Product Environmental Profile

Enerlin’X
IFM Modbus communication interface
Product Environmental Profile – PEP

Product overview
The functional unit of the Enerlin’X (ref. TRV00210) is to monitor or control electrical values, alarm status, open/close signals in the ULP connection System for 10 years.
The IFM is defined as an IMU (Intelligent Modular Unit) which is required for connection of a Masterpact or Compact to a Modbus network as long as this circuit breaker is provided with a ULP (Universal Logic Plug) port.
The IO input/output application module for LV breaker is part of an ULP system with built-in functionalities and applications to enhance the application needs. The ULP system architecture can be built without any restrictions using the wide range of circuit breakers.
The FDM121 switchboard display unit can be connected to a circuit breaker via an ULP cord to display all measurements, alarms, histories and event tables, maintenance indicators, management of installed devices on a screen.

This range consists of IFM Modbus communication interface, I/O application module, Switchboard front display module FDM121 and 5 RJ45/RJ45 male cord L=1m.
The representative product used for the analysis is IFM Modbus communication interface (ref. TRV00210).

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.
The environmental analysis was performed in conformity with ISO 14040.

Constituent materials
The mass of the product range is from 689.2 g and 695.5 g including packaging. It is 695.5 g for the IFM Modbus communication interface (ref. TRV00210). The constituent materials are distributed as follows:

![Material distribution chart]

Substance assessment
Products of this range are designed in conformity with the requirements of the European RoHS Directive 2011/65/EU and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive


Manufacturing
The Enerlin’X (ref. TRV00210) product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.
**Product Environmental Profile – PEP**

**Distribution**
The weight and volume of the packaging have been optimized, based on the European Union's packaging directive. The Enerlin'X (ref. TRV00210) packaging weight is 152.4 g. It consists of 100.6 g cardboard and 51.8 g paper. The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

**Use**
The products of the Enerlin'X (ref. TRV00210) range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use. The electrical power consumption depends on the conditions under which the product is implemented and used. The electrical power consumed by the Enerlin'X (ref. TRV00210) range is between 5.424 W and 5.496 W. It is 5.424 W in active mode for the referenced IFM Modbus communication interface (ref. TRV00210). This thermal dissipation represents less than 0.1% of the power which passes through the product. The product range does not require special maintenance operations.

**End of life**
At end of life, the products in the Enerlin'X (ref. TRV00210) have been optimized to decrease the amount of waste and allow recovery of the product components and materials. This product range contains 4 PCBAs and 4 plastic parts with brominated FR that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website [Green Premium website](http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page).

The recyclability potential of the products has been evaluated using the “ECO DEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME). According to this method, the potential recyclability ratio without packaging is: 4.3%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

**Environmental impacts**
Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:
- The calculation was performed on IFM Modbus communication interface (ref. TRV00210).
- Product packaging is included.
- Installation components: no special components included.
- Scenario for the Use phase: this product range is included in the category energy consuming product. Assumed service lifetime is 10 years and use scenario is 5.424 W 100% load, loading rate is 30% and service uptime percentage is 30%.
- The geographical representative area for the assessment is European and the electrical power model used for calculation is Europe model.
- End of life impacts are based on a worst case transport distance to the recycling plant (1000km)
### Product Environmental Profile – PEP

#### Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>IFM Modbus communication interface (ref. TRV00210)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$S = M + D + I + U + E$</td>
<td>$M$</td>
</tr>
<tr>
<td>Air Acidification (AA)</td>
<td>kg H+ eq</td>
<td>3.2325E-02</td>
</tr>
<tr>
<td>Air toxicity (AT)</td>
<td>m³</td>
<td>3.7903E+07</td>
</tr>
<tr>
<td>Energy Depletion (ED)</td>
<td>MJ</td>
<td>2.5014E+03</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>kg CO₂ eq</td>
<td>1.4799E+02</td>
</tr>
<tr>
<td>Hazardous Waste Production (HWP)</td>
<td>kg</td>
<td>1.6099E+00</td>
</tr>
<tr>
<td>Ozone Depletion Potential (ODP)</td>
<td>kg CFC-11 eq</td>
<td>2.2147E-05</td>
</tr>
<tr>
<td>Photochemical Ozone Creation Potential (POCP)</td>
<td>kg C₂H₄ eq</td>
<td>1.6987E-02</td>
</tr>
<tr>
<td>Raw Material Depletion (RMD)</td>
<td>Y-1</td>
<td>1.3247E-13</td>
</tr>
<tr>
<td>Water Depletion (WD)</td>
<td>dm³</td>
<td>8.6174E+02</td>
</tr>
<tr>
<td>Water Eutrophication (WE)</td>
<td>kg PO₄⁻³⁻ eq</td>
<td>2.2380E-03</td>
</tr>
<tr>
<td>Water Toxicity (WT)</td>
<td>m³</td>
<td>4.1938E+01</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5 and with its database version 2013-02.

The using phase is the life cycle phase which has the greatest impact on the majority of environmental indicators; the manufacturing phase is responsible for the major impacts on the RMD, HWP, POCP, WD and WE.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: “Depending on the impact analysis, the environmental indicators (without RMD, HWP, POCP, WD and WE) of other products in this family may be proportional extrapolated by energy consumption values”.

For RMD, HWP, POCP, WD and WE, impact may be proportional extrapolated by mass of the product.

### System approach

As the products of the range are designed in accordance with the European RoHS Directive 2011/65/EU, they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

Air Acidification (AA) is the acid substances present in the atmosphere that are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of $H^+$.

Air Toxicity (AT) represents the air toxicity in a human environment. It takes into account the usual accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Energy Depletion (ED) gives the quantity of energy consumed, whether it is from fossil, hydroelectric, nuclear or other sources. It takes into account the energy from the material produced during combustion. It is expressed in MJ.

Global Warming (GW) refers to the global warming of the planet, which is the result of the increase in the greenhouse effect due to sunlight reflected by the earth’s surface being absorbed by certain gases known as “greenhouse-effect” gases. The effect is quantified in gram equivalent of CO$_2$.

Hazardous Waste Production (HWP) quantifies the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

Ozone Depletion (OD) defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Photochemical Ozone Creation (POC) quantifies the contribution to the “smog” phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C$_2$H$_4$).

Raw Material Depletion (RMD) quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Water Depletion (WD) calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm$^3$.

Water Eutrophication (WE) is a natural process defined as the enrichment in mineral salts of marine or lake waters or a process accelerated by human intervention, defined as the enrichment in nutritive elements (phosphorous compounds, nitrogen compounds and organic matter). This indicator represents the water eutrophication of lakes and marine waters by the release of specific substances in the effluents. It is expressed in grams equivalency of PO$_4^{3-}$ (phosphate).

Water Toxicity (WT) represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

PEP achieved with Schneider-Electric TT01 V10 and TT02 V20 procedures in compliance with ISO14040 series standards.