Energy flow towards \\
the line
\end{tabular} & \begin{tabular}{c} 
Energy flow towards \\
the busbar
\end{tabular} \\
\hline
\end{tabular}

MAIN: Angle phi N Approx. \(\mathbf{0}^{\circ}\) Approx. \(180^{\circ}\)
('Oper/Cycl/Meas' folder)

In case no system current transformer (e.g. a core balance CT) is available to supply a residual current value then a simple check may be carried out. After a positive check of the correct phase connection of current and voltage transformers and after one of the phase currents has been short-circuited, a phase comparison of the measured residual current value with the total value of all phase currents is carried out. In the event of phase congruence or a positive directional check, the operating panel MAIN: Phase rel., IN vs \(\Sigma\) IP ('Oper/Cycl/Meas' folder) will display the value '1'. A check of the phase relation will only be carried out if the calculated residual current exceeds the value \(0.1 I_{\text {nom }}\).

\section*{9 Commissioning}
(continued)


\section*{9 Commissioning \\ (continued)}

Checking the definite-time overcurrent protection

\section*{function}

A test of the definite-time overcurrent protection can only be carried out when the following conditions are met:
\(\square\) The DTOC function is activated. This can be determined by checking logic state signal DTOC: Enabled ('Oper/Cycl/Log/' folder).
\(\square\) The function at MAIN: Block tim.st. IN, neg must be set to 'No' ('Par/Func/Main/' folder).
\(\square\) The function at MAIN: Gen. starting mode is to be set to 'with start. IN, Ineg' ('Par/Func/Main/' folder).
\(\square\) The short-circuit direction determination function must be disabled. SCDD: General enable USER is to be set to 'No' ('Par/Func/Main/' folder).

By injecting appropriate analog test values at the current measuring inputs it is possible to check the overcurrent stages and their associated timer stages.

Application of analog test values to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see Chapter 'Technical Data').

Checking the inverse-time overcurrent protection function

A test of the inverse-time overcurrent protection can only be carried out when the following conditions are met:
\(\square\) The IDMT function is activated. This can be determined by checking logic state signal IDMT: Enabled ('Oper/Cycl/Log/’ folder).
\(\square\) The function at MAIN: Block tim.st. IN, neg must be set to 'No' ('Par/Func/Main/' folder).
\(\square\) The function at MAIN: Gen. starting mode is to be set to 'with start. IN, Ineg' ('Par/Func/Main/' folder).
\(\square\) The short-circuit direction determination function must be disabled.
SCDD: General enable USER is to be set to 'No' ('Par/Func/Main/' folder).
By injecting appropriate analog test values at the current measuring inputs it is possible to check the overcurrent stages and their associated timer stages.

Application of analog test values to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see Chapter 'Technical Data').

\section*{9 Commissioning \\ (continued)}

Tripping times issued by the inverse-time maximum current protection, and dependant on the tripping characteristic selected, are given in the following table:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No & \begin{tabular}{l}
Tripping Characteristic \\
Characteristic settable factor:
\[
k=0.05 \text { to } 10.00
\]
\end{tabular} & Formula for the Tripping Characteristic & \begin{tabular}{l}
Constants \\
a
\end{tabular} & b & & Formula for the Reset Characteristic & R \\
\hline 0 & Definite Time & \(\mathrm{t}=\mathrm{k}\) & & & & & \\
\hline & Per IEC 255-3 & \[
t=k \cdot \frac{a}{\left(\frac{I}{I_{\text {ref }}}\right)^{b}-1}
\] & & & & & \\
\hline 1 & Standard Inverse & & 0.14 & 0.02 & & & \\
\hline 2 & Very Inverse & & 13.50 & 1.00 & & & \\
\hline 3 & Extremely Inverse & & 80.00 & 2.00 & & & \\
\hline 4 & Long Time Inverse & & 120.00 & 1.00 & & & \\
\hline & Per IEEE C37.112 & \[
t=k \cdot \frac{a}{\left(\frac{I}{I_{\text {ref }}}\right)^{b}-1}+c
\] & & & & \[
t_{r}=k \cdot \frac{k \cdot R}{\left(\frac{I}{I_{\text {ref }}}\right)^{2}-1}
\] & \\
\hline 5 & Moderately Inverse & & 0.0515 & 0.0200 & 0.1140 & & 4,85 \\
\hline 6 & Very Inverse & & 19.6100 & 2.0000 & 0.4910 & & 21,60 \\
\hline 7 & Extremely Inverse & & 28.2000 & 2.0000 & 0.1217 & & 29,10 \\
\hline & Per ANSI & \[
t=k \cdot \frac{a}{\left(\frac{I}{I_{\text {ref }}}\right)^{b}-1}+c
\] & & & & \[
t_{r}=k \cdot \frac{k \cdot R}{\left(\frac{I}{I_{\text {ref }}}\right)^{2}-1}
\] & \\
\hline 8 & Normally Inverse & & 8.9341 & 2.0938 & 0.17966 & & 9,00 \\
\hline 9 & Short Time Inverse & & 0.2663 & 1.2969 & 0.03393 & & 0,50 \\
\hline 10 & Long Time Inverse & & 5.6143 & 1.0000 & 2.18592 & & 15,75 \\
\hline 11 & RI-Type Inverse & \[
t=k \cdot \frac{1}{0.339-\frac{0.236}{\left(\frac{I}{I_{\text {ref }}}\right)}}
\] & & & & & \\
\hline & RXIDG-Type Inverse & \(t=k \cdot\left(5.8-1.35 \cdot\right.\) In \(\left.\frac{I}{I_{\text {ref }}}\right)\) & & & & & \\
\hline
\end{tabular}

\title{
9 Commissioning \\ (continued)
}

Checking the short-circuit direction determination: direction of the phase current stages

\author{
Short-Circuit Direction \\ Determination: Checking the direction of the residual current stages
}

A system's current and voltage transformers must be simulated by an appropriate testing device. A test of the phase current stages, used with short-circuit direction determination, can only be carried out when the following conditions are met:
\(\square\) The short-circuit direction determination function must be activated (see Chapter 3).
\(\square\) All phase currents exceed \(0.1 \mathrm{I}_{\text {nom }}\).
\(\square\) At least two phase-to-phase voltages exceed 200 mV .
\(\square\) The directions for short-circuit direction determination are set to 'forward'.
When the connection 'Standard' has been made according to the standard schematic connection diagram shown in Chapter 'Installation and Connection' and the parameter at MAIN: Conn. meas. circ. IP is also set to 'Standard', then measurement of the short-circuit direction determination is towards the line. The selected phase sequence (alternative terminology: Rotary field) must match the actual phase sequence. Now the various fault types may simulated with the appropriate starting by the DTOC and IDMT protection by connecting different short-circuit wiring (e.g. Phase A to N). Trip signals issued by the phase current stages are now directional.

A test of the residual current stages, used with short-circuit direction determination, can only be carried out when the following conditions are met:
\(\square\) The short-circuit direction determination function must be activated (see Chapter 3).
\(\square\) The residual current calculated must exceed \(0.01 \mathrm{I}_{\text {nom }}\).
\(\square\) The neutral-point displacement voltage must exceed the trigger value set at SCDD: \(\mathrm{V}_{\mathrm{NG}}>\).

When the connection 'Standard' has been made according to the standard schematic connection diagram shown in Chapter 'Installation and Connection' and the parameter at MAIN: Conn. meas. circ. IN is also set to 'Standard', then measurement of the short-circuit direction determination is towards the line. The selected phase sequence (alternative terminology: Rotary field) must match the actual phase sequence. Now the various fault types may simulated as described above in the paragraph 'Checking direction of the phase current stages'. Trip signals issued by the residual current stages are now directional.

\section*{9 Commissioning \\ (continued)}

Checking protective signaling

The protective signaling function can only be tested if protective signaling is ready. Check at the logic state signal PSIG: Ready ('Oper/Cycl/Log/' folder).

If protective signaling is not ready, this may be due to the following reasons:
\(\square\) Protective signaling is not enabled.
PSIG: General enable USER is set to 'No'.
■ Protective signaling is being blocked by triggering a correspondingly configured binary signal input (PSIG: Blocking EXT).
\(\square\) A fault in the data transmission channel was detected (PSIG: Telecom. faulty).

If conditions for a test are met it is possible to generate, for testing purposes, a 'test send' signal from the integrated local control panel (PSIG: Test telecom. USER) This pulse will be present for 1 s and is extended for the set reset time. The generated 'test send' signal may be checked at the logic state signal
PSIG: Send (transm.relay).

\section*{9 Commissioning \\ (continued)}

Checking the autoreclosing function

The auto-reclosing function (ARC) can only be checked if it is ready. Check at the logic state signal ARC: Ready ('Oper/Cycl/Log/' folder).

If the ARC function is not ready, this may be due to the following reasons:
\(\square\) The ARC function is not enabled
(check at ARC: Enabled ('Oper/Cycl/Log/' folder). This may be due to the following reasons:
■ ARC: General enable USER ('Par/Func/Main/' folder) has been set to ' \(N o\) '.
- ARC was disabled from an appropriately configured binary signal input (check at the logic state signal ARC: Ext./user enabled ('Oper/Cycl/Log/' folder).
\(\square\) ARC is blocked (check at the logic state signal ARC: Blocked, 'Oper/Cycl/Log/' folder).
\(\square\) There is no signal with a logic value of ' 1 ' at the binary signal input configured for ARC: CB drive ready EXT.
\(\square\) There is no signal with a logic value of ' 1 ' at the binary signal input configured for MAIN: CB closed sig. EXT. The circuit breaker position signal is only necessary if the setting at ARC: CB clos. pos. sig. PSx is 'Yes'.
\(\square\) An ARC cycle is in progress. (Check at the logic state signal ARC: Cycle running in the 'Oper/Cycl/Log/' folder.)

A test HSR can be executed for testing purposes from the integrated local control panel or by triggering a binary signal input. The test HSR function first issues a trip command and then issues a reclose command after the set dead time has elapsed.

\section*{9 Commissioning \\ (continued)}

By injecting appropriate analog test values it is possible to check the overcurrent stage and the associated time delay.

Application of analog test values to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see Chapter 'Technical Data').

Before the motor protection can be tested the thermal replica must always be cleared. Clearing the thermal replica is done by short term disabling of the protection by setting MAIN: Device on-line to 'No' (off) ('Par/FuncGlobl' folder). The actual status of the thermal replica may be read out from the operating data display at MP: Therm.repl.buffer MP ('Oper/Cycl/Meas/' folder). Because the characteristic curve is settable, there can be different tripping times With the thermal replica cleared an applied test current is abruptly changed from 0 ( \(\equiv\) machine stopped) to a value \(\geq\) to the setting of MP: tIStUp>PSx, in the 'Par/Func/Main/' folder (三 machine starting up):
\(\square\) reciprocally squared characteristic curve: \(t=t_{6 I_{\text {ref }}} \cdot \frac{36}{\left(I / I_{\text {ref }}\right)^{2}}\)
- logarithmic characteristic curve: \(t=t_{6 I_{\text {ref }}} \cdot 36 \cdot \ln \frac{\left(I / I_{\text {ref }}\right)^{2}}{\left(I / I_{\text {ref }}\right)^{2}-1}\)

\section*{9 Commissioning \\ (continued)}

Checking the thermal overload protection function

By injecting appropriate analog test values it is possible to check the reference current setting and the associated time delay.

Application of analog test values to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see Chapter 'Technical Data').

Before the thermal overload protection can be tested the thermal replica must always be cleared. Clearing the thermal replica is done by short term disabling of the protection by setting MAIN: Device on-line to 'No' (off) ('Par/FuncGlob/' folder). The actual status of the thermal replica may be read out from the operating data display at THERM: Status THERM replica ('Oper/Cycl/Meas/' folder). The tripping time may be checked:

With the thermal replica cleared an applied test current is abruptly changed from 0 to the value \(\geq 0.1 I_{\text {ref }}\)
\[
t=\tau \cdot \ln \frac{\left(\frac{I}{I_{r e f}}\right)^{2}-\Theta_{P}}{\left(\frac{I}{I_{r e f}}\right)^{2}-\Theta_{t r i p} \cdot\left(1-\frac{\Theta_{a}-\Theta_{a, \max }}{\Theta_{\max }-\Theta_{a, \max }}\right)}
\]

\section*{9 Commissioning \\ (continued)}

Checking the time-voltage protection function

By injecting appropriate analog test values at the measuring inputs it is possible to check, by taking a readout from the operating data display (see Chapter 8 "Information and Control Functions"), whether the device will detect such analog signals within the required class accuracy ('Oper/Cycl/Meas' folder).
\(\square\) MAIN: Voltage A-G p.u.: Display of the updated value for phase A to ground voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage B-G p.u.: Display of the updated value for phase B to ground voltage referred to \(\mathrm{V}_{\text {nom }}\).MAIN: Voltage C-G p.u.: Display of the updated value for phase \(C\) to ground voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage VPG, max p.u.: Display of the updated value for max phase to ground voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage VPG, min p.u.: Display of the updated value for min phase to ground voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage A-B p.u.: Display of the updated value for phase A to phase B voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage B-C p.u.: Display of the updated value for phase B to phase C voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage C-A p.u.: Display of the updated value for phase C to phase A voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage VPP, max p.u.: Display of the updated value for max phase to phase voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage VPP, min p.u.: Display of the updated value for min phase to phase voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Voltage VPP, min p.u.: Display of the updated value for min phase to phase voltage referred to \(\mathrm{V}_{\text {nom }}\).
\(\square\) MAIN: Volt. \(\Sigma(\) VPG \() / \sqrt{ } 3\) p.u.: Display of the calculated neutral-point displacement voltage referred to \(\mathrm{V}_{\text {nom }}\).

Application of analog test values to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see Chapter 'Technical Data').

\section*{9 Commissioning \\ (continued)}

By injecting appropriate analog test values at the voltage measuring inputs it is possible to check the overvoltage and undervoltage stages as well as their associated timer stages.

The P132 calculates the neutral-point displacement voltage from the analog test values at the voltage measuring inputs according to below formula:
\(\left|\underline{\mathrm{V}}_{\mathrm{N}-\mathrm{G}}\right|=\frac{1}{3} \cdot\left|\underline{\mathrm{~V}}_{\mathrm{A}-\mathrm{G}}+\underline{\mathrm{V}}_{\mathrm{B}-\mathrm{G}}+\underline{\mathrm{V}}_{\mathrm{C}-\mathrm{G}}\right|\)
In the case of a single-phase test setup using \(\left|\underline{V}_{B-G}\right|=\left|\underline{V}_{C-G}\right|=0\), the result of the calculation formula for \(\underline{V}_{N-G}\) given above is that the triggers \(V_{N G}>\) and \(V_{N G} \gg\) operate when the test voltage exceeds the following value:
\(\left|\underline{V}_{\text {test }}\right|=3 \cdot V_{N-G}>\cdot \frac{V_{\text {nom }}}{\sqrt{3}}\)
\(\mathrm{V}_{\mathrm{N}-\mathrm{G}:} \quad\) Setting \(\mathrm{V}<>\) : \(\mathrm{V}_{\mathrm{ng}}>\) and \(\mathrm{U}<>\) : \(\mathrm{Vng}^{\prime} \gg\)

Application of analog test values to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see Chapter 'Technical Data').

\section*{9 Commissioning \\ (continued)}

Checking the steady-statepower ground fault direction detection

If values for both residual current and neutral-point displacement voltage are available as measuring quantities the P132, when set to operating mode 'Steady-state power' or 'Steady-state admittance', will determine the direction of a ground fault by steady-state power evaluation of the measuring values. Depending on the setting either the value calculated by the P132 or the value measured at the transformer T 90 will be evaluated as the neutral-point displacement voltage. If current values only can be measured the P132 will decide on "ground fault" ('Steady-state current' evaluation) because of the residual current value level. Switching to 'Steady-state current' evaluation is made via the integrated local control panel or by triggering an appropriately configured binary signal input.

Should the system permit such operation a ground fault on the busbar side (BS) or on the line side (LS) may be simulated by wiring a short circuit. Then the P132 must issue the respective signal. With the operating mode for ground faults set to 'Steady-state power' it is assumed that threshold values for residual current (set at GFDSS: IN,act>/IN,reac> BS and GFDSS: IN,act>/IN,reac> LS) and the neutral-point displacement voltage with 'Steady-state admittance' evaluation (set at GFDSS: VNG> and GFDSS: IN>) are exceeded. With the operating mode set to 'Steady-state admittance' the set threshold values for conductance / susceptance (set at GFDSS: \(G(N)>/ B(N)>B S\) and GFDSS: \(G(N)>/ B(N)>L S)\) and the neutral-point displacement voltage (GFDSS: VNG>) or the admittance (GFDSS: \(Y(N)>\) ) must be exceeded.

A ground fault functional test by wiring a short circuit is, in most cases, not possible as there is the danger of a double ground fault occurring. As an alternative it is possible to wire the system's CTs and VTs such that a functional test is possible without causing a ground fault.

The residual current and the neutral-point displacement voltage measured by the P132 are displayed as measured operating values in primary quantities referred to the nominal quantities of the Protection \& Control device.

Ancillary circuit for systems with ground fault compensation

First the fuse in the phase A line to the voltage transformer is removed and the associated secondary VT line is short circuited (see figures 9-2 and 9-3). This will produce a neutral-point displacement voltage \(\underline{\mathrm{V}}_{\mathrm{N}-\mathrm{G}}\) with an amplitude which is smaller by the factor \(\sqrt{ } 3\) than with a saturated ground fault.

If current is measured at a Holmgreen group the secondary side of the phase \(A\) line current transformer must be disconnected and shorted (see figure 9-2).

\section*{9 Commissioning}
(continued)


9-2 Ancillary circuit for systems with ground fault compensation and Holmgreen group, ground fault towards BS

\section*{9 Commissioning \\ (continued)}

A test-wire is inserted through the core balance current transformer to obtain a current flow from the phase B line (see figure 9-3). The ancillary circuit figures include vector diagrams displaying the position of current and voltage vectors.

A simulated ground fault on the busbar is displayed in the example. The current connections or the voltage connections must be exchanged to test a ground fault on the line side.


\section*{9 Commissioning \\ (continued)}

Ancillary circuit for isolated neutral-point systems

First the fuse in the phase A line to the voltage transformer's primary side is removed and the associated secondary VT line is short circuited (see figures 9-4 and 9-5). This will produce a neutral-point displacement voltage \(\underline{V}_{N-G}\) with an amplitude which is smaller by the factor \(\sqrt{ } 3\) than with a saturated ground fault.

If current is measured at a Holmgreen group the secondary side of the phase \(A\) and \(B\) line current transformers must be disconnected and shorted (see figure 9-4).

\section*{9 Commissioning}
(continued)


9-4 Ancillary circuit for isolated neutral-point systems and Holmgreen group, ground fault towards LS

\section*{9 Commissioning \\ (continued)}

A test-wire is inserted through the core balance current transformer to obtain current flow from the phase \(B\) and \(C\) lines (see figure 9-5). The ancillary circuit figures include vector diagrams displaying the position of current and voltage vectors.

A simulated ground fault on the line side is displayed in the example. The current connections or the voltage connections must be exchanged to test a ground fault on the busbar side.


\section*{9 Commissioning \\ (continued)}

Checking the transient ground fault direction determination

A secondary check of the transient ground fault direction determination is only possible by applying a testing device which is capable of simulating the transient pulse with sufficient accuracy. Otherwise it is possible that the transient ground fault direction determination will not operate as the logic has been designed specifically to detect such transient pulses.

\section*{Checking Control Functions}

For devices with control functions (Order option):
Local/Remote selection
Control of switchgear units may be carried out by keys on the local control panel (for appropriate configuration, see Chapter 3, section 'Configurable Function Keys F_KEY') or remotely via the communications interface or with appropriately configured binary signal inputs. The control site - Local or Remote - is selected by the L/R key on the local control panel or by an appropriately configured binary signal input. The L/R key has no effect when a binary signal input has been configured. Using the L/R key on the local control panel to switch from 'Remote' to 'Local' is only possible after the 'Password L/R' was entered (see Chapter 6 for further information).

\section*{Local control}

Remote control

\section*{Switchgear unit cannot be} controlled

The switchgear unit to be controlled is selected by pressing the selection key on the local control panel, and pressing the 'Open' or 'Close' key will generate a switching request. (It should be noted that the local control panel on the P132 does not feature specific keys for switching functions. If at this point mention of a "selection key" is made, then this would be a function key to which a specific function has been assigned - in this example MAIN: Device selection key. (See Chapter 6, section 'Configurable Function Keys F1 to Fx, particularly as control keys'.)

When control is carried out with binary signal inputs the respective binary signal input is to be triggered.

Remote control of switchgear units may be carried out via the communications interface or with appropriately configured binary signal inputs.

Should a switchgear unit refuse to be controlled, then this may be due to the following reasons:
\(\square\) General enable for switch commands has not been set.
(Configuration at MAIN: Inp.asg. ctrl.enabl., 'Par/Func/Glob/' folder)
\(\square\) Interlocking has operated.
(Check at MAIN: Interlock equ. viol., 'Oper/Cycl/Log' folder).

To determine which interlocks are activated, check as follows:
- For bay interlock (BI) check:

MAIN: Bay interlock. act., 'Oper/Cyc//Log/' folder
- For substation interlock (SI) check:

MAIN: Subst. interl. act., 'Oper/Cycl/Log/' folder
- For local control:

It is possible to deactivate the interlock through an appropriately configured binary signal input.
Configuration through MAIN: Inp.asg.interl.deact, 'Oper/Func/Glob' folder)
Note: Substation interlocking is only active when there is communication with the substation control level through the communication interface. In the event of a communication error, the unit will switch automatically to 'bay interlock without station interlock'. To determine if there is a communication error, check at MAIN: Communication error, 'Oper/Cyc//Log/' folder.

Substation interlocking can be deactivated selectively for each switchgear unit and each control direction - Open or Close. (This can be checked at DEVxx: Open w/o stat.interl or DEVxx: Close w/o stat. int., 'Oper/Cycl/Log/' folder.)

\section*{9 Commissioning \\ (continued)}

Before the P132 is released for operation, the user should make sure that the following steps have been taken:
\(\square\) All memories have been reset.
(Reset at MAIN: General reset (password-protected) and MT_RC: Reset recording, both in ‘Oper/CtrlTest/' folder.)
\(\square\) Blocking of output relays has been cancelled.
(OUTP: Outp.rel.block USER, 'Par/Func/Glob/' folder, setting 'No'.)
\(\square\) Blocking of the trip command has been cancelled.
(MAIN: Trip cmd.block. USER, 'Par/Func/Glob/' folder, setting 'No'.)
\(\square\) The device is on-line
(MAIN: Device on-line, 'Par/Func/Glob/' folder, setting 'Yes' (on).)
\(\square\) The residual current stages are enabled (on).
(MAIN: Syst.IN enabled USER, 'Par/Func/Main/' folder, setting 'Yes' (on))
\(\square\) Measuring-circuit monitoring is enabled - if it was previously cancelled for testing purposes.
(MCMON: General enable USER, 'Par/Func/Main/' folder, setting 'Yes' (on))
\(\square\) The correct control point - 'Local' or 'Remote' - has been activated.
\(\square\) The required interlock equations have been activated.

After completion of commissioning, only the green LED indicator signaling 'Operation' (H1) should be illuminated.

\section*{10 Troubleshooting}

\section*{10 Troubleshooting}

This chapter describes problems that might be encountered, their causes, and possible methods for eliminating them. It is intended as a general orientation only, and in cases of doubt it is better to return the P132 to the manufacturer. Please follow the packaging instructions in the section entitled "Unpacking and Packing" in Chapter 5 when returning equipment to the manufacturer.

\section*{Problem:}

Lines of text are not displayed on the local control panel.
■ Check to see whether there is supply voltage at the device connection points.
- Check to see whether the magnitude of the auxiliary voltage is correct. The P132 is protected against damage resulting from polarity reversal.

Only qualified personnel, familiar with the "Warning" page at the beginning of this manual, may work on or operate this device.

Before checking further, disconnect the P132 from the power supply.

The following instructions apply to surface-mounted cases:


The local control panel is connected to processor module P by a plug-in connecting cable. Remember the connector position! Do not bend the connecting cable.
- Check to make sure that fuse F1 on power supply module V is not fused.

If the fuse is defective, it should not be replaced without determining the cause of failure. If a fuse is replaced without eliminating the problem, there is the danger that the damage will spread.

Required fuses:
\(\mathrm{V}_{\mathrm{A}, \text { nom }}=24 \mathrm{~V} \mathrm{DC}\) :
Type M3.5-250V
\(\mathrm{V}_{\mathrm{A}, \text { nom }}=48\) to 250 V DC and 100 to 230 V AC :
Type M2-250V

\section*{10 Troubleshooting}
(continued)
\(\square\) The P132 issues an 'Alarm’ signal on LED H3.
Identify the specific problem by reading out the monitoring signal memory (see section "Monitoring Signal Memory Readout" in Chapter 6). The table below lists possible monitoring or warning indications (provided that a configuration setting has been entered at SFMON: Fct. assign. warning), the faulty area, the P132 response, and the mode of the output relay configured for 'Warning' and 'Blocked/faulty'.
\begin{tabular}{|l|c|}
\hline SFMON: Warning (LED) & 036070 \\
Warning configured for LED H3. & \\
\hline SFMON: Warning (relay) & 036100 \\
\hline Warning configured for an output relay. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Key: & \\
\hline -: & No reaction and/or no output relay triggered. \\
\hline Yes: & The corresponding output relay is triggered. \\
\hline Updating: & The output relay configured for 'Warning' starts only if the monitoring signal is still present. \\
\hline \({ }^{1)}\) : & The 'Blocked/faulty' output relay only operates if the signal has been configured at MAIN: Fct. assignm. warning. \\
\hline \({ }^{2)}\) : & The 'Warning' output relay only operates if the signal has been configured at SFMON: Fct. assign. warning. \\
\hline
\end{tabular}


\section*{10 Troubleshooting \\ (continued)}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{SFMON: Relay Kxx faulty} & 041200 \\
\hline \multicolumn{3}{|l|}{Multiple signal: Output relay defective.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{SFMON: Hardware clock fail.} & 093040 \\
\hline \multicolumn{3}{|l|}{The hardware clock has failed.} \\
\hline \multicolumn{3}{|l|}{1st device reaction / 2nd device reaction:} \\
\hline 'Warning' output relay: & Yes/Yes & \\
\hline \multicolumn{3}{|l|}{'Blocked/faulty' output relay: -/-} \\
\hline \multicolumn{2}{|l|}{SFMON: Battery failure} & 000010 \\
\hline \multicolumn{3}{|l|}{Battery voltage too low. Replace battery.} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction: - /} & \\
\hline \multicolumn{2}{|l|}{'Warning' output relay: Updating / Updating} & \\
\hline \multicolumn{2}{|l|}{'Blocked/faulty' output relay:} & \\
\hline \multicolumn{2}{|l|}{SFMON: Invalid SW d.loaded} & 096121 \\
\hline \multicolumn{3}{|l|}{Wrong or invalid software has been downloaded.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1st device reaction / 2nd device reaction:}} & \multirow[t]{2}{*}{Warm restart / Device blocking} \\
\hline & & \\
\hline 'Warning' output relay: Yes/Ye & Yes / Yes & \\
\hline \multicolumn{3}{|l|}{'Blocked/faulty' output relay: Yes/Yes} \\
\hline \multicolumn{2}{|l|}{SFMON: Invalid type of bay} & 09612 \\
\hline \multicolumn{3}{|l|}{If the user has selected a bay type that requires a P132 hardware configuration that is not actually fitted, then this signal is generated.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1st device reaction / 2nd device reaction: 'Warning' output relay: - / -}} & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{'Blocked/faulty' output relay: -/ -} & \\
\hline \multicolumn{2}{|l|}{SFMON: +15 V supply faulty} & 093081 \\
\hline \multicolumn{3}{|l|}{The +15 V internal supply voltage has dropped below a minimum value.} \\
\hline \multirow[t]{2}{*}{1st device reaction / 2nd device reaction:} & reaction: Warm & Warm restart / \\
\hline & & \\
\hline 'Warning' output relay: Yes/Yes & Yes/Yes & \\
\hline \multicolumn{3}{|l|}{'Blocked/faulty' output relay: Yes / Yes} \\
\hline \multicolumn{2}{|l|}{SFMON: +24V supply faulty} & 093082 \\
\hline \multicolumn{3}{|l|}{The +24 V internal supply voltage has dropped below a minimum value.} \\
\hline \multirow[t]{2}{*}{1st device reaction / 2nd device reaction:} & reaction: Warm & \multirow[t]{2}{*}{Warm restart / Device blocking} \\
\hline & Devi & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll} 
'Warning' output relay: & Yes / Yes \\
'Blocked/faulty' output relay: & Yes / Yes
\end{tabular}}} & \\
\hline & & \\
\hline
\end{tabular}

\section*{10 Troubleshooting}
(continued)
\begin{tabular}{|c|c|c|}
\hline SFMON: -15V supply faulty & & 093080 \\
\hline \multicolumn{3}{|l|}{The - 15 V internal supply voltage has dropped below a minimum value.} \\
\hline 1st device reaction / 2nd device reaction: & Warm restart / Device blocking & \\
\hline 'Warning' output relay: Yes / Yes & & \\
\hline 'Blocked/faulty' output relay: Yes / Yes & & \\
\hline SFMON: Wrong module slot 1 & & 096100 \\
\hline SFMON: Wrong module slot 2 & & 096101 \\
\hline SFMON: Wrong module slot 3 & & 096102 \\
\hline SFMON: Wrong module slot 4 & & 096103 \\
\hline SFMON: Wrong module slot 5 & & 096104 \\
\hline SFMON: Wrong module slot 6 & & 096105 \\
\hline SFMON: Wrong module slot 7 & & 096106 \\
\hline SFMON: Wrong module slot 8 & & 096107 \\
\hline SFMON: Wrong module slot 9 & & 096108 \\
\hline SFMON: Wrong module slot 10 & & 096109 \\
\hline SFMON: Wrong module slot 11 & & 096110 \\
\hline SFMON: Wrong module slot 12 & & 096111 \\
\hline SFMON: Wrong module slot 13 & & 096112 \\
\hline SFMON: Wrong module slot 14 & & 096113 \\
\hline SFMON: Wrong module slot 15 & & 096114 \\
\hline SFMON: Wrong module slot 16 & & 096115 \\
\hline SFMON: Wrong module slot 17 & & 096116 \\
\hline SFMON: Wrong module slot 18 & & 096117 \\
\hline SFMON: Wrong module slot 19 & & 096118 \\
\hline SFMON: Wrong module slot 20 & & 096119 \\
\hline SFMON: Wrong module slot 21 & & 096120 \\
\hline Module in wrong slot. & & \\
\hline 1st device reaction / 2nd device reaction: & Warm restart / Device blocking & \\
\hline 'Warning' output relay: Yes / Yes & & \\
\hline 'Blocked/faulty' output relay: Yes / Yes & & \\
\hline SFMON: Defect.module slot 1 & & 097000 \\
\hline SFMON: Defect.module slot 2 & & 097001 \\
\hline SFMON: Defect.module slot 3 & & 097002 \\
\hline SFMON: Defect.module slot 4 & & 097003 \\
\hline SFMON: Defect.module slot 5 & & 097004 \\
\hline SFMON: Defect.module slot 6 & & 097005 \\
\hline SFMON: Defect.module slot 7 & & 097006 \\
\hline SFMON: Defect.module slot 8 & & 097007 \\
\hline SFMON: Defect.module slot 9 & & 097008 \\
\hline SFMON: Defect.module slot10 & & 097009 \\
\hline SFMON: Defect.module slot11 & & 097010 \\
\hline SFMON: Defect.module slot12 & & 097011 \\
\hline SFMON: Defect.module slot13 & & 097012 \\
\hline SFMON: Defect.module slot14 & & 097013 \\
\hline SFMON: Defect.module slot15 & & 097014 \\
\hline SFMON: Defect.module slot16 & & 097015 \\
\hline SFMON: Defect.module slot17 & & 097016 \\
\hline SFMON: Defect.module slot18 & & 097017 \\
\hline
\end{tabular}

\section*{10 Troubleshooting \\ (continued)}
\begin{tabular}{|l|l|l|}
\hline SFMON: Defect.module slot19 & 097018 \\
\hline SFMON: Defect.module slot20 & 097019 \\
\hline SFMON: Defect.module slot21 & 097020 \\
\hline
\end{tabular}

ION: Defect.module slot21 097020

Defective module in slot \(x\).
1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Updating / Updating
'Blocked/faulty' output relay: Yes / Yes \({ }^{1)}\)
SFMON: +15V faulty mod. N 093096
The +15 V internal supply voltage of the transient ground fault evaluation module has dropped below a minimum value.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes
'Blocked/faulty' output relay: - / -
SFMON: -15V faulty mod. N
The -15 V internal supply voltage of the transient ground fault evaluation module has dropped below a minimum value.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes
'Blocked/faulty' output relay: - / -

\section*{SFMON: DAC faulty module N} 093095
The digital-to-analog converter of the transient ground fault evaluation module is defective.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes 'Blocked/faulty' output relay: - / -
SFMON: Module N DPR faulty
093090
The checksum feature of the transient ground fault evaluation module has detected a fault in the data transmission of the Dual-Port-RAM.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes
'Blocked/faulty' output relay: - / -
SFMON: Module N RAM faulty
Fault in the program or data memory of the transient ground fault evaluation module.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes 'Blocked/faulty' output relay: - / -
SFMON: Module Y DPR faulty 093110
The checksum feature of analog I/O module \(Y\) has detected a fault in the data transmission of the Dual-Port-RAM.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes
'Blocked/faulty' output relay: - / -

\section*{10 Troubleshooting}
(continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SFMON: Module Y RAM faulty} \\
\hline \multicolumn{2}{|l|}{Fault in the program or data memory of the analog I/O module.} \\
\hline 1st device reaction / 2nd device reaction: & - / - \\
\hline 'Warning' output relay: Yes / Yes & \\
\hline 'Blocked/faulty' output relay: -/ - & \\
\hline SFMON: Mod.Y RTD DPR faulty & 093108 \\
\hline \multicolumn{2}{|l|}{The checksum feature of analog module (RTD) has detected a fault in the data transmission of the Dual-Port-RAM.} \\
\hline 1st device reaction / 2nd device reaction: & - / - \\
\hline 'Warning' output relay: Yes / Yes & \\
\hline 'Blocked/faulty' output relay: - / - & \\
\hline SFMON: Mod.Y RTD RAM faulty & \({ }^{093109}\) \\
\hline \multicolumn{2}{|l|}{Fault in the program or data memory of the analog module (RTD).} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} \\
\hline \multicolumn{2}{|l|}{'Warning' output relay: Yes / Yes} \\
\hline 'Blocked/faulty' output relay: -/- & \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 301} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K \(302{ }^{\text {a }}\)} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 501} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 502 097063} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 503 097064} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K \(5040^{097065}\)} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 505} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 506} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 507 097068} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 508} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 601 ( 097070} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 602 0970} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 603 (0972} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K \(604{ }^{\text {a }} 097073\)} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 6050097074} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 606 097075} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 607 (0970} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 608 097077} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 701} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 702 097079} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 703 (097800} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 704} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 705 097082} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 706} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 707 097084} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 708 ( \({ }^{\text {a }}\)} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 801 097086} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 802 097087} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 803} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 804 097089} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K 8050090900} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K \(8060^{\text {a }}\)} \\
\hline \multicolumn{2}{|l|}{SFMON: Error K \(8070^{097092}\)} \\
\hline
\end{tabular}

\section*{10 Troubleshooting}
(continued)
\begin{tabular}{|c|c|}
\hline SFMON: Error K 808 & 097093 \\
\hline SFMON: Error K 901 & 097094 \\
\hline SFMON: Error K 902 & 097095 \\
\hline SFMON: Error K 903 & 097096 \\
\hline SFMON: Error K 904 & 097097 \\
\hline SFMON: Error K 905 & 097098 \\
\hline SFMON: Error K 906 & 097099 \\
\hline SFMON: Error K 907 & 097100 \\
\hline SFMON: Error K 908 & 097101 \\
\hline SFMON: Error K 1001 & 097102 \\
\hline SFMON: Error K 1002 & 097103 \\
\hline SFMON: Error K 1003 & 097104 \\
\hline SFMON: Error K 1004 & 097105 \\
\hline SFMON: Error K 1005 & 097106 \\
\hline SFMON: Error K 1006 & 097107 \\
\hline SFMON: Error K 1007 & 097108 \\
\hline SFMON: Error K 1008 & 097109 \\
\hline SFMON: Error K 1201 & 097118 \\
\hline SFMON: Error K 1202 & 097119 \\
\hline SFMON: Error K 1203 & 097120 \\
\hline SFMON: Error K 1204 & 097121 \\
\hline SFMON: Error K 1205 & 097122 \\
\hline SFMON: Error K 1206 & 097123 \\
\hline SFMON: Error K 1207 & 097124 \\
\hline SFMON: Error K 1208 & 097125 \\
\hline SFMON: Error K 1401 & 097134 \\
\hline SFMON: Error K 1402 & 097135 \\
\hline SFMON: Error K 1403 & 097136 \\
\hline SFMON: Error K 1404 & 097137 \\
\hline SFMON: Error K 1405 & 097138 \\
\hline SFMON: Error K 1406 & 097139 \\
\hline SFMON: Error K 1407 & 097140 \\
\hline SFMON: Error K 1408 & 097141 \\
\hline SFMON: Error K 1601 & 097150 \\
\hline SFMON: Error K 1602 & 097151 \\
\hline SFMON: Error K 1801 & 097166 \\
\hline SFMON: Error K 1802 & 097167 \\
\hline SFMON: Error K 1803 & 097168 \\
\hline SFMON: Error K 1804 & 097169 \\
\hline SFMON: Error K 1805 & 097170 \\
\hline SFMON: Error K 1806 & 097171 \\
\hline SFMON: Error K 2001 & 097182 \\
\hline SFMON: Error K 2002 & 097183 \\
\hline SFMON: Error K 2003 & 097184 \\
\hline SFMON: Error K 2004 & 097185 \\
\hline SFMON: Error K 2005 & 097186 \\
\hline SFMON: Error K 2006 & 097187 \\
\hline SFMON: Error K 2007 & 097188 \\
\hline
\end{tabular}

\section*{10 Troubleshooting \\ (continued)}


\section*{10 Troubleshooting \\ (continued)}


\section*{10 Troubleshooting \\ (continued)}
\begin{tabular}{|c|c|}
\hline SFMON: Invalid SW vers YRTD & 093123 \\
\hline \multicolumn{2}{|l|}{Incorrect or invalid software for analog module (RTD) has been downloaded.} \\
\hline 1st device reaction / 2nd device reaction: 'Warning' output relay: Yes / Yes 'Blocked/faulty' output relay: - / - & - \(/\) - \\
\hline SFMON: Time-out module Y & 093112 \\
\hline \multicolumn{2}{|l|}{Watchdog is monitoring the periodic status signal of the analog I/O module Y. It has detected an error.} \\
\hline 1st device reaction / 2nd device reaction: 'Warning' output relay: Yes/Yes 'Blocked/faulty' output relay: - / - & - \\
\hline SFMON: Timeout module YRTD & 093119 \\
\hline Watchdog is monitoring the periodic status si (RTD). It has detected an error. & nal of the analog module \\
\hline 1st device reaction / 2nd device reaction: 'Warning' output relay: Yes / Yes 'Blocked/faulty' output relay: - / - & \[
-1-
\] \\
\hline SFMON: IRIGB faulty & 093117 \\
\hline The IRIGB interface is enabled but there is & plausible input signal. \\
\hline 1st device reaction / 2nd device reaction: 'Warning' output relay: Yes / Yes 'Blocked/faulty' output relay: - / - & - / - \\
\hline SFMON: M.c.b. trip V & 09800 \\
\hline The line-side voltage transformer m.c.b. has & ped. \\
\hline 1st device reaction / 2nd device reaction: & Blocking of the short-circuit direction determination \\
\hline \begin{tabular}{ll} 
'Warning' output relay: & Yes / Yes \({ }^{2)}\) \\
'Blocked/faulty' output relay: & \(-/-\)
\end{tabular} & \\
\hline SFMON: M.c.b. trip Vref & 098011 \\
\hline The m.c.b. monitoring the reference voltage & nsformer has tripped. \\
\hline \(\begin{array}{ll}\text { 1st device reaction / 2nd device reaction: } \\ \text { 'Warning' output relay: } & \text { Yes / Yes }{ }^{2)} \\ \text { 'Blocked/faulty' output relay: } & -/-\end{array}\) & Blocking of automatic synchronism check (ASC) \\
\hline SFMON: Phase sequ. V faulty & 098001 \\
\hline \multicolumn{2}{|l|}{Measuring-circuit monitoring has detected a fault in the phase sequence of the phase-to-ground voltages.} \\
\hline 1st device reaction / 2nd device reaction: 'Warning' output relay: \(\quad\) Yes / Yes \({ }^{2)}\) 'Blocked/faulty' output relay: - / - & - / - \\
\hline
\end{tabular}

\section*{10 Troubleshooting \\ (continued)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{SFMON: Undervoltage} & 098009 \\
\hline \multicolumn{4}{|l|}{The measuring-circuit monitoring function has detected an undervoltage.} \\
\hline \multicolumn{4}{|l|}{1st device reaction / 2nd device reaction: - / -} \\
\hline \multicolumn{4}{|l|}{'Warning' output relay: \(\quad\) Yes / Yes \({ }^{2)}\)} \\
\hline \multicolumn{4}{|l|}{'Blocked/faulty' output relay: - / -} \\
\hline \multicolumn{3}{|l|}{SFMON: FF, Vref triggered} & 09802 \\
\hline \multicolumn{4}{|l|}{The fuse failure monitoring function has detected a fault in the reference voltage-measuring circuit.} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
1st device reaction / 2nd device reaction: \\
'Warning' output relay: \(\quad\) Yes / Yes \({ }^{2)}\) \\
'Blocked/faulty' output relay: -/-
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{3}{|l|}{SFMON: M.circ. V,Vref fity.} & 098023 \\
\hline \multicolumn{4}{|l|}{Multiple signal: Voltage-measuring circuits for phase-to-ground voltages or the reference voltage faulty.} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} & \multicolumn{2}{|l|}{Depends on type of fault detected.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{ll} 
'Warning' output relay: & Yes / Yes \({ }^{2)}\) \\
'Blocked/faulty' output relay: & \(-/-\)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{SFMON: Meas. circ. V faulty} & 098017 \\
\hline \multicolumn{4}{|l|}{Multiple signal: Voltage-measuring circuits faulty.} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} & \multicolumn{2}{|l|}{Depends on type of fault detected.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{ll} 
'Warning' output relay: & Yes / Yes \({ }^{2)}\) \\
'Blocked/faulty' output relay: & \(-/-\)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{SFMON: Meas. circ. I faulty} & 09805 \\
\hline \multicolumn{4}{|l|}{The measuring-circuit monitoring function has detected a fault in the current-measuring circuits.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{1st device reaction / 2nd device reaction: 'Warning' output relay: \(\quad\) Yes / Yes \({ }^{2}\) ) 'Blocked/faulty' output relay: -/ -}} & \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{3}{|l|}{SFMON: Meas.circ.V, I faulty} & 098016 \\
\hline \multicolumn{4}{|l|}{Multiple signal: Multiple signaling: Current- or voltage-measuring circuits faulty.} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} & \multicolumn{2}{|l|}{Depends on type of fault detected.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{ll} 
'Warning' output relay: & Yes / Yes \({ }^{2)}\) \\
'Blocked/faulty' output relay: & \(-/-\)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{SFMON: Communic.fault COMM3} & 098140 \\
\hline \multicolumn{4}{|l|}{Since the last complete valid message was transmitted the time set at COMM3: Time-out comm.fault has elapsed and the receive signals are set to their user-defined default values.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{1st device reaction / 2nd device reaction: 'Warning' output relay: \(\quad\) Yes / Yes \({ }^{2)}\) 'Blocked/faulty' output relay: -/ -}} & - / - & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{10 Troubleshooting \\ (continued)}


\section*{10 Troubleshooting \\ (continued)}

SFMON: CB rem. No. CB op. <
098067
The minimum number of CB operations performed at nominal current has fallen below the threshold.

1st device reaction / 2nd device reaction: Depends on type of fault detected. 'Warning' output relay: Yes / Yes \({ }^{2}\) 'Blocked/faulty' output relay: - / -
SFMON: CB \(\Sigma l\) trip > 098068
The maximum sum of disconnection current values has been exceeded.
1st device reaction / 2nd device reaction: Depends on type of fault detected.
\begin{tabular}{ll} 
'Warning' output relay: & Yes / Yes \({ }^{2)}\) \\
'Blocked/faulty' output relay: & \(-/-\)
\end{tabular}
'Blocked/faulty' output relay: - / -
SFMON: CB \(\Sigma / t r i p * * 2>\)
098069
The maximum sum of the disconnection current values to the second power has been exceeded.

1st device reaction / 2nd device reaction: Depends on type of fault detected. 'Warning' output relay: Yes / Yes \({ }^{2)}\) 'Blocked/faulty' output relay: - / -
\begin{tabular}{|l|l}
\hline SFMON: CB tmax> A & 098070 \\
SFMON: CB tmax> B & 098071 \\
SFMON: CB tmax \(>\) C & 098077
\end{tabular}

The maximum duration for the opening of a CB pole has been exceeded. Disconnection is not determined for this CB pole.

1st device reaction / 2nd device reaction: Depends on type of fault detected. 'Warning' output relay: Yes / Yes \({ }^{2)}\) 'Blocked/faulty' output relay: - / -

\section*{SFMON: CB pos.sig. implaus.}

The plausibility logic was triggered during the acquisition of the circuit breaker's (CB) status signals.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes \({ }^{2)}\)
'Blocked/faulty' output relay: - / -

\section*{SFMON: CTA error}

Measurement of the coolant temperature via the analog module is faulty.
1st device reaction / 2nd device reaction: Depends on type of fault detected.
'Warning' output relay: Yes / Yes \({ }^{2)}\)
'Blocked/faulty' output relay:
- / -

\section*{SFMON: TGFD mon. triggered}

The monitoring function for transient ground fault direction determination has operated.

1st device reaction / 2nd device reaction: - / -
'Warning' output relay: Yes / Yes
'Blocked/faulty' output relay: - / -

\section*{10 Troubleshooting \\ (continued)}


\section*{10 Troubleshooting \\ (continued)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SFMON: PT100 T1 open circ. 0980} \\
\hline \multicolumn{3}{|l|}{SFMON: PT100 T2 open circ.} & 30 \\
\hline \multicolumn{3}{|l|}{SFMON: PT100 T3 open circ.} & 098040 \\
\hline \multicolumn{3}{|l|}{SFMON: PT100 T4 open circ.} & 098041 \\
\hline \multicolumn{3}{|l|}{SFMON: PT100 T5 open circ.} & 098042 \\
\hline \multicolumn{3}{|l|}{SFMON: PT100 T6 open circ.} & 3 \\
\hline \multicolumn{3}{|l|}{SFMON: PT100 Open circ.T7} & 4 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{SFMON: PT100 T8 open circ.
SFMON: PT100 T9 open circ.}} & 098045 \\
\hline & & & 098052 \\
\hline \multicolumn{4}{|l|}{The P132 has detected an open circuit in the connection of a resistance thermometer Tx ( \(x=1 \ldots 9\) ) to the analog module (RTD).} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} & \multicolumn{2}{|l|}{Depends on type of fault detected.} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
'Warning' output relay: \\
'Blocked/faulty' output relay:
\end{tabular}} & Yes / Yes \({ }^{2)}\) & & \\
\hline & - /- & & \\
\hline \multicolumn{2}{|l|}{SFMON: Overload 20 mA input} & & 098025 \\
\hline \multicolumn{4}{|l|}{The 20 mA input of analog I/O module Y is overloaded.} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} & \multicolumn{2}{|l|}{Depends on type of fault detected.} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
'Warning' output relay: \\
'Blocked/faulty' output relay:
\end{tabular}} & Yes / Yes \({ }^{2)}\) & & \\
\hline & - /- & & \\
\hline \multicolumn{2}{|l|}{SFMON: Open circ. \(20 \mathrm{~mA} \mathrm{inp}\).} & & 098026 \\
\hline \multicolumn{4}{|l|}{The P132 has detected an open circuit in the connection of the 20 mA input.} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} & \multicolumn{2}{|l|}{Depends on type of fault detected.} \\
\hline 'Warning' output relay: 'Blocked/faulty' output relay: & \[
\begin{aligned}
& \text { Yes / Yes }{ }^{2)} \\
& -/--
\end{aligned}
\] & & \\
\hline \multicolumn{2}{|l|}{SFMON: Setting error f<>} & & 098028 \\
\hline \multicolumn{4}{|l|}{The over-/underfrequency protection function has been set for 'overfrequency' monitoring (based on the settings for operate value and nominal frequency). This setting is not valid in the \(f w\). Delta \(f\) / Delta \(t\) operating mode.} \\
\hline \multicolumn{2}{|l|}{1st device reaction / 2nd device reaction:} & \multicolumn{2}{|l|}{Blocking of the over-/under frequency protection function} \\
\hline 'Warning' output relay: 'Blocked/faulty' output relay: & \[
\begin{aligned}
& \text { Yes / Yes }{ }^{2)} \\
& -/-
\end{aligned}
\] & & \\
\hline \multicolumn{2}{|l|}{SFMON: Inv.inp.f.clock sync} & & 093120 \\
\hline \multicolumn{4}{|l|}{The function was configured to a binary signal input on the analog I/O module Y . Such a configuration is not permitted for this function.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{1st device reaction / 2nd device reaction: 'Warning' output relay: Yes/Yes 'Blocked/faulty' output relay: - / -}} & \multirow[t]{2}{*}{- / -} & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{10 Troubleshooting}
(continued)


\section*{11 Maintenance}

\section*{11 Maintenance}

Only qualified personnel, familiar with the "Warning" page at the beginning of this manual, may work on or operate this device.

The P132 is a low-maintenance device. The components used in the units are selected to meet exacting requirements. Recalibration is not necessary.

Electrolytic capacitors are installed in the power supply area because of dimensioning requirements. The useful life of these capacitors is significant from a maintenance standpoint. When the equipment is operated continuously at the upper limit of the recommended temperature range \(\left(+55^{\circ} \mathrm{C}\right.\) or \(\left.131^{\circ} \mathrm{F}\right)\), the useful life of these components is 80,000 hours, or more than 9 years. Under these conditions, replacement of the electrolytic capacitors is recommended after a period of 8 to 10 years. When the operating temperatures are approx. \(+45^{\circ} \mathrm{C}\) inside the devices, the required maintenance interval can be increased by about 1 year.

The P132 is equipped with a lithium battery for non-volatile storage of fault data and for keeping the internal clock running in the event of failure of the auxiliary power supply. Loss of capacity due to module-internal self-discharging amounts to less than 1\% per year over a period of availability of 10 years. Since the terminal voltage remains virtually constant until capacity is exhausted, usefulness is maintained until a very low residual capacity is reached. With a nominal capacity of 850 mAh and discharge currents of only a few \(\mu \mathrm{A}\) during device storage or in the range of the self-discharge current during device operation, the result is a correspondingly long service life. It is therefore recommended that the lithium battery only be replaced after the maintenance interval cited above.

Replacement of the maintenance-related components named above is not possible without soldering. Maintenance work must be carried out by trained personnel, and the auxiliary voltage must be turned off while the work is being performed.

Always turn off the power (supply voltage) before removing a hardware module.


The power supply must be turned off for at least 5 s before power supply module V is removed. Otherwise there is the danger of an electric shock.

\section*{11 Maintenance}

The relevant components are located on the following modules:
\(\square\) Electrolytic capacitor:
on power supply module V .
\(\square\) Lithium battery: on power supply module V .

Note: Only Schneider Electric-approved components may be used (see Chapter 13).

Capacitor capacitance must be checked before installation.


\footnotetext{
11-1 Component drawing for power supply module \(V\).
}

There is a danger of explosion if the electrolytic capacitor and battery are not properly replaced. Always check to make sure that the polarity of the electrolytic capacitor and the battery is correct.

The following instructions apply to surface-mounted cases:

The local control panel is connected to processor module \(P\) by a plug-in connecting cable. Remember the connector position! Do not bend the connecting cable.

Note: The replaced components (electrolytic capacitor and battery) must be disposed of in compliance with applicable national regulations.

After the maintenance procedures described above have been completed, new commissioning tests as described in Chapter 9 must be carried out.

\section*{11 Maintenance}

The P132 is used as a safety device and must therefore be routinely injection tested for proper operation. The first functional tests should be carried out approximately 6 to 12 months after commissioning. Functional tests should be performed at intervals of 2 to 3 years - 4 years at the maximum.

The P132 incorporates in its system a very extensive self-monitoring function for hardware and software. The internal structure guarantees, for example, that communication within the processor system will be checked on a continuing basis.

Nonetheless, there are a number of subfunctions that cannot be checked by the selfmonitoring feature without injection testing from the device terminals. The respective device-specific properties and settings must be observed in such cases.

In particular, none of the control and signaling circuits that are run to the device from the outside are checked by the self-monitoring function.

The analog inputs are fed through an analog preprocessing feature (anti-aliasing filtering) to a common analog-to-digital converter. In conjunction with the self-monitoring function, the CT/VT supervision function that is available for the device's general functions can detect deviations in many cases. However, it is still necessary to test from the device terminals in order to make sure that the analog measuring circuits are functioning correctly.

The best way to carry out a static test of the analog input circuits is to check the primary measured operating data using the operating data measurement function or to use a suitable testing instrument. A "small" measured value (such as the nominal current in the current path) and a "large" measured value (such as the nominal voltage in the voltage path) should be used to check the measuring range of the A/D converter. This makes it possible to check the entire dynamic range.

The accuracy of operating data measurement is \(<1 \%\). An important factor in evaluating device performance is long-term performance based on comparison with previous measurements.

In addition, a dynamic test can be used to check transmission performance and the phase relation of the current transformers and the anti-aliasing filter. This can best be done by measuring the trigger point of the first zone when there is a two-phase ungrounded fault. For this test, the value of the short-circuit current should be such that a loop voltage of approximately 2 V is obtained at the device's terminals with the set impedance. Furthermore, a suitable testing instrument that correctly replicates the twophase ungrounded fault should be used for this purpose.

This dynamic test is not absolutely necessary, since it only checks the stability of a few less passive components. Based on reliability analysis, the statistical expectation is that only one component in 10 years in 1000 devices will be outside the tolerance range.

Binary opto inputs

Binary outputs

Additional analog testing of such factors as the impedance characteristic or the starting characteristic is not necessary, in our opinion, since information processing is completely digital and is based on the measured analog current and voltage values. Proper operation was checked in conjunction with type testing.

The binary inputs are not checked by the self-monitoring function. However, a testing function is integrated into the software so that the trigger state of each input can be read out ('Oper/Cycl/Phys' folder). This check should be performed for each input being used and can be done, if necessary, without disconnecting any device wiring.

With respect to binary outputs, the integrated self-monitoring function includes even twophase triggering of the relay coils of all the relays. There is no monitoring function for the external contact circuit. In this case, the all-or-nothing relays must be triggered by way of device functions or integrated test functions. For these testing purposes, triggering of the output circuits is integrated into the software through a special control function ('Oper/CtrlTest/' folder).

Before starting the test, open any triggering circuits for external devices so that no inadvertent switching operations will take place.

The integrated self-monitoring function for the PC or communication interface also includes the communication module. The complete communication system, including connecting link and fiber-optic module (if applicable), is always totally monitored as long as a link is established through the control program or the communication protocol.

\section*{12 Storage}

Devices must be stored in a dry and clean environment. A temperature range of \(-25^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.\) to \(\left.+158^{\circ} \mathrm{F}\right)\) must be maintained during storage (see the Chapter on Technical Data). The relative humidity must be controlled so that neither condensation nor ice formation will result.

If the units are stored without being connected to auxiliary voltage, then the electrolytic capacitors in the power supply area need to be recharged every 4 years. Recharge the capacitors by connecting auxiliary voltage to the P132 for approximately 10 minutes.

If the units are stored during a longer time, the battery of the power supply module is used for the continuous buffering of the event data in the working memory of the processor module. Therefore the battery is permanently required and discharges rapidly. In order to avoid this continuous discharge, it is recommended to remove the power supply module from the mounting rack during long storage periods. The contents of the event memory should be previously read out and stored separately!

\section*{13 Accessories and Spare Parts}

\section*{13 Accessories and Spare Parts}

The P132 is supplied with standard labeling for the LED indicators. User-specific labeling for non-standard configurations of the LED's can be printed on the blank label strips packed with the device. The label strip can then be glued to the front panel area reserved for this purpose.

The label strip can be filled in using an overhead projector pen, waterproof type. Example: Stabilo brand pen, OH Pen 196 PS.
\begin{tabular}{ll}
\hline Description & Order No. \\
\hline Cable bushings & \(88512-4-0337414-301\) \\
\hline Lithium battery, type \(1 / 2 \mathrm{AA} 3.6 \mathrm{~V}\) & \\
\hline Electrolytic capacitor \(100 \mu \mathrm{~F}, 385 \mathrm{~V}\) DC & \\
\begin{tabular}{l} 
Only the following brands of capacitor are \\
permitted: \\
Philips, type PUL-SI/159/222215946101 \\
Panasonic, type TS-HA/ECOS 2GA 101 \\
Nichicon, type LGQ 2G 101 MHSZ \\
Nichicon, type LGU 2G 101 MHLZ
\end{tabular} \\
\hline Fuse for \(\mathrm{V}_{\text {A,nom }}=24 \mathrm{~V}\) DC: M3.5-250V & \\
\hline Fuse for \(\mathrm{V}_{\text {A,nom }}=48\) to 250 V DC & \\
and 100 to 230 V AC: M2-250V & \\
\hline Resistance \(200 \Omega\) & 255.002 .696 \\
\hline Cover frame 84 T & \(88512-4-9650723-301\) \\
\hline S\&R-103 operating program (for Windows) & On request \\
\hline
\end{tabular}

\subsection*{14.1 Order Information for P132}


\section*{14 Order Information}
2) Switching via parameter, default setting is underlined!
3) This option is excluded if the InterMiCOM (-95x) is ordered
4) Second included language in brackets
7) Hardware option, supports cyrillic letters instead of special West. Europe characters
8) Standard variant recommended, if higher pickup threshold not explicitly required by the application
10) Transient ground fault option for variants with current and voltage transformers only
11) Option without current transformers and without voltage transformers not possible
12) Option without current transformer not possible
16) Options for basic device 24 TE not possible

\section*{Information about ordering options}

\section*{Language version}

In order to display the Russian data model, the corresponding order extension number (-805) must be added upon ordering so that the hardware option supporting Cyrillic characters is integrated. With this ordering option, reference menu texts (English) will be available for display. However, other Western European languages containing extra characters will not be fully supported. Consequently, selecting the "Russian / English" ordering option means that it will not be possible to download Western European data models into the device.

\section*{Binary inputs' switching threshold}

The standard version of binary signal inputs (opto-couplers) is recommended in most applications, as these inputs operate with any voltage from 18V. Special versions with higher pick-up/drop-off thresholds (see also "Technical Data" chapter) are provided for applications where a higher switching threshold is expressly required.

\section*{Customer Care Centre}
http://www.schneider-electric.com/CCC

\section*{Schneider Electric}

35 rue Joseph Monier 92506 Rueil-Malmaison FRANCE

\section*{Customer Care Centre}
http://www.schneider-electric.com/CCC

\section*{Schneider Electric}

35 rue Joseph Monier 92506 Rueil-Malmaison FRANCE```


[^0]:    * : Function Group(s), Short Form

[^1]:    ${ }^{1}$ Increased mechanical robustness for the following case variants:
    Flush mounted case, variant 2 (with angle brackets and frame)
    Surface-mounted case

[^2]:    3-3
    Fault panel

[^3]:    3-10

[^4]:    3-31 Temperature measurements on a motor to be used with the Limit Value Monitoring function (LIMIT) and the Thermal Overload protection (THERM)

[^5]:    3-42 Group assignment and setting of debouncing and chatter suppression, illustrated for group 1

[^6]:    3-43 Signal flow with debouncing when time tagging occurs with the 1st pulse edge
    (e.g. parameter MAIN: Time tag set to the value '1stEdge,OpMem unsort' or '1stEdge,OpMem sorted'.)

    Example: $\quad$ Set debouncing time: 50 ms
    s e. start

[^7]:    3-50 Determining the minimum and maximum phase-to-ground and phase-to-phase voltages

[^8]:    3-61 Activation of "Dynamic Parameters"

[^9]:    3-70 Multiple ground fault signals

[^10]:    3-71 Phase-selective starting signals. (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.)

[^11]:    3-81 Date/time setting and clock synchronization with minute pulses presented at a binary signal input

[^12]:    3-88
    Operating data recording and counter for signals relevant to system operation

[^13]:    3-95 Duration of the ground fault recording

[^14]:    3-100

[^15]:    3-102 Ground fault counting

[^16]:    3-107

[^17]:    3-109 Acquisition of fault location

[^18]:    Negative-sequence current stages

[^19]:    3-132 Negative-sequence current stage (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.)
    (Note: Previous terminology of MAIN: Phase sequence was MAIN: Rotary field)

[^20]:    3-133 Selecting the measured variable (IDMT represents IDMT1 and IDMT2; the addresses apply to IDMT1.)

[^21]:    3-143b Selecting the measuring voltage

[^22]:    3-143a
    Enabling direction determination for residual current stages

[^23]:    3-179 ASC sequence during testing

[^24]:    3-184

[^25]:    3-189 Evaluating residual current

[^26]:    3-196 Counting ground faults

[^27]:    3-200 Issuing directional decisions

[^28]:    3-222 Enabling, disabling and readiness of $V<>$ protection

[^29]:    3-241 The direction-dependent trip signal of the reactive power protection function when set thresholds are exceeded

[^30]:    3-263 Forming the linked "open" state signal

[^31]:    5-14 Connection example for optional control,
    bay type no. 33 (A13.205.R03), feeder bay with load disconnecting switches, single busbar

[^32]:    5-19 Terminal connection diagrams P132 (part 1)

